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Abstract

The task of learning an objective function that characterizes a deep, non-linear neural network is
tackled, focusing on training the complete set of network parameters. Our investigation is conducted
within a scenario where the number of samples, input dimension, and network width are all notably
large. The neural networks under study operate in a teacher-student framework, where the data gen-
erated by the teacher network are classi�ed by a student network with an identical architecture. Our
main goal is to carry out an information-theoretical analysis of deep neural networks, building upon
established results on two-layer networks. Recent conjectures, followed by partial rigorous proofs,
show that it is possible to reduce two-layer networks to simpler one-layer networks, commonly re-
ferred to as generalized linear models. Remarkably, fundamental information-theoretic quantities
such as the mutual information between training data and teacher network weights, as well as the
Bayes-optimal generalization error, are well-understood for such simpli�ed networks. Consequently,
our strategy involves extending this reduction using a recursive argument. This involves progress-
ively simplifying the network by replacing the last two layers with an equivalent one-layer neural
network. The recursion continues until we identify an equivalent one-layer model for the entire
network. This recursive approach is expected to provide us with a comprehensive understanding of
the network’s behavior and performance.
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a,A generic quantity, a scalar if not speci�ed otherwise.

a column vector.
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ai = (a)i ith component of a.
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:= equal by de�nition.

a | b a given b.
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matrix Σ.

¶(x) Dirac delta function, that is formally a distribution, it is a prob-
ability density that assigns in�nite weight to the single value
x = 0.

¶ij Kronecker delta, it is equal to 1 if i = j, and 0 otherwise.

x⊺y = xy⊺ :=
∑n

i xiyi scalar product between two vectors of dimension n.

∥x∥2 = x⊺x =
∑n

i x
2
i L2 norm of the vector x of dimension n.

I(A) indicator function, which is 1 if the condition A is true, 0 other-
wise.
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Chapter 1

Introduction

Machine learning [1, 2, 3] is a �eld within arti�cial intelligence that focuses on recognizing patterns
and extracting information from data. Speci�cally, it refers to themethods and techniques that enable
automated learning from data. This automation allows for predictions to be made when new data is
introduced, without the need for explicit programming tailored to each speci�c task. This form of
implicit learning, heavily dependent on the data available, has led to machine learning models being
characterized as data-driven. The ultimate goal of a learning algorithm is to achieve generalization.
This means it should be capable of extracting information from the samples or examples it analyzes
and applying this knowledge to new, unseen data.

The recent advancements in technology and the availability of computational resources have
demonstrated the success of these algorithms in learning from data. Consequently, machine learn-
ing has become pervasive in today’s world. Its applications are extensive and diverse, spanning
from personalized recommendations in e-commerce and predictive diagnostics in healthcare to al-
gorithmic trading in �nance and route optimization in transportation.

A class of algorithms that has gained signi�cant attention in recent years is de�ned by neural net-
works (NNs). These models were initially introduced to describe as a biologically plausible model
of computation. Today, they have become a crucial area of study within machine learning, owing
to their generalization capabilities and e�ciency. Despite the successful applications of neural net-
works, the pace of understanding their underlying mechanisms and explaining the reasons of their
success has not kept up. Due to this, learning algorithms have often been exploited in various �elds
where the primary focus is on the output rather than the underlying process or the explainability of
the results. To address this gap in understanding, a new �eld within computer science has emerged,
known as explainable arti�cial intelligence (xAI) [4].

To explain the behavior of neural networks, however, also statistical mechanics, and speci�cally
physics of disordered systems, plays a crucial role. In statistical physics, disordered systems [5, 6]
are those in which the constituent particles are not arranged in a regular, repeating pattern. These
systems, which include glasses and spin glasses, are characterized by metastable states and are de-
scribed by complex energy landscapes. A neural network can be viewed as a disordered system [7, 6,
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CHAPTER 1. INTRODUCTION

8] where the neurons are the constituent particles and the synaptic weights represent the disorder.
The state of the network is determined by the activation of the neurons, and the energy of the state
is given by the loss function. The training of the network, which involves adjusting the weights to
minimize the loss function, can be seen as a process of navigating the complex energy landscape of
this disordered system.

Notably, the mapping from a machine learning problem to a statistical mechanics framework
has opened up new avenues for the application of techniques commonly used in the statistics of
disordered systems [9, 10, 11, 12, 13, 14, 15, 16]. The replica method, mean-�eld approaches, and
interpolation method are examples of techniques rooted in mathematical physics and physics of dis-
ordered systems that are now applied to machine learning [11, 17, 13, 18, 19]. Speci�cally, disordered
systems methods are particularly useful in studying the performance of machine learning models,
their algorithmic limits, and thresholds [20, 14]. Moreover, the concept of phase transitions, which
is central to the study of disordered systems in statistical physics, can be applied to neural networks,
thus playing a crucial role in understanding their behavior [14, 15] and the relevant scalings. For
instance, the transition from a phase where the network can memorize the training data to a phase
where it can generalize to unseen data can be studied using the tools of statistical physics [21, 15].

Simple models such as perceptrons, generalized linear models, and committee machines have
been studied for more than thirty years, demonstrating the success of physics in studying such mod-
els [10, 12, 11, 22, 14, 23, 21, 24, 25, 17, 26, 15]. Therefore, the perspective of statistical mechanics
provides a powerful framework for understanding the structure, dynamics, and limitations of neural
networks, and contributes to the ongoing e�orts tomake thesemodels more interpretable and robust.

With this foundation laid, the focus is now directed towards studying the capabilities of neural net-
works and exploring the fundamental limits in their performance within the statistical mechanics
framework. A signi�cant challenge in understanding neural networks lies in the dependence of the
learning process on various interacting factors, each with intricate individual e�ects. These factors
include the architecture of the network, the structure inherent to the datasets on which the network
is trained, and the algorithms and optimization procedures employed.

To address this complex nature of neural network learning, a teacher-student setup [10, 11, 12,
20] within a Bayes-optimal framework can be exploited, where a student network classi�es the data
generated by the teacher network with an identical, fully connected architecture.

This framework allows for the disentangling of contributions from di�erent aspects of the learn-
ing process, primarily focusing on the network’s architecture and the impact of available data on
prediction performance. Indeed, in this teacher-student setup, the results obtained are not con�ned
to a speci�c learning procedure. Instead, they represent the fundamental limits of the network’s
performance, leading to what are known as information-theoretic bounds. This approach e�ectively
separates the impact of the training procedure from the analysis.

In the context of this Bayes-optimal setup, recent advancements in the analysis of deep neural net-
works (DNNs) using a statistical mechanics framework have been substantial [27, 28, 29, 19]. The
initial analysis by [27] focused on linear networks, excluding nonlinearities. Speci�cally, a technique
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CHAPTER 1. INTRODUCTION

was introduced to evaluate the generalization error of deep linear networks with �nite width when
these networks are trained on a �xed set of data. Building on this, [28] expanded the analysis by
formulating conjectures for the generalization error in empirical risk minimization. Further pro-
gress was made by [29], who employed a Gaussian equivalence principle (GEP) for both shallow and
deep nonlinear neural networks to obtain Bayes-optimal limits. The GEPs are grounded in a well-
known concept in high-dimensional probability: appropriately rescaled low-dimensional projections
of high-dimensional vectors with weakly correlated components exhibit Gaussian behavior.

Subsequently, the recent analysis by [19] rigorously proved the Bayes-optimal limits obtained
by [29] for a 2-layer neural network. Speci�cally, [19] established information-theoretic limits in
an overparametrized regime, where the dataset size, input dimension, and network width are all
large, eventually approaching in�nity. The results were presented as a bound connecting the mutual
information between the teacher network weights and the training data for both a 2-layer neural
network and a generalized linear model (GLM) [30, 31, 32], which is a one-layer neural network and
a generalization of a perceptron [33]. By examining the conditions under which this bound tends
to zero, it becomes possible to identify the scaling regimes, in terms of numerosity of data available
and the number of neurons, in which the 2-layer neural network e�ectively reduces to the GLM,
making the two models equivalent. The importance of this reduction lies in the fact that the mutual
information between the dataset and the teacher network weights is linked to the network’s general-
ization error, and these quantities have been extensively studied for GLMs [10, 12, 11, 22, 34, 35, 14].
Consequently, the GLM can serve as a simpler proxy for studying more complex neural networks,
providing valuable insights into their behavior.

This thesis is rooted in the results obtained in [19]. An information-theoretic analysis of a deep
neural network is conducted here, addressing the task of learning an objective function for a deep,
nonlinear neural network. Our investigation focuses on training the complete set of network para-
meters within a scenario where the size of the dataset, input dimension, and network width are all
large. A teacher-student setup in a Bayes-optimal framework is utilized, allowing for the estimation
of information-theoretic bounds.

The primary goal is to extend the analysis of deep neural networks by generalizing the results
from [19] to networks with an arbitrary number of layers L, thereby establishing bounds in terms of
information theory, and speci�cally mutual information, that relate a deep nonlinear network to a
generalized linear model. Once the bounds are established, the objective is to explore how the sizes
of the dataset, input dimension, and hidden layers in�uence these bounds. Speci�cally, the aim is
to identify the scaling conditions under which the bounds tend to zero as all parameters approach
in�nity, thus allowing the reduction of the deep neural network to a generalized linear model.

The main contribution of this thesis are the bounds presented in 4.2. These bounds allow to �nd
the di�erent scalings of network layers and dataset size such that the deep neural network can be
mapped into a generalized linear model. Moreover, the parametrization of the GLM found through
the reduction is consistent with the result provided by [29]. An additional �nding pertains to the
concentration of measure phenomenon. Speci�cally, it is observed that Gaussian random vectors,
when processed through layers of a neural network, retain Gaussian-like statistical properties, des-

3



CHAPTER 1. INTRODUCTION

pite no longer being Gaussian. Initially derived as a technical result to complete the proofs for the
information-theoretic bounds, this �nding stands as an intriguing mathematical property in its own
right, independent of the proof for the bounds.

The strategy to derive the bounds in terms of mutual information involves extending the reduc-
tion performed in [19] using a recursive argument. This method progressively simpli�es the network
by replacing the last two layers with an equivalent one-layer neural network. The recursion contin-
ues until an equivalent one-layer model is identi�ed for the entire network, e�ectively reducing the
full network to a generalized linear model, whose properties are known.

4



Chapter 2

Framework and background

In this chapter, the foundational framework and background of our investigation are examined, fo-
cusing on the intersection of several key areas: statistical inference, information theory, statistical
mechanics, Bayesian inference, and machine learning. These �elds provide the theoretical basis and
methodologies essential for the investigation. Speci�cally, the aim of the chapter is to de�ne the
speci�c quantities relevant to the models under study, establishing a clear understanding of their
behavior and properties.

2.1 Information theory

The objective of our investigation is to conduct an analysis based on information theory [2, 36,
37]. Information theory is concerned with the concepts of surprise and the amount of information
that can be associated with observations. It speci�cally enables the study of data compression and
transmission properties. The central study that attracted interest in this topic was conducted by
Claude Shannon, culminating in his most renowned paper published in 1948. The paper, titled “A
Mathematical Theory of Communication” [38], is often referred to as the foundation of the �eld
information theory �eld. In the context of our study, the focus is on comprehending the information
that the data provides about the model parameters and quantifying this relationship.

2.1.1 Information

Information is a quantity that represents the knowledge gained once the outcome of a random exper-
iment becomes known. Conversely, it can also be thought of as the uncertainty associated with the
revelation of the outcome. Intuitively, information is acquired from an observer if that information
was not previously known.

The aim here is to formalize this concept with a focus on information for events, that are tied to
their probabilities [39]. This forms the mathematical foundation for constructing the information,
or surprisal. The object needed to start the discussion is a probability space S . A probability space
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CHAPTER 2. FRAMEWORK AND BACKGROUND

S = (Ω,F ,P) is a triple where

• Ω corresponds to the sample space, and contains all the possible outcomes;

• F is the Ã-algebra of the events, meaning that it is a family of subsets of Ω closed under
countable union, complement, and Ω belongs to it. Any element of the Ã-algebra is an event
E ∈ F ;

• P is a probability measure that goes from the Ã-algebra F to [0, 1] such that P(Ω) = 1 and it
satis�es the Ã-additivity.

Intuitively, events with a probability equal to one are expected to provide no information, as these
events are certain to occur. Additionally, events that happen more frequently should convey less
information than rare events: in the latter case, the surprise is signi�cant when the event is realized.
Another aspect that needs to be considered is the conditionality of the events. If two events, denoted
as E1 and E2, are independent, then

P(E1 ∩ E2) = P(E1)P(E2) implying P(E1|E2) = P(E1), P(E2|E1) = P(E2) (2.1)

When the events are independent, the information of the intersection of the events is desired to
be the sum of the information gained from E1 and E2 respectively. These considerations translate
into requirements that information must satisfy.

• I : F → R
+ is a function f of the probability of the events: I = f ◦ P, namely I(E ∈ F) =

f(P(E));

• f is a monotonically decreasing function of P;

• For independent eventsE1 andE2, f(P(E1∩E2)) = f(P(E1)P(E2)) = f(P(E1))+f(P(E2)).

This leads to the following de�nition of information, also called information content or surprisal:

f(x) = −³ ln(x) I : F → R
+, I(E) = −³ ln(P(E)) (2.2)

where³ is chosen arbitrarily. If³ = 1 the information is computed in terms of "nats" or natural units.
Another common choice is ³ = log2 e, yielding I(E) = − log2(P(E)). In this case, the information
content is expressed in terms of "bits" or binary digits, where one bit quanti�es the information
gained when the outcome of a random experiment with two equiprobable outcomes is revealed.

2.1.2 Entropy

The de�nition of information content associated with an event was introduced, describing it as the
information gained about the outcome of a random experiment. This raises the question of what
amount of information is required to fully describe the outcome. The problem is approached by

6



CHAPTER 2. FRAMEWORK AND BACKGROUND

considering the average information needed to specify the outcome. Since the average is taken
over the outcomes, this quantity can be interpreted as the overall average amount of information
associated with the probability space S .

In the case of a discrete probability space, every outcome can be associated with an event E =
{É} ∈ F , and the average information needed to specify the outcome of the random process is
de�ned as follows:

H(S) := ïIð = −
∑

É∈Ω
P({É}) lnP({É}) (2.3)

where this quantity H(S) takes the name of Shannon entropy.
Based on the explanation provided, the de�nition of entropy can be generalized to random vari-

ables.
Let E be a set, À a Ã-algebra of subsets of E, given a probability space (Ω,F , P ). Then, the

function X : Ω → E is a random variable if for any A ∈ À, X−1(A) ∈ F . De�ning

PX : À → [0, 1], PX(A) = P(X ∈ A) = P(X−1(A)) (2.4)

it can be veri�ed that this is a probability on the measurable space (E, À), called distribution of X .
In the context of real-valued random variables, the sample space isE = R, and the considered Ã-

algebra is called Borel Ã-algebra À = B(R). Elements of this Borel Ã-algebra are known as Borel sets.
Additionally, a continuous random variableX has a probability density function pX if its distribution
is absolutely continuous with respect to the Lebesgue measure, namely, if there exists a function pX
such that

PX(A) = P(X ∈ A) =

∫

A

pX(x)dx ∀A ∈ B(R) (2.5)

where dx represents the Lebesgue measure on R.
In general, the notation dP (x) =: PX(dx) is used in order to be able to consider in the analysis

also the cases in which the probability density function cannot be de�ned. When the density can be
de�ned, there is the actual correspondence dP (x) = pX(x)dx.

If X is discrete, the distribution of it is de�ned as the following map:

PX : E → [0, 1], PX(x) = P(X = x) = P(X−1(x)) (2.6)

Through this construction, the entropy associated to the discrete random variable X can be intro-
duced. To simplify the notation, the elements of the set E, corresponding to the outcomes, are de-
noted as (x1, x2, . . . , x|E|), allowing the probability Pi := PX(xi) to be associated with each outcome
for i = 1, ...|E|:

H(X) := −
∑

x∈E
PX(x) lnPX(x) = −

|E|∑

i=1

Pi lnPi (2.7)

7



CHAPTER 2. FRAMEWORK AND BACKGROUND

This quantity describes the average information needed to specify the outcome of the random vari-
able. Its interpretation is of crucial importance, as entropy can be considered as a measure of the
lack of information, or ignorance, about the outcome of X . Being an expectation, higher entropy
indicates greater unpredictability of the outcome on average. This implies little knowledge before
the experiment, with substantial information gained once the outcome is revealed.

Entropy thus serves a dual role as a measure of information and uncertainty or lack of informa-
tion. As a measure of ignorance, H(X) represents the amount of knowledge missing to determine
the outcome of X on average before observing it. In this scenario, no experiment or observation
has taken place, so entropy is interpreted as a measure of uncertainty associated with a process that
never occurred. From the other perspective,H(X) is also the amount of information that on average
is gained once the outcome is observed. In this case, the process has happened and the outcome can
be observed, making entropy the expected information content associated with the random variable.

Properties of the entropy. Some useful properties of the entropy of a discrete random variable
X , that will be exploited in our study, are now remarked.

• H(X) g 0 with H(X) = 0 if and only if there exists an index i such that Pi = 1. This
implies that a deterministic quantity or random variable has no uncertainty, and provides no
information;

• H(X) is maximized if the probability over the outcomes is uniform. Maximising H(X) with
respect to pi under the constraint

∑
i Pi = 1, leads to Pi =

1
|E| , and H(X) = ln |E|. Since the

entropy is maximized, H(X) f ln |E| also holds true;

• H(X) is concave with respect to the distribution ofX . Consider two random variablesX1, X2

with values in the same set E. De�ne Pi := PX1(xi) and Qi := QX2(xi). A new random
variable Z can be constructed, with values in the same space as X1 and X2. Let PZ(xi) =
¼Pi + (1 − ¼)Qi. This means that Z = X1 with probability ¼, and Z = X2 with probability
1− ¼. Then,

H(Z) = H(¼P + (1− ¼)Q) g ¼H(P ) + (1− ¼)H(Q) = ¼H(X) + (1− ¼)H(Y ) (2.8)

The interpretation of the concavity of the Shannon entropy lies in the fact that a distribution
de�ned as the mix of two probability distributions has a higher entropy than the sum of the
entropies: this implies that mixing two probability distributions increases entropy.

2.1.3 Joint entropy and conditional entropy

Consider now two di�erent random variablesX and Y that take values {xi}, {yj} in the setsEX , EY .
The joint entropy of the random variables can be de�ned as the Shannon entropy of the joint distri-
bution PXY (x, y).

H(X, Y ) := H(PXY ) = −
∑

(x,y)∈EX×EY

PXY (x, y) lnPXY (x, y) (2.9)

8



CHAPTER 2. FRAMEWORK AND BACKGROUND

The conditional entropy of X given Y is introduced next. This quantity corresponds to the
expected information gained by evaluating the outcome ofX given that the outcome of Y is known.
Equivalently, this can be read from the perspective of the uncertainty interpretation of the entropy:
the conditional entropy represents the remaining lack of knowledge aboutX given that the variable
Y has been observed.

H(X|Y ) := −
∑

(x,y)∈EX×EY

PY (y)PX|Y (x|y) lnPX|Y (x|y) (2.10)

Properties of the conditional entropy. Some useful considerations about these quantities that will
be exploited in the analysis are presented:

• Similarly to the construction made for the information content for events, the joint entropy
of two independent random variables is just the sum of the entropy of the two variables. This
implies that learning the outcome of the two variables together does not provide additional
information compared to learning the outcomes separately. Furthermore, since the variables
are independent, the knowledge of the outcome of one variable does not a�ect the knowledge
about the second variable. As a consequence, the conditional and unconditional entropy are
the same. Formally, since the two variables are independent,

PXY (x, y) = PX(x)PY (y) −→ PX|Y (x|y) = PX(x), PY |X(y|x) = PY (y) (2.11)

and it follows that

H(X, Y ) = H(X) +H(Y ) −→ H(X|Y ) = H(X), H(Y |X) = H(Y ) (2.12)

• The joint entropy of two random variables cannot exceed the sum of the entropies associated
with the two random variables. This implies that the information gained by knowing the
outcomes of both variables simultaneously cannot be greater than the information obtained
by revealing the outcomes separately:

H(X, Y ) f H(X) +H(Y ) (2.13)

• The joint entropy of a pair of random variables corresponds to the information gained on
average by revealing the outcomes of the two random variables simultaneously, and this is
equivalent to the sum of the information gained revealing the outcome of the �rst variable
and the information generated from knowing the outcome of the second one provided that the
outcome of the �rst one is known. What stated can be interpreted as a chain rule applied to
entropy:

H(X, Y ) = H(X|Y ) +H(Y ) = H(Y |X) +H(X) (2.14)

9



CHAPTER 2. FRAMEWORK AND BACKGROUND

• Consider a function f . Then, applying it to a random variable yields H(f(X)|X) = 0. Ex-
ploiting (2.14) leads to H(X) +H(f(X)|X) = H(f(X)) +H(X|f(X)), implying:

H(f(X)) f H(X) (2.15)

The equality holds only if f is invertible.

2.1.4 Kullback-Leibler divergence

Another key quantity in our framework is the Kullback-Leibler divergenceDKL, or relative entropy.
Consider two discrete random variablesX and Y taking values in the same sample spaceE, with

discrete distributions P and Q. The KL-divergence from Q to P is de�ned as

DKL(X||Y ) := DKL(P ||Q) =
∑

x∈E
P (x) ln

(P (x)

Q(x)

)
(2.16)

This quantity satis�es Gibbs’ inequality, meaning that

DKL(P ||Q) g 0 (2.17)

where the equality holds if and only if the two distributions are the same. It is worth noting that the
Kullback-Leibler divergence is not symmetric, namely, DKL(P ||Q) ̸= DKL(P ||Q), implying that
this object is not a distance. Nonetheless, the Kullback-Leibler diverge DKL can be interpreted as
a measure of discriminability between two distributions, or a distance in the space of distributions.
Moreover, the Kullback-Leibler divergence is convex with respect to both arguments, meaning that
considering the probability densities P1, P2, P1, Q2 on the same space E it holds

DKL(¼P1 + (1− ¼)P2||¼Q1 + (1− ¼)Q2) f ¼DKL(P1||Q1) + (1− ¼)DKL(P2||Q2) (2.18)

The de�nition of Kullback-Leibler divergence can easily be adapted to the case of continuous dens-
ities replacing the sum with an integral:

DKL(P ||Q) =

∫

x∈E
dxP (x) ln

(P (x)

Q(x)

)
(2.19)

2.1.5 Mutual information

Another crucial quantity is themutual information between two randomvariablesX andY . Its aim is
tomeasure the information that one variable provides about the other one. Speci�cally, when dealing
with the probability distributions of the random variables, the mutual information can be understood
as the Kullback-Leibler divergence between the joint probability distribution of the random variables
and the product of themarginal probabilities. It can be interpreted then as ameasure of howmuch the
joint distribution is actually comparable to the product, thus indicating how much the two variables

10
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Figure 2.1: The total information required to specifyX can be divided into the information provided
by Y , denoted as I(X;Y ) and the residual information H(X|Y ). This relationship is reciprocal,
applying similarly when specifying Y in terms of X .

are uncorrelated. Indeed, if two random variables are independent, the divergence is zero. Expressing
it formally:

I(X;Y ) := DKL(PXY ∥PXpY ) =
∑

(x,y)∈EX×EY

PXY (x, y)
(
ln

PXY (x, y)

PX(x)PY (y)

)

= −H(X, Y ) +H(X) +H(Y )

= H(X)−H(X|Y )

= H(Y )−H(Y |X) g 0

(2.20)

where the last two equalities can be obtained using (2.14). From the de�nition, it can be observed
that if X and Y are independent, namely PXY (x, y) = PX(x)PY (y), then I(X;Y ) = 0. It is also
worth noticing that the mutual information is symmetric with respect to the exchange of the vari-
ablesX and Y , aligning with the interpretation that the mutual information gives an estimate of the
information that a variable provides about the other.

Properties of the mutual information. Other useful properties of the mutual information are
the following:

• Similarly to what stated for the entropy, considering two functions f1 and f2 it holds that

I(f1(X); f2(Y )) f I(X;Y ) (2.21)

11
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i.e., applying a function to the random variables cannot increase the information they provide
one about the other;

• The mutual information satis�es the data processing inequality. This inequality states that
the processing of the data does not lead to an increase in information. Such a concept can be
formalized in the following statement. Let X , Y , Z be three random variables such that Z
depends only on Y . Then I(X;Z) f I(X;Y );

• A chain rule for mutual information can be introduced:

I(X;Y, Z) = I(X;Z) + I(X;Y |Z) (2.22)

based on the de�nition of conditional entropy and conditional mutual information. The con-
ditional mutual information is de�ned as:

I(X;Y |Z) := EZDKL(PXY |Z∥PX|ZPY |Z)

=
∑

(x,y,z)∈EX×EY ×EZ

PXY Z(x, y, z)
(
ln

PXY |Z(x, y|z)
PX|Z(x|z)PY |Z(y|z)

)

= −H(X, Y |Z) +H(X|Z) +H(Y |Z)
= H(X,Z) +H(Y, Z)−H(X, Y, Z)−H(Z)

= H(X|Z)−H(X|Y, Z)
= H(Y |Z)−H(Y |X,Z) g 0

(2.23)

The concept of entropy can be generalized and adapted to continuous random variables with
some care. Indeed, substituting the discrete probability densities by the probability densities and the
sums by integrals leads to the de�nition of di�erential entropy:

h(X) = −
∫

x∈E
dxPX(x) lnPX(x) (2.24)

with PX(x) being the probability density of the random variable X . In the same fashion, the condi-
tional entropy and the mutual information can be generalized to the continuous case.

If a resolution ϵ is used to discretize the space, the entropy and the di�erential entropy di�er in
the following way:

Hϵ(X) = h(X) + ln
1

ϵ
+O(ϵ) (2.25)

and the analogous holds for the conditional entropy of X given Y .
What illustrated implies that the di�erential form of the mutual information, being a di�erence

of entropies as shown in (2.20), does not depend on the resolution. Hence, its di�erential expression
coincides with the de�nition already given of mutual information. This implies that the mutual
informationmaintains its properties whenmoving from a discrete to a continuous setting. Moreover,
also its de�nition in terms of Kullback-Leibler divergence can be preserved, exploiting the de�nition
of the latter in the case of continuous densities in (2.19).
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2.2 Statistical mechanics

In our analysis, the language of statistical mechanics [40, 41, 42, 43, 37] is borrowed, and connections
to it are drawn.

Statistical mechanics is one of the most important branches of modern physics. In this discipline,
concepts and tools are borrowed from probability theory, with the aim of describing many-body sys-
tems. Speci�cally, statistical mechanics was born in the 19th century to understand the link between
the macroscopic observables associated with a physical system, such as pressure, temperature or
magnetization, and its microscopic quantities. Indeed, the dimension of the system makes it im-
possible to give a description using only microscopic properties: the systems of interest in statistical
mechanics are typically characterized by a high number of degrees of freedom, representing particles
or more generally components or constituents of the system. Furthermore, the degrees of freedom
can interact: the simplest type of interaction is pairwise interaction, but other possibilities exist.

One of the advantages deriving from the study of statistical mechanics is the possibility of analyz-
ing a physical system as a whole. This holistic approach opens the way to the study of a wide range of
phenomena, referred to as emergent phenomena, that could not be understood solely by examining
the individual components of the system. Indeed, under the appropriate conditions and hypotheses,
the system reacts globally to perturbations, yielding results that di�er from those obtainedwhen only
a single component is a�ected. These emergent phenomena and collective behaviors are observable
across various models and �elds of physics, ranging from disordered systems to active matter. A
prime example of this can be found in living systems, such as �ocks of birds or schools of �sh. When
a predator approaches, the behavior of the animals changes, not necessarily because they perceive
the threat directly, but because they sense the behavioral change in their neighbors [44, 45]. Such
change in behavior and how this occurs is what statistical mechanics aims to study.

In general, these types of emergent phenomena are described as phase transition of the system,
which correspond to changes in the macroscopic properties of the whole system when an external
parameter changes. In particular, quantities called order parameters are used to describe phase trans-
itions: they are macroscopic observables that are zero above the critical point and non-zero before.
Near phase transitions, systems exhibit critical behavior, which is characterized by slow relaxation
after perturbation and the generation of spatially correlated �uctuations. These �uctuations do not
remain local but propagate throughout the system, implying that distant points become highly cor-
related. This is common to both inanimate and living systems, and it is indeed what happens for
example in the case of the �ock of birds, which reacts cohesively to the movement of the predator.
Importantly, phase transitions and thus the associated emergent phenomena typically depend only
on the dimensionality of the system, its symmetries, and the type of interactions present rather than
speci�c microscopic details. This concept is called universality in statistical physics and enables the
study of diverse systems using simpli�ed models known as null models, which focus on essential
aspects while neglecting speci�c details.

Concerning then the dynamics of the system, statistical mechanics studies two types of systems,
equilibrium and out of equilibrium systems, with equilibrium systems being the primary focus of the
investigation. In the second case, non-reversible processes characterized by imbalances are usually
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modeled. In equilibrium systems, on the other hand, there are no macroscopic �ows or currents, and
macroscopic thermodynamic variables su�ce to describe the system’s state.

Quantities and terminology are now introduced in order to provide a more precise description of
these states. The system is conceptualized as a microstate, representing a point in the phase space
of microscopic degrees of freedom. These microstates, also called con�gurations, are drawn from
an ensemble: this represents an ideal set of multiple copies of the system, generated according to
speci�c criteria, and therefore characterized by constraints and a probability distribution on the mi-
crostates. The number of instances in the ensemble is in�nite, and each con�guration represents a
possible state of the system. The constraints imposed on the system can be of two types: hard and
soft.

• Hard constraints force the ensemble to follow the prescription, therefore all instances of the
ensemble exhibit the same characteristic. These constraints characterize microcanonical en-
sembles, where each state has the same probability of being drawn. Such conditions can be
interpreted as exact conservation laws, which are satis�ed for all times. For example, consid-
ering an isolated system, energy E , volume V , and number of particles N remain �xed;

• Soft constraints represent observables that are �xed on average. This implies that microstates
have a non-uniform probability of being observed, resulting in �uctuations within the system’s
characteristics. The presence of soft constraints is associated to canonical ensembles.
A typical example of this type of constraint is called thermal bath. In this case, the system of
interest is immersed in a much larger one called environment; they can exchange energy, but
not volume and particles. The purpose of the environment is to allow the system to maintain a
constant temperature. Thus, the total energy is conserved, but that of the system under study
is free to �uctuate around an average value.

In terms of probability theory introduced earlier, a microstate or con�guration corresponds to
the vector of outcomes associated with a random vectorX ∈ XN describing the state of the system,
and each random variable Xi represents a component or degree of freedom, of which there are N
in total. A con�guration or microstate is denoted by C = (x1, . . . , xN), where each xi represents
a possible outcome associated with the corresponding degree of freedom. XN represents then the
set of possible system con�gurations. Slightly generalizing what was previously done, a distribution
PX(dx) can be introduced for the random vector. The distribution can also depend on other external
parameters y, which can be random but whose randomness is �xed, hence they are called quenched
variables. These can be, for example, the coupling parameters between the degrees of freedom.
Each microstate is then characterized by an energyH(x;y), withH the Hamiltonian describing the
con�guration.

