UNIVERSITY OF PADOVA

DEPARTMENT OF MATHEMATICS TULLIO-LEVI CIVITA
MASTER THESIS IN DATA SCIENCE
Br1-LEVEL OPTIMIZATION WITH PENALTY
METHOD FOR BINARY HYPERPARAMETER

TuNING IN DATA HYPER-CLEANING

SUPERVISOR MaSTER CANDIDATE
PROF. FRANCESsco RINALDI DANDAN ZHAO
UNIVERSITY OF PADOVA 2041513

AcCADEMIC YEAR

2023-2024

ii

IWOULD LIKE TO EXPRESS MY HEARTFELT THANKS TO ALL THE PEOPLE WHO HAVE HELPED
AND SUPPORTED ME.

FIRSTLY, MY SINCERE AND DEEPEST GRATITUDE GOES TO MY ADVISOR, PROFESSOR
FrANCESCO RINALDI, WHOSE GUIDANCE AND SUPPORT HAVE BEEN INVALUABLE
THROUGHOUT THIS JOURNEY. DESPITE HIS VERY BUSY SCHEDULE, HE ALWAYS TOOK
THE TIME TO CAREFULLY READ MY WORK AND PROVIDE DETAILED FEEDBACK. FURTHER-
MORE, IT HAS BEEN MY HONOR TO BENEFIT FROM HIS PERSONALITY. I STILL REMEM-
BER HIS WORDS IN THE FINAL SESSION, WHERE HE REMINDED US THAT REGARDLESS OF
WHETHER WE BECOME DATA SCIENTISTS, WE SHOULD REMAIN HUMBLE, CONTRIBUTE
MEANINGFULLY, AND TREAT EVERYONE WITH RESPECT. IT HAS BEEN A GREAT PRIVI-
LEGE AND JOY TO STUDY UNDER HIS GUIDANCE, AND HIS WISDOM AND DEDICATION WILL
LEAVE A LASTING INFLUENCE ON MY LIFE. MY GRATITUDE TO HIM KNOWS NO BOUNDS.

IALSO WANT TO EXTEND MY DEEPEST THANKS TO MY FAMILY AND MY PARTNER. WHEN
I MADE THE DECISION TO LEAVE BEHIND A 7-YEAR CAREER AND START A STUDY JOURNEY
IN A DISTANT AND UNFAMILIAR COUNTRY, THEY WERE CONCERNED ABOUT THE
CHALLENGES I MIGHT FACE. YET, THEY STILL SUPPORTED ME WHOLEHEARTEDLY. IT
WAS THEIRLOVE THAT GAVE ME THE ENCOURAGEMENT AND COURAGE TO SUCCESSFULLY
COMPLETE THIS IMPORTANT JOURNEY IN MY LIFE.

THANKS TO EVERYONE WHO SUPPORTED ME THROUGHOUT.

v

Abstract

Bilevel optimization presents significant challenges, particularly in large-scale problems, and
binary hyperparameter optimization introduces additional complexities due to the combina-
torial nature of the problem. For example, the binary constraint makes the objective function
non-differentiable with respect to these binary variables, which means gradient-based methods
cannot be applied directly. Additionally, the exponential increase in the number of potential
configurations makes the problem computationally expensive to solve. Traditional relaxation
and rounding methods often lead to inconsistent results. In this thesis, we propose a novel al-
gorithm that combines the Relax and Penalize framework with the Zeroth-Order Frank-Wolfe
algorithm, effectively handling binary variables with theoretical guarantees while maintaining
computational efficiency. Our approach combines zeroth-order hypergradient estimates with
a penalty approach for handling the combinatorial part, thus reducing the heavy computation
typically required in gradient-based bilevel optimization methods.

In numerical experiments, we evaluate the effectiveness of our approach through tests on a
data hyper-cleaning task using synthetic and MNIST datasets under varying noise conditions.
In particular, we study how the maximum number of iterations in the lower-level problem af-
fects the algorithm’s efficiency and effectiveness. Looking ahead, future work will focus on ex-
ploring the impact of additional algorithmic parameters, such as the penalty parameter, decay
factors, and the number of random directions used for gradient estimation. These investiga-
tions will provide further insights into how our method can be implemented more efficiently
in practical applications.

vi

Contents

ABSTRACT \4
LIST OF FIGURES ix
LISTING OF ACRONYMS xi
1 INTRODUCTION I
1.1 Research Problem and Objectives I
1.2 SignificanceoftheStudy oo o oo oo 2
1.3 Structureofthe Thesis 3
2 LITERATURE REVIEW 7
2.1 Bilevel Optimization 7
2.1.1 Early Developments and Classical Methods 7
2.1.2 Gradient-based Methods: EGBMsandIGBMs 8
2.2 Hyperparameter optimization 10
2.2.1 Importance of Hyperparameter Optimization 10
2.2.2 Strategies for Hyperparameter Optimization 10
2.2.3 Modeling Hyperparameter Optimization as a Bi-level Problem 11
2.3 Application in Data Hyper-cleaning 13
3 METHODOLOGICAL FOUNDATIONS 15
3.1 Relaxand Penalize Method 15
3.1.1 Introduction and Challenges in Binary Hyperparameter Optimization 15
3.1.2 Theoretical Foundations and Algorithmic Structure of the Relax and
Penalize Method 16
3.1.3 Key Considerations for the Relax and Penalize Method 20
3.2 Zeroth-Order Frank-Wolfe Algorithm 22
3.2.1 Motivation for Using Zeroth-Order Methods in Binary Hyperparam-
eter Optimization 22
3.2.2 Overview of Zeroth-Order Frank-Wolfe Algorithm 23
3.3 Proposed Algorithm for Binary Hyperparameter Optimization 24
4 EXPERIMENTS AND ANALYSIS 27
4.1 Problem Formulation 27

vii

4.2 Numerical Experiments L0 L0 28

4.2.1 Experiment Setup and Evaluation Metrics 28

4.2.2 Experiment Resultsand Analysis 29

5 CoNcLUSION AND FUTURE WORK 35
s.1 Conclusions 35

s.2 FutureWork 36
REFERENCES 37

viii

4.1
4.2
4.3
4.4

Listing of figures

Schematic diagram of Hyperparameter Optimization [r] I2
Test Loss vs. Iteration under Different Noise Ratios 30
Time to Target Loss under Different Noise Ratios 31
Validation Loss vs. Iteration under Different Noise 32
Comparison of Model Performance 33

ix

Listing of acronyms

BLO Bi-Level Optimization

LL............. Lower Level Subproblem

UL Upper Level Subproblem

HO............ Hyperparameter Optimization

ZOFW Zeroth-Order Frank-Wolfe

EGBMs Explicit Gradient-Based Methods

IGBMs Implicit Gradient-Based Methods

LLC Lower Level Convexity

LLS Lower-Level Singleton

BDA Bilevel Descent Aggregation

TRHG Truncated Reverse Hyper-Gradient

FHG Forward Hyper-Gradient

RHG Reverse Hyper-Gradient

IFH Implicit Function Theorem

CG............ Conjugate Gradient

HP Hyperparameter

LR learning rate

SGD Stochastic Gradient Descent

SMBO Sequential Model-Based Optimization

KWSA Kiefer Wolfowitz Stochastic Approximation
RDSA Random Directions Stochastic Approximation
i-RDSA improved Random Directions Stochastic Approximation
MNIST Modified National Institute of Standards and Technology database

xi

xii

Introduction

1.1 RESEARCH PROBLEM AND OBJECTIVES

Bi-level optimization(BLO) refers to an optimization problem where one problem is nested
within another as a constraint [2, 3]. The inner (or nested) and outer optimization tasks are of-
ten respectively referred to as the Lower-Level (LL) and Upper-Level (UL) subproblems. BLO
has attracted significant research attention due to the nested problem structure in many deep
learning problems, such as hyperparameter optimization [4, 5] , meta-learning [4, 6], continual
learning [7], reinforcement learning [8, 9], and neural network architecture search [10]. De-
spite the different motivations and mechanisms, all these problems contain a series of closely

related subproblems and have a natural hierarchical optimization structure.

However, bilevel optimization is much more challenging than classical optimization prob-
lems due to the complicated intertwining between the outer problem and the inner problem,
especially in large-scale and high dimensional practical machine learning applications. Nowa-
days, as modern machine learning systems incorporate an increasing number of both param-
eters and hyperparameters, aiming to enhance overall performance and flexibility, placing in-
creasingly high demands on computational resources, storage, and time. These challenges have
motivated increasing efforts to develop efficient and robust algorithms that can handle the re-

source demands of real-world machine learning applications.

A key focus in machine learning optimization is hyperparameter optimization (HO). Un-

like model parameters, hyperparameters guide the learning process however cannot be directly
learned from the training data [11]. They can affect various aspects of a learning model, such
as network architecture (e.g., number of layers and nodes), optimization hyperparameters (e.g.,
learning rate and momentum), and regularization (e.g., weight decay and dropout), which are
crucial in the development of efficient and robust machine learning models, that is why hy-
perparameter optimization has consistently attracted significant research interest. Among the
diverse approaches to hyperparameter optimization, such as the populated grid search, ran-
dom search, the main challenge is hard to handle high-dimensional parameters. So the focus
has shifted toward gradient-based bilevel approaches, which are considered one of the most
promising methods for addressing these challenges.

