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In Breve

Introduzione

Questa tesi ¢ stata svolta nel dipartimento di Computing Science dell’
universita di Aberdeen in Scozia nell’ambito del progetto ERASMUS con
la supcrvisione del Dr. Ken Brown. La tesi ¢ stata scritta in [talia con la
supervisione del Prof. Mattco Fischetti.

Lo scopo della tesi ¢ stato quello di progettare ¢ implementare in C un
Algoritmo Genetico (GA) per risolvere un particolarc problema di ottimiz-
zazione, derivato dalla semplificazione ¢ idealizzazione di un problema di
caricamento di navi reale ¢ piu complesso.

La tesi ¢ stata svolta nelle seguenti fasi:

L. lo studio dei Constraint Satisfaction Problems (CSPs), dei Branching
Constraint Satisfaction Problems {BCSPs) ¢ degli algoritmi genetici ¢
I'analisi del problema del porto {(capitoli 2, 3, 4 ¢ 5 rispcttivamentc)

2. la progettazione di un GA per BCSPs (Capitolo 7), la progettazione ¢
I'implementazione in C di un GA per il problema del porto (capitoli 6
¢ 10 rigpettivamentce)

3. la progettazione ¢ I' implementazione di un generatore casuale di prob-
lemi ¢ di un algoritmo di ricerca casuale delle soluzioni (Appendice

4. gh csperimenti per trovare una buona combinazionce di paramectri per
il GA (Capitolo 8) ¢ quelli per la sua valutazione (Capitolo 9)
Il problema
Il problema idcale da not affrontato ¢ il scguente. Viene dato il ponte

rettangolare di una nave, sul quale ¢ disposta una griglia, ¢ un insicme di
container, ciascuno con una sua utilita, che possono csscre posizionati sul
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ponte in modo che, dopo una cventuale rotazione, lo spigolo in basso a sin-
istra coincida con uno dei punti della grigha. T container arrivano alla nave
in tempi diversi ¢ la sequenza degli arrivi non ¢ nota. Alcune possibili se-
quenze d’arrivo con le rispettive probahbilita vengono date mediante 'albero
degli arrivi, cio¢ un albero con un container associato ad ogni nodo cd una
probabilita ad ogni lato in modo tale che per ogni nodo:

1. 1a somma dclle probabilita dei lati che portano ai figh ¢ < 1
2. 1 container associati al nodi fighi sono tutti diversi

3. 1 container dei nodi del percorso dalla radice a quel nodo sono tutti
diversi

Ogni nodo rappresenta un arrivo ¢ 1 possibili arrivi successivi sono rappre-
sentati dai figh, ciascuno con la probabilita del mispettivo lato. Se in un
nodo la somma delle probabilita dei lati che portano ai fighi ¢ o < 1, sig-
nifica che, con probabilita 1 — &, dopo quell’ arrivo non ce ne saranno altri.
Un tale tipo di nodo ¢ detto terminale ¢ la sua probabilita ¢ definita come
1 — . Le foglic sono nodi terminali con probabilita 1, ma possono csistere
anche nodi terminali interni. Le possibili sequenze di arrivo sono cositutte
le sequenze associate ai percorsi dal nodo radice ad un nodo terminale ¢ Ic
rispettive probahilita si possono calcolare moltiplicando le probabilita dei lati
dei rispettivi percorsi ¢ del corrispondente nodo terminale.

Appena un container arriva deve essere caricato o rifiutato: non puod cs-
scre parcheggiato nel molo in attesa che altri container arrivino, postponendo
la decisione sul caricamento, ¢ una volta caricato non puo csscre spostato. Il
problema consiste nel decidere, prima che qualunque container sia arrivato,
cosa farc ad ogni possibile arrivo, in modo che, quando 1 container cominciano
ad arrivarc, sc vengono caricati rispettando le decisioni prese in precedenza,
la somma delle utilith dei contanier caricati sara probabilmente alta. (Il prob-
lema reale ¢ pin complesso, in quanto nella realta, per esempio, 1 container
devono cssere disposti sul ponte in modo da non shilanciare cccesivamente
la nave ¢ in modo da rispettare alcune regole di sicurczza dipendenti dalle
merci trasportate ¢ le caratteristiche della gru che carica i container. )

Pt precisamente i1 dati del problema sono il ponte della nave con la griglia,
I'insicme dei container ¢ 'albero degli arrivi. Una soluzione del problema ¢
una funzione che ad ogni nodo dell’albero associa una decisione per il cor-
rispondente container, ciot una posizionce sul ponte (un punto della griglia c
I'eventuale rotazione) o NULL che rappresenta il non caricamento del con-
tainer corrispondente, in modo tale che 1 container caricati siano dentro il
ponte ¢ che per ogni nodo 1 container caricati del percorso dalla radice a quel
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nodo non si sovrappongono tra di loro. 1l valore di una soluzione (detto EU)
¢ ottenuto nel scguente modo: per ogni nodo terminale si calcola la somma
delle utilita dei container che la soluzione ha caricato del percorso dalla radice
a qucl nodo; s1 calcola il prodotto delle probabilita det lati del percorso dalla
radice a quel nodo ¢ lo s1 moltiplica per la probabilita del rispettivo nodo ter-
minale; si moltiplicano la somma delle utilita ¢ il prodotto delle probabilita
¢ st sommano 1 prodotti cosi” ottenuti per tutti 1 nodi terminali. [ nostro
problema ¢ quello di trovare la soluzione con il valore pin alto.

E importante notarc che questo problema ¢ un’ estensione del normale
problema di caricamento (cutting stock bidimensionale): infatti un problema
con un albero lincarc ¢ con tutti gl archi ctichettati con probabilita 1 equivale
al problema di sceglicre dai dati container alcuni da posizionare sulla nave
¢ di trovarc per questi un adeguato posizionamento in modo che la somma
delle utilita dei container caricati sia massima.

I stato da noi dimostrato che il problema ¢ NP-hard ¢ quindi meglio
risolvibile mediante un algoritmo di approssimazionc. Abbiamo deciso cost’
di utilizzarc un algoritmo genctico.

L’ algoritmo

Un algoritmo genetico imita il processo cvolutivo di una specie di esseri
viventi che si adattano progressivamente all’ambicnte grazic ai meccanismi
dell’creditaricta, della riproduzione, della mutazione ¢ della sclezione natu-
ralc.

I1 GA da noi sviluppato genera una sequenza finita di n-uple di soluzioni
(dette popolazioni i cui clementi sono detti individui o cromosomi) ¢ ritorna
in output la soluzione generata con il valore pin alto. La prima popolazione
vicne generata in modo casuale ¢ ogni altra viene prodotta dalla precedente
in tre fasi:

1. la riproduzione
2. la mutazionce
3. la selezionce

La difficolta di questa tesi ¢ stata la progettazione ¢ I implementazione
degli operatori genetici usati nelle varie fasi — 1 4 crossover, le 4 mutazioni
¢ le 3 sclezioni — che sono molto complessi ¢ hanno richicsto mesi di lavoro.
Il numcro di popolazioni generate ¢ il numero di individui per popolazione
sono parametri dell” algoritmo.
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La riproduzione

Nella fase di riproduzione alcuni individui vengono scelti per I accoppi-
amento ¢ vengono raggruppati in coppic. Il numcro di coppic ¢ variabile in
modo casuale, ma ¢ controllato da un parametro dell’ algoritmo. Ciascuna
coppia (detta di genitori) genera due individui (detti fighi) simili a entrambi
i genitori che vanno a sostituire i genitori nella popolazione. Nel nostro
GA vengono usati 4 meccanismi per la generazione dei figli (detti crossover)
clascuno associato ad una frequenza che vengono applicati con la frequenza
corrispondente.  Le frequenze del crossover sono un paramctro del GA. 1
crossover sviluppati sono i seguenti:

—_

. Upward Gentle Crossover
2. Downward Gentle Crossover
3. Random Brutal Crossover
4. Ordered Brutal Crossover
Un crossover produce i figli dai genitori nel seguente modo:
1. sceglic un nodo A dell’albero in modo casuale

2. scambia nei genitori i valori dei nodi del sottoalbero che ha A come
radice, producendo due funzioni non nccessariamente ammissibili, a
causa di sovrapposizioni

3. ripara le due funzioni, ciot modifica queste due funzioni rendendole
ammissibili ¢ cercando di mantencrne Iaspetto

Cio che distingue 1 4 crossover ¢ il metodo di riparazionc.
Per csempio I Upward Gentle Crossover ripara le duc funzioni possibil-
mente non ammissibili nel seguente modo:

1. ponc a NULL quei nodi del percorso dalla radice ad A 1 cui container
nclla corrispondente posizione si sovrappongono con container di nodi
del sottoalbero nella corrispondente posizione

2. esegue una operazione di ricmpimento della soluzione cosi’ ottenuta,
ciot cerca di sostituire nei nodi del percorso dalla radice ad A 1 valori
nulli con posizioni non nulle compatibili con il corrispondente percorso
¢ sottoalberi
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Il nodo su cui viene fatto il crossover viene scelto usando uno di 3 algoritmi
di scelta, che asscgnano probabilita’ diverse ai vari nodi. Per csempio uno
di questi algoritmi csclude dalla scelta la radice ¢ le foglic ¢ sceglic solo nodi
interni; ogni nodo interno vience scelto con una probabilita p = % con k il
numero di nodi interni del suo livello. Un paramctro del GA decide quale
algoritmo utilizzarc.

La mutazione

Nella fase di mutazione gli individui vengono pit o meno mutati, cio¢
modificati cercando di mantenerne le caratteristiche. In questo GA vengono
usatl 4 metodi di mutazione, ciascuno associato ad una frequenza, che ven-
gono applicati con la corrispondente frequenza. Le mutazioni sono anche
associate ad un paramctro che ne determina I intesita. Questi parametri ¢
le frequenze dei vari metodi sono parametri dell” algoritmo.

Gli operatori di mutazione producono nuovi individui nel seguente modo:

1. vengono sclezionati in nodi da mutare

2. viene loro asscgnato un valore casuale, producendo una funzione non
necessariamente ammissibile

3. viene riparata la funzione riportando ammissibilita’ cercando di man-
tenerne Iaspetto

Cio che distingue i 4 metodi di mutazione ¢ il metodo di riparazione. Anche
qui 1 metodi sono molto complessi ¢ hanno richiesto mesi di lavoro.

Per csempio il Random Gentle Mutation inizialmente pone a NULL 1 nodi
sclezionati per la mutazione; successivamente considera questi nodi in ordine
casuale: a ciascuno assegna un valore casuale ¢ se questo non ¢’ compatibile
con 1l corrispondente percorso ¢ sottoalberi viene scelto il valore compatibile
piu’ vicino.

La selezione

La fase di sclezione ha lo scopo di far sopravvivere ghi individui migliori ¢
di sopprimere quelli peggiori. Nel nostro GA si possono usare 3 meccanismi
di sclezione.

1. la proportional sclection

2. la fixed selection

3. la f(22L) sclection

max



Uno soltanto di questi metodi viene usato nelle varic iterazioni. Un parametro
dell’algoritmo decide quale metodo viene utilizzato. Ghindividui della popo-
lazionc sclezionata vengono scelti tra quelli della popolazione mutata ciacuno
con una probabilita dipendente dal suo valore ¢ crescente con csso. Alcuni
individui possono esscre scelti pin volte ¢ alcuni mai. Cio che distingue i1 3
metodi di sclezione ¢ la regola che associa il valore di un individuo con la sua
probabhilita di essere sclezionato. Per esempio nella proportional sclection, la
probabilita di sclezione ¢ proporzionale al valore dell” individuo.

Lo shake

L’ algoritmo sviluppato per questa tesi presenta poi un meccanismo da
me inventato ¢ chiamato shake per impedirne la convergenza prematura, cioc
per impedire che algoritmo concentri la sua ricerca in una zona i massimo
locale non globale. Tl meccanismo consiste nell’intensificare la mutazione per
qualche generazione quando il valore medio e il valore massimo delle ultime
generazioni sono troppo vicini. Anche questo meccanismo viene controllato
da alcuni paramectri dell” algoritmo.

Gli esperimenti

Nell'ultima parte del progetto sono stati fatti molti esperimenti per trovare
la combinazionc di paramectri che faccia funzionare il GA nel modo migliore.
Questi esperimenti sono stati fatti risolvendo problemi di test generati in
modo casuale da un algoritmo da me progettato ¢ implementato. Gl esperi-
menti hanno portato ad alcunc combinazioni di parametri che si sono rivelate
molto buone ¢ migliori di quelle che si usavano all'inizio.

Infine numerosi esperimenti sono stati fatti per valutare la capacita del
GA di risolvere il problema. La valutazione ¢ stata molto difficile perche di
pochi problemi difficili si aveva la soluzione csatta ¢ non cra disponibile alcun
altro algoritmo per questa classe di problemi.

Abbiamo generato in modo casuale aleuni problemi difficili ¢ abbiamo
confrontato la soluzione trovata dal nostro algoritmo genctico con quella
fornita da un algoritmo da noi implementato che genera in modo casuale
lo stesso numero di individui ¢ ritorna in output Uindividuo con il valore
piu alto. Il risultato ¢ che il nostro GA ritorna sempre una soluzione molto
migliore.

Infine abbiamo affrontato con il nostro GA alcuni problemi di cutting
stock bidimensionale risolti in modo esatto in letteratura — che, come detto i
precedenza, si possono considerare un caso particolare del problema risolvi-
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bile dal nostro GA — ¢ alcuni problemi la cui soluzione ottima puo’ essere
dedotta con un ragionamento. Il risultato ¢ che I algoritmo genctico ritorna
spesso la soluzione ottima ¢ comunque sempre una molto vicina a quclla
ottima.

I1 GA da noi sviluppato ¢ stato quindi considerato molto buono ¢ valido
anche per un uso professionale.
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Chapter 1

About this Project

1.1 Introduction

This project has been developed as a final thesis for the “Corso di Laurca
in Ingegneria Informatica” in the University of Padua under the ERASMUS
program in the Computing Scicnce Department of the University of Aberdeen
with the supervision of Dr. Ken Brown.

The project consisted in studying and implementing a computer program
to solve a particular optimization problem. The problem is an idcalized pack-
ing problem motivated by a recal one encountered at the Aberdeen harbour
and is called Branching Packing Problem (BPP). The problem arises when
boats must be loaded with containers of goods without knowing the exact
details about the cargo and is encountered by vessels all over the world. It
differs from a classical packing problem hecause of the uncertain information
about the loading.

After studying the problem and the theoretical tools necessary to describe
and solve it — such as Constraint Satisfaction Problems (CSPs), Branching
Constraint Satisfaction Problems (BCSPs), Genetic Algorithms (GAs) pre-
sented in the chapters 2, 3 and 4 respectively — the problem has been proven
to he NP-hard and, as such, better solvable by an approximation algorithm.
The description of the problem, its formal model and the proof of its NP-
hardness can be found in Chapter 3.

A Genetic Algorithm for BPPs has been designed and implemented in
ANSI C. The description of this GA can be found in Chapter 6 and onc of its
implementation in Chapter 10. During the design phase we found convenient
first to design a GA for BCSPs and then to adapt it to the case of BPPs.
The GA for BCSPs can be found in Chapter 7.

Extensive experiments have been carried out in order to find the hest



2 CHAPTER 1. ABOUT THIS PROJECT

paramcters for the GA for BPPs. This task was very difficult and the search
has heen guided mainly by good sense, as discussed in Chapter 8.
Experiments have been done to estimate the goodness of the GA in solving
the problem and are reported in Chapter 9.
Finally this report has been written with the supervision of Prof. Matteo
Fischetti of the “Dipartimento di Ingegneria Elettronica ¢ Informatica” of
the University of Padua.

1.2 Summary

In summary, the project has been carried out in the following phases:

e the study of CSPs, BCSPs and GAs and the analisys of the problem
of the harbour

e the design of the GA for BCSPs and for BPPs and the implementation
of the GA for BPPs

e the cxperiments to find the hest paramcters and to test the goodness
of the GA for BPPs

e the writing out of this report by using ETEX



Chapter 2

Constraint Satisfaction
Problems (CSPs)

2.1 Overview

In this Chapter the Constraint Satisfaction Problems ([9],[10]) and the
main ways to solve them are quickly outlined. CSPs have great practical
importance. Many rcal life problems, in particular scheduling, timetabling,
packing and other combinatorial problems can be modeled as CSPs ([9]).
The problem faced in this project can be viewed as a particular CSP, as it is
shown in Chapter 5.

2.2 Constraint Satisfaction Problems (CSPs)
Definition 1 A Constraint Satisfaction Problem (CSP) is
(Di, .., D, C)
with
e . ... D, finitc and non empty scts, with m ¢ Ny

e Casctof (I,Z)such that T C {1,.m} T 4Qand Z C{f | f:1T
Ue; Disi—d e D}, C# 0

The clements of X = {1,..,m} arc called variables of the CSP: for cach

variable ¢, D; is called the domain of variable ¢; the clements of C arce called
constraints of the CSP; for cach (I, 7) € C, |I] is the arity of constraint (I, T);

3



4  CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS (CSPS)

we say that a constraint with arity 1 (2) is an unary (binary) constraint; if
Ic X, T#0an assignment of the variables [ is a function

f:f—>U;i€ID?:
it—rde )

which is partial iff || < |X|; we also say that a constraint ¢ concerns variables
T'iff ¢ = (1, 7); the set Dy x .. x Dy, is called search space. O

Definition 2 Given a constraint ({,7) and f an assignment of the variables
J such that I C J, we say that f satisfies (I,Z) iff f; € T with f; the
restriction of f to I. Given a CSP ¢ and f an assignment of variables I, we
say that f is feasible for Ciff ¥I' C I f satisfics all the constraints concerning
I'. Given a partial assignment f of variables I, variable § ¢ I and v € D;
we call the extension of f to j with v the function f defined in I = 71U {4}
such that f = fin [ and f(j) = v. An f is a solution of a given CSP iff f
is an assignment of the variables X that satisfics all the constraints. U

Note that the solutions of a CSP arec a subsct of the cathesian product!
Dy x .. x D, caracterized by the constraints; cach constraint restricts the
possible solutions by allowing only the m-tuple some of whose restrictions
satisfy some conditions, i.c. the m-tuples that satisfy the constraint; the
solutions arc then the intersection all the sets of m-tuples that satisfy some
constraint. The constraints, then, define a subset of the scarch space [y %
. X Dy,

Note that C i1s fimite, because the set of 7 C X is finite and the set of
assignmets of variables [ 1s finite too and so is the number of subscts of the
assignments of variables 7. The number of solutions is < |Dy| - .. - |Dy,| and
there may be no solution at all. Given a CSP we are interested in finding
whether it has solutions and if it does, in finding one (or all) of its solutions.

The following property holds ([11]).

Proposition 1 For each CSP C, there exists a CSP C' with only binary
or unary constraints whose solutions are in biunivocal correspondence with

those of C.

Proof. Let C = (Dy, .., Dy, C) and C' = (Dy, .., Dy, Dyyiq, C') where

D-m+1 =Dy x.xDy

LAn clement (1, ..,7,,) of a cathesian product X x .. x X, is in fact a function that
associates cach ¢ € {1,...,m} a valuc in X;.
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and
C={{m+1} L) u{{im+1L L) |i=1.m}

with [, .1 = the sct of assignments of variable m + 1 that associate 1t with
a solution of C and Vi = 1.m @ I; = {f | f is an assignment of variables
{i,/m+1} such that f{i) = i-th component of f(m+1)}. Now, Cisa CSP -
note that Dy,4q is finite — and (x4, .., 2, u) € S it Ve € C' (21, ., T, 1)
satisfics ¢ that is iff v € 8¢ and Vi : x; = i-th component of « that is iff
(21, .., ) = u with u € 8¢ that is iff (z1,..,2,) € 8¢ and u = (z1, .., T)-
Then the map

J:8c — Sc
(21, oy Ty (X1 0y T)) — (21, 0, Ty)

is a one to onc corrcspondence hetween Se and Ser. O

Do we can concentrate our study on only with only binary or unary con-
straints.

2.3 K-Consistency

Definition 3 A CSP is said to be I-consistent iff ViandVy; € I, the assign-
ment that associates variable ¢ to v; satisfics all the constraints concerning
variable . Given a CSP and & € {2, .., m}, we say that the CSP is k-consistent
(10 iff ¥ c {1,..,m}, |[I| = k—1 and V[ assignment of variables I feasible
for C and Vj € {1,..,m}\ I, there Jv € D; such that the extension of f to j
with v is feasible for C'. We say that the CSP is node consistent (NC) if it is
l-consistent; that it is arc consistent (AC) if it is 2-consistent; that it is path
consistent (PC) if it is 3-consistent. A CSP is said to be strongly k-consistent
iff Vj € {1, ...k} it is j-consistent. O

In other words a CSP is NC iff for cach variable 7, cach value of domain
D, satisfics? all the constraints concerning variable i. A CSP is AC iff for
cach variable ¢ and for cach value v; of domain D, such that v; satisfics all the
constraints concerning variable ¢ and for cach variable 7 # ¢, there exists a
value v; such that v; satisfies all the constraints concerning variable 7 and the
f assignment of variables {4, j} such that f(i) = v; and f(j) = v; satisfics all
the constraints concerning variables {i, 7}. A CSP is PC iff for every couple
of different variables 7 and j and for cach f assignment of variables {4, j}

2When we say that the value v of domain D; satisfics the constraints ¢ we mean that.
the trivial function that associates ¢ to v satisfics e.
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that satisfics all the constraints concerning variables i, § and {4, 7} and for
cach variable k& € {1,..,m} \ {# j} there exists a valuc vy € Dy satisfying all
the constraints concerning & such that the assignment g of variables {7, k}
such that g(i) = f; and g(k) = vy satisfics all the constraints concerning
variables {i, £} and the assignment 5 of variables {j, k} such that k(j) = f;
and h(k) = vy satisfics all the constraints concerning variables {j, k}.

Proposition 2 If a CSP is strongly m-consistent, then it has a solution and
a solution (x1,..,xn) can be simply computed by the algorithm of figure 2.1,
where D; = {1, .., U;ij},‘v/j e {l,..,m}.

Proof. The proof is simple, as V§ there Jo! such that Y7 < {1,..5},7 ¢
I(xy, .., ;) satisfics all the constraints concerning I, because the CSP is j-
consistent and if 7 > 2, (z1,..,2;_1) is a partial assignment satisfying all the
constraints concerning any subsct of its domain. [

{ for(j < 1tom)
{  i<0;
repeat
11+ 1;
T Uf
until((xy, .., z;) is feasible for C');
}

return (zy, .., Ty);

Figure 2.1: The procedure to make a CSP ' strongly k-consistent.

Proposition 3 Given a CSP C and k > 2 then there exists a k — consistent
CSP C" with the same solutions and the same domains obtained by eventually
adding some constraints concerning new sets of variables or by removing some
assignments from the sets of some constraints.

Proof. If C is k-consistent, then C'=C. Else the set G = {g | 3J sct of k—1
variables, ¢ assignment of J feasible for ¢, 45 € X'\ J such that Yo ¢ D;
the extension of g to j with v is not feasible for C'} is not empty. Let C7 be
the CSP obtained from € by adding the sct of constraints {(J, 7) | dg € G



2.3. K-CONSISTENCY

=1

such that J is the domain of ¢ and 7 is the set of all the assignments f of J
such that f # ¢}. Then this €7 is k-consistent, because it is € without all
the assignments that prevented it from being E-consistent. And it has the
same solutions, because we have only climinated partial assignmts of £ — 1
variables that could not be the restriction of any solution.

Note that C' may have more than one constraint concerning the same set
of variables. In this case we can replace all the constraints concerning the
same sct of variables by one that concerns the same variables and whose sct
of assignments is the intersection of all of the their set of assignments. So
the new C7 is just ¢ with some new constraints and with some constraints
with less clements in its set of assignments. [

Many algorithms have been designed to build such a C’ from a given C
and k. All of them have an cxponential running time.

Proposition 4 If we have a k-consistent CS5P and we make it h-consistent
with 2 < h < k by the method of Proposition 3, we obtain a CSP which is
still k-consistent.

Proof. Let C be a k-consistent CSP and G = {g | 9.J sct of A — 1 vari-
ables, g assignment of J feasible for C, 35 € X \ J such that Vo € D; the
extension of ¢ to 7 with v is not feasible for C'} is not empty. Let C* be the
CSP obtained from C by adding the set of constraints {(.J, 7) | 3¢ € G such
that .J 1s the domain of ¢ and 7 is the sct of all the assignments f of .J such
that f # g}. Then €7 is still k-consistent. As a matter of fact for every f
assignment of a set of & — 1 variables I feasible for ¢, f is feasible for C' as
well. Thus for the k-consistency of C, Vi € X \ I there Ju; € D such that
the f extension of f to j with v; is fesible for C. Now, cvery restriction of
fis ¢ G. (As a matter of fact let £ be a restriction of f to a I' C T with
|I'| = h — 1. Then there exists I such that I' ¢ I ¢ T and |I"| = k — 1.
The restriction of f to I" is feasible for €. Thus we know that Y5 ¢ I
there exists v such that the extension of f7 to j with v} is feasible for C.
So for every § ¢ I'if j € [ the extension of f' to § with f(j) is feasible
for C; clse the extension of f' to § with v7 is feasible for C. So f' ¢ G.)
So every restriction of f satisfies all the constraints of C concerning its do-
main and is ¢ G. So f is feasible for €' too. Hence the A-consistency of C7. O

Proposition 5 Given a CSP C and k € {2,..,m}, then there exists a CSP
C', j-consistent¥j € {2, .., k}, with the same solutions and the same domains
and obtained by eventually addying some constraints concerning new sets of
variables or by removing some assignments from the sets of some constraints.
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Proof. We just have to apply the method of Proposition 3 iteratively for
j=k,k—1,..,2and we will obtain C'. Then V5 € {2,..,k}, C"is j-consistent
hecause of Proposition 4 and, because of proposition 3 it has the same so-
lutions and the same domains and it is obtained from C hy adding some
new constraints or by removing some clements from the sct of assignments
of some constraints . [J

{ find j € X and v € D); such that all the constraints
concerning j are satisfied by v;
let {41, .-, jm } be an ordering of the variables X
such that j;, = j;

U S U;

for(h < 2 to m)

{ i+« 0;
repeat
1 i+ 1;
xj, vk

until((x;,, .., z;,) is feasible for C);

}

return (z, .., Zy):

Figurc 2.2: The procedure to solve a 2, .., m-consistent CSP with solution.

Proposition 6 Let C be a CSP j-consistent, Vj € {2,..,m}. Then C has
a solution ff 49 € X and v € D; such that v satisfies all the constrainis
concerning variable j. If C has a solution the algorithm of Figure 2.2 quicly
finds a solution.

Proof. If ¢ has a solution z, then if we choose a j € X obviously
x(j) satisfics all the constraints concerning variable 7. On the other hand,
if 47 ¢ X and v € D; such that v satisfics all the constraints concerning
variable 7, we can build a solution by the algorithm of Figure 2.2 where
D; = {vi,., U;ij},Vj € {1,..,m}. Note that in every iteration of the while
loop the |T|-consistency of the CSP guarantes that v is found for some ¢. O
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2.4 Algorithms to solve CSPs

The problem of finding a solution of a CSP or proving that there are no
solutions is simple from the theoretical point of view. As a matter of fact
we can order all the clements of Iy x .. x D, generate them one after the
other and for cach of them check if it satisfics all the constraints until one
that satisfics them is found or until we have checked all the m-tuples. This
approach is called Generate and Test (GT). Yet from the practical point of
view the GT is often uscless, as real problems have very large domains and
the time 1t takes us to generate and check all the m-tuples is too large. So
we need more clever ways to address this task. However cvery algorithm
that guarantes to find a solution if one exists or to prove that the problem
is unsolvable must cxplore systematically the search space and so it may run
for a long time.

2.4.1 Pruning algorithms

The fact that some constraints do not concern all the variables often lets
us understand that a whole set of m-tuples is unfeasible. In other words the
presence of more than one constraint and of constraints with an arity less
than m gives us the possibility to understand that some partial assignments
of the variables bring necessarily to unfeasible total assignments. Then if
we avoid the generation and the constraint checking of all the solutions that
arc a completion of an unfeasible partial assignment (i.c. if we prunc the
branches of the tree of the possible solutions that we have understood lead
to unfeasible leaves) we save a lot of time. Many algorithms that do this
have been developed. The Back Tracking (BT) and the Forward Checking
(FC) algorithms ([9]) are the most commonly used.

Backtracking

This algorithm returns all the solutions (if one exists) otherwise it states
that there arc no solutions.

We first assign a value v to variable 1 that satisfies the constraints con-
cerning variable 1; then we look for a value vy for variable 2 such that (vq, v2)
is feasible for C; if none is found, we go back and change the previous value
for variable 1 and do the same again: clse we look for a value vy for 3 such
that (vy, v2, vs) is feasible for C; if no v; is found we go back to find another
vo and repeat the same; if no ve cxists, we go back again to find a new ;.
And so on.

A possible pscudocode for Backtracking is in Figure 2.3.
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This algorithm ig better than the G'T because it avoids the useless gener-
ation and test of the m-tuples derived from the completion of an unfeasible
partial assignment of variables {1,2, .., ¢} for some 1.

f(U= ?)
{  zw
if ((zy, .., z;) is feasible for C)
if (i =m) put (zy,..,2p) in I;
else for each (v € D) f(v,i+1);

{  read the CSP C;
let 1 be an initially empty sct of solutions;
let (1, .., ) be an assignment of variables X'

for each (v € D) f(v,1);

if ({ =) return “No Solution”;
else return [;

Figure 2.3: The Backtracking algorithm in recursive form.