In our investigation the interest lies in soft constraints, and speci�cally in �xing the average
energy of the system. Formally, this implies

E = ïH(X;y)ð :=
∫

x∈XN

dPX(x)H(x;y) (2.26)
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The equilibrium distribution is then obtained by exploiting the maximum entropy principle. This
principle is a widely used method in statistical mechanics and information theory to �nd the prob-
ability distribution that best �ts the imposed constraints, such as conservation laws, normalizations,
or system-related measures. By maximizing the Shannon entropy, this principle ensures that the
resulting distribution contains enough information to meet the constraints without adding extra as-
sumptions or biases. In particular, if there is no control over a variable, the principle of maximum
entropy dictates that all its values are considered equivalent and equally probable, thereby maxim-
izing ignorance with respect to this quantity. This approach removes any potential bias beyond the
given constraints, ensuring the most unbiased representation of the system’s state. Practically, this
method is applied by exploiting the Lagrange multiplier technique, associating a multiplier to each
constraint.

In our case, the equilibrium distribution of the system is obtained using the constraint (2.26)
along with the normalization condition

∫
x∈XN dPX(x) = 1. The resulting distribution is called the

Gibbs-Boltzmann distribution:

dPN(x) = dPN(x;y) =
e−´H(x;y)

Z(y)
dPX(x) (2.27)

The normalization constant or partition function is de�ned as

Z(y) =

∫

x∈XN

e−´H(x;y)dPX(x) (2.28)

In the expressions above, ´ = 1
T
, and can be considered as the Lagrange multiplier associated

with the energy constraint, for the adjustment of randomness in the system. For instance, the limit
´ → 0+, corresponds to not imposing any constraint on the average energy, and maintaining the
only constraint that the sum of the probabilities gives one. This leads all microstates to be equally
probable. This leads back to the discussion of a microcanonical ensemble, in which all states are
equally probable as they are characterized by exactly the same values of the variables that de�ne it.

lim
´→0+

dPN(x) =
dPX(x)

Z(y)
=

dPX(x)

|Ω(XN)| (2.29)

where Ω(XN) is used to indicate the volume of the con�guration space. Conversely, for ´ →
+∞, only states minimizing the system’s Hamiltonian have non-zero probability, and the states
are de�ned as x∗ ∈ {argminx′H(x′;y)}. In this case, the system is in a minimum energy state or
ground state, with no possibility of changing con�guration or microstate.

lim
´→+∞

dPN(x) =
1

Z(y)

∑

x∗∈{argmin
x
′H(x′;y)}

¶(x− x∗)dPX(x) (2.30)

The system can therefore be characterized by multiple phases, and the behavior of the system, as
seen, can change between them.
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From the partition function, fundamental quantities that can be de�ned are the free energy and
the free energy density:

F (y) := − 1

´
lnZ(y) fN(y) := − 1

N´
lnZ(y) (2.31)

These quantities are fundamental for studying phase transitions, which are de�ned by singular-
ities in the derivatives of the free energy (and therefore also of the partition function) with respect
to the external parameters, including for example beta, namely the temperature, magnetic or electric
�eld, and pressure. Furthermore, from the partition function, or equivalently from the free energy,
other quantities of interest for the system can be obtained, such as its energy or magnetization. How-
ever, in �nite systems, the partition function, being a sum (or integral) of exponentials and thus an
analytical function, lacks discontinuities. Therefore, the regime of interest is that of the thermody-
namic limit, where the system’s volume and number of particles tends to in�nity:

f(y) := − lim
N→+∞

1

N´
lnZ(y) (2.32)

Furthermore, the so-called quenched free energy and quenched free energy density can be de�ned:
they are obtained by taking the average over all the possible realizations of the parameters y. The
quenched averages are denoted with the overbar:

f̄N := E fN(y) = − 1

N´
E lnZ(Y) f̄ := − lim

N→+∞

1

N´
E lnZ(Y) (2.33)

Having introduced this, it is now possible to consider another desired aspect of the free energy
density: its concentration around the average. This property is also called self-averaging property,
and it is particularly desirable as it implies that in the thermodynamic limit as the system size N
approaches in�nity, the value of the free energy density becomes independent of the speci�c real-
ization of the external parameters y. This means that the value of such a quantity depends only on
the statistical properties of y, not on its particular realization.

It is worth noting that this self-averaging property is desirable, yet there exist models where this
property is not observed, and consequently, the free energy density does not concentrate. From a
mathematical standpoint, the self-averaging property of the free energy density can correspond to
di�erent types of convergence of the free energy density to its expectation. In some models, the
convergence to the mean is in probability:

lim
N→+∞

P(|fN(Y )− f̄N | > ϵ) = 0 , ∀ ϵ ∈ R > 0 (2.34)

For some other systems, the convergence occurs almost surely or in a L2 sense, namely:

lim
N→+∞

E[(fN(Y )− f̄N)
2] = 0 (2.35)
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This is the case for example of the Sherrington-Kirkpatrick (SK) model [46], the prototypical spin
glass [5, 6]. Additionally, the model studied in [19], upon which our investigation is based, also par-
tially exhibits this type of convergence.

Spin glasses, in which our analysis is rooted, are the paradigmatic systems in statistical mechan-
ics where quenched random variables, in the form of disorder, appear. These disordered magnetic
systems exhibit complex behaviors due to random interactions between their constituents, called
spins. Among these models, the SK model stands out as the most important, representing a corner-
stone and seminal contribution to the �eld of glassy physics. The SK model is a mean-�eld version
of the Edwards-Anderson spin glass model [47]. Initially introduced as a straightforward solvable
model, it later revealed a structure that was far more complex and rich, particularly concerning the
quenched free energy density. The quenched free energy density is a crucial concept in the study of
spin glasses, describing the average free energy of the system taken over all possible realizations of
the disorder.

Sherrington and Kirkpatrick’s initial solution for the free energy density of the SK model was not
well-de�ned in the thermodynamic limit, leading to a negative entropy and an unphysical solution.
Giorgio Parisi addressed this issue with his replica symmetry breaking solution, obtained using the
replica method [48, 49], ensuring the existence of the thermodynamic limit for the quenched density
of free energy. Formulating a proof for the Parisi formula for the free energy of the SK model,
however, remained an open problem in the �eld for almost three decades.

The proof of the Parisi formula came in two di�erent steps. First Francesco Guerra proved a
uniform bound with his ground breaking replica symmetry breaking uniform bound [50], based on
the interpolation technique previously introduced with Toninelli which allowed to prove the exist-
ence of the limit in the �rst place [51]. Then, Michel Talagrand [52] managed to �nd a matching
converse bound with remarkable technical e�ort. Dmitry Panchenko [53] later simpli�ed the proof
proving a connection between the ultrametricity conjecture by Parisi to the Ghirlanda-Guerra iden-
tities [54]. Since the introduction of the SK model, the study of spin glasses has seen remarkable
growth, evolving into a �ourishing area of research. The insights gained from this �eld have not
only deepened our understanding of disordered magnetic systems but have also in�uenced various
other domains, including optimization, and machine learning [20, 14].

2.3 Statistical and Bayesian inference

Statistical inference, especially within the Bayesian framework, serves as a fundamental cornerstone
to our investigation. Statistical inference can be viewed as the process of extracting information from
data. It involves using the data to make estimations, predictions, or to test hypotheses, providing a
framework for modeling and understanding the randomness and variability in observations. Com-
plementing this, Bayesian inference introduces a probabilistic perspective to inference, allowing to
incorporate prior knowledge and uncertainty into the model considered. Together, these methodo-
logies form the foundation of our analysis.
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2.3.1 Statistical inference

Statistical inference [36, 55, 56, 57] plays a key role when studying modeling problems. When tack-
ling a modeling problem, two primary frameworks may emerge: forward problems and inverse prob-
lems. In general, these problems involve data or observations y and amodel or process that generates
the data. The model can be thought of as a map from the set of input parameters x, also known as
signals, to the data. Additional parameters θ of the model, referred to as hypotheses, may be present.

In the context of forward problems, both the model and hypotheses are known, and data is gener-
ated accordingly. The primary aim is usually to study the properties of the generated data. Forward
problems frequently arise in probability theory, a branch of mathematics that, within this context,
aims to quantify the likelihood of the occurrence of the event given a speci�c model. In these prob-
lems, the event has not yet taken place, and the goal is to predict future outcomes, which means
predicting the data from the model.

Conversely, inverse problems involve having the data or observations, and the task revolves
around estimating the parameters or the model that can describe the system. Inverse probability
problems and statistical inference can also be viewed as inverse problems. Speci�cally, in statistical
inference, the task is to use data or observations to determine properties of the signal, e�ectively
reconstructing the model or hypotheses that explain the data. In this context, the main objects of
interest are probability distributions: the aim is usually to reconstruct the conditional probability
distribution of the model given the observed data. Typically, inverse problems are more complex
compared to forward problems; obtaining observations from a model is generally simpler than the
task of reconstructing the model itself.

Concerning now the applications of statistical inference, its primary objectives are prediction and
estimation. In the case of prediction, the aim is to determine a model that can accurately respond
to new data, assuming the new data and the training data are statistically equivalent. This does not
necessarily mean that the estimator of the model that is found will be identical to the true model.
Instead, the trait of interest is the predictive ability of the model. Speci�cally, when the model is
applied to a new signal, the goal is for it to make an accurate prediction of the data.

The focus of our study is on the estimation feature of statistical inference. In this context, statist-
ical inference can be employed to understand the relationship between the parameters themselves
or between the data and the parameters.

2.3.2 Bayesian inference

Bayesian inference [36, 55, 56, 57], a powerful statistical method, has recently become the basis of
many modern computational and analytical techniques. Its applications span a wide range of �elds,
from arti�cial intelligence and signal processing to bioinformatics and social sciences, demonstrating
its versatility and robustness.

At its core, Bayesian inference is a method of statistical analysis that integrates prior knowledge
about a phenomenon into a mathematical model. This approach also provides a systematic way to
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update beliefs based on new data and new observations, making it a dynamic and adaptable tool for
understanding complex systems. Furthermore, it enables the incorporation of existing knowledge
about the system or phenomenon being studied, or the hypotheses imposed on it.

Despite its signi�cant strengths, Bayesian inference has its limitations. In fact, it requires careful
consideration of the a priori information and hypotheses that are incorporated into the model. If
chosen inappropriately, they can alter the estimates obtained with this method. Nevertheless, its
ability to incorporate previous knowledge and new data, make it an adaptable and �exible method,
and therefore of particular interest in our discussion.

The notation that will be used is the same as 2.3.1, denoting the data y, the signal x, and any addi-
tional system parameters θ. Again, the model that generates the data can be considered as a map of
the signal and the additional parameters f(x,θ).

The basis of Bayesian inference and Bayesian statistics is Bayes’ formula:

dPX|Y(x | y) = PY|X(y | x)dPX(x)

PY(y)
=

PY|X(y | x)dPX(x)∫
PY|X(y | x̄)dPX(x̄)

(2.36)

In this expression, each component has a speci�c meaning:

• Likelihood function (PY|X(y | x)): describes the probability of observing the data obtained
given the parameters. It should be emphasized that likelihood is not a probability distribution
over the parameters; it is instead a function of the parameters for a given set of data, which
are �xed and are what has been measured. Notice that the likelihood is a probability density:
this is needed for the posterior to be well de�ned;

• Prior distribution (PX(dx)): represents the initial assumptions about the parameters before
observing any data. The prior is data-independent and does not change once the data is col-
lected;

• Posterior (PX|Y(dx | y) ): is the updated belief about the parameters after looking at the data.
It is calculated using Bayes’ formula, combining the prior belief and evidence from the data;

• Evidence (PY(y)): represents the probability of obtaining the observed data. The term then
measures how well the model predicts the data, averaging over all possible parameter values.
It acts as a normalization constant to ensure that the posterior distribution is a properly de�ned
probability distribution.

This process of updating beliefs is iterative: as more data is collected, the posterior can be up-
dated, which then becomes the new prior for the next round of data collection. This iterative process
facilitates the continuous re�nement of beliefs as more data becomes available.

When the model is de�ned also by the additional parameters or hypotheses θ, they can be in-
cluded in the formula as follows:

dPX|Y,Θ(x | y,θ) = PY|X,Θ(y | x,θ)dPX|Θ(x | θ)
PY|Θ(y | θ) =

PY|X,Θ(y | x,θ)dPX|Θ(x | θ)∫
PY|X,Θ(y | x̄,θ)dPX|Θ(x̄ | θ) (2.37)
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Having introduced this framework, the expectation with respect to the posterior or posterior mean
of a function g, denoted using the Gibbs brackets ï·ð, can be de�ned as

ïg(X)ð := E[g(X)|y,θ] =
∫

dPX|Y,Θ(x|y,θ)g(x) (2.38)

Notice how this expectation still depends on the data y, which corresponds to quenched random
variables using the statistical mechanics terminology introduced in 2.2.

When considering the Bayesian statistics framework, two common scenarios emerge. Traditional
statistical analysis often deals with situations where the number of parameters to be inferred is sig-
ni�cantly less than the number of data points. In such scenarios, the prior often plays a marginal
role and the likelihood represents the dominant term due to the abundance of data. This determines
a posterior very similar to likelihood. Conversely, high-dimensional inference scenarios occur when
both the number of parameters and the volume of data are large, even tending towards in�nity, pos-
ing non-trivial inference challenges. This scenario often arises in data science and machine learning
applications, where the amount of data is enormous, but so is the number of model parameters, or
neural network weights.

Our analysis will involve scenarios of the second type, necessitating a high-dimensional inference
framework.

2.3.3 Bayesian inference as a statistical mechanics problem

Note that statistical physics is mainly applied in the context of forward problems, while Bayesian
inference is applied in the context of inverse problems. Indeed, the primary goal of statistical physics
is to understand and predict the macroscopic behavior of systems starting from their microscopic
laws and constituent parts. This involves determining the emergent properties of a system based on
knownmicroscopic interactions and statistical laws, such as predicting the pressure and temperature
of a gas given the interactions between its molecules. This aligns with the nature of direct problems,
which infer properties of the system given the model or parameters.

On the other hand, Bayesian inference focuses on updating the probability of hypotheses or
model parameters based on observed data and can therefore be framed as an inverse problem, as it
involves deducing underlying causes or parameters from observed outcomes. Nonetheless, the tech-
niques and methodologies of statistical physics, especially those used to calculate thermodynamic
averages over a given disorder, are particularly useful in the context of Bayesian inference. In this
framework, the spins represent the parameters to be inferred, and the interactions are replaced by
the constraints derived from the observations that these variables must satisfy.

In the following table, a parallel is drawn between the terms of statistical mechanics and the
terminology used in Bayesian inference, connecting the two domains.
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Statistical Physics Bayesian Inference
Hamiltonian Cost function

Particles, atoms, spins System components, parameters

Microstates All possible measurable parameters

Macrostate Final estimate of the parameters x

Equilibrium distribution Posterior distribution

Partition function Z(y) Probability of the data P (y)
External �eld Prior distribution

Quenched disorder (external parameters,
particles interactions)

Data

Bayesian inference can thus be equivalently formulated as a statistical mechanics problem. This is
achieved by recasting the posterior distribution, as de�ned in equation (2.36), within the framework
of statistical mechanics. Speci�cally, the posterior can be rewritten as a Gibbs-Boltzmann distribu-
tion by setting ´ = 1 and transforming the multiplication of the likelihood and the prior into the
exponential of their logarithm. Consequently, the Hamiltonian corresponding to this distribution is
determined as follows:

H(x;y) = − lnPY|X(y | x) (2.39)

where the �rst term is related to the prior and the second represents the log-likelihood. The evidence
can be also rewritten as a partition function:

Z(y) = PY(y) =

∫
PY|X(y | x)dPX(x) (2.40)

Furthermore, the average free energy density corresponds to the di�erential entropy of the data (or
the Shannon entropy if the data is discrete) divided by the number of parameters, or signals, to be
inferred:

f̄N := − 1

N
E lnZ(Y ) = − 1

N

∫
dyZ(y) lnZ(y) = − 1

N

∫
dyPY(y) lnPY(y) =

1

N
H(Y) (2.41)

It is worth noticing that, in an analogy with (2.33), the external parameters, that are quenched,
are in this case represented by the data points obtained. The entropy of the data, or free energy,
is a quantity of primary interest as it quanti�es the uncertainty linked with the data: it provides a
measure of how much information can be extracted from the data given the model. In the context
of statistical physics, this is similar to understanding the behavior of a system at equilibrium. The
free energy, in this case, provides information on the stability of the system and how it responds to
variations of the external parameters. Likewise, in the context of Bayesian inference, the entropy
associated with the data helps describe the robustness of the inference. In both cases, however, the
objective is to minimize the free energy (or, equivalently, maximize the entropy). This is done by
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changing the parameters of the model to better �t the data. In the context of Bayesian inference, this
occurs through the process of learning or training the model.

It becomes now evident how statistical physics, Bayesian inference, and information theory are
deeply intertwined, dealing with the extraction of information from data and subsequent inference
based on this information.

By relating the free energy to the entropy, it is also possible now to link the mutual information
to the free energy. The ∗ notation is introduced to di�erentiate between a sample from the pos-
terior distribution X ∼ PX|Y(· | y) and the signal to be inferred X∗ ∼ PX(·) which is drawn from
the prior distribution and is also referred to as the ground-truth signal. Utilizing this notation, the
mutual information between the ground-truth signal and the data is computed as follows:

1

n
I(X∗;Y) =

1

N
H(Y)− 1

N
H(Y|X∗) = f̄N − 1

N
H(Y|X∗). (2.42)

In the context of the inference problem, the goal is to recover the parameters given the data
y = f(x), where the map f is unknown. The mutual information is the total information carried
by the data minus the remaining uncertainty or lack of knowledge about the data when the signal is
known. Therefore, this last contribution can only be attributed to noise. From (2.42) then the mutual
information depends on the free energy contribution and a contribution due to the noise.

Usually, the noise is assumed to be di�erent and independent for each data point. Hence, its
contribution can be computed as the conditional entropy of one data point given the data multiplied
by the number of data points. Considering M data points and an N -dimensional signal, and calling
Z1 the noise associated to the data point Y1, the following is obtained:

H(Y|X∗) = MH(Y1|X∗) = MH(Z1) (2.43)

Once the noise is modeled so that its entropy can be computed, the main task remaining is comput-
ing the total entropy associated with the data, or borrowing the statistical physics language, the free
energy.

The setting in which our investigation is performed is called Bayes-optimal setting. Bayes-optimality
is a crucial concept in statistical inference, particularly when dealing with high-dimensional prob-
lems. In this optimal Bayesian framework, it is assumed that both the prior distribution and the noise
distribution are known, which permits the determination of the exact posterior distribution, which
can be then fully used. This knowledge allows for a comprehensive analysis of inference problems,
while at the same time simplifying many aspects of the analysis.

By operating under Bayesian optimal conditions, the limits of information theory can be identi-
�ed and phase transitions can be studied. This approach establishes the absolute fundamental limits
of inference, independent of any speci�c algorithm, providing a benchmark for evaluating the per-
formance of practical inference methods. This setup, in which the true posterior is known, enables
a focus on the intrinsic properties and capabilities of high-dimensional inference problems.

22



CHAPTER 2. FRAMEWORK AND BACKGROUND

2.4 Machine learning

Our investigation is set within a machine learning framework, speci�cally dealing with neural net-
works. Machine learning [1, 2, 3] is a branch of arti�cial intelligence whose primary goal is to learn
to recognize patterns in data. Speci�cally, machine learning can be seen as a set of methods or tech-
niques that allows to learn from data in an automated way. This permits to make predictions when
new samples are provided, without the algorithm being speci�cally programmed for the task under
consideration. This implicit learning, heavily reliant on available data, leads to machine learning
models being described as data-driven. The desired result of a learning algorithm is the ability to
generalize, i.e. being able to extract information from the analyzed examples or samples and being
able to apply what has been extracted to new, unseen data. This capability is also known as infer-
ence. Indeed, the goal is for the model to perform well not just on the training data but also on any
new data from the same distribution.

A fundamental aspect of machine learning, closely tied to Bayesian inference, is the incorpora-
tion of prior knowledge which in�uences the learning mechanism. The inclusion of prior knowledge
guides the learning process and is crucial for the success of learning algorithms, making them more
e�cient and e�ective. This concept is proved also by the no free lunch theorem, which explains
that no single learning algorithm is universally superior for all problems. Therefore, exploiting the
prior knowledge can improve learning algorithms’ performance on speci�c tasks. Speci�cally, the
greater the prior knowledge is or the stronger the hypotheses are, the easier it is for the algorithm
to learn. However, this comes at the expense of its �exibility: it is in fact much more dependent on
the constraints and hypotheses introduced.

Considering the di�erent models of learning, various frameworks have been developed in machine
learning, each with its own approaches and applications. These include reinforcement learning, un-
supervised learning, and supervised learning. Our analysis primarily focuses on the latter.

In the supervised learning setting, both the data and the corresponding predictions, or labels, are
accessible. The primary aim is to make accurate predictions for new, unseen data, and to achieve this,
the model learns from the labeled examples provided. In particular, the machine learning algorithm
has access to:

• Domain set (or instance space) X : set of all possible objects on which to make predictions.
X ∈ X is a point or instance of the domain, which is usually (but not necessarily) represented
by a vector of numbers or characteristics;

• Label set Y : set of possible labels, which in the binary classi�cation setting can be Y = {0, 1};

• Training set Dn = {(X1, Y1), (X2, Y2), (X3, Y3), · · · , (Xn, Yn)}: �nite sequence of n labeled
elements (for supervised learning). These are domain points (in X × Y), and constitute the
input to the machine learning algorithm.

The result of the algorithm after the learning process is a prediction rule f̂ : X → Y . This
rule, also referred to as a predictor, hypothesis, or classi�er, represents the output of the learning
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algorithm. However, the algorithm does not know the data generation model: the instances are
generated from a probability distribution over X and labeled according to a function f . Both of
these are not known by the algorithm, which is provided only with the training dataset, where
for each data point Xµ drawn from the distribution over the domain, Yµ = f(Xµ). A measure of
success, or predictor error, can be de�ned as the probability that the correct label is not predicted by
the algorithm on a random data point generated from the data distribution. This error is also called
generalization error, true error or loss function. This measure quanti�es how well the learned model
performs on new data, re�ecting its ability to generalize beyond the training set.

The learning process then involves feeding data into the model, which then adjusts its internal
parameters based on this input. This adaptation is typically achieved through an iterative process
known as training. In each iteration, the model’s predictions are compared to the ground truth labels,
and the discrepancies between the predictions and the actual labels are used to adjust the model’s
parameters. This iterative adjustment continues until the error on the training dataset is su�ciently
low.

In the supervised learning framework, typical classes of problems include classi�cation and regres-
sion. The two paradigms have di�erent characteristics and are therefore approached and applied
di�erently. Classi�cation tasks are characterized by the goal of assigning input data points to pre-
de�ned categories or classes. In this case, the model is tasked with discerning patterns in the input
features and making decisions about which class a given data point belongs to. In classi�cation,
therefore, the output variable is discrete and represents speci�c categories or labels.

On the other hand, regression tasks involve predicting continuous numerical values based on
input characteristics. Unlike classi�cation, where the output is categorical, regression models aim
to estimate a continuous outcome. Regression models are primarily concerned with understanding
relationships between variables and making predictions that take values on a continuous spectrum.

2.4.1 Neural networks

The class of machine learning algorithms that our study focuses on is neural networks (NNs). Neural
networks, or arti�cial neural networks (ANNs), are computational models inspired by the human
brain and human computational systems. Frank Rosenblatt’s development of the �rst machine learn-
ing algorithm, the perceptron [33] in 1958 marked the beginning of neural network research. Initial
applications and studies on neural networks in the eighties and nineties were in�uenced by high
computational costs and high model complexity, leading to performance that was often inferior to
methods such as support vector machines and random forests. In the last two decades, advances
in developing deep architectures, increasing network size, and the availability of large amounts of
data have signi�cantly improved the performance of neural networks. This has revived interest and
enthusiasm for machine learning.

Neural networks can be represented as graphs, where each node corresponds to a neuron and the
edges represent the connections between neurons. These networks are designed with topologies that
keep computational complexity low, as not all con�gurations of graphs are computationally feasible.
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Additionally, learning arbitrary topologies can be challenging or counterproductive, often leading to
unnecessary computational cost. Therefore, neural networks typically consist of multiple layers of
neurons stacked on top of each other. In these layers, each neuron receives inputs from the neurons
in the preceding layer. This layered structure helps in maintaining a balance between computational
feasibility and learning capability.

Over time, neural network models have been re�ned to perform increasingly complex tasks and
to describe biologically plausible computational models. To this last aim, the types of networks
studied have mainly been feed-forward or recurrent, featuring di�erent topologies such as fully
connected, sparsely connected, or locally connected. Additionally, some networks incorporate mod-
ular structures and various types of neurons to better adapt to di�erent tasks and research objectives.

Our analysis is focused on feed-forward fully connected neural networks (FFNNs), also known as
dense networks. These networks are used to implement functions. The neurons in these networks
are organized into layers, with each neuron connected to every neuron in the previous layer, making
the network fully connected. A typical feed-forward neural network consists of the following layers:

• Input Layer: the �rst layer, where each neuron corresponds to a data point. Each of these is
then connected to the neurons of the �rst hidden layer;

• Hidden Layers: each neuron in these layers receives as input the sum of the outputs from the
previous layer’s neurons, weighted by the edge weights (W), and applies a scalar function
to the linear combination to produce its output; This function, called activation function, is
usually nonlinear and is the same for all neurons in the layer;

• Output Layer: the �nal layer, which applies a readout function to the outputs of the last hidden
layer. The nature of this function depends on the type of task the network is designed for, such
as regression or classi�cation.

Figure 2.2: Example of fully connected feed-forward neural network architecture with three hidden
layers.
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The choice of the activation function is fundamental for network learning, as it introduces non-
linearity and represents the neuron’s �ring. Di�erent types of nonlinearities have distinct properties.
The most common ones used in literature are highlighted:

• Linear Function: simpli�es the network, making a deep architecture equivalent to a shallow
one, as a series of linear transformations results in a linear transformation;

• Sigmoid and Hyperbolic Tangent (tanh): di�erentiable and monotonic but can saturate with
large input values, hindering learning and making training di�cult. Sigmoid outputs are not
zero-centered, causing learning instability;

• Recti�ed Linear Unit (ReLU): accelerates learning and requires simpler operations but can res-
ult in "dead" neurons that stop learning. It makes the learning process lighter, with fewer
neurons �ring;

• Leaky ReLU: prevents neuron deactivation but loses some model sparsity;

• Exponential Linear Unit (ELU) [58]: allows sparse activations and avoids dead neurons by not
outputting zero for negative inputs, although it saturates when inputs are negative.

Selecting the appropriate activation function is essential to optimize network performance and en-
sure e�ective learning.

2.4.2 Generalized linear models

The generalized linear model (GLM) [30, 31, 32] is one of the models addressed in our analysis. This
algorithm is a foundational concept in machine learning that extends the ideas of a simple perceptron
to more complex scenarios. It is analogous to a single-layer neural network and serves as a bridge
between basic neural networks and more intricate models. Due to this, the application of GLMs in
machine learning has been widely studied from a physics perspective [10, 12, 11, 22, 34, 35, 14].

Generalized linear models represent a generalization of ordinary linear regression. These models
can be exploited for both classi�cation and regression tasks, making them particularly versatile.
Moreover, their inherent �exibility allows them to accommodate a wide range of data types, thereby
making GLMs a powerful tool in the �eld of statistical data analysis. Speci�cally, this versatility
stems from GLMs’ ability to unify multiple statistical models within a single theoretical framework.

In standard regression, the observations y represent the outcome of a random variable Y ∈ R
n

called response. The response has i.i.d. components and its mean is µ. This expectation value is
described as a linear combination of a set of known variables, called predictors Xi ∈ R

m through a
vector β ∈ R

m called model parameter. Mathematically, calling X the matrix of predictors, this is
expressed as:

E[Y | X] = µ = Xβ (2.44)
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The aim of regression is then to �nd the parameter β that best describes the linear relationship
between the predictors and the response variable.

GLMs extend this concept by allowing the linear predictor to be connected to the response vari-
able through a link function. This approach also permits the response variable to be part of a discrete
space. As in the regression case, the response variable Y ∈ Y is assumed to consist of independent
and identically distributed (i.i.d.) components, with an expected value denoted by µ. The predictors,
or independent variables, are represented byXi ∈ X . In the GLM framework, however, the relation-
ship between the expected value of the response E[Y | X] = µ and the predictors Xi is speci�ed
through a link function g. Speci�cally:

g(µ) = η = Xβ (2.45)

where η is called the natural parameter and is unknown. The inverse of the link function, g−1, is
usually called response function. Moreover, the model assumes:

Y | X,β ∼ ExponentialFamily(η) (2.46)

The exponential family is de�ned by the density function:

pY(y | η, Ä) = h(y, Ä) exp
(b(η)⊺T(y)−A(η)

d(Ä)

)
(2.47)

Here Ä is a known parameter and and the functions h(y, Ä),b(η),T(y),A(η), d(Ä) are �xed and
de�ne a family of functions parametrized by η. In the GLM, the aim is again to learn the parameter
β of the linear combination. This family of functions includes many distributions used in statistics
andmachine learning, such as normal, exponential, gamma, Bernoulli, Poisson, binomial, categorical
and multinomial.

Notably, GLMs are particularly e�ective for binary classi�cation tasks, where the outcomes can
be modeled using a Bernoulli random variable. A Bernoulli random variable can take on two possible
outcomes, usually coded as 0 and 1, that can be interpreted as the occurrence or non-occurrence of an
event that happenswith probability p. The GLMmodel relates themean of the response variable to be
related to a linear combination of the predictors (input features) through a link function. In the case
of a Bernoulli random variable, this function can be derived to be the logit function, g(p) = ln p

1−p
.

Through this, the probability (or average of the responses) can be computed as p(xi) =
1

1+e−βxi
. This

is recognized as a logistic function, and thus the model obtained is a logistic regression model.

Building on the discussed concepts, it becomes now clear how GLM models can be considered a
generalization of a perceptron. The perceptron, a fundamental machine learning algorithm, can be
considered a one-layer neural network. This model is employed for binary classi�cation, where the
response variable y falls into two categories, typically labeled as {0, 1}. The perceptron produces
predictions ŷ according to the following rule:

ŷ = H(θ⊺x′) (2.48)
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where H is the Heaviside step function and x′ = (x, 1). The aim of the training then is to learn
the parameter θ such that the input data is correctly classi�ed. It can be observed then that The
perceptron employs a linear function to delineate a decision boundary, e�ectively partitioning the
two classes. This boundary can be shifted within the data space by introducing an extra coordinate
to the input vector, as done in (2.48). Provided the data points are linearly separable, the perceptron
is guaranteed to identify a separating hyperplane.

In the case of GLMmodels, binary classi�cation can be performed exploiting a logistic regression
model. Speci�cally, the rule that the GLM learns is a logistic function, that represents a softened ver-
sion of the Heaviside function, thus providing a probabilistic interpretation to the classi�cation task.
Indeed, unlike the perceptron that directly assigns class labels based on a threshold, logistic regres-
sion estimates the probability of an observation belonging to a particular class. This probabilistic in-
terpretation allows for more nuanced decision-making with respect to the perceptron algorithm, and
the incorporation of uncertainty into the classi�cation process. Additionally, GLMs o�er a uni�ed
framework that extends beyond binary classi�cation to handle various types of response variables,
making them more versatile than the perceptron.
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Chapter 3

Model and setting

Having provided an overview of the key concepts pertinent to our discussion, the setting and char-
acteristics of our investigation are now addressed.