There are several interesting applications of hyperparameter optimization, such as filtering
a clean subset from noisy data, prune large-scale deep learning models, identify group-sparsity
structures in regression problems, and learn the discrete structure of graph neural networks.
In addition to being high-dimensional, these hyperparameters are also binary in nature, which
makes their optimization significantly more complex. As shown in these applications, the bi-
nary hyperparameters are critical for improving model robustness and efficiency, making them
valuable to be researched.

Given the increasing complexity and resource demands of modern machine learning sys-
tems, the need for efficient and robust optimization methods has become more critical than
ever. Addressing these challenges is particularly important in the context of hyperparameter
optimization, where resource constraints often play a significant role in determining model
performance. Therefore, this study aims to develop a resource-efficient and robust bilevel opti-
mization algorithm specifically designed for binary hyperparameter optimization, with a focus

on data usage efficiency through hyper-cleaning.

1.2 SIGNIFICANCE OF THE STUDY

As machine learning models become increasingly complex, the number of parameters involved
in these models grows correspondingly, which significantly impacts the efficiency of optimiza-
tion processes, particularly in bilevel optimization scenarios. In different BLO applications, the
interplay between the lower-level and upper-level optimization tasks creates additional compu-
tational challenges. The complexity introduced by the large number of parameters and the
nested structure of BLO increases the demand for computational resources, making the opti-

mization process resource-intensive and time-consuming. Traditional gradient-based methods

for solving BLO, which are mainstream methods, currently often require the computation
of high-dimensional Jacobian, Hessians or the inverse, which further exacerbates the computa-
tional burden, particularly in large-scale settings. This creates a pressing need for more efficient
optimization strategies that can reduce computational overhead while maintaining model ac-
curacy and robustness.

To address this challenge, this study proposes a zeroth-order optimization method leverag-
ing the Zeroth-Order Frank-Wolfe (ZOFW) algorithm [12], which inherently avoids the costly
computation required in the traditional gradient methods, reducing the computational com-
plexity significantly. By adopting this approach, we aim to develop algorithms that are not
only computationally efficient but also scalable to large-scale settings, thereby making them
applicable to real-world scenarios where computational resources are a critical limiting factor.

From the application perspective, the study focuses on the data hyper-cleaning task. This
is motivated by two key factors. Firstly, Data is fundamental to machine learning: without
data, learning is impossible. The quality and characteristics of the data used in training can
dramatically influence the outcome of the model. The choice of data, whether clean, noisy, or
representative of the real-world scenario, plays a crucial role in determining the performance,
reliability, and generalization of the learned model. Secondly, in today’s era of data explosion,
while we are not lacking in data, the challenge lies in using it efficiently. Relying solely on large
volumes of data, especially when much of it contains noise, can lead to wasted computational
resources and unreliable learning outcomes. Noisy data can mislead the model, reducing its
robustness and overall trustworthiness. Thus, efficiently selecting a smaller but cleaner subset
of data is essential for robust learning, avoiding the pitfalls of over-relying on noisy datasets.

By integrating these two aspects—computational efficiency and improved data usage efh-
ciency through a binary hyperparameter optimization problem —this study contributes to the
broader goal of developing more resource-efficient machine learning models. These models
are particularly valuable in the era of big data, where processing large volumes of information

efficiently while maintaining high performance is critical.

1.3 STRUCTURE OF THE THESIS

In our study, we focus on optimizing the binary hyperparameter in the data hyper-cleaning task.
The binary hyperparameter optimization problem is formulated as a bilevel optimization prob-
lem, for which we first relax the binary variables to be continuous through a penalty term [13],

then use a zeroth order gradient approximation of the upper level variable w.r.t. the upper level

objective to account for the interaction between the lower-level and upper-level subproblems.
After obtaining a solution for the relaxed problem, we apply an iterative strategy to gradually
drive the continuous upper-level variable closer to binary values (o or 1) via the introduced
penalty term.

One of the important features of our proposed method is that it is an efficient zeroth order
algorithm [12] for bi-level optimization. Moreover, by iteratively solving a series of relaxed con-
tinuous and penalized problems, under suitable assumptions, the Relax and Penalize approach
[13] we adopt guarantees to provide mixed-binary local solutions compared to the typical re-
laxation and rounding which lack theoretical guarantees.

The remainder of this thesis is structured as follows:

* Chapter 2 Literature Review This chapter reviews the development and evolution
of bilevel optimization (BLO) techniques, covering both early classical methods and
more scalable modern gradient-based methods. The chapter also explores hyperparame-
ter optimization (HO), emphasizing its importance in machine learning and how it can
be modeled as a BLO task. Finally, the chapter introduces the concept of data hyper-
cleaning as an application of BLO to improve model robustness in the presence of noisy
data.

* Chapter 3 Methodological Foundations This chapter introduces the proposed method,
which integrates the Relax and Penalize approach with the Zeroth-Order Frank-Wolfe
(ZOFW) algorithm to address the challenges of bilevel optimization involving binary
variables. After an in-depth exploration of the theoretical foundations of both these
two approaches and their suitability for handling the complexities discussed in Chapter
2, the chapter presents the proposed algorithm. It outlines the algorithm’s structure,

detailing how the two methods are combined and utilized effectively.

* Chapter 4 Experiments and Analysis This chapter presents the experimental setup,
results, and analysis of the proposed bilevel optimization method applied to data hyper-
cleaning. We frame the problem as a binary bilevel optimization task and evaluate the
algorithm on both synthetic and MNIST [14] datasets under varying noise conditions.
Key evaluation metrics include test loss, time to reach target loss, and upper-level objec-
tive function convergence. The results demonstrate that increasing inner-loop iterations
(T") improves performance, though with diminishing returns at higher values. The ex-
periments also highlight the effectiveness of data filtering, particularly in noisy environ-

ments, where models trained on filtered data outperform those trained on noisy data.

The chapter concludes by analyzing the trade-offs between computational cost and con-

vergence speed.

* Chapter 5 Conclusion and Future Work The thesis concludes with a summary of the
key findings, discussing the contributions of the research and potential future directions.
The chapter discusses how the proposed algorithm can be refined and applied to other

areas of machine learning.

Literature Review

2.1 BI-LEVEL OPTIMIZATION

2.1.1 EARLY DEVELOPMENTS AND CLASSICAL METHODS

Bilevel optimization can be traced to two domains: one is from game theory where the leader
and the follower compete on quantity in the Stackelberg game [15]; another one is from math-
ematical programming where the inner level problem serves as a constraint on the outer level
problem [2]. The hierarchical structure of BLO introduces inherent complexity compared to
traditional optimization problems. Early studies primarily focused on developing numerical

methods to solve these challenges. The classical methods include:

* Extreme Point Methods [3] Rely on the identification of extreme points in the feasible
region of the lower-level problem, mainly applied to linear BLOs problems with a well-

defined polyhedral structure. but struggle with non-linear or non-convex problems.

* Branch-and-Bound Methods Used for solving mixed-integer BLOs [16] by exploring
the solution space systematically by branching on decision variables and bounding the
solution quality, but performance deteriorates significantly with increasing problem di-

mensions.

* Descent Methods Involve iterative improvements via moving in the direction of the

steepest descent [17], but their applicability is limited by the requirement for specific

smoothness properties of objective functions.

* DPenalty Function Methods Convert BLO into a single-level problem by adding penalty
terms [18, 19]. However, the challenge lies in tuning the penalty parameters and the

method’s success often depends on the problem’s specific structure.

* Trust-Region Methods Approximate the BLO problem within a local "trust region”
around the current solution [20] but solving subproblems within each region are com-

putationally costly, especially for large-scale problems.

While these methods have laid a strong foundation in bilevel optimization, their scalability to
large-scale, high-dimensional problems remains challenging, prompting the development of
more practical approaches for modern machine learning tasks, which increasingly involve large

numbers of parameters and vast datasets.

2.1.2 GRADIENT-BASED METHODS: EGBMSs AND IGBMs

Compared with classical methods [16], which require strict mathematical properties or can-
not scale well to large datasets, efficient gradient-based methods provide a promising solution.
These methods have been widely adopted in machine learning research. These methods can be
broadly categorized into Explicit Gradient-Based Methods (EGBMs) [4, 10, 21] and Implicit
Gradient-Based Methods (IGBMs) [6, 22, 23], according to divergent ideas of calculating the

gradient needed for implementing gradient descent.

* Explicit Gradient-Based Methods (EGBMs) EGBMs involve calculating gradients ex-
plicitly by differentiating through the entire optimization process. One common
approach is unrolled differentiation, where the lower-level problem is iteratively solved,
and the resulting gradients are used to update the upper-level variables. Under the Lower-
Level Singleton(LLS) and Lower Level Convexity (LLC) the works in [21, 24] first cal-
culate gradient representations of the LL objective and then perform either reverse or
forward gradient computations (termed as Reverse Hyper-Gradient (RHG) and For-
ward Hyper-Gradient (FHG)) for the UL sub-problem. In order to address the LLS
restriction, under the LLC, [25] proposes Bilevel Descent Aggregation (BDA) which
characterizes an aggregation of both the LL and the UL descent information as a new
EGBM. However, since the EGBMs method requires calculating AD for the entire tra-
jectory of the dynamic iteration of LL, the computation load is heavy to calculate the

8

gradient with reasonable accuracy. To reduce the computation burden, Truncated Re-
verse Hyper-Gradient (TRHG) [26] was proposed, which truncates the gradient trajec-
tory. Nevertheless, TRHG’s efficiency is sensitive to the truncation length, and finding

an optimal truncation length remains challenging.

