
DESIGN AND IMPLEMENTATION OF A

GENETIC ALGORITHM FOR A PACKING

WITH AN UNCERTAIN FUTURE

PROBLEM

Cristiano Saturni

Dicember 2000

To my parents

ii

Contents

Declaration vii

Aknowledgements ix

In Breve xi

1 About this Project 1
1.1 Introduction . 1
1.2 Summary . 2

2 Constraint Satisfaction Problems (CSPs) 3
2.1 Overview . 3
2.2 Constraint Satisfaction Problems (CSPs) 3
2.3 K-Consistency . 5
2.4 Algorithms to solve CSPs . 9

2.4.1 Pruning algorithms . 9
2.4.2 Solving a CSP by maximizing a function 11
2.4.3 Heuristic and stochastic algorithms 13
2.4.4 Consistency techniques 13

2.5 Optimization CSPs (OCSPs) 13
2.5.1 Exact algorithms . 14
2.5.2 Aproximation algorithms 15

3 Branching Constraint Satisfaction Problems (BCSPs) 17
3.1 Overview . 17
3.2 Branching Constraint Satisfaction Problems (BCSPs) 17
3.3 Assignments and feasible assignments 18
3.4 Expected Utility (EU) . 19
3.5 BCSPs as CSPs . 22
3.6 The extended BCSPs (eBCSPs) 23

iii

iv CONTENTS

4 Genetic Algorithms (GAs) 25
4.1 Overview . 25
4.2 Introduction . 25
4.3 Evolutionary Programs (EPs) 26
4.4 Genetic Algorithms (GAs) . 28

4.4.1 The typical GA . 28
4.4.2 The problem of the feasibility 30
4.4.3 Classical GAs . 31

4.5 (�+ �)-Evolution Strategies ((�+ �)-ESs) 32
4.6 (�; �)-Evolution Strategies ((�; �)-ESs) 32

5 The Harbour Packing Problem 33
5.1 Overview . 33
5.2 Introduction . 33
5.3 The problem simpli�ed . 34
5.4 The problem formalized . 37

5.4.1 Branching Packing Problems (BPPs) 37
5.4.2 Assignments and feasible assignments 38
5.4.3 Expected Utility (EU) 42

5.5 BPPs with one path trees . 45
5.6 NP-hardness . 46
5.7 The BPP as a BCSP . 49
5.8 The eBCSPs and the requirement of balance 49

6 The Genetic Algorithm 51
6.1 Overview . 51
6.2 Introduction . 51
6.3 Basic concepts and operations 52

6.3.1 The ordering of the positions 52
6.3.2 The ordering of the nodes 54
6.3.3 The Fill operation . 54
6.3.4 The repair operations 54
6.3.5 The functions returning a random position 56

6.4 The main structure . 57
6.5 The creation of the initial feasible population 59
6.6 The mating . 61

6.6.1 The Upward Gentle Crossover 62
6.6.2 The Downward Gentle Crossover 64
6.6.3 The Ordered Brutal Crossover 66
6.6.4 The Random Brutal Crossover 66
6.6.5 The choice of the crossover node 69

CONTENTS v

6.7 The mutation . 69
6.7.1 The Ordered Gentle Mutation 70
6.7.2 The Random Gentle Mutation 72
6.7.3 The Ordered Brutal Mutation 72
6.7.4 The Random Brutal Mutation 72

6.8 The selection . 75
6.8.1 The Fixed Selection . 77
6.8.2 The f(val

MAX
)-selection 78

6.8.3 The Proportional Selection 79
6.9 The Shake feature . 80

7 A GA for BCSPs 83
7.1 Overview . 83
7.2 Introduction . 83
7.3 Basic concepts and operations 83
7.4 The main structure . 85
7.5 The changed Initial-feasible-population 86
7.6 The changed crossovers . 86
7.7 The mutations . 89

8 The Parameters Tuning 93
8.1 Overview . 93
8.2 Introduction . 93
8.3 The experiments . 94
8.4 The experiments on single genetic components 95

8.4.1 The �rst set of experiments 95
8.4.2 The second set of experiments 100

8.5 The experiments on mixed genetic components 101
8.6 The experiments on the shake feature 104
8.7 Conclusions . 105

9 The Evaluation of the GA 107
9.1 Overview . 107
9.2 Introduction . 107
9.3 Problems with known optimal solution 109

9.3.1 Problems with linear trees 109
9.3.2 A modi�ed problem 109
9.3.3 A problem with reached UB 111

9.4 Problems with unknown optimal solution 112
9.5 Conclusions . 112

vi CONTENTS

10 The Application 115
10.1 Overview . 115
10.2 Introduction . 115
10.3 The parameters �le . 116
10.4 The input �le . 116
10.5 The output �le . 121
10.6 The average and best �les . 122
10.7 The seed �le . 122
10.8 The run time output . 122

A The Support Applications 123
A.1 The random problem generator 123
A.2 The random-solver . 126

B The Test Problems 127
B.1 rinput0 . 127
B.2 rinput4 . 129
B.3 rinput5 . 130
B.4 rinput6 . 132
B.5 rinput7 . 133
B.6 rinput8 . 134
B.7 art7 . 136
B.8 lin16 . 137
B.9 lin73 . 138

Bibliography 141

Declaration

I declare that this thesis has been composed by myself and describes my own
work. All the sources of information has been aknowledged.

Cristiano Saturni

Dicember 13, 2000.

Department Of Computing Science
University Of Aberdeen
Kings Colledge
Aberdeen
UK

Dipartimento di Elettronica e Informatica
Universita' di Padova
Padova
ITALY

vii

viii

Aknowledgements

I want to thank all the people who helped me to make this thesis and ex-
pecially the people who have been close to me during these years in the
university.

First of all I want to thank my parents, who made possible this degree with
their work and sacri�ces: I feel that this degree is also theirs. I thank my
sister and grandmother.

I want to thank Dr. Ken Brown who helped me with attention and sym-
pathy in the project for this thesis and from whom I have learned a lot and
Dr. David Fawler for his gentle help. I thank Prof. Matteo Fischetti for his
advices, trust and esteem.

I thank Prof. Luigi Don�a Dalle Rose and Mr. Dirk Nikodem for making
possible my �nal project in the stimulating Computing Science Department
of the University of Aberdeen and Prof. Maristella Agosti for her important
encouragement and con�dence.

I want to thank my friends who have always been close to me in these years
of study, in particular Andrea Cola, Giuliano, Federico, Alberto, Corrado,
Paolo, Luca, Andrea Giaretta, Stefano. I thank my trainer Alby and all the
friends of the gym. I thank So�a for her love. I thank the many other people
who helped me with their a�ection.

ix

x

In Breve

Introduzione

Questa tesi �e stata svolta nel dipartimento di Computing Science dell'
universit�a di Aberdeen in Scozia nell'ambito del progetto ERASMUS con
la supervisione del Dr. Ken Brown. La tesi �e stata scritta in Italia con la
supervisione del Prof. Matteo Fischetti.

Lo scopo della tesi �e stato quello di progettare e implementare in C un
Algoritmo Genetico (GA) per risolvere un particolare problema di ottimiz-
zazione, derivato dalla sempli�cazione e idealizzazione di un problema di
caricamento di navi reale e pi�u complesso.

La tesi �e stata svolta nelle seguenti fasi:

1. lo studio dei Constraint Satisfaction Problems (CSPs), dei Branching
Constraint Satisfaction Problems (BCSPs) e degli algoritmi genetici e
l'analisi del problema del porto (capitoli 2, 3, 4 e 5 rispettivamente)

2. la progettazione di un GA per BCSPs (Capitolo 7), la progettazione e
l'implementazione in C di un GA per il problema del porto (capitoli 6
e 10 rispettivamente)

3. la progettazione e l' implementazione di un generatore casuale di prob-
lemi e di un algoritmo di ricerca casuale delle soluzioni (Appendice
A)

4. gli esperimenti per trovare una buona combinazione di parametri per
il GA (Capitolo 8) e quelli per la sua valutazione (Capitolo 9)

Il problema

Il problema ideale da noi a�rontato �e il seguente. Viene dato il ponte
rettangolare di una nave, sul quale �e disposta una griglia, e un insieme di
container, ciascuno con una sua utilit�a, che possono essere posizionati sul

xi

ponte in modo che, dopo una eventuale rotazione, lo spigolo in basso a sin-
istra coincida con uno dei punti della griglia. I container arrivano alla nave
in tempi diversi e la sequenza degli arrivi non �e nota. Alcune possibili se-
quenze d'arrivo con le rispettive probabilit�a vengono date mediante l'albero
degli arrivi, cio�e un albero con un container associato ad ogni nodo ed una
probabilit�a ad ogni lato in modo tale che per ogni nodo:

1. la somma delle probabilit�a dei lati che portano ai �gli �e � 1

2. i container associati ai nodi �gli sono tutti diversi

3. i container dei nodi del percorso dalla radice a quel nodo sono tutti
diversi

Ogni nodo rappresenta un arrivo e i possibili arrivi successivi sono rappre-
sentati dai �gli, ciascuno con la probabilit�a del rispettivo lato. Se in un
nodo la somma delle probabilit�a dei lati che portano ai �gli �e � < 1, sig-
ni�ca che, con probabilit�a 1� �, dopo quell' arrivo non ce ne saranno altri.
Un tale tipo di nodo �e detto terminale e la sua probabilit�a �e de�nita come
1 � �. Le foglie sono nodi terminali con probabilit�a 1, ma possono esistere
anche nodi terminali interni. Le possibili sequenze di arrivo sono cos��tutte
le sequenze associate ai percorsi dal nodo radice ad un nodo terminale e le
rispettive probabilit�a si possono calcolare moltiplicando le probabilit�a dei lati
dei rispettivi percorsi e del corrispondente nodo terminale.

Appena un container arriva deve essere caricato o ri�utato: non pu�o es-
sere parcheggiato nel molo in attesa che altri container arrivino, postponendo
la decisione sul caricamento, e una volta caricato non pu�o essere spostato. Il
problema consiste nel decidere, prima che qualunque container sia arrivato,
cosa fare ad ogni possibile arrivo, in modo che, quando i container cominciano
ad arrivare, se vengono caricati rispettando le decisioni prese in precedenza,
la somma delle utilit�a dei contanier caricati sar�a probabilmente alta. (Il prob-
lema reale �e pi�u complesso, in quanto nella realt�a, per esempio, i container
devono essere disposti sul ponte in modo da non sbilanciare eccesivamente
la nave e in modo da rispettare alcune regole di sicurezza dipendenti dalle
merci trasportate e le caratteristiche della gru che carica i container.)

Pi�u precisamente i dati del problema sono il ponte della nave con la griglia,
l'insieme dei container e l'albero degli arrivi. Una soluzione del problema �e
una funzione che ad ogni nodo dell'albero associa una decisione per il cor-
rispondente container, cio�e una posizione sul ponte (un punto della griglia e
l'eventuale rotazione) o NULL che rappresenta il non caricamento del con-
tainer corrispondente, in modo tale che i container caricati siano dentro il
ponte e che per ogni nodo i container caricati del percorso dalla radice a quel

xii

nodo non si sovrappongono tra di loro. Il valore di una soluzione (detto EU)
�e ottenuto nel seguente modo: per ogni nodo terminale si calcola la somma
delle utilit�a dei container che la soluzione ha caricato del percorso dalla radice
a quel nodo; si calcola il prodotto delle probabilit�a dei lati del percorso dalla
radice a quel nodo e lo si moltiplica per la probabilit�a del rispettivo nodo ter-
minale; si moltiplicano la somma delle utilit�a e il prodotto delle probabilit�a
e si sommano i prodotti cosi' ottenuti per tutti i nodi terminali. I nostro
problema �e quello di trovare la soluzione con il valore pi�u alto.

�E importante notare che questo problema �e un' estensione del normale
problema di caricamento (cutting stock bidimensionale): infatti un problema
con un albero lineare e con tutti gli archi etichettati con probabilit�a 1 equivale
al problema di scegliere dai dati container alcuni da posizionare sulla nave
e di trovare per questi un adeguato posizionamento in modo che la somma
delle utilit�a dei container caricati sia massima.

�E stato da noi dimostrato che il problema �e NP-hard e quindi meglio
risolvibile mediante un algoritmo di approssimazione. Abbiamo deciso cosi'
di utilizzare un algoritmo genetico.

L' algoritmo

Un algoritmo genetico imita il processo evolutivo di una specie di esseri
viventi che si adattano progressivamente all'ambiente grazie ai meccanismi
dell'ereditariet�a, della riproduzione, della mutazione e della selezione natu-
rale.

Il GA da noi sviluppato genera una sequenza �nita di n-uple di soluzioni
(dette popolazioni e i cui elementi sono detti individui o cromosomi) e ritorna
in output la soluzione generata con il valore pi�u alto. La prima popolazione
viene generata in modo casuale e ogni altra viene prodotta dalla precedente
in tre fasi:

1. la riproduzione

2. la mutazione

3. la selezione

La di�colt�a di questa tesi �e stata la progettazione e l' implementazione
degli operatori genetici usati nelle varie fasi { i 4 crossover, le 4 mutazioni
e le 3 selezioni { che sono molto complessi e hanno richiesto mesi di lavoro.
Il numero di popolazioni generate e il numero di individui per popolazione
sono parametri dell' algoritmo.

xiii

La riproduzione

Nella fase di riproduzione alcuni individui vengono scelti per l' accoppi-
amento e vengono raggruppati in coppie. Il numero di coppie �e variabile in
modo casuale, ma �e controllato da un parametro dell' algoritmo. Ciascuna
coppia (detta di genitori) genera due individui (detti �gli) simili a entrambi
i genitori che vanno a sostituire i genitori nella popolazione. Nel nostro
GA vengono usati 4 meccanismi per la generazione dei �gli (detti crossover)
ciascuno associato ad una frequenza che vengono applicati con la frequenza
corrispondente. Le frequenze dei crossover sono un parametro del GA. I
crossover sviluppati sono i seguenti:

1. Upward Gentle Crossover

2. Downward Gentle Crossover

3. Random Brutal Crossover

4. Ordered Brutal Crossover

Un crossover produce i �gli dai genitori nel seguente modo:

1. sceglie un nodo A dell'albero in modo casuale

2. scambia nei genitori i valori dei nodi del sottoalbero che ha A come
radice, producendo due funzioni non necessariamente ammissibili, a
causa di sovrapposizioni

3. ripara le due funzioni, cio�e modi�ca queste due funzioni rendendole
ammissibili e cercando di mantenerne l'aspetto

Ci�o che distingue i 4 crossover �e il metodo di riparazione.
Per esempio l' Upward Gentle Crossover ripara le due funzioni possibil-

mente non ammissibili nel seguente modo:

1. pone a NULL quei nodi del percorso dalla radice ad A i cui container
nella corrispondente posizione si sovrappongono con container di nodi
del sottoalbero nella corrispondente posizione

2. esegue una operazione di riempimento della soluzione cosi' ottenuta,
cio�e cerca di sostituire nei nodi del percorso dalla radice ad A i valori
nulli con posizioni non nulle compatibili con il corrispondente percorso
e sottoalberi

xiv

Il nodo su cui viene fatto il crossover viene scelto usando uno di 3 algoritmi
di scelta, che assegnano probabilita' diverse ai vari nodi. Per esempio uno
di questi algoritmi esclude dalla scelta la radice e le foglie e sceglie solo nodi
interni; ogni nodo interno viene scelto con una probabilit�a p = 1

k
, con k il

numero di nodi interni del suo livello. Un parametro del GA decide quale
algoritmo utilizzare.

La mutazione

Nella fase di mutazione gli individui vengono pi�u o meno mutati, cio�e
modi�cati cercando di mantenerne le caratteristiche. In questo GA vengono
usati 4 metodi di mutazione, ciascuno associato ad una frequenza, che ven-
gono applicati con la corrispondente frequenza. Le mutazioni sono anche
associate ad un parametro che ne determina l' intesit�a. Questi parametri e
le frequenze dei vari metodi sono parametri dell' algoritmo.

Gli operatori di mutazione producono nuovi individui nel seguente modo:

1. vengono selezionati in nodi da mutare

2. viene loro assegnato un valore casuale, producendo una funzione non
necessariamente ammissibile

3. viene riparata la funzione riportando l'ammissibilita' cercando di man-
tenerne l'aspetto

Ci�o che distingue i 4 metodi di mutazione �e il metodo di riparazione. Anche
qui i metodi sono molto complessi e hanno richiesto mesi di lavoro.

Per esempio il Random Gentle Mutation inizialmente pone a NULL i nodi
selezionati per la mutazione; successivamente considera questi nodi in ordine
casuale; a ciascuno assegna un valore casuale e se questo non e' compatibile
con il corrispondente percorso e sottoalberi viene scelto il valore compatibile
piu' vicino.

La selezione

La fase di selezione ha lo scopo di far sopravvivere gli individui migliori e
di sopprimere quelli peggiori. Nel nostro GA si possono usare 3 meccanismi
di selezione.

1. la proportional selection

2. la �xed selection

3. la f(val
max

) selection

xv

Uno soltanto di questi metodi viene usato nelle varie iterazioni. Un parametro
dell'algoritmo decide quale metodo viene utilizzato. Gli individui della popo-
lazione selezionata vengono scelti tra quelli della popolazione mutata ciacuno
con una probabilit�a dipendente dal suo valore e crescente con esso. Alcuni
individui possono essere scelti pi�u volte e alcuni mai. Ci�o che distingue i 3
metodi di selezione �e la regola che associa il valore di un individuo con la sua
probabilit�a di essere selezionato. Per esempio nella proportional selection, la
probabilit�a di selezione �e proporzionale al valore dell' individuo.

Lo shake

L' algoritmo sviluppato per questa tesi presenta poi un meccanismo da
me inventato e chiamato shake per impedirne la convergenza prematura, cio�e
per impedire che l'algoritmo concentri la sua ricerca in una zona di massimo
locale non globale. Il meccanismo consiste nell'intensi�care la mutazione per
qualche generazione quando il valore medio e il valore massimo delle ultime
generazioni sono troppo vicini. Anche questo meccanismo viene controllato
da alcuni parametri dell' algoritmo.

Gli esperimenti

Nell'ultima parte del progetto sono stati fatti molti esperimenti per trovare
la combinazione di parametri che faccia funzionare il GA nel modo migliore.
Questi esperimenti sono stati fatti risolvendo problemi di test generati in
modo casuale da un algoritmo da me progettato e implementato. Gli esperi-
menti hanno portato ad alcune combinazioni di parametri che si sono rivelate
molto buone e migliori di quelle che si usavano all'inizio.

In�ne numerosi esperimenti sono stati fatti per valutare la capacit�a del
GA di risolvere il problema. La valutazione �e stata molto di�cile perch�e di
pochi problemi di�cili si aveva la soluzione esatta e non era disponibile alcun
altro algoritmo per questa classe di problemi.

Abbiamo generato in modo casuale alcuni problemi di�cili e abbiamo
confrontato la soluzione trovata dal nostro algoritmo genetico con quella
fornita da un algoritmo da noi implementato che genera in modo casuale
lo stesso numero di individui e ritorna in output l'individuo con il valore
pi�u alto. Il risultato �e che il nostro GA ritorna sempre una soluzione molto
migliore.

In�ne abbiamo a�rontato con il nostro GA alcuni problemi di cutting
stock bidimensionale risolti in modo esatto in letteratura { che, come detto i
precedenza, si possono considerare un caso particolare del problema risolvi-

xvi

bile dal nostro GA { e alcuni problemi la cui soluzione ottima puo' essere
dedotta con un ragionamento. Il risultato �e che l' algoritmo genetico ritorna
spesso la soluzione ottima e comunque sempre una molto vicina a quella
ottima.

Il GA da noi sviluppato �e stato quindi considerato molto buono e valido
anche per un uso professionale.

xvii

xviii

Chapter 1

About this Project

1.1 Introduction

This project has been developed as a �nal thesis for the \Corso di Laurea
in Ingegneria Informatica" in the University of Padua under the ERASMUS
program in the Computing Science Department of the University of Aberdeen
with the supervision of Dr. Ken Brown.

The project consisted in studying and implementing a computer program
to solve a particular optimization problem. The problem is an idealized pack-
ing problem motivated by a real one encountered at the Aberdeen harbour
and is called Branching Packing Problem (BPP). The problem arises when
boats must be loaded with containers of goods without knowing the exact
details about the cargo and is encountered by vessels all over the world. It
di�ers from a classical packing problem because of the uncertain information
about the loading.

After studying the problem and the theoretical tools necessary to describe
and solve it { such as Constraint Satisfaction Problems (CSPs), Branching
Constraint Satisfaction Problems (BCSPs), Genetic Algorithms (GAs) pre-
sented in the chapters 2, 3 and 4 respectively { the problem has been proven
to be NP-hard and, as such, better solvable by an approximation algorithm.
The description of the problem, its formal model and the proof of its NP-
hardness can be found in Chapter 5.

A Genetic Algorithm for BPPs has been designed and implemented in
ANSI C. The description of this GA can be found in Chapter 6 and one of its
implementation in Chapter 10. During the design phase we found convenient
�rst to design a GA for BCSPs and then to adapt it to the case of BPPs.
The GA for BCSPs can be found in Chapter 7.

Extensive experiments have been carried out in order to �nd the best

1

2 CHAPTER 1. ABOUT THIS PROJECT

parameters for the GA for BPPs. This task was very di�cult and the search
has been guided mainly by good sense, as discussed in Chapter 8.

Experiments have been done to estimate the goodness of the GA in solving
the problem and are reported in Chapter 9.

Finally this report has been written with the supervision of Prof. Matteo
Fischetti of the \Dipartimento di Ingegneria Elettronica e Informatica" of
the University of Padua.

1.2 Summary

In summary, the project has been carried out in the following phases:

� the study of CSPs, BCSPs and GAs and the analisys of the problem
of the harbour

� the design of the GA for BCSPs and for BPPs and the implementation
of the GA for BPPs

� the experiments to �nd the best parameters and to test the goodness
of the GA for BPPs

� the writing out of this report by using LATEX

Chapter 2

Constraint Satisfaction
Problems (CSPs)

2.1 Overview

In this Chapter the Constraint Satisfaction Problems ([9],[10]) and the
main ways to solve them are quickly outlined. CSPs have great practical
importance. Many real life problems, in particular scheduling, timetabling,
packing and other combinatorial problems can be modeled as CSPs ([9]).
The problem faced in this project can be viewed as a particular CSP, as it is
shown in Chapter 5.

2.2 Constraint Satisfaction Problems (CSPs)

De�nition 1 A Constraint Satisfaction Problem (CSP) is

(D1; ::; Dm; C)

with

� D1; ::; Dm �nite and non empty sets, with m 2 N0

� C a set of (I; I) such that I � f1; ::; mg; I 6= ; and I � ff j f : I !S
i2I Di; i 7�! d 2 Dig, C 6= ;

The elements of X = f1; ::; mg are called variables of the CSP; for each
variable i, Di is called the domain of variable i; the elements of C are called
constraints of the CSP; for each (I; I) 2 C, jIj is the arity of constraint (I; I);

3

4 CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS (CSPS)

we say that a constraint with arity 1 (2) is an unary (binary) constraint; if
I � X; I 6= ; an assignment of the variables I is a function

f : I �!
S
i2I Di

i 7�! d 2 Di

which is partial i� jIj < jXj; we also say that a constraint c concerns variables
I i� c = (I; I); the set D1 � ::�Dm is called search space. �

De�nition 2 Given a constraint (I; I) and f an assignment of the variables
J such that I � J , we say that f satis�es (I; I) i� fI 2 I with fI the
restriction of f to I. Given a CSP C and f an assignment of variables I, we
say that f is feasible for C i� 8I 0 � If satis�es all the constraints concerning
I 0. Given a partial assignment f of variables I, variable j =2 I and v 2 Dj

we call the extension of f to j with v the function �f de�ned in �I = I [fjg
such that �f = f in I and �f(j) = v. An f is a solution of a given CSP i� f
is an assignment of the variables X that satis�es all the constraints. �

Note that the solutions of a CSP are a subset of the cathesian product1

D1 � :: � Dm caracterized by the constraints; each constraint restricts the
possible solutions by allowing only the m-tuple some of whose restrictions
satisfy some conditions, i.e. the m-tuples that satisfy the constraint; the
solutions are then the intersection all the sets of m-tuples that satisfy some
constraint. The constraints, then, de�ne a subset of the search space D1 �
::�Dm.

Note that C is �nite, because the set of I � X is �nite and the set of
assignmets of variables I is �nite too and so is the number of subsets of the
assignments of variables I. The number of solutions is � jD1j � :: � jDmj and
there may be no solution at all. Given a CSP we are interested in �nding
whether it has solutions and if it does, in �nding one (or all) of its solutions.

The following property holds ([11]).

Proposition 1 For each CSP C, there exists a CSP C 0 with only binary
or unary constraints whose solutions are in biunivocal correspondence with
those of C.

Proof. Let C = (D1; ::; Dm; C) and C 0 = (D1; ::; Dm; Dm+1; C 0) where

Dm+1 = D1 � ::�Dm

1An element (x1; ::; xm) of a cathesian product X1 � ::�Xm is in fact a function that
associates each i 2 f1; ::;mg a value in Xi.

2.3. K-CONSISTENCY 5

and
C 0 = f(fm+ 1g; Im+1)g [f(fi;m+ 1g; Ii) j i = 1::mg

with Im+1 = the set of assignments of variable m + 1 that associate it with
a solution of C and 8i = 1::m : Ii = ff j f is an assignment of variables
fi;m+1g such that f(i) = i-th component of f(m+1)g. Now, C is a CSP {
note that Dm+1 is �nite { and (x1; ::; xm; u) 2 SC0 i� 8c0 2 C 0 : (x1; ::; xm; u)
satis�es c0 that is i� u 2 SC and 8i : xi = i-th component of u that is i�
(x1; ::; xm) = u with u 2 SC that is i� (x1; ::; xm) 2 SC and u = (x1; ::; xm).
Then the map

f : SC0 �! SC
(x1; ::; xm; (x1; ::; xm)) 7�! (x1; ::; xm)

is a one to one correspondence between SC and SC0 . �

So we can concentrate our study on only with only binary or unary con-
straints.

2.3 K-Consistency

De�nition 3 A CSP is said to be 1-consistent i� 8iand8vi 2 Di, the assign-
ment that associates variable i to vi satis�es all the constraints concerning
variable i. Given a CSP and k 2 f2; ::; mg, we say that the CSP is k-consistent
([10]) i� 8I � f1; ::; mg; jIj = k� 1 and 8f assignment of variables I feasible
for C and 8j 2 f1; ::; mg n I, there 9v 2 Dj such that the extension of f to j
with v is feasible for C. We say that the CSP is node consistent (NC) if it is
1-consistent; that it is arc consistent (AC) if it is 2-consistent; that it is path
consistent (PC) if it is 3-consistent. A CSP is said to be strongly k-consistent
i� 8j 2 f1; ::; kg it is j-consistent. �

In other words a CSP is NC i� for each variable i, each value of domain
Di satis�es2 all the constraints concerning variable i. A CSP is AC i� for
each variable i and for each value vi of domain Di such that vi satis�es all the
constraints concerning variable i and for each variable j 6= i, there exists a
value vj such that vj satis�es all the constraints concerning variable j and the
f assignment of variables fi; jg such that f(i) = vi and f(j) = vj satis�es all
the constraints concerning variables fi; jg. A CSP is PC i� for every couple
of di�erent variables i and j and for each f assignment of variables fi; jg

2When we say that the value v of domain Di satis�es the constraints c we mean that
the trivial function that associates i to v satis�es c.

6 CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS (CSPS)

that satis�es all the constraints concerning variables i, j and fi; jg and for
each variable k 2 f1; ::; mg n fi; jg there exists a value vk 2 Dk satisfying all
the constraints concerning k such that the assignment g of variables fi; kg
such that g(i) = fi and g(k) = vk satis�es all the constraints concerning
variables fi; kg and the assignment h of variables fj; kg such that h(j) = fj
and h(k) = vk satis�es all the constraints concerning variables fj; kg.

Proposition 2 If a CSP is strongly m-consistent, then it has a solution and
a solution (x1; ::; xm) can be simply computed by the algorithm of �gure 2.1,
where Dj = fv

j
1; ::; v

j
nj
g; 8j 2 f1; ::; mg.

Proof. The proof is simple, as 8j there 9vji such that 8I � f1; ::; jg; j 2
I(x1; ::; xj) satis�es all the constraints concerning I, because the CSP is j-
consistent and if j � 2, (x1; ::; xj�1) is a partial assignment satisfying all the
constraints concerning any subset of its domain. �

f for(j 1 to m)
f i 0;

repeat
i i+ 1;
xj vji ;
until((x1; ::; xj) is feasible for C);

g
return (x1; ::; xm);

g

Figure 2.1: The procedure to make a CSP C strongly k-consistent.

Proposition 3 Given a CSP C and k � 2 then there exists a k�consistent
CSP C 0 with the same solutions and the same domains obtained by eventually
adding some constraints concerning new sets of variables or by removing some
assignments from the sets of some constraints.

Proof. If C is k-consistent, then C 0=C. Else the set G = fg j 9J set of k�1
variables, g assignment of J feasible for C, 9j 2 X n J such that 8v 2 Dj

the extension of g to j with v is not feasible for Cg is not empty. Let C 0 be
the CSP obtained from C by adding the set of constraints f(J;J) j 9g 2 G

2.3. K-CONSISTENCY 7

such that J is the domain of g and J is the set of all the assignments f of J
such that f 6= gg. Then this C 0 is k-consistent, because it is C without all
the assignments that prevented it from being k-consistent. And it has the
same solutions, because we have only eliminated partial assignmts of k � 1
variables that could not be the restriction of any solution.

Note that C 0 may have more than one constraint concerning the same set
of variables. In this case we can replace all the constraints concerning the
same set of variables by one that concerns the same variables and whose set
of assignments is the intersection of all of the their set of assignments. So
the new C 0 is just C with some new constraints and with some constraints
with less elements in its set of assignments. �

Many algorithms have been designed to build such a C' from a given C
and k. All of them have an exponential running time.

Proposition 4 If we have a k-consistent CSP and we make it h-consistent
with 2 � h < k by the method of Proposition 3, we obtain a CSP which is
still k-consistent.

Proof. Let C be a k-consistent CSP and G = fg j 9J set of h� 1 vari-
ables, g assignment of J feasible for C, 9j 2 X n J such that 8v 2 Dj the
extension of g to j with v is not feasible for Cg is not empty. Let C 0 be the
CSP obtained from C by adding the set of constraints f(J;J) j 9g 2 G such
that J is the domain of g and J is the set of all the assignments f of J such
that f 6= gg. Then C 0 is still k-consistent. As a matter of fact for every f
assignment of a set of k � 1 variables I feasible for C 0, f is feasible for C as
well. Thus for the k-consistency of C; 8j 2 X n I there 9vj 2 Dj such that
the �f extension of f to j with vj is fesible for C. Now, every restriction of
�f is =2 G. (As a matter of fact let f 0 be a restriction of �f to a I 0 � �I with
jI 0j = h � 1. Then there exists I 00 such that I 0 � I 00 � �I and jI 00j = k � 1.
The restriction of �f to I 00 is feasible for C. Thus we know that 8j =2 I 00

there exists v00j such that the extension of f 00 to j with v00j is feasible for C.
So for every j =2 I 0 if j 2 �I the extension of f 0 to j with �f(j) is feasible
for C; else the extension of f 0 to j with v00j is feasible for C. So f 0 =2 G.)
So every restriction of �f satis�es all the constraints of C concerning its do-
main and is =2 G. So �f is feasible for C 0 too. Hence the k-consistency of C 0. �

Proposition 5 Given a CSP C and k 2 f2; ::; mg, then there exists a CSP
C 0, j-consistent 8j 2 f2; ::; kg, with the same solutions and the same domains
and obtained by eventually addying some constraints concerning new sets of
variables or by removing some assignments from the sets of some constraints.

8 CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS (CSPS)

Proof. We just have to apply the method of Proposition 3 iteratively for
j = k; k�1; ::; 2 and we will obtain C 0. Then 8j 2 f2; ::; kg, C 0 is j-consistent
because of Proposition 4 and, because of proposition 3 it has the same so-
lutions and the same domains and it is obtained from C by adding some
new constraints or by removing some elements from the set of assignments
of some constraints . �

f �nd j 2 X and v 2 Dj such that all the constraints
concerning j are satis�ed by v;

let fj1; ::; jmg be an ordering of the variables X
such that j1 = j;

vj1 v;
for(h 2 to m)
f i 0;

repeat
i i+ 1;
xjh vjhi ;
until((xj1; ::; xjh) is feasible for C);

g
return (x1; ::; xm);

g

Figure 2.2: The procedure to solve a 2; ::; m-consistent CSP with solution.