Forwardchecking

This algorithm is an cvolution of the previous one. It assumes that cach
value is associated with a set of variables initially empty. The set of variables
corresponding to a value can be modified during a run of the algorithm. And
variables con be assignd only to values with an cmpty sct at the moment of
the assignment.

Initially all the sets arc empty. We first assign a value v to variable 1
that satisfics the constraints concerning variable 1; then for all ¢ = 2,..,m
we consider all the values v € D; and if the extension of (1) to @ with value
v is not feasible for C, we put variable 1 on the set of value v; if one domain
has all its valucs with non empty scts or if no valuc v, € Dy with empty sct
such that (v, v2) is feasible for C is found, we delete all the 17s from the scts
of the values of domains I),, .., D, and we go back, choose another value for
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variable 1 and repeat the same; clse we assign v to variable 2 and for all
i =3,..,m we consider all the values v € I and if the extension of (vy, vs)
to ¢ with v is not feasible for C, we put variable 2 on the sct of valuc v; if one
domain has all its valucs with non empty scts or if no value v € D3 with
empty set such that (v, va, v3) is feasible for C is found, we delete all the
2’s from the sets of the values of domains Dj, .., D), and we go back, choose
another value for variable 2 and repeat the same; if no value for variable 2 is
found, we delete all the 1's from the sets of the values of domains D5, .., Dy,
and we to go hack again and change again variable 1. And so on.

The forward checking algorithm as well returns all the solutions if one
exists otherwise it states that there are no solutions. A pscudocode for For-
wardchecking is in Figure 2.4.

Apparently the FC docs more constraint checkings than the BT, because
it must update the scts of variables associated to the values: but sometimes
it avoids some checkings that the BT would do, as it pruncs bigger branches.
As a matter of fact the FC realizes that a partial assignment is not part of
any solution carlicr than the BT. More preciscly, given a CSP in input to
BT, if it realizes that (vy, .., v;) cannot be part of any solution, then the FC,
if run on the same CSP, will rcalize that (vy,..,v;) cannot be part of any
solution with j < i. So FC will avoid the generation and valuation of the
sequences of values that BT has generated and checked between (v, .., v5)
and (vy, .., v;).

Which is faster depends on the particular CSP.

2.4.2 Solving a CSP by maximizing a function

The problem of finding a solution of a CSP can be viewed as that of
finding a point of maximum of a function. As a matter of fact, given a CSP
(D1, .., Dy, C), we can consider the function

f:Dix.xD, >R
(21, s ) — 21, o )

where f(xy, .., 2p) 18 the number of constraints not satisfied by (4, ., 25)
or, more generally, f(xy, .., zp) = 3 cx w(c) with K the sct of constraints
violated by (1, .., 2y) and w(c) a real number > 0 associated to ¢. Then 7
is a solution of the CSP iff £ is a point of maximum of f. So we can solve
the CSP by using an algorithm that trics to find a point of maximum of this
function. In this case émf is finite and |[imf| = |C|.
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f('U: ?)
{ a;+w
if ({1, .., z;) is feasible for C)
if (i = m) put (xy,..,2,) in I
else
{ for each(j c {i +1,..,m})
for each(v € D;)
if (the extension of (x4, .., z;) to § with
is unfeasible for C)
add 7 to the sct of value v;

for each (v € D,y with set of v cmpty) f(v, i+ 1):

for each{j € {i+1,..,m})
for each(v € D;) remove ¢ from the sct of v

{ rcad the CSP C:
let I be an initially empty sct of solutions;
st to @ the set of all the values;
let (1, .., &) be an assignment of variables X

for each (v ¢ Dy) f(v,1);

if (I =®) return “No Solution”:
else return /;

Figure 2.4: The Forwardchecking algorithm in recursive form.
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2.4.3 Heuristic and stochastic algorithms

Instead of exploring systematically the scarch space by considering all the
clements of Dy x.. x D, in some way, some algorithms explore the scarch space
in a morc or less random fashion. They do not guarante to find a solution
nor they prove that the problem is unsolvable and they may run forever.
During the exploration the choice of the next possible solution to consider is
influenced in part by the chance and in part by a deterministic heuristic rule.
These algorithms usually face the solution of a CSP from the point of view of
the maximization of a real function as presented in section 2.4.2. The most
common heuristic and stochastic approaches are those of Taboo Secarch, Hill
Climbing, Min conflict, Genetic Algorithms and Evolution Strategies ([10]).
Yet many others arc used and new onces arc designed by mixing different
algorithms.

2.4.4 Consistency techniques

In order to solve a given CSP, we can make it 2, 3, .., m-consistent by the
algorithm of Proposition o, check if there exists § € X such that Jv € D; that
satisfics all the constraints that concern j and then, if it exists, a solution
exists and we can find one by the algorithm of Proposition 6; else no solution
cxists.

Yot making the CSP 2, .., m-consistent is a very complex process and
even with the quickest algorithms it takes often too long, so this procedure
is rarcly used. Usually we only make the CSP 2, .., k-consistent for some
ke {2,..,m} by the algorithm of Proposition 3 and then we solve the new
problem by onc of the previous scarch algorithms. We do so, because the new
problem is simpler to solve, as the tightened constraints and the new added
oncs make that the scarch algorithm refuses higger subscts of unfeasible total
arrignements.

2.5 Optimization CSPs (OCSPs)

Definition 4 An Optimization CSP (OCSP) is a (P, f) with P a CSP and
fiDx. . xDyp—R U

Definition 5 A selution of a given OCSP (P, f) is a solution of P. A
solution Z of a given OCSP is optimal iff Yz solution of the OCSP, f(z) >
flz). O

Note that if an OBCSPs has solutions it has an optimal solution, because
the set of solutions is finite. We arc intercsted in finding whether a solution
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cxists and if one exists in finding an aptimal onc or all the optimal oncs.
Somctimes we arc just interested in a good solution.

2.5.1 Exact algorithms

The problem of finding an optimal solution of an OCSP is obvioulsy at
least as hard as the problem of finding a solution of a CSP.

The simplest algorithm we can imagine is a variant of the GT: we generate
all the valucs of 1) x .. x I}, in some order and for cach of them we check if it
is a solution of the corresponding CSP; if it is not, we go on: clse we calculate
its value and if this is the best value found so far we memorize the solution
and we go on. We can do the same with BT and FC: we find a solution &
of the correspondent CSP by one of these algorithms and we memorize it if
f{z) is better than the values found so far and then we continue the scarch

for a new solution. We stop when we have checked all the solutions of the
CSP.

The standard algorithm

The standard algorithm is slightly more sophisticated and is shown in
Figure 2.5. It receives in input a CSP and it returns an optimal solution if
it exists clse it states that there is no solution.

This algorithm, in order to solve the CSPs bwilt before returning the
output, makes use of one of the algorithms presented in Section 2.4 .

The dicotomic algorithm

In order to use the dicotomic algorithm we need to know an upper bound
of the possible valucs assumed by the solutions of the correspondent CSP,
i.c. a value Uy such that Ve solution of the CSP, f(x) < Up. This algorithm
receives in input a CSP, an ¢ > 0 and an upper bound Uy and if the corre-
spondent, CSP has no solution it states that theres no solution, clse it returns
a solution & such that if 7 is the optimal solution, then f(Z) € [f(x), f(x) +e.

The dicotomic algorithm is then an approximation algorithm, as it returns
a solution as good as we want, but it does not guarante that it is optimal.
Yet, because the search space is finite, if f is not constant and the scarch
space is made of more than onc clement, there exists the number

eo = min{|f(x) — f(y)| |,y € Dh x .. x Dy, f(2) # fly)}

and if we give € < ¢ to the dicotomic algorithm, it returns an optimal
solution or it states that the problem has no solution.
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{ read (C, f):

54+ NO;

while(C has a solution)

{ s+« YES:
let zp be a solution of C;
add to C the constraint

(X, {x|z assignment of variables X, f(z) > f(xo)}):

if(s=NO) return “No Solution”;
else return x,;

Figurc 2.5: The standard algorithm.

The pscudocode for the dicotomic algorithm is presented in Figure 2.6.
Note that the dicotmic algorithm, in order to solve the CSPs built before
returning the output, makes use of onc of the algorithms presented in Scction
2.4.

2.5.2 Aproximation algorithms

Somectimes the OCSP is too difficult to be solved by an exact scarch
algorithm. In this casc we accept to find a good solution instcad of the
best one. A good solution could be defined informally as one that is much
better than a randomly found solution. To do so we use algorithms based
on heuristic and stochastic techniques in the same way as the algorithms
of Scction 2.4.3. The scarch space is cxplored in a more or less clever and
random way in the scarch for better and better solutions of the corresponding
CSP.

Taboo Scarch, Hill Climbing, Genetic Algorithms, Evolution Strategies
arc the most commonly used aproximation approaces to solve OCSPs. Ge-
netic Algorithms are presented in Chapter 4.
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{ reacd (C f) € DTU;

if{C has no solution) return “No Solution”;
let zp be a solution of C;
L < g(zp):
U < Up:
repeat
add to €' the constraint
(X, {z|z assignment of variables X, g(z) > M}):
if(C has a solution)
{ let xp be a solution of C;
L« g(xo);
t
else U < M
until(U — L < ¢);
return xp;

Figure 2.6: The dicotomic algorithm.



Chapter 3

Branching Constraint
Satisfaction Problems (BCSPs)

3.1 Overview

In this Chapter the Branching Constraint Satisfaction Problems defined
in [8] arc introduced. It is shown that they can be viewed as particular CSPs.
A simple extension of this model is then presented. The problem tackled in
this work can be considered as a particular BCSP, as shown in Scction 2.7.

3.2 Branching Constraint Satisfaction Prob-
lems (BCSPs)

Definition 6 A Branching Constraint Satisfaction Problem (BCSP) is
(P4, T,p,c)
where
e P=(Dy,..,D,,C)is a CSP such that Vi =1,..,m, NULL ¢ D,
o icR™

N

> 2

T =(N,E, p) arooted tree with n =

p: I —|0,1] such that Vo € N, if O is the set of the outgoing cdges of
o, then Y7, pla) < 1;

¢: N =V, with V the variables of P, such that Vo € N:

17
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L. if .J is the sct of the children of «, then Vv,6 € .J such that
5 £ 8,e(7) £ c(0);

2. 1f H is the sct of the nodes of the path from the root to «, then
V~,6 € H such that ~ # 4, e() # ¢(d);

The rooted tree T is called the branching tree; for @ € E, p(a) is called the
probability of edge a; for & € N, ¢{e) is called the variable of node . O

As a consequence of the constraints on p and ¢, it 18 clear that the number
of nodes n = |N|, the depth ¢ of T, the degree 6(c) and the level I{a) of
cach node @ and the number of variables m = |V of problem P are slightly
related one to the other!. In particular the following relations hold:

o 1 < (m—1)!
e d<m

o Voo € N, §(a) <m+1—I(a)

3.3 Assignments and feasible assignments

Definition 7 An assignment of a given BCSP is a function

Wi N U D; U {NULL}

i=1

such that Vo € N, ¥(a) € Degy U{NULL}. An assignment v is feasible iff
Vo leaf, if B ={3 & N | ¢¥(3) # NULL and 3 is of the path from the root
to o} and I = {e(3) | 3 € B} then the assignment of variables I such that
Vie Iitis f(i) = ¢(8) with 3 € B and ¢(3) = i is feasible for P. A solution
is a feasible assignment. [J

Note that the function v = NULL is always a feasible assignment. If ¢
15 a feasible assignment then VS C N the assignment ¢¥g such that ¥vg = ¢
in N\ S and ¢vg = NULL in S is feasible too. And V¢ assignment there
exists S C N such that v¥g i1s feasible. Setting to NULL some nodes of an

n this thesis it will be used the terminology of [4]. In particular the level of a node is
defined recursively as follows: the level of the root is 0; the level of a node different from
the root is the level of the father plus 1. The depth of a node is the level of the node plus
1; the depth of a tree is the maximum depth of its nodes. The outgoing cdges of a node
arc those that connect it to its children; the degree of a node is the number of its outgoing
cdges.
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unfeasible assignment is then a way to make it feasible, i.c. it is a way to find
a feasible assignment similar to it. This propertics will be used in Chapter

e

.
The number of assignments is

H (1+ |Dc(0:)|)

aEeEN

The number of feasible assignments is obviously less than or cqual to this
number.

3.4 Expected Utility (EU)

Definition 8 Given a BCSP, a node « of its tree 18 said to be terminal iff
> acot Pla) < 1 with O(a) the outgoing edges of cv. If v is a terminal node,

we define Pp =1 =37 5,y pla). O

As a conscquence of Definition 8, the following propertics hold:

1. all the leaves are terminal nodes, as if @ is a leal O(a) = @ and so

ZGEO(D;) p(a) =0
2. Va leafitis P, =1

3. Vanodeitis0< P, <1

Definition 9 Given a BCSP and onc of its feasible assignments ¢, the ex-
pected utility (EU) of ¥ is the number

po =5 (5 wen)( T i)

el jel{n ac Al
with
e L the sct of the terminal nodes of T

e Yoo € L : I(a) = the set of the nodes 3 of the path from the root to a
such that ¢¥(7) # NULL;

o Yoo € L1 A(er) = the sot of the edges of the path from the root to «
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Because the number of feasible assignments is finite, the sct
I ={EU(¥)|¢ is a fesable assignment }

is also finite. Hence there exists ¢ a feasible assignment such that Vo feasible
assignment, EU(v) > FU({1). Tt is then not unrcasonable to be interested
in finding a feasible assignment with the highest EU. In paper [8] some algo-
rithms for this pourpose arc presented. In Chapter 7 a GA that trics to find
solutions with a good EU will be presented. A feasible assignment with the
highest EU is called optimal solution.

Given a BCSP, the sct I defined above has an upper bound given by the

formula
Uun = Z( Z u(c(?)))( H p(a.))Pa

acl  ged{a) acA{a)

with

e [ the sct of the terminal nodes of T
e Vo € L, J{«a) = the set of the nodes 7 of the path from the root to e

o Voo € L, A{er) = the set of the edges of the path from the root to «

which is a number depending only on the BCSP and which corrisponds to
the EU of an hypothetical feasible assignment that assign all the nodes with
a value different from NULL. Thus Vi feasible assignment of the BCSP,
EU(y) < UB and if we find a feasible assignment ¢ such that EU(y) = U
then ¢ 18 a solution with the highest expected utility.

Recursive computation of EU(¥)
Given a BCSP and onc of its feasible assignments ¢, EU(¥) can be
calculated recursively. In fact we can define vy : N — R such that Vo € N
1. if e is a leaf of T then

wte) = { 0 ifyla)=NULL

Ucra) clse

2. clse
vpla) = { Y secta vu(B)ps if () = NULL
o Uew) + D secia VolF)ps  clse
with C'(@) the children of o and ps the probability of the edge that

connccts 3 with its father .

Then EU(v) = vy(p) with p the root of T.
This is the original definition of EFU () in the paper [8].
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Computation of £U(¢) by matrices

If we fix an ordering of the nodes ¥ = {Ny, .., N;;} and onc of the leaves
F ={F.,.. F;} of T, then there exists a vector ¢, dependent only on the
BCSP and on the orderings of N and of F, such that ¥ feasible assignment
of the BCSP, EU(v) = T with b = (by, .., b,) whereas Vi = 1.n

0 if ¥(N;) = NULL
fl)?; e
1 «clse

Thus if we have ¢, the caleulation of EU(v) consists on the simple compu-
tations of b and of the product ¢7b. The vector  is given hy the formula:

j=FTy
where

L. p = {p,..,px) with p; the product of the probabilitics of the edges in
the path from the root to the terminal node F; and of Pp,

2. F the matrix of order & x n such that V(7, j) € {1, ...k} x {1,..,n}

7o ey if ¥; is in the path from the root to F;
b 0 clse

In other words, given a BCSP C, there exists a function & : N — RT
such that Vv solution of C 1t 18

EU(¢) = Z Gy ()

with

0 if¥(a) = NULL
b (v) _{ 1 else( )

Morcover it is UDB = ) v G(a), with U the upper bound defined above.
The function G is given by the formula

G(0) = ule(@) - > (] pl@)P:

TET{(a) acA(r)

with T'(«) = {r|7 terminal node such that « is in the path? from the root to
7} and A(7) = the set of the edges of the path from the root to 7.

Note that function &G is dependent only on the BCSP. So given the solution
¥ in order to compute EU(y) , once we have function G, we just have to
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{ VYaeN:G(a)+ 0

VY1 terminal node:

{ m <« Ha.eA(T) pla) - P;
(with A(7) the set of the edges of the path from
the root to 7);

Ve node of the path from the root to 7:
G(a) < Gla) + 7,
¥

Vo € N :G(a) < Gla) - ulcla)):

Figurce 3.1: The algorithm to compute G.

compute the function b, and the sum >° . G(a)by(a). Function G can he
calculated by the simple algorithm of Figure 3.1.

In spite of its notational complexity, this method is simple and it is the
fastest way to compute EU (), once we have calculated G. Tt is particularly
convenicent when we have to compute the £U of several feasible assignments
of the same BCSP.

3.5 BCSPs as CSPs

It 15 evident that for cach BCSP B there exists a CSP € whose feasible
assignments arc in onc to onc correspondence with the feasible assignments
of B. As a matter of fact, given a BCSP B, let {Ny,.., N;;} be an ordering
of its nodes. Let

C={Dy,.,D..C)

where D = DonyU{NULL} and C' = {({1, ..,n},2)} withZ = {(ay, .., x,) €

Di x .. x D! | the function ¢ such that Vi, ¢ (N;) = z; is feasible for B}. Then
C'is a CSP and the function

¢ : feasible assignments of C — feasible assignments of B
(21s 00 zp) —> V|Vi = Lon, ©(N;) = z;

2Note that 7 is in the path from the root to 7 and if @ is a terminal node, then it is
a € T(a).
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is biunivocal. We call C' the CSP correspondent to B.

Thus, we can find a solution of a given BCSP hy one of the algorithms for
finding a solution of a CSP. And we can find an optimal solution of a BCSP
by onc of the algorithms that find a solution of an OBCSP. As a matter of
fact, given B3 if we define

f:Dix.xDl —-R
(21,0, 2p) — EU(P(x1, .., 2))

we have that P = (C, f) is an OCSP and if & is an optimal solution of P
then ¢(%) is one of the optimal solutions of 3.

Yet it does not mean that studying algorithms for the BCSPs is uscless.
Being a BCSP a very special CSP, we can exploit its peculiaritics to reach
our purposc faster: in other words there is the possibility that an algorithm
for BCSPs solves a BCSP faster than an algorithm for CSPs solves the cor-
respondent. CSP.

3.6 The extended BCSPs (eBCSPs)

Somctimes the BCSP model seems unable to describe the whole complex-
ity of a practical situation (sce scction 5.8). In some cascs we need that the
constraints concern the NULL value as well and that the EU still treats it
as a particular value. In these cases we can use a model slightly different
from the BCSP that we can call extended BCSP (eBCSP). In this model the
NULL valuc is necessarily in all the D; and an assignment of an ¢cBCSP is
feasible iff Ve leaf, if B = the set of the nodes of the path from the root to
a} and I = {¢(3) | 3 € B} then the assignment of variables 1 such that
Vie I, f{i) = o(3) with 3 € B and ¢(3) = i is feasible for P. All the other
definitions remain the same.?

For cvery BCSP there exists an ¢eBCSP whose solutions arc those of the
BCSP and have the same EU. As a matter of fact if (Dq, .., Dy,,, C, 4, T, p. ¢) is
a BCSP, then (D, .., D), C, 4, T,p,¢) with D) = D; U{NULLY} is an ¢BCSP
with the same feasable solutions and with the same EU. So the descriptive
power of the ¢eBCSP model is at least as good as that of the BCSP.

Note that the propertics of section 3.3 do not hold for the ¢BCSPs. In
fact there are ¢BCSPs for which the NULL solution is not feasible. There
arc ¢cBCSPs with a feasible solution ¥ and a sct of nodes S such that the
solution v’ 18 not feasible. Thus the GA for BSCP that can be derived from

#Note that in this case some contraints of P may concern the NULL value as well, in
the sense that some constraints may not be satisfied by some partial assignments that
assign NULL to somc variables.
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the GA of Chapter 6 cannot be used to find an optimal solution of a given
cBCSP.



Chapter 4

Genetic Algorithms (GAs)

4.1 Overview

In this Chapter a breaf and informal introduction to GAs is provided.
The broader class of Evolutionary Programs (EPs) (sce [1]) arc introduced.
GAs arc presented as a subset of EPs and classical GAs as a subclass of
GAs. Evolution Strategics (ES) are also introduced as a subsct of EPs. The
algorithm designed in this thesis is an EP and with special parameters —
shake, = 1, sce Scction 6.4 — it is a GA not classical. Anyway, whatever arc
the paramcters, 1t has very strong similaritics with GAs. For this reason it

wil be called GA.

4.2 Introduction

GAs can be considered as a subclass of EPs. An EP can bhe viewed as
an algorithm to find the optimal solution of a problem or cquivalently as an
algorithm to find the point of maximum of a rcal function defined on some
sott.

EPs arc approximation algorithms as they do not guarantee to find the
optimal solution, but they usually give a very good suboptimal solution.

They arc stochastic algorithms in the sense that they more or less ran-
domly visit the clements (called solutions) of the domain (called search space)
of the function (called objective function) and return the visited solution with
the highest value of the objective function. However the exploration of the
scarch spacce is not totally random and these algorithms tend to concentrate
the exploration in the promising arcas of the scarch space, 1.c. the arcas with

!For some authors this is too restrictive a vision, sce [1, page 16].
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good visited solutions.

EPs imitate living beings in their fight for survival. All living beings
manage to survive in a difficult environment by adapting their bodics to the
cnvironment. The adaptation to the environment is obtained through the
Darwinian Natural Sclection: the environment kills the individuals without
the features necessary to survive in it; those who survive give their winning
features to their offsprings; new features are introduced in the specics by the
mutation and reproduction phenomenona. Thanks to this simple mechanism
somce organisms have managed to survive in environments once forbidden to
them.

An EP creates a population of individuals — representing solutions of the
scarch space — living in a difficult environment. The measure of the adap-
tation to the environment of an individual (called fitness of the individual)
is the value of the objective function on the solution represented by that
individual. Some of these individuals mate producing offsprings with genetic
heritage which is a mixturce of that of their parents and new genes are intro-
duced in the population by a mutation phenomenon. Some individuals with
low fitness are killed by the environment. After some generations the average
fitness of the population should increase. In this way the EP explores the
scarch space and tries to find solutions with higher fitness.

EPs arc uscful to solve very hard optimization problems and in the last
decade their importance has been growing, as they can be naturally imple-
mented in parallel computers ([1]) that arc now becoming available.

4.3 Evolutionary Programs (EPs)

An EP tries to find the point of maximum of a function f: 5 — R. Each
EP is associated with an injective function ¢ : S — R called encoding of the
solutions. The EP dircctly deals with the clements of the set imy = R whose
clements are called the representations of the solutions. Also Va € R, val{x)
is defined as f(¢(x)) and is called the fitness (or the value) of x. An
individual (also called chromosome or phenotype) is an clement of B. An
individual is feasible iff it 1s in R, i.c. iff it represents a solution. A population
is a tuple of individuals. An EP is also associated with a population size
¢ € Ny, an offspring size A € Ny.

The Evolutionary Program creates an initial population of g feasible in-
dividuals &° = (v{, .., v))); then it creates new feasible populations 7', 72, .., 7
onc after the other until a termination condition occurs; finally the indi-
vidual with the highest fitness created until then is returned. The ercation
of a new population ¢ is obtained in the following way: a population of A
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feasible individuals & = (wq,..,w,) called the offspring population is cre-
ated; the creation of @ depends on the past populations 2, .., ¢! and on
random cvents; then a population @ of p individuals is created such that
Vie {l.,puh vt € {wlj =1 . A U{vi i =1,., 4} —ic. @ is obtained
by choosing, cven more than once, some individuals from those of the previ-
ous population ! and of the offspring population . The pscudocode for

the EPs is given in Figure 4.1

{ i+ 0;
create 0 € R,
3 + the clement of & with the highest fitness;

while(not termination condition)
{ i i+ 1
i <— a population of A feasible individuals depending on
populations #°, .., 7! and on random cvents;
# « a population of 1 individuals taken from those
of @ and ¥, ¢cven more than once;

if(aj such that val(v) > Ua.x(ﬁ)) B ui;

}

return J;

Figurc 4.1: The structurc of an EP.

The creation of o out of @ and 7! is called selection; the creation of @
out of the past populations and of random cvents is called recombination.

The goodness of the EP in finding a good solution depends on the good-
ness of the sclection and recombination procedures. In order to imitate the
evolutionary process of nature, the genetic information of the offspring pop-
ulation must be hoth similar and different to that of the last populations — so
as to keep the good featurcs found until then and experiment new ones that
may reveal good — and the new population ¢ must have individuals taken
from the hest of those of the offspring and of the previous population.

The GAs, the (1, A)-ESs, the (2 + A)-ESs arc particular EPs.
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4.4 Genetic Algorithms (GAs)

GAs arc EPs such that:
e\ =y
e i depends only on #7! and on random cvents

e ¢ is a population of individuals only taken from those of @, cven more
than once

¢ the recombination is a scquence of two operations: the mating and the
mutation. The mating consists of choosing some couples of individuals
of the population @ and for cach chosen couple (u, v) of replacing it in of
with two feasible individuals (0, x) depending on (u, v) and on random
events, cach similar to both (u,v); the mutation consists of choosing
some individuals of the population « and for cach chosen individual x
of replacing it with a feasible chromosome y depending on it and on
random cvents and similar to it

The pscudocode of a GA s given in Figure 4.2.

The individuals u, v arc called the parents of 4, x; and ¢, vy arc called the
children of u,v. The procedure that creates the children from the parents is
usually called crossover. More that one crossover can be used in the mating
operation: some couples may produce their children by using a crossover
procedure, some others may do it by using onother one. However the parents
always dic after mating and their place in the population is taken by their
children. The procedure that creates y from z is called mutation and more
than onc mutation can be used.

4.4.1 The typical GA

In the typical GA, R = Dy x .. x D, with D; sets. The chromosomes arc
then tuples. The positions of the chromosomes arc called genes. But B may
he a set of trees or other more complex structures.

The typical mating procedure consists of sclecting the individuals to mate
and of grouping them into couples: the sclection of the individuals to mate
is done in the following way: for cach individual we take a random number
r €]0,1] and if r < P, —where P, €]0, 1] is a constant of the GA —we sclect the
individual; if the number of sclected individuals is odd, we remove from the
sclected imdividuals the last sclected one; the couples are formed by grouping
by two in somc way the sclected individuals. Typically a couple of parcents
produce a couple of children in the following way: we choose some of the genes
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{ i+ 0;
create 0 € R,
3 + the clement of & with the highest fitness;
while(not termination condition)
{ i+ 1;
choose T < 214 guch that VA, B c T, A £ B :
Al=|B|=2and ANDB =
VI = {h,k} € T :replace (vi!, vl ') with (zp, 74)
feasible individuals depending on (¢:7', v~} and
on random cvents;
Yh: replace -Uffl with a feasible individual
depending on v~ and on random cvents;
TR T
Vh € {1,..,pu} : choose k € {1, .., 1} according to some
criteria and v} < wy;

if(ﬂj such that val(v}) > -Ua.ﬂ(,ﬁ)) 3 vl

¥

return /7;

Figure 4.2: The structure of a GA.
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of the parents and we swap them in the two chromosomes, thus obtaining
two individuals similar two both the parents, but possibly unfeasible; if they
arc unfeasible, we repair them, i.c. we change them in fow genes i order to
make them feasible.

The typical mutation procedure consists of randomly changing the values
of some genes of some individuals and of repairing the chromosomes that
have become unfeasible after this operation: for cach chromosome and for
cach gene we generate a random number v €]0,1] and if r < P, — where
P, € 10,1] is a constant of the algorithm — we randomly modify that gene:
finally we repair the chromosomes that have become unfeasible after this
operation. A mutation is said to be more or less strong if the mutated
individuals arc more or less different from the chromosomes from which they
arc obtained. F,, influcnces the strength of the mutation operation.

Many sclection algorithms have heen developed and typically only onc is
used in one GA. The most used sclection algorithms are the g-tournament, the
proportional and the ranking sclection. With the g-tournament ([3]) sclection
Vh e {1,.,p} asct I C {1, .., ¢} such that |{| = ¢ is randomly chosen, the
index j € I, such that ¥k € I it is val(wy) < val(w;), is found and it is sct
vi = w;. The proportional sclection ([3]) can be used if f > 0; with this
sclection method cach index j € {1, .., ¢} is associated with a probability p;
proportional to val(w;); Vh € {1,.., u} an index j € {1,.., ¢} is randomly
chosen? with probability p; and v} is sct to w;. With the ranking selection
the sct {val(w;)|j = 1,..,p¢} is ordered and cach position j € {1,.., u} is
associated with a probability p; depending on the rank of val{w;) in that
ordering: ¥h € {1,...u} an index § € {1,..,p} is randomly chosen with
probability p; and v is sct to w;.