* Implicit Gradient-Based Methods (IGBMs) IGBM:s or implicit differentiation, on the
other hand, avoid explicit differentiation by using the Implicit Function Theorem(IFH)
to obtain gradients. In situations where the lower-level problem is strongly convex and
satisfies LLS conditions, the gradient of the UL objective can be calculated by implicit
differential equations, however with an additional condition which requires the Hes-
sian matrix to be invertible. Unlike EGBM:s that rely on computing first-order gradients
along the entire trajectory of the lower-level problem, IGBMs only use the first-order
condition once. This decouples the computational burden from the lower-level solution
trajectory. However, a major drawback of IGBM:s is the need to repeatedly compute the
inverse of the Hessian matrix, which remains computationally expensive. To alleviate
this, techniques such as the Conjugate Gradient (CG) method and Neumann series ap-
proximations are often used to estimate the Hessian inverse. However the overall process
still requires substantial computational resources because of computing Hessian-vector

products.

As discussed above, both EGBMs and IGBM:s encounter significant bottlenecks. In theory,
both rely on strong assumptions such as the LLS and LLC conditions to ensure convergence
and stability. These conditions are often not met in practical applications, where the LL prob-
lem in real-world learning tasks may be non-convex or contain multiple local minima, leading
to serious convergence issues or failure to find a suitable solution. In terms of computational
challenges, EGBMs, especially those using unrolled differentiation, require space and time com-
plexity, as gradients must be computed along the entire trajectory of the LL optimization. On
the other hand, IGBM:s reduce the burden of tracking the LL trajectory but come with their
own computational cost for Hessian inversion or approximation.

These theoretical and computational challenges significantly limit the practical application
of gradient-based methods, particularly in large-scale bilevel optimization problems where
models involve complex, high-dimensional structures and massive datasets. As a result, there
has been growing interest in alternative approaches that can overcome these limitations.
Zeroth-order methods have emerged as a promising alternative by avoiding the heavy compu-

tational cost associated with calculating gradients or Hessians, zeroth-order methods offer the

potential for more efficient and robust solutions to the challenges posed by bilevel optimization

in real-world applications.

2.2 HYPERPARAMETER OPTIMIZATION

2.2.1 IMPORTANCE OF HYPERPARAMETER OPTIMIZATION

In machine learning, hyperparameters (HPs) refer to parameters external to the model, which
cannot be learned from the training data alone. They can be involved in building the structure
of the model, such as the number of hidden layers and the activation function, or in determin-
ing the efficiency and accuracy of model training, such as the learning rate (LR) of stochastic
gradient descent (SGD), batch size. The task to identify the optimal set of hyperparameters is
known as hyperparameter optimization (HO). Choosing the appropriate set of hyperparame-
ters has often a dramatic influence on the performance of machine learning models. Optimal
hyperparameters can significantly improve model training effectiveness, generalization and fi-
nal performance, while poor choices can lead to underfitting, overfitting, or inefficient learning.
Given the crucial role of hyperparameters in determining the success of machine learning mod-

els, hyperparameter optimization has become a critical and active area of research.

2.2.2 STRATEGIES FOR HYPERPARAMETER OPTIMIZATION

Several methods have been proposed for hyperparameter optimization in the literature. We
will give a brief review on representative ones to illustrate the landscape of hyperparameter op-
timization strategies, including both traditional techniques, such as grid and random search, as

well as more advanced methods like Bayesian optimization and gradient-based approaches.

* Grid Search A widely used algorithm where the model is trained over a predefined
range of hyperparameter values, and the best-performing configuration based on cross-
validation loss is chosen [27, 28]. However, grid search scales poorly with the number
of hyperparameters, requiring exhaustive exploration of all possible combinations. This

method is also inefficient, as fitting the full model for each value of hyperparameters.

* Random Search This method improves upon grid search by randomly sampling hyper-
parameter values. It has been shown to explore the hyperparameter space more

efficiently [29], especially in cases with multiple hyperparameters, but like grid search, it

I0

2.2.3

does not utilize prior evaluations to inform future iterations, resulting in slower conver-

gence to optimal hyperparameters.

Hyperband Algorithm An extension of random search that uses a multi-armed bandit
strategy to allocate resources more effectively [30]. It evaluates hyperparameter configu-
rations and dynamically allocates computational resources to the most promising ones,

reducing the overall cost of hyperparameter optimization.

Sequential Model-Based Optimization (SMBO) Techniques like Bayesian

Optimization [31] are increasingly popular for hyperparameter optimization. SMBO
builds a probabilistic model to approximate the objective function and iteratively se-
lects the most promising hyperparameter configurations for evaluation. By leveraging
past evaluations, Bayesian optimization can efficiently explore the hyperparameter space,

particularly when the cost of model evaluation is high.

Gradient-Based Methods In deep learning, gradient-based hyperparameter optimiza-
tion methods [32] have gained traction, especially when minimizing validation loss. Tech-
niques such as unrolled differentiation or implicit gradients are often employed. How-
ever, as discussed in Section 2..1.2, these methods face limitations in computational cost

and reliance on strong assumptions like lower-level convexity.

MODELING HYPERPARAMETER OPTIMIZATION AS A BI-LEVEL PROB-

LEM

Hyper optimization can be the most straightforward application of BLO. Before modelling the

hyperparameter optimization problem as a bilevel problem, we provide the general formulation

of a bilevel optimization problem, i.e., an outer optimization problem contains a nested (inner)

optimization problem within it. The outer optimization problem is commonly referred to as

the upper level problem and the inner optimization problem is commonly referred to as the

lower level problem.

where

m@in F(0,w"(#)) subjectto w”(#) = argmin f(6,w) (2.1)

F(6,w*(0)) is the upper-level objective function, with 6 being the upper-level variable

and w* () representing the solution of the lower-level problem.

II

* f(0,w)is the lower-level objective function, where w represents the lower-level variables

that are optimized for a given value of 6.

In the hyperparameter optimization problem, the lower-level problem minimizes the training
set loss, and the upper-level problem minimizes the validation set loss 2.1. The loss on the
training set is a function of both the model parameters w and the hyperparameters 0, while
the loss on the validation set is only a function of the model parameters w. Specifically, the
upper-level objective F'(6,w(6); Dyq) aims to minimize the validation set loss with respect
to the hyperparameters 6, and the lower-level objective f(6, w; Diyain) seeks to output model
parameters w by minimizing the training loss with respect to w (e.g., weights and biases).

mein F(0,w(#); Dyy) subjectto w*(#) = argmin f(60,w; Dyin) (2.2)

where
* f(0,w; Dyin) is the training loss function over the training set Diyp.
* F(0,w(0); Dyy) is the validation loss function over the validation set D,,.
* 0 represents the hyperparameters (e.g., learning rate, regularization coefficients).

* w represents the model parameters (e.g., weights and biases).

The UL subproblem involves optimization of hyper-parameters (HP) based on (Dy,qin » Dvai), while the LL subproblem
involves optimization of model parameters (MP), aiming to find the optimal model based on D .gin.-

Figure 2.1: Schematic diagram of Hyperparameter Optimization [1]

I2

2.3 APPLICATION IN DATA HYPER-CLEANING

In this work, we apply the proposed bilevel optimization method to the specific hyperparameter
optimization task of data hyper-cleaning [3 3], which is particularly valuable in scenarios where
obtainingalarge, clean datasetis costly or impractical, as in the case of reccommendation systems
or large-scale machine learning applications.

The data hyper-cleaning task involves optimizing hyperparameters to improve the robust-
ness of the model against noisy data. Suppose we have a dataset with label noise, and due to
time or resource constraints, we can only afford to clean up a subset of the available data by
manually checking and correcting the labels. In this situation, we can use the cleaned data as
the validation set and the remaining noisy data as the training set. By assigning a binary hy-
perparameter, referred to as a ’mask,’ to each training example, we can determine whether a
data point should be emphasized or de-emphasized during training. A sparsity constraint is
imposed on these masks, helping to focus the learning process on the most relevant data and
reduce the impact of noisy examples, thereby leading to a more robust model. In the context
of bilevel optimization, the upper-level objective optimizes hyperparameters to minimize the
validation loss on the clean dataset, while the lower-level problem learns a model on the noisy
training set, using the mask to down-weight noisy samples.

In the following chapters, we will further explore how our proposed method is applied to
the data hyper-cleaning task, detailing the experimental setup, results, and analysis. Through
this application, we aim to demonstrate the effectiveness of our bilevel optimization approach

in handling noisy data and improving model robustness.

13

14

Methodological Foundations

In this chapter, we build upon established methods in bilevel optimization to address the chal-
lenges of binary hyperparameter optimization in large-scale problems. Specifically, we adopt
the Relax and Penalize method proposed by Marianna De Santis, Jordan Frecon, Francesco
Rinaldi, Saverio Salzo, and Martin Schmidt (2023) [13], which effectively addresses the opti-
mization of mixed-binary hyperparameters by using a continuous reformulation with an ap-
propriate penalty term. This method ensures mixed-binary solutions by iteratively solving a
sequence of continuous and penalized problems under certain assumptions,
Additionally, for the upper-level problem, we leverage the Zeroth-Order Frank-Wolfe

(ZOFW) algorithm, which was introduced by Anit Kumar Sahu, Manzil Zaheer, and Soum-
mya Kar (2019) [12]. This method provides a gradient-free solution, reducing the computa-

tional burden associated with gradient-based methods we mentioned previously.