It is worth recalling that the objective of the investigation is to establish bounds in terms of
information theory, and speci�callymutual information between the dataset and the teacher network
weights, that relate a deep nonlinear network to a shallow network, speci�cally a generalized linear
model. This comparison is signi�cant as this mutual information and the generalization error derived
from it have been thoroughly examined for GLMs [10, 12, 11, 22, 34, 35, 14], allowing to use the
shallow network as a reference for studying the more complex deep neural network. The models
utilized in this study are akin to those introduced in [19], where the equivalence was demonstrated
for a 2-layer neural network, and [29], where the conjecture of equivalence was �rst proposed.

In this chapter, the speci�c quantities relevant to the studied models are de�ned and the methods
for deriving our results are described.

3.1 Teacher-student setup

The teacher-student setup is developed within the supervised learning framework. As introduced in
2.4, supervised learning is a process where algorithms are trained using labeled data. These labeled
datasets are composed of input data (features) and their corresponding output values (labels or re-
sponses). For our investigation, the task is set as a regression task, indicating that the output variable
is continuous and the model is tasked with predicting numerical values. The training data points are

denoted as X
(0)
µ ∈ R

d(0) and the labels or responses as responses Yµ ∈ R. Together, they form the

dataset Dn = {(X(0)
µ , Yµ)}nµ=1, where n is the number of data points.

In the classic teacher-student con�guration [10, 11, 12, 20], the training process involves two
neural networks: a teacher network and a student network. In this framework, the ground truth

labels for the dataX
(0)
µ are produced by the teacher network, whose role is then to guide the learning

process of the student network. Indeed the objective of this setup is to mirror a traditional teacher-
student relationship, where the teacher imparts knowledge to the student. Here, the student network
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learns from a dataset that the teacher network generates, with the ultimate objective of learning a
mapping from the input data to the labels that the teacher network generates. This is achieved by
the student network by acquiring the knowledge encoded in the teacher network parameters and
structure.

It is important to highlight that in the teacher-student setup, there is no requirement for the
teacher and student networks to share the same architecture [59, 60], hyperparameters such as the
activation function, or any other characteristic. This absence of restrictions opens up a wide array
of possibilities for designing both networks. Indeed, the key feature of this framework is the role
of the teacher network, which is to serve as a source of ground truth by providing labels for the
data. Regardless of any design di�erences then the student network aims to learn from the generated
dataset and approximate the teacher network’s behavior, ultimately striving to achieve a comparable
level of performance. For instance, the teacher network can be a complex model with multiple layers,
nonlinear activations, and other sophisticated architectural elements, and the student network may
have a simpler structure than the teacher network. It could for example have fewer layers fewer
nodes per layer or less complex activation functions.

This �exibility in design choices allows the teacher-student setup to be applied in various scen-
arios where the complexity or computational resources required for training a network like the
teacher one might be too much to implement in practical applications. The student network can
here serve as lighter alternative, representing an approximation of the teacher network while still
bene�ting from the knowledge transfer facilitated by the teacher network. The opposite scenario,
in which the student network is overparametrized with respect to the teacher network, can also be
exploited and studied [59]: in this case, the expressive power of the student network is much greater
than the one of the generative model.

3.2 Model

Our analysis is set in a Bayesian learning framework particularly focusing on the Bayes-optimal
setting introduced in 2.3.3. As previously mentioned, a teacher-student setup is considered. This
framework implies that, apart from the true weights, complete knowledge is possessed by the student
network.

It is important to consider that the Bayes-optimal setting de�nes an upper bound for the learn-
ing of the network, independently of the training algorithm and learning procedure. Indeed, in this
framework, the generative model is known to the student network, therefore having the same archi-
tecture as the teacher neural network that generated the data. This con�guration inherently leads
to the optimal information-theoretic performance attainable by the student.

Speci�cally, the optimal performance is achieved when the network is trained through Bayesian
learning that depends on the exploration and utilization of the posterior distribution of the student’s
parameters. This means that the student network is not only trying to �t the data but also to un-
derstand the underlying distribution that generated it. This is a powerful concept that sets Bayesian
learning apart from other machine learning frameworks.
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The model analyzed is an L + 1-layer neural network within a teacher-student setup. The train-

ing data is represented as X(0) = {X(0)
µ }nµ=1, where X

(0)
µ ∈ R

d(0) and n ∈ R is the number of data
points. The ground truth labels generated by the teacher networks for the training are denoted as

Y(L) = {Y (L)
µ }nµ=1. Together, the data and the responses form the datasetD(L)

n = {(X(0)
µ , Y

(L)
µ )}nµ=1.

The goal is then to train the student network to adjust its weights to best approximate the rela-

tion between Y
(L)
µ and X

(0)
µ .

The model for the teacher network is de�ned as:

Y (L)
µ = f

( a∗⊺
√
d(L)

φ
(W∗(L) X(L−1)

µ√
d(L−1)

)
;Aµ

)
+
√
∆Zµ = f

(a∗⊺X(L)
µ√

d(L)
;Aµ

)
+
√
∆Zµ (3.1)

with

X(ℓ)
µ = φ

(W∗(ℓ) X(ℓ−1)
µ√

d(ℓ−1)

)
∀ℓ ∈ {1, . . . , L} (3.2)

Similarly to what introduced in 2.3.3, the ∗ notation is used to indicate the ground-truth para-
meters of the network. The quantities in (3.1) are de�ned as follows:

• Input data X(0) = {X(0)
µ }nµ=1: d(0)-dimensional random vectors drawn independently and

identically distributed (i.i.d.) from the standard multivariate Gaussian distribution, X
(0)
µ

iid∼
N (0, Id(0)) where Id(0) is the d

(0)-dimensional identity matrix;

• Number of layers L + 1 ∈ R: the layers are indexed by ℓ ∈ {0, . . . , L + 1}. Layer ℓ =
0 represents the input layer, with the same dimensionality as the data, layers ℓ = 1, . . . , L
describe the hidden layers and ℓ = L+1 is the index used for the output layer. The most used
indices will be ℓ ∈ {0, . . . , L}, since as stated in 2.4 the readout function applied in the last
layer is usually di�erent from the nonlinear function applied in the previous layers;

• Dimension d(ℓ) ∈ R of the representation of the input at layer ℓ, X
(ℓ)
µ ;

• Activation function φ : R → R: nonlinear scalar function, applied component-wise to vectors;

• Weights at layer ℓ, W∗(ℓ) ∈ R
d(ℓ−1)×d(ℓ) : random matrix with i.i.d. entries drawn from a Gaus-

sian distribution, W
∗(ℓ)
ij ∼ N (0, 1) for every couple of indices i, j;

• readout vector a∗ ∈ R
d(L)

: random vector with Gaussian distributed entries, a∗i ∼ N (0, 1) for
every index i;

• Aµ ∈ R
r: additional stochasticity that might be included in the readout function f , with its

own distribution PA(·);
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• Readout function f : R× R
r → R: it de�nes the output layer and can be nonlinear;

• Label noise Zµ ∈ R: is Gaussian noise drawn i.i.d. with variance scaled by a factor ∆ > 0,

Zµ
iid∼ N (0, 1).

Having de�ned the aforementioned quantities and model properties, two additional regularity
hypotheses are introduced, which will later be required in the proofs. It is important to note that
these are technical hypotheses. In contrast, the assumption that the input data and model paramet-
ers follow a speci�c distribution are fundamental features of the model studied. These regularity
hypotheses ensure the mathematical rigor and validity of the theoretical results.

H1) The activation function φ : R → R, is C3 is Lipschitz continuous with Lipschitz constant K̄
(also called K̄-Lipschitz continuous). Moreover, φ is odd with its second and third derivatives
being bounded;

H2) The readout function f along with its �rst and second derivatives, is almost surely bounded
with respect to the probability measure PA(·).

Additionally, the output kernel is introduced to express the probability distribution of the out-
put. Given the Gaussian nature of the noise Zµ, it can be represented in the following way, which
eliminates the need to explicitly account for the stochasticityA:

Pout(y | x) :=
∫

PA(dA)
1√
2Ã∆

exp
(
− 1

2∆
(y − f(x;A))2

)
=

∫
PA(dA)P (y|x,A) (3.3)

This implies that the labels are drawn from the distribution:

Y (L)
µ ∼ Pout

(
· | a∗⊺

√
d(L)

φ
(W∗(L) X(L−1)

µ√
d(L−1)

))
(3.4)

The student network then reconstructs the labels as:

Ŷ (L)
µ = f

( a⊺

√
d(L)

φ
(W(L) x

(L−1)
µ√

d(L−1)

)
;Aµ

)
+
√
∆Zµ = f

(a⊺x
(L)
µ√

d(L)
;Aµ

)
+
√
∆Zµ (3.5)

with

x(ℓ)
µ = φ

(W(ℓ) x
(ℓ−1)
µ√

d(ℓ−1)

)
∀ℓ ∈ {1, . . . , L} (3.6)

It is worth remarking that the parameters of the teacher network, denoted as θ∗(L) = {a∗,W∗(L),
. . . ,W∗(1)} are all drawn from their prior distribution, hence they are indexed with the ∗ superscript.
In contrast, the parameters of the student network θ(L) = {a,W(L), . . . ,W(1)} are learned during

the training process. Moreover, the notation X
(ℓ)
µ is used to indicate the teacher representation of

the input at the ℓ-th layer, whereas in the student network, it is indicated with x
(ℓ)
µ .
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The construction presented implies that the student utilizes the same output kernel Pout as the
teacher network, or equivalently same number of layers, layers widths, readout f , activation φ, label
noise variance ∆, and prior law for the weights. The parameters of the student network are drawn
from the Bayes-optimal posterior distribution, which describes the most probable con�gurations of
the network parameters given the observed data. Formally, the Bayes theorem can be exploited
to recover the Bayes-optimal posterior distribution. To do this, the notation introduced in 2.1.2 is
recalled and applied to the current model:

dP (θ(L)|D(L)
n ) = P (dθ(L)|D(L)

n ) , Dθ(L) = P (dθ(L)) (3.7)

Using then Bayes theorem, the posterior can be rewritten in the following form:

P (dθ(L)|D(L)
n ) =

P (D(L)
n |θ(L))P (dθ(L))

P (D(L)
n )

=
P (D(L)

n |θ(L))P (dθ(L))
∫
P (D(L)

n |θ(L))P (dθ(L))

=
P (Y(L),X(0)|θ(L))P (dθ(L))∫
P (Y(L),X(0)|θ(L))P (dθ(L))

=
P (Y(L)|X(0),θ(L))P (X(0)|θ(L))P (θ(L))∫
P (Y(L)|X(0),θ(L))P (X(0)|θ(L))P (dθ(L))

=
P (Y(L)|X(0),θ(L))P (X(0))P (dθ(L))∫
P (Y(L)|X(0),θ(L))P (X(0))P (dθ(L))

=
P (Y(L)|X(0),θ(L))P (dθ(L))∫
P (Y(L)|X(0),θ(L))P (dθ(L))

=
P (Y(L)|X(0),θ(L))P (dθ(L))

Z(L)(D(L)
n )

(3.8)

where

P (Y(L)|X(0),θ(L)) =
n∏

µ=1

Pout

(
Y (L)
µ | a⊺

√
d(L)

φ
(W(L) x

(L−1)
µ√

d(L−1)

))
(3.9)

and subsequently the partition function is

Z(L)(D(L)
n ) = P (Y(L)|X(0)) =

∫
P (Y(L)|X(0),θ(L))P (dθ(L)) (3.10)

This allows to get to the following expression for the posterior distribution:

dP (θ(L) | D(L)
n ) =

1

Z(L)(Dn)

n∏

µ=1

Pout

(
Y (L)
µ | a⊺

√
d(L)

φ
(W(L) x

(L−1)
µ√

d(L−1)

))
Dθ(L) (3.11)
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where

Dθ(L) :=
d(L)∏

i=1

dai√
2Ã

e−
a2i
2

d(L)∏

i=1

d(L−1)∏

j=1

dW
(L)
ij√
2Ã

e−
W

(L) 2
ij
2 · · ·

d(1)∏

i=1

d(0)∏

j=1

dW
(1)
ij√
2Ã

e−
W

(1) 2
ij
2

=: DaDW(L) . . . DW(1) = DaDW(L)Dω(L−1)

(3.12)

De�ning u
(ℓ)
y (x) = logPout(y

(ℓ) | x(ℓ)) for any i ∈ {0, . . . , L}, the partition function can be rewritten
as:

Z(L)(D(L)
n ) :=

∫
Dθ(L) exp

( n∑

µ=1

u
(L)
Yµ

(sµ)
)

(3.13)

where

s(L)µ = s(L)µ (θ(L),X(0)
µ ) :=

a⊺

√
d(L)

φ
(W(L) x

(L−1)
µ√

d(L−1)

)

S(L)
µ = S(L)

µ (θ(L),X(0)
µ ) :=

a∗⊺
√
d(L)

φ
(W∗(L) X(L−1)

µ√
d(L−1)

) (3.14)

Moreover, the joint law of the data can be expressed in terms of the output kernel as:

dP (D(L)
n ) =

n∏

µ=1

( d(0)∏

j=1

dX
(0)
µj√
2Ã

e−
X

(0) 2
µj
2

)
dY (L)

µ Eθ∗(L)

n∏

µ=1

Pout(Y
(L)
µ | S(L)

µ )

=:
n∏

µ=1

DX(0)
µ dY (L)

µ Eθ∗(L) exp
( n∑

µ=1

u
(L)
Yµ

(Sµ)
)

(3.15)

Remarkably, the law takes this form and cannot be factorized because, although the inputs X
(0)
µ

are independent, the responses Y
(L)
µ are not. Indeed, the outputs are generated by the same teacher

network using the same weights, that thereby introduces correlations among the samples indexed
by µ. This then a�ects the dataset’s statistical properties. Moreover, due to the fact that our analysis
is performed in a Bayes-optimal framework, the expression for the law of the data can be written in
terms of the partition function (3.13):

dP (D(L)
n ) =

n∏

µ=1

DX(0)
µ dY (L)

µ Z(L)(D(L)
n ) (3.16)

From the analysis performed, it can also be observed that the vectorAµ in (3.3) serves a role sim-
ilar to that of a learned parameter. Indeed, within the partition function and the dataset’s governing
law,Aµ is treated analogously to other learned variables. The integration over the probability distri-
bution, or the computation of the expected value for Aµ, is conducted in the same way as for other
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learned parameters. By introducing the output kernel, the need to explicitly express the dependency
on Aµ, the additional stochasticity, is removed. Nonetheless, the underlying principles remain con-
sistent, irrespective of whetherAµ is considered a learned parameter.

In the context of optimal Bayesian learning, another important quantity that can be de�ned for

the model is the Bayes-optimal predictor, which corresponds to the the prediction ŶBayes(X
(0)
new) for

the response associated with a new input test sample. Its relevance lies in the fact that serves as a
benchmark for the performance of other predictive models. If a model achieves performance close
to the Bayes-optimal predictor, it is considered to be performing well. The Bayes-optimal predictor
corresponds to the posterior predictive distribution’s mean given the training data:

ŶBayes(X
(0)
new) := E[Y (L)

new | D(L)
n ,X(0)

new] =

∫
dY Y Pout

(
Y | a⊺

√
d(L)

φ
(W(L)x

(L−1)
new√

d(L−1)

))
dP (θ(L) | D(L)

n )

(3.17)

where the posterior predictive distribution is:

P (Y |X(0)
new,D(L)

n ) =

∫
P (Y | X(0)

new,θ
(L))dP (θ(L) | D(L)

n ) (3.18)

The posterior predictive distribution [57, 2] describes the distribution of possible new unobserved
values given an existing data set. It is determined by assuming a model for the data, and that this
is then updated with existing data. The computation of this distribution involves an integration
over the full range of the posterior distribution of the model’s parameters. This approach diverges
from the use of a �xed point estimate for a parameter by incorporating the uncertainty associated
with the parameter’s value, which is taken into account in the predictions made via the posterior
predictive distribution. By accounting for this uncertainty in its predictions, the posterior predictive
distribution tends to be broader than a predictive distribution that is based on a �xed point estimate
of the parameters.

Moreover, the Bayes-optimal predictor (3.17) allows to compute the generalization error of the
network, introduced in 2.4. Speci�cally, the Bayes-optimal predictor minimizes the generalization
error when this is computed using the expected loss, namely:

E (L)
n := E

(
Y (L)
new − E[Y (L)

new | D(L)
n ,X(0)

new]
)2

(3.19)

The terminology of statistical mechanics will also be adopted since as discussed in 2.3.3 Bayesian
inference problems can be recast as statistical mechanics problems. The posterior distribution is
thus treated as a Boltzmann-Gibbs measure over the network weights, that represent the degrees of
freedom. Expectations with respect to the posterior are denoted by Gibbs brackets ï·ð. Using this
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notation, the posterior mean of a function g reads:

ïgð(L) =
∫

dP (θ(L) | D(L)
n )f =

1

Z(L)(D(L)
n )

∫
Dθ(L)

n∏

µ=1

Pout

(
Y (L)
µ | a⊺

√
d(L)

φ
(W(L) x

(L−1)
µ√

d(L−1)

))
g

(3.20)

Similarly to what done in 2.3.3, to conduct an information-theoretic analysis of the system key
quantities of interest are introduced, notably the quenched (conditional) free entropy per sample.

This quantity, denoted as f̄
(L)
n for theL+1-layer neural network, is inherently linked to the Shannon

entropyH(D(L)
n ) of the data distribution per sample. Speci�cally, the free entropy per sample, which

from now on will be simply referred to as free entropy, is de�ned as follows:

f̄ (L)
n :=

1

n
E logZ(L)(D(L)

n ) = − 1

n
H(D(L)

n )− 1

n
E logP (X(0)) (3.21)

Here, the expectationE is takenwith respect to the training dataD(L)
n = {(X(0)

µ , Y
(L)
µ )}nµ=1. Similarly

to what done in 2.2 for the free energy density, the normalization by n is linked to the number of
terms in the Hamiltonian de�ned by the exponent in the partition function, and corresponds to the
number of data points. It is important to observe that, according to de�nition (3.10), the partition
function is not a function of the joint distribution of the dataset, but rather of the probability of
obtaining the outputs given the input data and the neural network parameters. In our investigation,
a slight deviation from the standard terminology will be adopted by referring to what is technically
the conditional free entropy associated with the dataset as simply free entropy.

Lastly, having introduced the free entropy analogously to what done in 2.3.3 the mutual inform-

ation per sample between the datasetD(L)
n and the teacher network weights θ∗(L) for the L+1-layer

neural network can now be de�ned:

1

n
I(L)n (θ∗(L);D(L)

n ) =
1

n
H(D(L)

n )− 1

n
H(D(L)

n | θ∗(L))

= −f̄ (L)
n + E logPout

(
Y

(L)
1 | a∗⊺

√
d(L)

φ
(W∗(L) X(L−1)

1√
d(L−1)

)) (3.22)

3.3 Equivalent shallow network

A closely related model to the previously introduced deep neural network is the generalized linear
model (GLM). This model consists of a single-layer neural network and represents a generalization
of a perceptron, as introduced in more detail in 2.4.2. In the same way as in 3.2, a teacher-student
framework is considered, with both a teacher GLM and a student GLM. The (0) superscript is used for
quantities related to the generalized linear model. The teacher GLM generates the labels as follows:

Y (0)
µ = f

(
¸(0)

v∗(0)⊺X(0)
µ√

d(0)
+
√

µ(0)·∗(0)µ ; Aµ

)
+
√
∆Zµ (3.23)
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Equation (3.23) implies that in terms of the output kernel, the labels are drawn according to the
following distribution:

Y (0)
µ ∼ Pout

(
· | ¸(0)v

∗(0)⊺X(0)
µ√

d(0)
+
√

µ(0)·∗(0)µ

)
(3.24)

The dataset generated by this model is denoted as D(0)
n := {(X(0)

µ , Y
(0)
µ )}nµ=1, where each pair

corresponds to an input vector and the corresponding label. It is crucial to observe that this dataset
di�ers from the one used by the L + 1-layers student neural network, due to the distinct teacher
architectures, resulting in di�erent label generation models. The ∗ notation is used as before, and
the parameters of the GLM teacher network are also referred as θ∗(0) = {v∗(0), ζ∗(0)}.

The readout function f , the stochasticity Aµ, and the label noise Zµ rescaled by the factor
√
∆

are the same as presented in 3.2. The newly introduced quantities in (3.23) instead are de�ned as
follows:

• Weight vector of the generalized linear model v∗ (0) ∈ R
d(0) : set of parameters that the teacher

model uses to weigh the importance of di�erent features in the input data. It is a random vector

with entries i.i.d. drawn from a Gaussian distribution, v
∗(0)
i ∼ N (0, 1) for every index i;

• ¸(0) ∈ R > 0: this parameter is a scaling factor that adjusts how much each neuron’s signal
contributes to the next layer;

• E�ective Gaussian noise ·
∗(0)
µ ∈ R: ·

∗(0)
µ

iid∼ N (0, 1) is Gaussian i.i.d. noise. Since it is multiplied
by µ(0) > 0, the noise term has then variance controlled by the parameter µ(0), and it adds
variability to the output of the teacher GLM. From the perspective of �nding an equivalent
model to the deep network presented in 3.2, the noise component represents the higher-order
terms introduced by the nonlinearities in the L + 1-layer teacher network when generating
the data, which are not learned by the student network with the same architecture [29]. By
including this noise then themodel e�ectively accounts for the complex interactions in the data
that the student network does not capture. The presence of this term represents an additional
source of randomness in the data generation process;

• µ(0) ∈ R > 0: this parameter controls the variance of the Gaussian noise in the model. In
relation to the L + 1-layer neural network model, it describes the entity of the non linear
activation functions’ higher-order terms.

Having introduced all the parameters, it is worth noticing that (3.23) satis�es the characterization
of the GLM presented in 2.4.2. The GLM’s linear predictor, which is a linear combination of the input

features, is given by the term ¸(0)
v∗(0)⊺X(0)

µ√
d(0)

+
√

µ(0)·
∗(0)
µ . The response function applied to the linear

predictor, that allows for nonlinear relationships between the input features and the output, is f .
Finally, the random component that is added to the output of the link function is

√
∆Zµ.

The link between the generalized linear model and the L + 1- layer neural network introduced
in 3.2 is then described through the parameters ¸(0) and µ(0), whose precise de�nition will be given
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later in 4.1, and the structures of the models. While the GLM is a single-layer network with a linear
combination of inputs and a readout function, in a deep neural network the linear model is replaced
by multiple hidden layers stacked together. The nonlinearity in a deep neural network arises from
the activation functions in each hidden layer, whereas in the corresponding GLM, such nonlinearity

is captured through the parameters ¸(0) and µ(0) along with the noise term ·
∗(0)
µ .

The construction done for the L+ 1-layer neural network and the information-theoretic quant-
ities introduced can be similarly applied to the generalized linear model. The posterior distribution
for this model reads:

dP (θ(0) | D(0)
n ) = dP (ζ(0),v(0) | D(0)

n )

=
1

Z(0)(D(0)
n )

n∏

µ=1

Pout

(
Y (0)
µ | ¸(0)v

(0)⊺X
(0)
µ√

d(0)
+
√

µ(0)·(0)µ

)
Dv(0)Dζ(0) (3.25)

where Dζ(0) =
∏n

µ D·
(0)
µ .

Denoting

s(0)µ = s(0)µ (θ(0),X(0)
µ ) = ¸(0)

v(0)⊺X
(0)
µ√

d(0)
+
√

µ(0)·(0)µ (3.26)

S(0)
µ = S(0)

µ (θ(0),X(0)
µ ) = ¸(0)

v∗(0)⊺X(0)
µ√

d(0)
+
√
µ(0)·∗(0)µ (3.27)

the partition function is computed as:

Z(0)(D(0)
n ) :=

∫
Dθ(0) exp

( n∑

µ=1

u
(0)
Yµ
(sµ)

)
(3.28)

The law of the data can be obtained as:

dP (D(0)
n ) =

n∏

µ=1

( d(0)∏

j=1

dX
(0)
µj√
2Ã

e−
X

(0) 2
µj
2

)
dY (0)

µ Ev∗(0),ζ∗(0)

n∏

µ=1

Pout(Y
(0)
µ | S(0)

µ )

=:
n∏

µ=1

DX(0)
µ dY (0)

µ Ev∗(0),ζ∗(0) exp
( n∑

µ=1

u
(0)
Yµ
(Sµ)

)
(3.29)

whereas the Bayes-optimal predictor corresponds to:

Ŷ
(0)
Bayes(X

(0)
new) := E[Y (0)

new | D(0)
n ,X(0)

new]

=

∫
dY Y Pout

(
Y | ¸(0)v

(0)⊺X
(0)
new√

d(0)
+
√

µ(0)·(0)µ

)
dP (v(0), ζ(0) | D(0)

n )
(3.30)
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and the generalization error is:

E (0)
n := E

(
Y (0)
new − E[Y (0)

new | D(0)
n ,X(0)

new]
)2

(3.31)

Exploiting the Gibbs brackets notation previously introduced, the posterior mean of a function g can
be written as

ïgð(0) =
∫

dP (θ(0) | D(0)
n )f =

1

Z(0)(D(0)
n )

∫
Dv(0)Dζ(0)

n∏

µ=1

Pout

(
Y (0)
µ | ¸(0)v

(0)⊺X
(0)
µ√

d(0)
+
√
µ(0)·(0)µ

))
g

(3.32)

and the free entropy can be de�ned as:

f̄ (0)
n :=

1

n
E logZ(0)(D(0)

n ) =
1

n
E log

∫
Dv(0)Dζ(0) exp

( n∑

µ=1

u
(0)
Yµ
(sµ)

)
(3.33)

Finally, the mutual information per sample between the datasetD(0)
n and the teacher parameters θ∗(0)

of the generalized linear model can be obtained through the following relation:

1

n
I(0)n (θ∗(0);D(0)

n ) =
1

n
H(D(0)

n )− 1

n
H(D(0)

n | θ∗(0))

= −f̄ (0)
n + E logPout

(
Y

(0)
1 | ¸(0)v

(0)⊺X
(0)
new√

d(0)
+
√

µ(0)·(0)µ

) (3.34)

Themutual information between the GLM teacher network weights and the corresponding train-
ing dataset is a quantity that has been studied in the literature [14], and its relevance lies in the fact
that the generalization error can be computed from it. It is also worth reminding that the Bayes-
optimal setup achieves the minimum generalization error de�ned as above, thus allowing to derive
information-theoretic results for the model. The regime of the GLM where phase transitions can
be observed and the generalization error is not trivially zero or one is determined by the condition
³ = n

d(0)
= O(1).

A visual representation of the generalization error of the GLM, which is also reported below,
can be found in [14]. The plot shows the generalization error when the weights of the teacher
are distributed according to a Gauss-Bernoulli distribution. As the ratio ³ increases, meaning that
the number of samples grows relative to the input size d(0), the generalization error improves, and
ultimately, as ³ approaches in�nity, the error will tend to zero.
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Figure 3.1: Generalization error as a function of³with teacherweights drawn from aGauss-Bernoulli
distribution, taken from [14].

The generalized linear model, then, with its well-documented and thoroughly researched prop-
erties, stands as an e�ective tool for gaining insights into the more complex behavior of deep neural
networks.

3.4 Methods

Here, the main methods that will extensively be used to carry out the proofs of the results presented
in 4 are introduced.

3.4.1 Stein’s Lemma

Stein’s lemma [61, 62], also referred to as Gaussian integration by parts, is a probability theory
theorem whose application spans various �elds such as higher-dimensional problems in statistics,
machine learning, and signal processing. Here the one-dimensional case and its generalization to
the multivariate case are presented.

Lemma 1. Let Z be a standard Gaussian random variable, Z ∼ N (0, 1) and let f : R → R be a

function whose derivative f ′ is continuous almost everywhere and satis�es E|f ′(Z)| < ∞. Then, the

following holds:

E[Zf(Z)] = E[f ′(Z)] (3.35)

Proof. Integration by parts is exploited, remembering that the probability density associated with a

standard Gaussian random variable is ϕ(z) = e−
z2

2√
2Ã

.
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E[Zf(Z)] =

∫
zf(z)

e−
z2

2√
2Ã

dz

=
[
− f(z)

e−
z2

2√
2Ã

]∞
−∞

−
∫

−f ′(z)
e−

z2

2√
2Ã

dz

= E[f ′(Z)]

(3.36)

Lemma 2. Let X ∈ R
n ∼ N (µ,Σ) be a n-dimensional multivariate Gaussian random vector with

mean µ and covariance matrix Σ. For any function f : R
n → R such that the partial derivative

(∂/∂Xi)f(X) is continuous almost everywhere and E|(∂/∂Xi)f(X)| < ∞ for each component i,
de�ne the gradient of f at X as ∇f(X) = ((∂/∂X1)f(X), · · · , (∂/∂Xn)f(X))⊺. Then the following

holds:

Cov[X, f(X)] = ΣE[∇f(X)] (3.37)

Proof. For the standard Gaussian random vectorZ, Zi
iid∼ N (0, 1), the transformationX = Σ(1/2)Z+

µ can be used, allowing to rewrite f in terms of the new variable: f(X) = f(Σ(1/2)Z + µ). Using
Lemma 1 it can be obtained:

E[Zif(Z)] = E

[
(∂/∂Zi)f(Z)

]
(3.38)

or in vector notation

Cov[Z, f(Z)] = E[∇f(Z)] (3.39)

It follows that:

Cov[X, f(X)] = Cov[Σ(1/2)Z+ µ, f(Z)]

= Cov[Σ(1/2)Z, f(Z)]

= Σ(1/2)Cov[Z, f(Z)]

= Σ(1/2)
E[∇f(Z)]

= ΣE[∇f(X)]

(3.40)

where the last equality is due to the fact that∇f(Z) = Σ(1/2)∇f(X). From this, the �rst element of
the vector can be computed as follows:

Cov[X1, f(X)] =
n∑

i=1

Cov[Xi, X1]E[(∂/∂Xi)f(X)] (3.41)
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3.4.2 Nishimori identity

The Nishimori identity, named after Hidetoshi Nishimori’s pioneering work on spin glasses [63, 64],
is fundamental in the study of Bayes-optimal estimators and high-dimensional inference problems.
This identity exploits the concept that the true underlying signal X and a sample X(1) drawn from
the posterior distribution PX|Y(·|y) are statistically equivalent. This symmetry, which is in fact a
consequence of Bayes rule, allows signi�cant simpli�cations in the analysis. Speci�cally, in a Bayes-
optimal setting in which the posterior distribution PX|Y(·|y) is known, the identities imply that,
within expectations, the signalX can be replaced by its posterior replicaX(1).

This substitution ensures that the signal and its replica exhibit symmetric behavior in statist-
ical averages, thus facilitating a comprehensive analysis of inference problems. Without this sym-
metry, as if X(1) were drawn from a di�erent distribution, proof techniques based on these iden-
tities would fail due to the asymmetry introduced. As a result, the Nishimori identity forms the
foundation of many theoretical advances in understanding and solving complex inference tasks in
high-dimensional statistics [65, 66].