Proposition 6 Let C be a CSP j-consistent, 8j 2 f2; ::; mg. Then C has
a solution i� 9j 2 X and v 2 Dj such that v satis�es all the constraints
concerning variable j. If C has a solution the algorithm of Figure 2.2 quicly
�nds a solution.

Proof. If C has a solution x, then if we choose a j 2 X obviously
x(j) satis�es all the constraints concerning variable j. On the other hand,
if 9j 2 X and v 2 Dj such that v satis�es all the constraints concerning
variable j, we can build a solution by the algorithm of Figure 2.2 where
Dj = fv

j
1; ::; v

j
nj
g; 8j 2 f1; ::; mg. Note that in every iteration of the while

loop the jIj-consistency of the CSP guarantes that vhi is found for some i. �

2.4. ALGORITHMS TO SOLVE CSPS 9

2.4 Algorithms to solve CSPs

The problem of �nding a solution of a CSP or proving that there are no
solutions is simple from the theoretical point of view. As a matter of fact
we can order all the elements of D1 � :: �Dm, generate them one after the
other and for each of them check if it satis�es all the constraints until one
that satis�es them is found or until we have checked all the m-tuples. This
approach is called Generate and Test (GT). Yet from the practical point of
view the GT is often useless, as real problems have very large domains and
the time it takes us to generate and check all the m-tuples is too large. So
we need more clever ways to address this task. However every algorithm
that guarantes to �nd a solution if one exists or to prove that the problem
is unsolvable must explore systematically the search space and so it may run
for a long time.

2.4.1 Pruning algorithms

The fact that some constraints do not concern all the variables often lets
us understand that a whole set of m-tuples is unfeasible. In other words the
presence of more than one constraint and of constraints with an arity less
than m gives us the possibility to understand that some partial assignments
of the variables bring necessarily to unfeasible total assignments. Then if
we avoid the generation and the constraint checking of all the solutions that
are a completion of an unfeasible partial assignment (i.e. if we prune the
branches of the tree of the possible solutions that we have understood lead
to unfeasible leaves) we save a lot of time. Many algorithms that do this
have been developed. The Back Tracking (BT) and the Forward Checking
(FC) algorithms ([9]) are the most commonly used.

Backtracking

This algorithm returns all the solutions (if one exists) otherwise it states
that there are no solutions.

We �rst assign a value v1 to variable 1 that satis�es the constraints con-
cerning variable 1; then we look for a value v2 for variable 2 such that (v1; v2)
is feasible for C; if none is found, we go back and change the previous value
for variable 1 and do the same again; else we look for a value v3 for 3 such
that (v1; v2; v3) is feasible for C; if no v3 is found we go back to �nd another
v2 and repeat the same; if no v2 exists, we go back again to �nd a new v1.
And so on.

A possible pseudocode for Backtracking is in Figure 2.3.

10 CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS (CSPS)

This algorithm is better than the GT because it avoids the useless gener-
ation and test of the m-tuples derived from the completion of an unfeasible
partial assignment of variables f1; 2; ::; ig for some i.

f(v; i)
f xi v;

if ((x1; ::; xi) is feasible for C)
if (i = m) put (x1; ::; xm) in I;
else for each (v 2 Di+1) f(v; i+ 1);

g

BT
f read the CSP C;

let I be an initially empty set of solutions;
let (x1; ::; xm) be an assignment of variables X;

for each (v 2 D1) f(v; 1);

if (I = ;) return \No Solution";
else return I;

g

Figure 2.3: The Backtracking algorithm in recursive form.

Forwardchecking

This algorithm is an evolution of the previous one. It assumes that each
value is associated with a set of variables initially empty. The set of variables
corresponding to a value can be modi�ed during a run of the algorithm. And
variables con be assignd only to values with an empty set at the moment of
the assignment.

Initially all the sets are empty. We �rst assign a value v1 to variable 1
that satis�es the constraints concerning variable 1; then for all i = 2; ::; m
we consider all the values v 2 Di and if the extension of (v1) to i with value
v is not feasible for C, we put variable 1 on the set of value v; if one domain
has all its values with non empty sets or if no value v2 2 D2 with empty set
such that (v1; v2) is feasible for C is found, we delete all the 1's from the sets
of the values of domains D2; ::; Dm and we go back, choose another value for

2.4. ALGORITHMS TO SOLVE CSPS 11

variable 1 and repeat the same; else we assign v2 to variable 2 and for all
i = 3; ::; m we consider all the values v 2 Di and if the extension of (v1; v2)
to i with v is not feasible for C, we put variable 2 on the set of value v; if one
domain has all its values with non empty sets or if no value v3 2 D3 with
empty set such that (v1; v2; v3) is feasible for C is found, we delete all the
2's from the sets of the values of domains D3; ::; Dm and we go back, choose
another value for variable 2 and repeat the same; if no value for variable 2 is
found, we delete all the 1's from the sets of the values of domains D2; ::; Dm

and we to go back again and change again variable 1. And so on.

The forward checking algorithm as well returns all the solutions if one
exists otherwise it states that there are no solutions. A pseudocode for For-
wardchecking is in Figure 2.4.

Apparently the FC does more constraint checkings than the BT, because
it must update the sets of variables associated to the values; but sometimes
it avoids some checkings that the BT would do, as it prunes bigger branches.
As a matter of fact the FC realizes that a partial assignment is not part of
any solution earlier than the BT. More precisely, given a CSP in input to
BT, if it realizes that (v1; ::; vi) cannot be part of any solution, then the FC,
if run on the same CSP, will realize that (v1; ::; vj) cannot be part of any
solution with j � i. So FC will avoid the generation and valuation of the
sequences of values that BT has generated and checked between (v1; ::; vj)
and (v1; ::; vi).

Which is faster depends on the particular CSP.

2.4.2 Solving a CSP by maximizing a function

The problem of �nding a solution of a CSP can be viewed as that of
�nding a point of maximum of a function. As a matter of fact, given a CSP
(D1; ::; Dm; C), we can consider the function

f : D1 � ::�Dm ! R

(x1; ::; xm) 7�! f(x1; ::; xm)

where f(x1; ::; xm) is the number of constraints not satis�ed by (x1; :; xm)
or, more generally, f(x1; ::; xm) =

P
c2K w(c) with K the set of constraints

violated by (x1; ::; xm) and w(c) a real number > 0 associated to c. Then ~x
is a solution of the CSP i� ~x is a point of maximum of f . So we can solve
the CSP by using an algorithm that tries to �nd a point of maximum of this
function. In this case imf is �nite and jimf j = jCj.

12 CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS (CSPS)

f(v; i)
f xi v;

if ((x1; ::; xi) is feasible for C)
if (i = m) put (x1; ::; xm) in I;
else
f for each(j 2 fi+ 1; ::; mg)

for each(v 2 Dj)
if (the extension of (x1; ::; xi) to j with v
is unfeasible for C)
add i to the set of value v;

for each (v 2 Di+1 with set of v empty) f(v; i+ 1);

for each(j 2 fi+ 1; ::; mg)
for each(v 2 Dj) remove i from the set of v;

g
g

FC
f read the CSP C;

let I be an initially empty set of solutions;
set to ; the set of all the values;
let (x1; ::; xm) be an assignment of variables X;

for each (v 2 D1) f(v; 1);

if (I = ;) return \No Solution";
else return I;

g

Figure 2.4: The Forwardchecking algorithm in recursive form.

2.5. OPTIMIZATION CSPS (OCSPS) 13

2.4.3 Heuristic and stochastic algorithms

Instead of exploring systematically the search space by considering all the
elements ofD1�::�Dm in some way, some algorithms explore the search space
in a more or less random fashion. They do not guarante to �nd a solution
nor they prove that the problem is unsolvable and they may run forever.
During the exploration the choice of the next possible solution to consider is
in
uenced in part by the chance and in part by a deterministic heuristic rule.
These algorithms usually face the solution of a CSP from the point of view of
the maximization of a real function as presented in section 2.4.2. The most
common heuristic and stochastic approaches are those of Taboo Search, Hill
Climbing, Min con
ict, Genetic Algorithms and Evolution Strategies ([10]).
Yet many others are used and new ones are designed by mixing di�erent
algorithms.

2.4.4 Consistency techniques

In order to solve a given CSP, we can make it 2; 3; ::; m-consistent by the
algorithm of Proposition 5, check if there exists j 2 X such that 9v 2 Dj that
satis�es all the constraints that concern j and then, if it exists, a solution
exists and we can �nd one by the algorithm of Proposition 6; else no solution
exists.

Yet making the CSP 2; ::; m-consistent is a very complex process and
even with the quickest algorithms it takes often too long, so this procedure
is rarely used. Usually we only make the CSP 2; ::; k-consistent for some
k 2 f2; ::; mg by the algorithm of Proposition 5 and then we solve the new
problem by one of the previous search algorithms. We do so, because the new
problem is simpler to solve, as the tightened constraints and the new added
ones make that the search algorithm refuses bigger subsets of unfeasible total
arrignements.

2.5 Optimization CSPs (OCSPs)

De�nition 4 An Optimization CSP (OCSP) is a (P; f) with P a CSP and
f : D1 � ::�Dm ! R. �

De�nition 5 A solution of a given OCSP (P; f) is a solution of P . A
solution �x of a given OCSP is optimal i� 8x solution of the OCSP, f(�x) �
f(x). �

Note that if an OBCSPs has solutions it has an optimal solution, because
the set of solutions is �nite. We are interested in �nding whether a solution

14 CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS (CSPS)

exists and if one exists in �nding an aptimal one or all the optimal ones.
Sometimes we are just interested in a good solution.

2.5.1 Exact algorithms

The problem of �nding an optimal solution of an OCSP is obvioulsy at
least as hard as the problem of �nding a solution of a CSP.

The simplest algorithm we can imagine is a variant of the GT: we generate
all the values of D1� ::�Dm in some order and for each of them we check if it
is a solution of the corresponding CSP; if it is not, we go on; else we calculate
its value and if this is the best value found so far we memorize the solution
and we go on. We can do the same with BT and FC: we �nd a solution x
of the correspondent CSP by one of these algorithms and we memorize it if
f(x) is better than the values found so far and then we continue the search
for a new solution. We stop when we have checked all the solutions of the
CSP.

The standard algorithm

The standard algorithm is slightly more sophisticated and is shown in
Figure 2.5. It receives in input a CSP and it returns an optimal solution if
it exists else it states that there is no solution.

This algorithm, in order to solve the CSPs built before returning the
output, makes use of one of the algorithms presented in Section 2.4 .

The dicotomic algorithm

In order to use the dicotomic algorithm we need to know an upper bound
of the possible values assumed by the solutions of the correspondent CSP,
i.e. a value U0 such that 8x solution of the CSP, f(x) < U0. This algorithm
receives in input a CSP, an � > 0 and an upper bound U0 and if the corre-
spondent CSP has no solution it states that theres no solution, else it returns
a solution x such that if �x is the optimal solution, then f(�x) 2 [f(x); f(x)+�[.

The dicotomic algorithm is then an approximation algorithm, as it returns
a solution as good as we want, but it does not guarante that it is optimal.
Yet, because the search space is �nite, if f is not constant and the search
space is made of more than one element, there exists the number

�0 = minfjf(x)� f(y)j j x; y 2 D1 � ::�Dm; f(x) 6= f(y)g

and if we give � < �0 to the dicotomic algorithm, it returns an optimal
solution or it states that the problem has no solution.

2.5. OPTIMIZATION CSPS (OCSPS) 15

f read (C; f);

s NO;
while(C has a solution)
f s YES;

let x0 be a solution of C;
add to C the constraint

(X; fxjx assignment of variables X; f(x) > f(x0)g);
g
if(s=NO) return \No Solution";
else return x0;

g

Figure 2.5: The standard algorithm.

The pseudocode for the dicotomic algorithm is presented in Figure 2.6.
Note that the dicotmic algorithm, in order to solve the CSPs built before
returning the output, makes use of one of the algorithms presented in Section
2.4.

2.5.2 Aproximation algorithms

Sometimes the OCSP is too di�cult to be solved by an exact search
algorithm. In this case we accept to �nd a good solution instead of the
best one. A good solution could be de�ned informally as one that is much
better than a randomly found solution. To do so we use algorithms based
on heuristic and stochastic techniques in the same way as the algorithms
of Section 2.4.3. The search space is explored in a more or less clever and
random way in the search for better and better solutions of the corresponding
CSP.

Taboo Search, Hill Climbing, Genetic Algorithms, Evolution Strategies
are the most commonly used aproximation approaces to solve OCSPs. Ge-
netic Algorithms are presented in Chapter 4.

16 CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS (CSPS)

f read (C; f), �, U0;

if(C has no solution) return \No Solution";
let x0 be a solution of C;
L g(x0);
U U0;
repeat

M U+L
2 ;

add to C the constraint
(X; fxjx assignment of variables X; g(x) � Mg);

if(C has a solution)
f let x0 be a solution of C;

L g(x0);
g
else U M ;

until(U � L � �);
return x0;

g

Figure 2.6: The dicotomic algorithm.

Chapter 3

Branching Constraint
Satisfaction Problems (BCSPs)

3.1 Overview

In this Chapter the Branching Constraint Satisfaction Problems de�ned
in [8] are introduced. It is shown that they can be viewed as particular CSPs.
A simple extension of this model is then presented. The problem tackled in
this work can be considered as a particular BCSP, as shown in Section 5.7.

3.2 Branching Constraint Satisfaction Prob-
lems (BCSPs)

De�nition 6 A Branching Constraint Satisfaction Problem (BCSP) is

(P; ~u; T; p; c)

where

� P = (D1; ::; Dm; C) is a CSP such that 8i = 1; ::; m;NULL =2 Di

� ~u 2 R+m

� T = (N;E; �) a rooted tree with n = jN j � 2

� p : E !]0; 1] such that 8� 2 N , if O is the set of the outgoing edges of
�, then

P
a2O p(a) � 1;

� c : N ! V , with V the variables of P , such that 8� 2 N :

17

18 BRANCHING CONSTRAINT SATISFACTION PROBLEMS (BCSPs)

1. if J is the set of the children of �, then 8
; � 2 J such that

 6= �; c(
) 6= c(�);

2. if H is the set of the nodes of the path from the root to �, then
8
; � 2 H such that
 6= �; c(
) 6= c(�);

The rooted tree T is called the branching tree; for a 2 E, p(a) is called the
probability of edge a; for � 2 N , c(�) is called the variable of node �. �

As a consequence of the constraints on p and c, it is clear that the number
of nodes n = jN j, the depth d of T , the degree �(�) and the level l(�) of
each node � and the number of variables m = jV j of problem P are slightly
related one to the other1. In particular the following relations hold:

� n � (m� 1)!

� d � m

� 8� 2 N; �(�) � m+ 1� l(�)

3.3 Assignments and feasible assignments

De�nition 7 An assignment of a given BCSP is a function

 : N !
m[
i=1

Di [fNULLg

such that 8� 2 N; (�) 2 Dc(�) [fNULLg. An assignment is feasible i�
8� leaf, if B = f� 2 N j (�) 6= NULL and � is of the path from the root
to �g and I = fc(�) j � 2 Bg then the assignment of variables I such that
8i 2 I it is f(i) = (�) with � 2 B and c(�) = i is feasible for P . A solution
is a feasible assignment. �

Note that the function � NULL is always a feasible assignment. If
is a feasible assignment then 8S � N the assignment S such that S =
in N n S and S = NULL in S is feasible too. And 8 assignment there
exists S � N such that S is feasible. Setting to NULL some nodes of an

1In this thesis it will be used the terminology of [4]. In particular the level of a node is
de�ned recursively as follows: the level of the root is 0; the level of a node di�erent from
the root is the level of the father plus 1. The depth of a node is the level of the node plus
1; the depth of a tree is the maximum depth of its nodes. The outgoing edges of a node
are those that connect it to its children; the degree of a node is the number of its outgoing
edges.

3.4. EXPECTED UTILITY (EU) 19

unfeasible assignment is then a way to make it feasible, i.e. it is a way to �nd
a feasible assignment similar to it. This properties will be used in Chapter
7.

The number of assignments is

Y
�2N

(1 + jDc(�)j)

The number of feasible assignments is obviously less than or equal to this
number.

3.4 Expected Utility (EU)

De�nition 8 Given a BCSP, a node � of its tree is said to be terminal i�P
a2O(�) p(a) < 1 with O(�) the outgoing edges of �. If � is a terminal node,

we de�ne P� = 1�
P

a2O(�) p(a). �

As a consequence of De�nition 8, the following properties hold:

1. all the leaves are terminal nodes, as if � is a leaf O(�) = ; and soP
a2O(�) p(a) = 0

2. 8� leaf it is P� = 1

3. 8� node it is 0 < P� � 1

De�nition 9 Given a BCSP and one of its feasible assignments , the ex-
pected utility (EU) of is the number

EU() =
X
�2L

� X
�2I(�)

u(c(�))
�� Y

a2A(�)

p(a)
�
P�

with

� L the set of the terminal nodes of T

� 8� 2 L : I(�) = the set of the nodes � of the path from the root to �
such that (�) 6= NULL;

� 8� 2 L : A(�) = the set of the edges of the path from the root to �

�

20 BRANCHING CONSTRAINT SATISFACTION PROBLEMS (BCSPs)

Because the number of feasible assignments is �nite, the set

I = fEU()j is a fesable assignmentg

is also �nite. Hence there exists � a feasible assignment such that 8 feasible
assignment, EU(�) � EU(). It is then not unreasonable to be interested
in �nding a feasible assignment with the highest EU. In paper [8] some algo-
rithms for this pourpose are presented. In Chapter 7 a GA that tries to �nd
solutions with a good EU will be presented. A feasible assignment with the
highest EU is called optimal solution.

Given a BCSP, the set I de�ned above has an upper bound given by the
formula

UB =
X
�2L

� X
�2J(�)

u(c(�))
�� Y

a2A(�)

p(a)
�
P�

with

� L the set of the terminal nodes of T

� 8� 2 L; J(�) = the set of the nodes � of the path from the root to �;

� 8� 2 L;A(�) = the set of the edges of the path from the root to �

which is a number depending only on the BCSP and which corrisponds to
the EU of an hypothetical feasible assignment that assign all the nodes with
a value di�erent from NULL. Thus 8 feasible assignment of the BCSP,
EU() � UB and if we �nd a feasible assignment such that EU() = UB
then is a solution with the highest expected utility.

Recursive computation of EU()

Given a BCSP and one of its feasible assignments , EU() can be
calculated recursively. In fact we can de�ne v : N ! R such that 8� 2 N

1. if � is a leaf of T then

v (�) =

�
0 if (�) = NULL
uc(�) else

2. else

v (�) =

� P
�2C(�) v (�)p� if (�) = NULL

uc(�) +
P

�2C(�) v (�)p� else

with C(�) the children of � and p� the probability of the edge that
connects � with its father �.

Then EU() = v (�) with � the root of T .
This is the original de�nition of EU() in the paper [8].

3.4. EXPECTED UTILITY (EU) 21

Computation of EU() by matrices

If we �x an ordering of the nodes N = fN1; ::; Nng and one of the leaves
F = fF1; ::; Fkg of T , then there exists a vector ~y, dependent only on the
BCSP and on the orderings of N and of F , such that 8 feasible assignment
of the BCSP, EU() = ~yT~b with ~b = (b1; ::; bn) whereas 8i = 1::n

bi =

�
0 if (Ni) = NULL
1 else

Thus if we have ~y, the calculation of EU() consists on the simple compu-
tations of ~b and of the product ~yT~b. The vector ~y is given by the formula:

~y = F T~p

where

1. p = (p1; ::; pk) with pi the product of the probabilities of the edges in
the path from the root to the terminal node Fi and of PFi

2. F the matrix of order k � n such that 8(i; j) 2 f1; ::; kg � f1; ::; ng

Fi;j =

�
uc(Nj) if Nj is in the path from the root to Fi
0 else

In other words, given a BCSP C, there exists a function G : N ! R+

such that 8 solution of C it is

EU() =
X
�2N

G(�)b (�)

with

b (�) =

�
0 if (�) = NULL
1 else

Moreover it is UB =
P

�2N G(�), with UB the upper bound de�ned above.
The function G is given by the formula

G(�) = u(c(�)) �
X
�2T (�)

� Y
a2A(�)

p(a)
�
P�

with T (�) = f� j� terminal node such that � is in the path2 from the root to
�g and A(�) = the set of the edges of the path from the root to � .

Note that functionG is dependent only on the BCSP. So given the solution
 in order to compute EU() , once we have function G, we just have to

22 BRANCHING CONSTRAINT SATISFACTION PROBLEMS (BCSPs)

f 8� 2 N : G(�) 0;

8� terminal node:
f ��

Q
a2A(�) p(a) � P�

(with A(�) the set of the edges of the path from

the root to �);

8� node of the path from the root to � :
G(�) G(�) + ��

g

8� 2 N : G(�) G(�) � u(c(�));
g

Figure 3.1: The algorithm to compute G.

compute the function b and the sum
P

�2N G(�)b (�). Function G can be
calculated by the simple algorithm of Figure 3.1.

In spite of its notational complexity, this method is simple and it is the
fastest way to compute EU(), once we have calculated G. It is particularly
convenient when we have to compute the EU of several feasible assignments
of the same BCSP.

3.5 BCSPs as CSPs

It is evident that for each BCSP B there exists a CSP C whose feasible
assignments are in one to one correspondence with the feasible assignments
of B. As a matter of fact, given a BCSP B, let fN1; ::; Nng be an ordering
of its nodes. Let

C = (D0
1; ::; D

0
n; C

0)

whereD0
i = Dc(Ni)[fNULLg and C

0 = f(f1; ::; ng; I)gwith I = f(x1; ::; xn) 2
D0

1� ::�D
0
nj the function such that 8i; (Ni) = xi is feasible for Bg. Then

C is a CSP and the function

� : feasible assignments of C! feasible assignments of B
(x1; ::; xn) 7�! j8i = 1::n; (Ni) = xi

2Note that � is in the path from the root to � and if � is a terminal node, then it is
� 2 T (�).

3.6. THE EXTENDED BCSPS (EBCSPS) 23

is biunivocal. We call C the CSP correspondent to B.
Thus, we can �nd a solution of a given BCSP by one of the algorithms for

�nding a solution of a CSP. And we can �nd an optimal solution of a BCSP
by one of the algorithms that �nd a solution of an OBCSP. As a matter of
fact, given B if we de�ne

f : D0
1 � ::�D

0
n ! R

(x1; ::; xn) 7�! EU(�(x1; ::; xn))

we have that P = (C; f) is an OCSP and if ~x is an optimal solution of P
then �(~x) is one of the optimal solutions of B.

Yet it does not mean that studying algorithms for the BCSPs is useless.
Being a BCSP a very special CSP, we can exploit its peculiarities to reach
our purpose faster: in other words there is the possibility that an algorithm
for BCSPs solves a BCSP faster than an algorithm for CSPs solves the cor-
respondent CSP.

3.6 The extended BCSPs (eBCSPs)

Sometimes the BCSP model seems unable to describe the whole complex-
ity of a practical situation (see section 5.8). In some cases we need that the
constraints concern the NULL value as well and that the EU still treats it
as a particular value. In these cases we can use a model slightly di�erent
from the BCSP that we can call extended BCSP (eBCSP). In this model the
NULL value is necessarily in all the Di and an assignment of an eBCSP is
feasible i� 8� leaf, if B = the set of the nodes of the path from the root to
�g and I = fc(�) j � 2 Bg then the assignment of variables I such that
8i 2 I; f(i) = (�) with � 2 B and c(�) = i is feasible for P . All the other
de�nitions remain the same.3

For every BCSP there exists an eBCSP whose solutions are those of the
BCSP and have the same EU. As a matter of fact if (D1; ::; Dm; C; ~u; T; p; c) is
a BCSP, then (D0

1; ::; D
0
m; C; ~u; T; p; c) with D

0
i = Di [fNULLg is an eBCSP

with the same feasable solutions and with the same EU. So the descriptive
power of the eBCSP model is at least as good as that of the BCSP.

Note that the properties of section 3.3 do not hold for the eBCSPs. In
fact there are eBCSPs for which the NULL solution is not feasible. There
are eBCSPs with a feasible solution and a set of nodes S such that the
solution S is not feasible. Thus the GA for BSCP that can be derived from

3Note that in this case some contraints of P may concern the NULL value as well, in
the sense that some constraints may not be satis�ed by some partial assignments that
assign NULL to some variables.

24 BRANCHING CONSTRAINT SATISFACTION PROBLEMS (BCSPs)

the GA of Chapter 6 cannot be used to �nd an optimal solution of a given
eBCSP.

Chapter 4

Genetic Algorithms (GAs)

4.1 Overview

In this Chapter a breaf and informal introduction to GAs is provided.
The broader class of Evolutionary Programs (EPs) (see [1]) are introduced.
GAs are presented as a subset of EPs and classical GAs as a subclass of
GAs. Evolution Strategies (ES) are also introduced as a subset of EPs. The
algorithm designed in this thesis is an EP and with special parameters {
shaker = 1, see Section 6.4 { it is a GA not classical. Anyway, whatever are
the parameters, it has very strong similarities with GAs. For this reason it
wil be called GA.

4.2 Introduction

GAs can be considered as a subclass of EPs. An EP can be viewed as
an algorithm to �nd the optimal solution of a problem or equivalently as an
algorithm to �nd the point of maximum of a real function de�ned on some
set1.

EPs are approximation algorithms as they do not guarantee to �nd the
optimal solution, but they usually give a very good suboptimal solution.

They are stochastic algorithms in the sense that they more or less ran-
domly visit the elements (called solutions) of the domain (called search space)
of the function (called objective function) and return the visited solution with
the highest value of the objective function. However the exploration of the
search space is not totally random and these algorithms tend to concentrate
the exploration in the promising areas of the search space, i.e. the areas with

1For some authors this is too restrictive a vision, see [1, page 16].

25

26 CHAPTER 4. GENETIC ALGORITHMS (GAS)

good visited solutions.
EPs imitate living beings in their �ght for survival. All living beings

manage to survive in a di�cult environment by adapting their bodies to the
environment. The adaptation to the environment is obtained through the
Darwinian Natural Selection: the environment kills the individuals without
the features necessary to survive in it; those who survive give their winning
features to their o�springs; new features are introduced in the species by the
mutation and reproduction phenomenona. Thanks to this simple mechanism
some organisms have managed to survive in environments once forbidden to
them.

An EP creates a population of individuals { representing solutions of the
search space { living in a di�cult environment. The measure of the adap-
tation to the environment of an individual (called �tness of the individual)
is the value of the objective function on the solution represented by that
individual. Some of these individuals mate producing o�springs with genetic
heritage which is a mixture of that of their parents and new genes are intro-
duced in the population by a mutation phenomenon. Some individuals with
low �tness are killed by the environment. After some generations the average
�tness of the population should increase. In this way the EP explores the
search space and tries to �nd solutions with higher �tness.

EPs are useful to solve very hard optimization problems and in the last
decade their importance has been growing, as they can be naturally imple-
mented in parallel computers ([1]) that are now becoming available.

4.3 Evolutionary Programs (EPs)

An EP tries to �nd the point of maximum of a function f : S ! R. Each
EP is associated with an injective function � : S ! �R called encoding of the
solutions. The EP directly deals with the elements of the set im = R whose
elements are called the representations of the solutions. Also 8x 2 R; val(x)
is de�ned as f(��1(x)) and is called the �tness (or the value) of x. An
individual (also called chromosome or phenotype) is an element of �R. An
individual is feasible i� it is in R, i.e. i� it represents a solution. A population
is a tuple of individuals. An EP is also associated with a population size
� 2 N0 , an o�spring size � 2 N0 .

The Evolutionary Program creates an initial population of � feasible in-
dividuals ~v0 = (v01; ::; v

0
�); then it creates new feasible populations ~v1; ~v2; ::; ~vk

one after the other until a termination condition occurs; �nally the indi-
vidual with the highest �tness created until then is returned. The creation
of a new population ~vi is obtained in the following way: a population of �

4.3. EVOLUTIONARY PROGRAMS (EPS) 27

feasible individuals ~w = (w1; ::; w�) called the o�spring population is cre-
ated; the creation of ~w depends on the past populations ~v0; ::; ~vi�1 and on
random events; then a population ~vi of � individuals is created such that
8j 2 f1; ::; �g; vij 2 fwjjj = 1; ::; �g [fvi�1j jj = 1; ::; �g { i.e. ~vi is obtained
by choosing, even more than once, some individuals from those of the previ-
ous population ~vi�1 and of the o�spring population ~w. The pseudocode for
the EPs is given in Figure 4.1

f i 0;
create ~v0 2 R�;
� the element of ~v0 with the highest �tness;

while(not termination condition)
f i i + 1;

~w a population of � feasible individuals depending on
populations ~v0; ::; ~vi�1 and on random events;

~vi a population of � individuals taken from those
of ~w and ~vi�1, even more than once;

if
�
9j such that val(vij) > val(�)

�
� vij;

g

return �;
g

Figure 4.1: The structure of an EP.

The creation of ~vi out of ~w and ~vi�1 is called selection; the creation of ~w
out of the past populations and of random events is called recombination.

The goodness of the EP in �nding a good solution depends on the good-
ness of the selection and recombination procedures. In order to imitate the
evolutionary process of nature, the genetic information of the o�spring pop-
ulation must be both similar and di�erent to that of the last populations { so
as to keep the good features found until then and experiment new ones that
may reveal good { and the new population ~vi must have individuals taken
from the best of those of the o�spring and of the previous population.

The GAs, the (�; �)-ESs, the (�+ �)-ESs are particular EPs.

28 CHAPTER 4. GENETIC ALGORITHMS (GAS)

4.4 Genetic Algorithms (GAs)

GAs are EPs such that:

� � = �

� ~w depends only on ~vi�1 and on random events

� ~vi is a population of individuals only taken from those of ~w, even more
than once

� the recombination is a sequence of two operations: the mating and the
mutation. The mating consists of choosing some couples of individuals
of the population ~w and for each chosen couple (u; v) of replacing it in ~w
with two feasible individuals (; �) depending on (u; v) and on random
events, each similar to both (u,v); the mutation consists of choosing
some individuals of the population ~w and for each chosen individual x
of replacing it with a feasible chromosome y depending on it and on
random events and similar to it

The pseudocode of a GA is given in Figure 4.2.
The individuals u; v are called the parents of ; �; and ; � are called the

children of u; v. The procedure that creates the children from the parents is
usually called crossover. More that one crossover can be used in the mating
operation: some couples may produce their children by using a crossover
procedure, some others may do it by using onother one. However the parents
always die after mating and their place in the population is taken by their
children. The procedure that creates y from x is called mutation and more
than one mutation can be used.

4.4.1 The typical GA

In the typical GA, �R = D1� ::�Dn with Di sets. The chromosomes are
then tuples. The positions of the chromosomes are called genes. But �R may
be a set of trees or other more complex structures.

The typical mating procedure consists of selecting the individuals to mate
and of grouping them into couples; the selection of the individuals to mate
is done in the following way: for each individual we take a random number
r 2]0; 1] and if r � Pc { where Pc 2]0; 1] is a constant of the GA {we select the
individual; if the number of selected individuals is odd, we remove from the
selected individuals the last selected one; the couples are formed by grouping
by two in some way the selected individuals. Typically a couple of parents
produce a couple of children in the following way: we choose some of the genes

4.4. GENETIC ALGORITHMS (GAS) 29

f i 0;
create ~v0 2 R�;
� the element of ~v0 with the highest �tness;
while(not termination condition)
f i i + 1;

choose I � 2f1;::;�g such that 8A;B 2 I; A 6= B :
jAj = jBj = 2 and A \B = ;;

8I = fh; kg 2 I : replace (vi�1h ; vi�1k) with (xh; xk)
feasible individuals depending on (vi�1h ; vi�1k) and
on random events;

8h: replace vi�1h with a feasible individual
depending on vi�1h and on random events;

~w ~vi�1;
8h 2 f1; ::; �g : choose k 2 f1; ::; �g according to some

criteria and vih wk;

if
�
9j such that val(vij) > val(�)

�
� vij;

g
return �;

g

Figure 4.2: The structure of a GA.

30 CHAPTER 4. GENETIC ALGORITHMS (GAS)

of the parents and we swap them in the two chromosomes, thus obtaining
two individuals similar two both the parents, but possibly unfeasible; if they
are unfeasible, we repair them, i.e. we change them in few genes in order to
make them feasible.

The typical mutation procedure consists of randomly changing the values
of some genes of some individuals and of repairing the chromosomes that
have become unfeasible after this operation: for each chromosome and for
each gene we generate a random number r 2]0; 1] and if r � Pm { where
Pm 2 [0; 1] is a constant of the algorithm { we randomly modify that gene;
�nally we repair the chromosomes that have become unfeasible after this
operation. A mutation is said to be more or less strong if the mutated
individuals are more or less di�erent from the chromosomes from which they
are obtained. Pm in
uences the strength of the mutation operation.