4.4.2 The problem of the feasibility
Usually we have a situation in which
1. R#R

2. given two feasible individuals u, v, if we swaps correspondent parts of
u, v we still obtain two elements of R not necessarily in R

3. given a feasible individual u, if we change some of its parts randomly
we still obtain an clement of R not necessarily of R

“More preciscly, if Vi it is val(w;) = 0 then ¥j € {1,..,p} we define p; = 1; clse

¥j we define p; = %, we also define ¢ = py and Vj € {2,..,u} we define
J=1 i -

g = gj—1 + m, ¥k we gencrate a random number r €]0, 1] and we calculate the

index k such that k €)gr — 1, gx]; we set vf, = wy.
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In such a situation we can design a reparation algorithm that makes feasi-
ble an unfeasible individual by changing some of its parts trying to keep as
many parts of the initial individual as possible. A crossover procedure can
initially swap correspondent parts of the parents, thus producing intermoedi-
ate individuals not necessarily feasible, and then repair them by a reparation
algorithm. A mutation procedure can randomly change some parts of an
individual, thus producing an intermediate unfeasible chromosome, and then
repair it by a reparation algorithm. This is the most common way a genctic
operator works. Yet a repair algorithm is very difficult to design and it slows
down the GA as it often requires long computations ([1, page 3]).

In order to avoid the difficult design of reparation procedures and the
slow speed of a GA using repair procedures, we can use the method of the
penalty function ([1, page 97]) that exploits the fact that no reparation is
nceded when R = R as, in such a situation, whatcever modification we make
on a chromosome, we obtain a feasible chromosomec.

The method consists of creating the new function f : B — R such that
Vo € B, f(x) = f(¢1(x)) and Vo € R\ R, f(x) =V — p(x), with V' a value
< than the optimal valuc of f and p a positive function increasing with the
distance of x from R, and of designing a GA to maximize this function. An
optimal solution of f is the rapresentation of an optimal solution of f. A GA
that uses the identity function of R as encoding can be quickly designed with
simple and fast genetic operators. Of course, in order to use this method we
nced to define the concept of distance of x € R\ R from R.

The advantage of this technique is that in this GA crossover and mutation
operators need no reparation; the disadvantage is that this GA risks to spend
most of its time in valuating individuals unfeasible for the initial problem and
as soon as a chromosome feasible for the initial problem is found to converge
to it without any improvement ([1, page 98]). Another disadvantage is the
difficulty of finding reasonable values for V7 and function p ([1, page 98]).

4.4.3 Classical GAs
The elassical GA is a GA such that
o 2 ={0,1}"

e the mating is like that of the typical GA of section 4.4.1 and uses
only onc crossover; the crossover modifics the parents « = wy..u,, v =
v1..U, in the following way: a random number i € {1,..,n — 1} is
generated: the possibly unfeasible intermediate individuals are created
u' = w1 .v, and ¥ = vy these individuals are repaired
and become the children of u, v.



32 CHAPTER 4. GENETIC ALGORITHMS (GAS)

e the mutating is like that of the typical GA of section 4.4.1 and uses
only onc mutation opcerator; in this case the random change of a gene
consists of just setting it to 0, if it 15 1, and to 1, if it 15 0.

Most of the studies and of the theoretical results on GAs concern the classical
GA. Yet, recently many rescarchers have obtained better results by devel-
loping GAs with more complex representations of solutions and with more
varicd genetic operators ([1]).

4.5 (p+ A)-Evolution Strategies ((i+ A\)-ESs)

(12 + A)-ESs arc EPs such that
e the offspring population @ of itcration ¢ depends only on @71

e the sclection consists of keeping for the next generation the g best
individuals of the offspring w and of the previous generation o1

4.6 (1, A\)-Evolution Strategies ((u, A)-ESs)
(11, A)-ESs arc EPs such that:
o\ >p

e the offspring population « of iteration ¢ depends only on ¢

e the sclection consists of keeping for the next gencration the p best
individuals of the offspring @



Chapter 5

The Harbour Packing Problem

5.1 Overview

The present project consists of studying and implementing a computer
program to tackle an ideal packing problem that models a simplification of a
rcal problem faced by boat managers of many harbours. In this chapter this
problem 1s described and formalized. Tt 1s demonstrated that the problem
is NP-hard, thus justifying our choice for its solution by an approximation
algorithm such as a Genetic Algorithm.

5.2 Introduction

In cvery harbour there are ships that bring goods to destinations. The
goods arc carricd to the vessels in containers by lorrics which arrive to the
boat in different moments of the day from different places. The containers
have different shapes, utility and weights and carry different types of goods
and must be placed on the hold of the ship.

The possible positions of a container arc limited by many constraints (sce
[13]). Some goods cannot be too close to others because of safety reasons (for
cexample, fireworks or explosives cannot be placed close to acids, as the acids
accidentally can break out of the container and interact with the explosive,
thus exposing the crew to a big risk and possibly loosing the cargo). Contain-
crs should he placed on the hold in a way that keeps the hoat balanced. The
cranc cannot move very heavy containers too far, and they must be put close
to the base of the cranc. Some containers cannot be placed above others.

Often there is not cnough room on the hold to load all the containers
satisfying all the constraints and some of them must be left on the harbour,
thus loosing the income duc to their transportation to the destination.

33
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Ag soon as a container arrives the boat manager must decide whether
to load it or not. If he/she decides to load it, he/she must choose where.
Sometimes outside of the boat there 1s a little space where the boat manager
can park containers postponing the decision of their loading. Also often some
containers, after they have been loaded, cannot be moved or unloaded.

The problem is complicated by the fact that lorries scldomly arrive in
time and some of them arrive later or carlier than cxpected or do not arrive
at all. Often, right in the middle of the day, after some containers have
alrecady been loaded, the boat manager gets to know that some lorries will
not arrive or that new unexpected lorrics will bring their containers to the
hoat. Morcover the boat often has to reach several destinations in one trip
and in some of them not only it must bring but also reccive containers and
these arrivals are not sure too.

The boat manager should do his/her decisions maximizing the utility of
the containers brought to destination. The task of the boat manager is then
nontrivial and of great responsibility.

5.3 The problem simplified

We imagined though that the boat manager must face a simpler problem,
which 18 the one tackled in this thesis. Then the problem dealt of in this
dissertation is ideal, but of great importance.

In this simpler situation the boat manager must load a hoat with a rect-
angular hold. The containers have a parallclepipedal shape of variable di-
mensions and utility and they have different weights, but the ship will be
balanced whichever disposition they will have on the hold. They must be
placed side by side, and it is not possible to place a container on the top of
another. The containers may hold different types of goods, but they are all
mutually compatible, according to the safety regulations. The cranc is strong
cnough to put cach containers in whichever position wanted, and after a con-
tainer is loaded on the ship, it is fixed on the hold and cannot be unloaded
or moved to another position. In the quay there is not cnough room for
containers to be parked. Hence the decision of whether to refuse a container
or not and of where to place it on the hold cannot be postponed: as soon
as a container arrives to the boat, it must be loaded or definitely refused.
The vessel must bring these containers to only one destination where all the
containers will be completely unloaded. The edges of the loaded containers
must be parallel to those of the hold and the lower left edge of cach container
must be placed in once of the points of a given grid. Containers can be rotated
to optimize the space.
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The boat manager does not know exactly the set of containers that he/she
will have to load, nor the sequence of their arrivals, but he/she has got some
information about this unknown futurc which reduces its uncertainty.

He knows the dimensions of the rectangular bases and the utilities of the
containers of a given set, a subsct of which will arrive; he/she has a probabilis-
tical description of the arrivals, that tells him/her for cach arrived container
which other can arrive next and with which probability. More preciscly, the
possible arrivals arc deseribed by a tree (sce figure 5.1): cach node of the
tree is associated with a known container and cach edge is associated with a
probability. The arrivals will obey to this tree in this sense: the container of
the root will arrive first and with total certainty; the next arrival will be one
of the containers associated with the children of the root: for cach of them
the probability of arrival after the first is given by the probability associated
with the edge that brings to them; and so on. Each actual arrival will be then
represented by a node of the tree and the next arrival will be represented by
onc of its children.

For cach node the sum ¢ of the probabilitics of the edges bringing to
its children 1s < 1; yet if it 18 ¢ < 1 1t means that with probability 1 — o
no other container will arrive after the onc associated with that node. A
terminal node is a leaf node or an inner node with o < 1.

Figurc 5.1: The problem tree.

The sct of possible arriving containers is then the set of containers asso-



36 CHAPTER 5. THE HARBOUR PACKING PROBLEM

ciated with the nodes of the tree, and the actually arrived containers will be
the set of containers associated with one path to the root to a terminal node.
The possible sequences of arrivals are all the sequences associated with the
paths from the root to a terminal node, and the actual scquence of arrivals
will be one of them. The probability that a sequence of arrival will occur is
given by the product of all probabilitics associated with the edges of the path
for that sequence multiplied by 1 — ¢ with ¢ the sum of the probabilitics of
the outgoing edges of the terminal node of that sequence.

Before any container arrives, the boat manager must decide what to do
at cvery possible arrival. That is for cach node of the tree, he/she must
decide whether to load the container of that node or not, and where. More
precisely he/she must prepare a plan of action which associates cach node
of the tree with the decision for the correspondent container (sce figure 3.2).
The decision is the position of the container on the hold — that is the coordi-
nates of the point of the grid in which the lower left corner of the container
is placed and the orientation of the container —, if it will be loaded, or the
information that it will not be loaded. This plan will be used to refuse or
load the containers as soon as they arrive.

The boat manager must find a plan that will load the boat with a big
total utility with great probability.

(8.0, 2.0)
2

Not loaded

(8.0, 2.0)
(1.3, 1.7, rotated)

Not loaded

(4.0, 6.0)

Figurce 5.2: The plan of action.

Each terminal node of a plan can be associated with a valuc obtained by
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multiplying the product of the probabilitics of the edges of the path from the
root to that node multiplicd by 1 — ¢ with ¢ the sum of the probabilitics of
the outgoing cdges of that terminal node and the sum of the utilitics of the
loaded containers of that path in the plan. The value of a plan can then be
defined as the sum of the values of its terminal nodes.

If the same situation occurs several times and we always use the same plan
to load the boat, then the average of the sum of the utilitics of the loaded
containers tends to be the value of the plan. Thercfore if the situation occurs
only once and we use a plan to load the boat, the most probable sum of the
utilitics of the loaded containers is the value of that plan. Hence the boat
manager must find the plan with the highest value.

This problem will be formalized in the following section.

5.4 The problem formalized

5.4.1 Branching Packing Problems (BPPs)

Definition 10 In this project a Branching Packing Problem (BPP) is de-
fined as a
(dﬂ'n: d’y: = ]*T ']"y: U, Tp C)

where 1

o Il u:C— R with C={1,..,m} and m € N

eec RS

dy, d, € Ry, with d, dy, > e

N

T =(N,E, p) arooted tree with n = > 2

p: E —]0,1] such that Vo € N, if O is the set of the outgoing edges of
«, then 37, pla) <1,

c: N — ' such that Voo € N

1. if J is the set of the children of o, then Vv, 6 € J such that v #£ 6
it is o() # c(9):

2. 1f H is the sct of the nodes of the path from the root to «, then
V~,6 € H such that ~v # 6 it is ¢(v) # ¢{4):

!In the following pages the symbol ]R(T represcnts the st of real numbers > (0, RT the
sct of rcal numbers > (1, Ny the set of natural numbers > (0, and (" the sct of rational
numbers > ().
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The clements of C arc called containers; for a € C, 1,(a), I,(a) and u(a)
arc called the width, the length and the wtidity of container a respectively; e
is the precision of the grid; d, and d, arc the width and the length of the
hold: T is the branching tree; for a € F, p(a) is the probability of cdge a; for
a € N, e{e) is the container of node e, O

Less formally we can imagine a BPP as a sct of objects €' called containers
with a rectangular base, cach ¢ € C with width /;(a) and length /,(a) and
utility u(a); a rectangular container called hold with width d,, and length
d, with a grid of horizontal and vertical lines parallel to the borders and
far e onc from the other, the leftmost of which i1s coincident with the left
border line and lowest with the lower border line: a tree T where cach cdge
a is labelled with a positive number p(a) and cach node « is labelled with a
container ¢{«) in a way that for cach node the sum of the probabilitics of the
cdges outgoing from the node is less than one and cach node has a container
different from that of its brothers and ancestors. We can imagine that there
15 a cartesian system whose origin is placed in the lower left corner of the
hold and whose axes are parallel to the lower border and to the left border
of the hold — sece figure 5.3. The points of the grid are identified by their
coordinates on the cartesian system. If a container is placed on the hold, it
can be rotated and its lower left corner must be placed on one of the points
of the grid and its sides must be parallel to those of the hold. Two object,
when placed on the hold cannot overlap — see figure 5.3.

A BPP represents the information about the ship space and the future
arrivals of containers that the boat manager receives in the morning, before
any container arrives.

5.4.2 Assignments and feasible assignments

Definition 11 Given a BPP, we define D, = {ne|n € N,ne < d,} and D, =
{ne|n € N,ne < d,}. The clements of the set (D, x D, x {0,1}) U{NULL}
arc called positions of the BPP. I

Definition 12 Given a BPP, a container ¢ and a position P = (z,y,2) #
NULL we define

A, P) _{ (i) if 2 =0

l,(#) clse

and
I,(i) ifz=0
I.(#) clse
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Figure 5.3: A rapresentation of a BPP.

Figurc 5.4: The positioning of containers on the hold.

39
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Definition 13 Given a BPP, we say that a container 7 in position P is inside
of the hold if P = NULL or

(x+ AL P)y+ Ay, P)) € [0,d] x[0,d,]
with P = (z,y, 2).
We say (sce Figure 3.3) that a container i in position P overlaps with
container j in position P; iff P, = (a;, b, ¢;) # NULL and P; = (a;, b, ¢;) #
NULL and

A(,P)
i .
(a.b) Ay(| P)
seR| | ey
| AGP)
(0,0)

\ 4

Figurc 5.5: The rectangle of overlapping.

Definition 14 A assignment of a given BPP is a function
YN = (Dyx Dy, x{0,1}) U{NULL}
an assignment 0 18 called feasible iff Voo € N

1. container ¢{ev) in position ¢¥(c) is inside of the hold;
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2. V3 € N, 8 of the path from the root to «, 5 # «, container ¢(3) in

position (3) docs not averlap with container () in position ¥(«).
An assignment which is not feasible is called unfeasible. [

Definition 15 Given BPP, an assignment ¢, a node o and a position P, we
say that position P in the node o of the assignment @ is feasible iff

L. container ¢{ev) in position P is inside of the hold:

2. V3 € N, 3 # «, 3 of the path from the root to «, ¢(a) in position P

does not overlap with ¢(3) in position (/7).

Less formally the scts D, and D), represent the abscissas and ordinates
of the points of the grid in a cartesian system. The set D), x D), is then the
sct of coordinates of these points.

An assignment is a function that associates to cach node « of the tree a
position () for the correspondent container ¢(c) that must be interpreted
in this way: if ¢¥(o) = NULL, the container is not loaded on the hoat; clse
if ¥(a) = (z, ¥, 2), the corresponding container is loaded on the hold in the
following way: if z = 1 it 1s rotated of 90 degrees — clockwise or anticlockwise,
it is the same — clse it is kept with the same orientation; then it is placed
with the lower left corner on the point of the grid of coordinates (z,y) and
with sides parallel to the borders of the hold.

If position P = (x,y, 1), then Ay(i, P) and A, (7, P) represent the width
and the length of container ¢ after it is rotated and placed with the lower
left corner in the point of the grid of coordinates (z, y): if P = (x,y,0), then
Ag(i, P) and A, (¢, P) represent the width and the length of container ¢ after
it 1s placed with the same orientation and with the lower left corner in the
point of the grid of coordinates (z, y).

Not all the possible assignments arc feasible. In order to he feasible
an assignment must satisfy some constraints: if the container associated
with a node « is loaded, after it is eventually rotated and positioned in the
corresponding point of the grid, it must be inside the hold; also it must not
overlap with any container of the nodes of the path from the root to « loaded
by the same assignment.

Ag can be deduced by the definition, a feasible assignment can place the
containers of two nodes in an overlapping position. But one of these nodes
must not be in the path from the root to the other.

A feasible assignment represents the plan of actions of the hoat manager.
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Note that if container 7 in position F; overlaps with container 7 in position
P; then 7 in position P; overlaps with ¢ in position F;.
Given a BPP, the number of its assignments 1s

by
(1D:] 1D, -2 +1)

The number of feasible assignments is obviously less and is greater than one,
for the trivial assignment which associates cach note to NULL is always a
feasible assignment . We are interested in finding feasible assignments. In
the following section we will define the goodness of a feasible assignment. We
will then be interested in finding the best feasible assignments.

Note then that n, = |D,| > 2 and n, = |D,| > 2 and D; = {0, .., e(n, —

1)} and Dy, = {0,..,e(n, — 1)}.

5.4.3 Expected Utility (EU)

Definition 16 Given a BPP, a node « of its tree 1s said to be terminal iff
>aco Pla) <1 with O(a) the outgoing edges of cv. If v is a terminal node,
we define Py =1 =37 5y pla). U

As a conscquence of Definition 16, the following propertics hold:

1. all the leaves are terminal nodes, as if @ is a leaf O{a) = @ and so

ZQEO(Q) p(a) = 0
2. Ve leaf it is P, =1

3. Vanodeitis0< P, <1

Definition 17 Given a BPP and one of its feasible assignments ¢, the ez-
pected utility (EU) of ¢ is the number

=2 (3 wen)( T] r)r.

acl  Bel{w aeAf{a
with
e [ the sct of the terminal nodes of T

o Yoo € L, I{cr) = the sct of the nodes 3 of the path from the root to «
such that ¢ (3) # NULL;

o Yo € L, A(er) = the set of the edges of the path from the root to «
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-
Because the number of feasible assignments is finite, the sct
I ={EU(¥)|v is a feasible assignment }

is also finitc. Hence there exists v a feasible assignment such that Vi feasible
assignment, EU () > EU(). It is then not unrcasonable to be interested
in finding a feasible assignment with the highest EU. A feasible assignment
with the highest EU is called optimal solution.

Given a BPP, the sct I defined above has an upper hound given by the

formula UB:Z( Z )( H e )

acl  jet(a) acAla

with
e [ the set of the terminal nodes of T
e Vo € L, J(«) = the set of the nodes 3 of the path from the root to «;

e Yoo € L, A(e) = the sct of the edges of the path from the root to o

which is a number depending only on the BPP and which corresponds to
the EU of an hypothetical feasible assignment that assign all the nodes with
a value different from NULL. Thus Vi feasible assignment of the BPP
EU(y) <UD and if we find a feasible assignment ¢ such that EU(y¢) = UDB
then ¢ is a solution with the highest cxpected utility.

Recursive computation of EU (1)

Given a BPP and one of its feasible assignments ¢, EU (1) can be caleu-
lated recursively. In fact we can define v, : N — R such that Voo € N

1. if @wis a leal of T then

[0 ify(e)= NULL
vyla) = { Uga) Clsc

2. clse

vol0r) = Zde( vy (B)ps if () = NULL
Y tefa) + Zde( vy (B)ps  clse

with C(e) the children of e and pg the probability of the cdge that
connccts F with its father o.

Then EU () = vy(p) with p the root of 7.
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Computation of EU{v) by matrices

If we fix an ord(‘ring of the nodes N = { Ny, .., N;,} and onc of the terminal
nodes F = {F,.., Fz} of T, then there exists a \(‘(tor i, dependent only on
the BPP and on tho orderings of N and of £, such that ¥ feasible assignment
of the BPP, EU(¢) = T with b = (b1, .., b,) and Vi = 1..n

0 ifyp(N;) =NULL
h, =
1 «clse

Thus if we have ¢, the calculation of FU{¢) consists on the simple compu-
tations of b and of the product i Th. The vector i is given by the formula:

g=F"p
where

1. p = (p1, ... px) with p; the product of the probabilitics of the edges in
the path from the root to the terminal node F; and of Pp,

2. F the matrix of order & x n such that V{4, 7) € {1,..,k} x {1,..,n}

o ey if ¥; is in the path from the root to F;
I 0 clse

In other words, given a BPP C, there exists a function G : N — R such
that ¥ solution of C it is

EU(v) ZG Yoy (e
aeEN

with ( )
by(a) = { 1 else

Morcover it is UB =}~ .\ G(«), with U3 the upper bound defined above.
The function & is given by the formula

Gle) = ulcf Z(Hp )
TET()  acA(r)

with T(a) = {7|r terminal node such that « is in the path? from the root to
7} and A(7) = the set of the edges of the path from the root to 7.

2Note that 7 is in the path from the root to 7 and if @ is a terminal node, then it is
a € T(a).
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Note that function G is dependent only on the BPP. So given the solution
i in order to compute EU(y) , once we have function G, we just have to
compute the function by and the sum ) - G(a)by(a). Function G can be
calculated by the simple algorithm of Figure 3.1.

In spite of its notational complexity, this method is simple and it is the
fastest way to compute EU(v), once we have calculated G. It is particularly
convenient when we have to compute the EU of several feasible assignments
of the same BPP and it is the method used in the application developed in
this thesis.

5.5 BPPs with one path trees

BPPs with one path trees and with all the edges associated with proba-
bility 1 descrve special attention.

1 122
2 73
4 35

Figure 5.6: A BPP with a onc path tree

A BPP with a one path tree (sce figure 5.6) is produced by a boat manager
that knows with certainty the set of containctrs to be loaded and must decide
which of them he/she can load and where in order to maximize the sum of
the utilities of the loaded conatainers .

In this casc a feasible assignment is just a positioning of some of the
containers inside of the hold and the EU of a feasible assignment is just the
sum utilitics of the loaded containers.
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The BPP is then a generalization of the classical problem of placing rect-
angular objects on the points of a grid inside a rectangular container in order
to maximize the sum of the utilitics of placed objects.

Thercfore, in order to solve a classical gridded packing problem, being it
a particular casc of the BPP, we can use an algorithm for the BPP as we
have done in Section 9.3.1.

5.6 NP-hardness

In this scction it will be demostrated that the optimization problem of
finding a feasible assignment of a BPP with the highest expected utility 1s an
NP-hard problem. It is then advisable to spend our cnergy in developing an
approxiamtion algorithm rather than in developping one that find the exact
best assignment (sce [4, page 916]).

Lemma 1 The optimization problem “given w € N*, & € N* and W € N,
find the T € {0,1}" such that @' % < W in a way that @' T is mazimal” is
NP-hard. U

The problem of Lemma 1 is the well known Optimization Knapsack Prob-
lem and the proof of its NP-hardness can be found in [2, page 65]. The
NP-hardness of the problem of finding a feasible assignment with the highest
EU of a BPP with integer precision, integer sizes of hold and containers and
rational probabilitics is a conscquence of the NP-hardness of this problem.

Proposition 7 The optimization problem “qiven the BPP
(drn: dy: e by, 'ty: u, T, p, C)

such that Vi € C : 1,(i),1,(i), u(i) € N and dy, dy, e € N and Vo € E : pla) €
Q" find one of its feasible assignments with the highest EU” is NP-hard. [

Proof. Let D be the problem of this Proposition and C that of Lemma
1. We will prove that if we had a polinomial algorithm ¢ for D then we would
have a polinomial algorithm ~ for C.

In fact let 6 be a polinomial algorithm for D and ~ the algorithm that:

1. After receiving an input @, @ and W of problem C it builds the BPP
(drn: dy: e by, 'ty: u, T, p, C)

where
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e c=1

e d,—1

o d,=W

o Li) = w,

o (i) =e

o u(i) = u,

e I'=(N,E,ppwith N={1,..,n}, E={{i,i+1}:i=1,..,n—1}
and p=1

o pla) =1,YVa e

o c(i)=1i
2. It gives this BPP in input to algorithm 6 which returns in output .

3. Returns the vector Z such that for i =1,..,n

0 if ¥(i) = NULL
T =
1 clse

Now v is polinomial. In fact the time it takes to give the output is the
sum of the times of the 3 steps: the construction of the BPP requires a
polinmial time on the size of the inputs to +; the BPP has a size which is
polinomial on the size of the inputs; the assignment of the BPP by v requires
a polinomial time of the size of the BPP and so a polinomial time of the size
of the mmputs; the constuction of £ from ¥ requires a polinomial time on the
size of the inputs. Thercfore the sum of these times is again polinomial of
the size of the inputs to .

Morcover ~ solves C. In fact let’s suppose that we have an instance I =
(0, iZ, W) of problem C and we give it in input to . Let BPP(I) be the BPP
built by v on input . Then BPP(I) has a one path tree and corrisponds
to the situation with a very narrow and long hold and very narrow and long
containers (sce figure 5.7). The width of the hold is € and the length is W
the width of container ¢ 1s € and its lenght is w;. The width of the containers
is equal to that of the hold hence containers can only be placed on a row
and not in parallel. The lines of the grid are far e one from the other and
e is a submultiple of the lenghts of the containers so that if we place the
containers inside the hold and we compress them tightly they will still move
to a feasible position, with the lower left corner on a point of the grid. All
the containers arrive with total certainty.
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Us
7
1 10 4

2 10 3 10
Dt
Figurc 5.7: The BPP produced by ~

A feasible assignment of BPP(I) gives us an acceptable sct of objects —
that is with a total weight < W — for I with the same value. Viceversa, an
acceptable subsct of objects of T gives us a feasible assignment to BPP(I)
with the same value. As a matter of fact if we know that a certain set of
objects can be placed on the bag, the corrispondent containers can enter the
hold too, even if they must stay on the grid, because we can place them
in a random position and then pack them together, for the new position is
grid-feasible and their total lenght is surcly less than that of the hold.

Therefore if we give BPP(1) to 4, this algorithm gives us the best feasible
assignment ¢ of BPP(I), from which we can build z a subset of objects
feasible for I with the same value, that is the output of ~v. If I had a better
subset z, there would exist also an assignment @ of BPP(I) hetter than .
But this is not possible. So the assignment given by «y is a feasible subscet for
the instance of problem C and it is the best. Then v solves C.

Thus if we had a polinomial algorithm for D, we would have a polinomial
algorithm for C and so, being C NP-hard, a polinomial algorithm for all the
problems of class NP. Then D is NP-hard. O

The problem of finding a feasible assignment with the highest EU of a
given BPP is then at least as difficult as the once of the Proposition 7.
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5.7 The BPP as a BCSP

Given a BPP we can casily build a BCSP with the same solutions and
such that the solutions have the same EU. The BPP gives all the necessary
information that define the idealized problem of the harbour and is exactly
the input of the application described in Chapter 10. Many of the previous
conclusions could he derived from the propertics of the BCSPs. Actually the
problem of the harbour has heen modelled first as a BCSP and then as a
BPP, which is simply another way to describe this particular BCSP.

Given the BPP

(dy, dy, e, 1, 1y, 0, T, p, )

the BCSP with the samce solutions of the BPP is simply
((Dla ns Dm: C) J Tp C)

with Vi € {1,...m}D; = D, x D, x {0,1} = D and C = the sct of all the
(1,7) such that:

o |I|=2

o {i,j}=1CH{l,..,m}

e 7 = {f : 1 — D| container i in position f; is inside of the hold,
container j in position f; is inside of the hold, container ¢ in position
fi does not overlap with container j in position f;}

5.8 The eBCSPs and the requirement of bal-
ance

In the previous section we have scen that the idealized problem of Section
5.3 can be modelled as a BCSP. If the boat manager of the ideal problem
had to place the containers in the hold so as to keep the boat balanced —
for example in a way that the total weight of the containers in the left part
of the hold 1s almost the same of the total weight of the containers of the
right part of the hold — the new problem would not be casily modellable as
a BCSP.

Ag a matter of fact the requircment of balance is naturally modellable
as a constraint concerning the loaded containers. But if for cach subset of
containers we added to the CSP the constraint allowing only the balanced
disposition of containers, then we would refuse most of the balanced dispo-
sitions.
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The new problem instead is naturally modellable as an ¢BCSP. In order
to build the ¢BCSP representing the new ideal problem we can first build
the BCSP corresponding to the problem without the requirement of balance;
then we can add the NULL value to the domains; finally for cach terminal
node, we can add a constraint concerning the variables of the path from
the root to that node that accepts all the assignments f such that the set of
containers associated by f to a value = NULL arc in a balanced disposition.



Chapter 6

The Genetic Algorithm

6.1 Overview

This Chapter describes a GA that scarches for a feasible solution of a
given BPP with the highest EU. This GA and its implementation is the
purposc of the present dissertation.

6.2 Introduction

Ag stated in Chapter 3 the problem of finding a feasible solution of a
given BPP with the highest EU is NP-hard and as such it is more convenient
to solve it by an approximation algorithm. A GA is an approximation algo-
rithm, as it starts from a sct of feasible solutions and trics to improve them
until the user decides that it must stop and it docs not guarantee that the
given solution is the best.

The following algorithm is not a classical GA as defined in [1]. As a
matter of fact the chromosomes arc not binary vectors, but solutions of a
BPP. There is no encoding of individuals to strings of the binary alphabet
and the genetic operators are clever and problem specific in the sense that
they modify individuals by taking into account the information about the
problem and the meaning of the objects that they modify. This algorithm
is also a multicrossover and multimutation algorithm in the sense that dif-
ferent kinds of crossover and mutation operators arce exccuted with different
frequences in cach iteration during the process of recombination and of mu-
tation respectively. Morcover this GA uses a new feature called “Shake”,
which trics to avoid the premature convergence of the algorithm. For these
rcasons this algorithm could be classificd as an Evolution Program ([1, page
10]), but because of its strong similaritics with the bettere known GAs, it

ol
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will be called GA.

The feasibility of the individuals is maintained in this GA by specific
genetic operators which always produce feasible individuals, often by repair-
ing unacceptable chromosomes obtained by rough low level operations. The
design of effective specific gencetic operators have required much time and
cffort.

The GA here presented depends on several parameters and its perfor-
mance and behaviour varies strongly with them.

This algorithm is specific for BPPs, but its genetic operators arc casily
adaptable to be part of a GA that solves any BCSP.

