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Abstract

The idea of “brain controllability” refers to the possibility of manipulating brain activity

through suitable external stimuli, chiefly for therapeutic aims (restoring normal brain

activity in patients). Traditional approaches to dynamical system control generally require

a system identification step where an explicit model of the system dynamics is obtained -

a difficult step in the case of brain dynamics, where a plenitude of competing dynamical

models exist. It was recently proposed that the system identification step could be

circumvented by enacting control through a neural network (reservoir computer) coupled

to the system. In this thesis, we will simulate brain activity with existing dynamical

models and test the ability of the neural-network-based controller to modulate activity.

Results may be of direct applicability to real neurostimulation experiments.
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Chapter 1

Introduction

The possibility to control a system’s behavior by external inputs is not only fascinating,

but of extreme importance in basically all fields of applied science. Examples range from

feedback amplifiers in electronics to automotive systems in mechanical engineering, to

autopilot and stability control in aircraft engineering, to control systems in chemical

plants, to medical devices such as insulin pumps or pacemakers and so on.

With respect to the medical field, it is interesting to test the possibility of controlling

the activity state of the brain through external inputs applied to its “nodes”. A node is

a region of the brain whose properties and activity are homogeneous with respect to a

given criterion. Depending on the criterion, several “parcellations” of the brain into nodes

are possible: an example is the Schaefer parcellation[16], which we will use in this work

(see Section 3.1). Several devices and techniques can be used to modulate node activity,

such as electrodes implanted in specific brain regions which can deliver electrical impulses,

or transcranial magnetic stimulation where magnetic fields are used to induce electric

currents in specific areas of the brain. These kinds of techniques have been studied also

in relation to the treatment of mental health problems like depression and dementia and

have received a lot of attention by clinicians[15], [2]. It should be pointed out, however,

that only some brain regions can be directly stimulated, typically superficial regions of

the cortex. For this reason, previous studies have investigated the possibility to control

specific nodes indirectly, through remote perturbations acting on the accessible nodes[4].

In this work, we will investigate this possibility making use of a particular kind of neural

network, namely an Echo State Network, to address the problem of remote stimulation of

brain nodes. Making use of a neural network allows to overcome some of the difficulties of

the traditional approach to controllability.

The traditional approach to the problem of control follows three steps. At first one has to

define a model describing the dynamical system at hand, choosing the best parameters

to fit the experimental data. This is usually done by applying external inputs to the so

called system plant (i.e. to the parts of the system that can be stimulated from outside)

and collecting the system outputs. Using metrics such as mean squared error, correlation
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functions and others, the parameters of the model are iteratively adjusted to best match

the collected data, a process called system identification[12]. The second step is usually

the linearization of the model. In order to properly control the system by external inputs,

one has to know how the system would evolve when perturbed, but this knowledge is

basically inaccessible except for the simplest kind of dynamics. In particular, let’s suppose

that the variable x(t) describes the plant internal state, y(t) the observable outputs, v(t)

the external inputs. Then the following equations will in general hold:

ẋ = f(x, v)

y = g(x) (1.1)

where a function f determines how the internal state evolves in terms of the state itself

and the external input, and a function g determines what output a given internal state

produces. Since it is usually impossible to solve these equations, one cannot know which

input is needed to produce a desired output. For this reason one has to make a second step,

i.e. linearizing the system, which involves reducing those equations to linear equations

around a fixed point, obtaining a relation of the form:

ẋ = Ax + Bv

y = Cx + Dv (1.2)

through an appropriate choice of matrices A, B, C, D. These are called state-space

equations. The third step is to exploit the known fact that, in frequency domain, the

response function for these equations, relating the outputs to the external inputs, can be

expressed in terms of the entries of the matrices, thus solving the control problem.

The development of neural networks has opened the path to the possibility of studying

controllability of systems without approximations of the dynamics. Studies on the usage

of neural networks for identification and control of dynamical systems date back to the

1990s[14]. Neural networks can learn a system dynamics without prior knowledge of its

model equations. The system identification step is replaced by a training phase where

the neural network “learn” the relation between external inputs and plant outputs. In

this way, after the training, the neural network is capable of producing the inputs needed

to obtain a desired accessible output and to adjust them in real time in response to the

changes of the plant (feedback or closed-loop control). A neural network can do this also

for complex non-linear systems, without the need of linearization techiques.

We will make use of a model of the brain built to reproduce real fMRI data-sets to

generate time series of the brain nodes when some external perturbations are applied to a
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given subset of nodes. These signals will be used to train the neural network to identify

the acting perturbations. In this way, the neural network should be able to predict the

perturbations to apply to the chosen subset in order to obtain some desired signal for the

other nodes. In particular we will procede as follows.

First, in Chapter 2 we will review the theoretical background required to define and

understand the problem. In Section 2.1 and 2.2 the basics of Recurrent and Echo State

Networks and their usage for control are introduced. In Section 2.3 we explain the

equations of the dynamical model used to simulate brain activity. They are needed to

generate the time series used to train the network.

In Chapter 3 the detailed implementation of the simulations and the network training

is reported. In Section 3.1 specifics of the data on which the brain model was built are

reported. In Section 3.2 we explain how all the parameters of the brain model were fixed.

In Section 3.3 we specify the network architecture and working process.

In Chapter 4 we will report the main results of this work. We tested several control

configurations, varying in the type and number of external inputs used during the network

training, as explained in each Section of the chapter.

Chapter 5 is used to discuss the results, draw conclusions, and address possible future

lines of research.

The coding programs we used in this work are documented in a GitHub repository. You can

access the repository at the following link: https://github.com/LucaMazz/MasterThesis.
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Chapter 2

Theoretical Framework

2.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a type of artificial neural network designed to

recognize patterns in sequences of data, such as time series, text and biological data,

where there is a sequential dependency among the elements.

