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1. Introduction 

The gender gap in labor market outcomes (careers’ advancement and wage) has been for decades 

one of the central issues of the economic debate. Although evident and recognized in importance 

and magnitude, authors have suggested different explanations for this gap. Economists have 

supported both supply-side and demand-side explanations. Evidence from both sides confirms that 

many forces and circumstances (discrimination, family constraints, job and individual preferences 

etc.) may concur to keep women away from highly paid jobs and positions. Differences in labor 

market outcomes have been shown to be mainly related with STEM achievements. This confirms 

to be a male-dominated field in which women fail to enter and well-perform with respect to male 

peers. Analogously, for the gender gap in science and math achievements we find demand-side and 

supply-side explanations. Both experimental and nonexperimental literature has widely 

investigated the latter category, in particular individual preferences that could refrain females from 

pursuing STEM careers. In this work we mainly examine the gender gap in competitiveness that 

makes women fail to enter competitive contexts. The distortion of competition occurs also on their 

relative performance. This is confirmed in several studies and experiments. In particular, past 

literature shows that this distortion is mostly related to the math content of submitted tasks. This is 

in line with the evidence of women failing to access and underperforming in STEM fields (then in 

STEM careers), and this, in turn, has a strong and negative impact on women’s labor market 

outcomes. In the literature that we are going to describe several authors find that the distortion of 

competition is weaker when females compete against peers of the same gender. Single-sex contests, 

on the contrary, seem not to have a remarkable effect on men’s performance. Different explanations 

have different policy implications. If females particularly suffer competition against men, policies 

(e.g., quotas) that lead women to compete only against each other, even in male-dominated fields, 

could foster their performance possibly having a long-term impact. In this work we present a field 

experiment run during the Math Olympiad that is an extra-curricular math competition organized 

each year in the Italian high-schools by the Unione Matematica Italiana. In this experiment, that 

took place in the Italian North-East, we analyze the impact of a policy intervention on the gender-

gap in participation and performance. In Chapter 2 we present a literature review. In Chapter 3 and 

4 we respectively describe the experiment, our data sources and variables giving a first look at our 

results. In Chapter 5 we further analyze data with a regression approach and in Chapter 6 we 

conclude.  
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2. Literature Review 

2.1. The Gender Gap  

Recently women have managed to fill the gap both in educational outcomes and labor market 

participation but gender differences in labor market outcomes still persist (Goldin, Katz and 

Kuziemko, 2006). This disparity is reflected both in wages and career advancements (Flory et al., 

2015) with horizonal and vertical job segregation playing an important role in shaping it (Altonji 

& Blank 1999, Bertrand & Hallock 2001) . This suggests that closing the gender gap in labor 

market participation is not enough to assure equity across genders since the underrepresentation of 

women in top positions testifies that equality of opportunities does not necessarily translate in 

equality of outcomes (Maggian, Montinari and Nicolò, 2017). There are different approaches in 

the recent literature that try to understand these differences in outcomes. The traditional approach 

distinguishes, dividing into these two broad categories, demand-side and supply-side explanations 

(we refer to the review from Azmat and Petrongolo, 2014). 

On the first side, main drivers are discrimination and stereotypes represented as factors causing, in 

particular, job segregation keeping away women from top (and highly paid) jobs and impeding 

them to achieve leading roles in various contexts. In particular, Azmat and Petrongolo (2014) 

specify that “gender discrimination in the labor market is defined as a situation in which equally 

productive men and women are rewarded differently”. Indeed, the crucial point here is that 

discrimination occurs when two or more individuals have the same ability (for example in academic 

career) or the same productivity (in labor markets). The principal force that causes this kind of 

situation are stereotypes based, in this case, on individuals’ gender.  Reuben, Sapienza and Zingales 

(2014) argue that “the stereotype of women’s inferior performance on every mathematics-related 

task […] can lead to a decreased demand for women in STEM fields and/or a reduction in the 

number of women choosing to specialize in these fields”. Most important, in their study this 

stereotype has been found affecting demand for women regardless of their actual abilities and to 

survive even in presence of full information about participants’ past performance. Moreover, 

authors underline the economic relevance of this finding as the stereotype leads to a “suboptimal 

hiring choice”, clearly “biased in favor of men”. Anyway, this demand-side discouragement can 

be an important driver for gender differences in (academic, as we will see, and) labor market 

outcomes both directly keeping away females from top positions (e.g., when it materializes in 
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discrimination) and indirectly when stereotypes are internalized by women negatively affecting 

their performance (phenomenon defined as “stereotype threat” by Spencer et al., 1999). 

 On the other side, there is a branch of the literature that proposes “supply-side explanations”. For 

example, that men and women are different in abilities and that they self-select in jobs due to their 

occupational preferences (Polachek, 1981).  Some authors analyze family constraints, Dessy and 

Djebbari (2010) find that one explanation for within-family imbalances, in terms of outcomes, is 

the failure for men and women to coordinate in the timing of marriage. In the recent literature 

economists have examined new potential factors (still on the supply-side) that can explain the 

unexplained part of the gender gap, harming women’s careers and performance: psychological 

attributes and “individual preferences in the spheres of motivation, ambition and competitiveness” 

(Azmat and Petrongolo, 2014). Before examining this last factor more in detail looking at the past 

literature and then at our evidence, let us understand how the Gender Gap that we have described 

so far is linked to the fact that women and men perform differently in STEM fields. 

2.1.1. Math Performance 

The difference in math achievements manifests itself at different stages. In general, in OECD 

countries the higher propensity for boys to choose math- or science-intensive courses is already 

visible in the secondary school while, for example, in the U.S. this disparity persists at college level 

where “women are significantly less likely than men to graduate with a major in science, 

technology, engineering, or mathematics” (Buser, Niederle and Oosterbeek, 2014). As these 

authors underline, even in environments (for example high schools in the U.S.) where both boys 

and girl are equally likely to choose math-intensive courses and also have similar performance in 

mean, still women are underrepresented among the pool of best or high-achieving students in this 

field although this is not driven by difference in abilities across genders (Ellison and Swanson, 

2010). Gender Gaps in labor market outcomes and in math performance are strictly linked and have 

similar patterns in recent years. As reported in Niederle and Vesterlund (2010), there are several 

studies supporting the evidence that math performance can well predict individuals’ future income. 

Or, at an earlier stage, science achievements can predict college attendance and attainments 

(Goldin, Katz and Kuziemko, 2006).  Due to this important effect that mathematics have on careers 

and wages “differences in mathematics qualifications at the top of the distribution may explain a 

substantial part of the gender gap in income and in career outcomes more broadly” (Joensen and 

Nielsen, 2014) . The effect of math performance comes also from the effect on students’ propensity 
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and readiness for STEM universities (Card and Payne, 2017). That is why the gap in math 

performance is causing women to be persistently underrepresented in high profitable jobs mainly 

related to STEM (Science, Technology, Engineering and Math) fields, “especially when excluding 

teaching careers” (Carlana, 2019). The same is true when including in STEM fields finance and 

business (Bertrand et al., 2010) . The problem , as we will see in experimental literature and as 

evident from what we have said so far, can be divided into two phases. First, the choice to enter 

math- or science-based courses. Second, once entered this careers, the performance that individuals 

have in this field. For the second aspect, in the recent literature there are several examples of gender 

gap in math performance although this gap is no longer as large as before at the mean of the 

distribution. Women are, in particular, underperforming at the top (Hedges and Nowell, 1995), and 

this is true for various math tests (Niederle and Vesterlund, 2010). There is evidence of women’s 

lower performance also in the experimental literature that then tries to investigate potential 

explanations for this gender difference, we will see in next Sections. As we have said in the 

previous Section, on both sides (so, for what concerns women’s lower probability to choose math 

courses and lower performance) the difference is potentially not only driven, and that is why this 

gender gap is an economic matter, by individuals’ abilities. Joensen and Nielsen (2014) find that 

the underlying ability distribution for both genders in their data is equal “at least around the top 

decile of the distribution”. Nonetheless, among these individuals the percentage of males attending 

math courses is much higher with respect to females. As we have done talking about labor markets 

experience and outcomes, we can similarly investigate (through the literature) potential “demand-

side” and “supply-side” explanations causing females refraining from pursuing STEM careers and 

well-performing in math contexts. Here with “demand-side” we refer to the environment in which 

women grow up and live, while “supply-side” explanations are, as before, females’ preferences.  