3.1 RELAX AND PENALIZE METHOD

3.1.1 INTRODUCTION AND CHALLENGES IN BINARY HYPERPARAMETER

OPTIMIZATION

Binary hyperparameter optimization has gained increasing importance in deep learning, driven

by two trends: The first trend involves the upscaling of neural networks to enhance accuracy.

Is

Empirical studies consistently demonstrate that deeper and wider neural networks outperform
simpler models in accuracy [34, 35, 36]. However, this complexity also leads to challenges
such as increased inference costs and difficulties in deploying models on resource-limited de-
vices [37]. Asaresult, model pruning—where redundant parameters are removed—has gained
significant research attention. Pruning not only reduces model size and inference cost but
also enhances model robustness and generalization, such as adversarial robustness [38], out-
of-distribution generalization, and transfer learning [39]. The second trend emphasizes the
efficiency of training data usage. While complex modern models have the strong capability
to leverage huge amounts of data, there is a growing interest in achieving comparable training
performance using smaller subsets of data. This aligns with the objectives of techniques such
as one-shot learning, where the goal is to train models with minimal data while maintaining
high accuracy. The ability to effectively prune the training data—selecting only the most in-
formative examples—can significantly reduce the computational burden and improve training

efficiency.

Both of these trends—model pruning and data pruning—fall under the broader scope of
binary hyperparameter optimization, where binary variables, often referred to as mask variables,
play a crucial role to determine whether model parameters or data points should be retained or
discarded. However, optimizing binary variables introduces additional complexity compared

to continuous variables, significantly complicating the optimization process.

The usual optimization approach for binary hyperparameters is that of relaxing the respec-
tive parameter over the unit interval [o, 1], solving the continuous optimization problem, and
then rounding the solution so to get a binary output. This is essentially a heuristic, which
overcomes the challenge of dealing with integer variables, but lacks theoretical guarantees. Our
study proposes the adoption of the "Relax and Penalize” method that relies on improved math-
ematical grounds. This method integrates a penalty function directly into the optimization
process, guiding the relaxed binary variables toward binary values throughout the optimization
with an iterate style. By employing this method, we aim to study the efficiency and robustness

of binary hyperparameter optimization.

3.1.2 THEORETICAL FOUNDATIONS AND ALGORITHMIC STRUCTURE OF

THE RELAX AND PENALIZE METHOD
Firstly, we define the mixed-binary optimization problem(x) as follows:

16

min F'(\, 0, w(A,0))

A0
st A€ ACR™ 6 €0, C{0,1}7, (3.1)
w(A, 0) = arg we%l(liﬁ) F(\0,w)

where F, f : R™ x R? x R? — R represent the upper and lower-level objective functions,
W(X,0) C R?is the unique solution of the lower-level problem and the hyperparameters A
and 0 are continuous and binary variables, respectively. In the hyperparameter optimization
problem of machine learning, F" and f typically correspond to the loss over a validation set
and a training set, respectively.

The Relax and Penalize method [13] tackles the mixed-binary optimization problem by re-
laxing the binary constraints on 6 through a smooth, concave, quadratic penalty function. This
function incrementally pushes the relaxed values of ¢ toward binary values during the optimiza-
tion process. The set 0 is a larger continuous one embedding the binary set Oy;,, and assume
that the lower-level problem admits a unique solution also when 6 € ©. The original mixed-

binary BLO problem is transformed into a continuous one as follows:
i F(\0,0(\,0) + ~(0) (32)
i FOL0 w00 + Co 2

The penalty function ¢(6) is defined as:

p(0) = _Z@-(l —0,) (3.3)

This penalty function is designed to reach its minimum when ; is close to o or 1, thus driv-
ing the relaxed variables towards binary values during the optimization. The parameter € con-
trols the weight between the original objective function F'(\, 6, w(A, §)) and the penalty term
©(0). By adjusting €, the optimization process would gradually focus more on ensuring that ¢
approaches binary values.

To guarantee that solving the relaxed problem is equivalent to solving the original mixed-

binary problem, we introduce three key theorems require that the following assumption holds

[13]:
Assumption 1. (7)) A C R™ is nonempty and compact.

(i7) Opy := O N{0,1}F # 0, where © C [0, 1|P is convex and compact, and © \ Oy, # 0.

17

(ii7) F : A X © — R s continuons.
(1v) Forall A\ € A, the map F (X, -) is Lipschitz continuons with constant L > 0 on ©.

Theorem 1. Suppose that Assumption 1 is satisfied. Then, there exists an € > 0 such that for all

€ €]0, €, the problem 3.1 and 3.2 have the same global minimizers, i.e.,

1
argmin F(\,0,w(\,0)) = arg min (F(A,@,w()\,@)) + —cp(@)) :
(A0)EAX Oy, (\0)EAXO €

For sufficiently small € the global minimizers (i.e., the best solutions across the entire search
space) of the relaxed problem match those of the original mixed-binary problem. In simpler
terms, solving the relaxed problem still yields valid binary solutions when € becomes close to
zZero.

This theorem is crucial because it provides a theoretical foundation for the relaxation pro-
cess. It tells us that we can relax binary variables into continuous ones and still recover correct
solutions as € approaches zero. This makes the Relax and Penalize method reliable for hyper-
parameter optimization, ensuring the relaxed problem isn’t just an approximation but leads to

the same solutions as the original binary-constrained problem.

Theorem 2. Suppose that Assumption 1 holds. Let ¢ €]0,1/2[and 0 < € < (12—26) Moreover,
let (X, 0) be a local minimizer of

1
F\0,w(\0))+ —p(0) on AxO.
€
Ifdisto(0,0y;,) = infgeo,, [|0 — 0|l < ¢ then 0 € O,

Theorem 2 essentially says that, even if the optimization process converges to a local mini-
mum instead of a global one, the solution is still valid for the original mixed-binary problem
under specific conditions. Specifically, the local minimizers of the relaxed problem correspond
to valid solutions in the original problem when € is small enough.

In real-world scenarios, finding a global solution is challenging. This theorem reassures that
even local minima, under certain conditions, still produce valid binary solutions. This allows
the optimization process to be more flexible while maintaining the binary integrity of the solu-

tion, making it practical and applicable to real-world problems.

18

To addressing problem 3.1 iteratively, a sequence of problems of the form 3.2, indexed with

k, with decreasing parameters * is the problem to be solved in each iteration:

, 1 k
(A,g?EIEX@F(A,G,w(A,Q)) +5el0), (P7)
Theorem 3. Suppose that Assumption 1 holds. Let (€")xen be a vanishing sequence of positive
numbers and, for cvery k € N, let (*, 0%) be a local minimizer of (P*). Then,

lim inf dzktoo(ﬁk, Oun) < 1/2 = 3k € Nsuch that 0% € ©,,,.

k——+o0

Moreover, if 0% € ©,,,, then we have that \¥ is a local minimizer of

min F(}, 0 w(X, 0%)).

This theorem introduces an iterative framework for applying the penalty method. By pro-
gressively reducing € (e.g., € for each iteration k), the penalty method incrementally tightens
the binary constraints, ensuring convergence to a binary solution without requiring explicit
rounding.Instead of forcing binary values at a single step, this theorem outlines a step-by-step
tightening of the constraints, allowing the algorithm to systematically converge to the desired
binary solution. It’s useful because it avoids the need for explicit rounding and provides a more
natural and efficient way to enforce the binary constraints. The iterative nature of the process
ensures that solutions are improved with each step, making the optimization more robust.

Following the theoretical foundations, we now present the complete algorithmic structure
of the Relax and Penalize method. This approach iteratively adjusts the penalty parameter e,
progressively tightening the binary constraints on 6, and ultimately converging towards a bi-

nary solution.

* Step 1 (Initialization) The algorithm starts with an initial penalty parameter €’ > 0and
areduction factor # € (0, 1). The reduction factor determines how quickly the penalty
parameter decreases, progressively tightening the binary constraints on ¢. A larger value
of Bleads to slower tightening, allowing the algorithm to explore the solution space more
thoroughly, whereas a smaller 3 quickly enforces binary constraints but may risk getting

trapped in local minima.

* Step 2 (Iteration) At each iteration k, the algorithm solves the relaxed optimization

19

Algorithm 3.1 Relax and Penalize Penalty Method [13]

Require: Problem (3.1),¢” > 0,5 € (0,1)
fork=0,1,2,...
Let (*, 0%) be a solution (either local or global) of problem P*
if 0% ¢ {0,1}?
Update "1 = B¢k
else
Return (*, 0F)

end for

problem for the current value of ¥, obtaining a candidate solution (A*, 6%).

* Step 3 (Binary Constraint Check) The algorithm checks whether the solution 6" sat-
isfies the binary constraints, i.e., whether ok ¢ {0, 1}?. If not, it updates the penalty

parameter €* by multiplying it by 3, making the penalty stronger in the next iteration.

* Step 4 (Termination) If the solution * satisfies the binary constraints, the algorithm

terminates and returns the final solution (¥, %),

This algorithmic structure, combined with the theoretical guarantees provided by the theo-
rems, ensures that the Relax and Penalize method effectively solves mixed-binary bilevel opti-

mization problems under certain assumptions.