The most common neural networks, known as feedforward neural networks, consist of an

input layer, some hidden layers, and an output layer. In this type of networks neurons in

a layer are connected only to neurons in the subsequent layer, and each connection has an

associated weight that determines the strength of the connection (see 2.1a).

Information flows in one direction, from the input layer through the hidden layers to the

output layer, without any feedback loops or cycles. The network is thus unable to capture

the temporal dependencies in the data.

(a) Feedforward network
(b) Recurrent net-
work

Figure 2.1: Schematics of the two kinds of networks, FNNs on the left and RNNs on the
right

Recurrent neural networks, on the other hand, have an architecture where the output from

a layer is fed back into the network, allowing information to persist and creating a form

of memory in the network. Supposing that a vector sequence x̄t is fed to the recurrent
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network as input, the network evolves a hidden state vector h̄t through an update rule of

the following kind:

h̄t = f(Whhh̄t−1 + Whxx̄t + b̄h) (2.1)

where Whx is the weight matrix for the input, Whh the weight matrix for the hidden state,

bh a bias term and f some kind of activation function, usually an hyperbolic tangent or a

rectifier. Thus the state of the network at some time step (t − 1) has an impact on the

state at time step t, enabling the emerging of some kind of recurrence (see 2.1b).

The network generates a vector sequence ȳt as output:

ȳt = g(Wyhh̄t + b̄y) (2.2)

where Wyh is the weight matrix for the output, by a bias term and g an appropriate function

for the task to be performed (e.g. softmax). The matrices are optimized during a training

phase through gradient descent algorithms such as back-propagation through time[11].

Adjusting dynamically all the weights in the network, this process is computationally

intensive and potentially prone to issues like vanishing and exploding gradients.

2.2 Echo State Networks

Echo state networks represent a simplification of recurrent neural networks. They use

random weights in the hidden-to-hidden layer and the input-to-hidden layer which are

randomly initialized and remains fixed, and only the weights of the output layer are

trained, usually using a simple linear regression. By keeping the hidden layer weights

fixed and only training the output layer, ESNs require far fewer computational resources.

The training process is also significantly faster, making ESNs suitable for applications

where rapid training is needed.

It has been showed that ESNs work well when the dimensionality of the input is small.

Therefore, the dimensionality of the hidden layer should be much larger than the dimen-

sionality of the input. The large number of randomly connected neurons of an echo state

network is often referred to as the reservoir (see Figure 2.2).

Figure 2.2: Echo state network
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For the ESN to work correctly, one has to ensure the echo state property, which essentially

means that, for sufficiently long time, the reservoir state should asymptotically depend

only on the driving input signal (the state is an echo of the input), while the influence of

initial conditions should progressively vanish with time. A number of precautions are to

be held to ensure this property[1]:

• setting the spectral radius of the reservoir’s weight matrix W (i.e. its largest absolute

eigenvalue). It is the most critical parameter and should almost always be less than

or equal to 1.

• using a sparsely connected weight matrix W (say 10% of connections). It is argued

that sparse connectivity leads to a decoupling of the individual sub-networks, which

increases the diversity of the features learned by the echo state network[10].

• scaling the input matrix Win. The matrix is scaled with different values to avoid

that inputs in each time step damage the information carried in the hidden layer

from the previous time step.

• choosing a regression technique which makes the output matrix Wout less sensitive

to the states of the reservoir. An example is ridge regression, also know as Tikhonov

regularization (see Section 3.3).

Among other things, echo state networks can be used to predict the evolution of a

dynamical system: the input is a time series of the system, and the output a prediction

of future values of the time series. In a recent work[9] it has been proved that, under

appropriate mathematical assumptions, this setting induces a map from the phase space

of the dynamical system to the reservoir space, which is almost surely an embedding.

In particular, for stable dynamical systems, the reservoir exhibit dynamics that are

topologically conjugate of the observed system. The work proved that an ESN can predict

the next value of a sequence of scalar observations of a structurally stable dynamical

system with arbitrary precision, by an appropriate choice of the output weights Wout.

Unfortunately, it does not prove what kind of learning algorithm would be able to find

those weights, or how much training data is needed.

2.2.1 Controlling Dynamical Systems with ESNs

Control in dynamical systems refers to the use of external inputs to influence the behavior

of a system over time. This is a fundamental problem in many fields, such as automotive

systems, robotics, chemical control, medical devices and so on.

Controlling a system is a challenging task, since to drive it in the desired direction

one should constantly evaluate the state of the system and adjust the external inputs
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accordingly over time. This approach is known as closed-loop control, or feedback control,

since it involves continuously monitoring the output of a system and adjusting the inputs

based on this feedback to achieve the desired behavior. Since our goal was to learn the

perturbations needed to force brain state transitions, our problem is exactly a closed-loop

control problem.

The difficulties with the closed-loop approach is that the majority of the systems follow a

dynamics which is a nonlinear function of the state variables and the external inputs, so

that it is impossible to predict the effects of the control signal for every moment and every

state of the system. This is why, the usual approach is to linearize the dynamics and then,

having to do with a much more stable and predictable system, apply a predetermined set

of inputs to the system without using feedback from the system’s outputs to adjust those

inputs (the so called open-loop control or feed-forward control).

Thanks to the cited ability of ESNs to exhibit a dynamics which is conjugate to the

system dynamics, ESNs are well suited to be used in closed-loop control. During a training

phase where random external perturbations are applied to the system, the ESN learns

to reproduce those perturbations processing the system dynamical evolution. Then, the

trained ESN will be able to process a desired dynamics and produce the perturbations

needed to obtain that dynamics.