6.3 Basic concepts and operations

6.3.1 The ordering of the positions

A solution of a BPP is a function which associates cach node « of the
tree of the BPP an clement of the set (D, x Dy, x {0,1}) U {NULL}. The
present GA assumes that the clements of this set are ordered by the onc to
onc function

¢:{L,...2n,ny, + 1} = (D x Dy, x {0,1}) U{NULL}
such that

Loif 1 <k <2nyn,:

((kdiv2 — 1)modn, e
((kdiv2 — 1)divn,)e
kmod2 +1

x
oUk) = ¥
Z

2,18k = 2n,n, + 1:
d(k) = NULL

whose 1nverse is
x:(Dyx Dy x {0, 1} U{NULL} = {1, .., 2n,n, + 1}

such that
Xl y,2) =2 (—ny + 241 { 1 eclse
and
X(NULL) = 2n,n, + 1
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This ordering is that obtained first by ordering the points of D, x D,
by increasing ordinates and increasing abscissas (sce figure 6.1) and then by
ordering the clements of (D, x D, x {0,1}) U {NULL} in the way that

L. (I: Y, Z) < (Qr ﬁ; Af) if (Ir U) < (Qr ’3)
2. (z,y,0) < (z,y,1)
3. (z,y,2) < NULL
So the positions arc in this order:
(0,0,0),(0,0,1),(0,¢,0), (0,e,1), (0, 2¢,0), (0, 2¢, 1), .., (0, ¢, 0), (0, e, 1),

6? » ? 67 ? » 6? 67 ? 67 6? » 6?. 6? » 6?. 6? e 67“ 6? » e?n 6? »
0,0, (¢,0,1), (e, ¢,0), (e, e, 1), (¢, 26, 0), (e, 2¢, 1 e,0), (e,nl e, 1
(n,e,0,0), (nye, 0,1), (nye, e,0), (nye, e, 1),,.., (nye, n e, 0), (nhe,ne, 1),
NULL

with n), = n, — 1 and ny,, = n, — 1.
Other orderings could he used. Yet, the algorithm requires that NULL,
according to the ordering, is the last clement of the set.

“(0’39) (€39 A(Ze,3e “(3e,3e)

(0,2¢) e2e)) (229 [(3e2e)

(0,e) (e€) (2e,€) (3e,€)

(0,0) (e0) ' (2e,0) ' (3e,0)

Figure 6.1: The ordering of the points of the grid.
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6.3.2 The ordering of the nodes

The present GA orders the nodes of the tree of the input BPP in a depth
first manncr. More precisely, as soon as the BPP is received in input by the
GA, the children of cach node arc ordered in some way; then all the nodes arc
ordered by the rule that: the father comes before all its children and a node
comes before all its brothers that follows it in the ordering of the children of
his father. This ordering is called the basic ordering of the nodes.

6.3.3 The Fill operation

On a feasible solution the GA often makes a Fill operation. This operation
consists of trying to change the NULL valucs of the nodes of the input
solution to values #£ NULL, i.c. of trying to fill up the empty spaces of the
hold with some unloaded containers.

When a feasible solution ¢ is modified by a Fill operation, all its nodes
arc considered in the basic order and for cach node o associated to NULL
by ¥, « 18 assignd the first value = NULL of the order of section 6.3.1 such
that the correspondent container ¢{e) in that position docs not overlap with
any containcr of nodes of the path from the root to « in its corresponding
position.

The pscudo code for the Fill operation is given in figure 6.2.

The Fill operation optimizes the feasible solution as the EU of the filled
solution is > than than hefore the operation.

6.3.4 The repair operations

The GA here presented makes use of repair procedure in the generation of
the initial population and after some genetic operators arc applied. A repair
function receives in input a solution and returns in output a feasible solution
dependent on the input. It is used to make feasible an unfeasible solution.

The present GA makes use of two repair functions: the Ordered-repair
and the Random-repair. These repair functions are designed in a way that
the output feasible solution is similar to the input unfeasible onc in order to
take advantage of the evolutionary process. If the input solution 1s feasible
it 18 returned in output unchanged.

The Ordered-repair

This procedure cxplores the nodes of the tree in the basic order and for
cach node « 1t considers the value given to o by the input solution . If this
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procedure Fill(y)
{ let N ={Ny, .., Ny} be the basic ordering of the nodes;

for(i + 1 to n)
if(¢(N;) = NULL and there cxists
a position point # NULL such that container ¢(N;) in position
point is inside of the hold and V3 # N, node
of the path from the root to Nj: container ¢(N;)
in position point docs not overlap with container ¢(/3)
in position ¥(3))
Y(N;) < the first such a position in the order ¢:

Figurc 6.2: The Fill procedure.

value satisfys all the constraints concerning the correspondent container —
that is the container in this position is inside the hold and docs not overlap
with any container of the path from the root to a — then it is kept in the
output solution; clse the procedure considers one by one the next values in
the order of section 6.3.1 until one that satisfies the constraints is found.
This value is always found, heing the NULL value always acceptable and at
the end of the ordering. Eventually the feasible solution so far obtained is
filled.

In summary the Ordered-repair can be described in pscudo code as in
figure 6.3 where ¢, .., ¢ 1s the ordering of the positions in the grid of scction
6.3.1.

The output solution is feasible hecause a modification of a node value is
made after all the values of the nodes of the path from the root to that node
arc made feasible, thanks to the basic ordering of this operation.

The Ordered-repair has the property that the modification process is done
always in the same order. This implics that the output feasible solutions have
the nodes of the lower levels of the tree rarcly assignd with the value NULL.

The Random-repair

This repair function avoids the bias of the NULL valucs towards the
lower levels of the tree by exploring the nodes always in a random order. It
guarantces that the value NULL 1s present with the same probability in all
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procedure Ordered-repair ()
{ let {Ny,.., Ny} be the nodes of N in the basic order;

for{(i < 1 to n)

{  point < ¥(N;);
while (containcr c(N;) in the position point
is not inside the hold or 4K # N; a node of the path
from the root to N; such that ¢(K) in the position

w{K) overlaps with ¢(N;) in the position point
point < ¢(¢ H(point) +1);
W(N;) < point;

1
Fill{2));

Figure 6.3: The Ordered-repair.

the nodes of the output solution.

This repair function creates an initially empty output solution —i.c. with
all the nodes assignd to NULL — that it modifics repeatedly. Tt randomly
orders the nodes of the tree and in that order for cach node « i1t executes
the following modification: it considers the value assignd to « by the input
solution and it make the output solution assign this value to o if it is feasible
in this solution, it is kept: clse it is repeatedly changed to the next value until
onc that satisfy the constraints in the output solution is found. Eventually
the feasible solution so far obtained is filled.

In summary the Random-repair can be described in pscudo code as in
figure 6.4 where ¢, .., ¢ is the ordering of the positions in the grid of section
6.3.1.

6.3.5 The functions returning a random position

In this GA two functions that return a random position arc used: the
Random-position and the Random-position-NULL. The first one returns a
random clement of the set Dy x Dy, x {0,1} U {NULL}, cach clement with
the same probability ﬁ
of the same sct, NULL with probability Pyrrrr and cach of the other 2n,n,

The sccond function returns a random clement
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procedure Random-repair ()
{ let {4, ..,Qn} be the nodes of N in a random order;
create the solution v such that Vi : /() = NULL;

for(i < 1 to n)
{ @@« (@)
while ((:ontainer c{Q);) in position ¢'(();)
is not nside of the hold
or
dv node # ¢; of the path
from the root to ¢J;: such that ¢()
in position ©'(v) overlaps with ¢((};)
in position ¢'(N;)
or

173 node # @; of the subtree rooted at @
such that ¢(/3) in position ¢'(3) overlaps with ¢{();)

in position -LD’(Q?:))
(Q) < o6 (@) +1);

}
Fill(¢);
(R

Figure 6.4: The Random-repair.

clements with probability 1’2}:%
ety

The pscudocodes of functions Random-position and Random-position-
NULL are presented in figures 6.5 and 6.6 respectively.

6.4 The main structure

The GA reccives in input the BPP (1,1, u, dy, dy, e, T, p, c) and the fol-
lowing paramcters whose meaning will he explained in this and in the fol-
lowing scctions:

® nUMbiter, POPsize © Ny, POPgize > 2
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function Random-position-NULL;

{ r < arandom number in {1,..,2n,n, + 1}
return ¢(r);

t

Figure 6.5: The Random-position function.

function Random-position-NULL:
{ r <« arandom number of |0, 1];
if(r < Pyprr) return NULL;
else
{ 7+ arandom number in {1, .., 2n,n,};
return ¢{r);
1

Figure 6.6: The Random-position-NULL function.
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® Pe: Pma,> Pmp,s Pme,; Pmp,> PNULL € {0; 1]

o shakey,, shakeg € Ny, shake, €]0,1]

hd p‘?‘ﬂ,,lﬁ; p-n7,357 p‘m,cfﬁ; p-mm 6 {O* ]-] \Vith pmﬁi < p-mAg: p‘m,;:;i < p-n7,357 p‘m,cf?: <
pmcrﬁ ? pmpi < pmm

e a>0,belN

o $Clyye C {A, B}, selezioney .

Jeus fens Jeos Jen €10,1] such that fo, + fo, + foo + fop =1

Jmus fmns Fmes fmp € [0,1] such that fo, + foup + fme + foup =1

Initially the GA scts the mutation probabilitics pn. ., Pmg, Pme and pp,t0
the mmitial values Pms,s Pmp.s Pmc, and Prmp, respectively. Then it creates
an initial ordered population of pop;.. randomly generated feasible solutions
W = (w1, .., Wpop,..) and the variable wpes is sct to the w; with the highest
EU. The population @ is modificd repeatedly for numb;,, times. A single
modification of « is obtained by executing on it in this order a recombination,
a mutation and a selection operation. The creation of the initial population
and these operations will be presented in the sections 6.5, 6.6, 6.7 and 6.8
respectively. At the end of cach iteration of the modification all the clements
of @ arc evaluated and the w; with the highest EU is found; if EU(w;) >
EU(wpest) then the present wyes 18 discarded and replaced with w;. Also the
best and the average value of the population of cvery iteration arc stored and
ifin the last shake,inane 1terations the average i1s greater than shake, g, times
the best of the corresponding generation, then for shakegyeation iterations the
mutation probabilitics Py, ., Py, Paes Py, that influence the behaviour of
the mutation operators, arc increased and set to Pa,, , Pg,_, Pc, and Pp,
respectively: after this number of iterations, the probabilitics are sct back to
the initial values. After all the iterations are done, twyeg 1s returned as output.
Thercfore wpe,; 18 the best feasible solution in the set of all the individuals
obtained at the end of cach iteration.

In summary the main structure of the GA can be described in pscudo
code as in figure 6.7.

6.5 The creation of the initial feasible popu-
lation

The initial population of feasible assignments is generated randomly. All
the popg;.. individuals arc generated with the same method: an individual w;
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{ rcad BPP;
rcad paramcters;
Py < FPa;: P« Fp;: Fo < Po;: Pp < Pp;:
i < Imitial-feasible-population;
Whest < the wy with the highest EU;

for (i < 1 to popsie)

{

}

Mate();
Mutate();
Sclect{);

w 4— the wy with the highest EU;
if (EU(w) > FU(Wpest)) Whesr < w3

oy <— the average EU of ;
3; < the best EU of
if (Vj € {i — shake, +1,..,i},j > 0:q; > 3; - shake, )
{ Py« P4 Pp< Pp: Po< Po: Pp< Pp,;
h < shakegy:
t

if (h>0)h<h—1;
elSG{P,l(—JPA?.;PB<—PB7.;P(;%PC7.;PD<—PD7.;}

return ey

Figure 6.7: The main structure.
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is generated by assigning cach node of the tree with a random value of the
sct (D x Dy, x {0,1}) U{NULL} and by repairing this possibly unfeasible
assignment by the Ordercd-repair operator. The random value of the set of
positions is given hy the function Random-position-NULL.

The creation of the initial feasible population is described by the pscu-
docode of Figure 6.8.

function Initial-feasible-population:
{ for(i < 1 to popg;..)
{ for{j < 1ton)w;(N;) « Random-position-NULL;
Ordered-repair (w;):
t

return

Figurc 6.8: The creation of the initial feasible population.

6.6 The mating

In a GA the recombination process plays the role of the reproduction in
Naturc. It has the purpose of creating new individuals similar to some of
those alrcady present in the population, by mixing their genetic informa-
tion. The new individuals are not too different from their parents and have
features of boths. The recombination process causes the exploration of the
ncighbourhood of the point of the secarch space in which the GA has moved.

In this GA the recombination process is carried out by the procedurc
Mate that makes use of four gencetic operators: the Upward Gentle Crossover
(Crossover-A), the Downward Gentle Crossover (Crossover-B), the Ordered
Brute Crossover (Crossover-C) and the Random Brute Crossover (Crossover-
D). These operators receive in input a couple of feasible solutions and modify
it producing a new couple of feasible solutions. Each crossover operator is
associated with a frequency parameter which influences the frequency of its
application. The Mate operator changes the population by choosing on the
average % - POPgize couples from the population and by applying to cach of
them a crossover operator randomly chosen with a frequency dependent on
its frequency parameter.
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In other words in this GA during the recombination process on the average
% - POPsize CcoOuples mate: cach couple produces two children according to one
of four different reproductive schemes randomly applied with a frequency
dependent on their frequency parameters: cach couple dics after gencrating
the two children and the children replace their parents in the new population.

The pscudocode for the recombination process is shown in figure 6.9.

By varying the frequency parameters fo,, fons foo: Jop We can vary the
frequency of applications of cach operator: on the average Crossover-X is
applied P 2Bt fo o times in cach application of operator Mate. If we set to
1 onc of the f;, and all the others to 0, we obtain an traditional GA that
uscs only onc crossover operator, the Crossover-X.

The individuals produced by these operators are a mixture of their parents
and arc rcasonably similar to them. Also a couple of twins produces a couple
of children identical to their parents, so the application of a crossover operator
to a couple of twins has no cffect in the variability of the population.

The crossover operators change the input feasible solutions v and u in
the following way: they choose a node o of the tree and they swap in v and
u the valucs of the nodes of the subtree rooted at «; the solutions v and o'
thus obtained arc a raw mixture of v and « — as cach of them has the nodes
of a subtree with the values of the other and the rest of the nodes with the
their values and they are possibly unfeasible — and are repaired.

The reparation method distinguishes the four crossovers and will be pre-
sented in the scctions 6.6.1, 6.6.2, 6.6.3 and 6.6.4. The way « is chosen
depends on paramcter scny,,. and is explained in subsection 6.6.5.

6.6.1 The Upward Gentle Crossover

This crossover operator — also called Crossover-A — repairs the possibly
unfeasible solutions ¢ and «' by modifying the valucs of the nodes 3 # « of
the path from the root to «. This modification is made by considering all
the nodes of the path from the root to o, and for cach of them by checking if
in the correspondent position the correspondent container overlaps with any
container of the nodes of the subtree rooted at a; if it overlaps with at least
onc of them, the correspondent node is set to NULL. The two solutions arc
then filled. See Figure 6.10.

The pscudocode i1s in figure 6.11.

The two solutions produced by this operator are then a mixture of the
input solutions and arc feasible. They are identical to the raw mixture of the
parcnts a part from the nodes of the path from the root to a.

This opcrator is called upward because the reparation of the individuals
obtained by just swapping the subtrees is obtained by modifying the ancestors
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procedure Mate(w);
{ I=0
for(i < 1 to popg..)
{ r <« arandom number €]0, 1];
if(r < P) I« I'U{i}:
t

if (|7] is odd) I < I without its highest clement;
lot £ = {iy, .., ip} with iy <. < i

if (1 # )
for(h « 1 to £)
{ r+ arandom number in |0, 1];
if (r < f.,) Crossover-A{ws, 1, wap):
else if (r < f.. + fop) Crossover-B(wsy, 1, way):
else if (r < f,, + fep + feor.) Crossover-Cluway 1, wap );
else Crossover-D(wap,_1, wap);

Figure 6.9: The Mate procedure.

63
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<+— Reparation + Filling

b A

Figurc 6.10: The Upward Gentle Crossover operations.

of node a and it is called gentle because 1t makes the cffort of changing as
few nodes as possible in the two solutions obtained by swapping the subtrecs,
thus respecting their appearance.

6.6.2 The Downward Gentle Crossover

This crossover operator — also called Crossover-B — repairs o' and o' by
modifying the values of the nodes of the subtree rooted at . The nodes
of the subtree are considered in the basic order: for cach of them, if the
correspondent container overlaps with one of the containers of the nodes in
the path from the root that node, then its value is set to NULL. The two
solutions arc then filled.

The pscudocode is in Figure 6.13. See Figure 6.12

Even with this operator the two produced solutions are a mixture of the
input solutions and arc feasible. Each solution is identical to the possibly
unfeasible raw mixture of the parents a part from some nodes in the subtree
rooted on the node in which is done the crossover.

This operator is called downward because the reparation of the individ-
uals obtained by just swapping the subtrees is carried out hy modifying the
offsprings of node « and it is called gentle for the same reason of the previous
opcerator.
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procedure Crossover-A(u, v);
{ choosc a node a;

for each( node of the subtree rooted at «)
swap the values of v and v on the node 3;

for each(~ node # « of the path from the root to @)
if(473 node of the subtree rooted at e such that e(y)
in position «(v) overlaps with ¢(/3) in position «(/3))
u(y) < NULL;
Fill(u);

for each(~ node # « of the path from the root to @)
if(373 node of the subtree rooted at « such that e(y)
in position v{7) overlaps with ¢(3) in position u(/3))
v(v) < NULL;
Fill(v):

Figurc 6.11: The Upward Gentle Crossover (Crossover-A).
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<+— Reparation + Filling

b A

Figurc 6.12: The Downward Gentle Crossover operations.

6.6.3 The Ordered Brutal Crossover

This operator — also called Crossover-C — repairs the solutions ¢ and o'
by applyving the Ordered-repair operator.

The pscudocode is in figure 6.14.

Note that the repairation procedure modifies the raw mixture of the par-
cnts only in the nodes of the subtree rooted at a.

This operator is called brutal because the reparation of ¢ and «' can
involve the modification of all the nodes of the subtree tree and the resulting
solutions can he not too much similar to those before the repairment. It is
called ordered because it uses the Ordered-repair.

6.6.4 The Random Brutal Crossover

This operator — also called Crossover-D — repairs the solutions ¢ and o'
by applying the Random-repair operator.

The pscudocode i1s in figure 6.15.

As with the previous operator, the nodes of the raw mixture of the parents
modificd by the repair operator arc only those of the subtree rooted at a.

It is called brutal for the same reasons of the previous operator and it is
called random hecause 1t uses the Random-repair procedurc.
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procedure Crossover-B{u, v);
{ choosc a node a:

for each(;3 nodc of the subtree rooted at @)
swap the values of u and v on the node 3;

let {31, .., 3x} the nodes of the subtree rooted at «
in the basic order;

for(i < 1 to k)
if(4v node # 3; of the path from the root to 3;
such that ¢(v) in position u(v) overlaps with e 3;)
in position u«())
u(f;) < NULL;
Fill{u);

for(i + 1 to k)
if(Ay node # 3; of the path from the root to 3;
such that ¢(v) in position v{~) overlaps with ¢{f3;)
in position v{3%))
v(i3%) « NULL;
Fill(v):

Figure 6.13: The Downward Gentle Crossover (Crossover-B).
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procedure Crossover-C{u, v);
{ choosc a node a;

for each(/ node of the subtree rooted at «)
swap the values of © and v on the node 3;

Ordered-repair(u);
Ordered-repair(v);

Figure 6.14: The Ordered Brutal Crossover (Crossover-C).

procedure Crossover-D{u, v);
{ choosc a node «;

for each(;3 node of the subtree rooted at @)
swap the values of v and v on the node 3;

Random-repair(u);

Random-repair(v):

}

Figurc 6.15: The Random Brutal Crossover (Crossover-D).
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6.6.5 The choice of the crossover node

A crossover made on a leaf results in just changing the values of that node
in the two individuals and a crossover on the root leaves both the solutions
unchanged. The leaves constitute a large part of the total number of nodes,
especially if the the degree of cach node is large. If this happens a large
number of the crossovers arc made on the leaves, thus not mixing very well
the genetic information of the individuals. For this reason the choice of the
crossover node is a delicate issuc and different algorithms for choosing the
crossover node may have different performances.

In this GA the crossover node can be chosen by once of three different
algorithms. The crossover operator chooscs the node o by an algorithm
determined once and for all by paramecter sengyp,.

If senype = A, then the node is chosen by first choosing a level > 0 and
then a node from that level, cach node with the same probability. This means
that the root ha% probability 0 of being chosen and a node o of level 7 > 0
has probability ? with 7; the number of nodes of level I and p the number
of levels > 0. This algorithm prevents the root from heing chosen but let all
the other nodes to he chosen, leaves included.

If senyype = I, then the node is chosen by first randomly choosing a level
> 0 with inner nodes and then randomly choosing an inner node from that
level, cach node with the same probability. This mcans that the root and
the leaves have probabilitx 0 of being chosen and an inner node o of level
I > 0 has probability —— with n; the number of inner nodes of level 1 and p
the number of levels > ‘0 with inner nodes. This algorithm prevents the root
and the leaves from being chosen.

If sengype = C, thon the node 18 chosen randomly. All the nodes have the

same probablhtx . root and leaves included.

6.7 The mutation

The mutation process has the purpose of introducing new genes in the
population. It is fundamental in order to avoid the convergence of the algo-
rithm to a local maximum. It moves the GA to new arcas of the scarching
space.

In this GA the mutation process is carried out by procedure Mutate
that makes use of four mutation operators called Ordered Gentle Mutation
(Mutate-A), Random Gentle Mutation (Mutate-D), Ordered Brute Mutation
(Mutate-B) and Random Brute Mutation (Mutate-C). These operators will
be described in the sections 6.7.1, 6.7.2, 6.7.3 and 6.7.4 respectively.
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The mutation operators receive in input a feasible solution and modify it
more or less slightly thus creating a new feasible solution not too different
from the original onc. Each of them is associated with a frequency parameter
that influcnces the frequency with which it is used and with a probability
paramcter that influences the strength of the modification. The mutation
modifics the input population by applying on cach individual one of the four
mutation operators randomly chosen according to their frequency parameter.

The pscudocode of the procedure Mutate is given in figure 6.16.

procedure Mutate(w);
{ for(i < 1 to popgi..)
{ 7 < arandom number in |0, 1]
if (r < fin,) Mutate-A(w;);
else if (r < fo,, + fimy) Mutate-B(w;);
else if (r < fo, + fimp + frme) Mutate-Cluw;);
else Mutate-D(w;);

Figurc 6.16: The Mutate procedure.

By varying the frequency parameters fo,., fop: fme: fmp WC can vary
the frequency of applications of cach operator: on the average Mutation-X
is applicd popg;,.f., times in cach application of opcrator Mutate. If we sct
to 1 the parameter f,, and all the others to 0, we obtain a traditional GA
that usecs only the mutation operator Mutate-X.

6.7.1 The Ordered Gentle Mutation

This operator — also called Mutate-A — receives in input a feasible solu-
tion, it sets to NULL value some of its nodes and then it considers them in
hasic order; for cach of these modified nodes @ this operator assigns to a a
random position and if this position is feasible for the path from the root to
a and for the subtree rooted at «, it is kept and the operator goes to the
next modified node; clse the GA tries to find the next feasible value. The
solution is then filled.

The pscudocode for operator Mutate-A is in figure 6.17.

Note that the input solution is modificd and kept feasible by Mutate-A
and that after the modification the input solution is changed on the average
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procedure Mutate-A(v);
I 1+
for each{a € N)
{ r < arandom value in |0, 1J;
if (r < Py, ,) add « to I;
}

for each{a € I) ¥(a) « NULL;

let {N1, .., Ng} be the clements of T (i.c. the modified
nodes) in the basic order;

if(f £ 0)

for (i < 1 to k)

{  ¥(¥;) + Random-position;
while ((:ontainer c(N;) in position ¢ (N;)
is not inside of the hold

or
dv node # N; of the path
from the root to N;: such that e{~)
in position ©(~) overlaps with e{Nj)
in position ¥ (N;)

or

13 node # N; of the subtree rooted at v
such that ¢(3) in position (3) overlaps with c(N;)

AT

in position U(\?))

BIN;) q}.(qj*l(t.b(Ni)) + 1)5

Fill());

Figure 6.17: The Ordered Gentle Mutation (Mutate-A).
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in P, 7 nodes. Also note that the line in which all the nodes of [ are set to
NULL 1s nced-less: 1t 1s present here just to emphasize the similaritics with
the random Gentle mutate operator.

This operator is called Gentle because it tries to keep as much as possible
the original aspect of the solution. It is called ordered because the modified
nodes arc repaired in the basic order and it is called Gentle because it tries
keep the original appearance of the input feasible solution.

6.7.2 The Random Gentle Mutation

This operator — also called Mutate-D — is very similar to the Ordered Gen-
tle Mutation. The only difference is that the mutated nodes are considered
in a random order.

The pscudocode for operator Mutate-D is in figure 6.18.

The input solution is modified and kept feasible by Mutate-D. After the
modification the input solution is changed on the average in £, ,n nodes.

It is called random because the reparation of the modified nodes is done
in a random order and it is called Gentle for the same reason of Mutate-A.

6.7.3 The Ordered Brutal Mutation

This operator — also called Mutate-B — is very simple: it choosces a set of
nodes and it assigns them a random value by the Random-position-NULL;
then it repairs the so obtained solution by the ordered repair operator.

The pscudocode for operator Mutate-IB is in figure 6.19.

Note that the number of nodes in which the feasible output solution differs
from the input one is not foresceable on the average, because the Ordered-
repair operator may change an unforesecable number of nodes of the solution.

The name of this operator has been chosen with the same conventions of
the names of the previous operators.

6.7.4 The Random Brutal Mutation

This opcerator — also called Mutate-C — is very similar to the operator
ordered brutal mutation: it chooses a sct of nodes and it assigns them a
random valuc: then it repairs the so obtained solution by the random repair
operator. The only difference is in the repair operator.

The pseudocode for operator Mutate-C is in figure 6.20.

Again the name of this operator has been chosen with the same conven-
tions of the names of the other operators.
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procedure Mutate-D(¢);
L 1+
for each{a € N)
{ r < arandom value in |0, 1J;
if (r < P,,,) add « to I
}

for each{a € I) ¥(a) « NULL;

let {N1, .., Ng} be the clements of T (i.c. the modified
nodes) in a random order;

if(f £ 0)

for (i < 1 to k)

{  ¥(¥;) + Random-position;
while ((:ontainer c(N;) in position ¢ (N;)
is not inside of the hold

or
dv node # N; of the path
from the root to N;: such that e{~)
in position ©(~) overlaps with e{Nj)
in position ¥ (N;)

or

13 node # N; of the subtree rooted at v
such that ¢(3) in position (3) overlaps with c(N;)

AT

in position U(\?))

BIN;) q}.(qj*l(t.b(Ni)) + 1)5

Fill());

Figurc 6.18: The Random Gentle Mutation (Mutate-D).



CHAPTER 6. THE GENETIC ALGORITHM

procedure Mutate-B{(¢):
{ for each(a € N)
{ r < arandom value in |0, 1];
if (r < P,.) ¢¥(a) + Random-position-NULL;

Ordered-repair():

Figure 6.19: The Ordered Brutal Mutation {Mutate-I3).

procedure Mutate-C());
{ for each{a € N)
{ 7 < arandom valuc in |0, 1J;
if (r < P,..) ¥(a) < Random-position;
}

Random-repair();

Figure 6.20: The Random Brutal Mutation (Mutate-C).
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6.8 The selection

In a GA the sclection process plays the role of the natural sclection in
Naturc. It has the purpose of letting the strongest individuals to survive
and of killing the weakest and it is fundamental for the improvement of the
population.

Once of three selection mechanisms can be used in this GA and is deter-
mined by paramcter selectiony,,.: the fived sclection, the f( ﬂ}’_fX)—sclection
and the well known proportional sclection corresponding to selectiony,,. =
A, B and C respectively.  These sclection methods will be commented in
the subsections 6.8.1, 6.8.2 and 6.8.3. Howcver all of them have the same
structure.

The sclection process is carried out by procedure Sclect. Population & is
modified by Sclect. Each individual w; is associated with a number

p"‘ - fX (?7 ELT(LU]-)T "t ELT(LUPOPW;G))

with X the selectiong,,. and function fx > 0 such that "= Y"F7" p; > 0.
Vector ¢ = (qo, .., Gpop,..) is built such that ¢o = 0, and ¢ = ¢ + %,
for ¢ € {1,..,popsizet. Then a new temporary population i built in the
following way: for i = 1,..,pope,e a random number r of the set |0, 1] is
generated and v; 18 w; with § € {1, .., popgi..} such that r €]¢;_1,¢;]. Then
i becomes 7.

In summary the selection mechanism of the GA can be deseribed in
pscudo code as in figure 6.21.

In this GA the sclection is based on the idea of the roulette wheel, as
in the first example of GA in [1, page 32|. As a matter of fact this process
can be imagined as follows. Each individual w; is associated with a value
p; dependent on the value EU(w;), the EU of all the individuals and the
paramcter selectiong,.. A roulette wheel is built with pops;.. slots, cach
slot corresponding to an individual w; and with an angle proportional to
;. The population @ is modified by the sclection in the following way: a
population ¢ is built such that individual »; is the individual of population @
correspondent to the slot chosen by making the wheel spin; then @ becomes
7. Therefore p; is proportional to the probability of individual w; surviving
for the next generation.

Note that paramcter selection,,,. decides once and for all the sclection
mcchanism of the iterations: if paramcter selectiong,,. = X then in all the
iterations the numbers p; will be created by the function fx.