For what concerns the “discouragement effect” that we have described in the previous Section in 

the case of labor markets, there is evidence of this effect in family as well as in academic 

environments. Women are exposed to the male-math association since they are young 1 . Beginning 

with gender-biased parents’ expectations about daughters’ and sons’ math abilities (Furnham, 

Revees and Budhani, 2002) clearly in favor of males whose eventual success is considered 

“natural” opposed to women’s results only coming from hard work (Yee and Eccles, 1998). Girls 

suffer both subtle (few models of female mathematicians and scientists) and not-so-subtle (overt-

 
1 We here exploit the review from Stout et al. (2011) 
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discrimination)  reminders that “math is for boys” and that they do not belong to the STEM world 

during their growth lowering their interest in pursue STEM careers. Subtle situational cues, as the 

low female representation (Murphy, Steele and Gross, 2007) are crucial in this sense. Moreover 

the subtle male-math association becomes heavier the higher is the level of education due to “the 

skewed gender ratio of STEM experts in academic environments” (Stout et al., 2011). Carlana 

(2019) shows “the importance of gender – biased environments in explaining the underconfidence 

of females in STEM fields”. She runs an experiment in Italian schools finding a strong negative 

effect that teachers’ gender stereotypes have on females’ math performance e future academic 

choice, also due to the effect on women’s confidence about their own math ability. From the 

“demand-side” point of view, there is a lot to be done but, at the same time, it is difficult to design 

an efficient short-term policy in order to improve the environment in which females act and 

perform. Still some intervention may help to reduce the problem. Joensen and Nielsen (2014) find 

that a change in high-school curricula and in the way they are organized can foster girls’ tendency 

toward math-intensive courses. In particular, they exploit an exogenous variation in the cost of 

acquiring additional advanced mathematics courses that allows them to demonstrate two things. 

First, that the change in the curriculum flexibility allows students, in particular girls, to follow more 

advanced math-based courses. So, the way in which courses are combined results to be relevant. 

Second, that this has a long term positive effect on involved women’s career, both in terms of 

earnings and career advancement (especially in high paid and male – dominated career tracks). The 

peculiarity of their findings is that this positive effect is asymmetric across genders since men do 

not benefit from this variation, mostly because high-skilled men already choose this kind of courses 

and mid-skilled men do not benefit. In general, due to this exogenous variation, they find evidence 

of the (in the case, causal) effect that additional math courses have on individuals’ career for the 

entire ability distribution. This is important, again, to point out the importance that math 

performance (or in this case, the choice to specialize in this field) has in improving individuals’ 

labor market outcomes and the relevance that has in closing the gap. Although potentially related 

to, or caused by, demand-side factors, other authors investigate supply side explanations. For 

example females’ risk aversion, confidence and competitiveness. We will see in next Sections how 

economists have examined this preferences, in particular the attitude toward competition, its causes 

and consequences. 

As we have argued building this parallel (and, through the evidence from literature, this causal 

effect that science and math performance have on labor market outcomes), the fact that there are 
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factors causing women to underperform in math (or, in general, STEM fields) is an economic 

matter. A pool of (women’s) talent is lost in this scenario, and managing to retrieve this talent is 

“crucial to sustain economic development, growth, productivity and innovation” (Joensen and 

Nielsen, 2014). In general,  gender differences in the labor market have been shown to be 

detrimental from an economic perspective (Galor and Weil, 1996) . 

2.2 Gender Gap and Competition 

A branch of the literature has investigated, in last 20 years, the difference across genders in 

individual preferences and in particular in attitude toward competition. Both the effect of 

competition per se and of competition due to risk aversion, uncertainty, confidence and beliefs 

about relative performance have been investigated. As we are going to see looking at the literature, 

individual preferences can potentially influence both the decision to entry and the performance 

within competitive contexts. The point here is that the distortion of competition can vary by gender, 

then cause gender differences in outcomes (Niederle and Vesterlund, 2010). From the evidence 

emerges that it “could be a relevant trait to explain entry into fields such as sciences and 

mathematics, which are male dominated and viewed as competitive” (Buser, Niederle and 

Oosterbeek, 2014) . Fields that play, as we have argued, an important role in defining the gender 

gap in career advancements and earnings. Moreover, if competitiveness influences individuals’ 

choices during adolescence, this has a potential long-term impact on females’ labor market 

outcomes (Dreber, Von Essen and Ranehill, 2014) relative to males. 

Both experimental and non-experimental literature have studied the effect of preferences on 

individuals’ choice to entry in competitive contexts. Here we describe some important articles. In 

a lab experiment Niederle and Vesterlund (2007) ask participants to choose between a piece-rate 

incentive scheme and a tournament competition (where the relative performance is relevant in order 

to get compensation) in a real effort (and mathematical) task. They find a strong difference between 

males and females, with the latters being less likely to choose competitive environments 

conditional on performance in which they find no gender differences. For this reason self-selection 

in the competitive environment is not explained by maximization of earnings. The negative effect 

of competitiveness results to be robust even controlling for individuals’ beliefs, risk and feedback 

aversion giving the opportunity to the authors to infer a negative effect purely of “taste for 

competition” (in addition to the gender difference in overconfidence whose effect is remarkable), 

although it could be that these or other preferences can instead explain the resulting gap due to the 
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imperfection of their controls (Flory, Leibbrandt and List, 2015). Importantly, the difference is also 

driven by males having stronger preference for competition than the predicted one. Similar to these 

authors,  Dreber, Von Essen and Ranehill (2014) find that in mathematical tasks males are as twice 

as likely than females to choose the competitive compensation scheme even controlling for 

performance. To understand the effect of competitiveness, Buser, Niederle and Oosterbeek (2014) 

run the same experiment as Niederle and Vesterlund (2007) in the Netherlands obtaining almost 

the same (hence expected) evidence on females’ and males’ choice about compensation scheme. 

Moreover, they use the standardized measure of competitiveness from this experiment to 

investigate whether this has an effect on educational choices. They also have information about 

participants’ academic performance and perceived math ability. Authors find that, even if similar 

in performance to females, males are more likely to choose more prestigious and math intensive 

academic tracks. This choice positively correlates with the measure of competitiveness that they 

find explaining 20% of this gender gap in educational choice, controlling for the already cited 

measures of ability. The effect of competitiveness is confirmed by Zhang (2013) that similarly uses 

the same standardized measure finding that competitive students are more likely to take entry 

exams conditional on past test scores, although in her study there is no evidence of gender 

difference in preferences. Overconfidence and competitiveness also influence individuals’ earnings 

expectations, potentially having an effect on job sorting and contractual negotiation. This is what 

Reuben et al. (2015) argue finding that these two factors (defined with the experimental measures 

by Niederle and Vesterlund, 2007) positively correlate with expected wages and explain the 18% 

of the gender gap in forecasts. Looking at actual earnings Reuben, Sapienza and Zingales (2015) 

find that, for MBA students involved in their experiment, competitiveness leads to higher wages 

(9% higher for competitive students) and can explain 10% of the realized gender gap in earnings. 

Outside the lab, Flory et al. (2015) run a natural field experiment to analyze job-entry decisions. 

They randomly assign groups of job-seekers to different compensation regimes confirming that 

also in these environments women tend to shy away from competition more than men, even if this 

gender difference in self-selection is driven by males being less averse than females to 

compensation based on relative performance.  