Many selection algorithms have been developed and typically only one is
used in one GA. The most used selection algorithms are the q-tournament, the
proportional and the ranking selection. With the q-tournament ([5]) selection
8h 2 f1; ::; �g a set I � f1; ::; �g such that jIj = q is randomly chosen, the
index j 2 I, such that 8k 2 I it is val(wk) � val(wj), is found and it is set
vih = wj. The proportional selection ([5]) can be used if f � 0; with this
selection method each index j 2 f1; ::; �g is associated with a probability pj
proportional to val(wj); 8h 2 f1; ::; �g an index j 2 f1; ::; �g is randomly
chosen2 with probability pj and vih is set to wj. With the ranking selection
the set fval(wj)jj = 1; ::; �g is ordered and each position j 2 f1; ::; �g is
associated with a probability pj depending on the rank of val(wj) in that
ordering; 8h 2 f1; ::; �g an index j 2 f1; ::; �g is randomly chosen with
probability pj and vih is set to wj.

4.4.2 The problem of the feasibility

Usually we have a situation in which

1. �R 6= R

2. given two feasible individuals u; v, if we swaps correspondent parts of
u; v we still obtain two elements of �R not necessarily in R

3. given a feasible individual u, if we change some of its parts randomly
we still obtain an element of �R not necessarily of R

2More precisely, if 8j it is val(wj) = 0 then 8j 2 f1; ::; �g we de�ne pj = 1; else

8j we de�ne pj = val(wj)P�
j=1 val(wj)

; we also de�ne q1 = p1 and 8j 2 f2; ::; �g we de�ne

qj = qj�1 +
pjP�

h=1 val(wh)
; 8h we generate a random number r 2]0; 1] and we calculate the

index k such that k 2]qk � 1; qk]; we set vih = wk.

4.4. GENETIC ALGORITHMS (GAS) 31

In such a situation we can design a reparation algorithm that makes feasi-
ble an unfeasible individual by changing some of its parts trying to keep as
many parts of the initial individual as possible. A crossover procedure can
initially swap correspondent parts of the parents, thus producing intermedi-
ate individuals not necessarily feasible, and then repair them by a reparation
algorithm. A mutation procedure can randomly change some parts of an
individual, thus producing an intermediate unfeasible chromosome, and then
repair it by a reparation algorithm. This is the most common way a genetic
operator works. Yet a repair algorithm is very di�cult to design and it slows
down the GA as it often requires long computations ([1, page 5]).

In order to avoid the di�cult design of reparation procedures and the
slow speed of a GA using repair procedures, we can use the method of the
penalty function ([1, page 97]) that exploits the fact that no reparation is
needed when �R = R as, in such a situation, whatever modi�cation we make
on a chromosome, we obtain a feasible chromosome.

The method consists of creating the new function �f : �R ! R such that
8x 2 R; �f(x) = f(��1(x)) and 8x 2 �R nR; �f(x) = V � p(x), with V a value
< than the optimal value of f and p a positive function increasing with the
distance of x from R, and of designing a GA to maximize this function. An
optimal solution of �f is the rapresentation of an optimal solution of f . A GA
that uses the identity function of �R as encoding can be quickly designed with
simple and fast genetic operators. Of course, in order to use this method we
need to de�ne the concept of distance of x 2 �R nR from R.

The advantage of this technique is that in this GA crossover and mutation
operators need no reparation; the disadvantage is that this GA risks to spend
most of its time in valuating individuals unfeasible for the initial problem and
as soon as a chromosome feasible for the initial problem is found to converge
to it without any improvement ([1, page 98]). Another disadvantage is the
di�culty of �nding reasonable values for V and function p ([1, page 98]).

4.4.3 Classical GAs

The classical GA is a GA such that

� �R = f0; 1gn

� the mating is like that of the typical GA of section 4.4.1 and uses
only one crossover; the crossover modi�es the parents u = u1::un, v =
v1::vn in the following way: a random number i 2 f1; ::; n � 1g is
generated; the possibly unfeasible intermediate individuals are created
u0 = u1::uivi+1::vn and v0 = v1::viui+1::un; these individuals are repaired
and become the children of u; v.

32 CHAPTER 4. GENETIC ALGORITHMS (GAS)

� the mutating is like that of the typical GA of section 4.4.1 and uses
only one mutation operator; in this case the random change of a gene
consists of just setting it to 0, if it is 1, and to 1, if it is 0.

Most of the studies and of the theoretical results on GAs concern the classical
GA. Yet, recently many researchers have obtained better results by devel-
loping GAs with more complex representations of solutions and with more
varied genetic operators ([1]).

4.5 (�+ �)-Evolution Strategies ((�+ �)-ESs)

(�+ �)-ESs are EPs such that

� the o�spring population ~w of iteration i depends only on ~vi�1

� the selection consists of keeping for the next generation the � best
individuals of the o�spring ~w and of the previous generation ~vi�1

4.6 (�; �)-Evolution Strategies ((�; �)-ESs)

(�; �)-ESs are EPs such that:

� � > �

� the o�spring population ~w of iteration i depends only on ~vi�1

� the selection consists of keeping for the next generation the � best
individuals of the o�spring ~w

Chapter 5

The Harbour Packing Problem

5.1 Overview

The present project consists of studying and implementing a computer
program to tackle an ideal packing problem that models a simpli�cation of a
real problem faced by boat managers of many harbours. In this chapter this
problem is described and formalized. It is demonstrated that the problem
is NP-hard, thus justifying our choice for its solution by an approximation
algorithm such as a Genetic Algorithm.

5.2 Introduction

In every harbour there are ships that bring goods to destinations. The
goods are carried to the vessels in containers by lorries which arrive to the
boat in di�erent moments of the day from di�erent places. The containers
have di�erent shapes, utility and weights and carry di�erent types of goods
and must be placed on the hold of the ship.

The possible positions of a container are limited by many constraints (see
[13]). Some goods cannot be too close to others because of safety reasons (for
example, �reworks or explosives cannot be placed close to acids, as the acids
accidentally can break out of the container and interact with the explosive,
thus exposing the crew to a big risk and possibly loosing the cargo). Contain-
ers should be placed on the hold in a way that keeps the boat balanced. The
crane cannot move very heavy containers too far, and they must be put close
to the base of the crane. Some containers cannot be placed above others.

Often there is not enough room on the hold to load all the containers
satisfying all the constraints and some of them must be left on the harbour,
thus loosing the income due to their transportation to the destination.

33

34 CHAPTER 5. THE HARBOUR PACKING PROBLEM

As soon as a container arrives the boat manager must decide whether
to load it or not. If he/she decides to load it, he/she must choose where.
Sometimes outside of the boat there is a little space where the boat manager
can park containers postponing the decision of their loading. Also often some
containers, after they have been loaded, cannot be moved or unloaded.

The problem is complicated by the fact that lorries seldomly arrive in
time and some of them arrive later or earlier than expected or do not arrive
at all. Often, right in the middle of the day, after some containers have
already been loaded, the boat manager gets to know that some lorries will
not arrive or that new unexpected lorries will bring their containers to the
boat. Moreover the boat often has to reach several destinations in one trip
and in some of them not only it must bring but also receive containers and
these arrivals are not sure too.

The boat manager should do his/her decisions maximizing the utility of
the containers brought to destination. The task of the boat manager is then
nontrivial and of great responsibility.

5.3 The problem simpli�ed

We imagined though that the boat manager must face a simpler problem,
which is the one tackled in this thesis. Then the problem dealt of in this
dissertation is ideal, but of great importance.

In this simpler situation the boat manager must load a boat with a rect-
angular hold. The containers have a parallelepipedal shape of variable di-
mensions and utility and they have di�erent weights, but the ship will be
balanced whichever disposition they will have on the hold. They must be
placed side by side, and it is not possible to place a container on the top of
another. The containers may hold di�erent types of goods, but they are all
mutually compatible, according to the safety regulations. The crane is strong
enough to put each containers in whichever position wanted, and after a con-
tainer is loaded on the ship, it is �xed on the hold and cannot be unloaded
or moved to another position. In the quay there is not enough room for
containers to be parked. Hence the decision of whether to refuse a container
or not and of where to place it on the hold cannot be postponed: as soon
as a container arrives to the boat, it must be loaded or de�nitely refused.
The vessel must bring these containers to only one destination where all the
containers will be completely unloaded. The edges of the loaded containers
must be parallel to those of the hold and the lower left edge of each container
must be placed in one of the points of a given grid. Containers can be rotated
to optimize the space.

5.3. THE PROBLEM SIMPLIFIED 35

The boat manager does not know exactly the set of containers that he/she
will have to load, nor the sequence of their arrivals, but he/she has got some
information about this unknown future which reduces its uncertainty.

He knows the dimensions of the rectangular bases and the utilities of the
containers of a given set, a subset of which will arrive; he/she has a probabilis-
tical description of the arrivals, that tells him/her for each arrived container
which other can arrive next and with which probability. More precisely, the
possible arrivals are described by a tree (see �gure 5.1): each node of the
tree is associated with a known container and each edge is associated with a
probability. The arrivals will obey to this tree in this sense: the container of
the root will arrive �rst and with total certainty; the next arrival will be one
of the containers associated with the children of the root; for each of them
the probability of arrival after the �rst is given by the probability associated
with the edge that brings to them; and so on. Each actual arrival will be then
represented by a node of the tree and the next arrival will be represented by
one of its children.

For each node the sum � of the probabilities of the edges bringing to
its children is � 1; yet if it is � < 1 it means that with probability 1 � �
no other container will arrive after the one associated with that node. A
terminal node is a leaf node or an inner node with � < 1.

A

B

D

E

F

C

G

1

4

2

3

2

5

5

0.7

0.3

0.1

0.3

0.6

1.0

Figure 5.1: The problem tree.

The set of possible arriving containers is then the set of containers asso-

36 CHAPTER 5. THE HARBOUR PACKING PROBLEM

ciated with the nodes of the tree, and the actually arrived containers will be
the set of containers associated with one path to the root to a terminal node.
The possible sequences of arrivals are all the sequences associated with the
paths from the root to a terminal node, and the actual sequence of arrivals
will be one of them. The probability that a sequence of arrival will occur is
given by the product of all probabilities associated with the edges of the path
for that sequence multiplied by 1� � with � the sum of the probabilities of
the outgoing edges of the terminal node of that sequence.

Before any container arrives, the boat manager must decide what to do
at every possible arrival. That is for each node of the tree, he/she must
decide whether to load the container of that node or not, and where. More
precisely he/she must prepare a plan of action which associates each node
of the tree with the decision for the correspondent container (see �gure 5.2).
The decision is the position of the container on the hold { that is the coordi-
nates of the point of the grid in which the lower left corner of the container
is placed and the orientation of the container {, if it will be loaded, or the
information that it will not be loaded. This plan will be used to refuse or
load the containers as soon as they arrive.

The boat manager must �nd a plan that will load the boat with a big
total utility with great probability.

A

B

D

E

F

C

G

1

4

2

3

2

5

5

0.7

0.3

0.1

0.3

0.6

1.0

Not loaded

Not loaded

(1.3, 1.7, rotated)

(4.5, 2.8)

(8.0, 2.0)

(8.0, 2.0)

(4.0, 6.0)

Figure 5.2: The plan of action.

Each terminal node of a plan can be associated with a value obtained by

5.4. THE PROBLEM FORMALIZED 37

multiplying the product of the probabilities of the edges of the path from the
root to that node multiplied by 1� � with � the sum of the probabilities of
the outgoing edges of that terminal node and the sum of the utilities of the
loaded containers of that path in the plan. The value of a plan can then be
de�ned as the sum of the values of its terminal nodes.

If the same situation occurs several times and we always use the same plan
to load the boat, then the average of the sum of the utilities of the loaded
containers tends to be the value of the plan. Therefore if the situation occurs
only once and we use a plan to load the boat, the most probable sum of the
utilities of the loaded containers is the value of that plan. Hence the boat
manager must �nd the plan with the highest value.

This problem will be formalized in the following section.

5.4 The problem formalized

5.4.1 Branching Packing Problems (BPPs)

De�nition 10 In this project a Branching Packing Problem (BPP) is de-
�ned as a

(dx; dy; e; lx; ly; u; T; p; c)

where 1

� lx; ly; u : C ! R+
0 , with C = f1; ::; mg and m 2 N0

� e 2 R+
0

� dx; dy 2 R
+
0 , with dx; dy > e

� T = (N;E; �) a rooted tree with n = jN j � 2

� p : E !]0; 1] such that 8� 2 N , if O is the set of the outgoing edges of
�, then

P
a2O p(a) � 1;

� c : N ! C such that 8� 2 N :

1. if J is the set of the children of �, then 8
; � 2 J such that
 6= �
it is c(
) 6= c(�);

2. if H is the set of the nodes of the path from the root to �, then
8
; � 2 H such that
 6= � it is c(
) 6= c(�);

1In the following pages the symbol R+0 represents the set of real numbers > 0, R+ the
set of real numbers � 0, N0 the set of natural numbers > 0, and Q+ the set of rational
numbers � 0.

38 CHAPTER 5. THE HARBOUR PACKING PROBLEM

The elements of C are called containers; for a 2 C, lx(a), ly(a) and u(a)
are called the width, the length and the utility of container a respectively; e
is the precision of the grid; dx and dy are the width and the length of the
hold; T is the branching tree; for a 2 E, p(a) is the probability of edge a; for
� 2 N , c(�) is the container of node �. �

Less formally we can imagine a BPP as a set of objects C called containers
with a rectangular base, each a 2 C with width lx(a) and length ly(a) and
utility u(a); a rectangular container called hold with width dx and length
dy with a grid of horizontal and vertical lines parallel to the borders and
far e one from the other, the leftmost of which is coincident with the left
border line and lowest with the lower border line; a tree T where each edge
a is labelled with a positive number p(a) and each node � is labelled with a
container c(�) in a way that for each node the sum of the probabilities of the
edges outgoing from the node is less than one and each node has a container
di�erent from that of its brothers and ancestors. We can imagine that there
is a cartesian system whose origin is placed in the lower left corner of the
hold and whose axes are parallel to the lower border and to the left border
of the hold { see �gure 5.3. The points of the grid are identi�ed by their
coordinates on the cartesian system. If a container is placed on the hold, it
can be rotated and its lower left corner must be placed on one of the points
of the grid and its sides must be parallel to those of the hold. Two object,
when placed on the hold cannot overlap { see �gure 5.3.

A BPP represents the information about the ship space and the future
arrivals of containers that the boat manager receives in the morning, before
any container arrives.

5.4.2 Assignments and feasible assignments

De�nition 11 Given a BPP, we de�ne Dx = fnejn 2 N ; ne < dxg and Dy =
fnejn 2 N ; ne < dyg. The elements of the set (Dx�Dy �f0; 1g)[fNULLg
are called positions of the BPP. �

De�nition 12 Given a BPP, a container i and a position P = (x; y; z) 6=
NULL we de�ne

�x(i; P) =

�
lx(i) if z = 0
ly(i) else

and

�y(i; P) =

�
ly(i) if z = 0
lx(i) else

�

5.4. THE PROBLEM FORMALIZED 39

A

B

D

E

F

C
G

1

4

2

3

2

5

5

0.7

0.3

0.1

0.3

0.6

1.0

1 4

5
2

3

12.2

3.4

4.0

7.3

8.0

e

dx

dy

lx

ly

e

Figure 5.3: A rapresentation of a BPP.

Figure 5.4: The positioning of containers on the hold.

40 CHAPTER 5. THE HARBOUR PACKING PROBLEM

De�nition 13 Given a BPP, we say that a container i in position P is inside
of the hold i� P = NULL or

(x+�x(i; P); y +�y(i; P)) 2 [0; dx]� [0; dy]

with P = (x; y; z).
We say (see Figure 5.5) that a container i in position Pi overlaps with

container j in position Pj i� Pi = (ai; bi; ci) 6= NULL and Pj = (aj; bj; cj) 6=
NULL and

(aj; bj) 2]ai ��x(j; Pj); ai +�x(i; Pi)[�]bi ��y(j; Pj); bi +�y(i; Pi)[

�

i

�x(j,Pj)

�y(j,Pj)

�y(i,Pi)

�x(i,Pi)

j

(ai,bi)

(aj,bj)

(0,0)

Figure 5.5: The rectangle of overlapping.

De�nition 14 A assignment of a given BPP is a function

 : N ! (Dx �Dy � f0; 1g) [fNULLg

an assignment is called feasible i� 8� 2 N :

1. container c(�) in position (�) is inside of the hold;

5.4. THE PROBLEM FORMALIZED 41

2. 8� 2 N , � of the path from the root to �, � 6= �, container c(�) in
position (�) does not averlap with container c(�) in position (�).

An assignment which is not feasible is called unfeasible. �

De�nition 15 Given BPP, an assignment , a node � and a position P , we
say that position P in the node � of the assignment is feasible i�

1. container c(�) in position P is inside of the hold;

2. 8� 2 N , � 6= �, � of the path from the root to �, c(�) in position P
does not overlap with c(�) in position (�).

�

Less formally the sets Dx and Dy represent the abscissas and ordinates
of the points of the grid in a cartesian system. The set Dx �Dy is then the
set of coordinates of these points.

An assignment is a function that associates to each node � of the tree a
position (�) for the correspondent container c(�) that must be interpreted
in this way: if (�) = NULL, the container is not loaded on the boat; else
if (�) = (x; y; z), the corresponding container is loaded on the hold in the
following way: if z = 1 it is rotated of 90 degrees { clockwise or anticlockwise,
it is the same { else it is kept with the same orientation; then it is placed
with the lower left corner on the point of the grid of coordinates (x; y) and
with sides parallel to the borders of the hold.

If position P = (x; y; 1), then �x(i; P) and �y(i; P) represent the width
and the length of container i after it is rotated and placed with the lower
left corner in the point of the grid of coordinates (x; y); if P = (x; y; 0), then
�x(i; P) and �y(i; P) represent the width and the length of container i after
it is placed with the same orientation and with the lower left corner in the
point of the grid of coordinates (x; y).

Not all the possible assignments are feasible. In order to be feasible
an assignment must satisfy some constraints: if the container associated
with a node � is loaded, after it is eventually rotated and positioned in the
corresponding point of the grid, it must be inside the hold; also it must not
overlap with any container of the nodes of the path from the root to � loaded
by the same assignment.

As can be deduced by the de�nition, a feasible assignment can place the
containers of two nodes in an overlapping position. But one of these nodes
must not be in the path from the root to the other.

A feasible assignment represents the plan of actions of the boat manager.

42 CHAPTER 5. THE HARBOUR PACKING PROBLEM

Note that if container i in position Pi overlaps with container j in position
Pj then j in position Pj overlaps with i in position Pi.

Given a BPP, the number of its assignments is

�
jDxj � jDyj � 2 + 1

�jN j

The number of feasible assignments is obviously less and is greater than one,
for the trivial assignment which associates each note to NULL is always a
feasible assignment . We are interested in �nding feasible assignments. In
the following section we will de�ne the goodness of a feasible assignment. We
will then be interested in �nding the best feasible assignments.

Note then that nx = jDxj � 2 and ny = jDyj � 2 and Dx = f0; ::; e(nx �
1)g and Dy = f0; ::; e(ny � 1)g.

5.4.3 Expected Utility (EU)

De�nition 16 Given a BPP, a node � of its tree is said to be terminal i�P
a2O(�) p(a) < 1 with O(�) the outgoing edges of �. If � is a terminal node,

we de�ne P� = 1�
P

a2O(�) p(a). �

As a consequence of De�nition 16, the following properties hold:

1. all the leaves are terminal nodes, as if � is a leaf O(�) = ; and soP
a2O(�) p(a) = 0

2. 8� leaf it is P� = 1

3. 8� node it is 0 < P� � 1

De�nition 17 Given a BPP and one of its feasible assignments , the ex-
pected utility (EU) of is the number

EU() =
X
�2L

� X
�2I(�)

u(c(�))
�� Y

a2A(�)

p(a)
�
P�

with

� L the set of the terminal nodes of T

� 8� 2 L; I(�) = the set of the nodes � of the path from the root to �
such that (�) 6= NULL;

� 8� 2 L;A(�) = the set of the edges of the path from the root to �

5.4. THE PROBLEM FORMALIZED 43

�

Because the number of feasible assignments is �nite, the set

I = fEU()j is a feasible assignmentg

is also �nite. Hence there exists � a feasible assignment such that 8 feasible
assignment, EU(�) � EU(). It is then not unreasonable to be interested
in �nding a feasible assignment with the highest EU. A feasible assignment
with the highest EU is called optimal solution.

Given a BPP, the set I de�ned above has an upper bound given by the
formula

UB =
X
�2L

� X
�2J(�)

u(c(�))
�� Y

a2A(�)

p(a)
�
P�

with

� L the set of the terminal nodes of T

� 8� 2 L; J(�) = the set of the nodes � of the path from the root to �;

� 8� 2 L;A(�) = the set of the edges of the path from the root to �

which is a number depending only on the BPP and which corresponds to
the EU of an hypothetical feasible assignment that assign all the nodes with
a value di�erent from NULL. Thus 8 feasible assignment of the BPP
EU() � UB and if we �nd a feasible assignment such that EU() = UB
then is a solution with the highest expected utility.

Recursive computation of EU()

Given a BPP and one of its feasible assignments , EU() can be calcu-
lated recursively. In fact we can de�ne v : N ! R such that 8� 2 N

1. if � is a leaf of T then

v (�) =

�
0 if (�) = NULL
uc(�) else

2. else

v (�) =

� P
�2C(�) v (�)p� if (�) = NULL

uc(�) +
P

�2C(�) v (�)p� else

with C(�) the children of � and p� the probability of the edge that
connects � with its father �.

Then EU() = v (�) with � the root of T .

44 CHAPTER 5. THE HARBOUR PACKING PROBLEM

Computation of EU() by matrices

If we �x an ordering of the nodes N = fN1; ::; Nng and one of the terminal
nodes F = fF1; ::; Fkg of T , then there exists a vector ~y, dependent only on
the BPP and on the orderings ofN and of F , such that 8 feasible assignment
of the BPP, EU() = ~yT~b with ~b = (b1; ::; bn) and 8i = 1::n

bi =

�
0 if (Ni) = NULL
1 else

Thus if we have ~y, the calculation of EU() consists on the simple compu-

tations of ~b and of the product ~yT~b. The vector ~y is given by the formula:

~y = F T~p

where

1. p = (p1; ::; pk) with pi the product of the probabilities of the edges in
the path from the root to the terminal node Fi and of PFi

2. F the matrix of order k � n such that 8(i; j) 2 f1; ::; kg � f1; ::; ng

Fi;j =

�
uc(Nj) if Nj is in the path from the root to Fi
0 else

In other words, given a BPP C, there exists a function G : N ! R+ such
that 8 solution of C it is

EU() =
X
�2N

G(�)b (�)

with

b (�) =

�
0 if (�) = NULL
1 else

Moreover it is UB =
P

�2N G(�), with UB the upper bound de�ned above.
The function G is given by the formula

G(�) = u(c(�)) �
X
�2T (�)

� Y
a2A(�)

p(a)
�
P�

with T (�) = f� j� terminal node such that � is in the path2 from the root to
�g and A(�) = the set of the edges of the path from the root to � .

2Note that � is in the path from the root to � and if � is a terminal node, then it is
� 2 T (�).

5.5. BPPS WITH ONE PATH TREES 45

Note that function G is dependent only on the BPP. So given the solution
 in order to compute EU() , once we have function G, we just have to
compute the function b and the sum

P
�2N G(�)b (�). Function G can be

calculated by the simple algorithm of Figure 3.1.
In spite of its notational complexity, this method is simple and it is the

fastest way to compute EU(), once we have calculated G. It is particularly
convenient when we have to compute the EU of several feasible assignments
of the same BPP and it is the method used in the application developed in
this thesis.

5.5 BPPs with one path trees

BPPs with one path trees and with all the edges associated with proba-
bility 1 deserve special attention.

A
DB C

1
2

431.0 1.0 1.0

1

2

3

4

12.2

7.3

14.2

3.5

Figure 5.6: A BPP with a one path tree

A BPP with a one path tree (see �gure 5.6) is produced by a boat manager
that knows with certainty the set of containetrs to be loaded and must decide
which of them he/she can load and where in order to maximize the sum of
the utilities of the loaded conatainers .

In this case a feasible assignment is just a positioning of some of the
containers inside of the hold and the EU of a feasible assignment is just the
sum utilities of the loaded containers.

46 CHAPTER 5. THE HARBOUR PACKING PROBLEM

The BPP is then a generalization of the classical problem of placing rect-
angular objects on the points of a grid inside a rectangular container in order
to maximize the sum of the utilities of placed objects.

Therefore, in order to solve a classical gridded packing problem, being it
a particular case of the BPP, we can use an algorithm for the BPP as we
have done in Section 9.3.1.

5.6 NP-hardness

In this section it will be demostrated that the optimization problem of
�nding a feasible assignment of a BPP with the highest expected utility is an
NP-hard problem. It is then advisable to spend our energy in developing an
approxiamtion algorithm rather than in developping one that �nd the exact
best assignment (see [4, page 916]).

Lemma 1 The optimization problem \given ~w 2 Nn , ~u 2 Nn and W 2 N,
�nd the ~x 2 f0; 1gn such that ~wT~x � W in a way that ~uT~x is maximal" is
NP-hard. �

The problem of Lemma 1 is the well known Optimization Knapsack Prob-
lem and the proof of its NP-hardness can be found in [2, page 65]. The
NP-hardness of the problem of �nding a feasible assignment with the highest
EU of a BPP with integer precision, integer sizes of hold and containers and
rational probabilities is a consequence of the NP-hardness of this problem.

Proposition 7 The optimization problem \given the BPP

(dx; dy; e; lx; ly; u; T; p; c)

such that 8i 2 C : lx(i); ly(i); u(i) 2 N and dx; dy; e 2 N and 8a 2 E : p(a) 2
Q+ , �nd one of its feasible assignments with the highest EU" is NP-hard. �

Proof. Let D be the problem of this Proposition and C that of Lemma
1. We will prove that if we had a polinomial algorithm � for D then we would
have a polinomial algorithm
 for C.

In fact let � be a polinomial algorithm for D and
 the algorithm that:

1. After receiving an input ~w, ~u and W of problem C it builds the BPP

(dx; dy; e; lx; ly; u; T; p; c)

where

5.6. NP-HARDNESS 47

� e = 1

� dy = 1

� dx =W

� lx(i) = wi

� ly(i) = e

� u(i) = ui

� T = (N;E; �) with N = f1; ::; ng, E = ffi; i+1g : i = 1; ::; n� 1g
and � = 1

� p(a) = 1; 8a 2 E

� c(i) = i

2. It gives this BPP in input to algorithm � which returns in output .

3. Returns the vector ~x such that for i = 1; ::; n

xi =

�
0 if (i) = NULL
1 else

Now
 is polinomial. In fact the time it takes to give the output is the
sum of the times of the 3 steps: the construction of the BPP requires a
polinmial time on the size of the inputs to
; the BPP has a size which is
polinomial on the size of the inputs; the assignment of the BPP by
 requires
a polinomial time of the size of the BPP and so a polinomial time of the size
of the inputs; the constuction of ~x from requires a polinomial time on the
size of the inputs. Therefore the sum of these times is again polinomial of
the size of the inputs to
.

Moreover
 solves C. In fact let's suppose that we have an instance I =
(~w; ~u;W) of problem C and we give it in input to
. Let BPP (I) be the BPP
built by
 on input I. Then BPP (I) has a one path tree and corrisponds
to the situation with a very narrow and long hold and very narrow and long
containers (see �gure 5.7). The width of the hold is e and the length is W ;
the width of container i is e and its lenght is wi. The width of the containers
is equal to that of the hold hence containers can only be placed on a row
and not in parallel. The lines of the grid are far e one from the other and
e is a submultiple of the lenghts of the containers so that if we place the
containers inside the hold and we compress them tightly they will still move
to a feasible position, with the lower left corner on a point of the grid. All
the containers arrive with total certainty.

48 CHAPTER 5. THE HARBOUR PACKING PROBLEM

W

e

e

wi

1

2

3

4

u1

u2

u3

u4

1 2 3 4
1.0 1.0 1.01 2 3 4

Figure 5.7: The BPP produced by

A feasible assignment of BPP (I) gives us an acceptable set of objects {
that is with a total weight � W { for I with the same value. Viceversa, an
acceptable subset of objects of I gives us a feasible assignment to BPP (I)
with the same value. As a matter of fact if we know that a certain set of
objects can be placed on the bag, the corrispondent containers can enter the
hold too, even if they must stay on the grid, because we can place them
in a random position and then pack them together, for the new position is
grid-feasible and their total lenght is surely less than that of the hold.

Therefore if we give BPP (I) to �, this algorithm gives us the best feasible
assignment of BPP (I), from which we can build x a subset of objects
feasible for I with the same value, that is the output of
. If I had a better
subset �x, there would exist also an assignment � of BPP (I) better than .
But this is not possible. So the assignment given by
 is a feasible subset for
the instance of problem C and it is the best. Then
 solves C.

Thus if we had a polinomial algorithm for D, we would have a polinomial
algorithm for C and so, being C NP-hard, a polinomial algorithm for all the
problems of class NP. Then D is NP-hard. �

The problem of �nding a feasible assignment with the highest EU of a
given BPP is then at least as di�cult as the one of the Proposition 7.

5.7. THE BPP AS A BCSP 49

5.7 The BPP as a BCSP

Given a BPP we can easily build a BCSP with the same solutions and
such that the solutions have the same EU. The BPP gives all the necessary
information that de�ne the idealized problem of the harbour and is exactly
the input of the application described in Chapter 10. Many of the previous
conclusions could be derived from the properties of the BCSPs. Actually the
problem of the harbour has been modelled �rst as a BCSP and then as a
BPP, which is simply another way to describe this particular BCSP.

Given the BPP
(dx; dy; e; lx; ly; u; T; p; c)

the BCSP with the same solutions of the BPP is simply�
(D1; ::; Dm; C); ~u; T; p; c

�

with 8i 2 f1; ::; mgDi = Dx � Dy � f0; 1g = D and C = the set of all the
(I; I) such that:

� jIj = 2

� fi; jg = I � f1; ::; mg

� I = ff : I ! Dj container i in position fi is inside of the hold,
container j in position fj is inside of the hold, container i in position
fi does not overlap with container j in position fjg

5.8 The eBCSPs and the requirement of bal-
ance

In the previous section we have seen that the idealized problem of Section
5.3 can be modelled as a BCSP. If the boat manager of the ideal problem
had to place the containers in the hold so as to keep the boat balanced {
for example in a way that the total weight of the containers in the left part
of the hold is almost the same of the total weight of the containers of the
right part of the hold { the new problem would not be easily modellable as
a BCSP.

As a matter of fact the requirement of balance is naturally modellable
as a constraint concerning the loaded containers. But if for each subset of
containers we added to the CSP the constraint allowing only the balanced
disposition of containers, then we would refuse most of the balanced dispo-
sitions.

50 CHAPTER 5. THE HARBOUR PACKING PROBLEM

The new problem instead is naturally modellable as an eBCSP. In order
to build the eBCSP representing the new ideal problem we can �rst build
the BCSP corresponding to the problem without the requirement of balance;
then we can add the NULL value to the domains; �nally for each terminal
node, we can add a constraint concerning the variables of the path from
the root to that node that accepts all the assignments f such that the set of
containers associated by f to a value 6= NULL are in a balanced disposition.

Chapter 6

The Genetic Algorithm

6.1 Overview

This Chapter describes a GA that searches for a feasible solution of a
given BPP with the highest EU. This GA and its implementation is the
purpose of the present dissertation.

6.2 Introduction

As stated in Chapter 5 the problem of �nding a feasible solution of a
given BPP with the highest EU is NP-hard and as such it is more convenient
to solve it by an approximation algorithm. A GA is an approximation algo-
rithm, as it starts from a set of feasible solutions and tries to improve them
until the user decides that it must stop and it does not guarantee that the
given solution is the best.

The following algorithm is not a classical GA as de�ned in [1]. As a
matter of fact the chromosomes are not binary vectors, but solutions of a
BPP. There is no encoding of individuals to strings of the binary alphabet
and the genetic operators are clever and problem speci�c in the sense that
they modify individuals by taking into account the information about the
problem and the meaning of the objects that they modify. This algorithm
is also a multicrossover and multimutation algorithm in the sense that dif-
ferent kinds of crossover and mutation operators are executed with di�erent
frequences in each iteration during the process of recombination and of mu-
tation respectively. Moreover this GA uses a new feature called \Shake",
which tries to avoid the premature convergence of the algorithm. For these
reasons this algorithm could be classi�ed as an Evolution Program ([1, page
10]), but because of its strong similarities with the bettere known GAs, it

51

52 CHAPTER 6. THE GENETIC ALGORITHM

will be called GA.
The feasibility of the individuals is maintained in this GA by speci�c

genetic operators which always produce feasible individuals, often by repair-
ing unacceptable chromosomes obtained by rough low level operations. The
design of e�ective speci�c genetic operators have required much time and
e�ort.