Function f4 is defined as

fA : {1 "TPOpr?ize} x RTPOPeize RBL
(7.1, s byop.,.. ) — glrank;)
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procedure Sclect ()
{ X « selectiony.;
for (i < 1 to popse) pi < fx (i, EU(wn), .., EU(wpop....)):
B 3T s
qo  0;
for (i < 1 t0 popg..) ¢ < ¢ + %
for (i < 1 to popsie)
{ r < arandom number of the set ]0, 1];
j < the only onc j € {1, .., popsi..} such that r €]g;_1, ¢;];

Uy S Wy
}
¥
Figure 6.21: The sclection.
with ¥z ¢ RY, g(z) = Mlel and @ > 0 and with rank; = j such that b; = b;

where {bg, .., b} = {b| = I, .., DOPsize} such that B}L > by, Vi (0. rank; is
the index from 0 to & of b; in the sequence (b, .., by) increasing ordering of
{bl| =1, --:popsize})-

Function fg is defined as

fB : {]—7 "TPOPS?:ZB} X R‘f’pnpﬁfi;e Y R+

Iy : 1 ifall b, =0
(3': LR )pr)p._qi;s) — f( by ) clse

mar{b|I=1,..,popsize }

with Vo € [0, 1], f(z) = 2"
Function fe is defined as

fG . {:L "?popsize} X R+p0p-ﬁi:s s R+

b ey {1 allb=0
P Upopaize h; clse

Because p; is proportional to the probability of w; appearing in the next
generation, p; must be bigger for the hest individuals. Thus function f must
the have the property that VX € {4, B,C} and ¥b € R if b, < b;

then fx(i,b) < fx(4,h).
Note that whatever is the parameter selectiong,g., is F > 0.
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Also note that the individuals of the population produced by the sclec-
tion process arc chosen from those of the population undergoing the sclection
and some of them may repeat. Until a certain extent the repetition of some
individuals is not a bad cvent as those who repeat arc those that have a
bigger p; and so a bigger EU. But in a population there must not be not too
many twins. In such a population the positive effect of recombination disap-
pear, because when a crossover operator is applied to a couple of identical
individuals it produces children identical to their parents. The only cause for
variability is the mutation and the GA risks to stick on a local maximum.

6.8.1 The Fixed Selection

If parameter selectiong,. = A the GA will use the fixed sclection. With
this sclection method the probability of an individual surviving to the next
generation is proportional to p; = m with rank; = the index j such that
EU(w;) = b; if {EU(w)|l = 1,..,popsizet = {bo, -, bk, with by > .. > by,
The integer rank; is called rank of w;. This means, for example, that if w;
has the highest EU in the population, its rank will be 3 = 0 and will he
p; = ¢(0) = 1: and if w), will have the sccond best EU, then its rank will be

5 =1 and will be p, = g(1) = —=; and so on.

a+
The dependence of p; from the rank of w; is given by function g(x) = ﬁ

with @ > 0 (sce figure 6.22). Notc that whatever is parameter a, the lower

i

WP O

a=l
a=
a=
a=.

0.8 i

06| ¢ \\\

9(x)

02| " e |

Figure 6.22: Function ¢ with different values of parameter a
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the EU(w;) the higher the rank of w;, so the lower p; and the lower the
probahility of survival for individual w;.

By varying paramcter o we can vary the severity of the sclection. Infor-
mally the severity of a sclection method measures its tendency to keep for
the next generation the individuals with higher EU and to refuse those with
lower EU. In this casc the higher a, the higher the probability of survival
for the individuals with high EU with respect to those with low EU. As a
matter of fact V5, ¢ € N, j > i the function r(a) = %)} = %ill is increasing
and VYa € R} ,r(a) > 1. So, given a population @ and two individuals wy,
and wy such that EU(wy,) > EU{wy), we have rank, = i < ranky = j and

pr _ 9(i)

S50 = -
P a{7)

increasce the severity of the selection process. Note that Vi > 0, % =aj+1.
This means that the probability of survival of the individuals with the higher
EU can be made as much bigger than that of another individual with lower
EU as we want just by increasing a.

is increasing with @ and > 1. So by increasing paramcter a we

In the choice of parameter ¢ we must he carcful not to make the sclection
too severe nor too allowing. If the sclection is too severe, we risk to obtain a
population with many twins stopping the evolution of the population (as ex-
plained in page 77) before the global maximum is found. If it is too allowing,
the worst individuals may have almost the same chances to pass to the next
generation as the best. Hence the population evolves just randomly, with no
average improvement.

6.8.2 The f(;%)-selection

If paramcter selectiony,e = B the GA will use the f(3%5)-sclection.

With this sclection method if all the individuals have £ = 0 — 1.c. they are
all NULL functions — they will all pass to the next generation and the new
population will be the same. Else the probability of an individual w; surviving
to the next generation is proportional to f(%) with f(z) = 2%

MAX{ET (w;

% is given by function f(x) = x* with
b e Ny (sce figure 6.23). Note that whatever is paramcter b € Ny, the higher
the EU of an individual w;, the higher its p; and so its probability to survive
in the next generation, because the closer is an individual to the MAX, the
bigger its probability.

By varying paramcter b we can vary the severity of the sclection. The
higher b, the higher the probability of survival for the individuals with high
EU with respect to those with low EU. As a matter of fact given a population
o and two individuals w; and w; with EU(w;) > EU(w;) the ratio r(b) =

The dependence of p; on
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b=1
b=2 —
b=5 """
b
08 |- s
06 |- g
()
04 |- g
02 1
O Il i Il Il
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X

Figure 6.23: Function f with different values of paramcter b

: b

pi (BTN cs E , eTeac

= ( EU(mj)) 15 increasing with b and > 1. So hy increasing paramecter b
Pi

we increase the severity of the sclection process. Also limy oo 5 = o
J

This means that the probability of survival of best individual can be made

as much bigger than that of another individual with lower EU as we want

just by increasing b.

6.8.3 The Proportional Selection

If parameter selectiony,,, = C the GA will use the proportional sclection.
With this sclection method if all the individuals have EU = 0 —i.¢c. they arce
all NULL functions — they will all pass to the next generation and the new
population will be the same. Else the probability of an individual surviving
to the next generation is proportional to its EU. With this method we cannot
vary the severity of the selection. In some experiments this sclection method
have proved unable to let pass the best individuals to the next generation.
With this method, when % ~ 1 the probability of survival of the
best individuals is almost the same of the worst.

Note that if we use parameter selection,,, = B and b = 1 we have a
sclection mechanism identical to the proportional one.
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6.9 The Shake feature

The shake mechanism has been introduced in this GA with the purpose
of avoiding the premature convergence of the GA and can be used with any
GA. The shake starts and influence the evolutionary process when the indi-
viduals of the population in the last generations have more or less the same
value, situation often due to the presence of twins or very similar individuals.
In such a situation a traditional GA would produce with great probability
cven morce twins and the population would not improve, as new individuals
would be very improbabibly gencrated. When the shake starts, the mutation
probabilitics arc increased for a certain number of generations thus increasing
the probability of producing new individuals. Then the probabilitics are sct
back to the original values. The effect of the shake action is the insertion in
the population of new individuals from new arcas of the scarch space. This
individuals, mating with the old ones may produce better solutions, as they
introduce new genetic information in the population.

In other words, if we imagine the population of a GA as a group of
individuals moving more or less together and trying to climb the hills of an
artificial landscape, the shake event occurs when the population has reached
the top of a local hill and its effect is that of migrating the population in a
new arca of the landscape where the population starts climbing the local hill
again. Yet the problem of preventing the population from moving to and fro
in the same two hills has not been considered in this work.

Usually after a shake event has occurred there is an average worsening of
the population as some of the good genes are lost, but after a certain number
of generations the new genetic information, if good, can bear its fruits. The
typical curve for the best and the average versus the generations is given in
figure 6.24.

In this figure the shake happens after the average has heen more than
0.995 of the best for 10 generations and it lasts 1 generation. During the
shake, the mutation probabilitics become five times bigger.

The shake feature should be used combined with a strong sclection pres-
surc and with a weak mutation.

Note that if we set shake, = 1 the mutation probabilitics will never he
increased and the GA behaves as a traditional GA with no shake mechanism.
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Chapter 7
A GA for BCSPs

7.1 Overview

In this chapter a GA that tries to find a solution with the highest EU of
a given BCSP is described.

7.2 Introduction

In Chapter 6 we have presented a GA that tries to find an optimal solu-
tion of a given BPP. This algorithm, by modifyving slightly some of its genetic
operators, can be casily extended and become a GA to find an optimal solu-
tion of a given BCSP. The GA of Chapter 6 is then a particular case of the
algorithm described in this chapter.

7.3 Basic concepts and operations
The following definition will be often used in this chapter.

Definition 18 Given a BCSP C, onc of its assignements ¢ and onc of its
nodes «, we say that the path of « is feasible in ¢ iff the assignement of
variables I such that Vi € I, f(i) = ¢(3) with 7 € B and ¢(3) = i is feasible
for P, with B ={3 € N |¢¥(3) # NULL and 3 is of the path from the root
toat and I = {c(3) | 3 ¢ B}. O

The extended GA is based on conceps and basic operators similar to those
of scction 6.3 that will be summarized in this scction.

As soon as the GA reads the input BCSP, Vi € {1,..,m} it orders the
clements of D; U {NULL} so that NULL is the last clement of this order.

83
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We will call ¢; the ordering of D; U{NULL}. Also it orders the nodes of the
tree in the same basic order of section 6.3.2.

A fill operation 1s used cven by the extended GA. Its purposc is that of
reducing the presence of NULL values in the solution so as to increase its
EU.When the fill operator is applicd to a solution ¢ the nodes of the tree of
the BCSP are visited in the basic order and for cach node « if () = NULL
the GA trics to find the first clement of D,y in the order such that the path
of « is feasible in ; if it docs not cxists, the NULL value is left in ¢(«).
The pscudocode for operator Fill can be found in Figure 7.1.

procedure Fill(y)
{ let N ={Ny, .., N;} be the basic ordering of the nodes:

for{(i < 1 to n)
if(1(N;) = NULL)
{ Jj< L
W(N;) &)
while(the path of N; is not feasible in )
{ i+l
} (N ()

Figurc 7.1: The Fill procedure for BCSPs.

The two reparation operators of scction 6.3 are used in the extended
GA, but they arc slightly modified. When applied to the possibly unfeasible
assignment ¢, the Ordered-repair operator visits the nodes of the tree in the
hasic order and for cach node o, if the path of o is not feasible in 7 then the
operator looks for a value v € D,y U {NULL} following {«v) in the order
of this sct such that if ¢¥(«) = v, the path of « is feasible in ¢:; then it fills
1. The pseudocode of this operator is in Figure 7.2.

When the Random-repair is applicd to the possibly infeasible assignement
w0, 1t creates an initially empty solution +; it randomly orders the nodes of the
tree and for cach node o in that order it executes the following modifications:
it assigns ¥{c) to ¥'(a) and it looks for a valuc v € Dy U{NULL} following
(@) in the order of this set such that if ¢/'(a) = v, ¥;3 node of the subtree
rooted at o the path of 3 is feasible in ¢'; then it assigns this value to ¢/ («):
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procedure Ordered-repair ()
{ let {Ny,.., Ny} be the nodes of N in the basic order:

for(i + 1 to n)
while (thc path of N; is not feasible for U)

O(N;) = @il (0(N;)) + 1);
Fill(v):

Figure 7.2: The Ordercd-repair for BCSPs.

at the end it fills +0" and it replaces ¥ with psi’. The pscudocode of Random-
repair can be found in Figure 7.3. If ¥ is feasible, these operators leave
unchanged.

The functions returning a random value of the domain of a variable, used
in the mutation operators and in the procedure Initial-feasible-population,
behave in the same way as the corrispondent ones of the GA for BPPs, but
they must be slightly adapted to the more general situation of the BCSPs.
The Random-position-NULL receives in input the variable ¢ and it returns
NULL with probability Pyrrr and an clement of D; with probability 1 —
Pyrrp: in this case cach clement of D; can be returned with probability
14;3% The pscudocode is in Figure 7.4. The Random-position receives in
input the variable ¢ and it returns an clement of D; U{NULL}, cach clement
with the same probability |D;| + 1. The pscudocode is given in figure 7.5.

7.4 The main structure

The GA for BCSPs depends on the same paramcters of the GA for BPPs
and has the same main structure presented in Section 6.4. The procedures
used by the main procedure, Mate, Mutate and Sclect of scctions 6.6, 6.7
and 6.8 respectively and the 2 brute crossovers of sections 6.6.3 and 6.6.4
respectively are exactly the same. The only differences are in the Initial-
feasible-population procedure, in the 2 gentle crossovers and in the mutation
operators and in the conceps and operators spoken of in Section 7.3.
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procedure Random-repair ()
{ let {4, ..,@x} be the nodes of N in a random order;

create the solution ¢ such that Vi, ¢'((;) = NULL;

for(i < 1 to n)
{ (@) o)
while ( the path of J; is not feasible for ¢ )

} WH(@Qi) @il (W'(@)) + 1);
Fill (4
W '

Figure 7.3: The Random-repair for BCSPs.

7.5 The changed Initial-feasible-population

The Initial-feasible-population is very similar to the correspondent pro-
cedure of the GA for BPPs. The only difference is in the use of the Random-
position-NULL function that in this case requires the argument ¢(e). In
Figurc 7.6 the pscudocode of the new Initial-feasible-population is shown.

7.6 The changed crossovers

Asg stated in the previous section, the Gentle Upward and the Gentle
Downward Crossover must he slightly modified.

The crossover operators swap the values of the nodes of the subtree rooted
at some chosen node ¢ in the two input solutions u and v. Then the two
possibly unfeasible assignements «’ and ¢' thus obtained are repaired. The
difference between these two crossover is the reparation method. The Upward
Gentle Crossover repairs « and ¢’ by changing the valucs of the nodes v #£ «
of the path from the root to o starting from the alpha’s father and going
towards the root as shown in Figure 7.7.

The Downward Gentle Crossover repairs »' and @' by changing the nodes
of the subtree rooted at o in the way shown in Figure 7.8. Note that the fill
function will only modify the values of the nodes v # « of the path from the
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function Random-position-NULL(1);
{ 7+ arandom number of |0, 1];
if(r < Pyprr) return NULL:
else
{ r+ arandom number in {1, .., |D;|}:
return ¢;(r);
t

Figurc 7.4: The Random-position-NULL function for BCSPs.

function Random-position(i);

{ 7 < arandom number of {1,..,|D;| + 1}:
return ¢;(r);

}

Figure 7.5: The Random-position function for BCSPs.

function Initial-feasable-population;
for(i < 1 to popg..)
{ for each{a € N) w;(«) < Random-position-NULL(c()):
Ordered-repair (w;);
t

return

Figure 7.6: The creation of the initial feasible population for BCSPs.
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procedure Crossover-A(u, v);
{ choosc a node «;

for each(;3 node of the subtree rooted at @)
swap the values of © and v on the node 3;

Let {71, .., %} be the nodes v # « of the path from the root to «
such that Vi, v, 18 the father of

Let «' be a solution identical tu wu;
for(i < 1 to k) u'(v;) « NULL;
for(i < 1 to k)
{ () < uln);
if(43 node of the subtree rooted at o such that
the path of 3 is not feasible in ')

u'(vy;) « NULL;
}

Fill{u);
Let @' be a solution identical tu v;
for(i < 1 to k) v'(v;) < NULL;
for(i < 1 to k)
{ V() vl
if(373 node of the subtree rooted at o such that

the path of 3 is not feasible in v')
v'(v;) «— NULL;

Fill{v);

Figure 7.7: The Upward Gentle Crossover (Crossover-A) for BCSPs
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root to « 1n the first case and the values of the nodes of the subtree rooted
at « in the sccond casc.

procedure Crossover-B{u, v);
{ choosc a node a;

for each( node of the subtree rooted at «)
swap the values of u and v on the node 3;

let {31, ... 3w} the nodes of the subtree rooted at o
in the basic order;

for(i + 1 to k)
if(thc path of 3; is not feasible in u) w(3;) < NULL;
Fill (u):

for(i + 1 to k)
if(the path of 3; is not feasible in ©) v{3;) < NULL;
Fill(v):

Figurc 7.8: The Downward Gentle Crossover (Crossover-B) for BCSPs.

7.7 The mutations

The mutations operators must he slightly changed too. The brute muta-
tions arc very similar to the corrispondet procedures of the GA for BPPs. The
only difference is that the corrispondent random position function is called
with the argument e{c). The pscudocodes for these mutation operators arce
given in figures 7.9 and 7.10.

The gentle mutation operators change the input solution in some nodes.
After choosing which nodes to mutate and after mutating them — i.c. assign-
ing them a NULL value — these operands repair them in some order. The
reparation of a mutated node o of the assignements 0 consists in assigning
to ¥(a) a random valuc v € Dgyq) U {NULL} and finding the first valuc
v' € Dyy U{NULL} following v in the ordering of this set such that when
assigned to ¥{e), the assignement ¢ is feasible. The only difference between
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procedure Mutate-C{¢)):
{ for each(a € N)
{ r < arandom value in |0, 1];
if (r < Pp.) ¥(e) < Random-position-NULL{c{e));

Ordered-repair():

Figure 7.9: The Ordered Brutal Mutation {Mutate-B) for BCSPs.

procedure Mutate-C());
{ for each{a € N)
{ 7 < arandom valuc in |0, 1J;
if (r < Py...) ¥(a) < Random-position(c(a));
}

Random-repair();

Figure 7.10: The Random Brutal Mutation (Mutate-C) for BCSPs.
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procedure Mutate-A(y);
I 1+
for each{a € N)
{ r < arandom value in |0, 1J;
if (r < Py, ,) add « to I;
1

for each{a € I) ¥(a) « NULL;

let {N1, .., Ng} be the clements of T (i.c. the modified
nodes) in the basic order:

if(f £ 0)
for (i < 1 to k)
{  ¥(N;) « Random-position(c(N;)):
while (43 £ N;, 3 nodce of the subtree rooted at o
such that the path of 3 is not feasible in 1))
B(N;) — by (qﬁ;l(w(m)) + 1);
}

Fill());

Figure 7.11: The Ordered Gentle Mutation (Mutate-A) for BCSPs.
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the Ordered Gentle Mutation and the Random Gentle mutation is the order
in which the mutated nodes arc repaired: the basic and a random order re-
spectively. The pscudocode for the two perators is given in figures 7.11 and
7.12.

procedure Mutate-D(¢);
{ T+ 0
for each(a € N)
{ 7 < arandom valuc in |0, 1J;
if (r < Py,,) add a to I
}

for each(a € I) ¥(a) < NULL;

let {1, .., N} } be the clements of 1 (i.c. the modified
nodes) in a random order;

if(7 £ 0
for (i < 1 to k)
{  ¥(N;) < Random-position(c(V;)):
while (Elﬂ # N;, 7 node of the subtree rooted at o
such that the path of 7 is not feasible in U)
BN < (0 (V) 11);
t

Fill(v));

Figure 7.12: The Random Gentle Mutation (Mutate-D) for BCSPs.



Chapter 8

The Parameters Tuning

8.1 Overview

This chapter presents the results of some experiments designed with the
pourpose of finding some assignments of parameters that give the GA an
average good performance.

8.2 Introduction

The GA described in Chapter 8 depends on several parameters which
influence its performance and hehaviour greatly and must he chosen before
the algorithm is run. It is interesting and uscful to know whether some
assignments of paramcters arc better than others.

Yet finding out which is the best assignment 1s very difficult because of the
large number of possibilitics and because of the large variety of BPPs that the
algorithm can solve. As a matter of fact there can be BPPs with trees of very
different shapes and set of containers with completely different dimensions.
An assignment of paramcters can be good with a class of BPPs but bad with
another. In order to make a complete study it would be necessary to fix a
finite sct of values for cach parameter with a continuous domain and try all
the possible assignments of parameter values on a large number of problems
for several runs. Yet this systematic approach is impossible in the time at
our disposal.

We have then decided to do experiments only on few assignments that
secemed to be good. Not all the reasonable assignments have been tested.
Often the results of some experiments gave interesting hints for further tests:
the whole final sct of cxperiments was not planned in advance, but is the
result of an historical process where the new direction of the tests was influ-

93
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cnced by the results of the past experiments. Even though this set of tests is
not systematic at all and not the ideal one, 1t lcaded us to a GA with better
performance than the initial algorithm.

It is obvious that the performance of a GA improves as we increasc the
population size and the number of iterations. The aim of the experiments
of this chapter is then that of finding good assignments of paramcters with
numbyer = 100 and pops;.. = 100. We hope that these assignments with
different numb;ge, and pops;.. arc good as well.

It would be also interesting to know if for particular classes of problems
the GA performs better with particular assignments of parameters, but this
question has not been considered in this thesis.

8.3 The experiments

An experiment on a assignment of paramcters consisted in running the
GA with these parameters for three times on a BPP and on recording the
hest value at the end of cach run.

The BPPs used in these tests have been created by the random problem
generator described in Appendix A and can be found in Appendix B. They
differ mostly on the shape of the trees, being some tall and slim and some fat
and short, while the type of containers is almost the same. Of course they
do not represent well the set of all possible problems, but it was not possiblc
to do the experiments with a larger number of problems.

As far as the parameters arc concerned, in general note that:

e if shake, — 1 then the paramcters shakey, shakey, Po,  Prp . Poc, s
P, do not influence the GA;

e if selecty,,. = A then parameter b does not influence the GA;
e if selecty,,. = I3 then parameter a does not influence the GA;

e VX ¢ {A, B.C, D} such that f,,. = 0 then P‘””J\}: and Fp,. do nof
influcnce the GA.

For all the assignments of parameters tested in this chaptor it is popg.. =
100, numby., = 100, P, = 0.5, Py = 0.3, b = 30.
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8.4 The experiments on single genetic com-
ponents

Initially some assignments of parameters which cause the GA to employ
a single crossover and a single mutation have been tested. The porpose was
that of cxamining the behaviour of the single genetic components with all
the selection and the selection of crossover node types. At the time of these
experiments mutation C and D and crossover D had not been implemented
vet and the tests regarded only mutation A and B and crossover A,B and C.
Two scts of experiments have been done.

8.4.1 The first set of experiments

The first sct of experiments consisted in testing all the possible assign-
ments such that:

e 1X € {A, B} such that f,,, =1

e 1X € {A, B,C} such that f._ =1
e a0 —3

o shake, =1

o Py, = Puy = Pug, = Py = 0.01

that is all the assignments of parameters with ¢ = 3, P],,L,l?_ =P, p, = P-mci =
P, = 0.01 that causc the GA to usc only! mutation A or B and only
CTOSSOVCT A.B or C and not to use the shake feature.

One of these assignments is called XY ZK iff :

§CNtype = A

o selectiony, =Y
hd fr:z =1
hd f'm.fx" = ]'

lNOtC That fC‘A: fC‘B'- ffc"- fC‘D E {01] a.l'ld fC‘A + fC‘B + fc‘c + fC‘D = 1 a'nd That f'inA-.
fmg-. fmca f”?.r) S [0 1] and fmA + f]H,B + fmc + fmn = 1, as stated in Scetion 6.4;
so if fo, = 1, then VY € {A,B,C. D} \{X}.fe, = O and if f,,, = 1, then ¥Y ¢
14, B.C.DIN{XY, finy = 0
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so the set of names of the assignments of paramcters tested in the first set
of experiments is {4, B, C} x {A, B,C} x {A, B, C} x {A, B}.

The experiments consisted in running the GA with these assignments of
paramcters for three times on four problems, cach time recording the EU
of the best found solution. The details of the problems can be found in
Appendix B.

Tables 8.1, 8.2, 8.3, 8.4 and 8.5 show the results of these experiments.

rinputi rinputf rinput? rinputf average
AAAA 1.3531158 1.916178 3.192196 1.568283 2.015100
AAAR 1.1058830 1.960601 3.113818 1.655611 2.108980
AABA 1.299086 1.925871 3.3303141 1.565610 2.030229
AABRR 1.113915 1.960875 3.361186 1.659877 2.099711
AACA 1.355289 1.935350 3.112789 1.605173 2.009726
AACB 1.114226 1.960539 A.315673 1.640201 2.082660
ABAA 1.353415 1.903731 A.287117 1.595914 2.035052
ABAR 1.395571 1.958503 AAA87AD 1.635915 2.1096491
ABBA 1.361976 1.953936 3.140931 1.590126 2.086817
ARBR 1.3651641 1.959599 A.938632 1.643052 2.076586
ARBCA 1.360614 1.911531 3241828 1.579166 2.024110
ARCH 1.389591 1.959822 A.370170 1.662225 2.095153
ACAA 1.384514 1.953360 3.206594 1.571680 2.052287
ACAB 1.381627 1.959891 A.992883 1.622205 2.080175
ACRA 1.3531158 1.959101 3.357063 1.619509 2.072351
ACRR 1.5381110 1.9558770 3.183635 1.636062 2.114902
ACCA 1.3531158 1.931598 3.198563 1.608083 2.023672
ACCH 1.391372 1.919131 3.291218 1.627821 2.065710
BAAA 1.380267 1.922620 3.25T862 1.592298 2.038262
RAAR 1.397197 1.960619 3.3118858 1.669033 2.092931
RABA 1.369902 1.952951 3.382209 1.616292 2.080339
BARB 1.372413 1.960619 3.308681 1.661850 2.075898
RACA 1.360630 1.917118 3.311161 1.612155 2.058666
BACH 1.400480 1.958916 3.382207 1.651123 2.098189
BBAA 1.367969 1.920201 A.27THEGT 1.592222 2.039065
BBAR 1.113350 1.959488 3.497765 1.668887 2.131873
BEBA 1.373820 1.943971 A.273976 1.6264185 2.051564
BBRB 1.104543 1.959565 A.417102 1.671361 2.113143
BBCA 1.367175 1.9123141 A.055104 1.616015 1.087832
RBCH 1.394547 1.959128 3.205560 1.632183 2.072855
BCAA 1.353443 1.925213 3.220211 1.580696 2.019891
RCAB 1.5381581 1.953787 3.322590 1.596167 2.064357
RCBA 1.391306 1.939157 3.380165 1.599764 2077718
RCEBB 1.381018 1.951191 3.521883 1.627693 2.122696
RCCA 1.353118 1.953717 3.3151258 1.620508 2.060707
RCCR 1.102303 1.918610 3.3204130 1.622109 2.073371
CAAA 1.368899 1.915692 3.328179 1.569310 2.053020
CAAR 1.101296 1.960580 3178708 1.658979 2.124890
CABA 1.353116 1.907229 3.352769 1.581197 2.0418660
CARB 1.385539 1.960610 3.281869 1.661997 2.073251
CACA 1.360668 1.901510 3.220195 1.550107 2.010370
CACH 1.397265 1.960619 3.501210 1.640305 2.0741850
CRAA 1.3487741 1.927889 3.163013 1.567775 2.001863
CRARB 1.384118 1.958119 3.313518 1.631796 2.079102
CRBA 1.380508 1.945242 A.165825 1.575780 2.016839
CBBB 1.397036 1.958779 AAA388T 1.634572 2.108568
CRBCA 1.208788 1.909617 3.210899 1.588111 2.001929
CRCH 1.395616 1.959167 A.350774 1.6284116 2.083508

1.367972 1.922399 3.371209 1.577098 2.059670

1.385915 1.957921 3.117102 1.592015 2.088253

1.37T985 1.935013 3.367713 1.599975 2.070179

1.387981 1.915129 3.181339 1.618969 2.115929

1.353113 1.928819 3.309996 1.570271 2.010611

1.391612 1.939851 3.291218 1.609236 2.057979

Table 8.1: The averages of the first sct of experiments.

Table 8.1 for cach problem and assignment of paramecters shows the aver-
age of the the best found values in the 3 runs of the GA with that assignment
of paramcters on that problem; the last column shows for cach assignment the
average of all the runs on all the problems of the GAs with that assignment
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of paramcters.

rinputd rinput6 rinput? rinputd average
A 1.373317 1.947150 A.328327 1.616114 2.0662341
B 1.381762 1.916251 A.327599 1.625582 2.070299
c 1.374442 1.910251 3.327138 1.604793 2.061656

Table 8.2: The selection of the crossover node types.

Table 8.2 for cach type of sclection of crossover node and for cach problem
shows the average af all the runs on that problem of all the assignments with
that type of sclection of crossover node; the last column shows for cach type
of selection of crossover node the average of all the runs on all the problems
of all the assignments with that type of selection of crossover node.

rinputd rinput6 rinput? rinputd average
A 1.377379 1.916013 A.317713 1.620170 2.065319
B 1.375165 1.942256 3.313001 1.618914 2.062342
c 1.376977 1.915386 3.352318 1.607105 2.070529

Table 8.3: The sclection types.

Table 8.3 for cach typce of sclection and for cach problem shows the average
af all the runs on that problem of all the assignments with that type of
sclection: the last column shows for cach type of sclection the average of all
the runs on all the problems of all the assignments with that type of selection.

rinputd rinput6 rinput? rinputd average
A 1.379515 1.911267 3.336089 1.608298 2.067042
B 1.3753147 1.948790 3.371984 1.623528 2.079912
c 1.371658 1.940599 3.271989 1.611693 2.051235

Table 8.4: The crossover types.

Table 8.4 for cach type of crossover and for cach problem shows the av-
crage af all the runs on that problem of all the assignments with that type
of crossover; the last column shows for cach type of crossover the average of
all the runs on all the problems of all the assignments with that crossover.

Table 8.5 for cach type of mutation and for cach problem shows the
average af all the runs on that problem of all the assignments with that type
of mutation; the last column shows for cach type of mutation the average
of all the runs on all the problems of all the assignments with that type of
mutation.