As we have seen many papers find evidence of gender difference in preferences (in particular about 

competition). Once verified the positive correlation that attitude toward competition has with both 

educational choices and job-sorting, these studies demonstrate that the gender gap in 

competitiveness translates into the gender gap in choices (and, sequentially, in related outcomes). 
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Now we ask whether different preferences lead to distorted performance in competitive contexts. 

In case competition causes or widens the gender gap in performance, “males will tend to perform 

better than females in jobs that involve competition […] or when competing for promotions and 

advancement within their organizations” (Cotton et al, 2013) and this is relevant for highly paid 

and top jobs in which the relative performance is more important than the absolute one (Azmat and 

Petrongolo, 2014). In Section 2.2.2. we will argue that the distortion of competition is particularly 

linked to the math content of the tasks. This is a relevant finding. Moreover, in math contexts it 

results to be very large at the top of the performance distribution (Niederle and Vesterlund, 2010). 

It is crucial to investigate this effect from a policy perspective: allowing high-performing (in 

noncompetitive contexts) women to enter competitive environments could not be enough to assure 

equality of outcomes in presence of this distortion (Niederle and Vesterlund, 2011). 

Also in this case, we can find many contributions. Gneezy et al. (2003) run an experiment dividing 

participants into groups and asking them to solve mazes under different compensation regimes: 

piece-rate, competitive and random pay. Under the first one respondents were paid for they own 

performance, under the second and the third one only one participant in each group is paid based 

respectively on relative performance (the best performer is the one who receive the compensation) 

and on a random selection. Comparing piece-rate and competitive pay they show that the gender 

gap in performance, while not significant in the first case, increases (around three times) and 

become significant with competitive pressure, mostly driven by men positively responding to 

competition. With the random pay, in which both males’ and females’ performance are similar to 

that under piece-rate scheme, they show that the difference found in the tournament pay is not 

owing to the uncertainty of compensation. Of particular interest is that in single-sex groups females 

as well respond to competition significantly increasing their performance and narrowing the gender 

gap, while males seem not to be sensitive to competitors’ gender. The peculiar suggestion from 

this finding is that the main concern for women could be the competition against men. We will 

come back on this providing further evidence. Moreover, Gneezy and Rustichini (2004) show that 

the cross - gender difference in response to competition is already present in a group of Israelian 

children aged 9 years, although in a physical real effort task and without compensation. The gap in 

performance is, again, present only in the competitive context.  

Cotton et al. (2013) run an experiment in elementary schools submitting math tests to groups of 

children. They notice a stronger positive response to competition for men’s performance 

conditional on abilities (measured with past grades) in line with the past experimental literature. In 
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particular, in their study high-ability females tend to underperform, the reverse instead for low 

ability males. They design a repeated competition showing that the males’ advantage disappears 

after the first round arguing that the impact with competition could be the relevant trait for female 

children. Designing in parallel other contexts the authors show that when lowering the pressure on 

students, females better response to competition in each round well reflecting their abilities in the 

actual performance. Ors, Palomino and Peyrache (2013) in a nonexperimental study, with a real-

world setting, try to examine the distortion that we are exploring. These authors analyze a very 

competitive setting (with large future stakes) in which students take part in an entry exam to one 

of the most prestigious French schools (HEC). They find that men overperform women in this high 

pressure environment while their performance is equal or lower (against the same students) in 

recent and noncompetitive academic context. The latter evidence is confirmed in the less 

competitive first year of the course (obviously, for admitted students). Two interesting facts have 

to be mentioned. First, as they notice, these results are “unlikely to be explained by a “women 

shying away from competition” argument” since the percentage of graduating females from 

science-intensive high schools is similar to that of female candidates with the same academic 

background. In this sense, entry and performance in competition seem still to be two distinct issues. 

Second, looking at the performance distribution the gender gap is more substantial at the top having 

a material effect on the composition of selected students. Delfgaauw et al. (2013) in their field 

experiment investigate the effect of competitive pressure on Dutch retailers’ performance exposing 

to competition groups of retail stores. While observing the irrelevance of monetary incentives they 

find a positive effect of competition on sales growth both for female-led and male-led stores. 

Moreover, they find that the increase in performance is stronger when more team components have 

the same gender of the manager, with a symmetric effect both for men and women.  

Once provided evidence of the negative impact that competitive pressure has on females’ choices 

and relative performance (relative to males) due to their different preferences, we briefly present 

the Nature vs Nurture debate on the origin of these gender – specific preferences. 

2.2.1 Nature or Nurture 

From the literature we see that different factors lead women to stay away from competitive contexts 

and suffer pressure when performing. Competitiveness, risk aversion, feedback aversion, 

confidence potentially influence women’s behavior. We have mostly explored literature about 

competitiveness but some authors underline the importance that other preferences have, both alone 
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and in interacting with pure “taste for competition” (for example, risk aversion in Niederle and 

Yestrumskas, 2008). Other authors suggest that distributional preferences (see Dasgupta et al., 

2019), inclination for cooperation and egalitarianism (Kuhn and Villeval, 2011) can explain 

women’s response to competition. Gender difference in beliefs could be a relevant factor as the 

distortion of competition is mainly encountered in stereotypical – male tasks (Niederle and 

Vesterlund, 2011). 

In general, there are several contributions trying to find evidence of gender specific preferences. 

There is also a wide debate about the origin of gender differences: the “Nature vs Nurture” debate. 

On the first side, part of the literature has tried to show a causal link between biological factors and 

females’ outcomes and preferences (for a review see respectively Azmat and Petrongolo, 2014, 

and Croson and Gneezy, 2009). On the nurture side, many authors sustain that causality comes 

from sociocultural factors. The main two approach are, first, to demonstrate that difference among 

males and females do not exist at very young age but are “learned” from the environment where 

individuals grow up and, second, to show that females from opposed cultures or backgrounds 

behave differently. 

Sutter and Rutzler (2010) and Gneezy and Rustichini (2004) find that male and female children 

respond to competition as adults, this is not true for Cardenas et al. (2012) who study Swedish and 

Colombian children aged around 10 (or for 3-years-old children in US in Savikhin, 2011). For what 

concerns the second approach, females from single sex schools have shown to be more similar to 

boys in terms of risk aversion and competitiveness (Booth and Nolen, 2012, and Booth and Nolen, 

2009), and this clearly confirms that circumstances in which individuals grow up are relevant in 

shaping their preferences. Gneezy et al. (2009) in an important experiment try to solve this debate. 

Similarly to other studies that we have described, they ask participants to face a physical task 

choosing to perform either under a piece-rate or a competitive compensation regime. Nevertheless, 

they run this experiment with children from opposed patriarchal and matrilineal societies: 

respectively, the Maasai society in Tanzania and the Khasi society in India. In the Maasai society, 

with a patriarchal organization, results replicate those we have seen so far: males compete more 

than females. The suggestive finding is that in the matrilineal society, where children have 

completely a different culture (and different examples) about the role of women, the classic finding 

is reversed: in this context females are those who show a stronger preference for the competitive 

regime. Once established the effect of socialization on individuals’ inclinations, Andersen et al. 

(2013) wonder at what age this effect takes place. Similarly to the previous study, they compare 
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children and adolescents from patriarchal and matrilineal societies in India. They find that while 

7-years-old children show no gender differences in both kind of societies, this is still true only for 

15-years-old teenagers in the matrilineal society. In the opposed one, men becomes more 

competitive relative to women around puberty. 

There is evidence in the literature that both nature and nurture influence individual preferences. 

The fact that nurture plays a still relevant role crucially confirms that there is room for intervention 

in order to manipulate or, at least, better address these preferences (Niederle and Vesterlund, 2011). 