The GA here presented depends on several parameters and its perfor-
mance and behaviour varies strongly with them.

This algorithm is speci�c for BPPs, but its genetic operators are easily
adaptable to be part of a GA that solves any BCSP.

6.3 Basic concepts and operations

6.3.1 The ordering of the positions

A solution of a BPP is a function which associates each node � of the
tree of the BPP an element of the set (Dx � Dy � f0; 1g) [fNULLg. The
present GA assumes that the elements of this set are ordered by the one to
one function

� : f1; ::; 2nxny + 1g ! (Dx �Dy � f0; 1g) [fNULLg

such that

1. if 1 � k � 2nxny:

�(k) =

8<
:

x = ((kdiv2� 1)modny)e
y = ((kdiv2� 1)divny)e
z = kmod2 + 1

2. if k = 2nxny + 1:
�(k) = NULL

whose inverse is

� : (Dx �Dy � f0; 1g) [fNULLg ! f1; ::; 2nxny + 1g

such that

�(x; y; z) = 2 � (
x

e
ny +

y

e
+ 1)�

�
0 if z = 1
1 else

and
�(NULL) = 2nxny + 1

6.3. BASIC CONCEPTS AND OPERATIONS 53

This ordering is that obtained �rst by ordering the points of Dx � Dy

by increasing ordinates and increasing abscissas (see �gure 6.1) and then by
ordering the elements of (Dx �Dy � f0; 1g) [fNULLg in the way that

1. (x; y; z) < (�; �;
) if (x; y) < (�; �)

2. (x; y; 0) < (x; y; 1)

3. (x; y; z) < NULL

So the positions are in this order:

(0; 0; 0); (0; 0; 1); (0; e; 0); (0; e; 1); (0; 2e; 0); (0; 2e; 1); ::; (0; n0ye; 0); (0; n
0
ye; 1);

(e; 0; 0); (e; 0; 1); (e; e; 0); (e; e; 1); (e; 2e; 0); (e; 2e; 1); ::; (e; n0ye; 0); (e; n
0
ye; 1);

:::

(n0xe; 0; 0); (n
0
xe; 0; 1); (n

0
xe; e; 0); (n

0
xe; e; 1); ; ::; (n

0
xe; n

0
ye; 0); (n

0
xe; n

0
ye; 1);

NULL

with n0x = nx � 1 and n0y = ny � 1.
Other orderings could be used. Yet, the algorithm requires that NULL,

according to the ordering, is the last element of the set.

(0,0)

(0,e)

(0,2e)

(e,0)

(e,e)

(e,2e)

(2e,0)

(2e,e)

(2e,2e)

(0,3e) (e,3e) (2e,3e)

(3e,0)

(3e,e)

(3e,2e)

(3e,3e)

Figure 6.1: The ordering of the points of the grid.

54 CHAPTER 6. THE GENETIC ALGORITHM

6.3.2 The ordering of the nodes

The present GA orders the nodes of the tree of the input BPP in a depth
�rst manner. More precisely, as soon as the BPP is received in input by the
GA, the children of each node are ordered in some way; then all the nodes are
ordered by the rule that: the father comes before all its children and a node
comes before all its brothers that follows it in the ordering of the children of
his father. This ordering is called the basic ordering of the nodes.

6.3.3 The Fill operation

On a feasible solution the GA often makes a Fill operation. This operation
consists of trying to change the NULL values of the nodes of the input
solution to values 6= NULL, i.e. of trying to �ll up the empty spaces of the
hold with some unloaded containers.

When a feasible solution is modi�ed by a Fill operation, all its nodes
are considered in the basic order and for each node � associated to NULL
by , � is assignd the �rst value 6= NULL of the order of section 6.3.1 such
that the correspondent container c(�) in that position does not overlap with
any container of nodes of the path from the root to � in its corresponding
position.

The pseudo code for the Fill operation is given in �gure 6.2.
The Fill operation optimizes the feasible solution as the EU of the �lled

solution is � than than before the operation.

6.3.4 The repair operations

The GA here presented makes use of repair procedure in the generation of
the initial population and after some genetic operators are applied. A repair
function receives in input a solution and returns in output a feasible solution
dependent on the input. It is used to make feasible an unfeasible solution.

The present GA makes use of two repair functions: the Ordered -repair
and the Random-repair. These repair functions are designed in a way that
the output feasible solution is similar to the input unfeasible one in order to
take advantage of the evolutionary process. If the input solution is feasible
it is returned in output unchanged.

The Ordered-repair

This procedure explores the nodes of the tree in the basic order and for
each node � it considers the value given to � by the input solution . If this

6.3. BASIC CONCEPTS AND OPERATIONS 55

procedure Fill()
f let N = fN1; ::; Nng be the basic ordering of the nodes;

for(i 1 to n)
if((Ni) = NULL and there exists

a position point 6= NULL such that container c(Ni) in position
point is inside of the hold and 8� 6= Ni node
of the path from the root to Ni: container c(Ni)
in position point does not overlap with container c(�)
in position (�))

 (Ni) the �rst such a position in the order �;
g

Figure 6.2: The Fill procedure.

value satisfys all the constraints concerning the correspondent container {
that is the container in this position is inside the hold and does not overlap
with any container of the path from the root to � { then it is kept in the
output solution; else the procedure considers one by one the next values in
the order of section 6.3.1 until one that satis�es the constraints is found.
This value is always found, being the NULL value always acceptable and at
the end of the ordering. Eventually the feasible solution so far obtained is
�lled.

In summary the Ordered-repair can be described in pseudo code as in
�gure 6.3 where �1; ::; �k is the ordering of the positions in the grid of section
6.3.1.

The output solution is feasible because a modi�cation of a node value is
made after all the values of the nodes of the path from the root to that node
are made feasible, thanks to the basic ordering of this operation.

The Ordered -repair has the property that the modi�cation process is done
always in the same order. This implies that the output feasible solutions have
the nodes of the lower levels of the tree rarely assignd with the value NULL.

The Random-repair

This repair function avoids the bias of the NULL values towards the
lower levels of the tree by exploring the nodes always in a random order. It
guarantees that the value NULL is present with the same probability in all

56 CHAPTER 6. THE GENETIC ALGORITHM

procedure Ordered-repair()
f let fN1; ::; Nng be the nodes of N in the basic order;

for(i 1 to n)
f point (Ni);

while
�
container c(Ni) in the position point

is not inside the hold or 9K 6= Ni a node of the path
from the root to Ni such that c(K) in the position

 (K) overlaps with c(Ni) in the position point
�

point �(��1(point) + 1);
 (Ni) point;

g
Fill();

g

Figure 6.3: The Ordered-repair.

the nodes of the output solution.
This repair function creates an initially empty output solution { i.e. with

all the nodes assignd to NULL { that it modi�es repeatedly. It randomly
orders the nodes of the tree and in that order for each node � it executes
the following modi�cation: it considers the value assignd to � by the input
solution and it make the output solution assign this value to �; if it is feasible
in this solution, it is kept; else it is repeatedly changed to the next value until
one that satisfy the constraints in the output solution is found. Eventually
the feasible solution so far obtained is �lled.

In summary the Random-repair can be described in pseudo code as in
�gure 6.4 where �1; ::; �k is the ordering of the positions in the grid of section
6.3.1.

6.3.5 The functions returning a random position

In this GA two functions that return a random position are used: the
Random-position and the Random-position-NULL. The �rst one returns a
random element of the set Dx �Dy � f0; 1g [fNULLg, each element with
the same probability 1

2nxny+1
. The second function returns a random element

of the same set, NULL with probability PNULL and each of the other 2nxny

6.4. THE MAIN STRUCTURE 57

procedure Random-repair()
f let fQ1; ::; Qng be the nodes of N in a random order;

create the solution 0 such that 8i : 0(Qi) = NULL;

for(i 1 to n)
f 0(Qi) (Qi)

while
�
container c(Qi) in position 0(Qi)

is not inside of the hold
or

9
 node 6= Qi of the path
from the root to Qi: such that c(
)
in position 0(
) overlaps with c(Qi)
in position 0(Ni)

or
9� node 6= Qi of the subtree rooted at Qi

such that c(�) in position 0(�) overlaps with c(Qi)

in position 0(Qi)
�

 0(Qi) �
�
��1(0(Qi)) + 1

�
;

g
Fill(0);
 0;

g

Figure 6.4: The Random-repair.

elements with probability 1�PNULL
2nxny

.

The pseudocodes of functions Random-position and Random-position-
NULL are presented in �gures 6.5 and 6.6 respectively.

6.4 The main structure

The GA receives in input the BPP (lx; ly; u; dx; dy; e; T; p; c) and the fol-
lowing parameters whose meaning will be explained in this and in the fol-
lowing sections:

� numbiter, popsize 2 N0 , popsize � 2

58 CHAPTER 6. THE GENETIC ALGORITHM

function Random-position-NULL;
f r a random number in f1; ::; 2nxny + 1g;

return �(r);
g

Figure 6.5: The Random-position function.

function Random-position-NULL;
f r a random number of]0; 1];

if(r � PNULL) return NULL;
else
f r a random number in f1; ::; 2nxnyg;

return �(r);
g

g

Figure 6.6: The Random-position-NULL function.

6.5. THE CREATION OF THE INITIAL FEASIBLE POPULATION 59

� pc, pmAi
, pmBi

, pmCi
, pmDi

, pNULL 2 [0; 1]

� shakew, shaked 2 N0 , shaker 2]0; 1]

� pmAs
, pmBs

, pmCs
, pmDs

2 [0; 1] with pmAi
< pmAs

, pmBi
< pmBs

, pmCi
<

pmCs
, pmDi

< pmDs

� a > 0, b 2 N0

� scntype 2 fA;Bg, selezionetype

� fcA, fcB , fcC , fcD 2 [0; 1] such that fcA + fcB + fcC + fcD = 1

� fmA , fmB , fmC , fmD 2 [0; 1] such that fmA + fmB + fmC + fmD = 1

Initially the GA sets the mutation probabilities pmA , pmB , pmC and pmDto
the initial values pmAi

, pmBi
, pmCi

and pmDi
respectively. Then it creates

an initial ordered population of popsize randomly generated feasible solutions
~w = (w1; ::; wpopsize) and the variable wbest is set to the wi with the highest
EU. The population ~w is modi�ed repeatedly for numbiter times. A single
modi�cation of ~w is obtained by executing on it in this order a recombination,
a mutation and a selection operation. The creation of the initial population
and these operations will be presented in the sections 6.5, 6.6, 6.7 and 6.8
respectively. At the end of each iteration of the modi�cation all the elements
of ~w are evaluated and the wi with the highest EU is found; if EU(wi) >
EU(wbest) then the present wbest is discarded and replaced with wi. Also the
best and the average value of the population of every iteration are stored and
if in the last shakewindow iterations the average is greater than shakeratio times
the best of the corresponding generation, then for shakeduration iterations the
mutation probabilities PmA, PmB , PmC , PmD , that in
uence the behaviour of
the mutation operators, are increased and set to PAms , PBms , PCms and PDms

respectively; after this number of iterations, the probabilities are set back to
the initial values. After all the iterations are done, wbest is returned as output.
Therefore wbest is the best feasible solution in the set of all the individuals
obtained at the end of each iteration.

In summary the main structure of the GA can be described in pseudo
code as in �gure 6.7.

6.5 The creation of the initial feasible popu-
lation

The initial population of feasible assignments is generated randomly. All
the popsize individuals are generated with the same method: an individual wi

60 CHAPTER 6. THE GENETIC ALGORITHM

f read BPP;
read parameters;
PA PAi; PB PBi; PC PCi ; PD PDi;
~w Initial-feasible-population;
wbest the wi with the highest EU;

for (i 1 to popsize)
f Mate(~w);

Mutate(~w);
Select(~w);

w the wl with the highest EU;
if (EU(w) > EU(wbest)) wbest w;

�i the average EU of ~w;
�i the best EU of ~w;
if (8j 2 fi� shakew + 1; ::; ig; j > 0 : �j > �j � shaker)
f PA PAs; PB PBs ; PC PCs; PD PDs;

h shaked;
g
if (h > 0) h h� 1;
else fPA PAi; PB PBi ; PC PCi ; PD PDi;g

g
return wbest;

g

Figure 6.7: The main structure.

6.6. THE MATING 61

is generated by assigning each node of the tree with a random value of the
set (Dx �Dy � f0; 1g) [fNULLg and by repairing this possibly unfeasible
assignment by the Ordered-repair operator. The random value of the set of
positions is given by the function Random-position-NULL.

The creation of the initial feasible population is described by the pseu-
docode of Figure 6.8.

function Initial-feasible-population;
f for(i 1 to popsize)
f for(j 1 to n) wi(Nj) Random-position-NULL;

Ordered-repair(wi);
g
return ~w;

g

Figure 6.8: The creation of the initial feasible population.

6.6 The mating

In a GA the recombination process plays the role of the reproduction in
Nature. It has the purpose of creating new individuals similar to some of
those already present in the population, by mixing their genetic informa-
tion. The new individuals are not too di�erent from their parents and have
features of boths. The recombination process causes the exploration of the
neighbourhood of the point of the search space in which the GA has moved.

In this GA the recombination process is carried out by the procedure
Mate that makes use of four genetic operators: the Upward Gentle Crossover
(Crossover-A), the Downward Gentle Crossover (Crossover-B), the Ordered
Brute Crossover (Crossover-C) and the Random Brute Crossover (Crossover-
D). These operators receive in input a couple of feasible solutions and modify
it producing a new couple of feasible solutions. Each crossover operator is
associated with a frequency parameter which in
uences the frequency of its
application. The Mate operator changes the population by choosing on the
average Pc

2 � popsize couples from the population and by applying to each of
them a crossover operator randomly chosen with a frequency dependent on
its frequency parameter.

62 CHAPTER 6. THE GENETIC ALGORITHM

In other words in this GA during the recombination process on the average
Pc
2 � popsize couples mate; each couple produces two children according to one
of four di�erent reproductive schemes randomly applied with a frequency
dependent on their frequency parameters; each couple dies after generating
the two children and the children replace their parents in the new population.

The pseudocode for the recombination process is shown in �gure 6.9.
By varying the frequency parameters fcA, fcB , fcC , fcD we can vary the

frequency of applications of each operator: on the average Crossover-X is
applied Pc

popsize
2 fcX times in each application of operator Mate. If we set to

1 one of the fcX and all the others to 0, we obtain an traditional GA that
uses only one crossover operator, the Crossover-X.

The individuals produced by these operators are a mixture of their parents
and are reasonably similar to them. Also a couple of twins produces a couple
of children identical to their parents, so the application of a crossover operator
to a couple of twins has no e�ect in the variability of the population.

The crossover operators change the input feasible solutions v and u in
the following way: they choose a node � of the tree and they swap in v and
u the values of the nodes of the subtree rooted at �; the solutions v0 and u0

thus obtained are a raw mixture of v and u { as each of them has the nodes
of a subtree with the values of the other and the rest of the nodes with the
their values and they are possibly unfeasible { and are repaired.

The reparation method distinguishes the four crossovers and will be pre-
sented in the sections 6.6.1, 6.6.2, 6.6.3 and 6.6.4. The way � is chosen
depends on parameter scntype and is explained in subsection 6.6.5.

6.6.1 The Upward Gentle Crossover

This crossover operator { also called Crossover-A { repairs the possibly
unfeasible solutions v0 and u0 by modifying the values of the nodes � 6= � of
the path from the root to �. This modi�cation is made by considering all
the nodes of the path from the root to �, and for each of them by checking if
in the correspondent position the correspondent container overlaps with any
container of the nodes of the subtree rooted at �; if it overlaps with at least
one of them, the correspondent node is set to NULL. The two solutions are
then �lled. See Figure 6.10.

The pseudocode is in �gure 6.11.
The two solutions produced by this operator are then a mixture of the

input solutions and are feasible. They are identical to the raw mixture of the
parents a part from the nodes of the path from the root to �.

This operator is called upward because the reparation of the individuals
obtained by just swapping the subtrees is obtained by modifying the ancestors

6.6. THE MATING 63

procedure Mate(~w);
f I = ;;

for(i 1 to popsize)
f r a random number 2]0; 1];

if(r � Pc) I I [fig;
g
if (jIj is odd) I I without its highest element;
let I = fi1; ::; ikg with i1 < :: < ik;

if (I 6= ;)
for(h 1 to k

2)
f r a random number in]0; 1];

if (r � fcA) Crossover-A(w2h�1; w2h);
else if (r � fcA + fcB) Crossover-B(w2h�1; w2h);

else if (r � fcA + fcB + fcC) Crossover-C(w2h�1; w2h);
else Crossover-D(w2h�1; w2h);

g
g

Figure 6.9: The Mate procedure.

64 CHAPTER 6. THE GENETIC ALGORITHM

� �vu

u’ v’

Swapping of the subtrees

Reparation + Filling

Figure 6.10: The Upward Gentle Crossover operations.

of node � and it is called gentle because it makes the e�ort of changing as
few nodes as possible in the two solutions obtained by swapping the subtrees,
thus respecting their appearance.

6.6.2 The Downward Gentle Crossover

This crossover operator { also called Crossover-B { repairs v0 and u0 by
modifying the values of the nodes of the subtree rooted at �. The nodes
of the subtree are considered in the basic order: for each of them, if the
correspondent container overlaps with one of the containers of the nodes in
the path from the root that node, then its value is set to NULL. The two
solutions are then �lled.

The pseudocode is in Figure 6.13. See Figure 6.12
Even with this operator the two produced solutions are a mixture of the

input solutions and are feasible. Each solution is identical to the possibly
unfeasible raw mixture of the parents a part from some nodes in the subtree
rooted on the node in which is done the crossover.

This operator is called downward because the reparation of the individ-
uals obtained by just swapping the subtrees is carried out by modifying the
o�springs of node � and it is called gentle for the same reason of the previous
operator.

6.6. THE MATING 65

procedure Crossover-A(u; v);
f choose a node �;

for each(� node of the subtree rooted at �)
swap the values of u and v on the node �;

for each(
 node 6= � of the path from the root to �)
if(9� node of the subtree rooted at � such that c(
)

in position u(
) overlaps with c(�) in position u(�))
u(
) NULL;

Fill(u);

for each(
 node 6= � of the path from the root to �)
if(9� node of the subtree rooted at � such that c(
)

in position v(
) overlaps with c(�) in position v(�))
v(
) NULL;

Fill(v);

g

Figure 6.11: The Upward Gentle Crossover (Crossover-A).

66 CHAPTER 6. THE GENETIC ALGORITHM

� �vu

u’ v’

Swapping of the subtrees

Reparation + Filling

Figure 6.12: The Downward Gentle Crossover operations.

6.6.3 The Ordered Brutal Crossover

This operator { also called Crossover-C { repairs the solutions v0 and u0

by applying the Ordered-repair operator.
The pseudocode is in �gure 6.14.
Note that the repairation procedure modi�es the raw mixture of the par-

ents only in the nodes of the subtree rooted at �.
This operator is called brutal because the reparation of v0 and u0 can

involve the modi�cation of all the nodes of the subtree tree and the resulting
solutions can be not too much similar to those before the repairment. It is
called ordered because it uses the Ordered-repair.

6.6.4 The Random Brutal Crossover

This operator { also called Crossover-D { repairs the solutions v0 and u0

by applying the Random-repair operator.
The pseudocode is in �gure 6.15.
As with the previous operator, the nodes of the raw mixture of the parents

modi�ed by the repair operator are only those of the subtree rooted at �.
It is called brutal for the same reasons of the previous operator and it is

called random because it uses the Random-repair procedure.

6.6. THE MATING 67

procedure Crossover-B(u; v);
f choose a node �;

for each(� node of the subtree rooted at �)
swap the values of u and v on the node �;

let f�1; ::; �kg the nodes of the subtree rooted at �
in the basic order;

for(i 1 to k)
if(9
 node 6= �i of the path from the root to �i

such that c(
) in position u(
) overlaps with c(�i)
in position u(�i))

u(�i) NULL;
Fill(u);

for(i 1 to k)
if(9
 node 6= �i of the path from the root to �i

such that c(
) in position v(
) overlaps with c(�i)
in position v(�i))

v(�i) NULL;
Fill(v);

g

Figure 6.13: The Downward Gentle Crossover (Crossover-B).

68 CHAPTER 6. THE GENETIC ALGORITHM

procedure Crossover-C(u; v);
f choose a node �;

for each(� node of the subtree rooted at �)
swap the values of u and v on the node �;

Ordered-repair(u);
Ordered-repair(v);

g

Figure 6.14: The Ordered Brutal Crossover (Crossover-C).

procedure Crossover-D(u; v);
f choose a node �;

for each(� node of the subtree rooted at �)
swap the values of u and v on the node �;

Random-repair(u);
Random-repair(v);

g

Figure 6.15: The Random Brutal Crossover (Crossover-D).

6.7. THE MUTATION 69

6.6.5 The choice of the crossover node

A crossover made on a leaf results in just changing the values of that node
in the two individuals and a crossover on the root leaves both the solutions
unchanged. The leaves constitute a large part of the total number of nodes,
especially if the the degree of each node is large. If this happens a large
number of the crossovers are made on the leaves, thus not mixing very well
the genetic information of the individuals. For this reason the choice of the
crossover node is a delicate issue and di�erent algorithms for choosing the
crossover node may have di�erent performances.

In this GA the crossover node can be chosen by one of three di�erent
algorithms. The crossover operator chooses the node � by an algorithm
determined once and for all by parameter scntype.

If scntype = A, then the node is chosen by �rst choosing a level > 0 and
then a node from that level, each node with the same probability. This means
that the root has probability 0 of being chosen and a node � of level l > 0
has probability 1

nlp
with nl the number of nodes of level l and p the number

of levels > 0. This algorithm prevents the root from being chosen but let all
the other nodes to be chosen, leaves included.

If scntype = B, then the node is chosen by �rst randomly choosing a level
> 0 with inner nodes and then randomly choosing an inner node from that
level, each node with the same probability. This means that the root and
the leaves have probability 0 of being chosen and an inner node � of level
l > 0 has probability 1

nlp
with nl the number of inner nodes of level l and p

the number of levels > 0 with inner nodes. This algorithm prevents the root
and the leaves from being chosen.

If scntype = C, then the node is chosen randomly. All the nodes have the
same probability 1

n
, root and leaves included.

6.7 The mutation

The mutation process has the purpose of introducing new genes in the
population. It is fundamental in order to avoid the convergence of the algo-
rithm to a local maximum. It moves the GA to new areas of the searching
space.

In this GA the mutation process is carried out by procedure Mutate
that makes use of four mutation operators called Ordered Gentle Mutation
(Mutate-A), Random Gentle Mutation (Mutate-D), Ordered Brute Mutation
(Mutate-B) and Random Brute Mutation (Mutate-C). These operators will
be described in the sections 6.7.1, 6.7.2, 6.7.3 and 6.7.4 respectively.

70 CHAPTER 6. THE GENETIC ALGORITHM

The mutation operators receive in input a feasible solution and modify it
more or less slightly thus creating a new feasible solution not too di�erent
from the original one. Each of them is associated with a frequency parameter
that in
uences the frequency with which it is used and with a probability
parameter that in
uences the strength of the modi�cation. The mutation
modi�es the input population by applying on each individual one of the four
mutation operators randomly chosen according to their frequency parameter.

The pseudocode of the procedure Mutate is given in �gure 6.16.

procedure Mutate(~w);
f for(i 1 to popsize)
f r a random number in]0; 1];

if (r � fmA) Mutate-A(wi);
else if (r � fmA + fmB) Mutate-B(wi);

else if (r � fmA + fmB + fmC) Mutate-C(wi);
else Mutate-D(wi);

g
g

Figure 6.16: The Mutate procedure.

By varying the frequency parameters fmA , fmB , fmC , fmD we can vary
the frequency of applications of each operator: on the average Mutation-X
is applied popsizefcX times in each application of operator Mutate. If we set
to 1 the parameter fmX and all the others to 0, we obtain a traditional GA
that uses only the mutation operator Mutate-X.

6.7.1 The Ordered Gentle Mutation

This operator { also called Mutate-A { receives in input a feasible solu-
tion, it sets to NULL value some of its nodes and then it considers them in
basic order; for each of these modi�ed nodes � this operator assigns to � a
random position and if this position is feasible for the path from the root to
� and for the subtree rooted at �, it is kept and the operator goes to the
next modi�ed node; else the GA tries to �nd the next feasible value. The
solution is then �lled.

The pseudocode for operator Mutate-A is in �gure 6.17.
Note that the input solution is modi�ed and kept feasible by Mutate-A

and that after the modi�cation the input solution is changed on the average

6.7. THE MUTATION 71

procedure Mutate-A();
f I ;;

for each(� 2 N)
f r a random value in]0; 1];

if (r � PmA) add � to I;
g

for each(� 2 I) (�) NULL;

let fN1; ::; Nkg be the elements of I (i.e. the modi�ed
nodes) in the basic order;

if(I 6= ;)
for (i 1 to k)
f (Ni) Random-position;

while
�
container c(Ni) in position (Ni)

is not inside of the hold
or

9
 node 6= Ni of the path
from the root to Ni: such that c(
)
in position (
) overlaps with c(Ni)
in position (Ni)

or
9� node 6= Ni of the subtree rooted at Ni

such that c(�) in position (�) overlaps with c(Ni)

in position (Ni)
�

 (Ni) �
�
��1((Ni)) + 1

�
;

g

Fill();

g

Figure 6.17: The Ordered Gentle Mutation (Mutate-A).

72 CHAPTER 6. THE GENETIC ALGORITHM

in PmAn nodes. Also note that the line in which all the nodes of I are set to
NULL is need-less: it is present here just to emphasize the similarities with
the random Gentle mutate operator.

This operator is called Gentle because it tries to keep as much as possible
the original aspect of the solution. It is called ordered because the modi�ed
nodes are repaired in the basic order and it is called Gentle because it tries
keep the original appearance of the input feasible solution.

6.7.2 The Random Gentle Mutation

This operator { also called Mutate-D { is very similar to the Ordered Gen-
tle Mutation. The only di�erence is that the mutated nodes are considered
in a random order.

The pseudocode for operator Mutate-D is in �gure 6.18.
The input solution is modi�ed and kept feasible by Mutate-D. After the

modi�cation the input solution is changed on the average in PmDn nodes.
It is called random because the reparation of the modi�ed nodes is done

in a random order and it is called Gentle for the same reason of Mutate-A.

6.7.3 The Ordered Brutal Mutation

This operator { also called Mutate-B { is very simple: it chooses a set of
nodes and it assigns them a random value by the Random-position-NULL;
then it repairs the so obtained solution by the ordered repair operator.

The pseudocode for operator Mutate-B is in �gure 6.19.
Note that the number of nodes in which the feasible output solution di�ers

from the input one is not foreseeable on the average, because the Ordered-
repair operator may change an unforeseeable number of nodes of the solution.

The name of this operator has been chosen with the same conventions of
the names of the previous operators.

6.7.4 The Random Brutal Mutation

This operator { also called Mutate-C { is very similar to the operator
ordered brutal mutation: it chooses a set of nodes and it assigns them a
random value; then it repairs the so obtained solution by the random repair
operator. The only di�erence is in the repair operator.

The pseudocode for operator Mutate-C is in �gure 6.20.
Again the name of this operator has been chosen with the same conven-

tions of the names of the other operators.

6.7. THE MUTATION 73

procedure Mutate-D();
f I ;;

for each(� 2 N)
f r a random value in]0; 1];

if (r � PmD) add � to I;
g

for each(� 2 I) (�) NULL;

let fN1; ::; Nkg be the elements of I (i.e. the modi�ed
nodes) in a random order;

if(I 6= ;)
for (i 1 to k)
f (Ni) Random-position;

while
�
container c(Ni) in position (Ni)

is not inside of the hold
or

9
 node 6= Ni of the path
from the root to Ni: such that c(
)
in position (
) overlaps with c(Ni)
in position (Ni)

or
9� node 6= Ni of the subtree rooted at Ni

such that c(�) in position (�) overlaps with c(Ni)

in position (Ni)
�

 (Ni) �
�
��1((Ni)) + 1

�
;

g

Fill();

g

Figure 6.18: The Random Gentle Mutation (Mutate-D).

74 CHAPTER 6. THE GENETIC ALGORITHM

procedure Mutate-B();
f for each(� 2 N)
f r a random value in]0; 1];

if (r � PmB) (�) Random-position-NULL;
g

Ordered-repair();

g

Figure 6.19: The Ordered Brutal Mutation (Mutate-B).

procedure Mutate-C();
f for each(� 2 N)
f r a random value in]0; 1];

if (r � PmC) (�) Random-position;
g

Random-repair();

g

Figure 6.20: The Random Brutal Mutation (Mutate-C).

6.8. THE SELECTION 75

6.8 The selection

In a GA the selection process plays the role of the natural selection in
Nature. It has the purpose of letting the strongest individuals to survive
and of killing the weakest and it is fundamental for the improvement of the
population.

One of three selection mechanisms can be used in this GA and is deter-
mined by parameter selectiontype: the �xed selection, the f(val

MAX
)-selection

and the well known proportional selection corresponding to selectiontype =
A;B and C respectively. These selection methods will be commented in
the subsections 6.8.1, 6.8.2 and 6.8.3. However all of them have the same
structure.

The selection process is carried out by procedure Select. Population ~w is
modi�ed by Select. Each individual wi is associated with a number

pi = fX(i; EU(w1); ::; EU(wpopsize))

with X the selectiontype and function fX � 0 such that F =
Ppopsize

i=1 pi > 0.
Vector ~q = (q0; ::; qpopsize) is built such that q0 = 0, and qi = qi�1 +

pi
F
,

for i 2 f1; ::; popsizeg. Then a new temporary population ~vis built in the
following way: for i = 1; ::; popsize a random number r of the set]0; 1] is
generated and vi is wj with j 2 f1; ::; popsizeg such that r 2]qj�1; qj]. Then
~w becomes ~v.

In summary the selection mechanism of the GA can be described in
pseudo code as in �gure 6.21.

In this GA the selection is based on the idea of the roulette wheel, as
in the �rst example of GA in [1, page 32]. As a matter of fact this process
can be imagined as follows. Each individual wi is associated with a value
pi dependent on the value EU(wi), the EU of all the individuals and the
parameter selectiontype. A roulette wheel is built with popsize slots, each
slot corresponding to an individual wi and with an angle proportional to
pi. The population ~w is modi�ed by the selection in the following way: a
population ~v is built such that individual vi is the individual of population ~w
correspondent to the slot chosen by making the wheel spin; then ~w becomes
~v. Therefore pi is proportional to the probability of individual wi surviving
for the next generation.

Note that parameter selectiontype decides once and for all the selection
mechanism of the iterations: if parameter selectiontype = X then in all the
iterations the numbers pi will be created by the function fX .

Function fA is de�ned as

fA : f1; ::; popsizeg � R+popsize ! R+
0

(i; b1; ::; bpopsize) 7�! g(ranki)

76 CHAPTER 6. THE GENETIC ALGORITHM

procedure Select(~w)
f X selectiontype;

for (i 1 to popsize) pi fX(i; EU(w1); ::; EU(wpopsize));
F

Ppopsize
i=1 pi;

q0 0;
for (i 1 to popsize) qi qi�1 +

pi
F
;

for (i 1 to popsize)
f r a random number of the set]0; 1];

j the only one j 2 f1; ::; popsizeg such that r 2]qj�1; qj];
vi wj;

g
~w ~v;

g

Figure 6.21: The selection.

with 8x 2 R+ ; g(x) = 1
ax+1 and a > 0 and with ranki = j such that bi = �bj

where f�b0; ::;�bkg = fblj = l; ::; popsizeg such that �bh > �bh+1; 8h (i.e. ranki is
the index from 0 to k of bi in the sequence (�b0; ::;�bk) increasing ordering of
fblj = l; ::; popsizeg).

Function fB is de�ned as

fB : f1; ::; popsizeg � R+popsize ! R+

(i; b1; ::; bpopsize) 7�!

�
1 if all bi = 0
f(bi

maxfbljl=1;::;popsizeg
) else

with 8x 2 [0; 1]; f(x) = xb.
Function fC is de�ned as

fC : f1; ::; popsizeg � R+popsize ! R+

(i; b1; ::; bpopsize) 7�!

�
1 if all bi = 0
bi else

Because pi is proportional to the probability of wi appearing in the next
generation, pi must be bigger for the best individuals. Thus function f must
the have the property that 8X 2 fA;B;Cg and 8~b 2 R+popsize; if bi < bj
then fX(i;~b) � fX(j;~b).

Note that whatever is the parameter selectiontype, is F > 0.