Lemma 3. Let (X,Y) ∈ R
n×R

m be a couple of random vectors. Their joint distribution is PXY(x,y)
and conditional distribution PX|Y(x|y). Let k g 1 and let X(1), . . . ,X(k) be i.i.d. random variables

drawn from the distribution PX|Y(·|y). Let E be the total expectation, namely, the expectation with

respect to the joint distribution, and ï·ð the expectation with respect to the product measure P¹∞
X|Y. Then,

for all continuous bounded function g it holds:

E
〈
g(Y,X,X(2), . . . ,X(k))

〉
= E

〈
g(Y,X(1),X(2), . . . ,X(k))

〉
(3.42)

Proof. Exploiting the Bayes formula, the joint probability distribution can be rewritten asPXY(x,y) =
PX|Y(x|y)PY(y) = PY|X(y|x)PX(x). The meaning of this is that it is equivalent to draw the couple
from the joint distribution or to draw Y according to its distribution, and then X conditionally
on Y from the conditional distribution. Iterating this, it can be observed that the (k + 1)-tuples
(Y,X,X(2), . . . ,X(k)) and (Y,X(1),X(2), . . . ,X(k)) have the same law. In equations, this implies

E
〈
(Y,X,X(2), . . . ,X(k))

〉

:= EXYEX(2)|Y . . .EX(k)|Y (Y,X,X(2), . . . ,X(k))

= EYEX|YEX(2)|Y . . .EX(k)|Y (Y,X,X(2), . . . ,X(k))

= EYEX(1)|YEX(2)|Y . . .EX(k)|Y (Y,X(1),X(2), . . . ,X(k))

=: E
〈
(Y,X(1),X(2), . . . ,X(k))

〉

(3.43)

3.4.3 Concentration of measure

The phenomenon of concentration of measure [67, 68, 69] is a central result in probability theory
and statistics, describing how sums or more general combinations of large numbers of independent
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(or weakly dependent) random variables tend to show considerably small �uctuations around their
expected value.

Far from being a mere theoretical concept, the concentration of measure phenomenon has pro-
found implications for the comprehension of the natural world. It explains whymacroscopic systems
behave predictably, even though they consist of a vast number of randomly behaving microscopic
particles. The foundational principles of this phenomenon o�er deep insights into the stability and
reliability of complex systems, impacting diverse �elds such as statistical physics, random matrix
theory, and beyond.

The phenomenon is intuitively explained by the fact that several random variables are unlikely to
act together and deviate substantially from themean, thusmoving the sum or function away from the
expected value. Moreover, when the variables are independent, the in�uence of each individual one
decreases, making the combination of variables more stable. A fundamental result that demonstrates
this principle is the law of large numbers, which states that the average of n i.i.d. random variables
converges to the expected value as n increases. This convergence illustrates how �uctuations become
negligible in large samples, a special case of the broader phenomenon of concentration.

It is also important to note that this type of concentration does not only concern the sums of
random variables {X1, . . . , Xn} or their linear combinations but extends to nonlinear functions
f(X1, . . . , Xn) when these are su�ciently regular. This condition ensures that the assumption of
su�cient independence of the variables holds, so that these functions are not excessively sensitive
to the variation of a single variable. However, to accurately state and demonstrate concentration
results, it is necessary to quantify what it means for a function to be "sensitive" and how "close" a
random variable is to its mean. Typically, this involves deriving explicit bounds on the variance or
tail probability of the �uctuations of |f(X1, . . . , Xn) − Ef(X1, . . . , Xn)|. These limits usually de-
pend on the dimensionality n and the properties of the distribution of the variables.

Considering a random variable X with mean µ, it is known that the k-th moment of the variable is
linked to the tail distribution through this expression [68]:

E|X|k =
∫ ∞

0

ktk−1P (|X| g t) dt (3.44)

In our analysis, the control of the moments of random variables is needed, which in turn requires
the control of the tail of the probability distribution of the random variable. Thus, the interest lies in
obtaining inequalities of the form:

P (|X − µ| g t) f small quantity (3.45)

Speci�cally, in our investigation, the random variable will be a function of a random vector.
Moreover, the k-th central moment of such random variable will need to depend on the inverse of
the k-th power of the square root (or a higher power) of the dimensionality of the random vector. Due
to this, exponential bounds similar to those for sub-Gaussian and sub-exponential random variables
are sought. These bounds ensure that the probability of large deviations from the mean decreases
exponentially, providing the necessary control over the moments of the random variables.
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3.4.4 Interpolation method

The Guerra-Toninelli interpolationmethod is a powerful and versatile technique that was introduced
by Francesco Guerra and Fabio Lucio Toninelli and developed in the context of studying mean-�eld
spin glasses [70]. The method was �rst developed to prove inequalities involving Gaussian random
vectors [71, 72, 73], and is now a cornerstone in mathematical physics and statistical mechanics,
speci�cally in the study of spin glasses.

Spin glasses are disordered magnetic systems that have been extensively studied in statistical
mechanics due to their complex behaviors arising from random interactions between spins. One of
the most well-known models of spin glasses is the Sherrington-Kirkpatrick (SK) model [46]. Initially
thought to be a simple solvable model, it later revealed a much richer and more interesting structure.
The SK model has been instrumental in understanding the disordered nature and peculiar properties
of spin glasses. An initial solution for the free energy density of the SK model was proposed by
Sherrington and Kirkpatrick themselves. However, this solution was not well-de�ned in the ther-
modynamic limit, resulting in a negative entropy thus an unphysical solution. The problem of the
existence of the thermodynamic limit for the quenched density of free energy in the SK model was
addressed by Giorgio Parisi with his replica symmetry breaking solution, obtained using the replica
method [48, 49].

The interpolation scheme developed in the seminal works of Guerra and Toninelli [51, 74, 50]
then laid the groundwork for proving the Parisi formula. Initially, Francesco Guerra established a
uniform bound using his innovative replica symmetry breaking uniform bound [50]. This result,
built upon the interpolation method he had earlier developed with Toninelli, proved the existence
of the thermodynamic limit [51]. Subsequently, Michel Talagrand [52] succeeded in identifying a
corresponding converse limit, marking a signi�cant turning point in the �eld of spin glasses.

Interpolation assumed this crucial importance since it not only has been instrumental in the study
of mean-�eld spin glasses [75], but has been extended and adapted to a wide range of applications,
well beyond the realm of traditional statistical mechanics. These �elds include for example coding
theory, communications, signal processing, and theoretical computer science [70]. Moreover, the
technique is particularly useful in the context of Bayesian inference problems, where it can be used
to prove the replica formula for non-trivial inference problems [76].

In recent years, an extension of the Guerra-Toninelli interpolationmethod, known as the adaptive
interpolation method [76, 77], has been developed. In the original Guerra-Toninelli interpolation
scheme, the interpolation path is �xed. Conversely, in the adaptive interpolation method, the path is
allowed to adapt based on the problem considered. These characteristics make the technique more
�exible and applicable to a wider range of problems, and it also allows to prove the replica formula
for non-trivial inference problems.

In summary, the Guerra-Toninelli interpolation method is a key tool in the mathematical ana-
lysis of complex systems, providing a robust framework for proving important results in statistical
physics and beyond.
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In our discussion, the interpolation method allows for a smooth transition between two di�erent
systems or models, and to study how their properties change in the process. This transition is gov-
erned by a continuously changing external parameter, t ∈ [0, 1]. For t = {0, 1} the two original
models being interpolated between are recovered, while for t ∈ (0, 1) an auxiliary model, known as
the interpolating model, is de�ned. This approach allows for the comparison of the original models
by examining the t-derivative of the interpolating model at intermediate values.

Speci�cally, in our investigation, the proof strategy involves iteratively reducing the ℓ+ 1-layer
neural network to an ℓ-layer neural network, continuing this process until a one-layer neural net-
work is obtained. This is done inductively by identifying an equivalent one-layer model for the last
two layers of the network. The interpolation is then de�ned between the nonlinear argument of the
readout function and the corresponding linearization. For the L + 1-layer neural network this is
expressed as:

S
(L)
tµ :=

√
1− t

a∗⊺
√
d(L)

φ
(W∗(L) X(L−1)

µ√
d(L−1)

)
+
√
tÄ(L−1)v

∗(L−1)⊺X
(L−1)
µ√

d(L−1)
+
√
tϵ(L−1)À∗(L−1)

µ (3.46)

where the de�nitions of the parameters appearing in the linearized model will be given more pre-
cisely later in 4.1.
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Chapter 4

Main results

In this chapter, the main �ndings of the analysis are presented, expressed as bounds relating the free
entropy of the full neural network and that of the GLM, along with bounds in terms of the the mutual
information between the dataset used by the model and the teacher model’s weights. To properly
de�ne all the quantities relevant to these results, the recursive method employed for the reduction is
�rst discussed. Following this, the main �ndings are stated, and an analysis of the bounds obtained
is performed to determine in which cases the full neural network is equivalent to a generalized linear
model. Finally, an outline of the proof is provided to elucidate the derivation of the bounds, o�ering
a clearer understanding before delving into the detailed proof in 5.

4.1 Recursion scheme

As mentioned in 1, our analysis aims to establish an information-theoretic equivalence between an
L + 1-layer neural network and a generalized linear model. Speci�cally, the goal is to demonstrate

this equivalence relating the mutual information between the dataset D(L)
n and the weights θ∗(L) of

the deep neural network, and the mutual information between the dataset D(0)
n and the parameters

θ∗(0) of the generalized linearmodel. The strategy involves iteratively reducing theL+1-layer neural
network to an L-layer neural network. This is achieved through an inductive process, identifying
an equivalent one-layer model for the last two layers of the network.

The approach follows the methodology presented in [19]. The core idea is to linearize the nonlinear
argument of the readout function to �nd an equivalent network with one less hidden layer. Referring
to the models de�ned in 3.2 and 3.3, the idea is to �nd a linearization such that the resulting model

corresponds to a generalized linear model with respect to the argument X
(ℓ)
µ of the nonlinearity, in

the same way as model 3.3 is a generalized linear model with respect to the dataX
(0)
µ .

This equivalence is expressed �rst in terms of free energy and subsequently the mutual inform-
ation between the teacher weights and the dataset for the two networks. It is important to observe
that since a teacher-student setup is adopted, the equivalent model is realized in both the architec-
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ture of the teacher and the student. Considering now the L + 1-layer neural network, the equation
for the teacher, that we recall here, is (3.1):

Y (L)
µ = f

( a∗⊺
√
d(L)

φ
(W∗(L) X(L−1)

µ√
d(L−1)

)
;Aµ

)
+
√
∆Zµ = f

(a∗⊺X(L)
µ√

d(L)
;Aµ

)
+
√
∆Zµ (4.1)

The �rst step of the reduction is then performed as follows:

a∗⊺X(L)
µ√

d(L)
=

a∗⊺
√
d(L)

φ
(W∗(L) X(L−1)

µ√
d(L−1)

)
−→ Ä(L−1)v

∗(L−1)⊺X
(L−1)
µ√

d(L−1)
+
√
ϵ(L−1)À∗(L−1)

µ (4.2)

On the left-hand side there is the argument of the readout function that is to be linearized, where

X
(L)
µ represents the dataset input at the L-th layer, a∗ is the readout vector as de�ned in 3.2, W∗(L)

denotes the weights of the L-th layer introduced in 3.2, and φ is the activation function. The right-
hand side shows the linearized model, where the vector v∗(L−1) is a Gaussian vector with entries i.i.d
distributed v

∗(L−1)
i

iid∼ N (0, 1) and À
(L−1)
µ

iid∼ N (0, 1) is a standard Gaussian random variable that
introduces a noise term independently for every sample µ. Additionally, Ä(L−1) and ϵ(L−1) are real
coe�cients.

It can be observed that the linearized model de�nes a generalized linear model with respect to

X
(L−1)
µ , allowing to apply the discussion about the role of the coe�cients for the generalized linear

model in 3.3 also to this case. Recognizing that X
(L−1)
µ = φ(

W∗(L−1) X
(L−2)
µ√

d(L−2)
), that the vectors a∗

and v∗(L−1) follow the same distribution and that Ä(L−1) is just a multiplicative coe�cient, it can be
noticed that the same nonlinear structure persists after each linearization step. This allows the proof
to be adapted and the reduction to be iterated. Each subsequent reduction step can be expressed
mathematically as follows:

v∗(k)⊺X(k)
µ√

d(k)
=

v∗(k)⊺
√
d(k)

φ
(W∗(k) X(k−1)

µ√
d(k−1)

)
−→ Ä(k−1)v

∗(k−1)⊺X
(k−1)
µ√

d(k−1)
+
√
ϵ(k−1)À∗(k−1)

µ (4.3)

Starting from the �rs L + 1-layer neural network, the argument of the readout function of the
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reduced models evolves as follows:

Y (L)
µ = f

( a∗⊺
√
d(L)

φ
(W∗(L) X(L−1)

µ√
d(L−1)

)

︸ ︷︷ ︸
;Aµ

)
+
√
∆Zµ

y

f
(
︷ ︸︸ ︷

Ä(L−1) v
∗(L−1)⊺X

(L−1)
µ√

d(L−1)︸ ︷︷ ︸
+
√
ϵ(L−1)À∗(L−1)

µ ;Aµ

)

y

f
(
Ä(L−1)

[
︷ ︸︸ ︷

Ä(L−2) v
∗(L−2)⊺X

(L−2)
µ√

d(L−2)︸ ︷︷ ︸
+
√
ϵ(L−2)À∗(L−2)

µ

]
+
√
ϵ(L−1)À∗(L−1)

µ ;Aµ

)

y

f
(
Ä(L−1)

[
Ä(L−2)

[
︷ ︸︸ ︷

Ä(L−3)v
∗(L−3)⊺X

(L−3)
µ√

d(L−3)
+
√
ϵ(L−3)À∗(L−3)

µ

]
+
√
ϵ(L−2)À∗(L−2)

µ

]
+
√
ϵ(L−1)À∗(L−1)

µ ;Aµ

)

...

Thus, by iterating this reduction process and using the fact that the sum of independent Gaussian
random variables is also a Gaussian random variable with variance equal to the sum of the variances,
after L− k steps, the output of the k + 1-layer teacher neural network can be expressed as:

Y (k)
µ = f

(
¸(k)

v∗(k)⊺X(k)
µ√

d(k)
+
√
µ(k)·∗(k)µ ;Aµ

)
+
√
∆Zµ (4.4)

where ·
∗(k)
µ ∼ N (0, 1) and the coe�cients ¸(k) and µ(k) are de�ned as:

¸(k) =
L−1∏

i=k

Ä(i)

µ(k) = (1− ¶1,(L−k))
L−2∑

j=k

( L−1∏

i=j+1

Ä(i) 2
)
ϵ(j) + ϵ(L−1)

(4.5)

Here, ¶1,(L−k) is the Kronecker delta, ensuring that the summation term vanishes when L − k = 1,
corresponding to the �rst reduction step. This formulation accounts for the accumulation of noise
terms and scaling factors through the layers.

49



CHAPTER 4. MAIN RESULTS

To each reduced model with k + 1 layers then, a construction done similarly to the one done for
the L + 1-layer neural network in 3.2 and for the GLM in 3.3 can be performed. Speci�cally, each
reduced model has parameters of the teacher network θ∗(k) = {v∗(k), ζ∗(k),W∗(k), . . . ,W∗(1)}, and
the responses are drawn exploiting the output kernel from the distribution Y

(k)
µ ∼ Pout(· | S(k)

µ ).

The student network is then trained on the datasetD(k)
n = {(X(0)

µ , Y
(k)
µ )}nµ=1, of which the partition

function can be computed as Z(k)(D(k)
n ) =

∫
Dθ(k)

∏n
µ=1 Pout(Y

(k)
µ | s(k)µ ).

After L iterations, the coe�cients obtained for the one-layer generalized linear model described
in 2.4.2 are:

¸(0) =
L−1∏

i=0

Ä(i)

µ(0) =
L−2∑

j=0

( L−1∏

i=j+1

Ä(i) 2
)
ϵ(j) + ϵ(L−1)

(4.6)

The GLM parameters are expressed in terms of the recursion parameters Ä(k) and ϵ(k), with their
de�nitions provided later in (4.16). Notably, the obtained expressions are consistent with the results
presented by [29].

4.2 Results

4.2.1 Concentration results

These results are of crucial importance for the successful derivation of the proof of Theorem 7.
Indeed, a signi�cant di�erence with respect to the proof presented in [19] is that the X(ℓ) are not
Gaussian for 1 f ℓ f L, so the concentration properties of Gaussian random variables cannot be
applied anymore. Speci�cally, these concentration results are centered around two key quantities:
the squared norm of a hidden layer’s output, which is a vector, and the scalar product of two such
vectors obtained starting from di�erent data points.

While a recursive argument could su�ce for controlling moments up to the second order starting
from the input variables, higher-order moments necessitate exponential bounds on the probability
of these quantities diverging from their expectation. This is crucial for accurately estimating all
moments as required in Lemma 18 and the proof of Theorem 7 detailed in 5.4.

The following proposition presents the result obtained about the concentration of the squared
norm.

Proposition 4 (Norm concentration). LetX ∈ R
d be a random vector whose norm satis�es the expo-

nential concentration bound

P

(∣∣∣∥X∥2
d

− Ã
∣∣∣ g ϵ

)
f 2 exp

(
− dCϵ2

)
(4.7)
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for any ϵ > 0 and a constant C > 0, with Ã = E
∥X∥2
d

. Let φ ∈ C1 such that |φ′| f K̄ . IfW ∈ R
p×d is

a matrix of i.i.d. centered Gaussian random variables with unit variance, then

P

(∣∣∣∥φ(WX/
√
d)∥2

p
− E

∥φ(WX/
√
d)∥2

p

∣∣∣ g ϵ
)
f 2 exp

(
−min{p, d}Cφϵ

2
)

(4.8)

for any ϵ > 0 and some constant Cφ > 0 when
√
d ≳ 1/ϵ.

Notice how Proposition 4 holds true for
√
d ≳ 1/ϵ, or equivalently ϵ ≳ 1/

√
d. This implies that

this concentration result is applicable when the dimension is su�ciently high once ϵ is chosen, or
conversely, for a �xed dimension the exponential bound is valid only for large enough deviations
from the expectation.

The next proposition addresses the concentration of the scalar product.

Proposition 5 (Scalar product concentration). Let X,Y ∈ R
d be random vectors drawn independ-

ently from the same distribution, that satisfy the exponential concentration bounds

P

(∣∣∣X
⊺Y

d

∣∣∣ g ϵ
)
f 2 exp

(
− dBϵ2

)
(4.9)

P

(∣∣∣∥X∥2
d

− Ã
∣∣∣ g ϵ

)
f 2 exp

(
− dCϵ2

)
P

(∣∣∣∥Y∥2
d

− Ã
∣∣∣ g ϵ

)
f 2 exp

(
− dCϵ2

)
(4.10)

for any ϵ > 0 and constants B,C > 0, with Ã = E
∥X∥2
d

. Let φ ∈ C1 such that |φ′| f K̄ . IfW ∈ R
p×d

is a matrix of i.i.d. centered Gaussian random variables with unit variance, then

P

(∣∣∣φ(WX/
√
d)⊺φ(WY/

√
d)

p

∣∣∣ g ϵ
)
f 2 exp

(
−min{p, d}Cφϵ

2
)

(4.11)

for any ϵ > 0 and some constant Cφ > 0.

Propositions 4 and 5 then allow to bound every central moment of the squared norm and scalar
product of the vectors obtained by multiplying the initial vectors with a Gaussian random matrix
and applying a nonlinear function.

Corollary 6 (Control on moments). Let k ∈ N. Under the same hypotheses of Proposition 14 the

following holds true:

E

∣∣∣∥φ(WX/
√
d)∥2

p
− E

∥φ(WX/
√
d)∥2

p

∣∣∣
k

= O
( 1

min{p, d}k/2
)

E

∣∣∣φ(WX/
√
d)⊺φ(WY/

√
d)

p

∣∣∣
k

= O
( 1

min{p, d}k/2
) (4.12)
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Consider now the output vectors X
(ℓ)
µ from an arbitrary hidden layer ℓ of a L + 1-layer neural

network constructed as in 3.2, normalized by the square root of their dimension. Bounds for every
central moment, indexed by k, of the squared norm or scalar product can be derived using Corollary
6. Speci�cally, calling d(ℓ) = minj=1···ℓ {d(j)}, these bounds can be computed as follows:

E

∣∣∣∥X
(ℓ)
µ ∥2
d(ℓ)

− Ã(ℓ)
∣∣∣
k

=
( 1

d(ℓ) k/2

)
, E

∣∣∣X
(ℓ)⊺
µ X

(ℓ)
¿

d(ℓ−1)

∣∣∣
k

= O
( 1

d(ℓ) k/2

)
(4.13)

The �ndings (4.13) highlight the importance of the concentration results obtained. Indeed, the signi-
�cance of these concentration results lies in their implication that the central moments of the squared
norm and scalar product scale with respect to the dimension in the same way they would ifX(ℓ) were
Gaussian random vectors. This suggests that the Gaussian properties of the input are preserved in
the network, making the representationsX(ℓ) at layer ℓ quasi-Gaussian random vectors.

These results, initially derived as a technical tool to �nalize the proofs for the information-
theoretic bounds, also stand out as an intriguing mathematical property in their own right.

4.2.2 Free entropy and mutual information results

The following theorem describes the relation between the free entropies of two di�erent neural
network models. Speci�cally, these models consist of a neural network with k+1 layers and another
one with k layers, where the latter has undergone the linearization process described in 4.1. In order
to state the theorem, however, an additional technical assumption is introduced. In the 2-layer neural
network case studied in [19], this assumption has been rigorously proved.

H3) Recall the notation d(k) = minj=1···k {d(j)}. Assuming H1) and H2) there exists a non-negative
constant C(f, φ) such that

Ev∗(k)V\v∗(k)

( 1
n
logZ(k)

t

)
= E

( 1
n
logZ(k)

t − E\v∗(k)
1

n
logZ(k)

t

)2

f C(f, φ)
( 1

d(k)
+

1

n

)

(4.14)

where V\v∗(k)(·) = E\v∗(k)((·) − E\v∗(k)(·))2. Additionally, Z(k)
t = Z(k)

t (D(k)
n,t ) is the parti-

tion function associated with the interpolating model between the nonlinear argument of the
readout function for the k + 1-layer neural network and its corresponding linearized model:

S
(k)
tµ :=

√
1− t

v∗(k)⊺
√
d(k)

φ
(W∗(k) X(k−1)

µ√
d(k−1)

)
+
√
tÄ(k−1)v

∗(k−1)⊺X
(k−1)
µ√

d(k−1)
+
√
tϵ(k−1)À∗(k−1)

µ (4.15)

Moreover, in the case k = L, v∗(k) = v∗(L) = a∗.

De�ne Z ∼ N (0, 1), consider a positive parameter a, and let EN (0,a2)g = Eg(aZ).
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Theorem 7 (One step reduction free entropy equivalence). Consider a k + 1-layer neural network
obtained from the L+ 1-layer neural network performing L− k ∈ {0, . . . , L} steps of reduction. Let

Ã(ℓ) := EX(ℓ)

∥X(ℓ)
µ ∥2
d(ℓ)

= Eφ2(z
√
Ã(ℓ−1)) +O

( 1

d(ℓ−1)

)

Ä(ℓ) := EN (0,Ã(ℓ))φ
′

ϵ(ℓ) := EN (0,Ã(ℓ))φ
2 − Ã(ℓ)Ä(ℓ) 2

(4.16)

that can recursively be de�ned for any input and hidden layer ℓ = 0, ..., k of the k + 1-layer neural
network. Suppose H1), H2) and H3) hold. Call d(k) = minj=1···k {d(j)}. Then

|f̄ (k)
n − f̄ (k−1)

n | = O
(√(

1 +
n

d(k−1)

)( n

d(k)
+

n

d(k−1) 3/2
+

1√
d(k−1)

))
(4.17)

Through the triangle inequality now, the free entropy of the L+ 1-layer neural network can be
related to the one of the GLM introduced in 3.3.

Corollary 8 (Free entropy equivalence). Under the same hypotheses as Theorem 7, it follows:

|f̄ (L)
n − f̄ (0)

n | f
L∑

k=1

|f̄ (k)
n − f̄ (k−1)

n |

=
L∑

k=1

O
(√(

1 +
n

d(k−1)

)( n

d(k)
+

n

d(k−1) 3/2
+

1√
d(k−1)

)) (4.18)

Theorem 7 and Corollary 8 then establish bounds on the di�erence in free entropy both between
the two models considered in the one-step reduction and between the L+ 1-layer network and the
generalized linear model. These bounds are crucial as the control on the di�erences of free entropy
is subsequently inherited by the di�erences in mutual information per sample between dataset and
teacher weights, both for the one-step reduction and for the reduction of the whole deep network to
the corresponding GLM.

Corollary 9 (One step reduction mutual information equivalence). Assuming the same hypotheses

as in Theorem 7, the following statement is obtained:

| 1
n
I(k)n (θ∗(k);D(k)

n )− 1

n
I(k−1)
n (θ∗(k−1);D(k−1)

n )| = O
(√(

1 +
n

d(k−1)

)( n

d(k)
+

n

d(k−1) 3/2
+

1√
d(k−1)

))

(4.19)

Again, exploiting the triangle inequality, a relation between the mutual information for the L+1
layer neural network and the GLM can be obtained.
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Corollary 10 (Mutual information equivalence). The following result holds true under the same as-

sumptions as Theorem 7:

| 1
n
I(L)n (θ∗(L);D(L)

n )− 1

n
I(0)n (θ∗(0);D(0)

n )|

f
L∑

k=1

| 1
n
I(k)n (θ∗(k);D(k)

n )− 1

n
I(k−1)
n (θ∗(k−1);D(k−1)

n )|

=
L∑

k=1

O
(√(

1 +
n

d(k−1)

)( n

d(k)
+

n

d(k−1) 3/2
+

1√
d(k−1)

))
(4.20)

This corollary identi�es the scaling regime where the two models achieve equivalence, charac-
terized by the condition where the right-hand side of (4.20) approaches zero as all the involved para-
meters tend towards in�nity. Notably, since this expression is a sum, each individual term within
the sum must also tend to zero. This regime for an arbitrary term indexed by k is denoted using the
following notation:

l̂im gd(k−1), d(k), n := lim
i→∞

g
d
(k−1)
i , d

(k)
i , ni

(4.21)

where (d
(k−1)
i , d

(k)
i , ni)i is any sequence of triplets of integers such that

lim
i→∞

(
1 +

ni

d
(k−1)
i

)( ni

d
(k)
i

+
ni

d
(k−1) 3/2
i

+
1√
d
(k−1)
i

)
= 0 (4.22)

The hatted limit de�nes the case where each of the variables d(k−1), d(k), n tends to in�nity while
satisfying the condition (4.22). Speci�cally, the limit holds true if d(k) k n and either d(k−1) k n or

n
d(k−1) = O(1). Notably, even when n is �nite, (4.22) is satis�ed as long as d(k−1) and d(k) are taken in
the limit. For the right-hand side of (4.20) to disappear, this condition must be veri�ed for any term
in the sum, namely, for any value of k. For this purpose, a new limit is introduced, under which,
according to Corollary 10, the entire network can be reduced to a GLM:

l̃im g{d(j)}Lj=0, n
:= lim

i→∞
g{d(j)i }Lj=0, ni

(4.23)

where ({d(j)i }Lj=0, ni)i is now any sequence of L+ 2 integers such that

lim
i→∞

L∑

k=1

(
1 +

ni

d
(k−1)
i

)( ni

d
(k)
i

+
ni

d
(k−1) 3/2
i

+
1√
d
(k−1)
i

)
= 0 (4.24)

Considering the regime of interest for GLMs where n
d(0)

= O(1), it can be observed that this con-

dition can be recovered under the conditions d(1) k n and similarly for all subsequent layers indexed
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(1) (2) (3) (4)

Figure 4.1: neural network architectures studied in literature categorized by how their layers widths
scale. Larger layers are symbolized by many neurons, while smaller layers typically consist of one or
two neurons. (1) corresponds to a generalized linear model. (2) describes committee machines, fea-
turing a large input size and a narrow hidden layer. (3) illustrates a mean-�eld regime, characterized
by a small input size and a large hidden layer. (4) depicts the linear-width regime. Image courtesy
of [19].

by k, d(k) k n. This implies that for deeper layers, d(1) k d(k), d(1) j d(k) and d(i)/d(j) = O(1)
for any layers i and j, are all allowed architectures. Importantly, multiple parameters con�gurations

can satisfy the l̃im conditions, indicating that various architectures of deep networks can be reduced
to a GLM.

The aim is now to compare the scalings allowed by our limit with the ones studied in the liter-
ature.

Since the nineties, committee machines [23, 24, 25, 21, 17, 26, 15, 78, 59] have been a widely
studied type of architecture. Committee machines can be viewed as two-layer neural networks with
a narrow hidden layer and a single neuron output layer, in which all the weights are learned. There-
fore, they fall within the scope of our investigation. These models exhibit rich phenomenology,
including a specialization phase transition where the model realizes that the data is more accurately
represented by a model that cannot be separated linearly. The relevant regime for these models is
typically characterized by both n and d(0) approaching in�nity with n/d(0) = O(1) and d(1) = O(1).
However, the in�nite size hidden layer limit has also been studied under the condition d(1) j d(0),
independently of the number of data points. This indicates that while committee machines �t our
general framework, the speci�c scaling properties of our investigation are not fully captured if the
hidden layer remains �nite in size.

Another interesting model where the relative scalings of the network layers dimensions are con-
sidered is the mean-�eld [13, 79, 80, 81, 16, 18] model, which has been studied for both 2-layer neural
networks and deep networks. This regime occurs when the size of the hidden layers is signi�cantly
larger than the size of the input layers, i.e., when d(k) k d(0) and d(i)/d(j) = O(1) for each pair of
layers i, j. Usually in this kind of analysis the number of samples is not explicitly considered because
the focus is on the dynamics of stochastic gradient descent (SGD) in a neural network. In both the
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mean-�eld regime and the current model, the fact that d(k) is large introduces intrinsic regularizing
properties that must be taken into account.

In recent years, substantial progress has been made in analyzing the full training of deep neural
networks, where all weights are learned, using a statistical mechanics framework [27, 28, 29]. As
in our investigation, the weights are treated as annealed variables in the free entropy, which is thus
computed by integrating them within the partition function. This methodology applies to deeper
networks and considers a fully proportional scaling regime, where n and {d(j)}Lj=0 tend to in�nity

at the same rate, so n/d(k) = O(1) for any k. This scaling regime is often referred to as linear-width
regime.

The initial analysis by [27] focused on linear networks, without nonlinearities. Extensions were
explored by [28] who formulated conjectures for the empirical riskminimization generalization error
using this statisticalmechanics framework. Further developmentsweremade in [29], that leveraged a
Gaussian equivalence principles [82, 83] to derive exact Bayes-optimal limits, similar to the approach
discussed here.

Compared to these analyses, however, a notable issue arises with the scaling regime l̃im. This
framework does not accommodate the scaling regime where n/d(k) = O(1) meaning that the sizes
of the hidden layers and the dimension of the dataset cannot simultaneously tend to in�nity under
our scaling. It remains uncertain whether this limitation is fundamental or an obstacle speci�c to
the proof, and further investigation is needed to determine the underlying cause and whether the
approach can be adapted to include this scaling regime. It is also worth remarking that the recursion
parameters (4.16) and the GLM parameters (4.6) obtained through the recursion are consistent with
the de�nitions and results presented by [29].