2.2.2 Math Tasks 

In the articles that we have described some authors show that relevant findings depend on which 

task is performed. For instance Dreber, Von Essen e Ranehill (2014) reveal that the gender gap in 

competition entry does not endure when submitting verbal tasks and that math tasks are relevant 

only for women, where these are “two different tasks that differ in associated stereotypes”. Cotton 

et al. (2013) in their experiment in elementary schools show that the first-round negative impact  

of competitive pressure on female children’s performance is not in place when switching to 

questions about arts and language. In other studies, actually, task does not seem to matter for very 

young students (previously described, Dreber et al., 2011 and Cardenas et al.,2012). In another 

important paper Shurchkov (2011) finds no gender difference in performance in verbal task while 

also in her study males better perform in math task. Interestingly, in a low pressure setting this gap 

shrinks and in the verbal task females even outperform males. This testifies that there are other 

forces than simple gender-specific taste for competition or, at least, that this preference is driven 

by other factors as stereotypes. Math task are typically associated to men. Past literature shows that 

the gender gap in math is smaller in contexts where gender stereotypes are less pronounced. 

Moreover, experiments demonstrate that individuals are underconfident in tasks typically 

associated to the opposite gender, this is true also for men (Carlana, 2019). This corroborates the 

hypothesis that females’ underperformance are subtly undermined by erroneous gender-tasks 

associations that self-fulfill through the effect on individuals’ behavior. Undoubtedly, as we have 

shown are “more male associated tasks that are important for labor market outcomes” (Dreber, Von 

Essen and Ranehill, 2014) and from a policy perspective it is clear that this dislike for competition, 

wherever it comes from, needs to be better addressed. Niederle and Vesterlund (2010) suggest 

some other potential explanations for females’ sensitiveness to math contexts and tasks. For 

example, the peculiarity of math questions whose answers are either correct or wrong and therefore 
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“in contrast to verbal test scores, math test scores may better predict actual rank as well as future 

relative performance”. Another reason could be that the proportion of men that choose and 

specialize in this field with respect to women is much higher, then both actual and expected 

competitors are mainly males. Therefore, the real issue could be the competition against men. We 

think that the second explanation potentially has both a direct and indirect impact as the unbalanced 

presence of men in parallel contributes to strengthen field-specific stereotypes. Additionally, as we 

have argued, also the direct impact of “competition against men” could be owing to the “stereotype 

threat”. In next Section we further explore the latter argumentation from these authors to 

understand possible policy implications.  

2.2.3 Competing Against Men or Women? 

We have argued that confidence plays a major role when choosing the compensation scheme. One 

circumstance in which both beliefs about relative performance and attitude toward competition can 

be altered is the single sex competition (Niederle and Vesterlund, 2011). Huguet and Regner (2007) 

investigate the effect of “stereotype threat” finding that in a mathematical in-classroom test 

(presumably submitted to measure math abilities) women underperform in mixed-gender groups 

while not in same-gender groups. The gender composition seems to matter also in other studies, 

for example in the article by Delfgaauw et al. (2013), where teams of retailers responded better to 

competition in this condition. If we come back to Gneezy, Niederle and Rustichini (2003), they 

show that the same is true when individuals compete against each other: the distortion of 

competition causing female underperforming disappears in single-sex tournaments. The gender 

gap narrows in this environment also due to men responding less to the competitive compensation 

scheme. Not only performance, also probability of entry increases in same-gender groups 

conditional on performance (Booth and Nolen, 2012). 

Niederle et al. (2013) analyze the effect of a second-stage “soft quota” in which at least one winner 

of the competition has to be female, with no restrictions on the second winners’ characteristics. In 

the first stage participants need to choose the compensation regime as in the other experiments. 

Once chosen the tournament, they know that, at least for females, the competition becomes gender 

specific within the group they are selected in. Females need only to outperform participants of the 

same gender in order to get the reward. The authors find that their affirmative action increases the 

probability of entry for females while weakly discouraging males’ tournament choice with both 

effects being wider than “predicted by the change in probability of winning”. Moreover, they 
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compare the tournaments with and without the quota to assess eventual policy costs (e.g., reverse 

discrimination toward males that would have gained the compensation absent the action). They 

evaluate these costs both in the tournament with the actual quota and in the other tournament taking 

realized performance and applying a fictious “ex-post quota”. The fact that policy costs emerge 

only in the second case demonstrates that the quota is efficient only in case of prior announcement, 

giving the opportunity to females to change in confidence and beliefs about own relative 

performance. The affirmative action, notably, fosters high-achieving females’ tournament entry 

while narrowing the gap in confidence (as beliefs within gender are different) . From the previous 

comparison, as the authors underline, we see that “indirect effects that occur through self-selection 

into competitions” are crucial in order to counterbalance eventual costs that cancel out when the 

distortion of mixed gender competition is substantial. Maggian, Montinari and Nicolò (2017) run 

a lab experiment to study the effect of quotas on women’s career advancement. In this experiment 

they investigate the optimal timing for the introduction of a gender quota, possibly without any 

loss of efficiency, designing three types of treatment: a quota at entry level, at top level and at both 

stages. They find that the second and third treatments (a quota both at the top and at each stage of 

a career) successfully foster high performing women’s participation, where the first one turns to be 

“more advisable” specifically “under a principle of minimum interference”. Important, they 

observe the negative effect of a quota at entry-level that adversely affects women’s confidence 

causing them not to well perform at higher stages of their career. As we have seen, these kind of 

policies are sometimes accused to lower the efficiency (in terms of winners' performance) and to 

create reverse discrimination against males. This is not supported by evidence in the studies that 

we have described. On the contrary, they are needed when distortions as direct discrimination, 

stereotypes and their effect on individuals’ behavior induce a sub-optimal selection (Niederle et 

al., 2013) among winners of a competition or hired workers. 

Some authors argue that to increase effectiveness of policies the timing is crucial. Preference-

manipulating policies should be optimally run when preferences become gender-specific due to 

socialization (e.g. around puberty, Andersen et al., 2013). Undoubtedly, in the long term these kind 

of policies can be beneficial, but in the short run affirmative actions can be proven to improve 

efficiency and favor equity. Moreover, policies that foster the presence of women among high or 

best-achieving mathematicians, engineers and scientists potentially have long-term positive effects 

on female’ perception of own abilities and potential in these fields relaxing societal constraints 

coming from well-rooted stereotypes (Stout et al., 2011). Finally, in past literature other 
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contributions suggest that other policies can change females’ preferences about competition as 

performance feedback, that can improve women’s confidence (Dreber, Von Essen and Ranehill, 

2014), or teamwork (Flory et al., 2014, review from Azmat and Petrongolo, 2014).  

3. The Field Experiment: Progetto Rodonea 

This Field Experiment has been run during the Math Olympiad in randomly selected schools in the 

Italian North – East. The Math Olympiad, organized by “Unione Matematica Italiana” is the Italian 

oldest math competition that involve each year about 200’000 students from the whole country. It 

is an individual competition divided into three phases: school level, district level and national level. 

In parallel, it includes team-based contests. This experiment took place in the first phase where the 

competition was at school level, i.e. in order to win one student had to overperform only 

participants from the same school (where the competition physically took place). This phase is 

called “Giochi di Archimede” and took place on the 21st of November 2019 simultaneously in 

involved schools. Although sometimes with different criteria and different quotas per school, 

participants in higher levels are chosen based on previous level ranking. That is why not only the 

1st place is relevant for students in order to consider successful their participation. Moreover 

participants within schools are selected mainly based on three criteria: free, “suggested” (where 

professors invite presumably best-achieving students in math subjects to enjoy the competition) 

and “mandatory” participation. In the latter case students are obliged to participate mostly based 

either on meritocracy or belonging to specific (math-intensive) school curricula. However, the 

chosen criterion within the school is likely to be nonrandom and correlate with school-specific 

characteristics as prestige, reputation, attitude towards these extra-curricular competitions etc. The 

second and third criteria can generally imply the first one since among the pool of remaining (i.e., 

not-invited or not-obliged) students, pupils can ask to enjoy the competition. Though, it is likely to 

be rare and whenever different criteria coexist the intentional exclusion probably discourages not-

selected students.  