The assignment corresponding to the row with the highest value in the
last column of table 8.1 should be a good assignment for these problems.
We also expected that the assignment with the type of sclection of crossover
node corresponding to the line of table 8.2 with the highest value in the last
column, with the type of sclection corresponding to the line of table 8.3 with
the highest value in the last column, with the type of crossover corresponding
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rinputl rinput rinput? rinputd average
A 1.359108 1.932037 3.276489 1.590525 2.039611
B 1.393606 1.957066 3.ATHRERG 1.610188 2.092512

Table 8.5: The mutation types.

to the line of table 8.4 with the highest value in the last column and with
the type of mutation corresponding to the line of table 8.5 with the highest
value in the last column was a good GA.

According to table 8.1 the first 10 best assignments are: BBAB, CAADB,
BCBB, CCBB, ACBB, BBBB, ABADB, AAADB, CBBDB, AABDB, BACDE, ABCB
in this order. All of them use mutation B. Selection C and crossover B are
in many of the best assignments. CAADB and BCBB have almost the same
value, so BCBB can be considered the 2°¢ best. Also 3 of the first 4 assign-
ments end with CBB. The different types of sclection of the crossover node
obtain almost the same results and it scems that the type of the sclection of
the crossover node is not influent.

These assignments are also given by tables 8.2, 8.3, 8.4, 8.5. In fact in
table 8.2, the highest average is obtained by selection of crossover node B,
followed by A and C, but the numbcers are very close, so that there scems
to he not much difference between them: in table 8.3 the highest average is
in row of sclection C, followed by row of sclection A and B; in table 8.4 the
best average is obtained by crossover B followed by A and C; and in table
8.5 mutation B obtains better results than mutation A.

These experiments confirmed our idea that crossover B is good, but they
also revealed the unexpected goodness of sclection C and mutation B and
the not bad performance of sclection of the crossover node C. This result is
apparcntly surprising because sclection C and mutation B and the random
sclection of the crossover node have proved often inadequate to find a good
solution in past experiments. Sclection C is not much severe and often unable
to sclect the best individuals for the next generation — as we can see from the
figure 8.1, where assignment CCAA is used to solve rinput0 and where we
can sce the curves of the average EU and of the best EU of the population
in the various gencrations — and mutation B tends to change radically an
individual and risks to move the population to another region the scarching
space, loosing the good genes found so far. Being the leafs more numerous
than inner nodes, sclection of crossover node C tends to choose for crossover
leaf nodes thus behaving like a mutation on the same node for two individuals.

The goodness of sclection C and mutation B and the not bad performance
of selection of the crossover node C can be understood.

We note that sclection C, being not much severe, prevents the population
from having a lot of twins — as it happens with the other selections — and
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Figure 8.1: A bad behaviour of sclection C.

keeps the population varied; mutation B varics the population often changing
some individuals completely. On the other hand selection A is more severe
and in cach iteration can sclect the best individual many times reducing the
number of different individuals in the population; mutation A changes an
individual only slightly, in order to keep some of its genes: a GA with this
two components tends to converge soon. These observations arce confirmed
by the graphs of figures 8.2 and 8.3. In the figure 8.2 we can sece the graphs of
the average EU and of the best EU of the population on all the generations
of a run of BABA on the problem rinput0. We can sce that the curve of the
average gets very close to the curve of the best and from a certain gencration
onward there is too little variability and no improvement at all. Instead if
we look at figure 8.3 where are displayed the graphs of a run of BCBDB on
the same problem, we can sce that there is still some variablness even in the
last generations and the final result is better.

Figure 8.2: A run with the BABA assignment.

A GA with sclection C and mutation B have a various population, while
a GA with sclection A and mutation A has population of very similar indi-
viduals. Sclection of the crossover node C tends to behave like a mutation
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Figure 8.3: A run with the BCBDB assignment.

rather than like a crossover. So in these tests the best results were obtained
by the assignments that keep a good variability in the population.

Therclore mutation A with P,, = 0.1 could do hetter than mutation A
with P,, = 0.01 and maybc 1t could compcte with mutation B with P, =
0.01. Also the best type of components, especially for sclection and mutation,
could be different with a bigger £,,. These experiments gave us the indication
for new cxperiments and possible improvements.

8.4.2 The second set of experiments

We decided to compare the & best assignments according to table 8.1
(BBAB, CAAB, BCBB, CCBB, ACBB) with assignments BAAA, BABA,
BBAA, BBBA with paramcter P, = 0.1 instead of P, = 0.01.

The new assignments consist of all the assignments of parameters whose
name is in {B} x {A, B} x {4, B} x {A} with P,, = 0.1. We chose sclection
of the crossover node B because it revealed to be the best in the previous
cxperiments, mutation A hecause it is more sophisticated and should he more
cffective with the bigger P, sclection A or B hecause they are more selective,
but should work well with a strong mutation and crossover A or B because
in the previous tests they hehaved.

We run the GA with these assignments on six problems for three times.
The detail of the two new problems arc in Appendix B. We made the usual
table of the averages and a table of the best that collects for cach problem and
assignment the hest result in the 3 runs of that assignment on that problem.

From table 8.6 we can sce that the best 3 results on the average arc
obtained by assignments with mutation A with £, = 0.1. But the difference
i1s small and we cannot say that the new assignments arc much bhetter than
the old oncs. What we can say i1s that the new oncs arce at least as good as
the old onecs and that mutation A, in order to he effective, needs a P, higger
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rinputl rinputd rinputi rinput6 rinput? rinputd average
RBAR 2.195863 13350 1.870910 1.959188 3.197765 1.668887 2.101011
CAAR 2.228531 04296 1.876676 1.960580 3.475705 1.658979 2.100791
RCRBR 2.200090 LA8A018 1.851230 1.951191 LB21883 1.627693 2.090351
CCRB 2.167210 LARTIRL 1.811002 1.915129 181339 1.618969 2.071160
ACRB 2.167137 L381110 1.839506 1.9558770 183635 1.636062 2.077708

W

w

e

BAAA 2.183319 AR8026 1.871302 1.960619 3.565416 1.635112 2.101192
BABA 2.205129 37242 1.8879141 1.923001 3.565853 1.653001 2.101690
BBAA 2.138591 3THE19T 1.862915 1.935036 3.315424 1.638274 2.049240
BRBBA 2.205103 3TH225 1.885490 1.930600 3.565535 1.650516 2.102083

Table 8.6: The averages of the second set of experiments.

rinputl rinputl rinputh rinputf rinput? rinputf
2.227380 1.414572 1.8880927 1.959997 A.566514 1.679662
2.231921 1.111535 1.885318 1.960619 3.566511 1.679662
2.212960 1.111087 1.863151 1.959798 3.559231 1.610913
2.202562 1.101719 1.828115 1.957900 3.566511 1.679662
2.202250 1.387112 1.858277 1.960137 3.507708 1.610913
2.228652 1.113595 1.891518 1.960619 3.57T81141 1.67A737
2.233956 1.375212 1.889188 1.960619 3.57T81141 1.675128
2.205627 1.375212 1.890651 1.959239 3.129091 1.669891
2.215443 1.375212 1.886201 1.960352 3.570831 1.671910

Table 8.7: The best results of the sccond sct of experiments.

than 0.01.

In Figurcs 8.4, 8.5, 8.6, 8.7, we can scc the curves of the average EU and
the best EU in some runs of some assignments with mutation A and F,, = 0.1
and mutation BB on the same problems.

AVERAGE ——
BES

Expected Uty
Expected Uty

Figurc 8.4: A run of CAADB and BABA on rinput0.

8.5 The experiments on mixed genetic com-
ponents

Other experiments have been done on assignments of paramecters that
cause the GA to employ more than one crossover and mutation. The pour-
posc was that of investigating wether 1t is better to use onc single genetic
componcent or a mixture of them. In these experiments crossover D and
mutation C and D have also been tested.
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Figure 8.5: A run of CAADB and BABA on rinput4.
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Figurc 8.6: A run of BBADB and BBBA on rinputs.

The experiments of this section regard 10 different assignments of param-
cters. The problems we used are the same of Section 8.4.2; so the result of
this scction can be compared with those of that scction. For all the tested
assignments it 15 8¢y = B, selection,. = A, shake, = 1 — so the shake
feature is disabled — and P‘mAi = Pmﬂi = P-mci = Pmni = 0.1. They differ
only on the frequences of the crossovers and of the mutations and on the
sclection pressure. The tested assignments arc:

o miz! assignment with fo = (fou, fons foor fon) = (345, 5,0), fn =

Figure 8.7: A run of CAADB and BBBA on rinput?.
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(fmA: fmg: f-mc.': fmp) - (% %: 0: O) and a =1

o miz3 with f, = (3,3

55 0), fm=1(5,5,0,0) and 0 = 3

e mizADBI with f; = (% %,O,D), fn = (%

R |—=

o mirADB3 with f; =

1
27

,0,0)and a =1

£.0,0), fm=(3,2.0,0) and a = 3

e mizABCDI with f, = (3,553 fm=(5 5.5 1) anda=1

o mizABCD3 with [, = (3,353 fm=(5, 5.5, 1) anda =3

o mixABCDS with ﬁ = (i i i i) fm =(1,13,

o mizABCDIn with f, = (i i 1)y fo = (15150 15
o mizABCD3n with f. = (i i 1), f = (5515, 15

o mizABCD/n with ﬁ = (13—0, 3 3 %); f?m = (%, S L

) and a = 4
Zyand a =1
2)and a =3

3)and a =4

These assignments, here presented together, have in fact been tested sep-
arately. The first to be tested were those with parameter ¢ = 1. Because in
the graphs of their runs the curve of the average was jugged and far from the
curve of the best, both in the bad and in the good performances — as can bhe
seen in Figure 8.8 —, we decided to increase the sclection pressure and test
them with ¢ = 3. Then, because of the better results with parameter a = 3,

we tested the two best assignmets with a = 4.

Figurce 8.8: The curves of mixAB1 on a bad and a good performance.

The results of the tests are shown in tables 8.8 and 8.9.

As you can sce from Table 8.8, apart from mix1, all the mixed assignments
obtaincd better average results than the best assignmets for GAs with single
components found so far. The best average is obtained by mixABCD3n
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closcly followed by mixABCD3. They are the only assignments that reached
the hest average in 3 problems. However the averages differ only on the 3rd
decimal position and the correspondent assignments cannot he considered
much different.

rinputl rinputd rinputs rinputt rinput? rinput& average

mixl 2.234217 1.375242 1.8904109 1.960619 A.A45047 1.676802 2.097056
mix3 2.231898 1.375242 1.895669 1.960619 A.578114 1.678415 2.119998
mixAB1 2.228761 1.101481 1.804872 1.960619 A.578114 1.677116 2.1234199
mixAB3 2.230276 1.375242 1.895516 1.960619 A.57765R9 1.678415 2.119626
mixABCD1 2.233114 1.105355 1.895925 1.960619 A.578114 1.679662 2.125165
mixABCDA 2.220517 1.114601 1.895557 1.960619 A.578114 1.678415 2.126142
mixABCDA 2.231399 1.414601 1.894627 1.960619 A.574247 1.678415 2.125656
mixARBCD1In 2.233138 1.414601 1.8941502 1.960580 A.578114 1.666523 2.124626
mixARCD3n 2.233982 1.111601 1.8941190 1.960619 3.574247 1.679662 2.126267
mixARCTn 2228278 1.111601 1.895609 1.960619 3.574247 1.677962 2.124719

Table 8.8: The averages of the mixed assignments.

Even Table 8.9 confirms that the mixed assignments arc better than the
oncs with single component. The mixed assignments have reached or beated
the records in all the problems. In particular mixABCD3n and mixABCD3.

rinputl rinputl rinputh rinputf rinput? rinputf

mixl 2.237790 1.375212 1.895891 1.960619 3.57T81141 1.679662
mix3 2.232425 1.375212 1.896098 1.960619 3.57T81141 1.679662
mixARl 2.229319 1.111601 1.895158 1.960619 3.57T81141 1.679662
mixAR3 2.230951 1.375212 1.895516 1.960619 3.57T81141 1.679662
mixARCD1 2.235473 1.111601 1.896221 1.960619 3.57T81141 1.679662
mixARCD3 2.232677 1.111601 1.896270 1.960619 3.57T81141 1.679662
mixARBCA 2.232677 1.114601 1.895553 1.960619 A.578114 1.679662
mixABCD1In 2.235009 1.114601 1.895670 1.960619 A.578114 1.679662
mixABCDAN 2.235643 1.114601 1.895443 1.960619 A.578114 1.679662
mixABCDn 2.230696 1.1141601 1.896222 1.960619 A.578114 1.679662

Table 8.9: Best results of the mixed assignments.

8.6 The experiments on the shake feature

The last st of experiments regards 4 assignmets that cause the GA to
usc the shake feature. The GA has been run on the usual 6 test problems.
For the tested assignments it is seny,,. = I, selection,,,. = A, shake,, =

chalk Fo_ (3 3 3 1 1§ — (3 3 1 3 F o
10;.51?@!1,6? < L, fo = (35: 160300 10) and fo, = (350360150 15) - The tested
assignmcets arc:

—

X - - 45 5 5 5 _
e shakel with P, = (Pmu,li,Pmﬂi,PmC,i,P.mn,) = (==, ), a =

100* 100° 100° 100

k3
BT, 995 _ _f5 5 B BN L
67 L"’h‘a‘ke‘r 1000° Pm,,g - (PmAS:ngS 3 Pm,c.'g:Pm,r)g) - (1[]: 10’ 10° 1[]) aI].d
shake; = 1

- — 5 5 5, 5, " —
o shake? with Py, = (1%, 105 105> 1) @ = 6, shake, = {5, P,
(b 5 5 5

i6° 100 10> 1p) and shakey = 2
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o hestshakel with P, = (1—10,%,%,%); a = 3, shake, — %, P =
(L i 7 7

16 167 15> 15) and shakes =1

o hestshake? with P, = (1—10,%, %,%), a = 3, shake, — %, P,
(L 1 1 1

10° 10° 10° ﬁ) and sh,aked =2
Note that shakel and shake2 differ only on paramcter shakey; = 1 and 2
respectively: the same it happens for bestshakel and bestshake2. Also note
that assignments bestshakel and bestashake2 arc identical to mixABCD3n
of Section 8.5 a part from the parameters that concern the shake feature and
that shakel and shake2 have a weaker mutation (determined by parameters
ﬁm,,) and a stronger sclection pressure (determined by paramcter ) as in
these conditions — as stated in Section 6.9 — the shake feature should be
morc uscful.
The results of these tests are shown in tables 8.10 and 8.11.

rinput( rinputl rinputi rinput6 rinput? rinput8 average
shakel 2228372 1.111601 1.895011 1.960619 3.87T2818 1.679662 2.125180
shake2 2.221539 1.101181 1.894431 1.960619 A.570381 1.679662 2.121353

bestshakel 2.226601 1.114601 1.895053 1.960601 2578114 1.679662 2125773
bestshake?2 2.225410 1.4114601 1.895488 1.960599 3571247 1.679662 2.125001

Table 8.10: The averages of the experiments on the shake feature.

rinputl rinputi rinputh rinputf rinput? rinputd
shakel 2.230933 1.111601 1.8962141 1.960619 3.5781141 1.679662
shake2 2.231863 1.111601 1.8955841 1.960619 3.5781141 1.679662

bestshakel 2.229756 1.111601 1.896251 1.960619 35781141 1.679662
bestshake2 2.226718 1.111601 1.8950925 1.960619 3.5781141 1.679662

Table 8.11: The best results of the experiments on the shake feature.

From these tables we can sce that the best average result — obtained
by bestshakel — is the 3rd best ever, but the numbers are very similar and
the 4 assignments tested here have almost the same performance.  Also,
according to these numbers, they have almost the same performance of the
hest assignments of Section 8.5.

8.7 Conclusions

The experiments of this chapter, even if not complete, lead us to as-
signment of parameters that are better than the ones we were using at the
heginning, at least in solving the test problems?.

2Note that the problem rinput6 has been exactly solved, as the EU of the output
best solution is equal to the upper bound and that cven if problems rinput4, rinput? and
rinput8 have not. been solved with certainty, all the best algorithms give output solutions
with the same FU, making us think that these problems too have been solved.
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The best two assignmets found so far for GAs without shake feature arc
mixABCD3n and mixABCD3 of Section 8.5; while the best two assignmots
found so far for GA with shake feature arc hestshakel and shakel of Section
8.6. Howcver, because of the small difference between the numbers other
assignments could be good as well.

Asg we can sce from tables 8.1, 8.8 and 8.10, the GAs that employ more
than one genetic operator perform better. From these fow cxperiments we
can say that the shake feature doces not improve much the performances of
the GA, but we think it deserves to he studied more.

Eventually we have to remember that, because of the small number of
test problems, these experiments could have sclected good assignments for
these problems and not so good in general. Yet, when facing a new problem,
it 1s more reasonable to use onc of the best assignments found in this chapter,
rather than to usc random paramcters.



Chapter 9

The Evaluation of the GA

9.1 Overview

In this chapter some results uscful to cvaluate the quality of the GA
developped in Chapter 6 are presented.

9.2 Introduction

A way to judge the goodness of an approximation algorithm is to compare
the best value 1t finds with the real optimal value of the BPP or with the
hest value found by other approximation algorithms.

The first method is not always applicable in the case of our GA, as the
best solution of BPPs is often unknown, for no exact algorithms have been
implemented yet. The second method requires the existence of more than
onc algorithm to solve the same class of problems. So evaluating the quality
of our GA has been quite difficult.

In the case of testing a GA by applying the sccond method, we can
comparc our best value with the best value found by the other algorithms
in the same amount of time or, if the others are stochastic population hased
algorithms, after the same number of individuals are generated. The first
technique is dipendent on the machine and on the implementation of the
algorithms and it may happen that one machine is particularly good with
onc of the algorithms to be tested, because of the particular operations that
it requires, for which the machine can he optimized, and another machine
can be particularly good with another algorithm. Also the results of the
first technique is strongly dependent on the level of optimization of the code.
Because we want to judge the algorithm itsclf and not its implementation,
the sccond technique is better for our purposcs.
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A very simple stochastic iterative algorithm is based on a random scarch.
It consists in gencrating iteratively and randomly feasible individuals until
a terminal condition occurs. We have implemented the algorithm random-
solver which is slightly more cptious. Each random individual is produced
by assigning cach node of the tree a random and possibly unfeasible position
for its container and then the individual is repaired by the ordered-repair
function. This algorithm is called random-solver and its pscudocode can be
found in Figure 9.1 where the function Initial-feasible-population of Scction
6.5 is used. The implementation of this algorithm is described in Section
A.2. This algorithm is slightly more than a simple random generation of
solutions, as the solutions produced in such a way arc a bit optimized after
their generation because of the filling carried out at the end of the repair
function.

{ DOPsize < 1
Pyyrr + 0.3;

i < Imitial-feasible-population;

Whest € Wi,

for(i « 1, .., numbye,)

{ & « Initial-feasible-population;

} if(EC(w1 ) >EU(whest)) Whest <— w1:

return w;;

Figure 9.1: The random-solver algorithm.

In this chapter will be presented the results of one run of our GA —
controlled by two of the best assignments of parameters found in Chapter
8, hestshakel and bestl — on some problems with a known solution and on
others with unknown solution. The results of onc run of the random-solver
on the same problems will also he given.
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9.3 Problems with known optimal solution

9.3.1 Problems with linear trees

We knew the solution of some problems with lincar trees and we tried to
solve them by our GA. Of course, being a lincar tree BPP a very particular
problem, there are better algorithms to solve it. As a matter of fact a lincar
tree BPP is just a 2D cutting stock problem and in order to solve it we can
usc an algorithm specifically designed for this tighter class of problems. So
we expected our algorithm not to perform particularly well.

Problems lin16 and lin73 arc derived from two 2D strip packing problems
with known optimal solution taken from [12]. They are described in sections
B.8 and B.9 respectively.  Because in these problems the utilities of the
containers arc their arcas, these BPPs can be viewed as problems of placing
a sct of known containers on a known rectangular hold minimizing the hold
waste space. Because we know that in both cascs the hold can be completely
filled, the optimal EU of both problems is the hold arca, also corresponding
to the UB.

linl6 1lin73

optimal EU 400 5400
hestl 394 4686
hestshakel 400 4666
random 364 4042

Table 9.1: The best EUs and the optimal EUs.

We have run our GA with the assignments of parameters bestshakel and
bestl with popgi.. = 100 and numb;., = 900 on hnl6 and with popg;,. = 20
and numb;e, = 200 on 1in73; we have run the random-solver with numb;., =
90000 and numbsge, = 10000 on linl6 and 1in73 respectively. The best EU
of problem 1lin16 and lin73 found by our 3 algorithms and their optimal EU
can he found in Table 9.1. The graphical representation of the best solutions
found by the 3 algorithms arc shown in figure 9.2, 9.3, 9.4, 9.5, 9.6, 9.7.

9.3.2 A modified problem

Problem art7 is described in section B.7. It is derived from problem
rinput? of scction B.5 in the following way: we have added to rinput7 a new
container so big that no other container can be placed on the hold along with
it and with an utility that is > than the sum of the utilitics of the containers
of cvery path from the root to a terminal node and we have associated cach
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Figurc 9.2: The hold of the best solution of problem linl6 found by best-
shakel.
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Figurc 9.3: The hold of the best solution of problem 1in16 found by bestl.

terminal node! of the tree with this container. It is then obvious that the
best solution is the onc that assigns this container to all the terminal nodes
and NULL to all the other nodes and the optimal EU is the utility of this
containcr.

We have run our GA on this problem with the paramcters of bestshakel
and bestl and with pops,. = 100 and numbe, = 300. We have also run
random-solver on this problem with numb,.,. = 30000. The best EU of
problem art? found by our 3 algorithms and its optimal EU can he found
in Table 9.2. The curves of the average and of the best EU of these runs of
bestshakel and bestl on art7 are shown in figures 9.9 and 9.8 respectively.

!Note that the only terminal nodes of this BPP arc its leaves.
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Figurc 9.4: The hold of the best solution of problem lin16 found by random.

optimal EU 20

hestl 20
hestshakel 20
random 11.561560

Table 9.2: The hest EUs and the optimal EU for problem art?.

9.3.3 A problem with reached UB

Problem rinputé of Scction B.4 has been exactly solved by our GA in
Chapter 8. As a matter of fact the hest solution found by our GA has the
same value of the UB of rinput6. So the optimal EU is exactly the UB. We
have run again our GA with the paramecters of bestshakel and bestl and
with popgi.. = 100 and numb;., = 300. We have also run random-solver on
this problem with numb;,., = 30000. The hest EU of problem rinput6 found
by our 3 algorithms and its optimal EU can be found in Table 9.3.

optimal EU 1.960619
hestl 1.960619
hestshakel 1.960619
random 1.905080

Table 9.3: The best EUs and the optimal EU for problem rinput6.
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Figurc 9.5: The hold of the best solution of problem lin73 found by best-
shakel.

9.4 Problems with unknown optimal solution

Finally we have compared the best solutions of problems rinput0, rinput4,
rinputd, rinput? and rinput® (sce Appendix A) found by the random-solver
using numbie, = 30000 with those found by our GA using the paramecters
of bestshakel and bestl and with popg.. = 100 and numb;., = 300. The
results of these runs arc shown in Table 9.4.

rinput0  rinputd  rinputd rinput 7 rinput8

bestl 2.235643  1.414601 1.894625 3.578114 1.679662
bestshakel  2.229265 1.414601  1.896203 3.078114 1.679662
random  2.147712 1.410169 1.844847 3.300993 1.640943

Table 9.4: The best EUs for the unknown solution problems.

9.5 Conclusions

Asg we can scen from the tables 9.1, 9.2, 9.3 and 9.4, our GA has always
proved better than the random-solver generating the same number of indi-
viduals and sometimes it is able to find the optimal solution as it happens
with hestshakel on linl16 and bestl and bhestshakel on art? and rinputG.
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Figurc 9.6: The hold of the best solution of problem 1in73 found by bestl.

Figurc 9.7: The hold of the best solution of problem lin73 found by random.
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Figure 9.9: The curves of bestshakel on problem art7.



Chapter 10

The Application

10.1 Overview

The GA described in Chapter 6 has been implemented in ANSI C. In this
Chapter it is shown how to use this implementation.

10.2 Introduction

We have implemented the present GA in ANSI C and the resulting ap-
plication is a command line program that can he run in any system with an
ANSI C compiler. The program must bhe run with 6 arguments. The first
argument is the name of an cxisting text file containing an assignement of
all the paramecters of the GA. The second is the name of an cxisting text
file containing the description of a BPP. This two files will not be modified
by the application. The other 4 arguments arc names of files that will he
created by the application.

When we run the program with these 6 arguments, the GA is run on the
BPP described by the sccond argument with a hehaviour determined by the
assignemet of parameters of the first argument: at the end of the run, the
solution of the BPP with the highest EU found by the GA will be recorded
in the third file, the fourth and fifth files will contain the average and the
best EU of the various gencrations respectively and the sixth file will keep
the seed of the random number generator used for that run.

Thercfore, given a BPP, in order to find one of its solutions with the
highest EU, we must define all the parameters determining the behaviour
of the GA and write them in a text file; hence we must write a text file
describing the BPP and finally we must run the program with six filenames as
arguments, being this two files the first two arguments. The best solution will
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be saved in the third argument, the forth and fifth will contain information
about the average and hest EU of the various gencrations and the sixth the
sced of the random number generator.

10.3 The parameters file

The first argument is the name of a file that contains an assignment
of the 27 paramcters determining the behaviour of the GA and is called
the parameters file. The paramcters are presented in the sections 6.4 and
following. The structure of the parameters file is given in Figure 10.1.

In this figure, < int > is a scquence of digits representing a number
€ Ny; < prob > is a sequence of digits representing a rational number € [0, 1]
< sep > 1s a sequence of one or more tab or space or CR characters; < real >
is a sequence of digits representing a rational number € Ry ; < sen > is A or
B and < select > is A,B or C. An example is in figure 10.2.

Each string preceding the symbol = corresponds to a paramecter. The
value following cach = is assigned to the paramcter corresponding to the
string preceding =.

The application doesn’t do any checking on the sintactical correctedness
of the parameters file: the user must assure that the parameters file is sinc-
tactically correct. Of course the numbers assigned to the parameters must
respect the other conditions for the parameters that arc:

. f{:A + fr:g + fr:c- + fr:n =1
. f‘mA + fm B + fmcr + fm n — 1

® DOPDsize Z 2

. p-m.A?. < pm,1_5: p'ﬂlgi < pmg_ﬁr p-m.c?. < pmc-_g: p-m.,r)?. < pmn_5

10.4 The input file

The sccond argument is the name of a file that contains the description
of the BPP whose the GA will try to find a solution with the highest EU and
is called input file. The structure of the input file is given in Figure 10.3.

Ag in the previous figure, in this onc < inf > is a scquence of digits
representing a number € Ny < prob > is a sequence of digits representing a
rational number € [0,1]; < sep > is a sequence of one or more tab or space
or CR caracters: < real > 1s a scquence of digits representing a rational
number € Rl : < wtil > is a string of digits representing a number € RT:
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numb_iter=< inf >< sep >
pop-size=< inf{ >< sep >
Pc=< prob >< sep >
PmAi=< prob >< sep >
PmBi=< prob >< sep >
PnCi=< prob >< sep >
PmDi=< prob >< sep >
P_null=< prob >< sep >
shake w=<int >< sep >
shake d=<int >< sep >
shake r=< real >< sep >
PmAs=< prob >< sep >
PmBs=< prob >< sep >
PmCs=< prob >< sep >
PmDs=< prob >< sep >
a=< real >< sep >
b=<int >< sep >
scn_type=< scn >< sep >
selection_type=< select >< sep >
fcA=< prob >< sep >
fcB=< prob >< sep >
feC=< prob >< sep >
feD=< prob >< sep >
fmA=< prob >< sep >
fmB=< prob >< sep >
fmC=< prob >< sep >
fmD=< prob >< sep >

Figurc 10.1: The structure of the parameters file.
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numb_iter=300
pop_size=100

Pc=0.5

PmAi=0.1
PmBi=0.1
PmCi=0.1
PmDi=0.1

P_null=0.3

shake_w=10
shake_d=1
shake_r=0.995

PmAs=0.7
PmBs=0.7
PmCs=0.7
PmDs=0.7

a=3
b=30

scn_type=B

CHAPTER 10. THE APPLICATION

selection_type=A

fchA=0.
fcB=
fcC=
fcD=0.

Il
o O
= oW W W

fma=0.
fmB
fmC=0.
fmD=0.

1l
[w]
W = W Ww

Figure 10.2: An example of paramecters file.
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e=<real >< sep >

dx=< real >< sep >

dy=< real >< sep >

n=< int >< sep >

{u<int >=< util >< sep >}™

{Ix< int >=<real >< sep > ly<int >=< real >< sep >}™
n=< int >< sep >

{{< node > < father > ,< prob >,< var >)< sep >}"

Figurc 10.3: The structure of the input file.

n and m arc the numbers following “n=" and “m=": < node > is a string
of digits representing a number € {1,..,n}; < father > is a string of digits
representing a number € {0, .., n}; < var > is a string of digits representing
a number € {1,..,m}.

The BPP described by the input file 1s obtained in the following way:
the first 3 assignments define the values for e, d,, d, respectively; the 4rth
assignment define the number of containers; the next m assignments define
the utilitics of the containers from 1 to m; the next 2m assignments define
the width and length of the containers from 1 to m; the next line define the
number of nodes 7 of the tree; The following 4-tuples define the tree; the
nodes of the tree are N = {1, ..,n} and to cach of them corresponds one of
the next n 4-tuple: the first clement of cach 4-tupla is that node; the second
is the father of that node (if the first clement is the root, the father must
be 0 and the probability can be whaterver number and will be ignored); the
third clement is the probability of the cdge hetween the first clement and the
sccond (if the first clement is the root, this clement can be whatever string
< prob > and will be ignored: for consistence with the rest, it can be set to
1); the last element is the container associated with that node.