To better understand, let’s suppose that a dynamical system evolves through an equation:

ẋ = f(x, v) (2.3)

where f is a function of the state x(t) of the system and of some external input v(t),

which contributes to drive the system evolution. The state x(t + ¶) after a little time

interval ¶ will depend on the values of v at each time in [t, t + ¶]. However, if v varies

slowly during this time, one can assume that x(t + ¶) will approximately depend on just

x and v at time t:

x(t + ¶) ≈ F[x(t), v(t)] (2.4)

for some function F. In general, this function is not invertible since there may be multiple

possible inputs v(t) that drive the system to a given future state and not all states may

be reachable from the current state. However, restricting the domain to future states

reachable from the current state and choosing a single value among possible inputs, one

could in principle invert the relation and be able to evaluate the external input needed to

evolve the system from x(t) to x(t + ¶):

v(t) ≈ F−1[x(t), x(t + ¶)] (2.5)
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What an Echo State Network can do is to learn the inverse function. Basically, during a

training phase, one uses a time series y(t) of the system subjected to a known perturbation

vtarget(t) as input for the network. The network will start to synchronize its dynamics to

that of the system, so that, for long enough time, its state u(t) will become a function of

the system dynamics:

u(t) ≈ G[y(t), y(t + ¶)] (2.6)

During this training, the output weights matrix Wout is adjusted so that the known

perturbation is reproduced by a linear combination of the network state, obtaining the

following set of approximations:

F−1[y(t), y(t + ¶)] ≈ vtarget(t) ≈ Woutu(t) ≈ WoutG[y(t), y(t + ¶)] (2.7)

In this way, one ends up with a matrix Wout which can basically produce the external

perturbation driving the system from a state r(t) to a desired state r(t + ¶) if applied on

the network state obtained by feeding [r(t), r(t + ¶)] as input.

It is important to remember that, in order for this approach to be effective, the time series

should be long enough to ensure the network synchronizes to the system, and training

must be done with a perturbation vtarget(t) rich enough to ensure that the system is

stimulated with many frequencies and explores as much of the phase space as possible[3].

2.3 Dynamical Model of the Brain

We modeled the dynamics of the brain network as a set of Landau-Stuart oscillators close

to a Hopf bifurcation. In fact, the resting-state spontaneous alpha activity of the brain

bursts erratically between two distinct modes of activity. It has been shown[6], [7] that

these bursts between low- and high-amplitude alpha oscillations are compatible with the

particular type of dynamical instability described by an Hopf bifurcation.

We then made use of a whole-brain model made up of a set of nodes, each of which

represents a distinct anatomical or functional region of the brain. The activity of these

nodes is described by the normal form of a Hopf bifurcation, which exhibits a stable fixed

point or a stable limit cycle, depending on a control parameter a. Such a bifurcation is

described by the following equation of complex state variable z:

dz

dt
= [a − »|z|2]z + iÉz + ¸ (2.8)

In our model, we assume that the BOLD signal of each node is given by the real part xj of

a state variable zj evolving through equation 2.8 with the addition of a coupling between

the nodes. Specifically, the following set of coupled equations in cartesian coordinates
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describes the whole-brain dynamics[4], [5]:

dxj

dt
= [aj − x2

j − y2

j ]xj − Éjyj + G
N∑

i=1

Cij(xi − xj) + ´¸j(t)

dyj

dt
= [aj − x2

j − y2

j ]yj + Éjxj + G
N∑

i=1

Cij(yi − yj) + ´¸j(t) (2.9)

where j = 1, . . . , N is the node index. In these equations:

• Cij is a matrix representing the structural connectivity of the brain (SC), a quanti-

tative measure of the physical connections between the different regions; it is used

to couple the nodes through the simplest lower order linear coupling.

• G is a global scaling factor to adjust the weight of the couplings.

• ¸j represents a Gaussian random noise (zero mean, unit standard deviation).

• aj are the bifurcation parameters. If aj > ac, where ac is a critical value (zero

in absence of coupling), the system engages in a stable limit cycle with frequency

fj = Éj/2Ã, while if aj < ac the local dynamics converge to a stable fixed point

representing a low-activity noisy state.

In the methodology section, we will discuss how these parameters have been fixed.

12



Chapter 3

Methodology

3.1 Data and Preprocessing

We used the 96 unrelated subjects’ subset from the Human Connectome Project (HCP)[18].

For the main analysis, we used the left-right (LR) phase-encoding runs from the first

session resting state fMRI data. We later replicated the analysis for the left-right (LR)

phase-encoding runs from the second session resting state fMRI data.

Recordings had ≈ 15 min duration with a TR of 0.72 sec. The full description of the

imaging parameters and minimal preprocessing pipeline is given in Ref.[8]. In short, after

correction for motion, gradient, and susceptibility distortions the fMRI data was aligned

to an anatomical image. The aligned functional image was corrected for intensity bias,

demeaned, and projected to a common surface space, which resulted in a cifti-file. All

fMRI data were filtered between 0.1 and 0.01 Hz to retain the relevant frequency range

for further analyses of the BOLD signal.

We obtain structural and functional matrices in different spatial scales using the Schaefer

parcellation[16], which optimizes local gradient and global similarity measures of the fMRI

signal in various spatial scales. We considered the spatial scale corresponding to 100

regions. In both fMRI datasets time series were extracted with the help Workbench

Command provided by the HCP.

3.2 Setting the whole-brain model

Before using the equations 2.9 to produce the temporal sequences for the neural network,

we needed to find the optimal values of the parameters in order to adjust the model to fit

the empirical data.

Finding the frequencies. First of all, we found the power spectrum of the data. Some

of the signals are visible in Figure 3.1. We fixed the frequencies fj for the equations as

the maximum of the power spectrum of each signal. As can be seen in Figure 3.2, most of
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the frequency peaks are in the [0.045, 0.055]Hz range.