The experiment began about one month before the Olympiad when randomly selected students 

within the (in turn, randomly selected) schools where asked to fill a survey in order to collect data 

(age, family and academic background, self-reported math grade etc..) about them. Most important 

for our analysis, in this survey it was included a widely used and recognized test to measure 

students’ non-cognitive abilities: the Raven Test. We will exploit the score in this test in order to 

identify high ability students to investigate the eventual heterogeneous effect of the intervention 
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along the ability distribution. Once selected, schools were (again randomly) divided into three 

treatment groups with different incentive schemes:  

1. In the first group, independently on gender or other individual characteristics, 

the four students at the top of each single school ranking received a monetary 

reward. The first and second ranked student were rewarded with 200 euros each. 

The third and fourth classified participants received 100 euros. From now on, 

we will call this group “No Gender”. 

2. In the second group, both the first man and the first woman were rewarded with 

the highest pay (200 euros). So, virtually, in order to get the reward, it became 

a within-gender competition. The same division for the other prizes, both second 

male and second female student received 100 euros. We call this the “Gender” 

group.  

3. The control group with no incentives, i.e. no intervention in the experiment. We 

call this group “Baseline”. 

Competitions and incentive schemes are at school level. In order to get the reward each student had 

to rank at the top in her/his own school. Most important, the ranking-based prizes were announced 

well before the competition in the involved schools. As we have seen in the literature, affirmative 

actions have shown to need prior announcements in order to be effective allowing individuals to 

react adapting or modifying their preferences or expectations (and related behavior) . 

This interventions are supposed to foster both participation and performance within the 

competition. In order to better evaluate the effect of these treatments we will exploit the control 

group where we can observe outcomes absent the action. In particular, since from the previous 

Sections we have seen that women behave differently in single sex competitions, we want to 

understand whether the “Gender” treatment has a positive effect in either narrowing or closing the 

cross-gender participation and performance gap (we will first control for realized gaps both in the 

Control group and the No Gender group). So, we will deepen these two comparisons. First, the 

effect of monetary incentives (or higher pressure in an already competitive environment) 

comparing treatment groups with the control one. Second, we will investigate whether the 

intervention with gender-based rewards has a different effect on participants’ outcomes. 
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4. Data and Variables 

In this Section we present our data sources and sample. We exploit four main sources:  

1. The survey submitted to students in involved school;  

2. Individual-level data about participation and Math Olympiad performance; 

3. Data about schools’ characteristics; 

4. Fondazione Agnelli2’s dataset.  

Most important, the survey was randomly submitted to students within involved school, that is why 

we do not have information from this source for each math Olympiad participant. While we 

collected data about school characteristics for each single school, the Fondazione Agnelli’s dataset 

does not cover every track (or, curriculum) within schools. We have two main samples: students 

that filled the questionnaire and students that enjoined the math competition. We will look, in 

particular, at the second group to detect eventual gap in performance and evidence of realized 

treatment effect with a cross-sample comparison. In order to exploit other data sources we will 

deepen the analysis controlling our results’ robustness with a regression approach trying to solve 

the selection problem. Therefore, at the end, for our analysis we will study the so-called “matched” 

group for which we have complete informations (i.e. students that both filled the survey and 

participated at the Math Olympiad). Exploiting all sources we will further restrict the analysis to 

the group whose involved tracks are included in the Fondazione Agnelli’s dataset. The latter is 

important to check whether the effect that we see is driven by schools’ quality or characteristics. 

We will look at data comparing distributions of variables across different groups. In order to 

understand if these groups are similar (or if the mean of considered variables in distinct groups is 

significantly different) we will exploit two tests: the T-Test and the Kruskal-Wallis Test with the 

latter being a generalization of the Mann-Whitney Test Method for multivalued variables (i.e., for 

variables that define two or more than two groups). The null hypothesis for the T-Test is that the 

mean of considered variables is equal in both groups while for the Kruskal-Wallis Test is that 

samples belong to the same population (i.e., the mean is not significantly different across defined 

groups). For both tests we use the version for clustered data since in our sample observations are 

divided into clusters (schools) whose intra-correlation should be taken into account. When 

computing means and running tests, for variables that refer to schools we have one observation for 

 
2 I want to thank Fondazione Agnelli (https://www.fondazioneagnelli.it) for allowing me to use their data.  

https://www.fondazioneagnelli.it/
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each single school, the same for tracks within schools (e.g., variables defined based on Fondazione 

Agnelli’s dataset). 

Let us see into detail these sources, our derived variables, the sample’s characteristics and data 

about performance. For the sake or readability we will include in the text only the most significant 

tables. You will find other tables at the end of this work (p.50). 

4.1. The Survey 

The first source is our survey. In this survey we collected, about one month before the competition, 

informations about randomly selected students within involved schools. Both timing and 

randomness are relevant, in particular for the No Gender and Gender groups, in order not to 

influence participants when filling the survey. Indeed, the questionnaire and the intervention with 

incentive schemes were presented as separated issues. For the scope of this analysis, we will exploit 

data about the Raven Test scores, test that was included in the survey in order to measure students’ 

non-cognitive abilities. This is the only students’ objective ability measure at our disposal. “The 

Raven’s Standard Progressive Matrices (RSPM) instrument is a multiple-choice test used to assess 

mental ability associated with abstract reasoning” (Bilker et al., 2012). The original test from Raven 

(1938) includes 60-items in which the respondent has to choose the right answer mainly among 6 

or 8 choices. Other versions of this test are available. In our Survey we used the version from Bilker 

et al. (2012, version A) that includes 9 items. Authors have studied the predicted power (predictive 

of the 60-items test score) of smaller variants of the test optimizing first the number of items then 

identifying the right questions to include in the best-predictive 9-items version.  

 

Figure 1. Example of item from Raven (1938) 
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For each right answer respondents received one point, so the minimum and the maximum of the 

Raven Test score were respectively 0 and 9. Students had 270 seconds to answer correctly as many 

questions as they could. After this time they could no longer change or add responses being 

redirected to the next phase of the questionnaire. Respondents were aware of the limited time but 

there wasn’t any timer on their screen. This should have prevented desperate or random answer. In 

Figure 1 we show one question as an example, where the right answer is the number 5. 

Based on the Raven Test Score we have identified top students, defined as student whose score 

was above a certain threshold in the score distribution at school level. We have established three 

thresholds: the 50th , 75th and 90th percentiles in order to identify respectively students belonging to 

the within-school (among students who filled the survey) top 50, 25 and 10 of the distribution. 

From an economic perspective it is important to understand how the treatments’ effect, if any, is 

distributed along the ability distribution. We have seen in the reported literature that mainly top-

skilled women’s outcomes are distorted by competitive contexts. In general, efficiency-optimizing 

policies designed to encourage participation and foster performance of specific groups of people 

are most often meant for top abilities or (at least potentially) high achieving subjects that fail to 

enter appropriate context and to well-reflect their abilities in realized performance. That is why 

also in this case we will investigate whether our intervention can manage to boost top females’ 

performance increasing, in turn, their probability of winning the competition and access upper 

levels. 

In Table 11 (p.50) we see that the survey was submitted to students coming from 29 schools: 8 

belonging to the Baseline group, 11 and 10 respectively for the No Gender and the Gender group. 

In next paragraphs we will look at info on schools. In the second Section of this table (Section 

“Info on students”) we see that in the entire sample as well as in the top 10, 25 and 50 both males 

and females are well represented (never below the 40% of the subsamples), even when separately 

considering different treatment groups. In the same Table we report within-group means of Raven 

Test scores for the entire sample of students that filled out the survey (i.e., the entire score 

distribution) and for top students, also dividing by gender. In the last column we report the p-values 

of the Kruskal-Wallis Test for clustered data that tests the hypothesis that the mean of our variables 

is not statistically different across treatment groups. High p-values testify that both when 

considering entire groups and single genders, we cannot reject the hypothesis that they belong to 

the same population in terms of abilities (measured with the Raven Test Score). This is true both 

for the entire sample of involved students and for students at the top of the distribution. It is 
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important to clarify that students are statistically equally skilled across groups, so we do not expect 

to see one group performing better than the others absent the action (i.e., if we observe different 

performance it is not due to different abilities across treatment groups).  