The program docsn’t control weather the input file 1s sintactically correct
and defines a correct BPP. The user must take care of this task and give
the program an input file both correct from the sintactical and from the
scmantical point of view.

A very simple example of input file 18 shown in Figure 10.4. Tt describes
the BPP of figure 10.5.
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e=1.0

dx=21.0

dy=15.0

m=5

ul=12.2

u2=3.4

u3=4.0

u4=7.3

1ub=8.0

1x1=6.5 1y1=3.0
1x2=7.5 1y2=3.0
1x3=5.0 1y3=4.0
1x4=4.5 1y4=4.5
1x5=7.0 1yb=4.0
n=7

(1,0,1,1)
(2,1,0.7,4)
(3,1,0.3,2)
{(4,2,0.1,3)
(5,2,0.3,2)
(6,2,0.6,2)
(7,3,1.0,5)

Figurc 10.4: An cxample of input file.
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150

Figurc 10.5: The BPP described by the mmput file of Figure 10.4.

10.5 The output file

The third argument is called output file and contains the solution ¢ of
the input BPP with the highest EU found by the GA. This text file gives the
upper bound of the EU of the solutions of the input BPP, the EU of ¢ and
for cach node e of the tree it gives ¥(a). An example output file is given in
Figurc 10.6, where it is shown the output file of a run of the application on
the input file of Figure 10.3 with the parameters of Figure 10.1.

EU:23.152000
UB:23.152000

nodel x=0.000000;y=0.000000;z=0
node2 x=3.000000;y=4.000000;z=1
node3 x=0.000000;y=3.000000;z=0
noded x=0.000000;y=9.000000;z=0
node5 x=16.000000;y=0.000000;z=1
node6 x=3.000000;y=9.000000;z=0
node7 x=0.000000;y=6.000000;z=0

Figurc 10.6: An cxample of output file.
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10.6 The average and best files

The fourth and fifth arguments arc called average and best file respectively
and give the average and the best EU of the population of cach generation
respectively. More precisely the average file describes the function that for
cach generation i € {0, .., numb., } associates the average EU of population
of generation #; and the hest file describes the function that for cach gener-
ation i € {0, .., numbs,, } associates the best EU of population of genceration
i. These files are just a sequence of numbise, + 1 numbers divided by CRs.
The graphs of the functions they describe can be plotted by Gnuplot just by
plotting the correspondent files.

10.7 The seed file

The sixth file is called seed file and contains the sced used to initialize
the random number generator for that run. This file is important for the
programmer when an error occurs. The sced can be used to repeat the run
with the problem and find the cause of the crror. The user will never use this
file, but it is very important to keep this file especially of runs that didn’t
finish correctly.

10.8 The run time output

While running thr application prints some information on the screen:
at the beginning it prints the average EU and the best EU of the initial
population, the upper bound (UB) defined in page 43 and, if there cxists a
leaf such that the sum of the arcas of the containers of the path from the root
to that leafis > the arca of the hold, it prints “upper bound unrcachable” clsc
“upper bound reachable™; then, after generating cach generation, it prints
the average EU and the best EU of that gencration, the best EU found that
far, the upper hound, the ratio between the best EU and the UB and the ratio
hetween the average EU and the best EU of the last shakey gencrations.



Appendix A

The Support Applications

A.1 The random problem genecrator

The random problem gencrator is a program written in ANSI C that
creates random BPPs to be used in experiments. It must be run with two
arguments, names of files:

e the input file, an cxisting text file specifying some parameters that will
influcnce the behaviour of the program: Preym, malgeps, maze, m,
MATy,, Maly, Milg, ATy, Ming, MoTle, Min,

e the output file, a text file created by the program with the same sintax
of the one of Section 10.3, containing the description of a random BPP

When we run the program with these 2 arguments in this order, the program
will generate a random BPP satisfying some constraints imposed by the
paramcters specified in the mmput file and will write it in the output file.
The output BPP will have a tree with n < maxy,, a depth < mazgepy,, for
cach node a number of children < mazx., m containers, ming < d, < mazy,
ming < d, < mazxg, for every container ¢ miny < I, < maxy, ming <1, <
maz, ming < e < maze; Vi € {1,..,m} : u; €]0,1]; if 4, is the number of
inner nodes, then on the average there are Py, - 4, terminal inner nodces.

The structure of the input file is given in Figure A.1 where the symbols
have the same meaning as in the Figure 10.1. The numbers following the
symbol “=" arc assigned respectively to P, m, maz,, maZgepn, Maly,
Ming, Mmaty, Ming, Mmar;, min., mai.. An cxample file is in figure A.2.

Of course it must be mazgep, < m, maz, < (m—1!, maz, <m—1 and
mazy > ming > 0, max; > ming > 0, maz, > min, > 0 and P € [0, 1].

The output BPP is produced by the algorithm shown in Figure A.3.
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P_term=< prob >< sep >
n=< int >< sep >
max_c=< inf >< sep >
max_depth—=< int >< sep >
max n—=<inf >< sep >
min d=< real >< sep >
max d=< real >< sep >
nin 1=< real >< sep >
max_1=< real >< sep >
min_e=< real >< sep >
max_e=< real >< sep >

Figurc A.1: The structure of the input file of the random problem gencerator.

P_term=0.1
m=10
max_depth=8
max_n=1000
max_c=6
min_d=9.0
max_d=10.0
min_1=4.0
max_1=7.0
min_e=0.4
max_e=0.5

Figurc A.2: An example of input file of the random problem generator.
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{ read from the input file: max,, mazgepn. maze, m, Pierm,
matq, Ming, MaTe., MiNe, Maxy, Miny;

the tree is created in the following way:

create the root node with a random container:
n— 1;
for(i < 1 to mazgem, — 1)

for each{a node of depth )

{  p=min{maz, — n, maz,, m— depth(c)}:
k< a random number in {0,1, .., 1}
if(k > 0)
{  ercate k children of «;
n<n+k;

V3 child of a: v(3) < a random number of |0, 1];
r < a random number in |0, 1];

if(r < Piorm) Vterm <— a random number in |0, 1]
else vypp, < O;

V3 child of v : ps v{3)

DI g
with pg the probability of the edge
from « to 3, and ', the children of a;

¥3 child of a: choose a container between
those not given to the nodes of the path
from the root to @ and to other children of o
and give it to 3;

}

the other elements of the BPP are created in the following way:

Vi e {l,..,m}: u; < a rcal number in |0, 1];

Vie {1,..,m}: 1, < arcal number in [ming, maz|:
Vic {1,..,m}: 1, < arcal numbcer in [ming, maz|;
d, < a real number in [ming, mazy];

dy < a rcal number in [ming, maxy);

e « a real number in [min,, mazx,|;

Figure A.3: The random problem generator.
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The program will also print on the display the number of nodes of cach
level.

A.2 The random-solver

The Random-solver algorithm presented in Section 9.2 has bee imple-
mented in ANSI C. The implementation is a command line program that
must be run with 3 arguments, names of files:

e the iterations file, an cxisting text file containing only an integer num-

her

e the input file, an cxisting text file containing the description of a BPP,
with the same sintax of the one in Section 10.3

e the output file a text file, created by the program, that contains the
description of the best solution found by the program and with the
same sintax of the one in Section 10.6

When we run the program with these 3 arguments in this order, the algorithm
will be run on the BPP described in the input file for a number of iterations
specified in the iterations file and the output of the algorithm will be written
in the output file. While running, the program will print on the display the
number of the current iteration, the EU of the corrispondent solution and
the EU of the best solution found until then.



Appendix B
The Test Problems

B.1 rinputO

This problem has been randomly generated by the random problem gen-
crator with the paramcters:

P_term=0
m=10
max_depth=8
max_n=1000
max_c=6
min_d=9.0
max_d=10.0
min_1=4.0
max_1=6.0
min_e=0.9
max_e=1

Then the dimensions of the deck, the utilities of the containers 2, 7 and 10
and the dimensions of all the containers have been changed.

The depth is 8 and the number of nodes in the levels 0,..,7 are 1, 1, 3,
16, 33, 75, 119 respectively .

e=1

dx=12 dy=12
m=10
ul=0.879400
uz=0.3
u3=0.520081
ul1=0.411070
ub=0.387028
uf=0.578156
uT=0.3
ul=0.555038
u9=0.522489
ulD=0.25
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1x1=1 ly1=5
1x2=1 ly2=1
1x3=1 ly3=6
1x1=6 ly1=6
1x5=5 ly5=6
1x6=5 ly6=5
Ix7=1.5 lyT=5.5
1x8=41.5 1y8=6
1x9=1 1y9=6
1x10=6 lyl0=6
n=251

(1,0,0,5} (2,1,1.000000,2) (3,2,1.000000,7) (1,3,0.307632,1)
(9,4,0.119167,9) (25,9,0.155719,8) (58,25,1.000000,6) (133.58,1.000000,1)
(26.,9,0.399993,3) (59,26,0.319232,10) (131,59.1.000000,6) (60,26,0.320214,1)
(61,26,0.351554,8) (135.61,1.000000,1) (27.9.0.102655,6) (62.27,0.118878,10)
(136,62,0.512608,1) (137,62,0.152403.3) (138,62.0.331809.8) (63,27,0.581022,3}
(139,63,0.2088415,1) (140,63,0.791155,8) (28,9,0.067031,10) (64,28,1.000000,5)
(111,64,0.248171,6) (142,64,0.751520,1) (29.9.0.274572.1) (10,4,0.311813,3)
(20,10,0.021485,8) (65,30,0.191291,10) (66,30,0.376186.9) (67.30,0.201850,1)
(113.67.1.000000.9} (68.30,0.140263.6) (31.10.0.054720.6) (32.10,0.138789.9)
(69.32.1.000000.6) (111.69.0.593631.1) (115.69.0.117735.8) (116.69.0.288633.10)
(33.10.0.485007,1) (11.1.0.266020.8) (31.11,1.000000.3) (70.31.0.135666.1)
(71.31.0.864331,10) (147.71.1.000000.6) (5.3.0.117060.3) (12.5.0.009935.1)
(13.5.0.132181.1) (14,5.0.338757.6) (15.5.0.311678.9) (35.15.0.305646.1)
(72.35.0.228570,10) (148.72.0.235887.8) (1419.72.0.333206.6) (150.72.0.130907.1)
(73.35.0.701885.6) (71.35.0.069511,1) (151,71.0.302115,10) (152.71,0.245751.6)
(153.71.0.152134,8) (36.15.0.226040,8) {75.36,1.000000,10) (151,75.0.181739.6)
(155.75.0.250129.1) (156.75.0.261832.1) (37.15.0.198611.10) (76.37.0.335167.1)
(77.37.0.309238.6) (157.77.0.4151798,8) (158.77.0.118022.1) (159.77.0.100180,1}
(78.37.0.090671.8) (79.37.0.261924,1} (160.79.0.333681.6) (161.79.0.328675.1)
(162.79.0.3376143.8) (38.15.0.179703.1) (80.38.0.093153.1) {163.80.0.2412955.10)
(161.80.0.757015.8) (81.38.0.312692.10) (165.81.0.302419.6) (166.81.0.697551.1)
(82,38.0.593855.6) (167.82,0.129515.8) (168.82.0.132217.1) (169.82.0.138268.10)
(16.5.0.207150.8) (39.16.0.288131.10} (83.39.0.073757.9) (170.83.0.110661.1)
(171.83.0.150200.1) (172.83.0.139139.6) (841.39.0.924319.4) (173.81.0.228803.1)
(171.81.0.771197.9) (85.39.0.001894.1) (175.85.0.668196.1) (176.85.0.327895.6)
(177.85.0.003909.9) (10.16,0.031273,1) (86.10,0.635042.9) (178.86.0.518803.1)
(179.86,0.181197.6) (87.10,0.116477.6) (180,87.1.000000.9) (88.10,0.247581,1)
(181.88.0.558790.10) (182.88.0.111210.9) (11.16.0.078266.9) (89.11.0.824881.1)
(90.11.0.175116.6) (183.90.0.163038.10} (1841.90.0.503662.1) (185.90.0.333300.1)
(12.16.0.599028.6) (91.12.0.513161.9) (186.91.1.000000.1) (92.12.0.065065.1)
(93.12.0.251674,10) (187.93.0.627588.1) (188.93.0.200981.9) (189.93.0.171427.1)
(91.12.0.139797.1) (6.3.0.189528.9) (17.6.1.000000.1}) (13.17.1.000000.10)
(95.13.0.351795.6) (190.95,1.000000.1) (96.13.0.372200.1) (191.96.0.275718.3)
(192.96.0.721252,8) (97.43,0.276005.3) (193.97.1.000000,6) (7.3.0.306821,10)
(18.7.0.099751.3) (14.18.0.107653.8) (98.11.0.529861.1) (191.98.1.000000.9}
(99.14,0.170136,1) (15,18,0.177191,1) (100,15.0.178113.6) (195.100,0.611158,1)
(196,100,0.3885412,8) (101.15,0.135069.8) (197,101,0.258131,9) (198,101,0.119131,1)
(199,101,0.592733.6} (102,45,0.116064,9) (200,102,1.000000.8) (103,15,0.210724.1)
(201,103,0.911635,9} (202,103,0.058365,6) (16.18.0.330359,1) (17,18,0.081796,9)
(104,17,1.000000,1) (203,104,1.000000,6) (19,7,0.110181,8) (20,7,0.157712,9}
(21,7,0.118R87,6) (13,21,1.000000,3) (105,18,0.356065,1) (204,105,1.000000,%)
(106,18,0.517569,8) (205,106,0.323187.9) (206,106.0.103910,1}) (207.106,0.272903,1)
(107,18,0.125167,9) (208,107,1.000000,4) (22,7.0.246310,1) (19,22,0.293319,9)
(108,19,0.1241218,8) (109,19.0.211525,1) (209,109,0.378899.8) (210,109,0.083922,3}
(211,109.0.537179.,6) (110.19,0.324633.6) (212,110,1.000000,8} (111.19,0.336623.3)
(213,111,0.118216.,6) (211,111,0.717910,8) (215,111,0.163874,1} (50.22,0.111810.6)
(112,50,1.000000,8) (216,112,0.119147.3) (217,112,0.257228,1) (218,112,0.323625,9)
(51,22,0.261810,8) (113.51,0.116180,9) {111,51,0.188321.3) (219,114,0.111530,1}
(220,114,0.555170,9) (115.51,0.095198.6) (221,115.0.266092,9) (222,115,0.733%08,3)
(23,7.0.206827,1) (52,23,0.162666.,9) (116,52,0.322521,3) (223,116,1.000000,4)
(117.52,0.677176,8) (224,117,0.816932.1)
(
(
(
(
(
(
(
(
(
(8.
(
(

(225,117,0.183068.3) (53.23.0.210967,3)
{ (227,118,0.121123,9) (228,118,0.227174,6)
119,53,0.281504,6} (220,119,0.155405,1) (230,119,0.672648,9) (231,119.0.171017.8)
120,53,0.116839,9} (232,120,0.264719,6) (233,120,0.735281,4) (51,23.0.225703.1)
121,54,0.292767,6} (122.51,0.188000,9) (234.122,0.953757.8) (235,122,0.025908,3)
236,122,0.020335,6) (123,54.0.407716.8) (124,51,0.101517,3) (237,124,1.000000,6}
55,23,0.195289,8) (125,55,1.000000,1} (56,23.0.175375.6) (126,56.0.208271.8)
238,126,0.688820,9) (239,126,0.311171,4) (127.56,0.337731,9) (210,127,0.562023.3)
211,127,0.137077,1) (128,56.0.108127.4) (212,128,0.057873,8) (213,128,0.525564.9)
214,128,0.116563,3) (129,56.0.254568.3) (215,120,0.520532,8) (216,129,0.179168,9)
3.0.078959,1) (241.8,1.000000,9} (57,21,1.000000,6) {130,57,0.301858,1)
217 130,0.379163,8) (248,130,0.162211,3) (219,130,0.128321,10) (131.57,0.3836412,8)
250,131,0.972850,10} (251.131,0.027150.1) (132.57.0.224500.3)

118.53,0.301657.1) {226,118.0.351704.,8)
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B.2 rinput4

This problem has been gencrated by the random problem generator with
the paramcters file: This problem has been randomly generated by the ran-
dom problem generator with the paramcters:

P_term=0
m=10
max_depth=8
max_n=250
max_c=6
max_d=10.0
min_d=9.0
max_1=6.0
min_1=4.0
min_e=0.9
max_e=1

The depth is 5 and the number of nodes in the levels 0,..,4 arc 1, 6, 17, 42,
123, 61 rcspectively .

e=(0.918702
dx=0.126582 dy=9.671517
m=10

ul=0.952863
u2=0.759687
u3=0.116191
ul=0.242175
uhs=0.211883
uG=0.178968
u7T=0.218910
ufi=0.113338
u9=0.911693
ul0=0.613210
1x1=5.001558 1y1=1.912688

. 2 ly6=5.366107
1x7=4.511291 ly7=41.267001
1x8=4.873959 1y8=1.759612
1x9=4.176219 1y9=5.305971
1x10=41.116357 ly10=5.559135
n=250

(1.0.0.9) (2.1.0.002380.3) (8.2.0.351808.8) (25.8.0.273552.6)

(67.25.0.283551.5) (190.67.0.972703.1) (191.67.0.027297.10) (68.25.0.091136.10)
(192,68,0.161187.1) (193,68,0.101118,1}) (194,68.0.301021.5) (195 0.238892,7)
(196,68,0.191152,2) (69,25,0.115716.1} (197.69,0.318455,2) (198,69,0.219285,1)
(199,69,0.198101,10} (200.69,0.204158.7) (70.25.0.066311.1) (201.70.0.010732,10)
(202,70,0.173167,1) (203,70,0.307837,2) (204,70.0.333375.5) (205.70.0.171588.7)
(71,25.0.220569,7) (206.71,1.000000.2) (72.25.0.192685.2) (207.72.0.101100,10}
(208.72.0.109960.1) (209.72.0.171205.7) (210.72.0.152482.5) (211.72.0.161953.1)
(26.8.0.162262.7) (73.26.1.000000.2) (212.73.1.000000.10) (27.8.0.110838.10)
(71.27.0.031960.6) (213.74.0.631113.2) (214.74,0.368587.5) (75.27.0.177396.1)
(215.75.0.423731.5) (216.75.0.092140.2) (217.75.0.183826.1) (76.27.0.053662.1)
(

(

(

(

(

(

(

(

218,76.0.213355, 219,76,0.113192,5) (220,76.0.220500,1) (221.76.0.321118,2)
222,76,0.098536,

77.27,0.081072,7) (223,77,0.109691,5) (2241,77,0.712332,1)
78.27.0.355911,5) (226,78,0.35R8612,7) (227,78,0.631792,1)

3l
I
225,77,0.117974,2) (
} (28.8.0.068150,1} (79,28,0.147078,10) (229,79,0.513077,2)
3l
3l
3l
I

7
2
228,78,0.009596,2
A0.79.0.359826.6) (231.79.0.127097.1) (80.28.0.186882.7) (232.80.0.017136.2)
1} (231.80.0.390995.10) (235.80.0.178319.5) (81.28.0.126331.5)
Ty (237.81.0.221113.6) (238.81.0.313679.10) (239.81.0.224401,1)
2} (82,28.0.1314719.2) (241.82,0.085511.10) (2412.82.0.075621.7)

.80.0.113250,
.81.0.156780,
.81.0.081024,

3
3

2
2
2
24
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213,82,0.516793,6} (244,82,0.522045,1) (A3,28,0.182721,1) (215,83,0.006711,7)
216,83,0.566031,5} (217.83,0.127255,10) (&1,28,0.222266,6) (20,8,0.085197,2)
85.20.1.000000.1} (218.85.0.639782.6) (219.85.0.360218.1) (9.2.0.618192.5)
30.9.1.000000.7) (86.30.0.323111.8} (250.86.1.000000.6} (87.30.0.152016.6)
88.20.0.071161.4) (89.30.0.247397.2) (90.30.0.174310.1) (91.20.0.031376.10)
3.1.0.243703.6) (1.1.0.190921.10} (10.4.0.477023.4) (31.10.0.381253.1)
2,31,0.013611,6) (93,31,0.120373,2) (94,31,0.557012,5) (32,10,0.118059,2)
,32,1.000000,5) (33,10,0.195788,5) (11,4,0.166124,7) (12,1,0.017388.6)
1,12,0.359686,3} (96,31,0.6515098,8) (97,31,0.315102,2) (35,12,0.203273,8)
8.35.1.000000.2) (36.12.0.3170411.2} (13.1.0.3394165.8) (37.13.1.000000.2)
9.37.0.321126.4) (100.37.0.645711.5} (101.37.0.032864.6) (5.1.0.115693.5)

05,10,0.216233,8) (106,10,0.169839,10) (15,6,0.285803,1) (11,15,0.269791,1}

07.11,0.703812,6) (108,11,0.296158.5) (12,15,0.005811.8) (109,12,1.000000,6)
0.566766,8) (111.13,0.133234,3) (11,15,0.294383.5)
0.121278,7) (15,15,0.198393,7) (111,15,0.011256.,3)

130,18,0.238289,3) (131,18.0.165501,8) (132,18,0.370436.5) (19,17,0.001220,3)

133,19,0.228233,8) (134,19,0.249111,1) (135,19,0.266822,1) (136,19,0.255830,6)
50,17,0.388602,8) (137,50,0.102133,10) {138,50,0.597867,1) (51,17,0.067816,5)
139.51.0.036646.6) (140.51.0.783527.1) (141.51.0.149303.1) (1412,51,0.0305241.3)
52,17,0.087068.1) (143.52.0.253122,8) (1141,52,0.233668.10) (115.52,0.286875.5)
146.52.0.225310.1) (147.52.0.000995.6) (18.6.0.156371.8) (53.18.0.572320.7)
118,53.0.212064,4) (149.53.0.257625,10) (150,53.0.530311,1) (51,18.0.127680.1)
7,1,0.183950,8} (19,7,0.019313,1} (55,19,1.000000,5) (151,55,0.065213.6)
152,55,0.108398,2) (153.55,0.303471,1) (154,55,0.080820,3) (155,55,0.112005,7)
20,7,0.013363,7) (56,20,1.000000,2) (156,56,0.117220,5) (157,56,0.51181K,6)
158,56,0.067962,1} (21,7,0.117813,4) (57,21,0.112729,6) (150,57,0.206291,1)
160.57.0.361732.3) (161.57.0.131975.5) (58.21.0.857271.10) (162.58.0.113195.2)
163.58.0.575537.6) (164.58.0.280068.1) (22.7.0.163332.6) (23.7.0.165052.5)
50.23.0.057834.1) (165.59.0.122618.7) (166.59.0.217568.3) (167.59.0.259811.6)
9355.6) (168.61.0.645167.2) (169.61.0.351533.10)

.0.186212.1) (174,63.0.192652,1) (175.63,0.202115,2)
0.092728,7) (178.63,0.318025.6} (179,63,0.151191.3)
4

B.3 rinputb

This problem has heen randomly generated by the random problem gen-
crator with the paramcters:

P_term=0
m=10
max_depth=8
max_n=250
max_c=6
min_d=12
max_d=12
min_1=4
max_1=6
min_e=0.9
max_e=1
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The depth is 7 and the number of nodes in the levels 0,..,6 are 1, 4, 8, 19,
48, 108, 61 respectively

e=(0.126953
dx=12.000000 dy=12.000000
m=10

ul=0.309596

u2=0.681586

u3=0.097839

ul=0.180861

ub=0.015102

u6=0.531325

u7T=0.229194

ul=0.671735

u9d=0.011884

ul0=0.689110
1x1=41.258379 1y1=41.988028
1x2=6.016078 1y2=4.977917
1x3=5.800062 1y} 659769
1x1=41.075559 1¥y1=>5.999186
1x5=5.068666 1y5=5.930395
1x6=6.569811 1y6
1x7=5.267356 1y7
1x8=5.066720 1y8=A1. 228218
1x9=6.597105 1¥y9=5.122993

.2) (2._1._0.028»160 3) (6.2.1.000000,5) {14.6.0.05800%.%)
3,14,1.000000,1) (81,33,1.000000,6) (189,81,1.000000,1} (15.6,0.565301,7}
1,15.0.105219.6) (82.31.0.583522.1) (190.82.0.178640.1) (191.82.0.821360.8)
0.386001.9) (192.83.0.316287,1} (193,83,0.615617,1) (161,85.0.068066.8)
A1,0.030477,4) (195,84,1.000000,9) (35,15,0.1199641,1) (85,35,0.639139,4)
96.85.0.538989.6) (197.85.0.461011,8} (86.35.0.360861.6) (198.86.0.108364.8)
99,86.,0.337196,4) (200,86,0.251110,9) (36.15,0.023707.8) (£7.36,1.000000,1)
01.87.0.051766.6) (202,87,0.4136797,4) (203,87.0.511137.9) (37.15,0.057062,1)
8.37.1.000000.9) (201,88,0.618639.6} (205.88.0.381361.1) (38.15.0.3941018.9)
0.655113,8) (90,38,0.311887.1) (16.6,0.375700,8) (39,16.1.000000,%)
0.388826.1) (206,91,1.000000,6) (92,39,0.000020,1) (207,92,0.160916,6)
208.92.0.367153.1} (200.92.0.171900.7) (53.30.0.016858.7) (04.30.0.561296.6)
210,94,0.711317,1) (211,94,0.288683,1) (3.1.0.181220.4) (7.3,0.037192,3)
17.7.0.008504,6) (10,17,0.248041,7) (95.10,0.142679,8) (212,95,1.000000,5)
96.10,0.315190,9) (97.10,0.191972.5} (213.97.0.192716.9) (214,97,0.507254,1)
98,10,0.350159,1) (215,98,0.120362,5) (216,98,0.501829,9) (217.98,0.377809,8)
A1,17,0.359216,8) (99,11,0.191265,9} (218,99,0.021715,5) (219,99,0.978285,7)

9.
8
8
1
1
2

100.11.0.508735.7) (220.100.1.000000.1) (12.17.0.392713.9) (101.12.0.706835.8)
221,101,0.807005,7) (222,101,0.192995,1) (102,12,0.097005,7) (223,102,1.000000,8)
103.12,0.196159,1) (224,103,1.000000,8) (18,7.0.206857.9) (13,18,0.078597,1)
104.43.0.18R936.7) (105.13.0.278215.6) (225.105.1.000000.5) (106.13.0.116406.5)
3.0.116113,8) (226,107,0.368078,7) (227,107.0.3104113,5) (228,107,0.291509,6)

(

(

(

(

(

(

(8

(89

(91

(

(

(

(

(

(v

(

(

(

[0

(11,18,0.010920,6) (15,18,0.197085,7) (108,15,0.611663,1) (109.15,0.358337,6)
(229.109.0.1291419.1) (230.109.0.211360.8) (231.109.0.329190.5) (16.18.0.383398.5)
(110,16,0.110631,1} (232,110,0.818183,8} (233,110,0.151817,7) (111,16.0.589369.6}
(234.111.0.381005.1} (235.111.0.311619.8) (236.111.0.307376.7) [19.7.0.227641.7)
(A7.19.0.263195.1) (112.47.1.000000.5) (237.112.0.105593.6) (238.112.0.181839.8)
(239,112,0.109568,9) (18,10,0.362164,9) (113,18,0.522062,1) (240,113,0.637202,6)
(241.113.0.362798.5) (111.48.0.477938.5) (2412.114.1.000000.8) (19.19.0.16308.8)
(115.19.1.000000.6) (213.115.0.175118.9) (244.115.0.064712.1) (215.115.0.759810.5)
(50,19,0.211204,6) (116,50,0.391054,9} (216,116,1.000000,5) (117.50,0.608016,8)
(247.117.1.000000.9} (20.7.0.216360.1) (51.20.0.221268.9) (118.51.1.000000.8)
(218.118.0.183870.5) (249.118.0.516130.7) (52.20.0.381111.6} (119.52.0.903030.7)
(120,52,0.096970,9} (53,20,0.103659.8) (

(54.20.0.200533.5) (123.51.0.08760.7)

(126 51.0.322270.8) (21.7.0.310630.8) (8.3.0.365122.9) (22.8.0.131202.3)
(23.8,0.216505,6) (55.23,0.232458,8) (56,23,0.102085,7) (57,23,0.161028,5)
(127 57.0.335907.8) (128.57.0.661093.3) (58.23.0.221326.3) (120.58.0.109380.8)
(130.58.0.115550.7} (131.58.0.210576.5} (132.58.0.174195.1) (50.22.0.189209.1)
(
(
(
(
(
(
(
(
(
(
(
(1
(
(
(

121.53,0.606471,7) {122,53,0.393529,9)
124.54.0.083332.6) (125.51.0.506791.9)

33,59,0.280482,7) (134,59,0.135198,8} (135.59,0.241503,3) (136.59.0.333517,5)

4.8.0.126681.1) (60.24.0.508306.7) (61.24.0.191691.6) (137.61.0.517331.8)
3

8.61.0.000910.5) (139.61.0.181729.3) (25.8.0.522612.7) (62.25.0.691207.8)
10,62,0.528113,5) (111,62,0.119922,1} (14 0.251635,6) (63,25,0.082251,6)
13.63.0.102777.5) (111.63.0.176316.8) (145.63.0.120008.3) (64.25.0.223513.5)