4.3 Outline of the proof of Theorem 7

The proof of Theorem 7 is carried out only for the case k = L. Indeed, in this case, all necessary
quantities and parameters can be de�ned. Furthermore, by carefully handling themodel derived from
the linearization process, as elaborated in 5, the necessity of executing the proof for each reduction
step is obviated.

The crucial part of the proof involves removing the nonlinearities. The direction of our invest-
igation is inspired by the Gaussian equivalence principles, which are expected to hold due to the
high-dimensional nature of the problem. Speci�cally, these principles are what justi�es the lineariz-
ation step presented in 4.1:

a∗⊺X(L)
µ√

d(L)
=

a∗⊺
√
d(L)

φ
(W∗(L) X(L−1)

µ√
d(L−1)

)
≈ Ä(L−1)v

∗(L−1)⊺X
(L−1)
µ√

d(L−1)
+
√
ϵ(L−1)À∗(L−1)

µ (4.25)

appropriately tuning the parameters Ä(L−1) and ϵ(L−1), whose de�nition turns out to be the one given
in (4.16). From this it can be intuitively understood that Ä(L−1) corresponds to the expected average
of φ′, as the derivative measures the response to variations in its argument.
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The strategy employed follows a common approach used in inference and statistical mechanics
of disordered systems, namely interpolation, presented in 3.4.4. This involves constructing a model
that combines the L+1-layer network and the linearized version, where the latter represents a GLM

with respect to its input signalX
(L−1)
µ . This construction is done for both the teacher and the student

network:

S
(L)
tµ :=

√
1− t

a∗⊺
√
d(L)

φ
(W∗(L) X(L−1)

µ√
d(L−1)

)
+
√
tÄ(L−1)v

∗(L−1)⊺X
(L−1)
µ√

d(L−1)
+
√
tϵ(L−1)À∗(L−1)

µ

s
(L)
tµ :=

√
1− t

a⊺

√
d(L)

φ
(W(L) x

(L−1)
µ√

d(L−1)

)
+
√
tÄ(L−1)v

(L−1)⊺x
(L−1)
µ√

d(L−1)
+
√
tϵ(L−1)À(L−1)

µ

(4.26)

It can be observed that the teacher interpolating model depends on the weights of the teachers from
both the L + 1-layer network and the corresponding L-layer model. For t = 0, it represents the
linearized model, and for t = 1, it recovers the full neural network. A student version of the same
interpolation is also constructed. Additionally, an interpolating dataset is created, where Y

(L)
tµ is

generated through an output kernel that depends on the teacher weights of the interpolating model.

D(L)
n,t = {(X(0)

µ , Y
(L)
tµ )nµ=1} , Y

(L)
tµ ∼ Pout

(
· | S(L)

tµ

)
(4.27)

Calling the interpolating teacher weights Θ∗(L) = {v∗(L−1), ξ∗(L−1), a∗,W∗(L) . . . ,W∗(1)}, the par-
tition function reads:

Z(L)
t = Z(L)

t (D(L)
n,t ) =

∫
DΘ(L) exp

[ n∑

µ=1

u
(L)
Ytµ

(stµ)
]

(4.28)

where

E(t)(·) := Ea∗E\a∗(·) = Ea∗EW∗(1),···W∗(L−1),W∗(L),v∗(L−1),ξ∗(L−1),X(0)

∫ n∏

µ=1

dY
(L)
tµ e

u
(L)
Ytµ

(Stµ)(·) (4.29)

The posterior mean of a function g then is de�ned as:

ïgð(L)t =

∫
DΘ(L) exp

[ n∑

µ=1

u
(L)
Ytµ

(stµ)
]
g (4.30)

and the interpolating free entropy is

f̄ (L)
n (t) :=

1

n
E(t) logZ(L)

t (4.31)

For t = 0, it can be observed that the interpolating free entropy corresponds to the free entropy
of the linearized model, and for t = 1 it represents the network of actual interest. To control the
di�erence in free entropy between these two cases, the method exploited is to compute its derivative
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and show that it is uniformly bounded in time by the same order as speci�ed in the theorem. The
computation of the derivative leads to the summation of the terms below:

d

dt
f̄ (L)
n (t) = −A1 + A2 + A3 +B (4.32)

where

A1 :=
1

2n
E(t) logZ(L)

t

n∑

µ=1

u
′(L)
Ytµ

(Stµ)
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(1− t)d(L)

φ
(W∗(L)X(L−1)

µ√
d(L−1)

)
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E(t)

〈 n∑

µ=1

u
′(L)
Ytµ

(stµ)
ds

(L)
tµ

dt

〉(L)

t

(4.33)

Using the Nishimori identity, introduced in 3.4.2, it can be shown that the last term B is imme-
diately zero. Due to the signs of the remaining terms, it is expected that −A1 counters A2 + A3,
leading to their mutual cancellation in this speci�c regime.

The desired approach is to directly integrate the weights of the network, which corresponds to per-
forming integration by parts with respect to these Gaussian variables, as discussed in 3.4.1. However,
a complication arises because part of these Gaussian weights is inside φ, preventing the application
of Gaussian integration by parts. To address this, the term A1 is considered, employing a classical
mathematical technique: subtracting what is desired, A12, and then adding it back. This procedure
then allows to control the di�erence A11 between the initial term A1 and the subtracted one A12:

A11 :=
1

2n
√
1− t

E(t) logZ(L)
t

n∑

µ=1

u
′(L)
Ytµ

(Stµ)
( a∗⊺
√
d(L)

φ
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)
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(4.34)

A12 :=
1

2n
√
1− t

E(t) logZ(L)
t

n∑
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u
′(L)
Ytµ

(Stµ)
Ä(L−1)a∗⊺W∗(L)X(L−1)

µ√
d(L)d(L−1)

(4.35)
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Focusing on A11, integration by parts with respect to the readout vector yields the expression:

A11 =

1

2
Ea∗

[ ( logZ(L)
t

n
− E\a∗

logZ(L)
t

n

)

︸ ︷︷ ︸
(1)

n∑

µ,¿=1

Uµ¿

[φ(α(L−1)
µ )⊺φ(α

(L−1)
¿ )− Ä(L−1)α

(L−1)⊺
µ φ(α

(L−1)
¿ )

d(L−1)

]

︸ ︷︷ ︸
(2)

]

(4.36)

where α
(L−1)
µ =

W∗(L)X
(L−1)
µ√

d(L−1)
, and the notation Ea∗ is introduced in (4.29).

The o�-diagonal terms, namely µ ̸= ¿, are considered �rst. Utilizing the properties of the output
kernel and Cauchy-Schwartz’s inequality, the terms (1) and (2) are estimated separately. The �rst
part of the expression, (1), corresponds to the variance of the free entropy whose scaling is described

in H3) as O(
√
( 1
d(L−1) +

1
n
)). The second part, (2), involves the sum of O(n2) terms. Leveraging the

properties of the output kernel established in Lemma 16, the terms Uµ¿ , de�ned therein, remain
bounded conditionally on the weights of the interpolating teacher network. Evaluating the terms
within the square brackets reveals that despite the tendency of term (2) to concentrate around zero,

its order is O(n
√

( 1
d(L) +

1
d(L−1) 3/2 )).

A crucial distinction from [19] in evaluating the contribution (2) is that the representations of the
input at any hidden layer, X(ℓ), are not Gaussian. This necessitates additional concentration results
for accurately estimating term (2). Speci�cally, the concentration results focus on the squared norm
of the output of a hidden layer, which is a vector, and the scalar product of two of such vectors ob-
tained from di�erent data points. To ensure control over all moments of these quantities, exponential
bounds for the probability of their divergence from the mean are obtained. These concentration res-
ults show that the representations of the inputs at an arbitrary hidden layer, X(ℓ), exhibit statistical
properties similar to those of Gaussian random vectors. This quasi-Gaussian property is essential
for completing the proof and accurately estimating term (2).

Simplifying then the dependency on n with the 1/n1/2 term arising from the concentration of
the free entropy results in a dependency on n/d(L) under square root, which plays a crucial role in
the analysis as already discussed. Indeed, this o�-diagonal term is what limits the applicability of
our theorem in the linear-width regime.

Consider now the diagonal part, which compensates for the A3 contribution. After performing
a Gaussian integration by parts with respect to the noise variable on A3, the di�erence between the
two terms becomes:

Adiag
11 − A3 =

1

2
Ea∗

[ ( logZ(L)
t

n
− E\a∗

logZ(L)
t

n

)

︸ ︷︷ ︸
(1)

n∑

µ=1

P ′′
out(Ytµ | Stµ)

Pout(Ytµ | Stµ)

[
ϵ(ℓ−1) − ∥φ(α(ℓ−1)

µ )∥2 − Ä(ℓ−1)α
(ℓ−1)⊺
µ φ(α

(ℓ−1)
µ )

d(ℓ)

]

︸ ︷︷ ︸
(2)

]

(4.37)
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Cauchy-Schwartz’s inequality is used to evaluate independently the terms (1) and (2). Term (1)

then corresponds to the variance of the free entropy, with scaling O(
√

( 1
d(L−1) +

1
n
)). Exploiting

Lemma 16 the fraction involving the output kernel can be bounded. However, the di�erences in
the square brackets must also be computed, and through their estimation term (2) yields an order

O(
√

( n
d(L) +

n
d(L−1) 1/2 )). The di�erence |Adiag

11 − A3| then tends to zero in the linear-width regime

limit, and therefore poses no obstacle to the reduction process in this scaling.
The term A12 then is linear, and its contribution balances the A2 term. Similarly to the analysis

of the quantity |Adiag
11 − A3|, integration by parts with respect to the weights matrix on A12 is per-

formed to address the di�erence. Additional computations lead to establish a bound on the di�erence

||A12 − A2| that is of order O(
√
(1 + n

d(L−1) )(
n

d(L−1)d(L) +
n

d(L−1) 3/2 )). It can be observed then that

also the term |A11 − A2| vanishes in the linear-width scaling regime as the sizes of the layers and
dataset dimensions tend to in�nity.

Having then evaluated all contributions to the derivative of the free entropy with uniform control
over time, the proof is concluded, e�ectively determining the di�erence in free entropy between the
L+ 1-layer neural network model and its corresponding L-layer model.
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Chapter 5

Proofs

Having presented the main results of our investigation in the previous chapter, the focus now shifts
to addressing the proofs that establish these �ndings. In this chapter, the proofs of Theorem 7 and
Corollary 9 are presented, as well as the auxiliary lemmas and results exploited in proving them. To
begin with, propositions related to the concept of concentration of measure are introduced, laying
the groundwork for the subsequent arguments. Following this, two crucial lemmas that are instru-
mental in the proof of Theorem 7 are stated and rigorously proved. With these elements, the detailed
proof of Theorem 7 is then addressed. Finally, the proof of Theorem 9, the central goal of this invest-
igation, is presented.

The proof of Theorem 7 and its auxiliary lemmas is exclusively developed for the last layer k = L,
where all the necessary quantities and parameters will be fully de�ned. Indeed, by appropriately
handling the model obtained after linearization, it becomes unnecessary to perform the proof for
every reduction step. Speci�cally, two quantities require consideration: the noise term, character-

ized by À
(L−1)
µ , and the multiplicative coe�cient Ä(L−1).

The noise contribution is considered �rst. This term, appearing upon linearization, can be in-
terpreted as a perturbation of the output kernel. However, it can be easily be managed as it can be
absorbed into the output distribution by convolving the output kernel with a Gaussian probability

distribution. To illustrate this, consider the output of the reduced L-layer model y = Y
(L−1)
µ =

f(Ä(L−1) v
∗(L−1)⊺X

(L−1)
µ√

d(L−1)
+
√
ϵ(L−1)À

∗(L−1)
µ ;Aµ) +

√
∆Zµ, where À

∗(L−1)
µ and Zµ are standard Gaussian

random variables. A new output kernel can be de�ned as follows:

P̃out(y | x) :=
∫

dz
e−

z2

2√
2Ã

Pout(y | x+
√
»z) =

∫
dPz(z)Pout(y | x+

√
»z) (5.1)

where the variable z is a standard Gaussian random variable used to perform the convolution oper-
ation, and » > 0 is a positive parameter. This allows to draw the outputs of the L-layer model from

this distribution as Y
(L−1)
µ ∼ P̃out(· | Ä(L−1)v∗(L−1)⊺X

(L−1)
µ√

d(L−1)
).
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Next, the multiplicative coe�cient Ä(L−1) needs to be addressed. This coe�cient had no corres-
pondence in the L+1-layer model. When performing the subsequent reduction step, this coe�cient
Ä(L−1) will become a multiplicative coe�cient for the new interpolating model. The interpolation is
de�ned similarly to what described in (4.26) as:

S
(L−1)
tµ := Ä(L−1)

[√
1− t

v∗(L−1)⊺

√
d(L−1)

φ
(W∗(L−1) X

(L−2)
µ√

d(L−2)

)
+
√
tÄ(L−2)v

∗(L−2)⊺X
(L−2)
µ√

d(L−2)
+
√
tϵ(L−2)À∗(L−2)

µ

]

s
(L−1)
tµ := Ä(L−1)

[√
1− t

v(L−1)⊺

√
d(L−1)

φ
(W(L−1) x

(L−2)
µ√

d(L−2)

)
+
√
tÄ(L−2)v

(L−2)⊺x
(L−2)
µ√

d(L−2)
+
√
tϵ(L−2)À(L−2)

µ

]

(5.2)

With the same construction done in 4.3, it can be observed that each term A1, A2 and A3 of the
derivative of the interpolating free entropy for this new model is the product of two factors: one is
Ä(L−1) and the other factor has the same form and statistical properties as the corresponding term
Ai de�ned for the previous interpolation step. The only di�erence is that now the representations

X
(L−2)
µ and their dimension appear in the expression.

Considering then the derivative of the interpolating free entropy again, the multiplicative coe�-
cient Ä(L−1) can be factored out from the three terms. This allows to apply the proofs developed for
the �rst reduction step to the remaining factor without any modi�cations when also using the new
output kernel P̃out. Indeed, the proofs do not depend on the speci�c layer but just on the form of the
interpolation model and the statistical properties of its parameters. Furthermore, the term B retains
a form and statistical properties analogous to those derived in the previous interpolation step, albeit
being now computed using the new output kernel P̃out and the new interpolation model. Similar to
the �rst reduction step, it can be demonstrated to be zero. Consequently, the �nal estimate for the
order of the derivative of the interpolating free entropy remains consistent with the results from the
previous reduction step. This is because multiplying by Ä(L−1) which is just a coe�cient and thus
O(1) does not alter the scaling.

Therefore, the essential structure and validity of the lemmas and proofs are preserved despite
the inclusion of the Ä(L−1) coe�cient. With the same reasoning, the proof can be generalized and
extended similarly for any number k of layers.

Similarly, the proof of Theorem 9 is also elaborated just for the �rst reduction step. In the subsequent
reduction step, through the exploitation of the new output kernel P̃out, the noise term de�ned by

À
(L−1)
µ is reabsorbed into the output probability of the responses. The coe�cient Ä(L−1), instead, acts
as a multiplicative factor in the interpolating model de�ned in the lemma’s proof, similar to (5.2),
and in its derivative. This term a�ects the scaling estimation solely as a multiplicative coe�cient,
thus preserving it. This allows to carry out the proof in the same way regardless of the number of
layers considered.
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5.1 Concentration proofs

The concentration results are essential for proving Theorem 7 and represent an additional require-
ment necessary for applying the proof scheme presented in [19].

Consider each hidden layer ℓ output vectors X
(ℓ)
µ normalized by the square root of their dimension.

The need for exponential bounds on the probability of the squared norm and the scalar product of
two such vectors deviating from their expectation arises from the need to control every central mo-
ment of these quantities, as discussed in 4.2. The speci�c dependency on the dimension, instead, is
motivated by the desire to obtain a dependency on it similar to what would be obtained consider-
ing X(ℓ) Gaussian random vectors. In order to state and prove the propositions, two useful lemmas
related to sub-Gaussian random variables are �rst established.

5.1.1 Function of a sub-Gaussian random variable

The concentration of a function of a sub-Gaussian random variable is now analyzed.

Lemma 11. Let X ∈ R be a sub-Gaussian random variable, i.e. using one of the di�erent characteriz-

ations of sub-Gaussianity,

EeX
2/Ã2 f 2 (5.3)

Let F : R −→ R be an L-Lipschitz function. Then the random variable F (X) − EF (X) is also
sub-Gaussian, i.e.

E exp
(F (X)− EF (X))2

c2
f 2 (5.4)

for a constant c g 2LÃ.

Proof. Consider an independent copy of the variable X, Y. Remembering that the function v 7→
exp (t−v)2

c2
is a convex function since it is the composition of convex functions and applying Jensen’s

inequality, the following is obtained:

E exp
(F (X)− EF (X))2

c2
= E exp

(F (X)− EF (Y ))2

c2
f E exp

(F (X)− F (Y ))2

c2

f E exp
L2(X − Y )2

c2
f E exp

2L2X2 + 2L2Y 2

c2

=
(
E exp

2L2X2

c2

)2

f E exp
4L2X2

c2
f 2

(5.5)

The previous inequality is true for c g 2LÃ exploiting the sub-Gaussianity of X.

Lemma 12. Let X ∈ R
d be a random vector belonging to the set A¶ :=

{∣∣∣∥X∥2
d

− Ã
∣∣∣ < ¶

}
, with

Ã = E
∥X∥2
d

. Let W ∈ R
p×d a random matrix such that Wij

iid∼ N (0, 1) . Let φ ∈ C1 such that
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|φ′| f K̄ . Call α = WX√
d
. Then, each component of φ(α) is sub-Gaussian with respect to the weights,

i.e., there exists a positive constant C such that:

EW[esφ(α)i ] f es
2C2µ2

(5.6)

with µ2 = Ã + ¶.

Proof. The aim is to prove that, considering just the expectation with respect to the weights, φ(α)−
EWφ(α) is a sub-Gaussian random variable. The average with respect to the weights is here denoted
EW, and since the average is taken only with respect to the weights,X is considered �xed.

For any �xed X, α is Gaussian, and speci�cally αi ∼ N (0, v2 = ∥X∥2
d

), so each component is
also sub-Gaussianwith variance proxy v2. Using a di�erent characterization of sub-Gaussian random
variables, for some absolute constantM it holds [68]:

EW[e
[α−EWα]2i

M2v2 ] f 2 (5.7)

Now using Lemma 11 this yields:

EW[e
[φ(α)−EWφ(α)]2i

4K̄2M2v2 ] f 2 (5.8)

or equivalently, there exists a constant R such that

EW[es[φ(α)−EWφ(α)]i ] f es
2R2K̄2v2 (5.9)

Considering now the previous results, and exploiting the independence of the components for �xed
X

EW[esu
⊺[φ(α)−EWφ(α)]] = EW[es

∑
i ui[φ(α)−EWφ(α)]i ] = EW[

∏

i

esui[φ(α)−EWφ(α)]i ]

=
∏

i

es
2u2

iR
2K̄2v2 = es

2R2K̄2v2
(5.10)

To compute the expectation of φ, consider just one component. Remember that φ is odd in its
argument. This implies that when conditioning on X, φ exhibits odd symmetry with respect to the
weights. Since the expectation is computed with respect to the weights, and their joint distribution
is even-symmetric, the expectation of each component of φ is zero. Additionally, if X ∈ A¶ , then
v2 f Ã + ¶ = µ2. Therefore, the inequality can be rewritten as

EW[esφ(α)i ] f es
2R2K̄2µ2

, EW[esu
⊺[φ(α)]] = es

2R2K̄2µ2

(5.11)

This completes the proof, establishing that φ(α) and its components are sub-Gaussian.
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5.1.2 Concentration of the norm

The proof is introduced as a step towards the ultimate goal of identifying conditions under which
the norm of the output vector of a hidden layer in a deep network, starting from an initial data point,
exhibits concentration. The objective is to establish an exponential bound for the probability that the
squared norm deviates from its expected value, ensuring control over every moment of this variable.

Proposition 13 (Norm concentration). Let X ∈ R
d be a random vector whose norm satis�es the

exponential concentration bound

P

(∣∣∣∥X∥2
d

− Ã
∣∣∣ g ϵ

)
f 2 exp

(
− dCϵ2

)
(5.12)

for any ϵ > 0 and a constant C > 0, with Ã = E
∥X∥2
d

. Let φ ∈ C1 such that |φ′| f K̄ . IfW ∈ R
p×d is

a matrix of i.i.d. centered Gaussian random variables with unit variance, then

P

(∣∣∣∥φ(WX/
√
d)∥2

p
− E

∥φ(WX/
√
d)∥2

p

∣∣∣ g ϵ
)
f 2 exp

(
−min{p, d}Cφϵ

2
)

(5.13)

for any ϵ > 0 and some constant Cφ > 0 when
√
d ≳ 1/ϵ.

Proof. De�ne the event

A¶ :=
{∣∣∣∥X∥2

d
− Ã

∣∣∣ < ¶
}

(5.14)

Denote also α = WX/
√
d. Partitioning the probability space yields

P

(∣∣∣∥φ(WX/
√
d)∥2

p
− E

∥φ(WX/
√
d)∥2

p

∣∣∣ g ϵ
)
= P

(∣∣∣∥φ(α)∥2
p

− E
∥φ(α)∥2

p

∣∣∣ g ϵ ∩ A¶

)

+ P

(∣∣∣∥φ(α)∥2
p

− E
∥φ(α)∥2

p

∣∣∣ g ϵ ∩ Ā¶

)

f P

(∣∣∣∥φ(α)∥2
p

− E
∥φ(α)∥2

p

∣∣∣ g ϵ ∩ A¶

)
+ P(Ā¶)

(5.15)

The following notation is introduced

P¶

(∣∣∣∥φ(α)∥2
p

− E
∥φ(α)∥2

p

∣∣∣ g ϵ
)
= P

(∣∣∣∥φ(α)∥2
p

− E
∥φ(α)∥2

p

∣∣∣ g ϵ ∩ A¶

)
(5.16)

By symmetry, only one side of the concentration bound needs to be veri�ed, so the focus is on the
event

Bϵ :=
{∥φ(α)∥2

p
− E

∥φ(α)∥2
p

g ϵ
}

(5.17)
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Denote αi =
WiX√

d
, so that φ(³i) = φi(α).

Exploiting the exponential Markov inequality, for any s ∈ R>0 the following holds

P¶(Bϵ) f e−
s
2
(Eφ2

i (α)+ϵ)
E[exp

[
s
∥φ(α)∥2

2p

]
I(A¶)] = e−

s
2
(Eφ2

i (α)+ϵ)
EX

(
EWe

s
2

φi(α)2

p

)p

I(A¶)

= EXe
p ln(EW exp( s

2

φ2
i (α)

p
))e−

s
2
(Eφ2

i (α)+ϵ)
I(A¶)

(5.18)

Utilizing the fact that ln(1 + x) f x the inequality becomes

ln(EW exp(
s

2

φ2
i (α)

p
)− 1 + 1) f EW exp(

s

2

φ2
i (α)

p
)− 1 (5.19)

Expanding the logarithm then yields

lnEW exp(
s

2

φ2
i (α)

p
) f s

2
EW

φ2
i (α)

p
+
∑

k=2

EW

1

k!

(s
2

φ2
i (α)

p

)k

(5.20)

so substituting back leads to

P¶(Bϵ) f EXe
s
2
EWφ2

i (α)+p
∑

k=2 EW
1
k!

(
s
2

φ2
i (α)

p

)k

e−
s
2
(Eφ2

i (α)+ϵ)
I(A¶)

= EXe
− s

2
ϵ e

s
2
(EWφ2

i (α)−Eφ2
i (α))

︸ ︷︷ ︸
1

e
p
∑

k=2 EW
1
k!

(
s
2

φ2
i (α)

p

)k

︸ ︷︷ ︸
2

I(A¶)

(5.21)

The focus is now on bounding the two indicated terms, with the understanding that s is always
positive.

(EWφ2
i (α)− Eφ2

i (α)) f |EWφ2
i (α)− Eφ2

i (α)| = |EWφ2(αi)− Eφ2(αi)|
f |EWφ2(αi)− Ez∼N (0,1)φ

2(z
√
Ã)|+ |Ez∼N (0,1)φ

2(z
√
Ã)− Eφ2(αi)|

(5.22)

In distribution, it holds

αi =
WiX√

d

D
= z

√
∥X∥2
d

(5.23)

plugging this in the inequality results in

|EWφ2(αi)− Eφ2(αi)| f
∣∣∣Ez∼N (0.1)φ

2
(
z

√
∥X∥2
d

)
− Ez∼N (0.1)φ

2(z
√
Ã)
∣∣∣

+
∣∣∣Ez∼N (0.1)φ

2(z
√
Ã)− EX′,z∼N (0.1)φ

2
(
z

√
∥X′∥2
d

)∣∣∣
(5.24)
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De�ne now z(s) = z
√

s∥X∥2
d

+ (1− s)Ã. The �rst term in (5.24) can be bounded as

∣∣∣Ez∼N (0.1)φ
2
(
z

√
∥X∥2
d

)
− Ez∼N (0.1)φ

2(z
√
Ã)
∣∣∣ f

∫ 1

0

dsE
[
|φ′(z(s))||φ(z(s))| |z|

∣∣∥X∥2
d

− Ã
∣∣

√
s∥X∥2

d
+ (1− s)Ã

]

f K̄2

∫ 1

0

dsEz2
∣∣∣∥X∥2

d
− Ã

∣∣∣ f K̄2
∣∣∣∥X∥2

d
− Ã

∣∣∣ f K̄2¶

(5.25)

where in the last line the fact that X belongs to the set A¶ was used. Turning to the second term in
(5.24), it can be rewritten as follows:

∣∣∣EX′,z∼N (0.1)φ
2
(
z

√
∥X′∥2
d

)
− Ez∼N (0.1)φ

2(z
√
Ã)
∣∣∣

f EX′

∣∣∣Ez∼N (0.1)φ
2
(
z

√
∥X′∥2
d

)
− Ez∼N (0.1)φ

2(z
√
Ã)
∣∣∣

f K̄2
EX′

∣∣∣∥X
′∥2
d

− Ã
∣∣∣ f K̄2K√

d

(5.26)

Plugging everything back in (5.22) leads to:

|EWφ2
i (α)− Eφ2

i (α)| f C̄
(
¶ +

1√
d

)
(5.27)

for some constant C̄ . Moving to the second term of (5.21), the sub-Gaussianity of each component
φ(³i) can be exploited forX belonging to the set A¶ , that implies, for a positive constant C̃ :

EW|φ(α)i|k f 2C̃kµkΓ
(k
2
+ 1

)
(5.28)

Thus, recognizing a geometric series, if s
2p
C̃2µ2 < 1 the exponent becomes:

p
∑

k=2

EW

1

k!

(s
2

φ2
i (α)

p

)k

f 2p
∑

k=2

( s

2p
C̃2µ2

)k

= 2p
( s

2p
C̃2µ2

)2 ∑

k=0

( s

2p
C̃2µ2

)k

=
C̃4µ4

2p

s2

1− s
2p
C̃2µ2

(5.29)

Plugging now everything together in (5.21)

P¶(Bϵ) f EXe
s
2

(
−ϵ+C

(
¶+ 1√

d

))
+ C̃4µ4

2p
s2

1− s
2p C̃2µ2

I(A¶) (5.30)
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and optimizing with respect to s:

sopt =
2p

C̃2µ2

(
1− 1√

1 +
(

ϵ
2
− C̄

2

(
¶ + 1√

d

))
1

C̃2µ2

)
(5.31)

Consider now ¶ as follows:

¶ = − 1√
d
+

ϵ

2C̄
(5.32)

Since this quantity needs to be positive, it follows
√
d > 2C̄

ϵ
. Additionally, by exploiting

√
1 + x f

1 + x
2
, it is also found:

sopt =
2p

C̃2µ2

(
1− 1√

1 +
(

ϵ
2
− C̄

2

(
¶ + 1√

d

))
1

C̃2µ2

)

f 2p

C̃2µ2

(
1− 1

1 + 1
2

(
ϵ
2
− C̄

2

(
¶ + 1√

d

))
1

C̃2µ2

)

= s′ f 2p

C̃2µ2

(5.33)

This implies that the required condition
sopt
2p

C̃2µ2 < 1 is satis�ed.
Plugging s′ into (5.30), yields:

P¶(Bϵ) f EXe

− pϵ2

16

(
C̃4µ4+C̃2µ2 ϵ

8

)
I(A¶) f EXe

− pϵ2

max

{
1, ϵ8

}
16

(
C̃4µ4+C̃2µ2

)
I(A¶) (5.34)

Using now EI(A¶) f 1 an exponential bound for the term is obtained:

P¶(Bϵ) f e−pC′ϵ2 (5.35)

In an analogous way, the other side of the inequality can be proved. Getting back to (5.15), the next
step involves substituting the chosen value of ¶ into P(Ā¶) to obtain the desired probability. The
expression becomes

P(Ā¶) f 2 exp
(
− dC¶2

)
= 2e

(
−C−Cdϵ2

4C̄2 +C
√
dϵ

C̄

)
f 2e−Ce−

Cdϵ2

20C̄2 (5.36)

under the condition
√
d g 5C̄

ϵ
. This implies that there exist a suitable constantCφ such that for ϵ > 0

small enough and d big enough,

P

(∣∣∣∥φ(WX/
√
d)∥2

p
− E

∥φ(WX/
√
d)∥2

p

∣∣∣ g ϵ
)
f 2 exp

(
−min{p, d}Cφϵ

2
)

(5.37)
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5.1.3 Concentration of the scalar product

The upcoming proposition is formulated with the �nal objective to examine the tendency of the
scalar product of two vectors output of a hidden layer of a deep neural network to concentrate
around zero. These vectors are derived from two distinct data points. Again, an exponential bound
on the probability of deviating from zero is desired, since it allows control over every moment of this
random variable.

Proposition 14 (Scalar product concentration). Let X,Y ∈ R
d be random vectors drawn independ-

ently from the same distribution, that satisfy the exponential concentration bounds

P

(∣∣∣X
⊺Y

d

∣∣∣ g ϵ
)
f 2 exp

(
− dBϵ2

)
(5.38)

P

(∣∣∣∥X∥2
d

− Ã
∣∣∣ g ϵ

)
f 2 exp

(
− dCϵ2

)
P

(∣∣∣∥Y∥2
d

− Ã
∣∣∣ g ϵ

)
f 2 exp

(
− dCϵ2

)
(5.39)

for any ϵ > 0 and constants B,C > 0, with Ã = E
∥X∥2
d

. Let φ ∈ C1 such that |φ′| f K̄ . IfW ∈ R
p×d

is a matrix of i.i.d. centered Gaussian random variables with unit variance, then

P

(∣∣∣φ(WX/
√
d)⊺φ(WY/

√
d)

p

∣∣∣ g ϵ
)
f 2 exp

(
−min{p, d}Cφϵ

2
)

(5.40)

for any ϵ > 0 and some constant Cφ > 0.