As underlined in the previous Section, in order to exploit informations about students’ abilities to 

investigate heterogenous treatment effects along the ability distribution we will restrict the analysis 

to the “matched” subsample (students that both filled the survey and enjoined the math 

competition). We are interested in understand two things: first, if the just-explained evidence of 

treatment groups belonging to the same population holds in this subsample; second, whether the 

matched group is statistically different from the remaining pool of students or it can be considered 

representative of the entire sample. Table 12 (p.51) is similar to the previous one but considers only 

the matched group. Still, both when considering within-group averages either dividing by gender 

or not we cannot reject the Kruskal Wallis Test’s null hypothesis. This is true for the entire score 

distribution as well as for top students. For what concerns the comparison between “matched” and 

“not-matched” students we look at Table 14 (p.52) where we report within-group means of test 

scores for various sub-groups. We can notice that when considering the entire sample of students 

that filled the survey matched individuals have significantly higher scores. This means that, even 

if the survey was randomly submitted in the schools, we casually selected better student based on 

these scores. This difference holds, in particular, for females. Anyway, looking at the top of the 

distribution (top 10, 25 and 50) we cannot reject the T-Test’s null hypothesis of equality of means 

for matched and not-matched individuals. High p-values suggest that the difference across these 

two subsamples is mostly driven by disparity at the bottom of the score distribution. Hence, looking 

at this evidence from our survey we have run significant randomness checks. Students, in terms of 

abilities are well distributed across treatment groups and looking at Olimpyad scores we will 

examine a representative group of students, in particular top students, thanks to the randomization 

when submitting the questionnaire.  

4.2. The Math Olympiad 

The second source are data about participation and individual’s performance at the Math Olympiad. 

In the following table we report data about schools and students for the sample of individuals for 

which we have Math Olympiad scores. Still, looking at the second Section “Info on students” we 

see that both males and females are well represented in the sample of 6060 participants. In the third 

section “Olympiads” we report data about participation within the 29 involved schools and test 
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whether there is a significant difference across treatment groups. Within-group averages are 

computed considering one observation for each single school. While there is no cross-subsample 

significant difference in the number of total and female participants, in the Gender group the 

percentage of female participants with respect to the total number of females within school is 

significantly lower. This difference does not hold for male participants.  

Table 1. Variables by Treatment     

 Baseline No gender Gender K-Wallis c 

(p-value) 

SAMPLE OF INDIVIDUALS WITH SCORES     

     

INFO ON SCHOOLS d     

Number of participating schools 9 11 9  

Average number of females in school 444 (51%) 547 (51%) 464 (51%) 0.7754 

Average number of students in school 833 1060 935 0.5410 

Olympiads selection criteria a: 

     Free 

 

1 

 

2 

 

4 

 

     Suggested 1 5 2  

     Mandatory 7 4 3  

Average number of tracks per school 3.67 3.73 4.44 0.3364 

Track Specific b:      

     Females' Matriculation Rate (University) 86% 89% 82% 0.0836 

     Males' Matriculation Rate (University) 85% 86% 81% 0.5873 

     Females choosing STEM fields 48% 48% 41% 0.2805 

     Males choosing STEM fields 64% 59% 61% 0.9786 

     FGA Index 68.44 71.87 68.44 0.2765 

     

INFO ON STUDENTS     

Number of participating students 2344 2404 1302  

     Males 1281 (54.6%) 1330 (55.3%) 782 (60.1%)  

     Females 1063 (45.4%) 1074 (44.7%) 520 (39.9%)  

Olympiads selection criteria a: 

     Free 

 

20 (0.8%) 

 

250 (10.4%) 

 

417 (32%) 

 

     Suggested 58 (2.5%) 542 (22.5%) 317 (24.4%)  

     Mandatory 2266 (96.7%) 1612 (67.1%) 568 (43.6%)  

     

OLYMPIADS  

Total Participants 

 

2344 

 

2404 

 

1302 

 

Average number of female participants in 

school 

118 (46%) 98 (43%) 57 (41%) 0.4211 

Average number of participants in school 260 219 144 0.5333 

Female participants vs Females in school 37% 19% 14% 0.0464 

Male participants vs Males in school 41% 28% 22% 0.1155 

Participants in school vs Students in school 38% 22% 17% 0.0665 

Olympiad Score (Average) 32.53 (16.33) 31.99 (14.49) 31.96 (15.27) 0.9562 

     Olympiad Score Females (Average) 30.57 (14.81) 29.84 (12.81) 29.82 (13.86) 0.9603 

     Olympiad Score Males (Average) 34.16 (17.32) 33.72 (15.50) 33.39 (15.98) 0.9137 

     

Percentages and standard deviations in parentheses. 

a. It is the criterion that professors in the school use to select Olympiads participants. The participation can be on a voluntary basis (i.e. 

“Free”). On the other hand participants can be chosen by professors (“Suggested”) that invite best students to participate, or it can be 
that some classes or best students are forced to participate based on merits or other characteristics (“Mandatory”). Also these two 

criteria in some cases could imply that not invited or forced students can join the competition but it is likely to be rare. 

b. These data refer to single tracks within each school and come from Fondazione Agnelli. Data are not available for every track but 
almost the entire sample is covered. Numbers are within sample averages. 

c. The null hypothesis is that means are equal across samples (i.e. samples belong to the same population). When comparing Olympiad 

Scores and Track Specific data it is a Kruskal-Wallis test for clustered data. Clusters: Schools. 
d. Observations are single schools and single tracks both for averages and for tests. 
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Important to verify is whether this women’s lower participation is due to the treatment’s effect or 

to other factors. In the first case the incentive scheme based on students’ gender could discourage 

females’  entry in the competition, this would not be in line with the reported literature. In the 

second case selection criteria or other factors could negatively influence females’ participation and 

we should control for this in our regression analysis since there could be a negative effect also on 

observed Olympiad score. We want to point out two important facts: 

• First, also the fact that participation is not significantly different across treatment groups 

should be investigated since this does not necessarily means that monetary incentives do 

not encourage participation. As before, there are other factors potentially influencing 

participation for both genders limiting or even counter-balancing any treatment effect. 

Moreover, this effects could be heterogenous across genders regardless of the type of 

incentive scheme. For example, schools that select best students could tend to choose more 

males if they think that men are better prone to competition with respect to females or 

simply because of stereotypes about students’ perceived math ability. When examining 

treatment effects we have to take into account for these residual factors since they 

potentially alter our evaluation of results in particular, as we will see, in groups where 

students are almost never free to choose whether to enjoy the competition. We will deepen 

this issue in Section 4.3 ; 

• Second, the Kruskal-Wallis Test allows us to compare at the same time all three groups, 

and this is useful to understand whether they can be considered homogeneous based on 

observed variables. The limit of this Test is that it says nothing about cross-groups pair 

comparison. From the previous table we see that all variables suggest that in the Gender 

group the participation is lower both considering the absolute number and the percentage 

of students within the schools enjoying the competition. Our test verifies that (except for 

the percentage of female participants vs the number of women within the schools) these 

differences are not significant. But, since means are very different, it could be that in a pair-

comparison the Gender group results to be very different from, for example, the Baseline 

group. Again, we should then examine whether this is caused by the incentive scheme. In 

next Sections we will report only the significant pair-comparisons that will give us useful 

insights for our analysis.  