Figure 3.1: Filtered BOLD signals of 10 nodes chosen arbitrarily.

Fixing the bifurcation parameters. It has been shown[5], [6] that the resting state of

the brain is a metastable state corresponding to a subcritical Hopf dynamics driven by

noise. The noise plays a crucial role in the subcritical regime, avoiding that the signal of

the oscillators dies over time. As in [4], we then fixed a noise scaling ´ = 0.02 and set the

parameters aj to zero, making sure we were in the desired subcritical regime.

This choice is not only supported by previous studies, but also validated by a high match

between empirical and simulated time series, further increased by adjusting the connection

weights.

Finding the connection weight scaling. Connection weights were fixed by maximizing

the similarity between temporal synchronization properties of the original and simulated

signal. A measure of synchronization between pairs of nodes can be obtained by Hilbert

transforming the signals. This transformation yields an analytic signal from the original

signal, made up of an amplitude part, representing the envelope (or instantaneous am-

plitude) of the original signal, and a phasor, whose phase represents the instantaneous

phase of the original signal. After transforming the signals of all nodes, one can evaluate

a matrix FC, called phase coherence matrix, as the time average of the following matrix:

dFCij(t) = cos(¹i(t) − ¹j(t)) (3.1)

where ¹i(t) is the instantaneous phase of node i. The FC matrix reflects the “functional

connectivity” of different brain regions, which is correlated but not equal to the structural

connectivity. Functional connectivity expresses the temporal correlation between different

brain regions, capturing the level of synchronization of those regions. In fact, non-

vanishing functional connectivity can also occur between regions without direct structural

connections, mediated by indirect pathways.

For different G values, we generated solutions of equation 2.9 and computed the FC

matrix. Then we computed the Pearson correlation coefficient between the FC matrix

of the model and of the empirical data. We fixed G = 0.02, as the value for which the

14



(a) Power spectrum mediated over all the signals.

(b) Histogram of the peak frequencies.

Figure 3.2: Frequency components of the signals.
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correlation is maximum (see Figure 3.3).

Figure 3.3: Correlation between model and empirical FC matrix at different G values.

Updating the connectivity matrix. The structural connectivity matrix Cij (see left

hand side of Figure 3.4) is obtained with dMRI, which is affected by heavy biases, including

the fact that it cannot capture connectivity asymmetries and it often misses connections

in the opposite hemisphere of the brain[4].

Figure 3.4: Comparison between connectivity matrices before and after the update.

For this reason, we iteratively updated all connections in order to access the potential

missing components of the anatomical connectivity, making use of the the following update

rule:

Cij = Cij + ϵ(FCemp
ij − FCsim

ij ) (3.2)
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In practice, at each iteration we simulated the node signals, evaluated the FC matrix

of the simulated series, updated Cij through equation 3.2 with ϵ = 0.01, and then used

the updated matrix in the next iteration. We iterated the process until the variation was

negligibly small.

It is worth noting that in this way we obtain simulated series whose FC matrix is strongly

similar to that of the original data, as shown in Figure 3.5.

(a) Before the update.

(b) After the update.

Figure 3.5: Comparison between phase coherence matrices before and after the update
procedure.

After all these steps, we could reach a really good agreement between the original empirical

signals and the simulated ones, with a 0.63 correlation coefficient between the FC matrices

of empirical and simulated data. As an example, in Fig. 3.6 it can be seen a comparison

between the empirical signal and the model prediction for node 0 (the different amplitude

values are just a matter of scaling).
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Figure 3.6: Comparison between original and simulated signal for node 0.

3.3 Building the Echo State Network

As pointed out in Chapter 2.2, an Echo State Network generates an output which is

just a linear combination of the reservoir neuron activities. Specifically, given a Ninput

dimensional vector input u(t) at time steps t, and a Nnetwork dimensional vector x(t)

representing the state of the reservoir, the network evolves his hidden state through the

following equation:

x(t) = (1 − ³)x(t − 1) + ³ tanh(Win[1; u(t − 1)] + Wx(t − 1) (3.3)

where ³ is a parameter called leaking rate (which we will discuss further), Win the

Nnetwork × (1 + Ninput) input matrix, W the Nnetwork × Nnetwork matrix of internal con-

nections and [·; ·] represents the vertical concatenation of vectors. The entry equals to one

is used to stabilize the dynamics[13].

The output vector y(t) is then obtained through the relation[13]:

y(t) = Wout[1; u(t); x(t)] (3.4)

where Wout is the Noutput × (1 + Ninput + Nnetwork) output matrix, which is fixed after a

training phase where we make use of Ridge regression:
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Wout = ytargetxT(xxT + µ1)−1 (3.5)

Here, ytarget(t) is a target output chosen to train the network and µ is known as Ridge

parameter, a regularization coefficient preventing over-fitting and feedback instability.

Notice that the output matrix is time independent and that the more time steps one has,

the more efficient the training will be.

Following the guidelines in Section 2.2, we generated the entries of matrices Win and W

according to a normal distribution with zero mean and standard deviation to be adjusted

manually, depending on the task to be performed, in order to optimize the training phase.

W was always sparse and rescaled to ensure the echo state property. The leaking rate

³ and the Ridge parameter µ were also adjusted through repeated runs to optimize the

training. The training phase was also made up of a validation part, where we checked

if the goodness of the training was just due to over-fitting or it was actually due to the

network dynamics having captured the features of the task.

In each section of the Results chapter, the values used for the parameters will be pointed

out.
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Chapter 4

Results

As pointed out in the Introduction, our main goal was to study the possibility of stimulating

a node of choice by acting on a group of different nodes. The effect of an electro-stimulation

applied through electrodes or magnetic fields to a node can be modeled in two ways:

• as an “additive” term which shifts the node signal by a certain amount, exciting or

inhibiting it;

• as a variation of the bifurcation parameter aj of the node, with the effect of increasing

or reducing its excitability and hence raise or lower the oscillation amplitude.