Proof. De�ne the events

A¶,X :=
{∣∣∣∥X∥2

d
− Ã

∣∣∣ < ¶
}
, B¸ :=

{∣∣∣X
⊺Y

d

∣∣∣ < ¸
}

(5.41)

and denote αX = WX/
√
d. By partitioning the probability space

P

(∣∣∣φ(WX/
√
d)⊺φ(WY/

√
d)

p

∣∣∣ g ϵ
)

= P

(∣∣∣φ(αX)
⊺φ(αY)

p

∣∣∣ g ϵ ∩ A¶,X ∩ A¶,Y

)
+ P

(∣∣∣φ(αX)
⊺φ(αY)

p

∣∣∣ g ϵ ∩ (A¶,X ∩ A¶,Y)
)

f P

(∣∣∣φ(αX)
⊺φ(αY)

p

∣∣∣ g ϵ ∩ A¶,X ∩ A¶,Y

)
+ P(A¶,X) + P(A¶,Y)

f P

(∣∣∣φ(αX)
⊺φ(αY)

p

∣∣∣ g ϵ ∩ A¶,X ∩ A¶,Y ∩B¸

)

+ P

(∣∣∣φ(αX)
⊺φ(αY)

p

∣∣∣ g ϵ ∩ A¶,X ∩ A¶,Y ∩ B̄¸

)
+ 2P(A¶,X)

f P

(∣∣∣φ(αX)
⊺φ(αY)

p

∣∣∣ g ϵ ∩ A¶,X ∩ A¶,Y ∩B¸

)
+ P(B̄¸) + 2P(A¶,X)

(5.42)
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The following notation is used

P¶,¸

(∣∣∣φ(αX)
⊺φ(αY)

p

∣∣∣ g ϵ
)
= P

(∣∣∣φ(αX)
⊺φ(αY)

p

∣∣∣ g ϵ ∩ A¶,X ∩ A¶,Y ∩ B¸

)
(5.43)

By symmetry, only one side of the desired concentration bound needs to be proved, so the following
event is considered

Bϵ :=
{φ(αX)

⊺φ(αY)

p
g ϵ

}
(5.44)

Let αi =
WiX√

d
, so that φ(³X,i) = φi(αX). Exploiting the exponential Markov inequality, for any

s ∈ R>0 it follows

P¶,¸(Bϵ) f e−
sϵ
2 E[exp

[
s
φ(αX)

⊺φ(αY)

2p

]
I(A¶,X)I(A¶,Y)] = e−

sϵ
2 EX

(
EWe

s
2

φ(αX,i)φ(αY,i)

p

)p

I(A¶,X)I(A¶,Y)

= EXe
p ln(EW exp( s

2

φ(αX,i)φ(αY,i)

p
))e−

sϵ
2 I(A¶,X)I(A¶,Y)

(5.45)

Using again the relation ln(1 + x) f x leads to

ln(EW exp(
s

2

φ(αµ,i)φ(α¿,i)

p
)− 1 + 1) f EW exp(

s

2

φ(αµ,i)φ(α¿,i)

p
)− 1 (5.46)

and expanding the logarithm results in:

p lnEW exp(
s

2

φ(αX,i)φ(αY,i)

p
) f p

∑

k=1

EW

1

k!

(s
2

φ(αX,i)φ(αY,i)

p

)k

=
s

2
EWφ(αX,i)φ(αY,i) + p

∑

k=2

EW

1

k!

(s
2

φ(αX,i)φ(αY,i)

p

)k

(5.47)

The aim is bounding the two terms, and EWφ(αX,i)φ(αY,i) is considered �rst.

In what follows the i-index is dropped for brevity. Let

³X§Y := ³X − ³Y

EW³X³Y

E2
W³Y

= ³X − ³Y

X⊺Y

∥Y∥2 (5.48)

that is independent of ³Y. Now φ is expanded around ³X§Y de�ning

³X,Y(s) = s³X + (1− s)³X§Y = ³X§Y + s³YX
⊺Y/∥Y∥2 = ³X − (1− s)³YX

⊺Y/∥Y∥2
(5.49)

70



CHAPTER 5. PROOFS

EWφ(³X)φ(³Y) = EW

[ ∫ 1

0

dsφ′(³X,Y(s))φ(³Y)³Y

]X⊺Y

∥Y∥2

f
[ ∫ 1

0

dsEW|φ′(³X,Y(s))φ(³Y)³Y|
]X⊺Y

∥Y∥2
f K̄2¸

(5.50)

where the fact that the zero-th order term is zero due to the odd nature of φ was leveraged, and the
Lipschitz property of φ was then utilized.

The second term, EWφk(αX,i)φ
k(αY,i), is now considered. The sub-Gaussianity of each com-

ponent φ(αX,i) is exploited for X belonging to the set A¶,X, which implies, for a positive constant
C̃

EW|φ(αX,i)|k f 2C̃kµkΓ
(k
2
+ 1

)
(5.51)

leads to

EW|φ(αX,i)φ(αY,i)|k f 2(C̃2µ2)kΓ(k + 1) (5.52)

Plugging the results back in (5.47), the following is obtained

p lnEW exp
(s
2

φ(αX,i)φ(αY,i)

p

)
f s

2
K̄2¸ + 2p

∑

k=2

( s

2p
C̃2µ2

)k

=
s

2
K̄2¸ + 2p

( s

2p
C̃2µ2

)2 ∑

k=0

( s

2p
C̃2µ2

)k

=
s

2
K̄2¸ +

C̃4µ4

2p

s2

1− s
2p
C̃2µ2

(5.53)

Recognizing a geometric series if s
2p
C̃2µ2 < 1. Using this in (5.45) results in

P¶,¸(Bϵ) f EXe
p ln(EW exp( s

2

φ(αX,i)φ(αY,i)

p
))e−

sϵ
2 I(A¶,X)I(A¶,Y)

f EXe
C̃4µ4

2p
s2

1− s
2p C̃2µ2 e

s
2
(−ϵ+K̄2¸)

I(A¶,X)I(A¶,Y)

(5.54)

and optimizing with respect to s:

sopt =
2p

C̃2µ2

(
1− 1√

1 +
(

ϵ
2
− K̄2¸

2

)
1

C̃2µ2

)
(5.55)

Consider ¸ as follows

¸ =
ϵ

2K̄2
(5.56)
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which always exists and is positive. Exploiting that
√
1 + x f 1 + x

2
results in

sopt =
2p

C̃2µ2

(
1− 1√

1 +
(

ϵ
2
− K̄2¸

2

)
1

C̃2µ2

)
f 2p

C̃2µ2

(
1− 1

1 + 1
2

(
ϵ
2
− K̄2¸

2

)
1

C̃2µ2

)
= s′ f 2p

C̃2µ2

(5.57)

Thus the needed condition for the convergence of the geometric series
sopt
2p

C̃2µ2 < 1 is obtained.
Plugging s′ into (5.30), and choosing ϵ < 8:

P¶,¸(Bϵ) f EXe

− pϵ2

16

(
C̃4µ4+C̃2µ2 ϵ

8

)
I(A¶,X)I(A¶,Y) f EXe

− pϵ2

16

(
C̃4µ4+C̃2µ2

)
I(A¶,X)I(A¶,Y) (5.58)

Remembering that, for positive x it holds true x+x2 f (1+x)2, and µ2 = Ã+ ¶ becomes a constant
once ¶ is �xed

P¶,¸(Bϵ) f EXe

− pϵ2

16

(
C̃4µ4+C̃2µ2

)
I(A¶,X)I(A¶,Y) f EXe

− pϵ2

16

(
1+C̃2µ2

)2

I(A¶,X)I(A¶,Y) (5.59)

using now EI(A¶,X)I(A¶,Y) f 1 an exponential bound for the term is obtained:

P¶,¸(Bϵ) f e−pC′ϵ2 (5.60)

In a similar way, the other side of the inequality can be proved. Returning to (5.42), the next step
involves substituting the values of ¸ and ¶ considered into P(B̄¸) and P(A¶,Y ∩ A¶,Y) to verify that

an exponential bound is obtained. If ¶ is chosen as
√

ln 2
dC

+ ϵ2, then

P(B̄¸) + P(A¶,X ∩ A¶,Y) f 2e−d C
4K̄2 ϵ

2

+ 2e−dCϵ2 (5.61)

This implies that there exist a suitable constant Cφ such that for ϵ > 0 small enough,

P

(∣∣∣φ(WX/
√
d)⊺φ(WY/

√
d)

p

∣∣∣ g ϵ
)
f 2 exp

(
−min{p, d}Cφϵ

2
)

(5.62)

Considering the vectors resulting from multiplying the initial vectors with a Gaussian random
matrix and subsequently applying a nonlinear function, Propositions 13 and 14 enable the derivation
of bounds on every central moment of their squared norm and scalar product.
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Corollary 15 (Control on moments). Let k ∈ N. Under the same hypotheses of Proposition 14 the

following holds true:

E

∣∣∣∥φ(WX/
√
d)∥2

p
− E

∥φ(WX/
√
d)∥2

p

∣∣∣
k

= O
( 1

min{p, d}k/2
)

E

∣∣∣φ(WX/
√
d)⊺φ(WY/

√
d)

p

∣∣∣
k

= O
( 1

min{p, d}k/2
) (5.63)

Proof. Recall that, being X a random variable and k ∈ (0,+∞) [68]

E|X|k =
∫ ∞

0

ktk−1
P(|X| g t) dt (5.64)

This formula allows to bound every central moment of the squared norm and the scalar product.

The integral is well de�ned for any t when the scalar product is considered, but attention must
be paid to the concentration of the squared norm. Remember that Proposition 13 holds for

√
d g 5C̄

ϵ
,

or equivalently ϵ g 5C̄√
d
. This implies that the exponential concentration of the squared norm cannot

be used for lower values of ϵ.

To prove that the desired scaling is obtained, the integral (5.64) is split and the two resulting
terms are controlled:

E

∣∣∣∥φ(WX/
√
d)∥2

p
− E

∥φ(WX/
√
d)∥2

p

∣∣∣
k

=

∫ 5C̄√
d

0

ktk−1
P

(∣∣∣∥φ(WX/
√
d)∥2

p
− E

∥φ(WX/
√
d)∥2

p

∣∣∣ g t
)
dt

+

∫ ∞

5C̄√
d

ktk−1
P

(∣∣∣∥φ(WX/
√
d)∥2

p
− E

∥φ(WX/
√
d)∥2

p

∣∣∣ g t
)
dt

f
(5C̄√

d

)k

+

∫ ∞

5C̄√
d

ktk−1
P

(∣∣∣∥φ(WX/
√
d)∥2

p
− E

∥φ(WX/
√
d)∥2

p

∣∣∣ g t
)
dt = O

( 1

min{p, d}k/2
)

(5.65)

As for the concentration of the scalar product, using directly (5.64) leads to:

E

∣∣∣φ(WX/
√
d)⊺φ(WY/

√
d)

p

∣∣∣
k

= O
( 1

min{p, d}k/2
)

(5.66)
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5.2 Output kernel properties

The following lemma establishes properties of the output kernel that will be extensively used in 5.4.
Notably, the output kernel de�ned in (5.1) is used. This is done in order to ensure the validity of the
lemma even when the output kernel is deformed with additive Gaussian noise. This generalization
allows the Lemma to be applicable when performing the subsequent reduction steps.

Lemma 16 (Properties of Pout). Recall de�nition (5.1). Denote ũy(x) := log P̃out(y | x). and ũ′
y(x) :=

∂xũy(x). Additionally, let

Ũµ¿ := ¶µ¿ ũ
′′
Ytµ

(Stµ) + ũ′
Ytµ

(Stµ)ũ
′
Yt¿

(St¿) (5.67)

Then, under Assumptions H1) and H2), for a positive constant C(f) depending only on the readout

function, the following holds:

E[ũ′
Ytµ

(Stµ) | Stµ] = E[Ũµ¿ | Stµ, St¿ ] = 0 (5.68)

E[(ũ′
Ytµ

(Stµ))
2 | Stµ] , E[Ũ

2
µ¿ | Stµ, St¿ ] f C(f) (5.69)

Remark 1. Notice how for µ = ¿ (5.67) simpli�es to Ũµµ = P̃ ′′
out(Ytµ | Stµ)/P̃out(Ytµ | Stµ), where

P̃ ′
out(y | x) := ∂xP̃out(y | x) , P̃ ′′

out(y | x) := ∂x∂xP̃out(y | x) (5.70)

Exploiting the lemma, the result obtained is that

E

[( P̃ ′′
out(Ytµ | Stµ)

P̃out(Ytµ | Stµ)

)2∣∣∣Stµ

]
f C(f) (5.71)

Proof. An auxiliary lemma is �rst considered. In the lemma the necessary bounds involving the
derivatives of the output are estimated. In the following, C(f) denotes a constant that depends on
the readout function f and may also depend on ∆. Upper indices denote partial derivatives with
respect to that variable, for instance, P̃ x

out(y|x) = ∂xP̃out(y|x) and P̃ xx
out(y|x) = ∂x∂xP̃out(y|x).

Lemma 17. Let y = Ytµ = f(Stµ +
√
»·µ;Aµ) +

√
∆Zµ, where ·µ and Zµ are standard Gaussian

random variables, and » > 0 is constant. Assuming H2), a constant C(f) exists such that

max
{∣∣∣ P̃

y
out(y|x)

P̃out(y|x)

∣∣∣,
∣∣∣ P̃

x
out(y|x)

P̃out(y|x)

∣∣∣,
∣∣∣ P̃

yy
out(y|x)

P̃out(y|x)

∣∣∣,
∣∣∣ P̃

yx
out(y|x)

P̃out(y|x)

∣∣∣,
∣∣∣ P̃

xx
out(y|x)

P̃out(y|x)

∣∣∣
}
< C(f)(|Zµ|2 + 1) (5.72)

Proof. If the ·µ term is absent, the proof aligns with [19], where P̃out(y|x) = Pout(y|x). Therefore,
the analysis focuses on the case where the additional stochastic term ·µ is present.

Let w = x+
√
»z. The de�nition of Pout(y|w) is recalled:

Pout(y | w) =
∫

dPA(A)
1√
2Ã∆

exp
(
− 1

2∆
(y − f(w;A))2

)
=

∫
PA(dA)P (y|w,A) (5.73)
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In a similar fashion, a new output kernel is introduced to reabsorb the stochasticity introduced by
·µ. Given that ·µ is a standard Gaussian random variable, it is possible to write:

P̃out(y | x) :=
∫

dz
e−

z2

2√
2Ã

Pout(y | x+
√
»z) =

∫
dPz(z)Pout(y | x+

√
»z) (5.74)

It can be observed now that the ratio of any derivative of P̃out to P̃out can be formulated by
introducing the following expectation:

ï·ðA,z :=

∫
dPz(z)dPA(A)(·)e− 1

2∆
(y−f(x+

√
»z;A))2

∫
dPz(z)dPA(A)e−

1
2∆

(y−f(x+
√
»z;A))2

(5.75)

Through some algebraic manipulation, the following expressions are obtained:

P̃ y
out(y|x)

P̃out(y|x)
=

〈
− 1

∆
(y − f(x+

√
»z;A))

〉
A,z

(5.76)

P̃ x
out(y|x)

P̃out(y|x)
=

〈 1

∆
(y − f(x+

√
»z;A))f ′(x+

√
»z;A)

〉
A,z

(5.77)

P̃ yy
out(y|x)

P̃out(y|x)
=

〈 1

∆2
(y − f(x+

√
»z;A))2

〉
A,z

− 1

∆
(5.78)

P̃ yx
out(y|x)

P̃out(y|x)
=

〈
− 1

∆2
(y − f(x+

√
»z;A))2f ′(x+

√
»z;A) +

1

∆
f ′(x+

√
»z;A)

〉
A,z

(5.79)

P̃ xx
out(y|x)

P̃out(y|x)
=

〈( 1

∆2
(y − f(x+

√
»z;A))2 − 1

∆

)
f ′(x+

√
»z;A)2 (5.80)

+
1

∆
(y − f(x+

√
»z;A))f ′′(x+

√
»z;A)

〉
A,z

(5.81)

Given that all expressions are similar in form, only the last one is treated, as all others can be bounded
using analogous reasoning. It is considered that:

∣∣∣ P̃
xx
out(y|x)

P̃out(y|x)

∣∣∣ f
〈( 1

∆2
(y − f(x+

√
»z;A))2 +

1

∆

)
f ′(x+

√
»z;A)2

〉
A,z

+
〈 1

∆

∣∣∣y − f(x+
√
»z;A)

∣∣∣
∣∣∣f ′′(x+

√
»z;A)

∣∣∣
〉
A,z

(5.82)

Since= Ytµ = f(Stµ+
√
»·µ;Aµ)+

√
∆Zµ, the previous quantities can be rewritten in terms of Zµ.

Noting that the brackets are not averaging over Zµ, Zµ, and its functions can be brought out of the
average. Given that f and its �rst two derivatives are bounded (as speci�ed in H2)), the following
result is obtained:

∣∣∣ P̃
xx
out(y|x)

P̃out(y|x)

∣∣∣ f
( 1

∆
|Zµ|2 +

1

∆

)
K(f) +

1

∆
|Zµ|G(f) f (|Zµ|2 + 1)C(f) (5.83)
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Getting back to the proof of Lemma 16, (5.68) is �rst proved:

E[ũ′
Ytµ

(Stµ)|Stµ] = E

[ P̃ x
out(Ytµ|Stµ)

P̃out(Ytµ|Stµ)

∣∣∣Stµ

]

=

∫
dYtµP̃out(Ytµ|Stµ)

P̃ x
out(Ytµ|Stµ)

P̃out(Ytµ|Stµ)
=

∫
dYtµP̃

x
out(Ytµ|Stµ)

=
∂

∂Stµ

∫
dYtµP̃out(Ytµ|Stµ) =

∂

∂Stµ

1 = 0

(5.84)

Concerning then (5.69), the conditional expectation of Ũµ¿ given Stµ and St¿ is computed separately
for the cases µ = ¿ and µ ̸= ¿. The scenario µ = ¿ is �rst addressed.

E[Ũµµ|Stµ] = E

[
∂x

( P̃ x
out(Ytµ|Stµ)

P̃out(Ytµ|Stµ)

)
+
( P̃ x

out(Ytµ|Stµ)

P̃out(Ytµ|Stµ)

)2∣∣∣Stµ

]

= E

[ P̃ xx
out(Ytµ|Stµ)

P̃out(Ytµ|Stµ)
−

( P̃ x
out(Ytµ|Stµ)

P̃out(Ytµ|Stµ)

)2

+
( P̃ x

out(Ytµ|Stµ)

P̃out(Ytµ|Stµ)

)2∣∣∣Stµ

]

= E

[ P̃ xx
out(Ytµ|Stµ)

P̃out(Ytµ|Stµ)

∣∣∣Stµ

]

=

∫
dYtµP̃out(Ytµ|Stµ)

P̃ xx
out(Ytµ|Stµ)

P̃out(Ytµ|Stµ)
=

∫
dYtµP̃

xx
out(Ytµ|Stµ)

=
∂2

∂S2
tµ

∫
dYtµP̃out(Ytµ|Stµ) =

∂2

∂S2
tµ

1 = 0

(5.85)

Considering the terms characterized by µ ̸= ¿, it can be observed that when conditioning on
Stµ, St¿ , the remaining stochasticity in the responses is independent for each sample. Consequently,
ũ′
Ytµ

(Stµ) and ũ′
Yt¿

(St¿) are conditionally independent given Stµ, St¿ , resulting in:

E[Ũµ¿ |Stµ, St¿ ] = E[ũ′
Ytµ

(Stµ)ũ
′
Yt¿

(St¿)|Stµ, St¿ ]

=

∫
dYtµP̃

x
out(Ytµ|Stµ)

∫
dYt¿P̃

x
out(Yt¿ |St¿) = 0

(5.86)

The aim is now to address now the boundedness of the expressions in (5.69). Lemma 17 allows
to write:

(ũ′
Ytµ

(Stµ))
2 f C2(f)(|Zµ|2 + 1)2 f C ′2(f)(|Zµ|4 + 1) (5.87)

Using Jensen’s inequality, speci�cally that (|Zµ|2+1)2 f 2(|Zµ|4+1). SinceZµ is a standardGaussian
random variable and does not depend on Stµ, it has �nite second and fourth moments. Therefore,
computing the conditional expectation of the left hand side on Stµ leads to bound (ũ′

Ytµ
(Stµ))

2 with
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an appropriate constant C(f). The expectation of Ũ2
µµ and Ũ

2
µ¿ is bounded, conditionally on Stµ and

St¿ . Consider the case µ = ¿. Using what stated in Lemma 17, it follows:

Ũ2
µµ =

( P̃ xx
out(Ytµ|Stµ)

P̃out(Ytµ|Stµ)

)2

f C2(f)(|Zµ|2 + 1)2

= C2(f)(|Zµ|4 + 2|Zµ|2 + 1)

(5.88)

Then, by taking the expectation and using the Gaussianity of Zµ along with the �niteness of its
moments, a bound can be established for an appropriate constant C(f). Considering now the case
µ ̸= ¿, Lemma 17 is exploited:

Ũ2
µ¿ =

( P̃ x
out(Ytµ|Stµ)

P̃out(Ytµ|Stµ)

)2( P̃ x
out(Yt¿ |St¿)

P̃out(Yt¿ |St¿)

)2

f Cµ(f)(|Zµ|2 + 1)C¿(f)(|Z¿ |2 + 1)

= Cµ(f)C¿(f)(|Zµ|2|Z¿ |2 + |Zµ|2 + |Z¿ |2 + 1)

(5.89)

This implies that when taking the expectation, a bound that involves a suitable constant C(f) is
obtained.

5.3 Approximation Lemma

This approximation lemma allows the estimation of the expectation, with respect to the weights, of
various expressions involving the derivative or square of the activation function applied to an input
from the previous layer. This includes the estimation of terms where the activation functions of
di�erent samples interact.

Notably in this context the concentration results obtained in 3.4.3 are utilized to identify the
dominant terms in the estimations considered. These concentration results are necessary to manage

higher-order central moments of the squared norm and scalar product ofX
(ℓ)
µ , as well as for handling

cases where such norms appear in the denominator.

Lemma 18 (Approximations). Consider a L-layer neural network as constructed in 3.2. For any layer

ℓ ∈ 0, . . . , L call Ã(ℓ) := EX(ℓ)
∥X(ℓ)

µ ∥2
d(ℓ)

, Ä(ℓ) := EN (0,Ã(ℓ))φ
′ and ϵ(ℓ) := EN (0,Ã(ℓ))φ

2− Ã(ℓ)Ä(ℓ) 2. Let φ̃ be

either φ or the identity function, and de�ne Ä̃(ℓ) := EN (0,Ã(ℓ))φ̃
′. Under assumptions H2) and H1), the

following hold:

EW∗(ℓ)φ′(³(ℓ−1)
µi ) = Ä(ℓ−1) +O

(∥X(ℓ−1)
µ ∥2
d(ℓ−1)

− Ã(ℓ−1)
)

(5.90)

EW∗(ℓ)φ2(³
(ℓ−1)
µi ) = EN (0,Ã(ℓ−1))φ

2 +O
(∥X(ℓ−1)

µ ∥2
d(ℓ−1)

− Ã(ℓ−1)
)

(5.91)
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De�ne now A
(ℓ−1)
¶µ :=

{∣∣∣∥X
(ℓ−1)
µ ∥2
d

− Ã(ℓ−1)
∣∣∣ < ¶

}
and A

(ℓ−1)
¶ =

n⋂
µ=1

A
(ℓ−1)
¶µ . Assume now that X(ℓ−1)

belongs to A
(ℓ−1)
¶ .

EW∗(ℓ)I(A¶)φ(³
(ℓ−1)
µi )φ̃(³

(ℓ−1)
¿i ) = Ä(ℓ−1)Ä̃(ℓ−1)X

(ℓ−1)⊺
µ X

(ℓ−1)
¿

d(ℓ−1)

+O
((∥X(ℓ−1)

µ ∥2
d(ℓ−1)

− Ã(ℓ−1)
)X(ℓ−1)⊺

µ X
(ℓ−1)
¿

d(ℓ−1)

)

+O
((X(ℓ−1)⊺

µ X
(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)X(ℓ−1)⊺
µ X

(ℓ−1)
¿

d(ℓ−1)

)
+O

((X(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)2)
,

(5.92)

EW∗(ℓ)I(A¶)φ
′(³(ℓ−1)

µi )φ̃′(³(ℓ−1)
¿i ) = Ä(ℓ−1) 2 +O

(∥X(ℓ−1)
µ ∥2
d(ℓ−1)

− Ã(ℓ−1)
)
+O

(X(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)

(5.93)

EW∗(ℓ)I(A¶)φ
2(³

(ℓ−1)
µi )φ̃2(³

(ℓ−1)
¿i ) = EN (0,Ã(ℓ−1))φ

2
EN (0,Ã(ℓ−1))φ̃

2 +O
(∥X(ℓ−1)

µ ∥2
d(ℓ−1)

− Ã(ℓ−1)
)

+O
(X(ℓ−1)⊺

µ X
(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)
(5.94)

Remark 2. Equations (5.90) and (5.91) allow for Ã(ℓ) = EX(ℓ)
∥X(ℓ)

µ ∥2
d(ℓ)

to be written recursively. Indeed,
using (5.91), it can be obtained:

Ã(ℓ) = EX(ℓ)

∥X(ℓ)
µ ∥2
d(ℓ)

= EX(ℓ−1)EW∗(ℓ)

∑d(ℓ)

i=1 φ
2(³

(ℓ−1)
µi )

d(ℓ)

= EN (0,Ã(ℓ−1))φ
2 + EX(ℓ−1)O

(∥X(ℓ−1)
µ ∥2
d(ℓ−1)

− Ã(ℓ−1)
)

= Eφ2(z
√
Ã(ℓ−1)) +O

( 1

d(ℓ−1)

)
(5.95)

Remark 3. Notice that when X(ℓ−1) ∈ A
(ℓ−1)
¶ , the following bound holds:

∣∣∣X
(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

∣∣∣ f
∣∣∣X

(ℓ−1)⊺
µ X

(ℓ−1)
¿

d(ℓ−1)

∣∣∣ 1

Ã(ℓ−1) − ¶
(5.96)

Proof. Equation (5.90) is �rst considered. Exploiting that the weightsW(ℓ) are Gaussian, in distribu-
tion it holds:

W∗(ℓ)X(ℓ−1)
µ√

d(L−1)

D
= z

√
∥X(ℓ−1)

µ ∥2
d(ℓ−1)

(5.97)
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with z ∼ N (0, 1). The expectation with respect to W(ℓ) then becomes an expectation over z, and
the application of the fundamental theorem of integral calculus leads to:

|EW∗(ℓ)φ′(³(ℓ−1)
µi )− Ä(ℓ)| =

∣∣∣Eφ′
(
z

√
∥X(ℓ−1)

µ ∥2
d(ℓ−1)

)
− Ä(ℓ)

∣∣∣

=
∣∣∣Eφ′

(
z

√
∥X(ℓ−1)

µ ∥2
d(ℓ−1)

)
− Eφ′

(
z
√
Ã(ℓ−1)

)∣∣∣

f
∫ 1

0

dsE
|z|
2

∣∣∣φ′′
(
z

√

s
∥X(ℓ−1)

µ ∥2
d(ℓ−1)

+ Ã(ℓ−1)(1− s)
)∣∣∣

∣∣∣∥X
(ℓ−1)
µ ∥2
d(ℓ−1) − Ã(ℓ−1)

∣∣∣
√
s
∥X(ℓ−1)

µ ∥2
d(ℓ−1) + Ã(ℓ−1)(1− s)

(5.98)

Using the boundedness of the second derivative, namely φ′′ f K̄ , a complete decoupling of s from z
is achieved. The expectation with respect to z can then be computed remembering, E|z| f

√
Ez2 =

1, and the remaining integral can be computed and bounded as:

|EW∗(ℓ)φ′(³(ℓ−1)
µi )− Ä(ℓ)| f K̄

2

∣∣∣∥X
(ℓ−1)
µ ∥2
d(ℓ−1)

− Ã(ℓ−1)
∣∣∣
∫ 1

0

ds
1√

s
∥X(ℓ−1)

µ ∥2
d(ℓ−1) + Ã(ℓ−1)(1− s)

= K̄
∣∣∣∥X

(ℓ−1)
µ ∥2
d(ℓ−1)

− Ã(ℓ−1)
∣∣∣

∥X(ℓ−1)
µ ∥√
d(ℓ−1)

− Ã(ℓ−1)

∥X(ℓ−1)
µ ∥2
d(ℓ−1) − Ã(ℓ−1)

= K̄

∣∣∣∥X
(ℓ−1)
µ ∥2
d(ℓ−1) − Ã(ℓ−1)

∣∣∣
∥X(ℓ−1)

µ ∥√
d(ℓ−1)

+
√
Ã(ℓ−1)

f K̃
∣∣∣∥X

(ℓ−1)
µ ∥2
d(ℓ−1)

− Ã(ℓ−1)
∣∣∣

(5.99)

Consider (5.91). Similarly to what was previously done:
∣∣∣EW∗(ℓ)φ̃2(³

(ℓ−1)
µi )− EN (0, Ã(ℓ−1))φ̃

2
∣∣∣

=
∣∣∣Eφ̃2

(
z

√
∥X(ℓ−1)

µ ∥2
d(ℓ−1)

)
− Eφ̃2(z

√
Ã(ℓ−1))

∣∣∣

f K̄

∫ 1

0

dsE
∣∣∣zφ̃

(
z

√

s
∥X(ℓ−1)

µ ∥2
d(ℓ−1)

+ Ã(ℓ−1)(1− s)
)∣∣∣

∣∣∣∥X
(ℓ−1)
µ ∥2
d(ℓ−1) − Ã(ℓ−1)

∣∣∣
√

s
∥X(ℓ−1)

µ ∥2
d(ℓ−1) + Ã(ℓ−1)(1− s)

(5.100)

In order to carry out integration over the variable s, a bound on the expectationE|zφ̃(. . . )| is needed.
This is managed using the fact that φ is Lipschitz. Since φ̃′ f K̄ and φ̃(0) = 0 as φ is odd, it follows
|φ̃(. . . )| f K̄|(. . . )|. This implies:

∣∣∣EW∗(ℓ)φ̃2(³
(ℓ−1)
µi )− EN (0, Ã(ℓ−1))φ̃

2
∣∣∣ f K̄2

∣∣∣∥X
(ℓ−1)
µ ∥2
d(ℓ−1)

− Ã(ℓ−1)
∣∣∣ . (5.101)
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Moving now to (5.92), the i-index is dropped for simplicity. De�ne:

³
(ℓ−1)
µ§¿ := ³(ℓ−1)

µ − ³(ℓ−1)
¿

EW∗(ℓ)³
(ℓ−1)
µ ³

(ℓ−1)
¿

E2
W∗(ℓ)³

(ℓ−1)
¿

= ³(ℓ−1)
µ − ³(ℓ−1)

¿

X
(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

(5.102)

It is noteworthy that this particular quantity does not depend on ³
(ℓ−1)
¿ . Subsequently, an expansion

of φ around ³
(ℓ−1)
µ§¿ is performed. In the following, p de�nes a point that lies between ³

(ℓ−1)
µ§¿ and

³
(ℓ−1)
¿ . Furthermore, the zero-order term is absent due to the odd nature of φ, and integration by

parts with respect toW∗(ℓ) is applied to the �rst-order term.