Other variables shown in Table 1 will be described in proper paragraphs. Now we look at individual 

scores at the Math Olympiad. 
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4.2.1. Olympiad Scores 

Italian high-school courses last 5 year. The test in the competition is different for the first two years 

(called “biennio”) and the other three years (called “triennio”). In particular, students attending the 

first two years of the course have to answer 16 problems, while older students have a test with 20 

questions. In order to make scores comparable, those of the first group of students are multiplied 

by 1.25. That is why in next tables sometimes we will call them “Normalized Scores”. This could 

be an issue when comparing scores of students from different classes but we will address it 

controlling for this difference in our regression analysis. For what concerns scores, students receive 

5 points for each right answer, 1 or 0 points respectively for blank and wrong responses. This 

should discourage random answering. As for the Raven Test Score, we want to verify whether 

“matched” students can be considered a representative group of the whole sample of participants 

in terms of  Math Olympiad scores. This is important as we will look at this narrow group to 

understand if top students have differently reacted to incentive schemes. For this purpose we look 

at Table 13 (p.52) that similarly to Table 14 (p.52) reports averages of scores both for matched and 

not-matched individuals. When looking at the whole sample as well as single treatment groups 

averages are not significantly different between matched and not-matched students. The same holds 

when considering single genders. This means that if we restrict the analysis to the sample of 

matched individuals we can potentially extend our results to the whole sample. This narrow sample 

is not statistically different from the entire sample that filled the survey in terms of abilities (see 

Section 4.1) and is not different from the sample for which we have data about Math Olympiad 

performance (in terms of Olympiad scores). The matched subsample comes from the intersection 

of these two broader samples and for these reasons it can be considered a valid representative group 

of both of them. 

We want to look now at Math Olympiad scores to investigate first evidence from summary 

statistics.  In the Table 2 (below) we report within (treatment) group Olympiad score averages both 

for the entire sample of participating students and for top students. Remember that top students are 

defined looking at the score distribution of individuals that filled the survey for who we have the 

Raven Test scores. Testing the equality of means with the Kruskal-Wallis Test, we can see that in 

the entire sample averages are very similar (p = 0.9562) even when separately considering males 

and females. This means that in this first look we cannot find any treatment effect since there is no 

variation in  average  scores  across  different  groups.  Students’  performance  are  not  significantly  
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Table 2. Difference across samples in performance at the Math Olympiads 

Sample Subsample N° Obs Baseline No Gender Gender P-Value (K-

Wallis a) 
Entire with Score b 

 6060 32.53 31.99 31.96 0.9562 

Entire with Score b Females 2664 30.57 29.84 29.82 0.9603 

Entire with Score b Males 3396 34.16 33.71 33.39 0.9137 

Top 10%  490 46.92 36.64 40.23 0.1654 

Top 10% Females 245 41.30 32.33 37.54 0.1502 

Top 10% Males 245 52.64 41.96 42.21 0.2141 

Top 25%  986 40.98 34.94 37.05 0.4202 

Top 25% Females 496 35.96 31.95 33.59 0.6970 

Top 25% Males 490 45.81 38.93 39.59 0.3848 

Top 50%  1676 37.74 33.29 35.05 0.5405 

Top 50% Females 865 33.74 30.90 31.97 0.8205 

Top 50% Males 811 41.61 36.54 37.54 0.5553 

a. The null hypothesis is that means are equal across samples (i.e. samples belong to the same population). It is a Kruskal-Wallis test for 
clustered data. Clusters: Schools. 

b. The Sample includes all individuals that participated at the Math Olympiad. 

 

higher in subsamples that received monetary rewards, neither in the No Gender nor in the Gender 

group. If we look at the top of the ability distribution we find the same evidence although the scores 

become very different, in particular in the top 10. We will deeply investigate this first evidence’s 

robustness controlling for differences across treatment groups. Indeed, these differences could hide 

eventual treatment effects because of the incomparability of treatment groups.  

4.2.2. The Observed Gap 

Before looking at other variables and include them in our regression analysis, we want to check for 

any realized gender gap in math performance along the ability distribution. In Table 3, we report 

males’ and females’ average score in the entire sample for which we have scores, separately 

reporting also within-treatment-group averages. We do the same restricting the sample to the 

matched group, looking at top students. We then report the difference and test the null hypothesis 

of equality of means to understand whether this difference is statistically significant. In the top 

panel of our table we see that the gap in performance is present in the whole sample as well as in 

each single group, but we cannot reject the hypothesis that means are equal across genders. 

Interestingly, in other panels we see that among high-skilled student males overperform females 

with the gender gap being wider and significant at the top of the ability distribution when 

considering all three groups together. Males significantly (p < 0.05) perform better than females 

both in the top 10, 25 and 50 respectively with a positive difference in average performance of 

8.65, 7.57 and 6.34. However, looking at within-group differences we cannot infer any treatment 

effect in widening or narrowing this gender gap since the cross-gender difference in performance 
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is never statistically significant in the single treatment groups. Also in this case, we will check for 

robustness of these results in next Sections.  

What remains interesting in this first look are two things. First, the gender gap in performance 

seems to be wider and significant at the top of the  ability distribution. Second, in the top 10 the 

gap shrinks in the Gender group compared to the other groups, although we cannot hypothesize 

any treatment effect since the gender gap is not significant neither in the Baseline nor in the No 

Gender group. In the previous Section we have shown that students’ (even considering single 

genders) realized performance are statistically not different in means across treatment groups. We 

have found now that this evidence holds also comparing within-groups gender gaps. The latter 

comparison takes into account that even if treatment groups are different in characteristics, males 

and females come from the same schools sharing the same trends. However, in each group there 

are several schools. Still, we have to control for other factors influencing participation and 

performance to understand if “ceteris paribus” treatments had any significant effect on females’ 

relative outcomes. That is, we do not only care about absolute effects on participation and 

performance (that we have seen in the previous Section) but also about the heterogenous effect 

across genders, especially at the top of the distribution were the gap seems to be wider. 

Table 3 . Gender Gap in performance at the Math Olympiads 
Sample Subsample N° Obs Average: 

Males 

Average: 

Females 

Difference P-Value 

(T-Test a) 
Entire with Score  6060 33.81 30.13 3.67 0.1564 

Entire with Score Baseline 2344 34.16 30.57 3.58 0.2996 

Entire with Score No Gender 2404 33.72 29.84 3.87 0.3150 

Entire with Score Gender 1302 33.39 29.81 3.57 0.5550 

Top 10%  490 44.50 35.84 8.65 0.0319 

Top 10% Baseline 113 52.64 41.30 11.34 0.1629 

Top 10% No Gender 219 41.96 32.33 9.63 0.1072 

Top 10% Gender 158 42.21 37.54 4.67 0.4586 

Top 25%  986 40.95 33.37 7.57 0.0251 

Top 25% Baseline 247 45.81 35.96 9.84 0.3146 

Top 25% No Gender 420 38.93 31.95 6.98 0.0948 

Top 25% Gender 319 39.59 33.59 6.00 0.0937 

Top 50%  1676 38.18 31.84 6.34 0.0225 

Top 50% Baseline 407 41.61 33.74 7.87 0.3282 

Top 50% No Gender 759 36.54 30.90 5.64 0.2867 

Top 50% Gender 510 37.54 31.97  5.57 0.1876 

a. T-Test for clustered data. Clusters: Schools.  

 
 

 

 
 



 

29 
 

 

4.3. School Data 

In this experiment we had a two-way randomization. First, schools were randomly included in the 

experiment among the pool of schools located in the Italian North-East that comprehends four 

regions: Veneto, Emilia Romagna, Friuli-Venezia Giulia and Trentino-Alto Adige. Second, 

selected schools were randomly assigned to a treatment group. The fist randomization is necessary 

to avoid to include in the experiment “special” schools in order to be able to generalize findings 

that need not to be strictly linked to the selection procedure (i.e., to be externally valid). The second 

randomization is important to assure that schools in different groups are similar and single schools’ 

characteristics (e.g., quality, reputation, teaching methods etc.) are not correlated with the type of 

treatment. We know that the randomization procedure allows us to meet the condition of 

exogeneity for our treatment variable. Indeed, this permits to investigate treatments’ effect simply 

looking at summary statistics (in particular, means). Unfortunately, the randomization process 

needs to be verified because characteristics could not be successfully balanced across treatment 

groups making them not directly comparable. We exploit our data sources to investigate this 

balancing verifying that control variables effectively have not any statistical relationship with the 

treatment variable. Once verified the randomization procedure we will include these variables in 

regressions in order to control for differences across selected schools. In order to simplify our 

analysis we do this exercise only for schools included in the “matched” sample (i.e., schools in 

which both the questionnaire and the survey were submitted and in which there are matched 

students). Indeed, this is the sample we are interested in.  