6.8. THE SELECTION 77

Also note that the individuals of the population produced by the selec-
tion process are chosen from those of the population undergoing the selection
and some of them may repeat. Until a certain extent the repetition of some
individuals is not a bad event as those who repeat are those that have a
bigger pi and so a bigger EU. But in a population there must not be not too
many twins. In such a population the positive e�ect of recombination disap-
pear, because when a crossover operator is applied to a couple of identical
individuals it produces children identical to their parents. The only cause for
variability is the mutation and the GA risks to stick on a local maximum.

6.8.1 The Fixed Selection

If parameter selectiontype = A the GA will use the �xed selection. With
this selection method the probability of an individual surviving to the next
generation is proportional to pi =

1
a�ranki+1

with ranki = the index j such that

EU(wi) = �bj if fEU(wl)jl = 1; ::; popsizeg = f�b0; ::;�bkg, with �b0 > :: > �bk.
The integer ranki is called rank of wi. This means, for example, that if wi
has the highest EU in the population, its rank will be j = 0 and will be
pi = g(0) = 1; and if wh will have the second best EU, then its rank will be
j = 1 and will be ph = g(1) = 1

a+1 ; and so on.

The dependence of pi from the rank of wi is given by function g(x) =
1

ax+1
with a > 0 (see �gure 6.22). Note that whatever is parameter a, the lower

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

g(x)

x

a=0.2
a=1.0
a=1.5
a=3.0

Figure 6.22: Function g with di�erent values of parameter a

78 CHAPTER 6. THE GENETIC ALGORITHM

the EU(wi) the higher the rank of wi, so the lower pi and the lower the
probability of survival for individual wi.

By varying parameter a we can vary the severity of the selection. Infor-
mally the severity of a selection method measures its tendency to keep for
the next generation the individuals with higher EU and to refuse those with
lower EU. In this case the higher a, the higher the probability of survival
for the individuals with high EU with respect to those with low EU. As a
matter of fact 8j; i 2 N ; j > i the function r(a) = g(i)

g(j) =
aj+1
ai+1 is increasing

and 8a 2 R+
0 ; r(a) > 1. So, given a population ~w and two individuals wh

and wk such that EU(wh) > EU(wk), we have rankh = i < rankk = j and

so ph
pk

= g(i)
g(j) is increasing with a and � 1. So by increasing parameter a we

increase the severity of the selection process. Note that 8j > 0; g(0)
g(j) = aj+1.

This means that the probability of survival of the individuals with the higher
EU can be made as much bigger than that of another individual with lower
EU as we want just by increasing a.

In the choice of parameter a we must be careful not to make the selection
too severe nor too allowing. If the selection is too severe, we risk to obtain a
population with many twins stopping the evolution of the population (as ex-
plained in page 77) before the global maximum is found. If it is too allowing,
the worst individuals may have almost the same chances to pass to the next
generation as the best. Hence the population evolves just randomly, with no
average improvement.

6.8.2 The f(val
MAX)-selection

If parameter selectiontype = B the GA will use the f(val
MAX

)-selection.
With this selection method if all the individuals have EU = 0 { i.e. they are
all NULL functions { they will all pass to the next generation and the new
population will be the same. Else the probability of an individualwi surviving
to the next generation is proportional to f(EU(wi)

MAXfEU(wj)g
) with f(x) = xb.

The dependence of pi on
EU(wi)

MAXfEU(wj)g
is given by function f(x) = xb with

b 2 N0 (see �gure 6.23). Note that whatever is parameter b 2 N0 , the higher
the EU of an individual wi, the higher its pi and so its probability to survive
in the next generation, because the closer is an individual to the MAX, the
bigger its probability.

By varying parameter b we can vary the severity of the selection. The
higher b, the higher the probability of survival for the individuals with high
EU with respect to those with low EU. As a matter of fact given a population
~w and two individuals wi and wj with EU(wi) > EU(wj) the ratio r(b) =

6.8. THE SELECTION 79

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f(x)

x

b=1
b=2
b=5

b=30

Figure 6.23: Function f with di�erent values of parameter b

pi
pj

= (EU(wi)
EU(wj)

)
b
is increasing with b and > 1. So by increasing parameter b

we increase the severity of the selection process. Also limb!+1
pi
pj

= +1.

This means that the probability of survival of best individual can be made
as much bigger than that of another individual with lower EU as we want
just by increasing b.

6.8.3 The Proportional Selection

If parameter selectiontype = C the GA will use the proportional selection.
With this selection method if all the individuals have EU = 0 { i.e. they are
all NULL functions { they will all pass to the next generation and the new
population will be the same. Else the probability of an individual surviving
to the next generation is proportional to its EU. With this method we cannot
vary the severity of the selection. In some experiments this selection method
have proved unable to let pass the best individuals to the next generation.
With this method, when maxfEU(wi)g

minfEU(wi)g
' 1 the probability of survival of the

best individuals is almost the same of the worst.

Note that if we use parameter selectiontype = B and b = 1 we have a
selection mechanism identical to the proportional one.

80 CHAPTER 6. THE GENETIC ALGORITHM

6.9 The Shake feature

The shake mechanism has been introduced in this GA with the purpose
of avoiding the premature convergence of the GA and can be used with any
GA. The shake starts and in
uence the evolutionary process when the indi-
viduals of the population in the last generations have more or less the same
value, situation often due to the presence of twins or very similar individuals.
In such a situation a traditional GA would produce with great probability
even more twins and the population would not improve, as new individuals
would be very improbabibly generated. When the shake starts, the mutation
probabilities are increased for a certain number of generations thus increasing
the probability of producing new individuals. Then the probabilities are set
back to the original values. The e�ect of the shake action is the insertion in
the population of new individuals from new areas of the search space. This
individuals, mating with the old ones may produce better solutions, as they
introduce new genetic information in the population.

In other words, if we imagine the population of a GA as a group of
individuals moving more or less together and trying to climb the hills of an
arti�cial landscape, the shake event occurs when the population has reached
the top of a local hill and its e�ect is that of migrating the population in a
new area of the landscape where the population starts climbing the local hill
again. Yet the problem of preventing the population from moving to and fro
in the same two hills has not been considered in this work.

Usually after a shake event has occurred there is an average worsening of
the population as some of the good genes are lost, but after a certain number
of generations the new genetic information, if good, can bear its fruits. The
typical curve for the best and the average versus the generations is given in
�gure 6.24.

In this �gure the shake happens after the average has been more than
0:995 of the best for 10 generations and it lasts 1 generation. During the
shake, the mutation probabilities become �ve times bigger.

The shake feature should be used combined with a strong selection pres-
sure and with a weak mutation.

Note that if we set shaker = 1 the mutation probabilities will never be
increased and the GA behaves as a traditional GA with no shake mechanism.

6.9. THE SHAKE FEATURE 81

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

E
xp

ec
te

d
U

til
ity

Populations

AVERAGE
BEST

Figure 6.24: The average and the best curves with the shake feature.

82 CHAPTER 6. THE GENETIC ALGORITHM

Chapter 7

A GA for BCSPs

7.1 Overview

In this chapter a GA that tries to �nd a solution with the highest EU of
a given BCSP is described.

7.2 Introduction

In Chapter 6 we have presented a GA that tries to �nd an optimal solu-
tion of a given BPP. This algorithm, by modifying slightly some of its genetic
operators, can be easily extended and become a GA to �nd an optimal solu-
tion of a given BCSP. The GA of Chapter 6 is then a particular case of the
algorithm described in this chapter.

7.3 Basic concepts and operations

The following de�nition will be often used in this chapter.

De�nition 18 Given a BCSP C, one of its assignements and one of its
nodes �, we say that the path of � is feasible in i� the assignement of
variables I such that 8i 2 I; f(i) = (�) with � 2 B and c(�) = i is feasible
for P , with B = f� 2 N j (�) 6= NULL and � is of the path from the root
to �g and I = fc(�) j � 2 Bg. �

The extended GA is based on conceps and basic operators similar to those
of section 6.3 that will be summarized in this section.

As soon as the GA reads the input BCSP, 8i 2 f1; ::; mg it orders the
elements of Di [fNULLg so that NULL is the last element of this order.

83

84 CHAPTER 7. A GA FOR BCSPS

We will call �i the ordering of Di[fNULLg. Also it orders the nodes of the
tree in the same basic order of section 6.3.2.

A �ll operation is used even by the extended GA. Its purpose is that of
reducing the presence of NULL values in the solution so as to increase its
EU.When the �ll operator is applied to a solution the nodes of the tree of
the BCSP are visited in the basic order and for each node � if (�) = NULL
the GA tries to �nd the �rst element of Dc(�) in the order such that the path
of � is feasible in ; if it does not exists, the NULL value is left in (�).
The pseudocode for operator Fill can be found in Figure 7.1.

procedure Fill()
f let N = fN1; ::; Nng be the basic ordering of the nodes;

for(i 1 to n)
if((Ni) = NULL)
f j 1;

 (Ni) �i(j);
while(the path of Ni is not feasible in)
f j j + 1;

 (Ni) �i(j);
g

g
g

Figure 7.1: The Fill procedure for BCSPs.

The two reparation operators of section 6.3 are used in the extended
GA, but they are slightly modi�ed. When applied to the possibly unfeasible
assignment , the Ordered-repair operator visits the nodes of the tree in the
basic order and for each node �, if the path of � is not feasible in then the
operator looks for a value v 2 Dc(�) [fNULLg following (�) in the order
of this set such that if (�) = v, the path of � is feasible in ; then it �lls
 . The pseudocode of this operator is in Figure 7.2.

When the Random-repair is applied to the possibly infeasible assignement
 , it creates an initially empty solution 0; it randomly orders the nodes of the
tree and for each node � in that order it executes the following modi�cations:
it assigns (�) to 0(�) and it looks for a value v 2 Dc(�)[fNULLg following
 0(�) in the order of this set such that if 0(�) = v, 8� node of the subtree
rooted at � the path of � is feasible in 0; then it assigns this value to 0(�);

7.4. THE MAIN STRUCTURE 85

procedure Ordered-repair()
f let fN1; ::; Nng be the nodes of N in the basic order;

for(i 1 to n)

while
�
the path of Ni is not feasible for

�
 (Ni) �i(�

�1
i ((Ni)) + 1);

Fill();
g

Figure 7.2: The Ordered-repair for BCSPs.

at the end it �lls 0 and it replaces with psi0. The pseudocode of Random-
repair can be found in Figure 7.3. If is feasible, these operators leave
unchanged.

The functions returning a random value of the domain of a variable, used
in the mutation operators and in the procedure Initial-feasible-population,
behave in the same way as the corrispondent ones of the GA for BPPs, but
they must be slightly adapted to the more general situation of the BCSPs.
The Random-position-NULL receives in input the variable i and it returns
NULL with probability PNULL and an element of Di with probability 1 �
PNULL; in this case each element of Di can be returned with probability
1�PNULL

jDij
. The pseudocode is in Figure 7.4. The Random-position receives in

input the variable i and it returns an element of Di[fNULLg, each element
with the same probability jDij+ 1. The pseudocode is given in �gure 7.5.

7.4 The main structure

The GA for BCSPs depends on the same parameters of the GA for BPPs
and has the same main structure presented in Section 6.4. The procedures
used by the main procedure, Mate, Mutate and Select of sections 6.6, 6.7
and 6.8 respectively and the 2 brute crossovers of sections 6.6.3 and 6.6.4
respectively are exactly the same. The only di�erences are in the Initial-
feasible-population procedure, in the 2 gentle crossovers and in the mutation
operators and in the conceps and operators spoken of in Section 7.3.

86 CHAPTER 7. A GA FOR BCSPS

procedure Random-repair()
f let fQ1; ::; Qng be the nodes of N in a random order;

create the solution 0 such that 8i; 0(Qi) = NULL;

for(i 1 to n)
f 0(Qi) (Qi)

while
�
the path of Qi is not feasible for 0

�
 0(Qi) �i(�

�1
i (0(Qi)) + 1);

g
Fill(0);
 0;

g

Figure 7.3: The Random-repair for BCSPs.

7.5 The changed Initial-feasible-population

The Initial-feasible-population is very similar to the correspondent pro-
cedure of the GA for BPPs. The only di�erence is in the use of the Random-
position-NULL function that in this case requires the argument c(�). In
Figure 7.6 the pseudocode of the new Initial-feasible-population is shown.

7.6 The changed crossovers

As stated in the previous section, the Gentle Upward and the Gentle
Downward Crossover must be slightly modi�ed.

The crossover operators swap the values of the nodes of the subtree rooted
at some chosen node � in the two input solutions u and v. Then the two
possibly unfeasible assignements u0 and v0 thus obtained are repaired. The
di�erence between these two crossover is the reparation method. The Upward
Gentle Crossover repairs u0 and v0 by changing the values of the nodes
 6= �
of the path from the root to � starting from the alpha's father and going
towards the root as shown in Figure 7.7.

The Downward Gentle Crossover repairs u0 and v0 by changing the nodes
of the subtree rooted at � in the way shown in Figure 7.8. Note that the �ll
function will only modify the values of the nodes
 6= � of the path from the

7.6. THE CHANGED CROSSOVERS 87

function Random-position-NULL(i);
f r a random number of]0; 1];

if(r � PNULL) return NULL;
else
f r a random number in f1; ::; jDijg;

return �i(r);
g

g

Figure 7.4: The Random-position-NULL function for BCSPs.

function Random-position(i);
f r a random number of f1; ::; jDij+ 1g;

return �i(r);
g

Figure 7.5: The Random-position function for BCSPs.

function Initial-feasable-population;
for(i 1 to popsize)
f for each(� 2 N) wi(�) Random-position-NULL(c(�));

Ordered-repair(wi);
g
return ~w;

g

Figure 7.6: The creation of the initial feasible population for BCSPs.

88 CHAPTER 7. A GA FOR BCSPS

procedure Crossover-A(u; v);
f choose a node �;

for each(� node of the subtree rooted at �)
swap the values of u and v on the node �;

Let f
1; ::;
kg be the nodes
 6= � of the path from the root to �
such that 8i;
i+1 is the father of
i;

Let u0 be a solution identical tu u;

for(i 1 to k) u0(
i) NULL;

for(i 1 to k)
f u0(
i) u(
i);

if(9� node of the subtree rooted at � such that
the path of � is not feasible in u0)

u0(
i) NULL;
g

Fill(u);

Let v0 be a solution identical tu v;

for(i 1 to k) v0(
i) NULL;

for(i 1 to k)
f v0(
i) v(
i);

if(9� node of the subtree rooted at � such that
the path of � is not feasible in v0)

v0(
i) NULL;
g

Fill(v);
g

Figure 7.7: The Upward Gentle Crossover (Crossover-A) for BCSPs

7.7. THE MUTATIONS 89

root to � in the �rst case and the values of the nodes of the subtree rooted
at � in the second case.

procedure Crossover-B(u; v);
f choose a node �;

for each(� node of the subtree rooted at �)
swap the values of u and v on the node �;

let f�1; ::; �kg the nodes of the subtree rooted at �
in the basic order;

for(i 1 to k)
if(the path of �i is not feasible in u) u(�i) NULL;

Fill(u);

for(i 1 to k)
if(the path of �i is not feasible in v) v(�i) NULL;

Fill(v);
g

Figure 7.8: The Downward Gentle Crossover (Crossover-B) for BCSPs.

7.7 The mutations

The mutations operators must be slightly changed too. The brute muta-
tions are very similar to the corrispondet procedures of the GA for BPPs. The
only di�erence is that the corrispondent random position function is called
with the argument c(�). The pseudocodes for these mutation operators are
given in �gures 7.9 and 7.10.

The gentle mutation operators change the input solution in some nodes.
After choosing which nodes to mutate and after mutating them { i.e. assign-
ing them a NULL value { these operands repair them in some order. The
reparation of a mutated node � of the assignements consists in assigning
to (�) a random value v 2 Dc(�) [fNULLg and �nding the �rst value
v0 2 Dc(�) [fNULLg following v in the ordering of this set such that when
assigned to (�), the assignement is feasible. The only di�erence between

90 CHAPTER 7. A GA FOR BCSPS

procedure Mutate-C();
f for each(� 2 N)
f r a random value in]0; 1];

if (r � PmC) (�) Random-position-NULL(c(�));
g

Ordered-repair();

g

Figure 7.9: The Ordered Brutal Mutation (Mutate-B) for BCSPs.

procedure Mutate-C();
f for each(� 2 N)
f r a random value in]0; 1];

if (r � PmC) (�) Random-position(c(�));
g

Random-repair();

g

Figure 7.10: The Random Brutal Mutation (Mutate-C) for BCSPs.

7.7. THE MUTATIONS 91

procedure Mutate-A();
f I ;;

for each(� 2 N)
f r a random value in]0; 1];

if (r � PmA) add � to I;
g

for each(� 2 I) (�) NULL;

let fN1; ::; Nkg be the elements of I (i.e. the modi�ed
nodes) in the basic order;

if(I 6= ;)
for (i 1 to k)
f (Ni) Random-position(c(Ni));

while
�
9� 6= Ni, � node of the subtree rooted at �

such that the path of � is not feasible in
�

 (Ni) �i
�
��1i ((Ni)) + 1

�
;

g

Fill();

g

Figure 7.11: The Ordered Gentle Mutation (Mutate-A) for BCSPs.

92 CHAPTER 7. A GA FOR BCSPS

the Ordered Gentle Mutation and the Random Gentle mutation is the order
in which the mutated nodes are repaired: the basic and a random order re-
spectively. The pseudocode for the two perators is given in �gures 7.11 and
7.12.

procedure Mutate-D();
f I ;;

for each(� 2 N)
f r a random value in]0; 1];

if (r � PmA) add � to I;
g

for each(� 2 I) (�) NULL;

let fN1; ::; Nkg be the elements of I (i.e. the modi�ed
nodes) in a random order;

if(I 6= ;)
for (i 1 to k)
f (Ni) Random-position(c(Ni));

while
�
9� 6= Ni, � node of the subtree rooted at �

such that the path of � is not feasible in
�

 (Ni) �i
�
��1i ((Ni)) + 1

�
;

g

Fill();

g

Figure 7.12: The Random Gentle Mutation (Mutate-D) for BCSPs.

Chapter 8

The Parameters Tuning

8.1 Overview

This chapter presents the results of some experiments designed with the
pourpose of �nding some assignments of parameters that give the GA an
average good performance.

8.2 Introduction

The GA described in Chapter 8 depends on several parameters which
in
uence its performance and behaviour greatly and must be chosen before
the algorithm is run. It is interesting and useful to know whether some
assignments of parameters are better than others.

Yet �nding out which is the best assignment is very di�cult because of the
large number of possibilities and because of the large variety of BPPs that the
algorithm can solve. As a matter of fact there can be BPPs with trees of very
di�erent shapes and set of containers with completely di�erent dimensions.
An assignment of parameters can be good with a class of BPPs but bad with
another. In order to make a complete study it would be necessary to �x a
�nite set of values for each parameter with a continuous domain and try all
the possible assignments of parameter values on a large number of problems
for several runs. Yet this systematic approach is impossible in the time at
our disposal.

We have then decided to do experiments only on few assignments that
seemed to be good. Not all the reasonable assignments have been tested.
Often the results of some experiments gave interesting hints for further tests:
the whole �nal set of experiments was not planned in advance, but is the
result of an historical process where the new direction of the tests was in
u-

93

94 CHAPTER 8. THE PARAMETERS TUNING

enced by the results of the past experiments. Even though this set of tests is
not systematic at all and not the ideal one, it leaded us to a GA with better
performance than the initial algorithm.

It is obvious that the performance of a GA improves as we increase the
population size and the number of iterations. The aim of the experiments
of this chapter is then that of �nding good assignments of parameters with
numbiter = 100 and popsize = 100. We hope that these assignments with
di�erent numbiter and popsize are good as well.

It would be also interesting to know if for particular classes of problems
the GA performs better with particular assignments of parameters, but this
question has not been considered in this thesis.

8.3 The experiments

An experiment on a assignment of parameters consisted in running the
GA with these parameters for three times on a BPP and on recording the
best value at the end of each run.

The BPPs used in these tests have been created by the random problem
generator described in Appendix A and can be found in Appendix B. They
di�er mostly on the shape of the trees, being some tall and slim and some fat
and short, while the type of containers is almost the same. Of course they
do not represent well the set of all possible problems, but it was not possible
to do the experiments with a larger number of problems.

As far as the parameters are concerned, in general note that:

� if shaker = 1 then the parameters shaked, shakew, PmAs
, PmBs

, PmCs
,

PmDs
do not in
uence the GA;

� if selecttype = A then parameter b does not in
uence the GA;

� if selecttype = B then parameter a does not in
uence the GA;

� 8X 2 fA;B;C;Dg such that fmX = 0 then PmXi
and PmXs

do not
in
uence the GA.

For all the assignments of parameters tested in this chapter it is popsize =
100, numbiter = 100, Pc = 0:5, PNULL = 0:3, b = 30.

8.4. THE EXPERIMENTS ON SINGLE GENETIC COMPONENTS 95

8.4 The experiments on single genetic com-
ponents

Initially some assignments of parameters which cause the GA to employ
a single crossover and a single mutation have been tested. The porpose was
that of examining the behaviour of the single genetic components with all
the selection and the selection of crossover node types. At the time of these
experiments mutation C and D and crossover D had not been implemented
yet and the tests regarded only mutation A and B and crossover A,B and C.
Two sets of experiments have been done.

8.4.1 The �rst set of experiments

The �rst set of experiments consisted in testing all the possible assign-
ments such that:

� 9X 2 fA;Bg such that fmX = 1

� 9X 2 fA;B;Cg such that fcX = 1

� a = 3

� shaker = 1

� PmAi
= PmBi

= PmCi
= PmDi

= 0:01

that is all the assignments of parameters with a = 3, PmAi
= PmBi

= PmCi
=

PmDi
= 0:01 that cause the GA to use only1 mutation A or B and only

crossover A,B or C and not to use the shake feature.
One of these assignments is called XY ZK i� :

� scntype = X

� selectiontype = Y

� fcZ = 1

� fmK = 1

1Note that fcA , fcB , fcC , fcD 2 [0; 1] and fcA + fcB + fcC + fcD = 1 and that fmA ,
fmB , fmC , fmD 2 [0; 1] and fmA + fmB + fmC + fmD = 1, as stated in Section 6.4;
so if fcX = 1, then 8Y 2 fA;B;C;Dg n fXg; fcY = 0 and if fmX = 1, then 8Y 2
fA;B;C;Dg n fXg; fmY = 0.

96 CHAPTER 8. THE PARAMETERS TUNING

so the set of names of the assignments of parameters tested in the �rst set
of experiments is fA;B;Cg � fA;B;Cg � fA;B;Cg � fA;Bg.

The experiments consisted in running the GA with these assignments of
parameters for three times on four problems, each time recording the EU
of the best found solution. The details of the problems can be found in
Appendix B.

Tables 8.1, 8.2, 8.3, 8.4 and 8.5 show the results of these experiments.

rinput4 rinput6 rinput7 rinput8 average
AAAA 1.353445 1.946178 3.192496 1.568283 2.015100
AAAB 1.405830 1.960601 3.413845 1.655644 2.108980
AABA 1.299086 1.925874 3.330314 1.565640 2.030229
AABB 1.413915 1.960575 3.364486 1.659877 2.099714
AACA 1.355289 1.935350 3.142789 1.605473 2.009726
AACB 1.414226 1.960539 3.315673 1.640201 2.082660
ABAA 1.353445 1.903734 3.287117 1.595914 2.035052
ABAB 1.395574 1.958503 3.448740 1.635945 2.109691
ABBA 1.361976 1.953936 3.440931 1.590426 2.086817
ABBB 1.365164 1.959599 3.338532 1.643052 2.076586
ABCA 1.360614 1.911531 3.244828 1.579466 2.024110
ABCB 1.389594 1.959822 3.370170 1.662225 2.095453
ACAA 1.384514 1.953360 3.296594 1.574680 2.052287
ACAB 1.381627 1.959894 3.392883 1.622295 2.089175
ACBA 1.353445 1.959401 3.357063 1.619509 2.072354
ACBB 1.384140 1.955770 3.483635 1.636062 2.114902
ACCA 1.353445 1.934598 3.198563 1.608083 2.023672
ACCB 1.394372 1.949431 3.291218 1.627821 2.065710
BAAA 1.380267 1.922620 3.257862 1.592298 2.038262
BAAB 1.397197 1.960619 3.344885 1.669033 2.092934
BABA 1.369902 1.952951 3.382209 1.616292 2.080339
BABB 1.372443 1.960619 3.305681 1.664850 2.075898
BACA 1.360630 1.947118 3.314461 1.612455 2.058666
BACB 1.400480 1.958946 3.382207 1.651123 2.098189
BBAA 1.367969 1.920201 3.275867 1.592222 2.039065
BBAB 1.413350 1.959488 3.497765 1.668887 2.134873
BBBA 1.373820 1.943974 3.273976 1.626485 2.054564
BBBB 1.404543 1.959565 3.417102 1.671361 2.113143
BBCA 1.367475 1.912314 3.055494 1.616045 1.987832
BBCB 1.394547 1.959128 3.305560 1.632183 2.072855
BCAA 1.353443 1.925213 3.220211 1.580696 2.019891
BCAB 1.384581 1.953787 3.322590 1.596467 2.064357
BCBA 1.391306 1.939457 3.380465 1.599764 2.077748
BCBB 1.384018 1.954191 3.524883 1.627693 2.122696
BCCA 1.353448 1.953747 3.315125 1.620508 2.060707
BCCB 1.402303 1.948640 3.320430 1.622109 2.073371
CAAA 1.368899 1.945692 3.328179 1.569310 2.053020
CAAB 1.404296 1.960580 3.475705 1.658979 2.124890
CABA 1.353446 1.907229 3.352769 1.581197 2.048660
CABB 1.385539 1.960610 3.284869 1.661997 2.073254
CACA 1.360668 1.901510 3.229195 1.550107 2.010370
CACB 1.397265 1.960619 3.301210 1.640305 2.074850
CBAA 1.348774 1.927889 3.163013 1.567775 2.001863
CBAB 1.384148 1.958119 3.343545 1.631796 2.079402
CBBA 1.380508 1.945242 3.165825 1.575780 2.016839
CBBB 1.397036 1.958779 3.443887 1.634572 2.108568
CBCA 1.298788 1.909617 3.210899 1.588411 2.001929
CBCB 1.395646 1.959167 3.350774 1.628446 2.083508
CCAA 1.367972 1.922399 3.371209 1.577098 2.059670
CCAB 1.385945 1.957921 3.417102 1.592045 2.088253
CCBA 1.377985 1.935013 3.367743 1.599975 2.070179
CCBB 1.387981 1.945429 3.481339 1.648969 2.115929
CCCA 1.353443 1.928849 3.309996 1.570274 2.040641
CCCB 1.391612 1.939851 3.291218 1.609236 2.057979

Table 8.1: The averages of the �rst set of experiments.

Table 8.1 for each problem and assignment of parameters shows the aver-
age of the the best found values in the 3 runs of the GA with that assignment
of parameters on that problem; the last column shows for each assignment the
average of all the runs on all the problems of the GAs with that assignment

8.4. THE EXPERIMENTS ON SINGLE GENETIC COMPONENTS 97

of parameters.

rinput4 rinput6 rinput7 rinput8 average
A 1.373317 1.947150 3.328327 1.616144 2.066234
B 1.381762 1.946254 3.327599 1.625582 2.070299
C 1.374442 1.940251 3.327138 1.604793 2.061656

Table 8.2: The selection of the crossover node types.

Table 8.2 for each type of selection of crossover node and for each problem
shows the average af all the runs on that problem of all the assignments with
that type of selection of crossover node; the last column shows for each type
of selection of crossover node the average of all the runs on all the problems
of all the assignments with that type of selection of crossover node.

rinput4 rinput6 rinput7 rinput8 average
A 1.377379 1.946013 3.317713 1.620170 2.065319
B 1.375165 1.942256 3.313001 1.618944 2.062342
C 1.376977 1.945386 3.352348 1.607405 2.070529

Table 8.3: The selection types.

Table 8.3 for each type of selection and for each problem shows the average
af all the runs on that problem of all the assignments with that type of
selection; the last column shows for each type of selection the average of all
the runs on all the problems of all the assignments with that type of selection.

rinput4 rinput6 rinput7 rinput8 average
A 1.379515 1.944267 3.336089 1.608298 2.067042
B 1.375347 1.948790 3.371984 1.623528 2.079912
C 1.374658 1.940599 3.274989 1.614693 2.051235

Table 8.4: The crossover types.

Table 8.4 for each type of crossover and for each problem shows the av-
erage af all the runs on that problem of all the assignments with that type
of crossover; the last column shows for each type of crossover the average of
all the runs on all the problems of all the assignments with that crossover.

Table 8.5 for each type of mutation and for each problem shows the
average af all the runs on that problem of all the assignments with that type
of mutation; the last column shows for each type of mutation the average
of all the runs on all the problems of all the assignments with that type of
mutation.

The assignment corresponding to the row with the highest value in the
last column of table 8.1 should be a good assignment for these problems.
We also expected that the assignment with the type of selection of crossover
node corresponding to the line of table 8.2 with the highest value in the last
column, with the type of selection corresponding to the line of table 8.3 with
the highest value in the last column, with the type of crossover corresponding

98 CHAPTER 8. THE PARAMETERS TUNING

rinput4 rinput6 rinput7 rinput8 average
A 1.359408 1.932037 3.276489 1.590525 2.039614
B 1.393606 1.957066 3.378886 1.640488 2.092512

Table 8.5: The mutation types.

to the line of table 8.4 with the highest value in the last column and with
the type of mutation corresponding to the line of table 8.5 with the highest
value in the last column was a good GA.

According to table 8.1 the �rst 10 best assignments are: BBAB, CAAB,
BCBB, CCBB, ACBB, BBBB, ABAB, AAAB, CBBB, AABB, BACB, ABCB
in this order. All of them use mutation B. Selection C and crossover B are
in many of the best assignments. CAAB and BCBB have almost the same
value, so BCBB can be considered the 2nd best. Also 3 of the �rst 4 assign-
ments end with CBB. The di�erent types of selection of the crossover node
obtain almost the same results and it seems that the type of the selection of
the crossover node is not in
uent.

These assignments are also given by tables 8.2, 8.3, 8.4, 8.5. In fact in
table 8.2, the highest average is obtained by selection of crossover node B,
followed by A and C, but the numbers are very close, so that there seems
to be not much di�erence between them; in table 8.3 the highest average is
in row of selection C, followed by row of selection A and B; in table 8.4 the
best average is obtained by crossover B followed by A and C; and in table
8.5 mutation B obtains better results than mutation A.

These experiments con�rmed our idea that crossover B is good, but they
also revealed the unexpected goodness of selection C and mutation B and
the not bad performance of selection of the crossover node C. This result is
apparently surprising because selection C and mutation B and the random
selection of the crossover node have proved often inadequate to �nd a good
solution in past experiments. Selection C is not much severe and often unable
to select the best individuals for the next generation { as we can see from the
�gure 8.1, where assignment CCAA is used to solve rinput0 and where we
can see the curves of the average EU and of the best EU of the population
in the various generations { and mutation B tends to change radically an
individual and risks to move the population to another region the searching
space, loosing the good genes found so far. Being the leafs more numerous
than inner nodes, selection of crossover node C tends to choose for crossover
leaf nodes thus behaving like a mutation on the same node for two individuals.

The goodness of selection C and mutation B and the not bad performance
of selection of the crossover node C can be understood.

We note that selection C, being not much severe, prevents the population
from having a lot of twins { as it happens with the other selections { and

8.4. THE EXPERIMENTS ON SINGLE GENETIC COMPONENTS 99

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

E
xp

ec
te

d
U

til
ity

Populations

AVERAGE
BEST

Figure 8.1: A bad behaviour of selection C.

keeps the population varied; mutation B varies the population often changing
some individuals completely. On the other hand selection A is more severe
and in each iteration can select the best individual many times reducing the
number of di�erent individuals in the population; mutation A changes an
individual only slightly, in order to keep some of its genes; a GA with this
two components tends to converge soon. These observations are con�rmed
by the graphs of �gures 8.2 and 8.3. In the �gure 8.2 we can see the graphs of
the average EU and of the best EU of the population on all the generations
of a run of BABA on the problem rinput0. We can see that the curve of the
average gets very close to the curve of the best and from a certain generation
onward there is too little variability and no improvement at all. Instead if
we look at �gure 8.3 where are displayed the graphs of a run of BCBB on
the same problem, we can see that there is still some variablness even in the
last generations and the �nal result is better.

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

E
xp

ec
te

d
U

til
ity

Populations

AVERAGE
BEST

Figure 8.2: A run with the BABA assignment.

A GA with selection C and mutation B have a various population, while
a GA with selection A and mutation A has population of very similar indi-
viduals. Selection of the crossover node C tends to behave like a mutation

100 CHAPTER 8. THE PARAMETERS TUNING

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

E
xp

ec
te

d
U

til
ity

Populations

AVERAGE
BEST

Figure 8.3: A run with the BCBB assignment.

rather than like a crossover. So in these tests the best results were obtained
by the assignments that keep a good variability in the population.