3.1.3 KEY CONSIDERATIONS FOR THE RELAX AND PENALIZE METHOD

When applying the Relax and Penalize method to mixed-binary bilevel optimization problems,
several critical factors influence the effectiveness and efliciency of the algorithm. These factors
include the choice of the penalty parameter € and the decay factor /3 the initialization of hyper-
parameters, and the overall computational complexity. Each of these elements plays a pivotal
role in ensuring that the algorithm converges to a good solution while maintaining computa-
tional feasibility.

Penalty Parameter € and decay factor 5 The penalty parameter ¢ and decay factor /3 are
crucial in controlling the trade-oft between the original objective function and the penalty term
introduced to enforce the binary constraints on 3. The choice of these parameters directly

influences the convergence behavior of the algorithm:

* Magnitude of 0: If € is too large, the penalty term will have little effect, causing the algo-

rithm to converge slowly towards binary values. Conversely, if € is too small, the penalty

20

term might dominate the optimization process prematurely, potentially leading to sub-
optimal solutions that overly prioritize satisfying the binary constraints at the expense

of minimizing the original objective function.

* Decay factor 3: The decay factor 3 determines how rapidly € decreases during the iter-
ative process. A smaller 3 leads to a faster tightening of the binary constraints but can
also increase the risk of the algorithm converging too quickly, potentially trapping it in
local minima. On the other hand, a larger 3 results in a slower reduction of ¢, allowing
the algorithm to explore the solution space more thoroughly but at the cost of increased

computational time.

* Initialization of € and /3: Starting with a moderate € allows the algorithm to explore fea-
sible solutions before gradually enforcing binary constraints. Similarly, the choice of 8
should balance the need for rapid convergence with the necessity of avoiding premature

optimization.

Thus, the careful tuning of € and /3 is essential for balancing convergence speed with solution
quality. The iterative process of adjusting these parameters ensures that the algorithm gradually
enforces the binary constraints while still allowing sufficient exploration of the solution space.

Initialization of Hyperparameters The initialization of the hyperparameters A and 6 sig-

nificantly impacts the algorithm’s convergence and the quality of the final solution:

* Initial Values of A and 0: The initial values set for A and 6 dictate the starting point of
the optimization process. Poor initialization might lead to slow convergence or entrap-
ment in local minima, while good initialization can expedite convergence and improve

the likelihood of reaching a global optimum.

* Initialization Strategies: Employing adaptive strategies for initializing these variables
based on the problem’s characteristics can enhance the efficiency and robustness of the
optimization process. For instance, choosing initial values for 6 closer to o or 1, depend-
ing on prior knowledge or heuristic methods, can help guide the optimization towards

a feasible binary solution more effectively.

Proper initialization of X and 6 sets the foundation for the optimization process, making it a
crucial factor in the overall success of the Relax and Penalize method.
Computational Cost The computational cost of the Relax and Penalize

method is a critical consideration, particularly for large-scale optimization problems:

21

* Iteration Count and Convergence Speed: The number of iterations required to achieve
convergence directly affects the computational burden. While a smaller 3 may reduce
the number of iterations, it could increase the burden of each iteration, as the algorithm

might struggle with tighter binary constraints.

* Cost of Function Evaluations and Matrix Operations: Each iteration involves solving a
continuous bilevel optimization problem, which requires evaluating the objective func-
tion and penalty term. This process can involve computationally expensive operations,
such as computing or approximating Hessians, Jacobians, their inverses, and perform-
ing matrix operations. These computations grow in cost as the dimensionality of the

problem increases.

* Scalability Considerations: As the dimensionality of 6 and X increases, the computa-
tional demands grow exponentially. Ensuring that the method scales efficiently with
problem size is essential for its application to real-world problems. Parallel computing
and efficient algorithms for matrix operations can mitigate some of the computational

burdens.

Managing the computational cost requires a careful balance between the speed of convergence
and the available resources. Optimizing the algorithm’s implementation and leveraging com-
putational resources effectively can help address these challenges.

In summary, the effectiveness of the Relax and Penalize method in mixed-binary bilevel opti-
mization hinges on several key factors. The careful tuning of the penalty parameter € and decay
factor 3, thoughtful initialization of hyperparameters, and a keen awareness of computational
cost all contribute to the success of the method. By understanding and managing these aspects,
the Relax and Penalize method can be effectively applied to complex optimization tasks, ensur-

ing both convergence to a high-quality solution and efficient use of computational resources.

3.2 ZEROTH-ORDER FRANK-WOLFE ALGORITHM

3.2.1 MOTIVATION FOR USING ZEROTH-ORDER METHODS IN BINARY

HYPERPARAMETER OPTIMIZATION

In previous sections, we discussed the challenges associated with bilevel optimization, particu-

larly when using the mainstreamed gradient-based methods for hyperparameter optimization.

22

These methods face significant challenges when applied to high-dimensional and large-scale
optimization tasks. The computation of high-dimensional gradients, Jacobians, Hessians, and
complex matrix operators often results in significant computational overhead. As such, they
become computationally prohibitive, especially in complex machine learning applications in-
volving millions of parameters. The computational burden is exacerbated in large-scale appli-
cations, where solving these problems involves managing millions of variables. As outlined in
Section 2.1, there is a critical need to explore more efficient optimization strategies that can
scale with increasing problem size and complexity.

In light of these challenges, particularly in the context of binary variable optimization where
each iteration involves solving a continuous bilevel optimization problem after relaxation (as
discussed in Section 3.1 with the relax and penalize method), the cost of each iteration—both
in terms of time and computational resources—highlights the necessity for a more efficient op-
timization algorithm. This sets the stage for exploring zeroth-order methods, which bypass the
need for explicit gradient computations or hessian inversion by using function evaluations to
estimate necessary gradients, and that are more computationally feasible for high-dimensional
and large-scale optimization scenarios.

Thus, the adoption of the Zeroth-Order Frank-Wolfe algorithm is motivated not only by the
computational challenges inherent to gradient-based methods but also by the practical need for
efficient employing the relax and penalty strategy. Integrating ZOFW with the Relax and Penal-
ize method aims to enhance the efficiency and scalability of the optimization process, making

it more suitable for high-dimensional and large-scale problems.

3.2.2 OVERVIEW OF ZEROTH-ORDER FRANK-WOLFE ALGORITHM

The Zeroth-Order Frank-Wolfe (ZOFW) algorithm is an extension of the classical Frank-Wolfe
method, tailored for optimization tasks where gradient information is unavailable or too ex-
pensive to compute. While the traditional Frank-Wolfe algorithm relies on gradients to deter-
mine search directions in constrained optimization problems, ZOFW circumvents this reliance
by approximating gradients through function evaluations, This gradient-free nature makes
ZOFW highly suitable for large-scale and high-dimensional optimization problems.

Here are the core elements of the Zeroth-Order Frank-Wolfe Algorithm:

I. Gradient Estimation via Function Values: ZOFW approximates gradients [12] using

finite differences, where function values are evaluated at carefully selected points within

23

the feasible space. This allows for the estimation of a descent direction without needing

explicit gradient information, significantly reducing computational complexity.

II. Zeroth-Order Gradient Approximation: For stochastic optimization tasks, ZOFW lever-
ages randomized gradient estimation techniques, including Kiefer Wolfowitz stochastic
approximation (KWSA) [40], Random Directions Stochastic Approximation (RDSA)
[41, 42] and improved variant, i-RDSA, which samples multiple directional derivatives
at each iteration and averages them to achieve more accurate gradient estimates. We

adopt i-RDSA which reduces variance and stabilizes the optimization process.

III. Gradient Averaging: To avoid potential divergence caused by non-decaying gradient
noise and bias, ZOFW implements a gradient averaging technique [43, 44, 45]. Gradient

averaging reduces noise and bias, yielding a more reliable surrogate gradient estimate.

IV. Linear Optimization for Direction Update: In each iteration, ZOFW solves a linear opti-
mization problem over the feasible set to identify the optimal update direction. This step
simplifies the optimization process by avoiding the need for complex projection steps,
which are typically computationally intensive in gradient-based methods. The efficient

linear optimization contributes significantly to the computational efficiency of ZOFW.

These key components enable ZOFW to strike a balance between accuracy and computa-
tional efficiency, making it well-suited for bilevel optimization tasks where computational costs
can escalate due to the iterative nature of solving both upper- and lower-level problems. The
gradient-free nature of the algorithm, combined with the ability to handle large-scale problems,
provides a robust framework for optimizing binary hyperparameters in complex settings.

In the next section, we will formally introduce our proposed algorithm, which combines the
Relax and Penalize method (from Section 3.1) with ZOFW to tackle binary hyperparameter

optimization efficiently in bilevel optimization problems.

3.3 PROPOSED ALGORITHM FOR BINARY HYPERPARAMETER

OPTIMIZATION

In this section, we introduce our proposed bilevel optimization algorithm for binary hyper-
parameter tuning, which integrates the Relax and Penalize method (as outlined in Section

3.1) with the Zeroth-Order Frank-Wolfe optimization (discussed in Section 3.2). This hybrid

24

approach efficiently handles binary constraints through continuous relaxation while address-
ing the computational challenges of bilevel optimization, particularly in high-dimensional and
large-scale problems. Before presenting the algorithm, recall that the optimization process re-
lies on the relaxed formulation of the mixed-binary bilevel problem, as introduced in Section
3.1.2. The relaxed problem is governed by the penalty term ¢(#), driving the relaxed variables
towards binary values, as defined in Equation 3.3. The following algorithm outlines the itera-
tive optimization process based on this relaxed and penalized formulation.