EW∗(ℓ)φ(³(ℓ−1)
µ )φ̃(³(ℓ−1)

¿ ) = EW∗(ℓ)φ′(³(ℓ−1)
µ§¿ )EW∗(ℓ)φ̃′(³(ℓ−1)

¿ )
X

(ℓ−1)⊺
µ X

(ℓ−1)
¿

d(ℓ−1)

+
1

2
EW∗(ℓ)φ′′(p)φ̃(³(ℓ−1)

¿ )³(ℓ−1) 2
¿

(X(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)2
(5.103)

The objective is now to estimate the residual associated with the last term, thus the modulus of
the term is considered:

∣∣∣EW∗(ℓ)φ′′(p)φ̃(³(ℓ−1)
¿ )³(ℓ−1) 2

¿

(X(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)2∣∣∣

f EW∗(ℓ)

∣∣∣φ′′(p)φ̃(³(ℓ−1)
¿ )³(ℓ−1) 2

¿

(X(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)2∣∣∣

f K̄
(X(ℓ−1)⊺

µ X
(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)2

EW∗(ℓ) |φ̃(³(ℓ−1)
¿ )³(ℓ−1) 2

¿ |

f K̄
(X(ℓ−1)⊺

µ X
(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)2

EW∗(ℓ) |³(ℓ−1)
¿ |3

f K̃
(X(ℓ−1)⊺

µ X
(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)2

√
(∥X(ℓ−1)

¿ ∥2
d(ℓ−1)

)3

5!!

(5.104)

where the term under square root is bounded and depends on (Ã(ℓ−1) + ¶)3/2 exploiting X(ℓ−1) ∈
A

(ℓ−1)
¶ and (5.96). This allows to write

EW∗(ℓ)φ(³(ℓ−1)
µ )φ̃(³(ℓ−1)

¿ ) = EW∗(ℓ)φ′(³(ℓ−1)
µ§¿ )EW∗(ℓ)φ̃′(³(ℓ−1)

¿ )
X

(ℓ−1)⊺
µ X

(ℓ−1)
¿

d(ℓ−1)
+O

((X(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)2)
.

(5.105)

An expansion of φ′(³(ℓ−1)
µ§¿ ) is performed around the initial point ³

(ℓ−1)
µ :

EW∗(ℓ)φ′(³µ§¿) = EW∗(ℓ)φ′(³(ℓ−1)
µ )− EW∗(ℓ)φ′′(p)³(ℓ−1)

¿

X
(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

(5.106)
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where the variable p retains its previous de�nition. The residual associated with the last term is now
evaluated by taking the modulus of the term and exploiting the Lipshitzianity of φ:

∣∣∣EW∗(ℓ)φ′′(p)³(ℓ−1)
¿

X
(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

∣∣∣ f EW∗(ℓ)

∣∣∣φ′′(p)³(ℓ−1)
¿

X
(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

∣∣∣

f K̄
∣∣∣X

(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

∣∣∣EW∗(ℓ) |³(ℓ−1)
¿ |

f K̄
∣∣∣X

(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

∣∣∣

√
∥X(ℓ−1)

¿ ∥2
d(ℓ−1)

(5.107)

With a similar reasoning as before to bound the term under the square root, (5.106) becomes:

EW∗(ℓ)φ′(³µ§¿) = EW∗(ℓ)φ′(³(ℓ−1)
µ ) +O

(X(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)
(5.108)

Plugging everything together leads to

EW∗(ℓ)φ(³(ℓ−1)
µ )φ̃(³(ℓ−1)

¿ )

=
[
EW∗(ℓ)φ′(³(ℓ−1)

µ ) +O
(X(ℓ−1)⊺

µ X
(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)][
Ä̃(ℓ−1) +O

(∥X(ℓ−1)
¿ ∥2
d(ℓ−1)

− Ã(ℓ−1)
)]X(ℓ−1)⊺

µ X
(ℓ−1)
¿

d(ℓ−1)

+O
((X(ℓ−1)⊺

µ X
(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)2)

=
[
Ä(ℓ−1) +O

(∥X(ℓ−1)
µ ∥2
d(ℓ−1)

− Ã(ℓ−1)
)
+O

(X(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)][
Ä̃(ℓ−1) +O

(∥X(ℓ−1)
¿ ∥2
d(ℓ−1)

− Ã(ℓ−1)
)]X(ℓ−1)⊺

µ X
(ℓ−1)
¿

d(ℓ−1)

+O
((X(ℓ−1)⊺

µ X
(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)2)

= Ä(ℓ−1)Ä̃(ℓ−1)X
(ℓ−1)⊺
µ X

(ℓ−1)
¿

d(ℓ−1)
+O

((∥X(ℓ−1)
µ ∥2
d(ℓ−1)

− Ã(ℓ−1)
)X(ℓ−1)⊺

µ X
(ℓ−1)
¿

d(ℓ−1)

)

+O
((∥X(ℓ−1)

µ ∥2
d(ℓ−1)

− Ã(ℓ−1)
)(X(ℓ−1)⊺

µ X
(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)2)
+O

((X(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)X(ℓ−1)⊺
µ X

(ℓ−1)
¿

d(ℓ−1)

)

+O
((X(ℓ−1)⊺

µ X
(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)2)
+O

((∥X(ℓ−1)
µ ∥2
d(ℓ−1)

− Ã(ℓ−1)
)(∥X(ℓ−1)

¿ ∥2
d(ℓ−1)

− Ã(ℓ−1)
)X(ℓ−1)⊺

µ X
(ℓ−1)
¿

d(ℓ−1)

)

(5.109)

Utilizing what stated in Corollary 15 and Remark 3, only the leading terms are considered, which
lead to (5.92).
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Consider now (5.93). Applying (5.102) and expanding φ′(³(ℓ−1)
µ ) around ³

(ℓ−1)
µ§¿ results in:

EW∗(ℓ)φ′(³(ℓ−1)
µ )φ′(³(ℓ−1)

¿ ) = EW∗(ℓ)φ′(³(ℓ−1)
µ§¿ )EW∗(ℓ)φ̃′(³(ℓ−1)

¿ )

+
1

2
EW∗(ℓ)φ′′(p)φ̃′(³(ℓ−1)

¿ )³(ℓ−1)
¿

(X(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)

= EW∗(ℓ)φ′(³(ℓ−1)
µ§¿ )EW∗(ℓ)φ̃′(³(ℓ−1)

¿ ) +O
(X(ℓ−1)⊺

µ X
(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)
(5.110)

The result is obtained by now leveraging (5.92):

EW∗(ℓ)φ′(³(ℓ−1)
µ )φ̃′(³(ℓ−1)

¿ ) =

=
[
EW∗(ℓ)φ′(³(ℓ−1)

µ ) +O
(X(ℓ−1)⊺

µ X
(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)]
·
[
Ä(ℓ−1) +O

(∥X(ℓ−1)
¿ ∥2
d(ℓ−1)

− Ã(ℓ−1)
)]

+O
(X(ℓ−1)⊺

µ X
(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)

=
[
Ä(ℓ−1) +O

(∥X(ℓ−1)
µ ∥2
d(ℓ−1)

− Ã(ℓ−1)
)
+O

(X(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)]

·
[
Ä(ℓ−1) +O

(∥X(ℓ−1)
¿ ∥2
d(ℓ−1)

− Ã(ℓ−1)
)]

+O
(X(ℓ−1)⊺

µ X
(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)

= Ä(ℓ−1) 2 +O
(∥X(ℓ−1)

µ ∥2
d(ℓ−1)

− Ã(ℓ−1)
)
+O

((∥X(ℓ−1)
µ ∥2
d(ℓ−1)

− Ã(ℓ−1)
)(X(ℓ−1)⊺

µ X
(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

))

+O
((∥X(ℓ−1)

µ ∥2
d(ℓ−1)

− Ã(ℓ−1)
)(∥X(ℓ−1)

¿ ∥2
d(ℓ−1)

− Ã(ℓ−1)
))

+O
(X(ℓ−1)⊺

µ X
(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)

(5.111)

Finally, the proof of (5.94) is derived. Again, the i index is omitted for clarity. The quantityφ2(³
(ℓ−1)
µ )

is now expanded around ³
(ℓ−1)
µ§¿ :

EW∗(ℓ)φ2(³(ℓ−1)
µ )φ̃2(³(ℓ−1)

¿ )

= EW∗(ℓ)φ2(³
(ℓ−1)
µ§¿ )φ̃2(³(ℓ−1)

¿ ) + EW∗(ℓ)φ2(³(ℓ−1)
µ )φ̃2(³(ℓ−1)

¿ )− EW∗(ℓ)φ2(³
(ℓ−1)
µ§¿ )φ̃2(³(ℓ−1)

¿ )

= EW∗(ℓ)φ2(³
(ℓ−1)
µ§¿ )φ̃2(³(ℓ−1)

¿ )

+ 2EW∗(ℓ)

∫ 1

0

dsφ(³(ℓ−1)
µ,¿ (s))φ′(³(ℓ−1)

µ,¿ (s))φ̃2(³(ℓ−1)
¿ )³(ℓ−1)

¿

X
(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

(5.112)

where³
(ℓ−1)
µ,¿ (s) = ³

(ℓ−1)
µ§¿ +s³

(ℓ−1)
¿ X

(ℓ−1)⊺
µ X

(ℓ−1)
¿ /∥X(ℓ−1)

¿ ∥2. The objective is now to bound the integ-
ral on the right-hand side. Fubini’s theorem is applied to exchange the expectation and the integral,
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which can be done since it can be veri�ed that EW∗(ℓ)

∣∣∣φ(³(ℓ−1)
µ,¿ (s))φ′(³(ℓ−1)

µ,¿ (s))φ̃2(³
(ℓ−1)
¿ )³

(ℓ−1)
¿

∣∣∣ is
�nite. Indeed, exploiting the Lipshitzianity of φ this expression is the expectation of combinations

of powers of |³(ℓ−1)
¿ |, |³(ℓ−1)

µ§¿ | and
∣∣∣X

(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

∣∣∣ . Once the integrals are interchanged, integration
by parts is carried out with respect to ³

(ℓ−1)
¿ , recalling that ³

(ℓ−1)
µ§¿ is independent of it. The fact that

φ and φ̃ are both Lipschitz is then used leading to:

∣∣∣EW∗(ℓ)φ(³(ℓ−1)
µ,¿ (s))φ′(³(ℓ−1)

µ,¿ (s))φ̃2(³(ℓ−1)
¿ )³(ℓ−1)

¿

∣∣∣ =
∣∣∣∥X

(ℓ−1)
µ ∥2
d(ℓ−1)

EW∗(ℓ)

[
φ′(³(ℓ−1)

µ,¿ (s))φ′(³(ℓ−1)
µ,¿ (s))φ̃2(³(ℓ−1)

¿ )s
X

(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

+ φ(³(ℓ−1)
µ,¿ (s))φ′′(³(ℓ−1)

µ,¿ (s))φ̃2(³(ℓ−1)
¿ )s

X
(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

+ φ(³(ℓ−1)
µ,¿ (s))φ′(³(ℓ−1)

µ,¿ (s))2φ̃(³(ℓ−1)
¿ )φ̃′(³(ℓ−1)

¿ )
]∣∣∣

f sK̄4
∣∣∣∥X

(ℓ−1)
µ ∥2
d(ℓ−1)

∣∣∣
∣∣∣X

(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

∣∣∣EW∗(ℓ) [³(ℓ−1) 2
¿ ]

+ sK̄4
∣∣∣∥X

(ℓ−1)
µ ∥2
d(ℓ−1)

∣∣∣
∣∣∣X

(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

∣∣∣EW∗(ℓ)

∣∣∣³(ℓ−1) 2
¿

[
³
(ℓ−1)
µ§¿ + s³(ℓ−1)

¿

X
(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

]∣∣∣

+ 2K̄4
∣∣∣∥X

(ℓ−1)
µ ∥2
d(ℓ−1)

∣∣∣EW∗(ℓ)

∣∣∣³(ℓ−1)
¿

[
³
(ℓ−1)
µ§¿ + s³(ℓ−1)

¿

X
(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

]∣∣∣

f sK̄4
(∥X(ℓ−1)

µ ∥2
d(ℓ−1)

)(∥X(ℓ−1)
¿ ∥2
d(ℓ−1)

) ∣∣∣X
(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

∣∣∣

+ sK̄4
(∥X(ℓ−1)

µ ∥2
d(ℓ−1)

)(∥X(ℓ−1)
¿ ∥2
d(ℓ−1)

) ∣∣∣X
(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

∣∣∣
[(∥X(ℓ−1)

µ ∥2
d(ℓ−1)

) 1
2
+
(∥X(ℓ−1)

¿ ∥2
d(ℓ−1)

) 1
2
∣∣∣X

(ℓ−1)⊺
µ X

(ℓ−1)
¿

d(ℓ−1)

∣∣∣

+ s
√

(5!!)
(∥X(ℓ−1)

¿ ∥2
d(ℓ−1)

) 1
2
∣∣∣X

(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

∣∣∣
]

(5.113)

Corollary 15 and Remark 3 allow to determine that this term is O(1), and as a consequence the

dependence O
(

X
(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)
is obtained.

The expectation in the leading order term EW∗(ℓ)φ2(³
(ℓ−1)
µ§¿ )φ̃2(³

(ℓ−1)
¿ ) of (5.112) can be split for

the two terms due to the independence of³
(ℓ−1)
µ§¿ and³

(ℓ−1)
¿ , leading toEW∗(ℓ)φ2(³

(ℓ−1)
µ§¿ )EW∗(ℓ)φ̃2(³

(ℓ−1)
¿ ).
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Now an expansion of φ2(³
(ℓ−1)
µ§¿ ) around ³

(ℓ−1)
µ yields:

EW∗(ℓ)φ2(³
(ℓ−1)
µ§¿ ) = EW∗(ℓ)φ2(³(ℓ−1)

µ )− 2

∫ 1

0

dsEW∗(ℓ)φ(³(ℓ−1)
µ,¿ (s))φ′(³(ℓ−1)

µ,¿ (s))³(ℓ−1)
¿

X
(ℓ−1)⊺
µ X

(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2
(5.114)

with ³
(ℓ−1)
µ,¿ (s) de�ned as previously. Performing calculations in an analogous way to what we did

before it is found that the integral contributes again with the same order as the one above. Therefore:

EW∗(ℓ)φ2(³(ℓ−1)
µ )φ̃2(³(ℓ−1)

¿ ) = EW∗(ℓ)φ2(³(ℓ−1)
µ )EW∗(ℓ)φ̃2(³(ℓ−1)

¿ ) +O
(X(ℓ−1)⊺

µ X
(ℓ−1)
¿

∥X(ℓ−1)
¿ ∥2

)
. (5.115)

Lastly, when equation (5.91) is applied to both factors in the leading term on the right hand side, the
desired result is obtained.

5.4 Proof of Theorem 7

The approach used here is, as illustrated in 4.3. This method involves de�ning an interpolatingmodel
that integrates both the L + 1-layer network and its linearized counterpart. The linearized version

can be regarded as a generalized linear model with respect to its input signal X
(L−1)
µ . This dual

construction is applied to both the teacher and student networks:

S
(L)
tµ :=

√
1− t

a∗⊺
√
d(L)

φ
(W∗(L) X(L−1)

µ√
d(L−1)

)
+
√
tÄ(L−1)v

∗(L−1)⊺X
(L−1)
µ√

d(L−1)
+
√
tϵ(L−1)À∗(L−1)

µ

s
(L)
tµ :=

√
1− t

a⊺

√
d(L)

φ
(W(L) x

(L−1)
µ√

d(L−1)

)
+
√
tÄ(L−1)v

(L−1)⊺x
(L−1)
µ√

d(L−1)
+
√
tϵ(L−1)À(L−1)

µ

(5.116)

Here, the teacher’s interpolating model is determined by the weights from both the L+ 1-layer
network and the corresponding L-layer model. When t = 0, this model simpli�es to the linearized
version, and when t = 1, it reconstructs the full neural network. An analogous interpolation is ap-

plied to the student model. Additionally, an interpolating dataset is created, where Y
(L)
tµ is produced

using an output kernel dependent on the teacher weights from the interpolating model:

D(L)
n,t = {(X(0)

µ , Y
(L)
tµ )nµ=1} , Y

(L)
tµ ∼ Pout

(
· | S(L)

tµ

)
(5.117)

Let Θ∗(L) = {v∗(L−1), ξ∗(L−1), a∗,W∗(L) . . . ,W∗(1)} = {v∗(L−1), ξ∗(L−1), a∗,W∗(L),ω∗(L−1)}
denote the interpolating teacher parameters and de�ne the expectation with respect to the dataset
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and the parameters as:

ED(L)
n,t ,Θ

∗(L)(·) = E
X(0),Y

(L)
t ,Θ∗(L)(·) =

∫
(·)dP (Y

(L)
t ,X(0),Θ∗(L))

=

∫
(·)dP (Y

(L)
t ,X(0) | Θ∗(L))dP (Θ∗(L))

=

∫
(·)dP (Y

(L)
t | X(0),Θ∗(L))dP (X(0) | Θ∗(L))dP (Θ∗(L))

= EΘ∗(L)EX(0)

∫ n∏

µ=1

dY
(L)
tµ Pout(Y

(L)
tµ | S(L)

tµ )

= EW∗(1),···W∗(L−1),W∗(L),a∗,v∗(L−1),ξ∗(L−1)EX(0)

∫ n∏

µ=1

dY
(L)
tµ e

u
(L)
Ytµ

(Stµ)(·)

= Ea∗EW∗(1),···W∗(L−1),W∗(L),v∗(L−1),ξ∗(L−1),X(0)

∫ n∏

µ=1

dY
(L)
tµ e

u
(L)
Ytµ

(Stµ)(·)

=: Ea∗E\a∗(·) = E(t)(·)

(5.118)

Importantly, notice that if (·) does not explicitly depend onΘ∗(L) then ED(L)
n,t ,Θ

∗(L)(·) = ED(L)
n,t

(·).
Utilizing this notation, the partition function can be written as follows:

Z(L)
t = Z(L)

t (D(L)
n,t ) =

∫
DΘ(L) exp

[ n∑

µ=1

u
(L)
Ytµ

(stµ)
]

(5.119)

Exploiting this, the expectation of a function g with respect to the posterior distribution is

ïgð(L)t =

∫
DΘ(L) exp

[ n∑

µ=1

u
(L)
Ytµ

(stµ)
]
g (5.120)

Moreover, from the de�nition of the partition function Z(L)
t it follows that the interpolating free

entropy is

f̄ (L)
n (t) :=

1

n
E(t) logZ(L)

t (5.121)

At t = 0, the free entropy expression corresponds to the one of the linearized model, while at t = 1,
it represents the free entropy of the complete neural network:

f̄ (L)
n (0) = f̄ (L)

n , f̄ (L)
n (1) = f̄ (L−1)

n (5.122)

Since by the fundamental theorem of integral calculus f̄
(L)
n (1) − f̄

(L)
n (0) =

∫ 1

0
d
dt
f̄
(L)
n (t)dt, the goal

is to control the di�erence between these two cases by computing the derivative and ensuring uni-
form control over time, maintaining consistency with the theorem’s stated order. The derivative
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computation results in the following summation:

d

dt
f̄ (L)
n (t) = −A1 + A2 + A3 +B (5.123)

where

A1 :=
1

2n
E(t) logZ(L)

t

n∑

µ=1

u
′(L)
Ytµ

(Stµ)
a∗⊺

√
(1− t)d(L)

φ
(W∗(L)X(L−1)

µ√
d(L−1)

)

A2 :=
1

2n
E(t) logZ(L)

t

n∑

µ=1

u
′(L)
Ytµ

(Stµ)Ä
(L−1)v

∗(L−1)⊺X
(L−1)
µ√

td(L−1)

A3 :=
1

2n
E(t) logZ(L)

t

n∑

µ=1

u
′(L)
Ytµ

(Stµ)

√
ϵ(L−1)

t
À∗(L−1)
µ

B :=
1

n
E(t)

〈 n∑

µ=1

u
′(L)
Ytµ

(stµ)
ds

(L)
tµ

dt

〉
t

(5.124)

Since the proof is focused solely on the case of the last layer, the notation is be simpli�ed by
omitting the superscript (L) wherever possible. The relevant quantities and notations are be rede�ned
accordingly as follows:

Stµ := S
(L)
tµ , stµ := s

(L)
tµ , Ytµ := Y

(L)
tµ ,

Dn,t := D(L)
n,t , Zt := Z(L)

t , uYtµ := u
(L)
Ytµ

,

Θ∗ := Θ∗(L) , Θ := Θ(L) , ï·ðt := ï·ð(L)t

(5.125)

Additionally, a new notation for the input of the activation function is introduced for ease:

α(L−1)
µ =

W∗(L)X(L−1)
µ√

d(L−1)
(5.126)

Their covariance conditioned on X(L−1), which equates to their covariance when considering the
expectation with respect to the weights, is given by:

1

d(L)
EW∗(L) [α(L)⊺

µ α(L)
¿ ] =

1

d(L)
EW∗(L) [α(L)⊺

µ α(L)
¿ | X(L−1)]

:=
1

d(L)
EW∗(L)

(W∗(L)X(L−1)
µ )⊺√

d(L−1)

W∗(L)X(L−1)
¿√

d(L−1)
=

X
(L−1)
µ X

(L−1)
¿

d(L−1)

(5.127)

Notice how the conditioning is needed only on the speci�c instances µ and ¿. For brevity and clarity,
the conditioning over speci�c instances is denoted as conditioning over the entire dataset. This
approach simpli�es the expression while maintaining the intended meaning regarding covariance
under the expectation with respect to the weights.
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5.4.1 B term

Lemma 19 (B term). B = 0.

Proof. The random variable appearing in the Gibbs brackets in (4.33) is a function of the dataset
through Ytµ, and of a sample from the posterior via stµ. Denote this function g(Yt,X

(0),Θ) =

g(Dn,t,Θ) =
∑n

µ=1 u
′
Ytµ

(stµ)
dstµ
dt

. The Nishimori identity can then be applied to eliminate the brack-

ets, stµ with the ground truth version Stµ. Indicating the t-derivative as Ṡ := dS
dt
:

B =
1

n
E(t)

〈 n∑

µ=1

u′
Ytµ

(stµ)
dstµ
dt

〉
t

=
1

n
EDn,t,Θ∗

〈
g(Dn,t,Θ)

〉
t
=

1

n
EDn,t

〈
g(Dn,t,Θ)

〉
t

=
1

n
EDn,tEΘ|Dn,tg(Dn,t,Θ) =

1

n
EDn,tEΘ∗|Dn,tg(Dn,t,Θ

∗)

=
1

n
EDn,t,Θ∗g(Dn,t,Θ

∗) =
1

n
E(t)

n∑

µ=1

u′
Ytµ

(Stµ)Ṡtµ

(5.128)

where in the second line EDn,t,Θ∗(· · · ) = EDn,t(· · · ) since
〈
g(Dn,t,Θ)

〉
t
does not depend explicitly

on Θ∗. Then, using the tower rule for expectations as shown below and applying Lemma 16, it can
be concluded that the B term is zero.

B =
1

n
E(t)

n∑

µ=1

u′
Ytµ

(Stµ)Ṡtµ =
1

n

n∑

µ=1

E(t)

[
E(t)[u

′
Ytµ

(Stµ) | Stµ]Ṡtµ

]
(5.129)

5.4.2 A11 o�-diagonal term

As mentioned in 4.3, the term A1 is divided into two components, A1 = A11 + A12 where

A11 :=
1

2n
√
1− t

E(t) logZt

n∑

µ=1

u′
Ytµ

(Stµ)
( a∗⊺
√
d(L)

φ
(W∗(L)X(L−1)

µ√
d(L−1)

)
− Ä(L−1)a∗⊺W∗(L)X(L−1)

µ√
d(L)d(L−1)

)
,

(5.130)

A12 :=
1

2n
√
1− t

E(t) logZt

n∑

µ=1

u′
Ytµ

(Stµ)
Ä(L−1)a∗⊺W∗(L)X(L−1)

µ√
d(L)d(L−1)

(5.131)

To simplify these terms, Gaussian integration by parts is applied. In the case of A12, an integration
by parts with respect to the weightsW∗(L) is performed:

A12 =
Ä(L−1)

2n
E(t) logZt

n∑

µ,¿=1

Uµ¿

a∗⊺(a∗ ◦ φ′
(

W∗(L)X
(L−1)
µ√

d(L−1)

))

d(L)
X

(L−1)⊺
µ X

(L−1)
¿

d(L−1)
(5.132)
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where the variables Uµ¿ are de�ned in 16 and ◦ is used to denote the Hadamard product. Referring
back to 4.3, since the weights matrix appears inside the nonlinearity function in A11, integration is
carried out with respect to the readout vector a∗:

A11 =
1

2n
E(t) logZt

n∑

µ,¿=1

Uµ¿

[φ(α(L−1)
µ )⊺φ(α

(L−1)
¿ )− Ä(L−1)α

(L−1)⊺
µ φ(α

(L−1)
¿ )

d(L−1)

]
(5.133)

The o�-diagonal terms µ ̸= ¿ are analyzed �rst.

Lemma 20 (O�-diagonal part of A11). The following relation holds:

Aoff
11 :=

1

n
E(t) logZt

n∑

µ,¿=1

Uµ¿

[φ(α(L−1)
µ )⊺φ(α

(L−1)
¿ )− Ä(L−1)α

(L−1)⊺
µ φ(α

(L−1)
¿ )

d(L−1)

]
=

O
(√(

1 +
n

d(L−1)

)( n

d(L)
+

n

d(L−1) 3/2

)) (5.134)

Proof. Exploiting the properties presented in Lemma 16, it can be observed that for any smooth

function F (α
(L−1)
µ ,α

(L−1)
¿ ) it holds

E\a∗Uµ¿F (α(L−1)
µ ,α(L−1)

¿ ) = E\a∗
[
E\a∗ [Uµ¿ | W∗(L),v∗(L), ξ∗(L),X(L−1)]F (α(L−1)

µ ,α(L−1)
¿ )

]
= 0

(5.135)

The expression of Aoff
11 can then be modi�ed without altering its value as long as the readout

vector a∗ remains unchanged. De�ning fn := logZt/n, this implies that it is possible to center this
term with its mean without changing the value of Aoff

11 :

Aoff
11 = E\a∗(fn − E\a∗fn)

∑

µ ̸=¿

Uµ¿

[φ(α(L−1)
µ )⊺φ(α

(L−1)
¿ )− Ä(L−1)α

(L−1)⊺
µ φ(α

(L−1)
¿ )

d(L)

]
(5.136)

For simplicity, the terms u′
Ytµ

(Stµ) and φ(α
(L−1)
µ ) are abbreviated as u′

µ and ϕ
(L−1)
µ . Applying now

Cauchy-Schwartz’s inequality to the equation previous equation we obtain yields:

(Aoff
11 )

2 f V\a∗ [fn]
∑

µ ̸=¿

∑

¼ ̸=¸

E\a∗Uµ¿U¼¸

([ϕ(L−1)⊺
µ ϕ

(L−1)
¿ − Ä(L−1)α

(L−1)⊺
µ ϕ

(L−1)
¿

d(L)

]

·
[ϕ(L−1)⊺

¼ ϕ
(L−1)
¸ − Ä(L−1)α

(L−1)⊺
¼ ϕ

(L−1)
¸

d(L)

])
(5.137)
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Utilizing the conditional independence of the responses Yt and leveraging the properties estab-
lished in Lemma 16, terms where indices di�er from µ = ¼ and ¿ = ¸, or µ = ¸ and ¿ = ¼, do not
add to the summation. Both cases contribute equally.

(Aoff
11 )

2 f V\a∗ [fn]
2

d(L) 2

∑

µ ̸=¿

E\a∗(u′
µu

′
¿)

2

d(L)∑

i,j=1

[
φ
(L−1)
µi φ

(L−1)
¿i φ

(L−1)
µj φ

(L−1)
¿j

− 2Ä(L−1)³
(L−1)
µi φ

(L−1)
¿i φ

(L−1)
µj φ

(L−1)
¿j + Ä(L−1) 2³

(L−1)
µi φ

(L−1)
¿i ³

(L−1)
µj φ

(L−1)
¿j

]
(5.138)

Here, the double summation over i, j is derived from the four scalar products appearing in (5.137).
Following this, Lemma 16 provides a way to limit the expectation of U2

µ¿ for �xed Stµ, St¿ . Moreover,

the probability space is divided into two regions de�ned by the events A
(L−1)
¶ and Ā¶

(L−1)
. Here, the

event AL−1
¶ forX(L−1) is de�ned as in Lemma18 for some parameter ¶. The indicator function I(·) is

used to characterize these events. The aim is then to compute the contribution C2
¶ and C2

¶̄
to (5.138)

corresponding to the events A
(L−1)
¶ and Ā¶

(L−1)
respectively. Hence:

(Aoff
11 )

2 f V\a∗ [fn]
2

d(L) 2

∑

µ ̸=¿

E\a∗(u′
µu

′
¿)

2(I(A
(L−1)
¶ ) + I(Ā¶

(L−1)
))

d(L)∑

i,j=1

[
φ
(L−1)
µi φ

(L−1)
¿i φ

(L−1)
µj φ

(L−1)
¿j

− 2Ä(L−1)³
(L−1)
µi φ

(L−1)
¿i φ

(L−1)
µj φ

(L−1)
¿j + Ä(L−1) 2³

(L−1)
µi φ

(L−1)
¿i ³

(L−1)
µj φ

(L−1)
¿j

]
= C2

¶ + C2
¶̄

(5.139)

The estimation of (5.139) on I(A
(L−1)
¶ ) is �rst addressed, namely, the computation of C2

¶ . By
applying Lemma 18, particularly equation (5.92), the �rst term in (5.139) can be rewritten as follows:

E\a∗I(A
(L−1)
¶ )

d(L)∑

i ̸=j

φ(³
(L−1)
µi )φ(³

(L−1)
¿i )φ(³

(L−1)
µj )φ(³

(L−1)
¿j )

= d(L)(d(L) − 1)EX(L−1)

(
EW∗(L) [I(A

(L−1)
¶ )φ(³

(L−1)
µ1 )φ(³

(L−1)
¿1 )]

)2

= d(L)(d(L) − 1)EI(A
(L−1)
¶ )

[
Ä(L−1) 4

(X(L−1)⊺
µ X

(L−1)
¿

d(L−1)

)2

+O
(X(L−1)⊺

µ X
(L−1)
¿

d(L−1)

(X(L−1)⊺
µ X

(L−1)
¿

∥X(L−1)
¿ ∥2

)2)

+O
((X(L−1)⊺

µ X
(L−1)
¿

d(L−1)

)2X
(L−1)⊺
µ X

(L−1)
¿

∥X(L−1)
¿ ∥2

)
+O

((X(L−1)⊺
µ X

(L−1)
¿

d(L−1)

)2(∥X(L−1)
µ ∥2
d(L−1)

− Ã(L−1)
))]

(5.140)

Exploiting that the case X(L−1) ∈ A
(L−1)
¶ is considered and thus what observed in Remark 3, and

applying Corollary 15, it can then be concluded that:

E\a∗I(A
(L−1)
¶ )

d(L)∑

i ̸=j,1

φ(³
(L−1)
µi )φ(³

(L−1)
¿i )φ(³

(L−1)
µj )φ(³

(L−1)
¿j ) = d(L)(d(L) − 1)

[Ä(L−1) 4

d(L−1)
+O

( 1

d(L−1) 3/2

)]

(5.141)
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The second term of equation (5.139) is now considered. The subsequent result is derived upon
the application of Lemma 18.