We decided to test both kinds of stimulation model. The first kind, where some node

signals can be directly shifted, can be described by the following equations:

dxj

dt
= [aj − x2

j − y2

j ]xj − Éjyj + G
N∑

i=1

Cij(xi − xj) + pj(t) + ´¸j(t)

dyj

dt
= [aj − x2

j − y2

j ]yj + Éjxj + G
N∑

i=1

Cij(yi − yj) + ´¸j(t) (4.1)

where a term pj(t) is added to equations 2.9. We will refer to this stimulation model as

“perturbation” case. This is the approach used by most of the previous works applying

control theory to the brain, such as in [17].

The second kind, where the external stimuli can make the amplitude vary with time, can

be described as follows:

dxj

dt
= [aj + mj(t) − x2

j − y2

j ]xj − Éjyj + G
N∑

i=1

Cij(xi − xj) + ´¸j(t)

dyj

dt
= [aj + mj(t) − x2

j − y2

j ]yj + Éjxj + G
N∑

i=1

Cij(yi − yj) + ´¸j(t) (4.2)
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where mj(t) represents the variation of the amplitude of node j. We will refer to this

stimulation model as “modulation” case. This is the approach recently followed in [4].

For both cases, we used a sequence of positive or negative square pulses as external

inputs (pj(t) or mj(t)), since this kind of pulses are the easiest to generate in practical

applications.

4.1 Perturbations

The first attempt was to study the “perturbation” case (equations 4.1).

We supposed that out of N total nodes, one has the possibility to directly stimulate

only nodes i1, . . . , in and that one wants to perturb node k, which isn’t between the

accessible nodes. During a training phase, we generated a solution to equations 4.1 where

perturbations pi1
(t), . . . , pin

(t) in the form of trains of positive and negative square pulses

at random times were acting on the accessible nodes, while the remaining in+1, . . . , iN

nodes were unperturbed. It is clear that since the equations are coupled, the perturbations

also affect the unperturbed nodes in an indirect way.

It is then possible to feed the signals of the unperturbed nodes to the neural network

as input, and train it to produce the pi1
(t), . . . , pin

(t) perturbations as target output. In

this way, we should end up with a network which is able to receive solutions of equations

4.1 where only node k (chosen between nodes in+1, . . . , iN) is perturbed (which we call

desired signal) and give back the perturbations one should apply to nodes i1, . . . , in in

order to obtain the desired signals for nodes in+1, . . . , iN and in particular for node k.

We performed the analysis on a subset of the total nodes so that the network could

work with a lesser complex system. We started working with 30 nodes. Between them,

the number of nodes to be used as accessible nodes should be as little as possible, but

sufficiently large to ensure that every other node could be sufficiently connected to them.

For this reason we randomly selected a third of the 30 nodes, namely nodes [1, 2, 3,

11, 13, 14, 20, 22, 23, 24], as nodes to be perturbed. We generated the solution of

equations 4.1 for an interval [0, 30000]s using 300000 time steps, with perturbations

p1(t), p2(t), · · · , p24(t) in the form of trains of positive and negative square pulses with

amplitude uniformly distributed in range [0.2, 0.8] and width 300s acting at random

instants. The solution obtained (except an initial discarded transient) was used to train

the network, using the unperturbed node signals as input u(t) and the acting perturbations

as target output ytarget(t) (refer to Section 3.3 for details). Then we generated a different

set of perturbations of the same type acting on the same nodes, but at different random

instants. The solution obtained was used to validate the training. In fact, in order to be

sure that a neural network actually learned to map the input to the output, and that

a good result isn’t just a consequence of over-fitting, one has to verify that the neural
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network works well with different inputs.

As a quantitative measure of the goodness of the network outputs in training and validation

phases we evaluated the normalized mean square error (NRMSE) between the target

output (consisting in the perturbations on the selected nodes) and the output produced by

the network. Specifically, if ytarget(t) is the vector made up of all the target perturbations

and y(t) the output of the network, the NRMSE is evaluated as the mean over time steps

and over entries of the squared difference ytarget(t) − y(t), normalized by the maximum

perturbation amplitude.

We used a network of 1000 neurons, fixing a ridge parameter µ = 1, Win with entries

normally distributed with unit variance and W with sparse entries (density 1%) normally

distributed with unit variance. In order to optimize the ESN performance, we repeated

training and validation phases for several values of the leaking rate in order to fix its

parameters at the value which ensured the minimum NRMSE for validation. Notice that

since the NRMSE is a mean over a lot of time instants (≈ 300000), small variations of

NMRSE can correspond to drastic changes in the quality of the network output. We fixed

³ = 0.004, having a 0.17 NRMSE during training and a 0.23 NRMSE during validation.

An example of the outputs produced by the network during training and validation is

visible in Figure 4.2a and 4.3a respectively. We should stress that, since the network is

learning to produce these perturbations from the signals of the unperturbed nodes, which

are more or less affected by the perturbed ones depending on the different strengths of

the connections, some perturbation is reproduced better than others.

Having completed the training, we tested the performance of the network. We wanted to

verify if the ESN could predict the perturbations one should apply to the accessible brain

nodes in order to have an effect equivalent to the direct perturbation of an inaccessible

target node. Thus, we simulated the activity of the brain subjected to a direct perturbation

of the target node, and used the corresponding time series of the inaccessible nodes as

input to the ESN. If working correctly, the ESN should predict the perturbations one

needs to apply to the accessible nodes in order to obtain those time series.