The proposed algorithm is structured around two nested loops:

* Bilevel Optimization Loop (indexed by j): This loop is nested within each outer it-
eration k. It iterates over the bilevel optimization process, where the lower-level and

upper-level optimization steps are executed alternately.

— Lower-Level Optimization: At each iteration j, the lower-level problem is solved

kx

to find the optimal lower-level variable w (6’}“,)\"f) by T inner loops given the

current upper-level parameters 6} and A%

— Upper-Level Optimization: The upper-level variables 6% are updated through
the Zeroth-Order Frank-Wolfe method via gradient approximation and optimiza-

k

tion of linear programming. The updated 07, is for the next step *.

J

* Outer Loop (indexed by k): It governs the overall penalty method iterations, adjusting
¢* and determining whether the current €§ has converged to a binary solution or requires

further refinement.

"Multiple steps of i-RDSA for a fixed penalty parameter to guarantee convergence would make the algorithm
to computationally heavy in the big data regime.

25

Algorithm 3.2 Relax and Penalize with Zeroth-Order Frank-Wolfe

Input: Problem 3.1, > 0, 8 €]0,1]
fork=0,1,2,...
Bilevel Optimization Loop
forj=0,1,....J—1
Lower-Level Optimization:
Solve the lower-level problem to obtain the optimal solution of the lower-level
variable with T inner iterations
wh* ((9;g ,)\;"’) given the current upper-level variables (9;“ ,)\;"’
Upper -Level Optimization:
Update the upper-level variables 6% based on the computed optimal direction
employing Zeroth-Order Frank-Wolfe as the following steps:
Gradient Approximation (i-RDSA):
Sample multiple directions {z; ; }7, ~ N (0,)
Estimate the gradient of the upper-level objective
F(N5, 0% wh*) + 5p(60%) using finite differences:

77]7

1 N F(NS 05 + ¢z, wh™) — F(NF, 08, wh)
0’?:—2 2273 T I T 7Y i
g(]) mi:1 Cj Z,J
29’“1 "
_'_g](- j)

Averaging the gradient approximation:
Update d; using a moving average to smooth the gradient:

dj = (1 — p;)dj—1 + p;ig(0})

Solve Linear Subproblem:
Solve the linear program to find the update direction v;:

vj = arg E}Iélél(l) d;)
Update 0
Update the upper-level variable 6; using the direction v;:

051 = (1= ;)07 + v,

end for
if 0% ¢ {0,1}7
Update e¥T! = gek
else
Return (A%, 6%)
end for 26

Experiments and Analysis

4.1 PROBLEM FORMULATION

In this experiment, we approach the data hyper-cleaning problem as a binary bilevel optimiza-
tion task, where the goal is to optimize a noisy training dataset by learning a binary mask that
determines which data points should be emphasized or discarded during training. The ob-
jective is to minimize the validation loss on a clean validation set. The bilevel optimization

formulation is expressed as follows:
main Ca(w(8)), st w(f) = argmin (Lygn(w', 0) + cf|w']|?)

Where:

* la(w(0)) represents the validation loss on a clean validation set D,,, with the model

parameters w being a function of the mask 0.

* Liain(w', 0) is the training loss on the noisy training dataset Dy, weighted by the mask

* 0 € [0, 1]? is the binary mask variable, representing the importance of each data point

during training, where ; ~ 0 excludes the data point from training and 6; ~ 1 includes

it.

27

* cisaregularization term to prevent overfitting by penalizing large model parameters.

Relaxed Problem with Penalty Term:

min Loa(w(0)) + ép(@), st w(f) = argmin (g (w',) + ¢fjw’||?)

Where:

* (0) is a penalty function that encourages § to take binary values (o or 1), as discussed

in Section 3.1.

* Cyain is 2 weighted sum over the noisy training set. The weighting function o(6;), im-
plemented as Clip(6;, [0, 1]), ensures that each mask variable 6; is restricted to the range
[0, 1]. This clipping operation helps prevent extreme values that could overly amplify
or suppress the contribution of certain data points, thereby maintaining stability in the

training process.

4.2 NUMERICAL EXPERIMENTS

4.2.1 EXPERIMENT SETUP AND EVALUATION METRICS

In this study, we evaluate the performance of the proposed bilevel optimization algorithm us-
ing two datasets following the guidelines of [33]: a synthetic binary classification dataset and
the widely recognized MNIST dataset [14], and the lower-level training use the general SGD
optimization. The synthetic dataset, randomly generated, is employed to observe how the algo-
rithm behaves under different noise conditions and to examine its convergence patterns. The
MNIST dataset, known for its use in digit classification tasks, is modified by introducing noise
into the labels to simulate real-world noisy data scenarios. In both datasets, we introduce noise
by randomly flipping a specific percentage of the labels. Specifically, noise ratios of 20% and
50% are used to simulate low- and high-noise environments, respectively. The goal is to opti-
mize a binary mask, 0, which filters out clean data points, mitigating the adverse effects of noisy

data during training.

2.8

In addition to examining different noise levels, we also explore the influence of varying inner-
loop iteration counts in the lower-level optimization process, denoted as T'. Since the lower-
level optimization is executed multiple times during the upper-level optimization, and each
random direction in the Zeroth-Order Frank-Wolfe method (i-RDSA) involves a lower-level
optimization step, 7" becomes a crucial factor affecting the algorithm’s overall performance.
We experiment with 1" values of 1, 2, 5, and 10 across different noise levels to assess how the
number of inner-loop iterations impacts the results.

To comprehensively assess the algorithm’s performance, we employ the following key evalu-

ation metrics:

* Testloss over iteration: Tracks how quickly the testloss decreases for difterent 7" values,

showing the convergence speed and stability of the algorithm under different settings.

* Time to achieve target loss: Measures the time taken for each 7" value to reach a prede-
fined loss target (e.g., 0.02), highlighting the trade-off between computational cost and

convergence speed.

* Validation loss over iteration: Tracks validation loss over time to evaluate the general-

ization ability of the model during optimization.

* Comparison of test loss between the model trained by filtered and noisy data: Eval-
uates the impact of data filtering on model performance by comparing the test loss from
models trained on filtered versus noisy data, providing evidence of the algorithm’s effec-

tiveness in reducing the negative impact of noise.

By using these evaluation metrics, we can thoroughly analyze the algorithm’s performance in
terms of convergence speed, generalization ability, computational efficiency, and the quality of
the filtered data. In the following section, we present the results of these experiments, analyzing

the effects of noise levels and inner-loop iteration counts on both datasets.

4.2.2 EXPERIMENT RESULTS AND ANALYSIS

In this section, we present the experimental results of our proposed bi-level optimization ap-
proach for data hyper-cleaning. The experiments were conducted using both synthetic and
MNIST datasets under varying noise conditions. The focus of the analysis is on the impact of
different noise levels and the effect of varying the maximum number of lower-level iterations

(denoted as T) on model performance, as described in Section 4.2.1.

29

Test Loss vs. Iteration

The test loss progression for different 7" values is illustrated in Figure 4.1. The results show
that increasing 7" generally leads to faster and more stable convergence.

For the synthetic dataset, as shown in Figure 4.1 (top row), the testloss consistently decreases
across all T" values under both noise conditions (0.2 and o.5) in most cases. When the noise
ratio is 0.2, increasing 7" results in faster convergence. Specifically, 7" = 20 achieves the lowest
final test loss. At a noise ratio of o.5, the impact of increasing 7" remains the same, but the
performance differences between 7' = 10 and 7' = 20 are minimal. 7" = 20 again reaches
the lowest final test loss, but the computational time required is the most. When 7" = 1, the
test loss increases slowly and and keep the lowest test loss. This suggests that in different noise

settings, the proper values of 1" would be different. For the MNIST dataset (bottom row),

Test Loss vs. Iteration (Noise Ratio 0.2) Test Loss vs. Iteration (Noise Ratio 0.5)

o022 — Test Loss (T=1) — Test Loss (T=1)
0.040
Test Loss (T=5) Test Loss (T=5)
\ Test Loss (T=10) Test Loss (T=10}
0oz \ — Testloss(T=20) oo — Test Loss (T=20)
e \ N
@ .
S \\ =
8] # 0.030 e
= foosl N\ a o § G S
o 0.025
5 0.016
£ ~
= s 0.020
(%‘ o014 — E
3 10 15 20 25 5 10 15 20 25
teration
Test Loss vs. Iteration (Noise Ratio 0.2) Test Loss vs. Iteration (Noise Ratio 0.5)
s — Test Loss (T=1) 0.030 — Test Loss (T=1)
Test Loss (T=2) Test Loss (T=2)
Test Loss (T=5) e Test Loss (T=5)
00204 | — Test Loss (T=10) 0.026 //\ — Test Loss (T=10)
= \ 0.024 / /\/ EaE
[} P a /
= § oo1s \ § 0.022 R /
= \ 0.020 \ / /
A
0010 \/ 0.018 /\/
e 0016
e]
0005 e — e
0.014
2 3 [[10 2 4 [[} 10

Figure 4.1: Test Loss vs. Iteration under Different Noise Ratios.

the general trends is the same from those observed in the synthetic dataset. The difference is
in MNIST test loss decreases more rapidly at the early stage under a noise ratio of 0.2. Ata
higher noise ratio of o.s, the results are more fluctuating. Overall test loss decrease rapidly at
the beginning however while in the later stages it fluctuates and slightly increases back, even
though still lower than the beginning, this implies a concern of instability in the optimization
in the high-ratio noise scenario.