Therefore mutation A with Pm = 0:1 could do better than mutation A
with Pm = 0:01 and maybe it could compete with mutation B with Pm =
0:01. Also the best type of components, especially for selection and mutation,
could be di�erent with a bigger Pm. These experiments gave us the indication
for new experiments and possible improvements.

8.4.2 The second set of experiments

We decided to compare the 5 best assignments according to table 8.1
(BBAB, CAAB, BCBB, CCBB, ACBB) with assignments BAAA, BABA,
BBAA, BBBA with parameter Pm = 0:1 instead of Pm = 0:01.

The new assignments consist of all the assignments of parameters whose
name is in fBg� fA;Bg� fA;Bg� fAg with Pm = 0:1. We chose selection
of the crossover node B because it revealed to be the best in the previous
experiments, mutation A because it is more sophisticated and should be more
e�ective with the bigger Pm, selection A or B because they are more selective,
but should work well with a strong mutation and crossover A or B because
in the previous tests they behaved.

We run the GA with these assignments on six problems for three times.
The detail of the two new problems are in Appendix B. We made the usual
table of the averages and a table of the best that collects for each problem and
assignment the best result in the 3 runs of that assignment on that problem.

From table 8.6 we can see that the best 3 results on the average are
obtained by assignments with mutation A with Pm = 0:1. But the di�erence
is small and we cannot say that the new assignments are much better than
the old ones. What we can say is that the new ones are at least as good as
the old ones and that mutation A, in order to be e�ective, needs a Pm bigger

8.5. THE EXPERIMENTS ON MIXED GENETIC COMPONENTS 101

rinput0 rinput4 rinput5 rinput6 rinput7 rinput8 average
BBAB 2.195863 1.413350 1.870910 1.959488 3.497765 1.668887 2.101044
CAAB 2.228531 1.404296 1.876676 1.960580 3.475705 1.658979 2.100794
BCBB 2.200090 1.384018 1.851230 1.954191 3.524883 1.627693 2.090351
CCBB 2.167240 1.387981 1.814002 1.945429 3.481339 1.648969 2.074160
ACBB 2.167137 1.384140 1.839506 1.955770 3.483635 1.636062 2.077708
BAAA 2.183349 1.388026 1.874302 1.960619 3.565446 1.635412 2.101192
BABA 2.205129 1.375242 1.887914 1.923001 3.565853 1.653001 2.101690
BBAA 2.138591 1.375197 1.862915 1.935036 3.345424 1.638274 2.049240
BBBA 2.205103 1.375225 1.885490 1.930600 3.565535 1.650546 2.102083

Table 8.6: The averages of the second set of experiments.

rinput0 rinput4 rinput5 rinput6 rinput7 rinput8
BBAB 2.227380 1.414572 1.888927 1.959997 3.566514 1.679662
CAAB 2.231921 1.414535 1.885318 1.960619 3.566514 1.679662
BCBB 2.212960 1.414087 1.863154 1.959798 3.559234 1.640943
CCBB 2.202562 1.401749 1.828145 1.957900 3.566514 1.679662
ACBB 2.202250 1.387112 1.858277 1.960437 3.507708 1.640943
BAAA 2.228652 1.413595 1.894548 1.960619 3.578114 1.674737
BABA 2.233956 1.375242 1.889488 1.960619 3.578114 1.675128
BBAA 2.205627 1.375242 1.890651 1.959239 3.429091 1.669891
BBBA 2.215443 1.375242 1.886204 1.960352 3.570834 1.671940

Table 8.7: The best results of the second set of experiments.

than 0.01.
In Figures 8.4, 8.5, 8.6, 8.7, we can see the curves of the average EU and

the best EU in some runs of some assignments with mutation A and Pm = 0:1
and mutation B on the same problems.

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

E
xp

ec
te

d
U

til
ity

Populations

AVERAGE
BEST

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

E
xp

ec
te

d
U

til
ity

Populations

AVERAGE
BEST

Figure 8.4: A run of CAAB and BABA on rinput0.

8.5 The experiments on mixed genetic com-
ponents

Other experiments have been done on assignments of parameters that
cause the GA to employ more than one crossover and mutation. The pour-
pose was that of investigating wether it is better to use one single genetic
component or a mixture of them. In these experiments crossover D and
mutation C and D have also been tested.

102 CHAPTER 8. THE PARAMETERS TUNING

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80 100

E
xp

ec
te

d
U

til
ity

Populations

AVERAGE
BEST

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100

E
xp

ec
te

d
U

til
ity

Populations

AVERAGE
BEST

Figure 8.5: A run of CAAB and BABA on rinput4.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100

E
xp

ec
te

d
U

til
ity

Populations

AVERAGE
BEST

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100

E
xp

ec
te

d
U

til
ity

Populations

AVERAGE
BEST

Figure 8.6: A run of BBAB and BBBA on rinput5.

The experiments of this section regard 10 di�erent assignments of param-
eters. The problems we used are the same of Section 8.4.2, so the result of
this section can be compared with those of that section. For all the tested
assignments it is scntype = B, selectiontype = A, shaker = 1 { so the shake
feature is disabled { and PmAi

= PmBi
= PmCi

= PmDi
= 0:1. They di�er

only on the frequences of the crossovers and of the mutations and on the
selection pressure. The tested assignments are:

� mix1 assignment with ~fc = (fcA; fcB ; fcC ; fcD) = (13 ;
1
3 ;

1
3 ; 0),

~fm =

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

E
xp

ec
te

d
U

til
ity

Populations

AVERAGE
BEST

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100

E
xp

ec
te

d
U

til
ity

Populations

AVERAGE
BEST

Figure 8.7: A run of CAAB and BBBA on rinput7.

8.5. THE EXPERIMENTS ON MIXED GENETIC COMPONENTS 103

(fmA ; fmB ; fmC ; fmD) = (12 ;
1
2 ; 0; 0) and a = 1

� mix3 with ~fc = (13 ;
1
3 ;

1
3 ; 0),

~fm = (12 ;
1
2 ; 0; 0) and a = 3

� mixAB1 with ~fc = (12 ;
1
2 ; 0; 0),

~fm = (12 ;
1
2 ; 0; 0) and a = 1

� mixAB3 with ~fc = (12 ;
1
2 ; 0; 0),

~fm = (12 ;
1
2 ; 0; 0) and a = 3

� mixABCD1 with ~fc = (14 ;
1
4 ;

1
4 ;

1
4),

~fm = (14 ;
1
4 ;

1
4 ;

1
4) and a = 1

� mixABCD3 with ~fc = (14 ;
1
4 ;

1
4 ;

1
4),

~fm = (14 ;
1
4 ;

1
4 ;

1
4) and a = 3

� mixABCD4 with ~fc = (14 ;
1
4 ;

1
4 ;

1
4),

~fm = (14 ;
1
4 ;

1
4 ;

1
4) and a = 4

� mixABCD1n with ~fc = (3
10 ;

3
10 ;

3
10 ;

1
10),

~fm = (3
10 ;

3
10 ;

1
10 ;

3
10) and a = 1

� mixABCD3n with ~fc = (3
10 ;

3
10 ;

3
10 ;

1
10),

~fm = (3
10 ;

3
10 ;

1
10 ;

3
10) and a = 3

� mixABCD4n with ~fc = (3
10 ;

3
10 ;

3
10 ;

1
10),

~fm = (3
10 ;

3
10 ;

1
10 ;

3
10) and a = 4

These assignments, here presented together, have in fact been tested sep-
arately. The �rst to be tested were those with parameter a = 1. Because in
the graphs of their runs the curve of the average was jugged and far from the
curve of the best, both in the bad and in the good performances { as can be
seen in Figure 8.8 {, we decided to increase the selection pressure and test
them with a = 3. Then, because of the better results with parameter a = 3,
we tested the two best assignmets with a = 4.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80 100

E
xp

ec
te

d
U

til
ity

Populations

AVERAGE
BEST

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 20 40 60 80 100

E
xp

ec
te

d
U

til
ity

Populations

AVERAGE
BEST

Figure 8.8: The curves of mixAB1 on a bad and a good performance.

The results of the tests are shown in tables 8.8 and 8.9.
As you can see from Table 8.8, apart from mix1, all the mixed assignments

obtained better average results than the best assignmets for GAs with single
components found so far. The best average is obtained by mixABCD3n

104 CHAPTER 8. THE PARAMETERS TUNING

closely followed by mixABCD3. They are the only assignments that reached
the best average in 3 problems. However the averages di�er only on the 3rd
decimal position and the correspondent assignments cannot be considered
much di�erent.

rinput0 rinput4 rinput5 rinput6 rinput7 rinput8 average
mix1 2.234217 1.375242 1.890409 1.960619 3.445047 1.676802 2.097056
mix3 2.231898 1.375242 1.895669 1.960619 3.578114 1.678445 2.119998

mixAB1 2.228764 1.401481 1.894872 1.960619 3.578114 1.677146 2.123499
mixAB3 2.230276 1.375242 1.895516 1.960619 3.577659 1.678445 2.119626

mixABCD1 2.233114 1.405355 1.895925 1.960619 3.578114 1.679662 2.125465
mixABCD3 2.229517 1.414601 1.895557 1.960619 3.578114 1.678445 2.126142
mixABCD4 2.231399 1.414601 1.894627 1.960619 3.574247 1.678445 2.125656
mixABCD1n 2.233438 1.414601 1.894502 1.960580 3.578114 1.666523 2.124626
mixABCD3n 2.233982 1.414601 1.894490 1.960619 3.574247 1.679662 2.126267
mixABCD4n 2.225278 1.414601 1.895609 1.960619 3.574247 1.677962 2.124719

Table 8.8: The averages of the mixed assignments.

Even Table 8.9 con�rms that the mixed assignments are better than the
ones with single component. The mixed assignments have reached or beated
the records in all the problems. In particular mixABCD3n and mixABCD3.

rinput0 rinput4 rinput5 rinput6 rinput7 rinput8
mix1 2.237790 1.375242 1.895891 1.960619 3.578114 1.679662
mix3 2.232425 1.375242 1.896098 1.960619 3.578114 1.679662

mixAB1 2.229349 1.414601 1.895458 1.960619 3.578114 1.679662
mixAB3 2.230954 1.375242 1.895516 1.960619 3.578114 1.679662

mixABCD1 2.235473 1.414601 1.896221 1.960619 3.578114 1.679662
mixABCD3 2.232677 1.414601 1.896270 1.960619 3.578114 1.679662
mixABCD4 2.232677 1.414601 1.895553 1.960619 3.578114 1.679662
mixABCD1n 2.235009 1.414601 1.895670 1.960619 3.578114 1.679662
mixABCD3n 2.235643 1.414601 1.895443 1.960619 3.578114 1.679662
mixABCD4n 2.230696 1.414601 1.896222 1.960619 3.578114 1.679662

Table 8.9: Best results of the mixed assignments.

8.6 The experiments on the shake feature

The last set of experiments regards 4 assignmets that cause the GA to
use the shake feature. The GA has been run on the usual 6 test problems.
For the tested assignments it is scntype = B, selectiontype = A, shakew =

10, shaker < 1, ~fc = (3
10 ;

3
10 ;

3
10 ;

1
10) and

~fm = (3
10 ;

3
10 ;

1
10 ;

3
10) . The tested

assignmets are:

� shake1 with ~Pmi = (PmAi
; PmBi

; PmCi
; PmDi

) = (5
100 ;

5
100 ;

5
100 ;

5
100), a =

6, shaker =
995
1000 ,

~Pms = (PmAs
; PmBs

; PmCs
; PmDs

) = (5
10 ;

5
10 ;

5
10 ;

5
10) and

shaked = 1

� shake2 with ~Pmi = (5
100 ;

5
100 ;

5
100 ;

5
100), a = 6, shaker = 995

1000 ,
~Pms =

(5
10 ;

5
10 ;

5
10 ;

5
10) and shaked = 2

8.7. CONCLUSIONS 105

� bestshake1 with ~Pmi = (1
10 ;

1
10 ;

1
10 ;

1
10), a = 3, shaker = 99

100 ,
~Pms =

(7
10 ;

7
10 ;

7
10 ;

7
10) and shaked = 1

� bestshake2 with ~Pmi = (1
10 ;

1
10 ;

1
10 ;

1
10), a = 3, shaker = 99

100 ,
~Pms =

(7
10 ;

7
10 ;

7
10 ;

7
10) and shaked = 2

Note that shake1 and shake2 di�er only on parameter shaked = 1 and 2
respectively; the same it happens for bestshake1 and bestshake2. Also note
that assignments bestshake1 and bestashake2 are identical to mixABCD3n
of Section 8.5 a part from the parameters that concern the shake feature and
that shake1 and shake2 have a weaker mutation (determined by parameters
~Pmi) and a stronger selection pressure (determined by parameter a) as in
these conditions { as stated in Section 6.9 { the shake feature should be
more useful.

The results of these tests are shown in tables 8.10 and 8.11.

rinput0 rinput4 rinput5 rinput6 rinput7 rinput8 average
shake1 2.228372 1.414601 1.895014 1.960619 3.572815 1.679662 2.125180
shake2 2.221539 1.401481 1.894434 1.960619 3.570381 1.679662 2.121353

bestshake1 2.226601 1.414601 1.895053 1.960604 3.578114 1.679662 2.125773
bestshake2 2.225410 1.414601 1.895488 1.960599 3.574247 1.679662 2.125001

Table 8.10: The averages of the experiments on the shake feature.

rinput0 rinput4 rinput5 rinput6 rinput7 rinput8
shake1 2.230933 1.414601 1.896214 1.960619 3.578114 1.679662
shake2 2.231863 1.414601 1.895584 1.960619 3.578114 1.679662

bestshake1 2.229756 1.414601 1.896254 1.960619 3.578114 1.679662
bestshake2 2.226748 1.414601 1.895923 1.960619 3.578114 1.679662

Table 8.11: The best results of the experiments on the shake feature.

From these tables we can see that the best average result { obtained
by bestshake1 { is the 3rd best ever, but the numbers are very similar and
the 4 assignments tested here have almost the same performance. Also,
according to these numbers, they have almost the same performance of the
best assignments of Section 8.5.

8.7 Conclusions

The experiments of this chapter, even if not complete, lead us to as-
signment of parameters that are better than the ones we were using at the
beginning, at least in solving the test problems2.

2Note that the problem rinput6 has been exactly solved, as the EU of the output
best solution is equal to the upper bound and that even if problems rinput4, rinput7 and
rinput8 have not been solved with certainty, all the best algorithms give output solutions
with the same EU, making us think that these problems too have been solved.

106 CHAPTER 8. THE PARAMETERS TUNING

The best two assignmets found so far for GAs without shake feature are
mixABCD3n and mixABCD3 of Section 8.5; while the best two assignmets
found so far for GA with shake feature are bestshake1 and shake1 of Section
8.6. However, because of the small di�erence between the numbers other
assignments could be good as well.

As we can see from tables 8.1, 8.8 and 8.10, the GAs that employ more
than one genetic operator perform better. From these few experiments we
can say that the shake feature does not improve much the performances of
the GA, but we think it deserves to be studied more.

Eventually we have to remember that, because of the small number of
test problems, these experiments could have selected good assignments for
these problems and not so good in general. Yet, when facing a new problem,
it is more reasonable to use one of the best assignments found in this chapter,
rather than to use random parameters.

Chapter 9

The Evaluation of the GA

9.1 Overview

In this chapter some results useful to evaluate the quality of the GA
developped in Chapter 6 are presented.

9.2 Introduction

A way to judge the goodness of an approximation algorithm is to compare
the best value it �nds with the real optimal value of the BPP or with the
best value found by other approximation algorithms.

The �rst method is not always applicable in the case of our GA, as the
best solution of BPPs is often unknown, for no exact algorithms have been
implemented yet. The second method requires the existence of more than
one algorithm to solve the same class of problems. So evaluating the quality
of our GA has been quite di�cult.

In the case of testing a GA by applying the second method, we can
compare our best value with the best value found by the other algorithms
in the same amount of time or, if the others are stochastic population based
algorithms, after the same number of individuals are generated. The �rst
technique is dipendent on the machine and on the implementation of the
algorithms and it may happen that one machine is particularly good with
one of the algorithms to be tested, because of the particular operations that
it requires, for which the machine can be optimized, and another machine
can be particularly good with another algorithm. Also the results of the
�rst technique is strongly dependent on the level of optimization of the code.
Because we want to judge the algorithm itself and not its implementation,
the second technique is better for our purposes.

107

108 CHAPTER 9. THE EVALUATION OF THE GA

A very simple stochastic iterative algorithm is based on a random search.
It consists in generating iteratively and randomly feasible individuals until
a terminal condition occurs. We have implemented the algorithm random-
solver which is slightly more cptious. Each random individual is produced
by assigning each node of the tree a random and possibly unfeasible position
for its container and then the individual is repaired by the ordered-repair
function. This algorithm is called random-solver and its pseudocode can be
found in Figure 9.1 where the function Initial-feasible-population of Section
6.5 is used. The implementation of this algorithm is described in Section
A.2. This algorithm is slightly more than a simple random generation of
solutions, as the solutions produced in such a way are a bit optimized after
their generation because of the �lling carried out at the end of the repair
function.

f popsize 1;
PNULL 0:3;

~w Initial-feasible-population;
wbest w1;
for(i 1; ::; numbiter)
f ~w Initial-feasible-population;

if(EU(w1)>EU(wbest)) wbest w1;
g
return w1;

g

Figure 9.1: The random-solver algorithm.

In this chapter will be presented the results of one run of our GA {
controlled by two of the best assignments of parameters found in Chapter
8, bestshake1 and best1 { on some problems with a known solution and on
others with unknown solution. The results of one run of the random-solver
on the same problems will also be given.

9.3. PROBLEMS WITH KNOWN OPTIMAL SOLUTION 109

9.3 Problems with known optimal solution

9.3.1 Problems with linear trees

We knew the solution of some problems with linear trees and we tried to
solve them by our GA. Of course, being a linear tree BPP a very particular
problem, there are better algorithms to solve it. As a matter of fact a linear
tree BPP is just a 2D cutting stock problem and in order to solve it we can
use an algorithm speci�cally designed for this tighter class of problems. So
we expected our algorithm not to perform particularly well.

Problems lin16 and lin73 are derived from two 2D strip packing problems
with known optimal solution taken from [12]. They are described in sections
B.8 and B.9 respectively. Because in these problems the utilities of the
containers are their areas, these BPPs can be viewed as problems of placing
a set of known containers on a known rectangular hold minimizing the hold
waste space. Because we know that in both cases the hold can be completely
�lled, the optimal EU of both problems is the hold area, also corresponding
to the UB.

lin16 lin73
optimal EU 400 5400

best1 394 4686
bestshake1 400 4666
random 364 4542

Table 9.1: The best EUs and the optimal EUs.

We have run our GA with the assignments of parameters bestshake1 and
best1 with popsize = 100 and numbiter = 900 on lin16 and with popsize = 50
and numbiter = 200 on lin73; we have run the random-solver with numbiter =
90000 and numbiter = 10000 on lin16 and lin73 respectively. The best EU
of problem lin16 and lin73 found by our 3 algorithms and their optimal EU
can be found in Table 9.1. The graphical representation of the best solutions
found by the 3 algorithms are shown in �gure 9.2, 9.3, 9.4, 9.5, 9.6, 9.7.

9.3.2 A modi�ed problem

Problem art7 is described in section B.7. It is derived from problem
rinput7 of section B.5 in the following way: we have added to rinput7 a new
container so big that no other container can be placed on the hold along with
it and with an utility that is � than the sum of the utilities of the containers
of every path from the root to a terminal node and we have associated each

110 CHAPTER 9. THE EVALUATION OF THE GA

16

1514

13
12

11

10

9

8

7

6

5

4
3

2

1

Figure 9.2: The hold of the best solution of problem lin16 found by best-
shake1.

16

1514

13

12

10

9

8

7

6 5

4
3

2 1

Figure 9.3: The hold of the best solution of problem lin16 found by best1.

terminal node1 of the tree with this container. It is then obvious that the
best solution is the one that assigns this container to all the terminal nodes
and NULL to all the other nodes and the optimal EU is the utility of this
container.

We have run our GA on this problem with the parameters of bestshake1
and best1 and with popsize = 100 and numbiter = 300. We have also run
random-solver on this problem with numbiter = 30000. The best EU of
problem art7 found by our 3 algorithms and its optimal EU can be found
in Table 9.2. The curves of the average and of the best EU of these runs of
bestshake1 and best1 on art7 are shown in �gures 9.9 and 9.8 respectively.

1Note that the only terminal nodes of this BPP are its leaves.

9.3. PROBLEMS WITH KNOWN OPTIMAL SOLUTION 111

16

15

13

12

11

10

9

8

7

6

5

4

3

21

Figure 9.4: The hold of the best solution of problem lin16 found by random.

optimal EU 20
best1 20

bestshake1 20
random 11.561565

Table 9.2: The best EUs and the optimal EU for problem art7.

9.3.3 A problem with reached UB

Problem rinput6 of Section B.4 has been exactly solved by our GA in
Chapter 8. As a matter of fact the best solution found by our GA has the
same value of the UB of rinput6. So the optimal EU is exactly the UB. We
have run again our GA with the parameters of bestshake1 and best1 and
with popsize = 100 and numbiter = 300. We have also run random-solver on
this problem with numbiter = 30000. The best EU of problem rinput6 found
by our 3 algorithms and its optimal EU can be found in Table 9.3.

optimal EU 1.960619
best1 1.960619

bestshake1 1.960619
random 1.905080

Table 9.3: The best EUs and the optimal EU for problem rinput6.

112 CHAPTER 9. THE EVALUATION OF THE GA

73

72

71

70

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

19

18

17

16

15 14

13

12

11

10

9

8

7

6

5

4

3

2

1

Figure 9.5: The hold of the best solution of problem lin73 found by best-
shake1.

9.4 Problems with unknown optimal solution

Finally we have compared the best solutions of problems rinput0, rinput4,
rinput5, rinput7 and rinput8 (see Appendix A) found by the random-solver
using numbiter = 30000 with those found by our GA using the parameters
of bestshake1 and best1 and with popsize = 100 and numbiter = 300. The
results of these runs are shown in Table 9.4.

rinput0 rinput4 rinput5 rinput 7 rinput8
best1 2.235643 1.414601 1.894625 3.578114 1.679662

bestshake1 2.229265 1.414601 1.896203 3.578114 1.679662
random 2.147712 1.410169 1.844847 3.305993 1.640943

Table 9.4: The best EUs for the unknown solution problems.

9.5 Conclusions

As we can seen from the tables 9.1, 9.2, 9.3 and 9.4, our GA has always
proved better than the random-solver generating the same number of indi-
viduals and sometimes it is able to �nd the optimal solution as it happens
with bestshake1 on lin16 and best1 and bestshake1 on art7 and rinput6.

9.5. CONCLUSIONS 113

73

72

71

70

69

68

67

64

63

62

61

60

59

58

57

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

40

39 38

37

36

35

34

33

32

31

30

29

28

27

26

25

24 23

22

21

20

19

18

17

16

15

14

13

12

11
109

8

7

6

5
4

3

2

Figure 9.6: The hold of the best solution of problem lin73 found by best1.

72

70

69

68

67

66

65

64

63

61

60

59

58

57

55

53

52

51

50

49

48

47

44

43

42

41

39

38

37

36

35

34

33

32 31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15 14

13 12

11

10

9

8

7

6

5

4

32

1

Figure 9.7: The hold of the best solution of problem lin73 found by random.

114 CHAPTER 9. THE EVALUATION OF THE GA

0

5

10

15

20

0 50 100 150 200 250 300

E
xp

ec
te

d
U

til
ity

Populations

AVERAGE
BEST

Figure 9.8: The curves of best1 on problem art7.

0

5

10

15

20

0 50 100 150 200 250 300

E
xp

ec
te

d
U

til
ity

Populations

AVERAGE
BEST

Figure 9.9: The curves of bestshake1 on problem art7.

Chapter 10

The Application

10.1 Overview

The GA described in Chapter 6 has been implemented in ANSI C. In this
Chapter it is shown how to use this implementation.

10.2 Introduction

We have implemented the present GA in ANSI C and the resulting ap-
plication is a command line program that can be run in any system with an
ANSI C compiler. The program must be run with 6 arguments. The �rst
argument is the name of an existing text �le containing an assignement of
all the parameters of the GA. The second is the name of an existing text
�le containing the description of a BPP. This two �les will not be modi�ed
by the application. The other 4 arguments are names of �les that will be
created by the application.

When we run the program with these 6 arguments, the GA is run on the
BPP described by the second argument with a behaviour determined by the
assignemet of parameters of the �rst argument; at the end of the run, the
solution of the BPP with the highest EU found by the GA will be recorded
in the third �le, the fourth and �fth �les will contain the average and the
best EU of the various generations respectively and the sixth �le will keep
the seed of the random number generator used for that run.

Therefore, given a BPP, in order to �nd one of its solutions with the
highest EU, we must de�ne all the parameters determining the behaviour
of the GA and write them in a text �le; hence we must write a text �le
describing the BPP and �nally we must run the program with six �lenames as
arguments, being this two �les the �rst two arguments. The best solution will

115

116 CHAPTER 10. THE APPLICATION

be saved in the third argument, the forth and �fth will contain information
about the average and best EU of the various generations and the sixth the
seed of the random number generator.

10.3 The parameters �le

The �rst argument is the name of a �le that contains an assignment
of the 27 parameters determining the behaviour of the GA and is called
the parameters �le. The parameters are presented in the sections 6.4 and
following. The structure of the parameters �le is given in Figure 10.1.

In this �gure, < int > is a sequence of digits representing a number
2 N0 ; < prob > is a sequence of digits representing a rational number 2 [0; 1];
< sep > is a sequence of one or more tab or space or CR characters; < real >
is a sequence of digits representing a rational number 2 R+

0 ; < scn > is A or
B and < select > is A,B or C. An example is in �gure 10.2.

Each string preceding the symbol = corresponds to a parameter. The
value following each = is assigned to the parameter corresponding to the
string preceding =.

The application doesn't do any checking on the sintactical correctedness
of the parameters �le: the user must assure that the parameters �le is sinc-
tactically correct. Of course the numbers assigned to the parameters must
respect the other conditions for the parameters that are:

� fcA + fcB + fcC + fcD = 1

� fmA + fmB + fmC + fmD = 1

� popsize � 2

� pmAi
< pmAs

, pmBi
< pmBs

, pmCi
< pmCs

, pmDi
< pmDs

10.4 The input �le

The second argument is the name of a �le that contains the description
of the BPP whose the GA will try to �nd a solution with the highest EU and
is called input �le. The structure of the input �le is given in Figure 10.3.

As in the previous �gure, in this one < int > is a sequence of digits
representing a number 2 N0 ; < prob > is a sequence of digits representing a
rational number 2 [0; 1]; < sep > is a sequence of one or more tab or space
or CR caracters; < real > is a sequence of digits representing a rational
number 2 R+

0 ; < util > is a string of digits representing a number 2 R+ ;

10.4. THE INPUT FILE 117

numb iter=< int >< sep >
pop size=< int >< sep >
Pc=< prob >< sep >
PmAi=< prob >< sep >
PmBi=< prob >< sep >
PmCi=< prob >< sep >
PmDi=< prob >< sep >
P null=< prob >< sep >
shake w=< int >< sep >
shake d=< int >< sep >
shake r=< real >< sep >
PmAs=< prob >< sep >
PmBs=< prob >< sep >
PmCs=< prob >< sep >
PmDs=< prob >< sep >
a=< real >< sep >
b=< int >< sep >
scn type=< scn >< sep >
selection type=< select >< sep >
fcA=< prob >< sep >
fcB=< prob >< sep >
fcC=< prob >< sep >
fcD=< prob >< sep >
fmA=< prob >< sep >
fmB=< prob >< sep >
fmC=< prob >< sep >
fmD=< prob >< sep >

Figure 10.1: The structure of the parameters �le.

118 CHAPTER 10. THE APPLICATION

numb_iter=300

pop_size=100

Pc=0.5

PmAi=0.1

PmBi=0.1

PmCi=0.1

PmDi=0.1

P_null=0.3

shake_w=10

shake_d=1
shake_r=0.995

PmAs=0.7

PmBs=0.7
PmCs=0.7
PmDs=0.7

a=3

b=30

scn_type=B
selection_type=A

fcA=0.3

fcB=0.3

fcC=0.3
fcD=0.1

fmA=0.3

fmB=0.3

fmC=0.1
fmD=0.3

Figure 10.2: An example of parameters �le.

10.4. THE INPUT FILE 119

e=< real >< sep >
dx=< real >< sep >
dy=< real >< sep >
m=< int >< sep >
fu< int >=< util >< sep >gm

flx< int >=< real >< sep > ly< int >=< real >< sep >gm

n=< int >< sep >
f(< node >,< father >,< prob >,< var >)< sep >gn

Figure 10.3: The structure of the input �le.

n and m are the numbers following \n=" and \m="; < node > is a string
of digits representing a number 2 f1; ::; ng; < father > is a string of digits
representing a number 2 f0; ::; ng; < var > is a string of digits representing
a number 2 f1; ::; mg.

The BPP described by the input �le is obtained in the following way:
the �rst 3 assignments de�ne the values for e; dx; dy respectively; the 4rth
assignment de�ne the number of containers; the next m assignments de�ne
the utilities of the containers from 1 to m; the next 2m assignments de�ne
the width and length of the containers from 1 to m; the next line de�ne the
number of nodes n of the tree; The following 4-tuples de�ne the tree; the
nodes of the tree are N = f1; ::; ng and to each of them corresponds one of
the next n 4-tuple: the �rst element of each 4-tupla is that node; the second
is the father of that node (if the �rst element is the root, the father must
be 0 and the probability can be whaterver number and will be ignored); the
third element is the probability of the edge between the �rst element and the
second (if the �rst element is the root, this element can be whatever string
< prob > and will be ignored; for consistence with the rest, it can be set to
1); the last element is the container associated with that node.

The program doesn't control weather the input �le is sintactically correct
and de�nes a correct BPP. The user must take care of this task and give
the program an input �le both correct from the sintactical and from the
semantical point of view.

A very simple example of input �le is shown in Figure 10.4. It describes
the BPP of �gure 10.5.

120 CHAPTER 10. THE APPLICATION

e=1.0

dx=21.0

dy=15.0

m=5

u1=12.2

u2=3.4
u3=4.0

u4=7.3
u5=8.0

lx1=6.5 ly1=3.0

lx2=7.5 ly2=3.0

lx3=5.0 ly3=4.0

lx4=4.5 ly4=4.5

lx5=7.0 ly5=4.0

n=7

(1,0,1,1)
(2,1,0.7,4)

(3,1,0.3,2)
(4,2,0.1,3)

(5,2,0.3,2)

(6,2,0.6,2)
(7,3,1.0,5)

Figure 10.4: An example of input �le.

10.5. THE OUTPUT FILE 121

1

2

4

5

6

3
7

1

4

2

3

2

5

5

0.7

0.3

0.1

0.3

0.6

1.0

1 4

5
2

3

12.2

3.4

4.0

7.3

8.0

1.0

5.0

4.0

21.0

15.0
3.0

3.0

6.5

7.5

4.5

7.0

4.5

4.0

1.0

Figure 10.5: The BPP described by the input �le of Figure 10.4.

10.5 The output �le

The third argument is called output �le and contains the solution of
the input BPP with the highest EU found by the GA. This text �le gives the
upper bound of the EU of the solutions of the input BPP, the EU of and
for each node � of the tree it gives (�). An example output �le is given in
Figure 10.6, where it is shown the output �le of a run of the application on
the input �le of Figure 10.3 with the parameters of Figure 10.1.

EU:23.152000

UB:23.152000

node1 x=0.000000;y=0.000000;z=0

node2 x=3.000000;y=4.000000;z=1
node3 x=0.000000;y=3.000000;z=0

node4 x=0.000000;y=9.000000;z=0

node5 x=16.000000;y=0.000000;z=1

node6 x=3.000000;y=9.000000;z=0
node7 x=0.000000;y=6.000000;z=0

Figure 10.6: An example of output �le.

122 CHAPTER 10. THE APPLICATION

10.6 The average and best �les

The fourth and �fth arguments are called average and best �le respectively
and give the average and the best EU of the population of each generation
respectively. More precisely the average �le describes the function that for
each generation i 2 f0; ::; numbiterg associates the average EU of population
of generation i; and the best �le describes the function that for each gener-
ation i 2 f0; ::; numbiterg associates the best EU of population of generation
i. These �les are just a sequence of numbiter + 1 numbers divided by CRs.
The graphs of the functions they describe can be plotted by Gnuplot just by
plotting the correspondent �les.