(

13
2
1
1
1
146.61.0.511983.3) (147.61.0.266923.8) (118.64.0.207358.6) (119.64.0.013735.1)
a,
15
15
1
6

3,0.276837,8) (10,3,0.037037,7) (26,10,1.000000.8} (65,26,0.2041315,5)
50.65.0.105162,6) [151.65.0.229757.1) (152.65.0.364781.3) (66.26.0.175953.3)
53.66.0.513190.6) (151.66.0.091702.5) (155.66.0.364808.1) (67.26.0.379698.6)
56.67,0.297616,5) (157.67,0.361792,3) (158,67,0.220100,1) (159,67,0.108372,9)
8.26.0.150031.9) (160 68.0.251041.3) (161.68.0.337247.5) (162.68.0.096760.6)
63.68.0.311052,1) (11.3.0.283812.5) (27.11.1.000000.9) (69.27.0.155327.8)
161,69,0.1809171,3) (165,69,0.162108,6) (166,60,0.260764,1) (167,60,0.087657,7)
70.27.0.511673.3) (1.1.0.603225.8) (12.1.0.366258.5) (28.12.0.283004.9)
71.28.0.102722.1) (168.71.0.296643.3) (169.71.0.115351,7) (170.71.0.269312.1)
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A18691.6) (72,28,0.190119.7) (172,72,1.000000.41) (73.28,0.107159,3}
102167.4) (174.73.0.111126.6) (175.73.0.186707.7) (29.12,0.221945.1)
.0.418911.3) (176.71.1.000000.9) (75.29.0.551089.6) (30.12.0.195051.7)
.0.633712,6) (31,13,0.561195.7) (32,13,0.135805,9) (76.32,0.255119,7)
7.76,1.000000,1) (77,32,0.084171.5) {178,77.0.359611.3) (179,77,0.161873,7)
0.77.0.178516.1) (78.32.0.206013.3) (181.78.0.202623.7) (182.78.0.278115.5)
3.78.0.243391.1) (184.78.0.275571.4) (79.32.0.001692.1) (185.79.0.239159.1)
6.79.0.171108,3) (187.79,0.331311.7) (18R.,79,0.258121.5) (80,32,0.359105,1}

.71.0.
3.73.0.
4,29
A

1
1
T
1;
1
1
1
1

[ |

oo o Do~

(5.1.0.097086.1}

B.4 rinput6

This problem has been randomly generated by the random problem gen-

crator with the paramcters:

P_term=0
m=12
max_depth=10
max_n=250
max_c=12
min_d=12
max_d=12
min_1=4
max_1=6
min_e=0.9
max_e=1

The depth is 4 and the number of nodes in the levels 0, .., 3 arc 1, 9, 50, 190

respectively .

e=0.926691

dx=12.000000 dy=12.000000
m=12

ul=0.388017

u2=0.585707

u3=0.203572

ul=0.937831

ub=0.701077

uf=0.118898

uT=0.191186

uf=0.995888

u9=0.530815

ul0=0.602019
ull=0.618186
ul2=0.039909
1x1=4.335007 1y1=41.092933
1x2=5.176159 13
1x3=5.179012 13
1x1=>5.159808 13
1x5=41.159598 13
1x6=1.920182 13
Ix7=5.555129 1;
1x8=41.211150 1y8=1.
1x9=41.828291 1y9=1.864102
1x10=1.418120 1y10=1.350715

n=250
(1.0.0.11} (2.1.0.090030.2} {11.2.0.186275.10) (61.11.0.018187.1)
(62.11.0.139105.6) (63.11.0.111525.1) (64.11.0.097382.5) (65.11.0.116188.12)
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6,11,0.135093.8) (67.11,0.116518.7} (
.2,0.248533.7) (70.12.0.268166.12) [
2.0.216089.6) (71.12.0.221011.3) (75.12.0.036302.10} (13.5
.0.030901,7) (77.13,0.151580.8} (

68,11,0.011503,3) (69,11,0.161500,9}
71.12.0.191306.8) (72.12,0.033227.9)
.0.059933.5)
78.13,0.125832,12) (79.13,0.198898,1}

3.0.108111,1}
3.0.156891.3)

(

(£1,13,0.099204,6} (82,13,0.0204127,9) (83,13,0.107813,10}

(
1.0.272825.5) (88.1.0.165153.7) (89.14.0.179991.8) (15.2.0.122188.8)

(

(

(

14,2,0.262061,1) (85.11.0.278737.6) (86.14.0.102004.1)

L15,0.052396,9) (91,15,0.139887,12} (92,15,0.186515,1) (93,15,0.226553,7)
0.085104,4) (95,15,0.006566,3) (96,15,0.033790,5) (97,15,0.113376,10}
0.155783.6} (16.2.0.120110.3} (99.16.1.000000.6) {3.1.0.037325.8)

3.0.147120.1) (100 17.0.131332.5) (101,17.0.278601.9) (102,17.0.287067,10}

3.0.010295,6) (103,18.0.262423,7) (1041,18,0.206117.,3) (105,18,0.215391,5}

8
7.3
8.3
06,18,0. 102150 12% (107._18._0.085'16'1._9) (108._18._0.128155._2) (19.3.0.076381,1)

3.19.0.052721, 112} (114.10.0. 012591, 1) (115.19.0. 232148, 2) (116.19.0.103576.5)
[0.137370,3) (117,20,1.000000,5) (21,3,0.170269,5) (118,21,0.100601,10)
21.0.168188,2) (120,31,0.052798,3) (121.21,0.100372.12) (122,21,0.088134.6)
21.0.122647.1) (124.21.0.105985.1) (125.21.0.081721.9) (126.21.0.079751.7)
1.0.043334.12) (127.22,0.170981,105 (128.22.0.105427.5) (120.22.0.105956.1)
22.0.617636,1) (23,3,0.188042.9} (131,23,0.171602,1) (132,23.0.208811,6)
23.0.160763,7) (121,23,0.018110.1) (135,23,0.156179.12) (136,23,0.218617.3)
0.196288.10) (1.1.0.189728.3) (25.1.0.120617.12)
.25.0.306471.2) (110.25.0.524151.9) (26.1.0.108355.1)
142,26,0.001560,12) (113,26.0.183865.10) (114,26.0.073016.5)

3
A7.23.0.032525,10) (z
25.0.169375.8)

11,26,0.071677,9)

6
1:
T
7
8
8
8
9
9
9
1
1
1
1
1
2
1
1
2
1
1
1
13
1

119.26.0.137557.7) (27.1.0.172188.7) (150.27.0.064765.10) (151.27.0.025597.8)

152.27.0.142445.5) (153.27.0.083361.2) (151.27.0.0041873.9) (155.27.0.169116.1)

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

hen

(1’1‘3_26_0 111062,8} (1416,26,0.190817,2) (147.26,0.166889.6) (1418,26,0.060526,1)
( (

( (

(156,27,0.132219,6} (157,27,0.178133,1} (158,27.0.108860,12) (28,41,0.2041810,5}
(159.28.0.121824,12) (160.28.0.017511.7) (161.28.0.116046.6) (162,28.0.111616.10}
(29.1.0.059577.6) (30.1.0.325123.2) (163.30.0.155916.1) (164.30.0.013632.1)
(165,30,0.056511,5} (166,30,0.185138,10} (167,30,0.176246.9) (168,30,0.151705,7}
(169,30,0.058160,8} (170,30,0.131701,6} (171,30,0.067661,12) (5,1,0.117862,10}
(31.5.0.037170.3) (172.31.0.106277.6) (173.31.0.106221.5) (171.31.0.107699.2)
(175.31.0.123798.7) (176 31.0.149014.1) {177.31.0.260592.8) (178.31.0.113121.9)
(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(-

(-

(

(

179,31,0.033279,12) (32

182207.7) (33.5.0.212989.1) (180.3
181,33.0.833811,3} (34.5,0.128033,9) (182,31,0.318004,1) (183,31,
181.31.0.139063.7) (185.31.0.037119.1) (186.31.0.208028,12) (187.31.0.118820,2)
35.5.0.003701.8) (188.35.0.183160.3) (180.35.0.133117.12) (190.35.0.026330.6)

19

5.0.050875,5) (192.3

L0.016895,7) (196,35,0.130815,9) (36.5.0.163017.4) (197,36,0.082718,5}

0.028552.2) (199.36.0.216015.3) [200.36.0.227668.7) (201.36.0.100917.12)
(20

5.0.228518,1} (1")" 35.0.071908,2) (194,35.0.119353,1)

26.
36.0.225739.9) (203.36.0.090027.6) (204.36.0.028331.1) [37.5.0.180993.2)
37,0.138701,12) (206,37,0.158699,1) (207,37,0.161103,9) (208,37,0.063605,1)
37,0.033161,8) (210,37,0.150681,6) (211,37,0.163995,5) (212,37,0.130053,3)
193837.7) (38.6.0.216990.2) (213.38.0.168516.12) (211.38.0.159025.1)
38.0.178867.10) (216.28.0.204801.4) (217.38.0.198761.3) (39.6.0.191255.8)
,0.195124,1) (

L0.063809,5) (223,39,0.127792,10) (224,39,0.236202,1} (10,6,0.071515,10)
5.40.0.310631.3) (226.10.0.283143.6) (227.10.0.015356.1) (228.10.0.360568.12)
.6.0.073183.3) [220.11.0.002178.1) (230.11.0.359585.8) (231.11.0.231563.9)
11,0.106673,10) (12,6,0.002006,1) (233,12,0.052608,1) (231,12,0.113299,2)
L0.050737,10} (236,12,0.208334,9) (237.12,0.088130,12) (238,12,0.188072,6)
.0.008518.8) (240.12,0.044311.5) (241.12.0.245871.3) (13.6.0.191572.1)
.0.179186.5) (243.13.0.102963.8) (241.13.0.117851.3) (14.6.0.216250.9)
15,14,1.000000,10} (7,1,0.125115.12) (15,7,1.000000,8) (246,15,0.135187,10)
A7,15,0.268168,6) (218,15,0.337087,1} (249,45,0.259557.5) (8,1,0.171412,5)
6.8.0.130856.7) (250.16.1.000000.3) (17.8.0.013826.2) (18.8.0.041200.1)
9.8.0.058389.3) (50.8.0.100028.1) (51.8.0.098372.6) (52.8.0.176108.9)
3,8.0.196885,10) (51,8,0.061036,8) (9,1,0.049644,4) (55.9,0.151611,10)
6,9.0.518380,12) (10,1,0.025016,6) (57,10,0.836454,12) (58,10,0.109691,8)

219.39,0.086990,3) (220,39.0.117312,12) (221,39,0.112561,2)

2

=3

1
1
2
2
2
6
2
2
2
2
A4
2
2
2
2
2
2
A4
A4
5
5

(59.10.0.010038.10} (60.10.0.043811,1)

B.5 rinput7

This problem has been randomly generated by the random problem gen-
crator with the paramcters:

P_term=0
m=20
max_depth=20
max_n=250
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max_c=2
min_d=12
max_d=12
min_1=4
max_1=6
min_e=0.9
max_e=1

The depth is 20 and the number of nodes in the levels 0,..,19 are 1, 1 1,2, 2,
3,5,6,4,5,5,4,4, 5,5, 3, 2,3, 3, 3 respectively

e=0.991018
dx=12.000000 dy=12.000000
m=20

ul=0.337021 u2=0.091553 uid=0.939355 u1=0.397231
u5=0.953905 uf=0.901818 u7=0.113803 u8=0.135179
ud=0.620797 v10=0.751579 u11=0.955112 u12=0.105185
ul3=0.034197 ul4=0.526333 ul5=0.676833 v16=0.109236
ul7=0.807013 ul8=0.927795 ulH=0.599367 u20=0.133161
101666 1x2=5.195910 1y2=41.300115
.619237 1y1=41.983671
B0BTTT 1y6=>5.1641806
21075 1y8=4.241503
298859 ly10=5.06T587
B53268 1yl
915081 1yl
617362 1y16=

1179219 lyll
036373 1y13

1x19=5.979561 ly19=1.012201 1x20=5.221155 ly20=1.311063
n=67
(1,0,0,11) (2,1,1.000000,7} (3.2,1.000000,3) (1,3.0.560137,18)
6.-1,.1.000000, 12) (8.6.1.000000.8) (11.8.0.869068.1) (16.11.1.000000.17)
12.8.0.130932.17) (17.12.0.398731.10} (18.12.0.601269.15) (22.18.1.000000.9}
26,22,0.772080,20) (31,26,0.993237,11) (" 31.1.000000,16) (32,26,0.006763,2)
27,22,0.227920,2) (33,27,1.000000,11} {37.33.0.631174,13) (10,37.0.562956,20)
411,37,0.137014,19) (14,11,1.000000,20) (1%,141,1.000000,5) (51,19,1.000000,1)
A7.54.1.000000.6) (59.57.1.000000.16) (62.59.1.000000.1} (65.62.1.000000.10)
A8.33.0.365526.1) (12.38.1.000000.6) (15.12.0.681309.10) (50.15.0.711515.20)
51,15,0.288185,19) (16.12,0.318691,19) (5.3.0.139563.9) (7.5.1.000000,10)
9,7,0.202128.5) (13.9,1.000000,16} (10,7,0.797872,17) (141,10,0.258987,2)
1
3

9.14.0.530111.6) (20.11.0.469589.8) (23.20.0.158981.18) (28.23.0.310371.1)
4.28.1.000000.16) (29.23.0.689626.6) (24.20.0.811019.12) (15.10.0.741013.1}
1 15.1.000000, 1 3} (2‘5 21.1.000000.8) (30.25.1.000000.14) (35.30.1.000000.19})
1 3,39.1.000000,18) (17,13.0.169870,1) (52,17,0.562313,20}
‘i 170 AZTEET, 2) (‘i‘i 3.0.071280,6) (58.55,1.000000,20) {60.58.,0.179617.16)
63.60.1.000000.5) (66.63.1.000000.15) (61.58.0.520383.5) (61.61.1.000000.15)
67.61.1.000000.16) (56.53.0.928720.20) (18.13.0.830130.16)

B.6 rinput8

This problem has heen randomly generated by the random problem gen-
crator with the paramcters:

P_term=0
m=30
max_depth=30
max_n=250
max_c=3
min_d=12
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max_d=12
min_1=4
max_1=6
min_e=0.9
max_e=1

The depth is 18 and the number of nodes in the levels 0,..,17 are 1, 3, 1, 2,
1, 1,2, 2 3, 5, 10, 13, 19, 27, 35, 40, 39, 26, rcspectively.

e=0.922218
dx=12.000000 dy=12.000000
m=30

ul=0.879693
u2=0.315857
u3=0.530273
ul=0.151761
ub=0.119363
ut=0.151858
uT=0.705635
u8=0.627565
ud=0.185777
ul0=0.728908
ull=0.631328
ul2=0.242377
ul3=0.731580
ull=0.026793
ulf=0.673133
ul6=0.313110
ul7=0.735025
ulf8=0.828534
ul9=0.396188
u20=0.190870
u21=0.950137
u22=0.817923
u23=0.712021
u21=0.506416
u25=0.000558
u26=0.659692
u27=0.587871
u28=0.571155
u29=0.086512
uA0=0.713065
1x1=4.730370 1y1=>5.810810
1.815837 .

1.053226

1y8=1.187018
1y9=5.135907
222272 1y10=1.188765
667225 lyll=A1.

1.426611 1y1
5.058325 1y13=5.788108
118870 1y14=5.

.022398 1¥1

L856359
966568
030774
L253016

636110

1.801211
=5.262791
LT20612

5.867599
092440
LT28519
619791
5.882585

1x29=5.097573
1x30=5.800519
n=250

4.3) (3.1.0.191979.21) (5.3.1.000000.10}

1.000000.28) (9.8.1.000000.19) (10.9.0.364991.6)
2,1.000000.21} (17.14,0.254411,15) {22.17.0.198718.2)
2.0.190063.1} (61.15,1.000000.8) (91.61.0.579141.7)

(6.5.0.697731.18)
(12.10.1.000000.1
(32.22.0.050292.3

6.

4.1
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126,91,1.000000,20) (166,126,0.673850,11) (167,126,0.326150,9) (225.167,0.790951,25)
226.167.0.209049.27) (92.64.0.120857.9) (127.92.0.357230.30) (128.92.0.278080.12)
168,128,0.202679,13) (227,168,0.336734,20) (228,168,0.323510,27) (220,168,0.330726,17)
69.128.0.377536.25) (230.169.0.150718.11) (221.160.0.849252.23) (170.128.0.119786.23)
2,170,1.000000,30} (129,92,0.363790,17} (16,32,0.380204,17) (65,16,1.000000,5)
.65.0.513368.11) (91 65.0.1866232.7) (17.32.0.120733.30) (66.17.1.000000.5)
,22,0.949708,29) (18,33,0.712127,3) (67,18,0.146647,1) (95,67,0.200771,12)
67.0.410013, .25} (97,67,0.350213,7) (130,97,0.527302,5) (171,130,1.000000,22}
3.171.1.000000.27) (131.97.0.472608.13) (172.131.0.514883.17) (173.131.0.185117.8)
i ,173,1.000000,30} (68,18,0.556717,26) (98,68,1.000000,22} (69,18,0.206636,5)
L69.0.317516.17) (100.60.0.652484.13) (132.100.0.290988.12) (174.132.1.000000.7)
5,174,0.811927,17) (236,171,0.125897,26) (237.174,0.062176,9) (133,100,0.382075,26)
5.133.0.828816.7) (176.133.0.171184.8) (238.176.0.068622.12} (239.176.0.931378.30)
1,100,0.326938,23) (177 131,1.000000,30) (240,177,0.253654,11) (241,177,0.105996,7)
2.177.0.310250.17) (19.33.0.257873.8) (70.19.1.000000.5) (101.70.0.180759.25)
5,101,0.325875,3) (178,135,0.782163,20) (179,135,0.091388,13) (2413,179,1.000000,30)
0.135.0.126419,23) (2141,180,0.168130.20} (2415.180.0.380201.22) (216,180.0.151669.30)
6.
2,
0.
8,
7.

101.0.674126.23) (181.136.1.000000.12} (247.181.0.902440.22) (218.181.0.097560.3)
70,0.157284,23} (137,102,1.000000,12) (182.137,0.152026,16) (219,182,0.866901,11)
182.0.133099.1) (183.137.0.301277.11) [184.137.0.156697.7) (103.70.0.361957.16)
103,0.304919,30} (185,138,1.000000,11) (13%9.103,0.166493,12) (186,13%.0.501873.13)
139.0.198127.17) (110.103.0.528588.3) (188.140.0.485601.7) (189.140.0.511309.11)
17,0.390024,11) (34,23.0.005685.5) (50,34,1.000000,30) (71,50,0.218732,27)
4.71.1.000000.20} (72.50.0.751268.22) (35.23.0.616130.27) (51.35.1.000000.2)
J51,0.183570,23) (105.73,1.000000,12) (111,105,0.108738,9) (190,141,0.991760,20)
91.111.0.005210.3) (112.105.0.501262.22) (192.142.0.014252.20) (193.1412,0.985717.17)
4.51.0.469777.30} (106.74.1.000000.5) (143.106.1.000000.26) [75.51.0.316653.13)
07.75,0.085255,26) (108,75,0.763905,20) (109,75,0.150810,9) (1414,109,0.181165,23)
94.114.0.322002.30) (195.141,0.616365.7) (196.141.0.061632.8) (115.109.0.220250.1)
97,145,1.000000,20} (116,109,0.295585,30) (36,23.0.318185.23) (24,17,0.111258,9)
7.24,0.503729,16) (38.21.0.196271.8) (52.38.0.553165.11) (53.28.0.360662,20)
76,53.0.551169,12) (77.53,0.118831,25) (110,77,0.188842,16) (117,110,1.000000,22)
198.117.1.000000.11) (111.77.0.811158.22) (148.111.0.216417.23) (199.118.0.335136.20)
200,148,0.152625,1) (201,148,0.211939,30) (119,111,0.086843,11) (202,119,0.010512,20}
202.119.0.359118.16) (2041,149.0.600311.23) [150.111.0.686740.13) (205.150.0.166752.11)
206,150,0.8332418,23) (51,38,0.086173,26) (78,51,0.221232,22) (79,51,0.111985,23)
112,79,1.000000,11} (151,112,0.512086,25) (207,151,0.311167,22) (208,151,0.198500,1}
209.151.0.157333.7) (152.112.0.457914.12) (210.152.1.000000.25) (80.51.0.360783.3)
18,14,0.178100,8) (25,18,1.000000,30) (19,11,0.267159,12) (26,19,0.370211,2}
27.19.0.370666.27) (30.27.0.357167.23) (10.27.0.265163.26) (55.10.0.123951.15)
81,55,0.723356.,1) (82,55.0.276644,11) (56,10,0.082559,23) (83.56,1.000000,15}
113.83.0.959875.5) (153.113.1.000000.22) (211.153.1.000000.17} (114.83.0.010125,22)
93187.1) (84,57.0.665737,15) (115,84,1.000000,7) (85,57,0.331263,23}
116.85.0.388816,25) (117.85.0.200723,5) (154,117.0.207102.7) {212,154.0.251594,11)
213,154,0.064384,30} (214,151,0.681022,16) (155.117,0.119732,17) (215,155.1.000000,11)
156,117,0.613165,9) (118,85,0.110461,30) (157,118,0.552643,22) (158,118,0.170290,25)
159.118.0.277068.3) (216.150.0.738725.2) (217.159.0.261275.29) (11.27.0.377670.25)
58,11,0.247583,3) (59.11,0.752117,7) (28.19,0.250093.9) (11.9.0.635006,7)
12.11.1.000000.21) (15.13.0.653828.26) (20.15.1.000000.22) (29.20.0.503596.12)
30,20,0.196104,5) (16,13,0.316172,15) (21,16,1.000000,11) (31,21,1.000000,20}
12.31.0.287158.1) (60.12.1.000000.12} (86.60.0.638020.22) (119.86.0.083318.27)
120,86,0.916652,17) (87.60,0.361080,13) (121,87,0.679043,1} (160,121,0.658539,6)
161.121.0.311461.17) (218.161.0.729179.8) (219.161.0.270821.25) (122.87.0.320957.17)
13,31,0.320278,27) (61.43.0.540175,1) (62,13,0.150825,25) (141,31,0.392264,29}
63.11.1.000000.27) (88.63.0.136191.23) [123.88.0.133414.17) (162.123.0.215032.1)
220.162.0.A7A582.6) (221.162.0.525118.30) (163.123.0.531087.6) (1641.123.0.219981.5)
222,164,0.719371,16} (223,164,0.260207,13) (224.164,0.011118,1) (121,88,0.566586,26)
89.63.0.111138.17) (90.63.0.122371.30) (125.90.1.000000.1) (165.125.1.000000.6)

.OQ.OOU.0.)1D.UOU.O—\.ORT.OQ.O.UJ).O.U.O

1
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q
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9
21
2
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2
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1
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1
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(7.5,0.302269,2) (4,1,0.4111637.1)

B.7 art7

This problem is rinput? with onc more container This container is so big
that no other container can be loaded on the deck together and is associated
to all the leaves and only to them. Its utility is bigger that the sum of the
utilitics of all the other containers. The optimal solution is then the solution
that associates this container to all the leaves and NULL to all the other
nodes.

e=0.991018
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dx=12.000000 dy=12.000000
m=21

ul=0.337024

LO01818
u7=0.113803
ul=0.135179
u9=0.620797
ul0=0.751579
ull=0.955112
ul2=0.105185
ul3=0.034197
uli=0.526333
ulE=0.676833
ul6=0.109236
ul7=0.807013
ul8=0.927795
ul9=0.599367
u20=0.133161
u21=20

=5.508361 1¥y1=1.101666
1959410 L300145
631782 .858026
.619237 1y1=41.983671
102030
LB06TTT
=5.052024
521075
537391 1;
L208859 13
=4.179219
.853268
036373
915084
.7009552
617362
=5.120997
.7T08602
LO79561 1
221155 1y20=4.311063

1x21=11 1y21=11

n=67

(1.0.0.11} (2.1,1.000000.7) (3.2,1.000000.3} (1.3.0.560137,18}
1.1.000000,12) (8.6.1.000000.8) (11,8.0.869068,1) (16,11,1.000000,21)
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2

2 0.227920,2) (33,27,1.000000,11) (37,33,0.634171,13)
11,37,0.137044,19) (14,41,1.000000,20} (19,44,1.000000,5}
57.51.1.000000.6) (59.57.1.000000.16) (62.59.1.000000.1) (
a 0.365526.1) (12.38.1.000000.6} (15.12.0.681309.10}
5105.0.288185.21) (16.12,0.318691,21) (5.5.0.430563.0) (7.5
9.7.0.202128.5) (13.9.1.000000.21) (10.7.0.797872.17) (14.10.0.258987.2)
1

3

2

3

5

63

.28,1.000000,21)
5,1.000000,13})
1.000000,12)

1.000000,18) (17

2.0.169870,1) (5:

2
(
(/
5
.60.1.000000.21) (

(67.64.1.000000.21) (56.53.0.928720.21) (18.13.0.830130.21)

B.8 linl6

This problem has a lincar tree with 16 nodes.

5.1.000000.10})

0.772080,20) (31,26,0.993237,11) (36,31,1.000000,21) (32.26.0.006763,21)
(10,37,0.562056,21)
{51.15.1.000000.1)
65.62,1.000000,21)
50.15,0.711515,21)

1,0.530111,21}) (20,11,0.169589,8) (23,20,0.158981,18) (28,23,0.310371,1)
9,23.0.689626,21) (21,20,0.811019.21) (15.10,0.711013.1)
25,21,1.000000,8) (30,25,1.000000,11} {35.30,1.000000,19)
A3 417.0.562313,21)
AT0.437657,2) (55.53,0.071280,6) (58.55,1.000000,20} (60,58.0.179617,16)
66.63.1.000000.15) (61.58.0.520383.5) (61.61.1.000000.15)

All the containers can be

loaded. The utility of a container is its arca. The deck can be completely

filled.

e=1

dx=20 dy=20
m=16
ul=24.0
u2=81.0
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ud=18.0
ul=18.0
uh=15.0
uf==25.0
uT=36.0
u8=21.0
ud=35.0
ul0=12.0
ull=6.0
ul2=%8.0
ul3=12.0
ult=16.0
ulsi=18.0
ul6=22.0
1x1=2 ly1=12
1x2=7 ly2=12
1x3=8 ly3=6
1xA=3 ly1=6
1x5=3 ly5=5
1x6=5 ly6=5
Ix7=3 ly7T=12
1x8=3 ly&=7
1x9=5 1y9=7
1x10=2 ly10=6
1x11=3 ly11=2
Ix12=

Ix14=A1 ly11=-

1x15=9 ly15=2

1x16=11 ly16=2

n=16

(1,0,0.1} {2,1,1.2) (3.2,1,3) (1.3.1.1) {5.1.1,5) (6.5,1.6} (7.6,1,7) (8,7.1,8) (9.8.1.9)
(10.9.1.10} (11.10.1,11} {12.,11.1.12) (13.12.1.13) (11.13.1.14) (15.11.1.15} [16.15.1.16}

B.9 1lin73

This problem has a lincar tree with 73 nodes. All the containers can be

loaded. The utility of a container is its arca. The deck can be completely
filled.

e=1
dx=90 dy=60
m=T73
ul=222
uZz=150
uf=28
ul=81
ub=72
uf=80
uT=A40
ud=100
ud=125
ul0=32
ull=96
ul2=100
ul3=s0
uli=12
uls=28
ulg=70
ul7=20
ul&=105
ul9=72
u20=270
u2l=54
u22=126
u23=35
u24=10
uZ2f=11
u26=55
u27=20
u2l=25
u2i=3
ulN=18
u3l=A
u32=24
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udid=8

u3t=10
udf=175
udf=15

u3T=36
udl=18
u3i=18
uA0=78
ull=260
ul2=54

udd=51

ul1=80

ulh=64

ul6=66

ul7=52

ul8=28

ul9=9491

ub0=6

uhl=%8

ub2=15

uh3=20
ub1=96
ub5=180
uh6=156
ub7=133
ub8=63
ufi=20

uf=%8

utl=60
uf2=198

uf3=3

uft=2

ufhi=180
uff=156
uBT=10

ufl=25
uf=201
uT0=241

u7l=60
u72=20
uTA=1410

1x1=6 ly1=37
1x2=10 1y2=15
1x3=4 1y3="7
1x1=12 1y1=7
Ix65=4 lyH=18
1x6=10 1y6=8
1x7=5 ly7==8
1x8=1 1y8=25
1x9=5 1y0=25
1x10=1 1y10=8
Ix11=12 Iy11=8
Ix12=10 ly12=10
1x13=5 1y13=10
Ix14=3 ly11=A1
1x15=7 ly15=1
1x16=7 1y16=10
1x17=2 1y17=10
1x18=7 1y18=15
1x19=A1 1¥y19=18§
1x20=15 ly20=18
1x21=3 1y21=18
1x22=7 1y22=18
1x23="7 1¥y23=5
1x24=2 1y21=5
Ix25=A1 1y25=11

1x26=5 ly26=11
lx27=A Iy27=5
1x28=5 1y28=>5
1x29=1 1y20=3
1x30=6 1y30=3
Ix31=1 lya1=1
1x32=6 lya2=1
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1x13=3 1y13=18

12
12

=1
=1
7
7
A

13 IyA7
1x59=5 ly59

13 1y56
18 157

15 Ly
1x58=9 ly58="T7

1x18="7 ly¥1

1xA7
1x56
1x57

20,19,1,20)

B =
oy - -
ol e |-
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30,29.1.30)

10,39,1,10)

70,69.1,70)

(7T1.70.1.71) (72.71.1.72) (73.72.1.73)
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