Time to Achieve Loss Target The time required to achieve a predefined target loss for dif-
ferent T values is shown in Figure 4.2. The results indicate that increasing 7" generally leads to

slower convergence in terms of reaching the target loss.

30

Time to Reach Target Loss 0.03 (Noise Ratio 0.2) Time to Reach Target Loss 0.03 (Noise Ratio 0.5)

Time to Target Loss (seconds)

Synthetic Dataset

T Value T Value

Time to Reach Target Loss 0.02 (Noise Ratio 0.2) Time to Reach Target Loss 0.02 (Noise Ratio 0.5)

®
8
8

MNIST
3 B

~
3
Time to Target Loss (seconds)

Time to Target Loss (seconds)

°
°

T=1 T=2 T=5 T=10 T=1 T=2 T=5 T=10
T Value T Value

Figure 4.2: Time to Target Loss under Different Noise Ratios

For the synthetic dataset (top row), at a noise ratio of 0.2, 7" = 1 achieves the target loss
of 0.03 almost immediately, showing its advantage in time efficiency for low-noise scenarios.
However, as T" increases to s, 10, and 20, the time to achieve the target loss also increases, with
T = 20 taking the longest. At a noise ratio of 0.5, a similar pattern is observed: 7" = 1 still
achieves the target loss fastest, while 7" = 10 and 7" = 20 require substantially more time. This
suggests that for the synthetic dataset, especially under low noise conditions, smaller 7" values

are more efficient in terms of time to reach the target loss.

In the MNIST dataset (bottom row), the pattern is similar but with more pronounced dif-
ferences between 1" values. At a noise ratio of 0.2, 7" = 1 and T" = 2 reach the target loss of
.02 quickly, with 7" = 1 being the fastest. T = 5 and 7" = 10, however, take significantly
longer, especially 7" = 10, which nearly doubles the time compared to 7" = 5. When the noise
ratio increases to 0.5, 7" = 1 continues to outperform the other values, achieving the target
loss fastest. T = 5 and I" = 10 show a much slower convergence, with both taking almost the
same amount of time to reach the target.

In summary, smaller 7" values consistently reach the target loss more quickly, especially in
low-noise environments. While larger 7" values may lead to better long-term reductions in test
loss, they require significantly more time to reach the target loss. For practical applications
where time efficiency is a priority, smaller 7" values may be preferable, particularly in lower-

noise settings.

31

Validation Loss vs. Iteration

Validation Loss vs. Iteration (Naise Ratio 0.2) Validation Loss vs. Iteration (Noise Ratio 0.5)

\ oo
\
\

Soon . B -

Synthetic Dataset
/

0017 i

0040

0.025 /‘
\/ Val Lass (T=10)
\

I E 0030

MNIST

:3% 0.025
]

‘ /u\ e
| AALANAR) A

‘ / WA A\

], MA

o 10 20 30 a0 50 60 o 10 20 30 [50
Irerations Iterations

00207

0015

Figure 4.3: Validation Loss vs. Iteration under Different Noise

As shown in Figure 4.3 top row, for the synthetic dataset, the validation loss decreases con-
sistently across all 7" values for both noise ratios (0.2 and o.5). Atanoise ratio of 0.2, we observe
that larger 7" values (such as 7" = 10 and T' = 20) lead to faster reductions in validation loss.
For smaller 7" values like 7' = 1, the reduction is slower. At a noise ratio of 0.5, the trend re-
mains similar but with less differences among 7" values. While 7" = 20 still achieves the lowest
final validation loss, the gains compared to 7" = 10 and T" = 5 are relatively small. This gives
a insight in practical applications, we should consider how to reach a good trade-off between
time required of training and the best performance.

For the MNIST dataset (Figure 4.3, bottom row), the behavior of validation loss is more
unstable compared to the synthetic dataset. Atanoise ratio of 0.2, we see that smaller 7" values
(e.g, T = landT = 2)show sharp fluctuations in the early iterations, though they eventually
stabilize around a relatively low validation loss. In contrast, " = 5 and T' = 10 shows some
instability initially but ultimately achieves the lower final validation loss. At a noise ratio of
0.5, the validation loss fluctuates significantly, especially for larger 7" values like 7" = 10. The
instability in 7" = 10 suggests that under noisier conditions, the advantage of larger 1" values
is limited, with smaller 7" values (e.g., T" = 5) providing a more stable convergence path.

Comparison of Model Performance: Filtered vs. Noisy Data

Training the model with the small set of data which is filtered by the optimized binary mask

32

variable improves the model performance compared to the model trained with the entire noisy
dataset. Here is an example of the MNIST dataset, at a noise ratio of 0.2 (Figure 4.4), models

trained by filtered data lead to lower test losses for all T values except T=5s, especially when T=1
and T=2.

Final Test Loss by T Value (Noise Ratio 0.2)

0.005 4 Noisy Data (T=1)
Filtered Data (T=1)
Noisy Data (T=2)
0.004 - Filtered Data (T=2)
Noisy Data (T=5)
Filtered Data (T=5)
g 00037 Noisy Data (T=10)
S Filtered Data (T=10)
0.002 4
0.001 4
0.000 -
1 2 5 10

T Values

Figure 4.4: Comparison of Model Performance

33

34

Conclusion and Future Work

5.1 (CONCLUSIONS

This thesis introduced a bilevel optimization framework designed for binary hyperparameter
optimization through the integration of the Relax and Penalize method with the Zeroth-Order
Frank-Wolfe algorithm. The numerical experiment is applied to the task of data hyper-cleaning.
In our experiments, we specifically focused on the max number of inner-loop iterations (de-
noted as T) of lower-level (LL) optimization, considering that LL optimization subproblem is
essential in any bilevel optimization problem, additional in our proposed method it is involved
in the gradient estimation during the upper-level (UL) optimization. Then it is the most com-
putationally demanding of our algorithm. Therefore, we chose the maximum number of LL
iterations as the primary subject of our investigation, aiming to study its impact on our pro-

posed algorithm’s performance.

Our experiments demonstrated that while increasing the inner-loop iterations (T') generally
improves performance, the benefits tend to diminish as noise levels increase. Notably, we ob-
served that the optimal number of iterations differs based on the noise ratio in the data, with
lower noise levels requiring fewer iterations compared to higher noise levels. This highlights
the importance of selecting an appropriate value of T that balances algorithm effectiveness
and computational resource efficiency. In practical applications, choosing a proper T value is

crucial for optimizing performance without unnecessary computational overhead. Moreover,

35

with a suitable choice of T, the models trained on filtered data consistently outperformed those
trained on unfiltered, noisy data. This outcome demonstrates that, with fewer data points and
in less time, we can achieve better training results, which aligns perfectly with our goal of effi-
cient bi level optimization method, efficiency data utilization in data hyper-cleaning task. By
selecting the proper number of inner-loop iterations and applying effective data filtering, we
not only enhance the model’s performance but also reduce the computational cost—achieving

the desired balance between model robustness and resource efficiency.

5.2 FUTURE WORK

Apart from the number of inner-loop iterations, several other key parameters in our algorithm,
such as the penalty parameter, decay factor, the number of random directions used for gradient
estimation, the maximum number of outer-loop iterations, and the iteration times of penalty
parameter updates—also have a significant impact on the algorithm’s performance. Therefore,
future work should involve more comprehensive numerical experiments to explore the effects
of these parameters in various practical scenarios and to investigate how to select their optimal
values. For example, one potential direction for future work is to refine the adjustment of the
penalty term’s weight during the optimization process. This could help to balance optimiza-
tion between validation loss and promoting better binarization of the binary variables during
the different optimization stages. A promising exploration is dynamically adjusting the decay
factor, allowing the penalty term’s influence on the objective function to adjust according to
the current situation. These studies provide valuable insights that offer practical guidance for
the effective implementation of the algorithm. This aligns with the ongoing trend in machine
learning of shifting from using large datasets and complex models to more efficient and precise
utilization of smaller datasets and lighter models.

Moreover, all the bilevel optimization methods aim to effectively guide the update of opti-
mized variables, which is the core computational complexity. In our algorithm, we employ the
Zeroth-Order Frank-Wolfe method for gradient estimation, which is essentially an approxima-
tion. Although we use i-RDSA to improve accuracy by averaging multiple estimates, achieving
higher precision requires more estimates. Therefore, a key area of interest is how to efficiently

obtain these approximate estimates to guide machine learning.

36

[1]

References

R. Liu, J. Gao, J. Zhang, D. Meng, and Z. Lin, “Investigating bi-level optimization for
learning and vision from a unified perspective: A survey and beyond,” IEEE Journal of

LaTeX Class Files, vol. 14, no. 8, pp. 1-20, Aug. 202.1.

J. Bracken and J. McGill, “Mathematical programs with optimization problems in the

constraints,” Operations Research, vol. 21, pp. 37—44, 1973.
S. Dempe, Foundations of bilevel programming. ~ Springer, 2002.