10.7 The seed �le

The sixth �le is called seed �le and contains the seed used to initialize
the random number generator for that run. This �le is important for the
programmer when an error occurs. The seed can be used to repeat the run
with the problem and �nd the cause of the error. The user will never use this
�le, but it is very important to keep this �le especially of runs that didn't
�nish correctly.

10.8 The run time output

While running thr application prints some information on the screen:
at the beginning it prints the average EU and the best EU of the initial
population, the upper bound (UB) de�ned in page 43 and, if there exists a
leaf such that the sum of the areas of the containers of the path from the root
to that leaf is > the area of the hold, it prints \upper bound unreachable" else
\upper bound reachable"; then, after generating each generation, it prints
the average EU and the best EU of that generation, the best EU found that
far, the upper bound, the ratio between the best EU and the UB and the ratio
between the average EU and the best EU of the last shaked generations.

Appendix A

The Support Applications

A.1 The random problem generator

The random problem generator is a program written in ANSI C that
creates random BPPs to be used in experiments. It must be run with two
arguments, names of �les:

� the input �le, an existing text �le specifying some parameters that will
in
uence the behaviour of the program: Pterm, maxdepth, maxc, m,
maxn, maxd, mind, maxl, minl, maxe, mine

� the output �le, a text �le created by the program with the same sintax
of the one of Section 10.3, containing the description of a random BPP

When we run the program with these 2 arguments in this order, the program
will generate a random BPP satisfying some constraints imposed by the
parameters speci�ed in the input �le and will write it in the output �le.
The output BPP will have a tree with n � maxn, a depth � maxdepth, for
each node a number of children � maxc, m containers, mind � dx � maxd,
mind � dy � maxd, for every container i minl � lxi � maxl, minl � lyi �
maxl, mine � e � maxe; 8i 2 f1; ::; mg : ui 2]0; 1]; if in is the number of
inner nodes, then on the average there are Pterm � in terminal inner nodes.

The structure of the input �le is given in Figure A.1 where the symbols
have the same meaning as in the Figure 10.1. The numbers following the
symbol \=" are assigned respectively to Pterm, m, maxc, maxdepth, maxn,
mind, maxd, minl, maxl, mine, maxe. An example �le is in �gure A.2.

Of course it must be maxdepth � m, maxn � (m� 1)!, maxc � m� 1 and
maxd > mind > 0, maxl > minl > 0, maxe > mine > 0 and Pterm 2 [0; 1].

The output BPP is produced by the algorithm shown in Figure A.3.

123

124 APPENDIX A. THE SUPPORT APPLICATIONS

P term=< prob >< sep >
m=< int >< sep >
max c=< int >< sep >
max depth=< int >< sep >
max n=< int >< sep >
min d=< real >< sep >
max d=< real >< sep >
min l=< real >< sep >
max l=< real >< sep >
min e=< real >< sep >
max e=< real >< sep >

Figure A.1: The structure of the input �le of the random problem generator.

P_term=0.1
m=10
max_depth=8

max_n=1000
max_c=6

min_d=9.0
max_d=10.0
min_l=4.0

max_l=7.0

min_e=0.4

max_e=0.5

Figure A.2: An example of input �le of the random problem generator.

A.1. THE RANDOM PROBLEM GENERATOR 125

f read from the input �le: maxn, maxdepth, maxc, m, Pterm,
maxd, mind, maxe, mine, maxl, minl;

the tree is created in the following way :

create the root node with a random container;
n 1;
for(i 1 to maxdepth � 1)

for each(� node of depth i)
f � = minfmaxn � n;maxc; m� depth(�)g;

k a random number in f0; 1; ::; �g;
if(k > 0)
f create k children of �;

n n+ k;
8� child of �: v(�) a random number of]0; 1];
r a random number in]0; 1];
if(r � Pterm) vterm a random number in]0; 1];
else vterm 0;

8� child of � : p�
v(�)P

2C�
v(
)+vterm

with p� the probability of the edge
from � to �, and C� the children of �;

8� child of �: choose a container between
those not given to the nodes of the path
from the root to � and to other children of �
and give it to �;

g
g

the other elements of the BPP are created in the following way:

8i 2 f1; ::; mg : ui a real number in]0; 1];
8i 2 f1; ::; mg : lxi a real number in [minl; maxl];
8i 2 f1; ::; mg : lyi a real number in [minl; maxl];
dx a real number in [mind; maxd];
dy a real number in [mind; maxd];
e a real number in [mine; maxe];

g

Figure A.3: The random problem generator.

126 APPENDIX A. THE SUPPORT APPLICATIONS

The program will also print on the display the number of nodes of each
level.

A.2 The random-solver

The Random-solver algorithm presented in Section 9.2 has bee imple-
mented in ANSI C. The implementation is a command line program that
must be run with 3 arguments, names of �les:

� the iterations �le, an existing text �le containing only an integer num-
ber

� the input �le, an existing text �le containing the description of a BPP,
with the same sintax of the one in Section 10.3

� the output �le a text �le, created by the program, that contains the
description of the best solution found by the program and with the
same sintax of the one in Section 10.6

When we run the program with these 3 arguments in this order, the algorithm
will be run on the BPP described in the input �le for a number of iterations
speci�ed in the iterations �le and the output of the algorithm will be written
in the output �le. While running, the program will print on the display the
number of the current iteration, the EU of the corrispondent solution and
the EU of the best solution found until then.

Appendix B

The Test Problems

B.1 rinput0

This problem has been randomly generated by the random problem gen-
erator with the parameters:

P_term=0

m=10
max_depth=8

max_n=1000
max_c=6
min_d=9.0

max_d=10.0
min_l=4.0
max_l=6.0

min_e=0.9
max_e=1

Then the dimensions of the deck, the utilities of the containers 2, 7 and 10
and the dimensions of all the containers have been changed.

The depth is 8 and the number of nodes in the levels 0; ::; 7 are 1, 1, 5,
16, 33, 75, 119 respectively .

e=1
dx=12 dy=12
m=10
u1=0.879400
u2=0.3
u3=0.520081
u4=0.441070
u5=0.387028
u6=0.578156
u7=0.3
u8=0.555038
u9=0.522489
u10=0.25

127

128 APPENDIX B. THE TEST PROBLEMS

lx1=4 ly1=5
lx2=4 ly2=4
lx3=4 ly3=6
lx4=6 ly4=6
lx5=5 ly5=6
lx6=5 ly6=5
lx7=4.5 ly7=5.5
lx8=4.5 ly8=6
lx9=4 ly9=6
lx10=6 ly10=6
n=251
(1,0,0,5) (2,1,1.000000,2) (3,2,1.000000,7) (4,3,0.307632,4)
(9,4,0.419167,9) (25,9,0.155749,8) (58,25,1.000000,6) (133,58,1.000000,1)
(26,9,0.399993,3) (59,26,0.319232,10) (134,59,1.000000,6) (60,26,0.329214,1)
(61,26,0.351554,8) (135,61,1.000000,1) (27,9,0.102655,6) (62,27,0.418978,10)
(136,62,0.512608,1) (137,62,0.152493,3) (138,62,0.334899,8) (63,27,0.581022,3)
(139,63,0.208845,1) (140,63,0.791155,8) (28,9,0.067031,10) (64,28,1.000000,3)
(141,64,0.248471,6) (142,64,0.751529,1) (29,9,0.274572,1) (10,4,0.314813,3)
(30,10,0.021485,8) (65,30,0.191291,10) (66,30,0.376486,9) (67,30,0.291959,1)
(143,67,1.000000,9) (68,30,0.140263,6) (31,10,0.054720,6) (32,10,0.438789,9)
(69,32,1.000000,6) (144,69,0.593631,1) (145,69,0.117735,8) (146,69,0.288633,10)
(33,10,0.485007,1) (11,4,0.266020,8) (34,11,1.000000,3) (70,34,0.135666,1)
(71,34,0.864334,10) (147,71,1.000000,6) (5,3,0.117060,3) (12,5,0.009935,4)
(13,5,0.132181,1) (14,5,0.338757,6) (15,5,0.311678,9) (35,15,0.395646,1)
(72,35,0.228570,10) (148,72,0.235887,8) (149,72,0.333206,6) (150,72,0.430907,4)
(73,35,0.701885,6) (74,35,0.069544,4) (151,74,0.302115,10) (152,74,0.245751,6)
(153,74,0.452134,8) (36,15,0.226040,8) (75,36,1.000000,10) (154,75,0.484739,6)
(155,75,0.250429,1) (156,75,0.264832,4) (37,15,0.198611,10) (76,37,0.335167,4)
(77,37,0.309238,6) (157,77,0.451798,8) (158,77,0.448022,4) (159,77,0.100180,1)
(78,37,0.090671,8) (79,37,0.264924,1) (160,79,0.333681,6) (161,79,0.328675,4)
(162,79,0.337643,8) (38,15,0.179703,4) (80,38,0.093453,1) (163,80,0.242955,10)
(164,80,0.757045,8) (81,38,0.312692,10) (165,81,0.302449,6) (166,81,0.697551,1)
(82,38,0.593855,6) (167,82,0.429515,8) (168,82,0.432217,1) (169,82,0.138268,10)
(16,5,0.207450,8) (39,16,0.288434,10) (83,39,0.073757,9) (170,83,0.410661,4)
(171,83,0.150200,1) (172,83,0.439139,6) (84,39,0.924349,4) (173,84,0.228803,1)
(174,84,0.771197,9) (85,39,0.001894,1) (175,85,0.668196,4) (176,85,0.327895,6)
(177,85,0.003909,9) (40,16,0.034273,1) (86,40,0.635942,9) (178,86,0.518803,4)
(179,86,0.481197,6) (87,40,0.116477,6) (180,87,1.000000,9) (88,40,0.247581,4)
(181,88,0.558790,10) (182,88,0.441210,9) (41,16,0.078266,9) (89,41,0.824884,4)
(90,41,0.175116,6) (183,90,0.163038,10) (184,90,0.503662,1) (185,90,0.333300,4)
(42,16,0.599028,6) (91,42,0.543464,9) (186,91,1.000000,1) (92,42,0.065065,4)
(93,42,0.251674,10) (187,93,0.627588,4) (188,93,0.200984,9) (189,93,0.171427,1)
(94,42,0.139797,1) (6,3,0.189528,9) (17,6,1.000000,1) (43,17,1.000000,10)
(95,43,0.351795,6) (190,95,1.000000,4) (96,43,0.372200,4) (191,96,0.275748,3)
(192,96,0.724252,8) (97,43,0.276005,3) (193,97,1.000000,6) (7,3,0.306821,10)
(18,7,0.099751,3) (44,18,0.407653,8) (98,44,0.529864,1) (194,98,1.000000,9)
(99,44,0.470136,4) (45,18,0.177191,1) (100,45,0.178143,6) (195,100,0.611458,4)
(196,100,0.388542,8) (101,45,0.435069,8) (197,101,0.258134,9) (198,101,0.149134,4)
(199,101,0.592733,6) (102,45,0.146064,9) (200,102,1.000000,8) (103,45,0.240724,4)
(201,103,0.941635,9) (202,103,0.058365,6) (46,18,0.330359,4) (47,18,0.084796,9)
(104,47,1.000000,1) (203,104,1.000000,6) (19,7,0.140484,8) (20,7,0.157712,9)
(21,7,0.148887,6) (48,21,1.000000,3) (105,48,0.356965,4) (204,105,1.000000,9)
(106,48,0.517569,8) (205,106,0.323187,9) (206,106,0.403910,1) (207,106,0.272903,4)
(107,48,0.125467,9) (208,107,1.000000,4) (22,7,0.246340,4) (49,22,0.293319,9)
(108,49,0.124218,8) (109,49,0.214525,1) (209,109,0.378899,8) (210,109,0.083922,3)
(211,109,0.537179,6) (110,49,0.324633,6) (212,110,1.000000,8) (111,49,0.336623,3)
(213,111,0.118216,6) (214,111,0.717910,8) (215,111,0.163874,1) (50,22,0.441840,6)
(112,50,1.000000,8) (216,112,0.419147,3) (217,112,0.257228,1) (218,112,0.323625,9)
(51,22,0.264840,8) (113,51,0.416180,9) (114,51,0.488321,3) (219,114,0.444530,1)
(220,114,0.555470,9) (115,51,0.095498,6) (221,115,0.266092,9) (222,115,0.733908,3)
(23,7,0.206827,1) (52,23,0.162666,9) (116,52,0.322524,3) (223,116,1.000000,4)
(117,52,0.677476,8) (224,117,0.816932,4) (225,117,0.183068,3) (53,23,0.240967,3)
(118,53,0.301657,4) (226,118,0.351704,8) (227,118,0.421123,9) (228,118,0.227174,6)
(119,53,0.281504,6) (229,119,0.155405,4) (230,119,0.672648,9) (231,119,0.171947,8)
(120,53,0.416839,9) (232,120,0.264719,6) (233,120,0.735281,4) (54,23,0.225703,4)
(121,54,0.292767,6) (122,54,0.198000,9) (234,122,0.953757,8) (235,122,0.025908,3)
(236,122,0.020335,6) (123,54,0.407716,8) (124,54,0.101517,3) (237,124,1.000000,6)
(55,23,0.195289,8) (125,55,1.000000,4) (56,23,0.175375,6) (126,56,0.298271,8)
(238,126,0.688829,9) (239,126,0.311171,4) (127,56,0.337734,9) (240,127,0.562923,3)
(241,127,0.437077,4) (128,56,0.109427,4) (242,128,0.057873,8) (243,128,0.525564,9)
(244,128,0.416563,3) (129,56,0.254568,3) (245,129,0.520532,8) (246,129,0.479468,9)
(8,3,0.078959,1) (24,8,1.000000,9) (57,24,1.000000,6) (130,57,0.391858,4)
(247,130,0.379463,8) (248,130,0.192214,3) (249,130,0.428324,10) (131,57,0.383642,8)
(250,131,0.972850,10) (251,131,0.027150,4) (132,57,0.224500,3)

B.2. RINPUT4 129

B.2 rinput4

This problem has been generated by the random problem generator with
the parameters �le: This problem has been randomly generated by the ran-
dom problem generator with the parameters:

P_term=0

m=10

max_depth=8

max_n=250

max_c=6

max_d=10.0

min_d=9.0

max_l=6.0

min_l=4.0
min_e=0.9
max_e=1

The depth is 5 and the number of nodes in the levels 0; ::; 4 are 1, 6, 17, 42,
123, 61 respectively .

e=0.918702
dx=9.126582 dy=9.671547
m=10
u1=0.952863
u2=0.759687
u3=0.446194
u4=0.242175
u5=0.244883
u6=0.178968
u7=0.218940
u8=0.143338
u9=0.941693
u10=0.613240
lx1=5.091558 ly1=4.942688
lx2=4.340651 ly2=4.344572
lx3=5.933731 ly3=5.165689
lx4=5.210119 ly4=4.355069
lx5=5.210560 ly5=4.727087
lx6=5.217512 ly6=5.366407
lx7=4.544291 ly7=4.267091
lx8=4.873959 ly8=4.759642
lx9=4.176219 ly9=5.305971
lx10=4.416357 ly10=5.559135
n=250
(1,0,0,9) (2,1,0.002380,3) (8,2,0.351808,8) (25,8,0.273552,6)
(67,25,0.283554,5) (190,67,0.972703,4) (191,67,0.027297,10) (68,25,0.091136,10)
(192,68,0.161187,4) (193,68,0.101448,1) (194,68,0.304021,5) (195,68,0.238892,7)
(196,68,0.194452,2) (69,25,0.145716,4) (197,69,0.348455,2) (198,69,0.249285,1)
(199,69,0.198101,10) (200,69,0.204158,7) (70,25,0.066341,1) (201,70,0.010732,10)
(202,70,0.173467,4) (203,70,0.307837,2) (204,70,0.333375,5) (205,70,0.174588,7)
(71,25,0.220569,7) (206,71,1.000000,2) (72,25,0.192685,2) (207,72,0.104400,10)
(208,72,0.409960,1) (209,72,0.171205,7) (210,72,0.152482,5) (211,72,0.161953,4)
(26,8,0.162262,7) (73,26,1.000000,2) (212,73,1.000000,10) (27,8,0.410838,10)
(74,27,0.031960,6) (213,74,0.631413,2) (214,74,0.368587,5) (75,27,0.477396,4)
(215,75,0.423734,5) (216,75,0.092440,2) (217,75,0.483826,1) (76,27,0.053662,1)
(218,76,0.213355,6) (219,76,0.143192,5) (220,76,0.220500,4) (221,76,0.324418,2)
(222,76,0.098536,7) (77,27,0.081072,7) (223,77,0.109694,5) (224,77,0.742332,1)
(225,77,0.147974,2) (78,27,0.355911,5) (226,78,0.358612,7) (227,78,0.631792,4)
(228,78,0.009596,2) (28,8,0.068150,4) (79,28,0.147078,10) (229,79,0.513077,2)
(230,79,0.359826,6) (231,79,0.127097,1) (80,28,0.186882,7) (232,80,0.017436,2)
(233,80,0.413250,1) (234,80,0.390995,10) (235,80,0.178319,5) (81,28,0.126331,5)
(236,81,0.156780,7) (237,81,0.224113,6) (238,81,0.313679,10) (239,81,0.224404,1)
(240,81,0.081024,2) (82,28,0.134719,2) (241,82,0.085541,10) (242,82,0.075621,7)

130 APPENDIX B. THE TEST PROBLEMS

(243,82,0.316793,6) (244,82,0.522045,1) (83,28,0.182724,1) (245,83,0.006714,7)
(246,83,0.566031,5) (247,83,0.427255,10) (84,28,0.222266,6) (29,8,0.085197,2)
(85,29,1.000000,4) (248,85,0.639782,6) (249,85,0.360218,1) (9,2,0.648192,5)
(30,9,1.000000,7) (86,30,0.323411,8) (250,86,1.000000,6) (87,30,0.152046,6)
(88,30,0.071461,4) (89,30,0.247397,2) (90,30,0.174310,1) (91,30,0.031376,10)
(3,1,0.243703,6) (4,1,0.190924,10) (10,4,0.477023,4) (31,10,0.384253,1)
(92,31,0.013614,6) (93,31,0.429373,2) (94,31,0.557012,5) (32,10,0.119959,2)
(95,32,1.000000,5) (33,10,0.495788,5) (11,4,0.166124,7) (12,4,0.017388,6)
(34,12,0.359686,3) (96,34,0.654598,8) (97,34,0.345402,2) (35,12,0.293273,8)
(98,35,1.000000,2) (36,12,0.347041,2) (13,4,0.339465,8) (37,13,1.000000,2)
(99,37,0.321426,4) (100,37,0.645711,5) (101,37,0.032864,6) (5,1,0.115693,5)
(6,1,0.263350,2) (14,6,0.209780,1) (38,14,0.415268,3) (102,38,1.000000,8)
(39,14,0.315860,6) (40,14,0.268872,7) (103,40,0.302726,3) (104,40,0.311202,4)
(105,40,0.216233,8) (106,40,0.169839,10) (15,6,0.285803,4) (41,15,0.269791,1)
(107,41,0.703842,6) (108,41,0.296158,5) (42,15,0.005814,8) (109,42,1.000000,6)
(43,15,0.047864,10) (110,43,0.566766,8) (111,43,0.433234,3) (44,15,0.294383,5)
(112,44,0.578722,10) (113,44,0.421278,7) (45,15,0.198393,7) (114,45,0.014256,3)
(115,45,0.126886,8) (116,45,0.317068,10) (117,45,0.208490,1) (118,45,0.067875,5)
(119,45,0.265424,6) (46,15,0.183756,3) (120,46,0.215864,5) (121,46,0.120398,8)
(122,46,0.016963,1) (123,46,0.646775,7) (16,6,0.220712,3) (47,16,1.000000,7)
(124,47,0.348115,1) (125,47,0.263280,6) (126,47,0.388605,5) (17,6,0.127334,7)
(48,17,0.452265,4) (127,48,0.020719,6) (128,48,0.174115,1) (129,48,0.021940,10)
(130,48,0.238289,3) (131,48,0.165501,8) (132,48,0.379436,5) (49,17,0.004220,3)
(133,49,0.228233,8) (134,49,0.249114,4) (135,49,0.266822,1) (136,49,0.255830,6)
(50,17,0.388602,8) (137,50,0.402133,10) (138,50,0.597867,1) (51,17,0.067846,5)
(139,51,0.036646,6) (140,51,0.783527,4) (141,51,0.149303,1) (142,51,0.030524,3)
(52,17,0.087068,1) (143,52,0.253122,8) (144,52,0.233668,10) (145,52,0.286875,5)
(146,52,0.225340,4) (147,52,0.000995,6) (18,6,0.156371,8) (53,18,0.572320,7)
(148,53,0.212064,4) (149,53,0.257625,10) (150,53,0.530311,1) (54,18,0.427680,4)
(7,1,0.183950,8) (19,7,0.019343,1) (55,19,1.000000,5) (151,55,0.065213,6)
(152,55,0.108398,2) (153,55,0.303474,4) (154,55,0.080820,3) (155,55,0.442095,7)
(20,7,0.013363,7) (56,20,1.000000,2) (156,56,0.417220,5) (157,56,0.514818,6)
(158,56,0.067962,1) (21,7,0.417813,4) (57,21,0.142729,6) (159,57,0.206294,1)
(160,57,0.361732,3) (161,57,0.431975,5) (58,21,0.857271,10) (162,58,0.143495,2)
(163,58,0.575537,6) (164,58,0.280968,1) (22,7,0.163332,6) (23,7,0.165052,5)
(59,23,0.057834,1) (165,59,0.422618,7) (166,59,0.317568,3) (167,59,0.259814,6)
(60,23,0.184031,7) (61,23,0.189355,6) (168,61,0.645467,2) (169,61,0.354533,10)
(62,23,0.291542,3) (170,62,0.335402,1) (171,62,0.233186,7) (172,62,0.316868,4)
(173,62,0.114543,2) (63,23,0.186212,4) (174,63,0.192652,1) (175,63,0.202445,2)
(176,63,0.042960,10) (177,63,0.092728,7) (178,63,0.318025,6) (179,63,0.151191,3)
(64,23,0.091027,2) (180,64,0.097831,1) (181,64,0.117094,4) (182,64,0.447141,10)
(183,64,0.337935,3) (24,7,0.221096,10) (65,24,0.572410,6) (184,65,0.151725,1)
(185,65,0.171248,7) (186,65,0.184307,3) (187,65,0.223281,5) (188,65,0.183282,2)
(189,65,0.086157,4) (66,24,0.427591,4)

B.3 rinput5

This problem has been randomly generated by the random problem gen-
erator with the parameters:

P_term=0
m=10
max_depth=8

max_n=250

max_c=6

min_d=12
max_d=12
min_l=4

max_l=6

min_e=0.9
max_e=1

B.3. RINPUT5 131

The depth is 7 and the number of nodes in the levels 0; ::; 6 are 1, 4, 8, 19,
48, 108, 61 respectively .

e=0.426953
dx=12.000000 dy=12.000000
m=10
u1=0.309596
u2=0.681586
u3=0.097839
u4=0.480864
u5=0.015402
u6=0.531325
u7=0.229494
u8=0.674735
u9=0.044884
u10=0.689140
lx1=4.258379 ly1=4.988028
lx2=6.046078 ly2=4.977947
lx3=5.890062 ly3=4.659769
lx4=4.075559 ly4=5.999486
lx5=5.068666 ly5=5.930395
lx6=6.569844 ly6=4.981225
lx7=5.267356 ly7=5.452986
lx8=5.066720 ly8=4.228218
lx9=6.597105 ly9=5.122993
lx10=5.188888 ly10=5.807456
n=249
(1,0,0,2) (2,1,0.028460,3) (6,2,1.000000,5) (14,6,0.058909,9)
(33,14,1.000000,4) (81,33,1.000000,6) (189,81,1.000000,1) (15,6,0.565391,7)
(34,15,0.405249,6) (82,34,0.583522,1) (190,82,0.178640,4) (191,82,0.821360,8)
(83,34,0.386001,9) (192,83,0.316287,1) (193,83,0.615647,4) (194,83,0.068066,8)
(84,34,0.030477,4) (195,84,1.000000,9) (35,15,0.119964,1) (85,35,0.639139,4)
(196,85,0.538989,6) (197,85,0.461011,8) (86,35,0.360861,6) (198,86,0.408364,8)
(199,86,0.337196,4) (200,86,0.254440,9) (36,15,0.023707,8) (87,36,1.000000,1)
(201,87,0.051766,6) (202,87,0.436797,4) (203,87,0.511437,9) (37,15,0.057062,4)
(88,37,1.000000,9) (204,88,0.618639,6) (205,88,0.381361,1) (38,15,0.394018,9)
(89,38,0.655113,8) (90,38,0.344887,1) (16,6,0.375700,8) (39,16,1.000000,9)
(91,39,0.388826,1) (206,91,1.000000,6) (92,39,0.000020,4) (207,92,0.460946,6)
(208,92,0.367153,1) (209,92,0.171900,7) (93,39,0.046858,7) (94,39,0.564296,6)
(210,94,0.711317,1) (211,94,0.288683,4) (3,1,0.181229,4) (7,3,0.037192,3)
(17,7,0.008504,6) (40,17,0.248041,7) (95,40,0.142679,8) (212,95,1.000000,5)
(96,40,0.315190,9) (97,40,0.191972,5) (213,97,0.492746,9) (214,97,0.507254,1)
(98,40,0.350159,1) (215,98,0.120362,5) (216,98,0.501829,9) (217,98,0.377809,8)
(41,17,0.359246,8) (99,41,0.491265,9) (218,99,0.021715,5) (219,99,0.978285,7)
(100,41,0.508735,7) (220,100,1.000000,1) (42,17,0.392713,9) (101,42,0.706835,8)
(221,101,0.807005,7) (222,101,0.192995,1) (102,42,0.097005,7) (223,102,1.000000,8)
(103,42,0.196159,1) (224,103,1.000000,8) (18,7,0.206857,9) (43,18,0.078597,1)
(104,43,0.188936,7) (105,43,0.278245,6) (225,105,1.000000,5) (106,43,0.116406,5)
(107,43,0.416413,8) (226,107,0.368078,7) (227,107,0.340413,5) (228,107,0.291509,6)
(44,18,0.040920,6) (45,18,0.497085,7) (108,45,0.641663,1) (109,45,0.358337,6)
(229,109,0.429149,1) (230,109,0.241360,8) (231,109,0.329490,5) (46,18,0.383398,5)
(110,46,0.410631,1) (232,110,0.848183,8) (233,110,0.151817,7) (111,46,0.589369,6)
(234,111,0.381005,1) (235,111,0.311619,8) (236,111,0.307376,7) (19,7,0.227641,7)
(47,19,0.263195,1) (112,47,1.000000,5) (237,112,0.405593,6) (238,112,0.184839,8)
(239,112,0.409568,9) (48,19,0.362464,9) (113,48,0.522062,1) (240,113,0.637202,6)
(241,113,0.362798,5) (114,48,0.477938,5) (242,114,1.000000,8) (49,19,0.163048,8)
(115,49,1.000000,6) (243,115,0.175448,9) (244,115,0.064712,1) (245,115,0.759840,5)
(50,19,0.211294,6) (116,50,0.391054,9) (246,116,1.000000,5) (117,50,0.608946,8)
(247,117,1.000000,9) (20,7,0.216369,1) (51,20,0.224368,9) (118,51,1.000000,8)
(248,118,0.483870,5) (249,118,0.516130,7) (52,20,0.381441,6) (119,52,0.903030,7)
(120,52,0.096970,9) (53,20,0.103659,8) (121,53,0.606471,7) (122,53,0.393529,9)
(54,20,0.290533,5) (123,54,0.087604,7) (124,54,0.083332,6) (125,54,0.506794,9)
(126,54,0.322270,8) (21,7,0.340630,8) (8,3,0.365122,9) (22,8,0.134202,3)
(23,8,0.216505,6) (55,23,0.232458,8) (56,23,0.192985,7) (57,23,0.164028,5)
(127,57,0.335907,8) (128,57,0.664093,3) (58,23,0.221326,3) (129,58,0.499380,8)
(130,58,0.115550,7) (131,58,0.210576,5) (132,58,0.174495,1) (59,23,0.189203,1)
(133,59,0.289482,7) (134,59,0.135498,8) (135,59,0.241503,3) (136,59,0.333517,5)
(24,8,0.126681,1) (60,24,0.508306,7) (61,24,0.491694,6) (137,61,0.517331,8)
(138,61,0.000940,5) (139,61,0.481729,3) (25,8,0.522612,7) (62,25,0.694207,8)
(140,62,0.328443,5) (141,62,0.419922,1) (142,62,0.251635,6) (63,25,0.082251,6)
(143,63,0.402777,5) (144,63,0.176316,8) (145,63,0.420908,3) (64,25,0.223543,5)
(146,64,0.511983,3) (147,64,0.266923,8) (148,64,0.207358,6) (149,64,0.013735,1)
(9,3,0.276837,8) (10,3,0.037037,7) (26,10,1.000000,8) (65,26,0.294315,5)
(150,65,0.405462,6) (151,65,0.229757,1) (152,65,0.364781,3) (66,26,0.175953,3)
(153,66,0.543490,6) (154,66,0.091702,5) (155,66,0.364808,1) (67,26,0.379698,6)
(156,67,0.297646,5) (157,67,0.364792,3) (158,67,0.229190,1) (159,67,0.108372,9)
(68,26,0.150034,9) (160,68,0.251041,3) (161,68,0.337247,5) (162,68,0.096760,6)
(163,68,0.314952,1) (11,3,0.283812,5) (27,11,1.000000,9) (69,27,0.455327,8)
(164,69,0.189171,3) (165,69,0.462408,6) (166,69,0.260764,1) (167,69,0.087657,7)
(70,27,0.544673,3) (4,1,0.693225,8) (12,4,0.366258,5) (28,12,0.283004,9)
(71,28,0.402722,1) (168,71,0.296643,3) (169,71,0.115354,7) (170,71,0.269312,4)

132 APPENDIX B. THE TEST PROBLEMS

(171,71,0.318691,6) (72,28,0.190119,7) (172,72,1.000000,4) (73,28,0.407159,3)
(173,73,0.102167,4) (174,73,0.411126,6) (175,73,0.486707,7) (29,12,0.221945,4)
(74,29,0.448911,3) (176,74,1.000000,9) (75,29,0.551089,6) (30,12,0.495051,7)
(13,4,0.633742,6) (31,13,0.564195,7) (32,13,0.435805,9) (76,32,0.255419,7)
(177,76,1.000000,4) (77,32,0.084471,5) (178,77,0.359611,3) (179,77,0.161873,7)
(180,77,0.478516,4) (78,32,0.296013,3) (181,78,0.202623,7) (182,78,0.278415,5)
(183,78,0.243391,1) (184,78,0.275571,4) (79,32,0.004692,4) (185,79,0.239159,1)
(186,79,0.171408,3) (187,79,0.331311,7) (188,79,0.258121,5) (80,32,0.359405,1)

(5,1,0.097086,1)

B.4 rinput6

This problem has been randomly generated by the random problem gen-
erator with the parameters:

P_term=0

m=12

max_depth=10
max_n=250

max_c=12
min_d=12
max_d=12

min_l=4
max_l=6
min_e=0.9

max_e=1

The depth is 4 and the number of nodes in the levels 0; ::; 3 are 1, 9, 50, 190
respectively .

e=0.926691
dx=12.000000 dy=12.000000
m=12
u1=0.388017
u2=0.585707
u3=0.203572
u4=0.937831
u5=0.701077
u6=0.118898
u7=0.191186
u8=0.995888
u9=0.530815
u10=0.602019
u11=0.648486
u12=0.039909
lx1=4.335007 ly1=4.092933
lx2=5.176459 ly2=4.782847
lx3=5.179012 ly3=4.037170
lx4=5.159808 ly4=5.400181
lx5=4.159598 ly5=5.838077
lx6=4.920182 ly6=4.621942
lx7=5.555429 ly7=5.380552
lx8=4.241450 ly8=4.904070
lx9=4.828291 ly9=4.864192
lx10=4.448120 ly10=4.350715
lx11=4.981933 ly11=4.685722
lx12=5.757967 ly12=5.862182
n=250
(1,0,0,11) (2,1,0.090030,2) (11,2,0.186275,10) (61,11,0.018187,4)
(62,11,0.139105,6) (63,11,0.141525,1) (64,11,0.097382,5) (65,11,0.116188,12)