As an example, consider the case where one wants to act on node 0 as the target node. We

generated a solution of equations 4.1 with p0(t) as the only non-zero perturbation in the

form of a square wave of amplitude 0.2 and frequency 0.001Hz. This solution represents a

situation where node 0 is activated. With the signals of nodes [0, 4, 5, 6, 7, 8, 9, 10, 12,

15, 16, 17, 18, 19, 21, 25, 26, 27, 28, 29] as input, the ESN produced the perturbations to

be applied to the rest of the nodes (the accessible ones) to obtain those signals. We then

generated the solution of equations 4.1 when the pj(t) are the ones produced by the ESN

and compared the time series of nodes [0, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16, 17, 18, 19, 21, 25,

26, 27, 28, 29] to the desired ones, which were given as inputs to the network. If the ESN

is able to correctly predict the external inputs to apply to the accessible nodes in order to

activate node 0, the two solutions should be similar. We repeated the process many times,
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trying to activate every single node one by one.

As an example, we report results obtained when trying to activate node 25. The network

predicts that some nodes should be more perturbed, e.g. node 14 (see Figure 4.4a), some

should be less perturbed, e.g. 23 (see Figure 4.5a), or not at all.

Notice that in this “perturbation” case we were unable to obtain the desired solution

when applying the predicted perturbations. We reported the signals of node 25 and node

10 when trying to activate 25 (Figure 4.6a and 4.7a). Node 25 could only be slightly

activated, despite the intense perturbations applied.

To keep track of the goodness of the activation procedure of the various nodes we report

the matrix in Figure 4.8a. In position (i, j) of the matrix it is reported the NRMSE of

the signal of node j when trying to activate node i. This NRMSE is evaluated as the

root mean square difference over the time steps between the desired signal for node j and

the signal produced by applying the ESN’s predicted perturbations, normalized by the

root mean square of the signal produced. Notice how the off-diagonal elements have small

entries, meaning that the ESN is able to produce perturbations that correctly don’t lead

to an activation of some undesired node. The large diagonal elements, however, underline

the failure in the activation of the desired node.

4.1.1 Training with Uniformly Randomized Perturbations

In order to improve the training phase it could be useful to make use of perturbations that

could let the plant dynamics explore more of its phase-space. For this reason, following the

approach described in [3], we generated sequences of random values uniformly distributed

in [−0.8, 0.8] for each time step. These perturbations are less realistic with current

neurostimulation techniques. The sequences were filtered with a low-pass cutoff of the

frequencies greater than 1/¶, where ¶ was a number much smaller than the characteristic

time of variation of the external inputs (remember the discussion on the inversion of the

plant dynamics in Section 2.2.1). Since we used square wave perturbations of period 1000s

to generate active node series, we chose ¶ = 100s. We are thus cutting off frequencies much

greater than the characteristic frequency of the perturbation applied to the active node.

To be consistent with the previous attempt, we chose the same set of accessible nodes and

we repeated the same steps. The only different parameter for the ESN was the leaking

rate, which was finely tuned as before. In particular, we fixed ³ = 0.007 (see Figure 4.1b)

and we obtained a NRMSE of 0.14 during training and 0.17 during validation. Panel (b)

of Figures from 4.2 to 4.7 show results to be compared with the previous case. We observe

a slight improvement in the training process, but the ESN still fails to correctly activate

the desired node as visible in the NRMSE matrix for this attempt (Figure 4.8b).
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4.2 Modulations

As explained above, the second way to model the external inputs acting on the system is

in the form of modulations, i.e. variations of the bifurcation parameters aj. We chose the

same nodes as before as accessible ones. We generated the solution of equations 4.1 for

an interval [0, 30000]s using 300000 time steps, with modulations m1(t), m2(t), · · · , m24(t)

in the form of trains of positive and negative square pulses with amplitude uniformly

distributed in range [0.2, 0.8] and width 300s acting at random instants. The solution

obtained (except an initial discarded transient) was used to train the network, following

the same training and validation steps as before. The leaking rate was adjusted to ³ = 0.01

(see Figure 4.1c). We ended up with a 0.18 NRMSE during training and a 0.22 NRMSE

during validation. Panel (c) of Figures from 4.2 to 4.7 show results analogous to the

previous cases. Notice that the ESN has problems when learning the negative modulation

pulses. This is probably due to the fact that the bifurcation parameters were chosen

to stay in the sub-critical regime, which makes the system experience oscillation cycles

driven by the noise. If the effect of an external input is to further reduce the amplitude of

the oscillations, the effect felt by other nodes in the network is feeble. In this case there is

little chance that the ESN can resolve the effect.

Despite the fact that the goodness of the training was comparable to the “perturbation”

case, the activation of inaccessible nodes was a significantly better in this case, as can

be seen observing the example of node 25 (Figure 4.6c) and the NRMSE matrix (Figure

4.8c).

4.2.1 Training with Uniformly Randomized Modulations

As for the “perturbation” case, we tried to use a randomized signal also for the “modulation”

case. For consistency, we chose the same set of accessible nodes and we repeated the usual

steps. The randomized modulations were generated like the randomized perturbations in

Section 4.1.1. The leaking rate was fixed as ³ = 0.003 (see Figure 4.1d) and we obtained

a NRMSE of 0.20 during training and 0.22 during validation. Panel (d) of Figures from

4.2 to 4.7 show results to be compared with the previous cases. The results of the training

are worse than the equivalent case in “perturbation”. The reason is that, as pointed out

earlier, the ESN has difficulties learning negative modulations.

Nonetheless, the results in the activation of remote nodes are comparable with those in

Section 4.2 as can be seen in the example of node 25 (Figure 4.6d) and in the NRMSE

matrix (Figure 4.8d).
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(a) NRMSE for training and validation as
a function of the leaking rate using square
pulse perturbations.