L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil, “Bilevel programming
for hyperparameter optimization and meta-learning,” in Proceedings of the 3 s5th Inter-

national Conference on Machine Learning, Stockholm, Sweden, July 2018.

Hyperparameter Optimization, Springer Std., 2019, in: Automated Machine Learning:
Methods, Systems, Challenges, pp. 3-33.

A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine, “Meta-learning with implicit gra-
dients,” in Advances in Neural Information Processing Systems, Vancouver, Canada, De-

cember 2019, pp. 113-124.

Z. Borsos, F. Locatello, O.-E. Ganea, M. Tschannen, G. Ritsch, and F. Hutter, “Core-
set: Continual learning along the parameter space,” in International Conference on

Learning Representations, Addis Ababa, Ethiopia, April 2020.

V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances in Neural Infor-
mation Processing Systems, Denver, USA, November 1999.

M. Hong, H.-T. Wai, Z. Wang, and Z. Yang, “A two-timescale stochastic algorithm
framework for bilevel optimization: Complexity analysis and application to actor-

critic,” SIAM Journal on Optimization, vol. 33, no. 1, pp. 147-180, 2023.

37

[x0]

[x1]

[12]

[13]

[19]

[20]

H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture search,” in Pro-
ceedings of the International Conference on Learning Representations, New Orleans, LA,

May 2019.

A. Sinha, T. Khandait, and R. Mohanty, “A gradient-based bilevel optimization ap-

proach for tuning regularization hyperparameters,” Optimization Letters, vol. 18, no. 4,

pp- 1383-1404, 2023.

A.K.Sahu, M. Zaheer, and S. Kar, “Towards gradient-free and projection-free stochastic
optimization,” in Proceedings of the 201 9 Conference on Neural Information Processing

Systems (NeurIPS), Vancouver, Canada, Dec. 2019.

M. de Santis, J. Frecon, F. Rinaldi, S. Salzo, and M. Schmidt, “Relax and penalize: a
new bilevel approach to mixed-binary hyperparameter optimization,” 2023. [Online].

Available: https://arxiv.org/abs/2308.10711

Y. LeCun, L. Bottou, Y. Bengio, and P. Haftner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

H. Von Stackelberg, Market Structure and Equilibrium, 1st ed. Springer Science &

Business Media, 2010.

A. Sinha, P. Malo, and K. Deb, “A review on bilevel optimization: From classical to
evolutionary approaches and applications,” IEEE Transactions on Evolutionary Compu-

tation, vol. 22, no. 2, pp- 276-295, 2017.

C. Kolstad and L. Lasdon, “Derivative evaluation and computational experience with

large bilevel mathematical programs,” Journal of Optimization Theory and Applications,
vol. 65, pp. 485-499, 1990.

E. Aiyoshi and K. Shimizu, “Hierarchical decentralized systems and its new solution

by a barrier method,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 6, pp.
444—449, 1981.

Y. Ishizuka and E. Aiyoshi, “Double penalty method for bilevel optimization problems,”
Annals of Operations Research, vol. 34, pp. 7388, 1992.

P. Marcotte, G. Savard, and D. L. Zhu, “A trust region algorithm for nonlinear bilevel

programming,” Operations Research Letters, vol. 29, no. 4, pp. 171-179, 2001.

38

https://arxiv.org/abs/2308.10711

[21]

[22]

L. Franceschi, M. Donini, P. Frasconi, and M. Pontil, Forward and reverse gradient-

based hyperparameter optimization, arXiv Std., 2017, arXiv:1703.01785.

F. Pedregosa, “Hyperparameter optimization with approximate gradient,” in Proceed-

ings of the International Conference on Machine Learning, New York, NY, June 2016,
pp- 737-746.

[23] J. Lorraine, P. Vicol, and D. Duvenaud, “Optimizing millions of hyperparameters by

(28]

[29]

[30]

implicit differentiation,” in Proceedings of the International Conference on Artificial In-

telligence and Statistics, Palermo, Sicily, Italy, April 2020.

L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil, “Bilevel programming
for hyperparameter optimization and meta-learning,” in Proceedings of the 3 sth Inter-

national Conference on Machine Learning, Stockholm, Sweden, July 2018.

R. Liu, P. Mu, X. Yuan, S. Zeng, and J. Zhang, A4 General Descent Aggregation Frame-
work for Gradient-based Bi-level Optimization, arXiv Std., 2020, arXiv:2102.07976.

A. Shaban, C.-A. Cheng, N. Hatch, and B. Boots, “Truncated back-propagation for
bilevel optimization,” in Proceedings of the 22nd International Conference on Artificial
Intelligence and Statistics (AISTATS), Naha, Okinawa, Japan, April 2019.

H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, “An empirical evaluation of
deep architectures on problems with many factors of variation,” in Proceedings of the

24th International Conference on Machine Learning, Corvallis, Oregon, June 2007.

G. E. Hinton, “A practical guide to training restricted boltzmann machines,” in Nexral

Networks: Tricks of the Trade, Berlin, Germany, June 2012.

J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” in
Proceedings of the International Conference on Neural Information Processing Systems,

Granada, Spain, Dec. 2011.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, “Hyperband:
A novel bandit-based approach to hyperparameter optimization,” Journal of Machine

Learning Research, vol. 18, no. 1, pp. 6765-6816, 2018.

39

[31]

[34]

(37]

[39]

E.Brochu, V.M. Cora, and N. de Freitas, “A tutorial on bayesian optimization of expen-
sive cost functions, with application to active user modeling and hierarchical reinforce-
ment learning,” in Proceedings of the International Conference on Neural Information

Processing Systems, Vancouver, Canada, Dec. 2010.

D. Maclaurin, D. Duvenaud, and R. P. Adams, “Gradient-based hyperparameter opti-
mization through reversible learning,” in Proceedings of the 3 2nd International Confer-
ence on Machine Learning (ICML), Lille, France, July 2015.

K. Levy and F. Lieder, “Bome! bilevel optimization made easy: A simple first-order
approach,” in Proceedings of the 38th International Conference on Machine Learning
(ICML), Virtual, July 2021.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, June 2016.

S.Zagoruyko and N. Komodakis, “Wide residual networks,” in Proceedings of the British
Machine Vision Conference (BMVC), York, UK, Sept. 2016.

Y. Huang, V. Vasudevan, R. Monga, G. Sun, and Q. V. Le, “Gpipe: Efficient training
of giant neural networks using pipeline parallelism,” in Proceedings of the 32nd Inter-
national Conference on Neural Information Processing Systems (NeurIPS), Vancouver,

Canada, Dec. 20109.

M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional neural

networks,” in Proceedings of the 3 6th International Conference on Machine Learning,
Long Beach, CA, USA, June 2019.

V. Sehwag, S. Wang, P. Mittal, and S. Jana, “Hydra: Pruning adversarially robust neural
networks,” in Proceedings of the 3 4th AAAI Conference on Artificial Intelligence (AAAI),
New York, NY, USA, Feb. 2020.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: In-
verted residuals and linear bottlenecks,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, June 2018.

40

[40]

[43]

[44]

[45]

J. Kiefer and J. Wolfowitz, “Stochastic estimation of the maximum of a regression func-

tion,” Annals of Mathematical Statistics, vol. 23, pp. 462466, 195 2.

Y. Nesterov and V. Spokoiny, “Random gradient-free minimization of convex func-

tions,” Foundations of Computational Mathematics, vol. 2, pp. 157-183, 2011.

J. Duchi, E. Hazan, and Y. Singer, “Stochastic gradient methods for distributionally

robust optimization,” Foundations of Computational Mathematics, vol. 15, no. 3, pp.

715-732, 2015.

Z.Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical attention net-
works for document classification,” in Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, San Diego, California, USA, June 2016, pp. 1480-1489.

A. Ruszezytiski, Nonlinear Optimization. Princeton University Press, 2008.

A. Mokhtari and A. Ribeiro, “A surrogate gradient-based algorithm for stochastic op-
timization,” IEEE Transactions on Signal Processing, vol. 66, no. 12, pp. 3270-3282,

2018.

41

42

	Abstract
	List of figures
	Listing of acronyms
	Introduction
	Research Problem and Objectives
	Significance of the Study
	Structure of the Thesis

	Literature Review
	Bi-level Optimization
	Early Developments and Classical Methods
	Gradient-based Methods: EGBMs and IGBMs

	Hyperparameter optimization
	Importance of Hyperparameter Optimization
	Strategies for Hyperparameter Optimization
	Modeling Hyperparameter Optimization as a Bi-level Problem

	Application in Data Hyper-cleaning

	Methodological Foundations
	Relax and Penalize Method
	Introduction and Challenges in Binary Hyperparameter Optimization
	Theoretical Foundations and Algorithmic Structure of the Relax and Penalize Method
	Key Considerations for the Relax and Penalize Method

	Zeroth-Order Frank-Wolfe Algorithm
	Motivation for Using Zeroth-Order Methods in Binary Hyperparameter Optimization
	Overview of Zeroth-Order Frank-Wolfe Algorithm

	Proposed Algorithm for Binary Hyperparameter Optimization

	Experiments and Analysis
	Problem Formulation
	Numerical Experiments
	Experiment Setup and Evaluation Metrics
	Experiment Results and Analysis

	Conclusion and Future Work
	Conclusions
	Future Work

	References