B.5. RINPUT7 133

(66,11,0.135093,8) (67,11,0.146518,7) (68,11,0.041503,3) (69,11,0.164500,9)
(12,2,0.248533,7) (70,12,0.268166,12) (71,12,0.191306,8) (72,12,0.033227,9)
(73,12,0.246089,6) (74,12,0.224911,3) (75,12,0.036302,10) (13,2,0.059933,5)
(76,13,0.030901,7) (77,13,0.151589,8) (78,13,0.125832,12) (79,13,0.198898,4)
(80,13,0.108441,1) (81,13,0.099204,6) (82,13,0.020427,9) (83,13,0.107813,10)
(84,13,0.156894,3) (14,2,0.262961,4) (85,14,0.278737,6) (86,14,0.102994,1)
(87,14,0.272825,5) (88,14,0.165453,7) (89,14,0.179991,8) (15,2,0.122188,8)
(90,15,0.052396,9) (91,15,0.139887,12) (92,15,0.186545,1) (93,15,0.226553,7)
(94,15,0.085104,4) (95,15,0.006566,3) (96,15,0.033790,5) (97,15,0.113376,10)
(98,15,0.155783,6) (16,2,0.120110,3) (99,16,1.000000,6) (3,1,0.037325,8)
(17,3,0.147120,4) (100,17,0.434332,5) (101,17,0.278601,9) (102,17,0.287067,10)
(18,3,0.040295,6) (103,18,0.262423,7) (104,18,0.206417,3) (105,18,0.215391,5)
(106,18,0.102150,12) (107,18,0.085464,9) (108,18,0.128155,2) (19,3,0.076381,1)
(109,19,0.234247,9) (110,19,0.017329,3) (111,19,0.053996,10) (112,19,0.263388,7)
(113,19,0.052724,12) (114,19,0.042591,4) (115,19,0.232149,2) (116,19,0.103576,5)
(20,3,0.137370,3) (117,20,1.000000,5) (21,3,0.170269,5) (118,21,0.100901,10)
(119,21,0.168488,2) (120,21,0.052798,3) (121,21,0.199272,12) (122,21,0.088434,6)
(123,21,0.122647,1) (124,21,0.105985,4) (125,21,0.081721,9) (126,21,0.079754,7)
(22,3,0.043334,12) (127,22,0.170981,10) (128,22,0.105427,5) (129,22,0.105956,1)
(130,22,0.617636,4) (23,3,0.188942,9) (131,23,0.171602,1) (132,23,0.208844,6)
(133,23,0.160763,7) (134,23,0.048140,4) (135,23,0.159479,12) (136,23,0.218647,3)
(137,23,0.032525,10) (24,3,0.196288,10) (4,1,0.189728,3) (25,4,0.129647,12)
(138,25,0.169375,8) (139,25,0.306474,2) (140,25,0.524151,9) (26,4,0.108355,1)
(141,26,0.074677,9) (142,26,0.001560,12) (143,26,0.183865,10) (144,26,0.073046,5)
(145,26,0.111062,8) (146,26,0.190817,2) (147,26,0.166889,6) (148,26,0.060526,4)
(149,26,0.137557,7) (27,4,0.172188,7) (150,27,0.064765,10) (151,27,0.025597,8)
(152,27,0.142445,5) (153,27,0.083361,2) (154,27,0.094873,9) (155,27,0.169446,4)
(156,27,0.132219,6) (157,27,0.178433,1) (158,27,0.108860,12) (28,4,0.204810,5)
(159,28,0.421824,12) (160,28,0.047514,7) (161,28,0.116046,6) (162,28,0.414616,10)
(29,4,0.059577,6) (30,4,0.325423,2) (163,30,0.155916,4) (164,30,0.013632,1)
(165,30,0.056541,5) (166,30,0.185138,10) (167,30,0.176246,9) (168,30,0.151705,7)
(169,30,0.058460,8) (170,30,0.134701,6) (171,30,0.067661,12) (5,1,0.117862,10)
(31,5,0.037170,3) (172,31,0.106277,6) (173,31,0.106221,5) (174,31,0.107699,2)
(175,31,0.123798,7) (176,31,0.149014,1) (177,31,0.260592,8) (178,31,0.113121,9)
(179,31,0.033279,12) (32,5,0.182297,7) (33,5,0.212989,1) (180,33,0.166159,7)
(181,33,0.833841,3) (34,5,0.128933,9) (182,34,0.348004,1) (183,34,0.028667,5)
(184,34,0.139063,7) (185,34,0.037419,4) (186,34,0.298028,12) (187,34,0.148820,2)
(35,5,0.093701,8) (188,35,0.183160,3) (189,35,0.133117,12) (190,35,0.026330,6)
(191,35,0.059875,5) (192,35,0.228548,1) (193,35,0.071908,2) (194,35,0.149353,4)
(195,35,0.016895,7) (196,35,0.130815,9) (36,5,0.163917,4) (197,36,0.082748,5)
(198,36,0.028552,2) (199,36,0.216015,3) (200,36,0.227668,7) (201,36,0.100917,12)
(202,36,0.225739,9) (203,36,0.090027,6) (204,36,0.028334,1) (37,5,0.180993,2)
(205,37,0.138701,12) (206,37,0.158699,1) (207,37,0.161103,9) (208,37,0.063605,4)
(209,37,0.033161,8) (210,37,0.150684,6) (211,37,0.163995,5) (212,37,0.130053,3)
(6,1,0.193837,7) (38,6,0.246990,2) (213,38,0.168546,12) (214,38,0.159025,1)
(215,38,0.178867,10) (216,38,0.294801,4) (217,38,0.198761,3) (39,6,0.191255,8)
(218,39,0.195124,4) (219,39,0.086990,3) (220,39,0.147342,12) (221,39,0.142561,2)
(222,39,0.063899,5) (223,39,0.127792,10) (224,39,0.236292,1) (40,6,0.074545,10)
(225,40,0.340634,3) (226,40,0.283443,6) (227,40,0.015356,4) (228,40,0.360568,12)
(41,6,0.073483,3) (229,41,0.002178,1) (230,41,0.359585,8) (231,41,0.231563,9)
(232,41,0.406673,10) (42,6,0.002906,1) (233,42,0.052698,4) (234,42,0.113299,2)
(235,42,0.050737,10) (236,42,0.208334,9) (237,42,0.088130,12) (238,42,0.188072,6)
(239,42,0.008518,8) (240,42,0.044341,5) (241,42,0.245871,3) (43,6,0.194572,4)
(242,43,0.179186,5) (243,43,0.402963,8) (244,43,0.417851,3) (44,6,0.216250,9)
(245,44,1.000000,10) (7,1,0.125115,12) (45,7,1.000000,8) (246,45,0.135187,10)
(247,45,0.268168,6) (248,45,0.337087,1) (249,45,0.259557,5) (8,1,0.171412,5)
(46,8,0.130856,7) (250,46,1.000000,3) (47,8,0.043826,2) (48,8,0.044200,4)
(49,8,0.058389,3) (50,8,0.190028,1) (51,8,0.098372,6) (52,8,0.176408,9)
(53,8,0.196885,10) (54,8,0.061036,8) (9,1,0.049644,4) (55,9,0.451611,10)
(56,9,0.548389,12) (10,1,0.025046,6) (57,10,0.836454,12) (58,10,0.109694,8)

(59,10,0.010038,10) (60,10,0.043814,4)

B.5 rinput7

This problem has been randomly generated by the random problem gen-
erator with the parameters:

P_term=0

m=20
max_depth=20

max_n=250

134 APPENDIX B. THE TEST PROBLEMS

max_c=2

min_d=12

max_d=12

min_l=4

max_l=6

min_e=0.9

max_e=1

The depth is 20 and the number of nodes in the levels 0; ::; 19 are 1, 1 1,2, 2,
3, 5, 6, 4, 5, 5, 4, 4, 5, 5, 3, 2, 3, 3, 3 respectively .

e=0.994018
dx=12.000000 dy=12.000000
m=20
u1=0.337024 u2=0.091553 u3=0.939355 u4=0.397234
u5=0.953905 u6=0.901818 u7=0.143803 u8=0.135479
u9=0.620797 u10=0.754579 u11=0.955412 u12=0.105485
u13=0.034497 u14=0.526333 u15=0.676833 u16=0.409236
u17=0.807043 u18=0.927795 u19=0.599367 u20=0.133161
lx1=5.508361 ly1=4.401666 lx2=5.195940 ly2=4.300145
lx3=4.631782 ly3=5.858026 lx4=5.619237 ly4=4.983671
lx5=4.402030 ly5=4.301000 lx6=4.506777 ly6=5.464806
lx7=5.052024 ly7=4.795615 lx8=5.521075 ly8=4.241503
lx9=4.537391 ly9=5.343146 lx10=4.298859 ly10=5.067587
lx11=4.179219 ly11=4.575948 lx12=4.853268 ly12=5.771889
lx13=5.036373 ly13=4.403670 lx14=4.915084 ly14=4.022907
lx15=5.709552 ly15=4.424937 lx16=5.617362 ly16=4.931715
lx17=5.420997 ly17=5.983738 lx18=5.708602 ly18=5.504813
lx19=5.979561 ly19=4.042204 lx20=5.221155 ly20=4.341063
n=67
(1,0,0,11) (2,1,1.000000,7) (3,2,1.000000,3) (4,3,0.560437,18)
(6,4,1.000000,12) (8,6,1.000000,8) (11,8,0.869068,4) (16,11,1.000000,17)
(12,8,0.130932,17) (17,12,0.398731,10) (18,12,0.601269,15) (22,18,1.000000,9)
(26,22,0.772080,20) (31,26,0.993237,14) (36,31,1.000000,16) (32,26,0.006763,2)
(27,22,0.227920,2) (33,27,1.000000,14) (37,33,0.634474,13) (40,37,0.562956,20)
(41,37,0.437044,19) (44,41,1.000000,20) (49,44,1.000000,5) (54,49,1.000000,4)
(57,54,1.000000,6) (59,57,1.000000,16) (62,59,1.000000,1) (65,62,1.000000,10)
(38,33,0.365526,1) (42,38,1.000000,6) (45,42,0.681309,10) (50,45,0.711515,20)
(51,45,0.288485,19) (46,42,0.318691,19) (5,3,0.439563,9) (7,5,1.000000,10)
(9,7,0.202128,5) (13,9,1.000000,16) (10,7,0.797872,17) (14,10,0.258987,2)
(19,14,0.530411,6) (20,14,0.469589,8) (23,20,0.158981,18) (28,23,0.310374,1)
(34,28,1.000000,16) (29,23,0.689626,6) (24,20,0.841019,12) (15,10,0.741013,1)
(21,15,1.000000,13) (25,21,1.000000,8) (30,25,1.000000,14) (35,30,1.000000,19)
(39,35,1.000000,12) (43,39,1.000000,18) (47,43,0.169870,4) (52,47,0.562343,20)
(53,47,0.437657,2) (55,53,0.071280,6) (58,55,1.000000,20) (60,58,0.479617,16)
(63,60,1.000000,5) (66,63,1.000000,15) (61,58,0.520383,5) (64,61,1.000000,15)
(67,64,1.000000,16) (56,53,0.928720,20) (48,43,0.830130,16)

B.6 rinput8

This problem has been randomly generated by the random problem gen-
erator with the parameters:

P_term=0
m=30

max_depth=30

max_n=250

max_c=3

min_d=12

B.6. RINPUT8 135

max_d=12

min_l=4

max_l=6

min_e=0.9

max_e=1

The depth is 18 and the number of nodes in the levels 0; ::; 17 are 1, 3, 1, 2,
1, 1, 2, 2, 3, 5, 10, 13, 19, 27, 35, 40, 59, 26, respectively.

e=0.922248
dx=12.000000 dy=12.000000
m=30
u1=0.879693
u2=0.315857
u3=0.530273
u4=0.451764
u5=0.149363
u6=0.451858
u7=0.705635
u8=0.627565
u9=0.185777
u10=0.728908
u11=0.634328
u12=0.242377
u13=0.734580
u14=0.026793
u15=0.673433
u16=0.313410
u17=0.735025
u18=0.828534
u19=0.396488
u20=0.490870
u21=0.950437
u22=0.817923
u23=0.712021
u24=0.506416
u25=0.000558
u26=0.659692
u27=0.587871
u28=0.571155
u29=0.086542
u30=0.713065
lx1=4.730370 ly1=5.810840
lx2=4.815837 ly2=5.216098
lx3=4.053226 ly3=4.984405
lx4=5.800591 ly4=4.584427
lx5=5.399495 ly5=5.293280
lx6=4.329984 ly6=5.279953
lx7=4.538090 ly7=4.843230
lx8=4.110209 ly8=4.187018
lx9=5.064206 ly9=5.135907
lx10=4.222272 ly10=4.188765
lx11=4.667225 ly11=4.919134
lx12=4.426611 ly12=5.734972
lx13=5.058325 ly13=5.788198
lx14=4.118870 ly14=5.588789
lx15=5.022398 ly15=4.988284
lx16=5.321125 ly16=5.318268
lx17=4.224840 ly17=5.856359
lx18=5.636110 ly18=5.966568
lx19=4.891241 ly19=5.030774
lx20=5.262794 ly20=5.253046
lx21=4.720612 ly21=5.920270
lx22=5.989268 ly22=4.346882
lx23=4.474022 ly23=5.405207
lx24=5.943182 ly24=5.524077
lx25=5.996769 ly25=4.546475
lx26=5.343636 ly26=5.867599
lx27=5.970455 ly27=4.092440
lx28=5.440505 ly28=5.728549
lx29=5.097573 ly29=4.619791
lx30=5.890549 ly30=5.882585
n=250
(1,0,0,14) (2,1,0.093384,3) (3,1,0.491979,24) (5,3,1.000000,10)
(6,5,0.697731,18) (8,6,1.000000,28) (9,8,1.000000,19) (10,9,0.364994,6)
(12,10,1.000000,4) (14,12,1.000000,21) (17,14,0.254441,15) (22,17,0.498718,2)
(32,22,0.050292,3) (45,32,0.490063,1) (64,45,1.000000,8) (91,64,0.579144,7)

136 APPENDIX B. THE TEST PROBLEMS

(126,91,1.000000,20) (166,126,0.673850,11) (167,126,0.326150,9) (225,167,0.790951,25)
(226,167,0.209049,27) (92,64,0.420857,9) (127,92,0.357230,30) (128,92,0.278980,12)
(168,128,0.202679,13) (227,168,0.336734,29) (228,168,0.323540,27) (229,168,0.339726,17)
(169,128,0.377536,25) (230,169,0.150748,11) (231,169,0.849252,23) (170,128,0.419786,23)
(232,170,1.000000,30) (129,92,0.363790,17) (46,32,0.380204,17) (65,46,1.000000,5)
(93,65,0.513368,11) (94,65,0.486632,7) (47,32,0.129733,30) (66,47,1.000000,5)
(33,22,0.949708,29) (48,33,0.742127,3) (67,48,0.146647,1) (95,67,0.200774,12)
(96,67,0.440013,25) (97,67,0.359213,7) (130,97,0.527392,5) (171,130,1.000000,22)
(233,171,1.000000,27) (131,97,0.472608,13) (172,131,0.514883,17) (173,131,0.485117,8)
(234,173,1.000000,30) (68,48,0.556717,26) (98,68,1.000000,22) (69,48,0.296636,5)
(99,69,0.347516,17) (100,69,0.652484,13) (132,100,0.290988,12) (174,132,1.000000,7)
(235,174,0.811927,17) (236,174,0.125897,26) (237,174,0.062176,9) (133,100,0.382075,26)
(175,133,0.828816,7) (176,133,0.171184,8) (238,176,0.068622,12) (239,176,0.931378,30)
(134,100,0.326938,23) (177,134,1.000000,30) (240,177,0.253654,11) (241,177,0.405996,7)
(242,177,0.340350,17) (49,33,0.257873,8) (70,49,1.000000,5) (101,70,0.480759,25)
(135,101,0.325875,3) (178,135,0.782163,20) (179,135,0.091388,13) (243,179,1.000000,30)
(180,135,0.126449,23) (244,180,0.168130,20) (245,180,0.380201,22) (246,180,0.451669,30)
(136,101,0.674126,23) (181,136,1.000000,12) (247,181,0.902440,22) (248,181,0.097560,3)
(102,70,0.157284,23) (137,102,1.000000,12) (182,137,0.452026,16) (249,182,0.866901,11)
(250,182,0.133099,1) (183,137,0.391277,11) (184,137,0.156697,7) (103,70,0.361957,16)
(138,103,0.304919,30) (185,138,1.000000,11) (139,103,0.166493,12) (186,139,0.501873,13)
(187,139,0.498127,17) (140,103,0.528588,3) (188,140,0.485691,7) (189,140,0.514309,11)
(23,17,0.390024,11) (34,23,0.005685,5) (50,34,1.000000,30) (71,50,0.248732,27)
(104,71,1.000000,20) (72,50,0.751268,22) (35,23,0.646130,27) (51,35,1.000000,2)
(73,51,0.183570,23) (105,73,1.000000,12) (141,105,0.408738,9) (190,141,0.994760,20)
(191,141,0.005240,3) (142,105,0.591262,22) (192,142,0.014253,29) (193,142,0.985747,17)
(74,51,0.469777,30) (106,74,1.000000,5) (143,106,1.000000,26) (75,51,0.346653,13)
(107,75,0.085255,26) (108,75,0.763905,29) (109,75,0.150840,9) (144,109,0.484165,23)
(194,144,0.322002,30) (195,144,0.616365,7) (196,144,0.061633,8) (145,109,0.220250,1)
(197,145,1.000000,20) (146,109,0.295585,30) (36,23,0.348185,23) (24,17,0.111258,9)
(37,24,0.503729,16) (38,24,0.496271,8) (52,38,0.553165,11) (53,38,0.360662,29)
(76,53,0.551169,12) (77,53,0.448831,25) (110,77,0.188842,16) (147,110,1.000000,22)
(198,147,1.000000,11) (111,77,0.811158,22) (148,111,0.216417,23) (199,148,0.335436,20)
(200,148,0.452625,1) (201,148,0.211939,30) (149,111,0.096843,11) (202,149,0.040542,20)
(203,149,0.359118,16) (204,149,0.600341,23) (150,111,0.686740,13) (205,150,0.166752,11)
(206,150,0.833248,23) (54,38,0.086173,26) (78,54,0.224232,22) (79,54,0.414985,23)
(112,79,1.000000,11) (151,112,0.542086,25) (207,151,0.344167,22) (208,151,0.498500,1)
(209,151,0.157333,7) (152,112,0.457914,12) (210,152,1.000000,25) (80,54,0.360783,3)
(18,14,0.478400,8) (25,18,1.000000,30) (19,14,0.267159,12) (26,19,0.370241,2)
(27,19,0.370666,27) (39,27,0.357167,23) (40,27,0.265163,26) (55,40,0.423954,15)
(81,55,0.723356,1) (82,55,0.276644,11) (56,40,0.082559,23) (83,56,1.000000,15)
(113,83,0.959875,5) (153,113,1.000000,22) (211,153,1.000000,17) (114,83,0.040125,22)
(57,40,0.493487,1) (84,57,0.665737,15) (115,84,1.000000,7) (85,57,0.334263,23)
(116,85,0.388816,25) (117,85,0.200723,5) (154,117,0.207102,7) (212,154,0.251594,11)
(213,154,0.064384,30) (214,154,0.684022,16) (155,117,0.149732,17) (215,155,1.000000,11)
(156,117,0.643165,9) (118,85,0.410461,30) (157,118,0.552643,22) (158,118,0.170290,25)
(159,118,0.277068,3) (216,159,0.738725,2) (217,159,0.261275,29) (41,27,0.377670,25)
(58,41,0.247583,3) (59,41,0.752417,7) (28,19,0.259093,9) (11,9,0.635006,7)
(13,11,1.000000,21) (15,13,0.653828,26) (20,15,1.000000,22) (29,20,0.503596,12)
(30,20,0.496404,5) (16,13,0.346172,15) (21,16,1.000000,11) (31,21,1.000000,20)
(42,31,0.287458,1) (60,42,1.000000,12) (86,60,0.638920,22) (119,86,0.083318,27)
(120,86,0.916682,17) (87,60,0.361080,13) (121,87,0.679043,4) (160,121,0.658539,6)
(161,121,0.341461,17) (218,161,0.729179,8) (219,161,0.270821,25) (122,87,0.320957,17)
(43,31,0.320278,27) (61,43,0.549175,1) (62,43,0.450825,25) (44,31,0.392264,29)
(63,44,1.000000,27) (88,63,0.436191,23) (123,88,0.433414,17) (162,123,0.245932,1)
(220,162,0.474582,6) (221,162,0.525418,30) (163,123,0.534087,6) (164,123,0.219981,5)
(222,164,0.719374,16) (223,164,0.269207,13) (224,164,0.011418,1) (124,88,0.566586,26)
(89,63,0.441438,17) (90,63,0.122371,30) (125,90,1.000000,1) (165,125,1.000000,6)

(7,5,0.302269,2) (4,1,0.414637,1)

B.7 art7

This problem is rinput7 with one more container This container is so big
that no other container can be loaded on the deck together and is associated
to all the leaves and only to them. Its utility is bigger that the sum of the
utilities of all the other containers. The optimal solution is then the solution
that associates this container to all the leaves and NULL to all the other
nodes.

e=0.994018

B.8. LIN16 137

dx=12.000000 dy=12.000000
m=21
u1=0.337024
u2=0.091553
u3=0.939355
u4=0.397234
u5=0.953905
u6=0.901818
u7=0.143803
u8=0.135479
u9=0.620797
u10=0.754579
u11=0.955412
u12=0.105485
u13=0.034497
u14=0.526333
u15=0.676833
u16=0.409236
u17=0.807043
u18=0.927795
u19=0.599367
u20=0.133161
u21=20
lx1=5.508361 ly1=4.401666
lx2=5.195940 ly2=4.300145
lx3=4.631782 ly3=5.858026
lx4=5.619237 ly4=4.983671
lx5=4.402030 ly5=4.301000
lx6=4.506777 ly6=5.464806
lx7=5.052024 ly7=4.795615
lx8=5.521075 ly8=4.241503
lx9=4.537391 ly9=5.343146
lx10=4.298859 ly10=5.067587
lx11=4.179219 ly11=4.575948
lx12=4.853268 ly12=5.771889
lx13=5.036373 ly13=4.403670
lx14=4.915084 ly14=4.022907
lx15=5.709552 ly15=4.424937
lx16=5.617362 ly16=4.931715
lx17=5.420997 ly17=5.983738
lx18=5.708602 ly18=5.504813
lx19=5.979561 ly19=4.042204
lx20=5.221155 ly20=4.341063
lx21=11 ly21=11
n=67
(1,0,0,11) (2,1,1.000000,7) (3,2,1.000000,3) (4,3,0.560437,18)
(6,4,1.000000,12) (8,6,1.000000,8) (11,8,0.869068,4) (16,11,1.000000,21)
(12,8,0.130932,17) (17,12,0.398731,21) (18,12,0.601269,15) (22,18,1.000000,9)
(26,22,0.772080,20) (31,26,0.993237,14) (36,31,1.000000,21) (32,26,0.006763,21)
(27,22,0.227920,2) (33,27,1.000000,14) (37,33,0.634474,13) (40,37,0.562956,21)
(41,37,0.437044,19) (44,41,1.000000,20) (49,44,1.000000,5) (54,49,1.000000,4)
(57,54,1.000000,6) (59,57,1.000000,16) (62,59,1.000000,1) (65,62,1.000000,21)
(38,33,0.365526,1) (42,38,1.000000,6) (45,42,0.681309,10) (50,45,0.711515,21)
(51,45,0.288485,21) (46,42,0.318691,21) (5,3,0.439563,9) (7,5,1.000000,10)
(9,7,0.202128,5) (13,9,1.000000,21) (10,7,0.797872,17) (14,10,0.258987,2)
(19,14,0.530411,21) (20,14,0.469589,8) (23,20,0.158981,18) (28,23,0.310374,1)
(34,28,1.000000,21) (29,23,0.689626,21) (24,20,0.841019,21) (15,10,0.741013,1)
(21,15,1.000000,13) (25,21,1.000000,8) (30,25,1.000000,14) (35,30,1.000000,19)
(39,35,1.000000,12) (43,39,1.000000,18) (47,43,0.169870,4) (52,47,0.562343,21)
(53,47,0.437657,2) (55,53,0.071280,6) (58,55,1.000000,20) (60,58,0.479617,16)
(63,60,1.000000,21) (66,63,1.000000,15) (61,58,0.520383,5) (64,61,1.000000,15)

(67,64,1.000000,21) (56,53,0.928720,21) (48,43,0.830130,21)

B.8 lin16

This problem has a linear tree with 16 nodes. All the containers can be
loaded. The utility of a container is its area. The deck can be completely
�lled.

e=1
dx=20 dy=20
m=16
u1=24.0
u2=84.0

138 APPENDIX B. THE TEST PROBLEMS

u3=48.0
u4=18.0
u5=15.0
u6=25.0
u7=36.0
u8=21.0
u9=35.0
u10=12.0
u11=6.0
u12=8.0
u13=12.0
u14=16.0
u15=18.0
u16=22.0
lx1=2 ly1=12
lx2=7 ly2=12
lx3=8 ly3=6
lx4=3 ly4=6
lx5=3 ly5=5
lx6=5 ly6=5
lx7=3 ly7=12
lx8=3 ly8=7
lx9=5 ly9=7
lx10=2 ly10=6
lx11=3 ly11=2
lx12=4 ly12=2
lx13=3 ly13=4
lx14=4 ly14=4
lx15=9 ly15=2
lx16=11 ly16=2
n=16
(1,0,0,1) (2,1,1,2) (3,2,1,3) (4,3,1,4) (5,4,1,5) (6,5,1,6) (7,6,1,7) (8,7,1,8) (9,8,1,9)
(10,9,1,10) (11,10,1,11) (12,11,1,12) (13,12,1,13) (14,13,1,14) (15,14,1,15) (16,15,1,16)

B.9 lin73

This problem has a linear tree with 73 nodes. All the containers can be
loaded. The utility of a container is its area. The deck can be completely
�lled.

e=1
dx=90 dy=60
m=73
u1=222
u2=150
u3=28
u4=84
u5=72
u6=80
u7=40
u8=100
u9=125
u10=32
u11=96
u12=100
u13=50
u14=12
u15=28
u16=70
u17=20
u18=105
u19=72
u20=270
u21=54
u22=126
u23=35
u24=10
u25=44
u26=55
u27=20
u28=25
u29=3
u30=18
u31=4
u32=24

B.9. LIN73 139

u33=8
u34=10
u35=475
u36=45
u37=36
u38=18
u39=18
u40=78
u41=260
u42=54
u43=54
u44=80
u45=64
u46=66
u47=52
u48=28
u49=91
u50=6
u51=8
u52=15
u53=20
u54=96
u55=180
u56=156
u57=133
u58=63
u59=20
u60=8
u61=60
u62=198
u63=5
u64=2
u65=180
u66=156
u67=10
u68=25
u69=204
u70=24
u71=60
u72=20
u73=140
lx1=6 ly1=37
lx2=10 ly2=15
lx3=4 ly3=7
lx4=12 ly4=7
lx5=4 ly5=18
lx6=10 ly6=8
lx7=5 ly7=8
lx8=4 ly8=25
lx9=5 ly9=25
lx10=4 ly10=8
lx11=12 ly11=8
lx12=10 ly12=10
lx13=5 ly13=10
lx14=3 ly14=4
lx15=7 ly15=4
lx16=7 ly16=10
lx17=2 ly17=10
lx18=7 ly18=15
lx19=4 ly19=18
lx20=15 ly20=18
lx21=3 ly21=18
lx22=7 ly22=18
lx23=7 ly23=5
lx24=2 ly24=5
lx25=4 ly25=11
lx26=5 ly26=11
lx27=4 ly27=5
lx28=5 ly28=5
lx29=1 ly29=3
lx30=6 ly30=3
lx31=1 ly31=4
lx32=6 ly32=4
lx33=4 ly33=2
lx34=5 ly34=2
lx35=19 ly35=25
lx36=5 ly36=9
lx37=4 ly37=9
lx38=3 ly38=6
lx39=3 ly39=6
lx40=6 ly40=13
lx41=20 ly41=13
lx42=3 ly42=18

140 APPENDIX B. THE TEST PROBLEMS

lx43=3 ly43=18
lx44=5 ly44=16
lx45=4 ly45=16
lx46=6 ly46=11
lx47=13 ly47=4
lx48=7 ly48=4
lx49=13 ly49=7
lx50=3 ly50=2
lx51=4 ly51=2
lx52=3 ly52=5
lx53=4 ly53=5
lx54=4 ly54=24
lx55=15 ly55=12
lx56=13 ly56=12
lx57=19 ly57=7
lx58=9 ly58=7
lx59=5 ly59=4
lx60=2 ly60=4
lx61=12 ly61=5
lx62=9 ly62=22
lx63=5 ly63=1
lx64=2 ly64=1
lx65=15 ly65=12
lx66=13 ly66=12
lx67=2 ly67=5
lx68=5 ly68=5
lx69=12 ly69=17
lx70=2 ly70=12
lx71=5 ly71=12
lx72=4 ly72=5
lx73=28 ly73=5
n=73
(1,0,1,1) (2,1,1,2) (3,2,1,3) (4,3,1,4) (5,4,1,5) (6,5,1,6) (7,6,1,7) (8,7,1,8) (9,8,1,9) (10,9,1,10)
(11,10,1,11) (12,11,1,12) (13,12,1,13) (14,13,1,14) (15,14,1,15) (16,15,1,16) (17,16,1,17) (18,17,1,18) (19,18,1,19) (20,19,1,20)
(21,20,1,21) (22,21,1,22) (23,22,1,23) (24,23,1,24) (25,24,1,25) (26,25,1,26) (27,26,1,27) (28,27,1,28) (29,28,1,29) (30,29,1,30)
(31,30,1,31) (32,31,1,32) (33,32,1,33) (34,33,1,34) (35,34,1,35) (36,35,1,36) (37,36,1,37) (38,37,1,38) (39,38,1,39) (40,39,1,40)
(41,40,1,41) (42,41,1,42) (43,42,1,43) (44,43,1,44) (45,44,1,45) (46,45,1,46) (47,46,1,47) (48,47,1,48) (49,48,1,49) (50,49,1,50)
(51,50,1,51) (52,51,1,52) (53,52,1,53) (54,53,1,54) (55,54,1,55) (56,55,1,56) (57,56,1,57) (58,57,1,58) (59,58,1,59) (60,59,1,60)
(61,60,1,61) (62,61,1,62) (63,62,1,63) (64,63,1,64) (65,64,1,65) (66,65,1,66) (67,66,1,67) (68,67,1,68) (69,68,1,69) (70,69,1,70)

(71,70,1,71) (72,71,1,72) (73,72,1,73)

Bibliography

[1] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolu-
tion Programs. Springer-Verlag, Berlin Heidelberg, 1992.

[2] M.R.Carey, D.S.Johnson. Computers and Intractability. W.H. Freeman
and Company, 1979.

[3] G.Andreatta, F.Mason, G.Romanin Jacur. Appunti di Ottimizzazione su
Reti. Edizioni Libreria Progetto, Padova, 1990.

[4] T.H.Cormen, C.E.Leiserson, R.L.Rivest. Introduction to Algorithms. MIT
Press, 1990.

[5] Thomas B�ack. Evolutionary Algorithms in Theory and Practice. Oxford
University Press, New York, 1996.

[6] D.Corne,M.Dorigo, F.Glover. New Ideas in Optimization. Advanced Top-
ics in Computer Science, McGraw Hill, London, 1999.

[7] Lawrence Davis. Genetic Algorithms and Simulated Annealing. Research
Notes in Arti�cial Intelligence, London, 1987.

[8] K.Brown, D.W.Fowler. Scheduling for an Uncertain Future with Branch-
ing Constraint Satisfaction Problems. Computing Science Department,
University of Aberdeen, Aberdeen (UK), December 23, 1999.

[9] B.M.Smith. A Tutorial on Constraint Programming. University of Leeds,
Leeds, Report 95.14, April 1995.

[10] R.Bart�ak. Constraint Programming: in Pursuit of the Holy Grail.
Charles University, Faculty of Mathematics and Phisics, Depatment of
Theoretical Computer Science, Praha.

[11] R.Bart�ak. On-line Guide to Constraint Programming. Prague, 1998,
http://kti.m�.cuni.cz/ bartak/constraints/.

141

142 BIBLIOGRAPHY

[12] E.Hopper, B.C.H.Turton. An Empirical Investigation of Meta Heuristic
for a 2D Packing Problem. European Journal of Operational Research,
2000.

[13] Martijn Dijksterhuis. Vessel Loading Tool Constraint-based Vessel Load-
ing. Computing Science Department, University of Aberdeen, Aberdeen,
1997.

[14] John K. Ousterhout. Tcl and Tk Tookit. Addison-Wesley Professional
Computing Series, Addison-Wesley, Reading, 1994.

[15] M.Harrison, M.McLennan. E�ective Tcl/Tk Programming: writing bet-
ter programs with Tcl and Tk. Addison-Wesley Professional Computing
Series, Addison-Wesley, Reading, 1998.

[16] Adrian Zimmer.Tcl/Tk for Programmers with solved exercises that work
with Unix and Windows . IEEE Computer Society, Los Alamitos, 1998.