(b) NRMSE for training and validation as a
function of the leaking rate using random-
ized perturbations.

(c) NRMSE for training and validation as
a function of the leaking rate using square
pulse modulations.

(d) NRMSE for training and validation as a
function of the leaking rate using random-
ized modulations.

Figure 4.1: NRMSE as a function of the leaking rate for the four cases we studied. The
best ³ was taken to minimize the validation NRMSE.

25



(a) An example of the ESN outputs when training with square pulse perturbations.

(b) An example of the ESN outputs when training with randomized perturbations.

(c) An example of the ESN outputs when training with square pulse modulations.

(d) An example of the ESN outputs when training with randomized modulations.

Figure 4.2: Training phase for the four cases. The ESN learns to reproduce the stimuli acting on the
accessible nodes (here 22 for example). Notice how the negative modulations are reproduced worse.



(a) An example of the ESN outputs when validating the training in the case of square pulse perturbations.

(b) An example of the ESN outputs when validating the training in the case of random perturbations.

(c) An example of the ESN outputs when validating the training in the case of square pulse modulations.

(d) An example of the ESN outputs when validating the training in the case of random modulations.

Figure 4.3: Validation phase for the four cases. After the training, the ESN is able to map different inputs
in the correct outputs (in this case the external stimuli).



(a) Perturbation to apply to node 14 to activate node 25 as predicted by the ESN trained with square pulse
perturbations.

(b) Perturbation to apply to node 14 to activate node 25 as predicted by the ESN trained with random perturbations.

(c) Perturbation to apply to node 14 to activate node 25 as predicted by the ESN trained with square pulse
modulations.

(d) Perturbation to apply to node 14 to activate node 25 as predicted by the ESN trained with random modulations.

Figure 4.4: An example for the four cases of the external inputs predicted by the ESN in order to activate
node 25.



(a) Perturbation to apply to node 23 to activate node 25 as predicted by the ESN trained with random modulations.

(b) Perturbation to apply to node 23 to activate node 25 as predicted by the ESN trained with random perturbations.

(c) Perturbation to apply to node 23 to activate node 25 as predicted by the ESN trained with square pulse
modulations.

(d) Perturbation to apply to node 23 to activate node 25 as predicted by the ESN trained with random modulations.

Figure 4.5: Another example for the four cases of the external inputs predicted by the ESN in order to
activate node 25.



(a) Comparison between the target node signal and the one obtained through the ESN
predictions when using square pulse perturbations.

(b) Comparison between the target node signal and the one obtained through the ESN
predictions when using randomized perturbations.

(c) Comparison between the target node signal and the one obtained through the ESN
predictions when using square pulse modulations.

(d) Comparison between the target node signal and the one obtained through the ESN
predictions when using randomized modulations.

Figure 4.6: Activation of node 25 for the different training methods. Notice the two different types of
activation tested, a shift of the signal or a modulation of the oscillation amplitude.



(a) Comparison between a non-target node signal and the one obtained through the ESN
predictions when using square pulse perturbations.

(b) Comparison between a non-target node signal and the one obtained through the ESN
predictions when using randomized perturbations.

(c) Comparison between a non-target node signal and the one obtained through the ESN
predictions when using square pulse modulations.

(d) Comparison between a non-target node signal and the one obtained through the ESN
predictions when using randomized modulations.

Figure 4.7: Comparing the effectiveness of the ESN predictions for the different training methods in
reproducing non-target node signals.



(a) Case of square pulse perturbations. (b) Case of randomized perturbations.

(c) Case of square pulse modulations. (d) Case of randomized modulations.

Figure 4.8: Comparison between the NRMSE matrices for the studied training methods.
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4.3 Using all the nodes

The previous attempts were made by using 30 of the 100 total nodes given by the

parcellation, so that the neural network could perform better. The studied cases allowed

us to identify the best model to train the ESN. Figure 4.10a shows the distribution of the

diagonal elements of the NRMSE matrix for the four explored training methods, which

represent how well was a chosen node activated. It is clear that the two "modulation"

training methods led to definitely better results. Figure 4.10b shows, for each row of the

NRMSE matrix, the distribution of the mean of the row’s entries (except the diagonal

element). Remember that each row of the matrix refers to the attempt to activate a

chosen node. Thus, the mean value of the row’s entries represents a measure of how well

the signals of the nodes non-activated nodes were produced. The image shows that the

"perturbation" methods for training allowed to better avoid the unwanted activation of

the non-target nodes. However, since the objective was the activation of a target node,

we opted to use the square pulse modulations as the best training method for the attempt

with 100 nodes.

(a) Distribution of the NRMSE of the target node signal
for the studied training methods.

(b) Distribution of the mean NRMSE of the non-target
node signals for the studied training methods.

Figure 4.9: Comparison between the different training methods.

We randomly selected 30 out of the total 100 nodes as accessible nodes to be perturbed

and followed the procedure outlined in Section 4.2. The ESN parameters were set in the
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same way. As before, we report Figures 4.11a and 4.11b as examples of the training and

validations sessions. Figures 4.11d and 4.11 show the usual comparison between the signal

obtained through the ESN predictions and the actual signal for two nodes, the one to

activate and a random different node.

As can be seen, the training phase has a much smaller NRMSE than the validation,

indicating a bit of overfitting. Since the ESN now processes more data, the Ridge

regression leads to a better output, but this improvement doesn’t carry over to the

validation. In any case, the results were compatible with the attempt with 30 nodes, with

a partial activation of the target.

We also tried to verify if a careful choice of the accessible nodes could improve the results.