Ä(L−1)
EX(L−1)EW∗(L)I(A

(L−1)
¶ )

d(L)∑

i ̸=j

³
(L−1)
µi φ

(L−1)
¿i φ

(L−1)
µj φ

(L−1)
¿j

= Ä(L−1)d(L)(d(L) − 1)EX(L−1)EW∗(L) [I(A
(L−1)
¶ )³

(L−1)
µ1 φ

(L−1)
¿1 ]EW∗(L) [I(A

(L−1)
¶ )φ

(L−1)
µ1 φ

(L−1)
¿1 ]

= Ä(L−1)d(L)(d(L) − 1)EX(L−1)

[
I(A

(L−1)
¶ )

[X(L−1)⊺
µ X

(L−1)
¿

d(L−1)
+O

((∥X(L−1)
µ ∥2
d(L−1)

− Ã(L−1)
)X(L−1)⊺

µ X
(L−1)
¿

d(L−1)

)

+O
((X(L−1)⊺

µ X
(L−1)
¿

∥X(L−1)
¿ ∥2

)X(L−1)⊺
µ X

(L−1)
¿

d(L−1)

)
+O

((X(L−1)⊺
µ X

(L−1)
¿

∥X(L−1)
¿ ∥2

)2)]

·
[
Ä(L−1)X

(L−1)⊺
µ X

(L−1)
¿

d(L−1)
+O

((∥X(L−1)
µ ∥2
d(L−1)

− Ã(L−1)
)X(L−1)⊺

µ X
(L−1)
¿

d(L−1)

)

+O
((X(L−1)⊺

µ X
(L−1)
¿

∥X(L−1)
¿ ∥2

)X(L−1)⊺
µ X

(L−1)
¿

d(L−1)

)
+O

((X(L−1)⊺
µ X

(L−1)
¿

∥X(L−1)
¿ ∥2

)2)]]

(5.142)

Applying Remark 3 since the contribution associated toA
(L−1)
¶ is considered and exploiting Corollary

15 yields:

Ä(L−1)
EX(L−1)EW∗(L)I(A

(L−1)
¶ )

d(L)∑

i ̸=j

³
(L−1)
µi φ

(L−1)
¿i φ

(L−1)
µj φ

(L−1)
¿j = d(L)(d(L) − 1)

[Ä(L−1) 4

d(L−1)
+O

( 1

d(L−1) 3/2

)]

(5.143)

The last term in (5.139) is now addressed. Integration by parts is �rst applied, and Lemma 18

is then used. The computation of the scaling is performed remembering that the event A
(L−1)
¶ is
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considered, and using Remark 3.

Ä(L−1) 2
EX(L−1)EW∗(L)I(A

(L−1)
¶ )

d(L)∑

i ̸=j

³
(L−1)
µi φ

(L−1)
¿i ³

(L−1)
µj φ

(L−1)
¿j

= Ä(L−1) 2d(L)(d(L) − 1)EX(L−1)EW∗(L) [I(A
(L−1)
¶ )³

(L−1)
µ1 φ

(L−1)
¿1 ]EW∗(L) [I(A

(L−1)
¶ )³

(L−1)
µ1 φ

(L−1)
¿1 ]

= Ä(L−1) 2d(L)(d(L) − 1)EX(L−1)

[
I(A

(L−1)
¶ )

[
Ä(L−1)X

(L−1)⊺
µ X

(L−1)
¿

d(L−1)

+O
((∥X(L−1)

µ ∥2
d(L−1)

− Ã(L−1)
)X(L−1)⊺

µ X
(L−1)
¿

d(L−1)

)

+O
((X(L−1)⊺

µ X
(L−1)
¿

∥X(L−1)
¿ ∥2

)X(L−1)⊺
µ X

(L−1)
¿

d(L−1)

)
+O

((X(L−1)⊺
µ X

(L−1)
¿

∥X(L−1)
¿ ∥2

)2)]2]

= d(L)(d(L) − 1)
[Ä(L−1) 4

d(L−1)
+O

( 1

d(L−1) 3/2

)]]

(5.144)

It can be observed that in the estimation of C2
¶ in equation (5.139) the leading orders of the o�-

diagonal elements, namely i ̸= j, balance each other. This results in a rate for the o�-diagonal
components O(1/d(L−1) 3/2) for the o�-diagonal components. Inserting what discussed in equation
(5.139) implies that there exists a constant K such that:

C2
¶ f V\a∗ [fn]

2K

d(L) 2

∑

µ ̸=¿

E\a∗

{
I(A

(L−1)
¶ )

d(L)∑

i=1

[
φ
(L−1) 2
µi φ

(L−1) 2
¿i

− 2Ä(L−1)³
(L−1)
µi φ

(L−1) 2
¿i φ

(L−1)
µj + Ä(L−1) 2³

(L−1) 2
µi φ

(L−1) 2
¿i

]
+O

( d(L) 2

d(L−1) 3/2

)}
(5.145)

Considering now the diagonal terms, applying again Lemma 18 to each one of the summation terms

remembering that the caseX(L−1) ∈ A
(L−1)
¶ is considered leads to:

C2
¶ f V\a∗ [fn]

2K

d(ℓ) 2

∑

µ ̸=¿

[
O(d(ℓ)) +O

( d(ℓ) 2

d(ℓ−1) 3/2

)]
(5.146)

Consider now the termC2
¶̄
corresponding to the set Ā¶

(L−1)
. The objective is to provide an estimation

of the following term’s order:

C2
¶̄ := V\a∗ [fn]

2

d(L) 2

∑

µ ̸=¿

E\a∗(u′
µu

′
¿)

2
I(Ā¶

(L−1)
)

d(L)∑

i,j=1

[
φ
(L−1)
µi φ

(L−1)
¿i φ

(L−1)
µj φ

(L−1)
¿j

− 2Ä(L−1)³
(L−1)
µi φ

(L−1)
¿i φ

(L−1)
µj φ

(L−1)
¿j + Ä(L−1) 2³

(L−1)
µi φ

(L−1)
¿i ³

(L−1)
µj φ

(L−1)
¿j

]
(5.147)
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Again Lemma 16 then allows to bound E[U2
µ¿ | Stµ, St¿ ] by a constant. Thus the following term

needs to be evaluated:

E\a∗I(Ā¶
(L−1)

)
[
φ
(L−1)
µi φ

(L−1)
¿i φ

(L−1)
µj φ

(L−1)
¿j − 2Ä(L−1)³

(L−1)
µi φ

(L−1)
¿i φ

(L−1)
µj φ

(L−1)
¿j

+ Ä(L−1) 2³
(L−1)
µi φ

(L−1)
¿i ³

(L−1)
µj φ

(L−1)
¿j

]
f 3K̄2 max{K̄2, Ä(L−1) 2}E\a∗I(Ā¶)

[∣∣∣³(L−1)
µi ³

(L−1)
¿i ³

(L−1)
µj ³

(L−1)
¿j

∣∣∣
]

(5.148)

To achieve this, the existence and boundedness of any moment of ³
(ℓ)
µi , ℓ f L are leveraged. Speci�c-

ally, for any power 2k, exploiting �rst the Gaussianity of the weights and then Jensen’s inequality:

E³
(ℓ) 2k
µi f CEX(ℓ−1)

(∥X(ℓ−1)µ∥2
d(ℓ−1)

)2k

= CEX(ℓ−1)

(∑d(ℓ−1)

i=1 φ2
(

W
∗(ℓ−1)
i X(ℓ−2)µ

d(ℓ−2)

)

d(ℓ−1)

)2k

f CK̄4k
EX(ℓ−1)

(∑d(ℓ−1)

i=1

(
W

∗(ℓ−1)
i X

(ℓ−2)
µ

d(ℓ−2)

)2

d(ℓ−1)

)2k

= CK̄4k
EX(ℓ−2),W∗(ℓ−1)

( 1

d(ℓ−1)

)2k( d(ℓ−1)∑

i=1

(W∗(ℓ−1)
i X

(ℓ−2)
µ

d(ℓ−2)

)2)2k

f CK̄4k
EX(ℓ−2),W∗(ℓ−1)

1

d(ℓ−1)

d(ℓ−1)∑

i=1

(W∗(ℓ−1)
i X

(ℓ−2)
µ

d(ℓ−2)

)4k

f C ′K̄4k
EX(ℓ−2)

(∥X(ℓ−2)
µ ∥2
d(ℓ−2)

)4k

f ... f C ′′K̄8k
EX(ℓ−3)

(∥X(ℓ−3)
µ ∥2
d(ℓ−3)

)8k

f ... f C̄K̄2ℓk
EX(0)

(∥X(0)
µ ∥2
d(0)

)2ℓk

f C̃

(5.149)

for some constant C̃ . Thus, remembering that E\a∗I(Ā¶
(L−1)

) = nE\a∗I(Ā
(L−1)
¶µ ) and through the

concentration Propositions 13 and 14, equation (5.148) can be reduced to

E\a∗I(Ā¶
(L−1)

)
[
φ
(L−1)
µi φ

(L−1)
¿i φ

(L−1)
µj φ

(L−1)
¿j − 2Ä(L−1)³

(L−1)
µi φ

(L−1)
¿i φ

(L−1)
µj φ

(L−1)
¿j

+ Ä(L−1) 2³
(L−1)
µi φ

(L−1)
¿i ³

(L−1)
µj φ

(L−1)
¿j

]
f 4Ce−d

(L)C′¶2
(5.150)

This term becomes negligible and speci�cally scales lower than O
(

1
d(L) k

)
for any chosen exponent

k if ¶2 g k lnd(L)

C′d(L) is selected. Only the contribution given by C2
¶ (5.146) is then considered.

The proof of the statement is completed once the residual expectation over the readout vector a∗
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is computed, utilizing the assumption H3):

|Ea∗Aoff
11 | f Ea∗

√
(Aoff

11 )
2 (5.151)

f
√
Ea∗V\a∗ [fn]O

( n2

d(L)
+

n2

d(L−1) 3/2

)
= O

(√(
1 +

n

d(L−1)

)( n

d(L)
+

n

d(L−1) 3/2

))

(5.152)

5.4.3 A3 − Adiag
11 term

From Lemma 20 it can be noticed that the term A11 can be rewritten as

A11 =
1

2n
E(t) logZt

n∑

µ=1

P ′′
out(Ytµ | Stµ)

Pout(Ytµ | Stµ)

[∥φ(α(L−1)
µ )∥2 − Ä(L−1)α

(L−1)⊺
µ φ(α

(L−1)
µ )

d(L)

]

+O
(√(

1 +
n

d(L−1)

)( n

d(L)
+

n

d(L−1) 3/2

)) (5.153)

Considering now the term A3, as mentioned in 4.3, Gaussian integration by parts is performed with

respect to the variables À
∗(L−1)
µ :

A3 =
ϵ(L−1)

2n
E(t) logZt

n∑

µ=1

(
(u′

Ytµ
(Stµ))

2 + u′′
Ytµ

(Stµ)
)
=

ϵ(L−1)

2n
E(t) logZt

n∑

µ=1

P ′′
out(Ytµ | Stµ)

Pout(Ytµ | Stµ)
.

(5.154)

Computing its di�erence with respect to A11 leads to

A3 − A11 =
1

2n
E(t) logZt

n∑

µ=1

P ′′
out(Ytµ | Stµ)

Pout(Ytµ | Stµ)

[
ϵ(L−1) − ∥φ(α(L−1)

µ )∥2 − Ä(L−1)α
(L−1)⊺
µ φ(α

(L−1)
µ )

d(L)

]

+O
(√(

1 +
n

d(L−1)

)( n

d(L)
+

n

d(L−1) 3/2

))

(5.155)

The order of the remaining term is estimated by the following Lemma.

Lemma 21 (A3 − Adiag
11 term). The following relation holds:

A3 − Adiag
11 :=

1

2n
E(t) logZt

n∑

µ=1

P ′′
out(Ytµ | Stµ)

Pout(Ytµ | Stµ)

[
ϵ(L−1) − ∥φ(α(L−1)

µ )∥2 − Ä(L−1)α
(L−1)⊺
µ φ(α

(L−1)
µ )

d(L)

]

= O
(√(

1 +
n

d(L−1)

)( 1

d(L)
+

1

d(L−1) 1/2

))

(5.156)
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Proof. As a �rst step, the new quantity C is introduced:

C :=
1

n
E\a∗ logZt

n∑

µ=1

P ′′
out(Ytµ | Stµ)

Pout(Ytµ | Stµ)

[
ϵ(L−1) − ∥φ(α(L−1)

µ )∥2 − Ä(L−1)α
(L−1)⊺
µ φ(α

(L−1)
µ )

d(L)

]
(5.157)

Exploiting the properties illustrated in Lemma 16, it can be recognized that

E\a∗

[P ′′
out(Ytµ | Stµ)

Pout(Ytµ | Stµ)
| W∗(L),v∗(L−1), À∗(L−1)

µ ,X(L−1)
µ

]
= 0 (5.158)

This again implies that the expression of C can be modi�ed without causing any change to its value.
Similar to the approach in 5.4.2, fn = logZt/n can be centered around its mean value. Using Cauchy-
Schwartz’s inequality then results in:

C2 f V\a∗ [fn]
n∑

µ,¿=1

E\a∗

[
E\a∗

[P ′′
out(Ytµ | Stµ)

Pout(Ytµ | Stµ)

P ′′
out(Yt¿ | St¿)

Pout(Yt¿ | St¿)
| W∗(L),v∗(L−1), À∗(L−1)

µ , À∗(L−1)
¿ ,X(L−1)

µ ,X(L−1)
¿

]

·
(
ϵ(L−1) − ∥φ(α(L−1)

µ )∥2 − Ä(L−1)α
(L−1)⊺
µ φ(α

(L−1)
µ )

d(L)

)(
ϵ(L−1) − ∥φ(α(L−1)

¿ )∥2 − Ä(L−1)α
(L−1)⊺
¿ φ(α

(L−1)
¿ )

d(L)

)]

(5.159)

Exploiting (5.158), it can be observed that only the terms characterized by µ = ¿ contribute to the
summation. Using again Lemma 16 and speci�cally (5.71), C2 reads:

C2 f V\a∗ [fn]C(f)nEX(L−1),W∗(L)

(
ϵ(L−1) − ∥φ(α(L−1)

1 )∥2 − Ä(L−1)α
(L−1)⊺
1 φ(α

(L−1)
1 )

d(L)

)2

= V\a∗ [fn]C(f)n
[
ϵ(L−1) 2 − 2ϵ(L−1)

EX(L−1),W∗(L)

(∥φ(α(L−1)
1 )∥2 − Ä(L−1)α

(L−1)⊺
1 φ(α

(L−1)
1 )

d(L)

)

+ EX(L−1),W∗(L)

(∥φ(α(L−1)
1 )∥2 − Ä(L−1)α

(L−1)⊺
1 φ(α

(L−1)
1 )

d(L)

)2]

(5.160)

To compute the terms ³
(L−1)
1i φ(³

(L−1)
1i ) an integration by parts is performed and then Lemma 18 is
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exploited.

EW∗(L)³
(L−1)
1i φ(³

(L−1)
1i ) = EW∗(L)φ′(³(L−1)

1i )
∥X(L−1)

1 ∥2
d(L−1)

=
∥X(L−1)

1 ∥2
d(L−1)

(
Ä(L−1) +O

(∥X(L−1)
1 ∥2
d(L−1)

− EX(L−1)

∥X(L−1)
1 ∥2
d(L−1)

))

=
∥X(L−1)

1 ∥2
d(L−1)

Ä(L−1) +O
(∥X(L−1)

1 ∥2
d(L−1)

− EX(L−1)

∥X(L−1)
1 ∥2
d(L−1)

)

E
2
W∗(L)³

(L−1)
1i φ(³

(L−1)
1i ) = E

2
W∗(L)φ

′(³(L−1)
1i )

∥X(L−1)
1 ∥4

d(L−1) 2

=
∥X(L−1)

1 ∥4
d(L−1) 2

Ä(L−1) 2 +O
(∥X(L−1)

1 ∥2
d(L−1)

− EX(L−1)

∥X(L−1)
1 ∥2
d(L−1)

)

(5.161)

The terms in (5.160) can then be estimated leveraging Lemma 18:

EX(L−1),W∗(L)

[∥φ(α(L−1)
1 )∥2 − Ä(L−1)α

(L−1)⊺
1 φ(α

(L−1)
1 )

d(L)

]

= EN (0,Ã(L−1))φ
2 − Ã(L−1)Ä(L−1) 2 + EX(L−1)

[
O
(∥X(L−1)

1 ∥2
d(L−1)

− EX(L−1)

∥X(L−1)
1 ∥2
d(L−1)

)]

= ϵ(L−1) +O(d(L−1) −1/2)

(5.162)

EX(L−1),W∗(L)

[∥φ(α(L−1)
1 )∥2 − Ä(L−1)α

(L−1)⊺
1 φ(α

(L−1)
1 )

d(L)

]2

=
1

d(L)
EX(L−1),W∗(L)

(
φ4(³

(L−1)
11 )− 2Ä(L−1)φ3(³

(L−1)
11 )³

(L−1)
11 + Ä(L−1) 2³

(L−1) 2
11 φ2(³

(L−1)
11 )

)

+
d(L) − 1

d(L)
EX(L−1)

(
E

2
W∗(L)φ

2(³
(L−1)
11 )

− 2Ä(L−1)
EW∗(L)φ2(³

(L−1)
11 )EW∗(L)φ(³

(L−1)
11 )³

(L−1)
11 + Ä(L−1) 2

E
2
W∗(L)φ(³

(L−1)
11 )³

(L−1)
11

)

= ϵ(L−1) 2 +O(d(L) −1) +O(d(L−1) −1/2)

(5.163)

Plugging these results back in (5.160) results in

EX(L−1),W∗(L)

(
ϵ(L−1) − ∥φ(α(L−1)

1 )∥2 − Ä(L−1)α
(L−1)⊺
1 φ(α

(L−1)
1 )

d(L)

)2

= O(d(L) −1) +O(d(L−1) −1/2)

(5.164)

Incorporating the estimate derived in (5.164) into (5.160), along with the assumed variance order in
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H3), and �nally addressing the expectation with respect to the readout vector, results in:

|A3 − Adiag
11 | f Ea∗

√
C2

f

√

Ea∗V\a∗ [fn]C(f)nEX(L−1),W∗(L)

(
ϵ(L−1) − ∥φ(α(L−1)

1 )∥2 − Ä(L−1)α
(L−1)⊺
1 φ(α

(L−1)
1 )

d(L)

)2

= O
(√(

1 +
n

d(L−1)

)( 1

d(L)
+

1

d(L−1) 1/2

))

(5.165)

5.4.4 A12 − A2 term

Now the aim is to study the di�erenceA2−A12 as anticipated in 4.3. Applying Gaussian integration
by parts with respect to v∗(L) to A2 leads to:

A2 =
Ä(L−1) 2

2n
E(t) logZt

n∑

µ,¿=1

Uµ¿
X

(L−1)⊺
µ X

(L−1)
¿

d(L−1) (5.166)

The estimate is provided by the following Lemma:

Lemma 22. [A12 − A2 term] The following holds:

A12 − A2 =
Ä(L−1)

2n
E(t) logZt

n∑

µ,¿=1

Uµ¿
X

(L−1)⊺
µ X

(L−1)
¿

d(L−1)

[a∗⊺(a∗ ◦ φ′(α(L−1)
¿ ))

d(L)
− Ä(L−1)

]
=

O
(√(

1 +
n

d(L−1)

)( n

d(L−1)d(L)
+

n

d(L−1) 3/2

)) (5.167)

Proof. Similarly to what done in 21, �xing the readout vector de�ne

C :=
1

n
E\a∗ logZt

n∑

µ,¿=1

Uµ¿
X

(L−1)⊺
µ X

(L−1)
¿

d(L−1)

[a∗⊺(a∗ ◦ φ′(α(L−1)
¿ ))

d(L)
− Ä(L−1)

]
(5.168)

As in 20 and 21, fn = logZt/n can be centered around its mean changing the expression of C but
not its value. Consequently, Cauchy-Schwartz’s inequality can be applied, resulting in:

C2 f V\a∗ [fn]E\a∗

n∑

µ,¿=1

n∑

¼,¸=1

Uµ¿U¼¸
X

(L−1)⊺
µ X

(L−1)
¿

d(L−1)

[a∗⊺(a∗ ◦ φ′(α(L−1)
¿ ))

d(L)
− Ä(L−1)

]

·X
(L−1)⊺
¼ X

(L−1)
¸

d(L−1)

[a∗⊺(a∗ ◦ φ′(α(L−1)
¸ ))

d(L)
− Ä(L−1)

]
(5.169)
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Exploiting the conditional independence of the Uµ¿ terms described in Lemma 16, the only contrib-
uting components to the summation are those where µ = ¼ and ¿ = ¸, µ = ¸ and ¿ = ¼, or
µ = ¿ = ¼ = ¸. All other terms, where the indices do not match in these ways, contribute zero.
In the contributing cases, due to Lemma 16, E[U2

µ¿ | Stµ, St¿ ] can be bounded, hence, for a suitable
constant K then, (5.169) becomes

C2 f KV\a∗ [fn]E\a∗

n∑

µ,¿=1

(X(L−1)⊺
µ X

(L−1)
¿

d(L−1)

)2[a∗⊺(a∗ ◦ φ′(α(L−1)
¿ ))

d(L)
− Ä(L−1)

]2
(5.170)

Developing the square and taking the expectation of φ′ with respect to the weights W∗(L) through
Lemma 18 leads to

C2 f K ′
V\a∗ [fn]

n∑

µ,¿=1

E
X

(L−1)
µ ,X

(L−1)
¿

(X(L−1)⊺
µ X

(L−1)
¿

d(L−1)

)2[(∥a∗∥2
d(L)

− 1
)2

+O
(∥X(L−1)

¿ ∥2
d(L−1)

− EX(L−1)

∥X(L−1)
¿ ∥2
d(L−1)

)(∥a∗∥4
d(L) 2

+
∥a∗∥2
d(L)

)
+

d(L)∑

i=1

a4
i

d(L) 2
VW∗(L)φ′(³(L−1)

¿i )
]

(5.171)

where K ′ is a positive constant. Calling D the double sum, |A2 − A12| is then estimated as:

|A2 − A12| f K ′′
Ea∗

√
V\a∗ [fn]

√
D f K ′′

√
Ea∗V\a∗ [fn]Ea∗D

= O
(√( 1

n
+

1

d(L−1)

)( n2

d(L−1)d(L)
+

n2

d(L−1) 3/2

)) (5.172)

When all the Lemmas 20, 21 and 22 are collectively considered, it can be observed that the time
derivative of the interpolating free entropy is constrained as follows:

d

dt
f̄n(t) = O

(√(
1 +

n

d(L−1)

)( n

d(L)
+

n

d(L−1) 3/2

))

︸ ︷︷ ︸
Aoff

11

+O
(√(

1 +
n

d(L−1)

)( 1

d(L)
+

1

d(L−1) 1/2

))

︸ ︷︷ ︸
A3−Adiag

11

+O
(√(

1 +
n

d(L−1)

)( n

d(L−1)d(L)
+

n

d(L−1) 3/2

))

︸ ︷︷ ︸
A12−A2

= O
(√(

1 +
n

d(L−1)

)( n

d(L)
+

n

d(L−1) 3/2
+

1

d(L−1) 1/2

))

(5.173)

All the bounds found are uniform in t ∈ [0, 1]. This signi�es the completion of the proof of Theorem
7.
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5.5 Proof of Corollary 9

The proof of Corollary 9 exploits the proof of Theorem 9 to be carried out. Notably, although this
result is a corollary from a mathematical perspective, it holds signi�cant importance in our investig-
ation. Given that the ultimate goal is to establish an equivalence between the original network and
the generalized linear model from an information-theoretic perspective, this corollary is crucial as
it demonstrates this equivalence between the L + 1-layer neural network and the model obtained
after linearization. The statement of the corollary is reiterated here prior to presenting the proof.

Corollary 23 (One step reduction mutual information equivalence). Assuming the same hypotheses

as in Theorem 7, the following statement is obtained:

| 1
n
I(k)n (θ∗(k);D(k)

n )− 1

n
I(k−1)
n (θ∗(k−1);D(k−1)

n )| = O
(√(

1 +
n

d(k−1)

)( n

d(k)
+

n

d(k−1) 3/2
+

1√
d(k−1)

))

(5.174)

Proof of Corollary 9. For the L+ 1-layer neural network, recall from (3.22) that the mutual informa-
tion per sample can be described in this way:

1

n
I(L)n (θ∗(L);D(L)

n ) =
1

n
H(D(L)

n )− 1

n
H(D(L)

n | θ∗(L))

= −f̄ (L)
n + E logPout

(
Y

(L)
1 | a∗⊺

√
d(L)

φ
(W∗(L) X(L−1)

1√
d(L−1)

)) (5.175)

whereas for the reducedL-layers neural network themutual information per sample can be rewritten
as follows:

1

n
I(L−1)
n (θ∗(L−1);D(L−1)

n ) = −f̄ (L−1)
n + E logPout

(
Y

(L−1)
1 | Ä(L−1)v

∗(L−1)⊺X
(L−1)
1√

d(L−1)
+
√
ϵ(L−1)À

∗(L−1)
1

)

(5.176)

Exploiting that the teacher weights are Gaussian, in law it holds:

a∗⊺
√
d(L)

φ
(W∗(L)X(L−1)

1√
d(L−1)

)
D
= Z

√
1

d(L)

∥∥∥φ
(W∗(L)X(L−1)

1√
d(L−1)

)∥∥∥
2

(5.177)

with Z ∼ N (0, 1) and ∥ · ∥ the standard L2 norm for vectors. Analogously, for the reduced model
the following equality in distribution holds true:

Ä(L−1)v
∗(L−1)⊺X

(L−1)
1√

d(L−1)
+
√
ϵ(L−1)À

∗(L−1)
1

D
= Z

√

Ä(L−1) 2
∥X(L−1)

1 ∥2
d(L−1)

+ ϵ(L−1) (5.178)
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The aim is now to show that both the terms under square root on the right-hand side of (5.177)
and (5.178) in the limit (so when the full model and the reduced model are equivalent in terms of free
energy) tend to

ϵ(L−1) + Ã(L−1)Ä(L−1) 2 = EN (0,Ã(L−1))φ
2 (5.179)

This allows to insert this result in (5.175) and (5.176), and thus to give an estimate of the residuals.
To perform this analysis new quantities are de�ned:

Sd(t) =

√

tÄ(L−1) 2
(∥X(L−1)

1 ∥2
d(L−1)

− Ã(L−1)
)
+ ϵ(L−1) + Ã(L−1)Ä(L−1) 2 , or equivalently (5.180)

Sd(t) =

√

t
( 1

d(L)

∥∥∥φ
(W∗(L)X(L−1)

1√
d(L−1)

)∥∥∥
2
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and

Ψ(t) := E

∫
dY Pout(Y | ZSd(t)) logPout(Y | ZSd(t)) (5.182)

Using the results of Lemma 16 exploiting the de�nition of Pout in (3.3) and under the assumptions
H1), H2) and H3) the following bound is obtained:

|Ψ̇(t)| f C(f)E|Z||Ṡd(t)| , (5.183)

with C(f) a constant depending on f . Applying now the fundamental theorem of integral calculus,
the result is:
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(5.184)

This quantity for the L + 1-layers neural network is O(d(L) −1/2) whereas for the L-layers neural
network it reads O(d(L−1) −1/2). Plugging this result in (5.175) and (5.176)

1

n
I(L)n (θ∗(L);D(L)

n ) = −f̄ (L)
n +Ψ(EN (0,Ã(L−1))φ

2) +O(d(L) −1/2)

1

n
I(L−1)
n (θ∗(L−1);D(L−1)

n ) = −f̄ (L−1)
n +Ψ(EN (0,Ã(L−1))φ

2) +O(d(L−1) −1/2)
(5.185)
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where

Ψ(EN (0,Ã(L−1))φ
2) := Ψ(0) = E

∫
dY Pout(Y | Z

√
EN (0,Ã(L−1))φ

2) logPout(Y | Z
√

EN (0,Ã(L−1))φ
2)

(5.186)

Exploiting this derivation and using that 1
d(L) 1/2 f

√
1

d(L) +
1

d(L−1) f
√

1
d(L) +

1√
d(L−1)

the mutual

information equivalence can be derived.
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Chapter 6

Conclusions and future works

This thesis presented an information-theoretical analysis of deep, nonlinear neural networks, focus-
ing on training all network parameters in settings where the number of samples, input dimension,
and network width are all large. The investigation was conducted in a teacher-student setup within
a Bayes-optimal framework, where data are generated by a teacher network and classi�ed by a stu-
dent network with identical architecture. The primary goal was to extend results for 2-layer neural
networks obtained in [19] to networks with an arbitrary number of layers by reducing them to gen-
eralized linear models through a recursive linearization approach.

Key contributions of this thesis include the analysis of a concentration of measure phenomenon
and the derivation of information-theoretic bounds.

The studied concentration of measure phenomenon proves that Gaussian random vectors retain
statistical properties similar to Gaussian vectors after being processed through non-linear neural
network layers, providing a deeper understanding of the network’s internal representations.

The bounds obtained, which express the di�erence in mutual information per sample between
the dataset and the teacher networkweights for deep neural networks compared to generalized linear
models, represent a fundamental tool for understanding the conditions under which a deep neural
network can be reduced to a GLM. The recursion parameters and the GLM parameters obtained
through our recursive proof match the results by [29], where this equivalence was �rst conjectured.
Concerning the allowed scalings such that the equivalence between the two models is veri�ed, the
match is only partial: in our investigation, the scenario in which the dataset size, input dimension,
and hidden layers sizes tend to in�nity at proportional rates is not recovered. However, the case in
which the dataset size and input dimension scale proportionally while the hidden layers are larger
and of comparable size is allowed by our bounds. Further research is thus necessary to determine
whether this limitation is fundamental or speci�c to the current proof techniques.

Another crucial aspect that requires future investigation is the concentration of the free entropy
density, which is a fundamental step in obtaining the information-theoretic bounds. This result was
partially proved for 2-layer neural networks by [19], and assumed in our investigation. Fully proving
this concentration is essential for the general validity of the bounds described in our analysis.

Additional future research directions could include exploring scenarios where the initial data are
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not independent and described by a non-trivial covariance matrix, or cases in which they are drawn
from a mixture of Gaussian distributions. Introducing a covariance for the input could model data
dependencies. Drawing the input from a mixture of Gaussian distributions, which are universal ap-
proximators for distributions, instead, could provide insights about how di�erent data distributions
a�ect the performance of neural networks, revealing new insights into the versatility and robustness
of neural networkmodels and enhancing the applicability of the theoretical results to real-world data.

In conclusion, this thesis has extended the information-theoretical analysis of neural networks by
establishing novel bounds through a recursive reduction method. Moreover, it has shed light on the
internal mechanisms of neural networks by showing that Gaussian random vectors, when propag-
ated through network layers, preserve statistical characteristics akin to those of Gaussian random
vectors. These �ndings enhance our comprehension of neural network behaviors and suggest new
pathways for investigation in the domain of machine learning and arti�cial intelligence.
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