In particular, if the goal was to activate node 25 for example, we selected 30 nodes that

had the strongest connections with it. Two results for this example are in Figure 4.10:

node 25, which was the target, and node 0, to be compared with the corresponding plots

in Figure 4.11. As can be seen from the NRMSE value, there is an improvement in the

activation. This was true for all the nodes we tried to activate. In any case, even in this

ideal situation, the process is still not satisfactory.

(a) Node 25 activation through modulations acting on nodes selected to be strongly connected
with it.

(b) Node 0 when activating 25 with selected accessible nodes.

Figure 4.10: Plots for the 100 nodes case, with selected accessible nodes.
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4.4 Using target node signal as unique output

Notice that the procedure we followed makes use of the signals of all the inaccessible

nodes as input for the neural network. This choice seems natural if one thinks that a) the

neural network would thus be able to process more information in order to reconstruct

the external stimulations during training and b) the neural network would be trained to

activate the target node while trying to not activate the others.

We wanted to test if, ignoring the requirement b), we could obtain a better performance

of the ESN, which could try to activate a target node without caring for the others.

Unfortunately, we couldn’t obtain significant results, since, despite the many attempts,

we couldn’t obtain a proper training and validation phase. The only ESN input was, in

fact, the signal of the target node, and the ESN processed that signal to reconstruct all

the perturbations or modulations acting on the group of accessible nodes, but the results

weren’t satisfactory, even when selecting as accessible nodes the most connected to the

target.
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(a) A plot of the training session with 100 nodes.

(b) A plot of the validation session with 100 nodes.

(c) Comparison between the target node signal and the one obtained through the ESN predictions.

(d) Comparison between a non-target node signal and the one obtained through the ESN
predictions.

Figure 4.11: Plots for the 100 nodes case, explored by using the square pulse modulations
method.
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Chapter 5

Conclusions

The present work focused on the attempt to using an Echo State Network to theoretically

address the problem of controlling brain dynamics, in particular achieving desired activity

changes in specific regions by acting indirectly on distant brain regions. This theoret-

ical problem is of immediate applicability to a clinically relevant goal, that of indirect

stimulation of deep-brain regions: medical studies have shown that direct deep-brain stim-

ulation can be beneficial in the treatment of some neurological conditions, like Parkinson’s

disease[17], but also that the implantation of a neurostimulator is a surgical operation

and as such involves risks and complications. For this reason, testing the possibility to

indirectly stimulate deep-brain regions through non-invasive stimulation of cortical regions

is of great importance.

As we pointed out through this work, an Echo State Network is exactly the kind of tool

that can be used to learn an unknown dynamical system and predict the external inputs

needed to cause desired variations in that dynamics. Thus, endowed with a whole-brain

model to emulate brain dynamics, we proceeded to study if an adequately trained ESN

could predict the stimulations to apply to some brain-nodes (assumed to be directly acces-

sible to the stimulations) in order to activate a target node (assumed to be inaccessible).

We investigated two types of external inputs, one in the form of perturbations directly

exciting or inhibiting the activity of the node signals (probably the kind of stimulation

that can be more easily produced in practical applications via electrodes), one in the form

of modulations varying the oscillation amplitude of the node signals (which corresponds,

physiologically, to increasing/decreasing the excitability of brain regions).

We can summarize the main results of the investigation as follows:

• in general, variations of the oscillation amplitude of one node cause significant

variations of the oscillation amplitude of other nodes, unlike the action of a shifting

perturbation (see the blue signals in Figure 4.7). This means that, in practical

applications, one should be careful when increasing the excitability of a region and

be aware that the excitation would propagate to other nodes;
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• all the different training methods were quite succesful, with the only exception of

the negative modulations. This fact leaves opened the possibility to explore more

complex perturbations, allowing more sophisticated training sessions;

• the particular type of stimulation one adds to the brain-dynamics affects the ESN

performance. In particular, the best procedure to follow in order to activate a

target node with the help of a ESN is by using modulations of the amplitude and

by training the neural network with square pulse modulations at random instants

(Figure 4.10a;

• this procedure leads to a grater-than-expected activation of the other nodes (Figure

4.10b). This problem could be related to the difficulties (underlined above) the ESN

has when learning negative modulations of the amplitude (see the various validation

plots reported for the square pulse modulation case, which clearly show how the

ESN learns to perfectly reproduce the positive pulses, but poorly the negative ones).

We hypothesize that this is due to the particular dynamics on which the ESN

operates, that of a set of Landau-Stuart oscillators in the sub-critical region of a

Hopf bifurcation. In this regime, when even a moderately negative modulation is

applied, the oscillation can get completely damped rather than continuing with

reduced amplitude, which makes it difficult for the ESN to resolve weakly and

strongly negative modulations.

• the performance of the ESN declines with the increase in the number of nodes.

Nonetheless the results for 100 nodes are comparable with those for 30 nodes. In

any case, we showed that, when using larger numbers of nodes, the results can be

improved by a careful selection of the accessible nodes.

In the end, the approach we followed had quite limited success. The network effectively

learns the external inputs perturbing the brain-dynamics during the training session, but

is then unable to produce the best suited stimulations to activate a target node.

We suggest to address this problem in further studies, using larger reservoirs where possible

and analyzing in detail which brain nodes are more easily controllable. It could also

be useful trying many different types of perturbations. Notice however that, despite

the different approaches we followed, each methods led the ESN to predict square wave

stimulations to be applied to the accesible nodes (see Figures 4.4), i.e. external inputs of

the form of the actual stimulation with which the target node was excited. This could

indicate an inherent problem in the approach, that could not be solved just by extending

the space of perturbations. It is also recommended to address the problem thorugh the

classical approach to control, linearizing the oscillator model, in order to have the chance

to compare the results.

Finally, other models of brain-dynamics could be studied with the procedure we followed,
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comparing the otucomes, in order to exclude the possibility of a problem with the equations

simulating brain signals.
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