In Table 4 we report the distribution of schools among treatments divided by region. At the bottom 

of this table we report the p-value of the Fisher’s Test. Under the null hypothesis there is no 

significant relationship between the treatment variable and the variable “region”. We cannot reject 

this hypothesis, hence the 27 selected schools are well-randomized across regions. 

Table 4. Distribution of Schools Among Treatments by Region 

 Baseline No gender Gender Total 

Veneto 2 2 3 7 

Emilia Romagna 1 5 3 9 

Friuli-Venezia Giulia 4 4 1 9 

Trentino - Alto Adige 0 0 2 2 

Total 7 11 9 27 

Fisher's exact  =  0.322     
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Before the competition took place we submitted a survey to one math professor (the one that was 

in charge of the organization of the within-school competition) for each involved school to collect 

some data about own school’s characteristics. Most important for this analysis, we asked the overall 

number of students (asking to specify the distribution of pupils among genders) in the school and 

the way the math Olympiad participants were selected in the school. In order to understand whether 

schools are homogeneous across treatments we look at within group averages for the number of 

students. Restricting the analysis at the matched group we exploit the top panel of Table 12 (p. 51, 

Info on Schools). Differences between within-group averages are not statistically significant 

neither in the number of students nor in the number (and percentage) of females. For what concerns 

selection, as seen before, we have defined three criteria: free, suggested and mandatory 

participation. In order the treatment to have a positive effect on students’ participation the first 

criterion is needed since the monetary incentive could not change students’ choice in an 

environment in which they actually do not choose. Moreover, the selection criterion is potentially 

correlated with other schools’ characteristics as prestige, quality, reputation etc. That is, it can 

capture other factors that influence also students’ realized performance (not only competition 

entry). In Figure 2 we show the distribution of schools among selection criteria for each treatment 

group. We reported this distribution also in table form (see Table 18, p.54). In Table 18 the p-value 

of the Fisher’s Test suggests that there is not significant relationship between the type of treatment 

and the selection criterion (although this comparison includes all three groups together). Also this 

characteristic results to be well balanced across treatment groups. Coming back to Figure 2 we can 

say something about this distribution. The  first  relevant  fact  that  we  want  to  underline  is  that   

 

Figure 2. Distribution of Schools among Selection Criteria (by Treatment) 
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in the schools assigned to the Baseline group none of them allows students to freely enter the 

competition. On the contrary the vast majority of schools (6 out of 7) use mandatory participation. 

Second, the Gender group is the one that includes the highest number (44.44%) of school with the 

latter criterion. Also the No Gender group seems not to be well-balanced since the majority of 

schools chose the criterion “Suggested”. Said this, we are interested in cross-groups balancing since 

our need is the comparison between groups (so, that the type of treatment is not correlated with the 

selection criteria). Even if the randomization worked in this case, these facts suggest that the 

distribution of schools among selection criteria could hardly compromise the cross-treatment-

groups comparison. We will come back on this, exploiting evidence from the regression approach, 

in the last part of our analysis. 

Within schools students attend different tracks (or, curricula). These tracks can differ in several 

characteristics. Some curricula are more math-intensive (e.g., Liceo Scientifico), others focus more 

on arts and language (e.g., Liceo Artistico, Liceo Classico, Liceo Linguistico etc.). Tracks differ 

also in the way they prepare students to university or to the labor markets (academic vs vocational 

tracks). Although schools are most often specialized in some curricula, they always include 

different tracks that share same school trends but could heavily differ in quality and already cited 

characteristics. For the scope of this analysis, the math intensity surely represent the most important 

feature. In our tables (1, 11, 12) we report for each sample the within-group averages of curricula 

present in involved schools. This says something about the type of school and the degree of 

specialization. Looking at Table 12 (p.51), we cannot reject the hypothesis that schools included 

in the matched sample are homogenous across treatment groups in the number of offered curricula 

(Kuskal-Wallis p-value: 0.2938). However, this evidence still holds when looking at the sample of 

schools in which the survey was submitted (Table 1, p.24) and schools for which we have data 

about Math Olympiad outcomes (Table 11 p.50). Not surprisingly since for the major part they 

include the same schools. Our main concern is that Olympiad participants (and then matched 

students) are equally distributed among academic curricula across different treatment groups. In 

Table 16 (p.53) we show this distribution. The Chi2 Test (with a p-value equal to 0.0000) shows 

that there is a significant relationship between tracks and treatments. Clearly, this is a relevant issue 

since having more students attending math-intensive courses in a particular group could hide or 

simply alter observed treatment effects. For example, females in the No Gender group could 

overperform that included in the gender-based treatment just because they belong to different 

tracks. Interpreting higher average performance in the first group as “female disliking single-
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gender competitions” would be wrong. In Table 17 (p.53) we show the gender composition of 

single tracks. Here we notice that the type of curriculum is significantly related (Chi2 Test p-value 

= 0.0000) to the variable “gender”. This means that some tracks are male-dominated  (e.g. Liceo 

Scientifico – Scienze Applicate that offers a strong preparation in math), in other tracks the reverse 

holds (e.g. Liceo Classico). From the previous and the latter evidence, we deduct that in our 

regression approach we should control for track-specific effects including dummies for each 

curriculum. 

4.3.1 Other Sources: Fondazione Agnelli 

The difference across tracks can potentially alter our analysis. Including dummies for each track 

allows us to control for cross-treatment-group differences in the distribution of students among 

curricula. What remains uncontrolled for are single tracks’ characteristics. Same curricula offered 

in different schools share almost the same program but can still differ. Until now, we have not 

mentioned the most important factor that influence students’ readiness for math competitions and 

realized performance: school quality. We need a measure of quality since, as for already defined 

variables, the unbalanced distribution of students among high-quality schools is another potential 

threat for interpretation of results. In order to solve these two issues (difference in same curricula 

characteristics across schools and quality of education) we exploit data from the Fondazione 

Agnelli’s Dataset (that covers almost our entire “matched” sample).  

Fondazione Agnelli (from now on, FGA) collects data about tracks within each single school. In 

particular, they have informations about past years tracks’ performance. We think that this 

approach is really effective since, as argued before, considering the entire school would cause 

altered evaluations due to strong differences across curricula offered in the same school. For these 

reasons, in this paragraph we will not refer to involved schools but to single tracks within these 

schools (in particular, schools included in the matched sample). From the FGA’ s dataset we first 

exploit data about past students’ matriculation (at University) rates represented as the percentage 

of students that successfully applied for any university after completed the high school. Data refer 

to within-track averages in the period 2014-2017. This permits to compare single tracks’ academic 

attitude and quality. This is relevant for two reasons. First, in our sample also vocational tracks are 

involved (e.g., Istituto Professionale). Second, matriculation rates are likely to strongly correlate 

with school quality. We have  data  about  matriculation  rates  divided  by  gender,  this  allows  to  
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Figure 2. Within-groups average matriculation rates by gender. Unit: single track. Data source: FGA. 

 

Figure 3. Within-groups average proportion of student choosing STEM careers by gender. Unit: single track. Data source: FGA. 

 

 

Figure 4. FGA Index - within group averages. Unit: single track. Data source: FGA. 
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evaluate more deeply tracks in our sample. Moreover, gender-specific data potentially capture other 

forces influencing students’ attitude toward math competitions.  In  Figure  2  we  show  within-

treatment-group  averages  with confidence interval bars that help to compare our three group. In 

this figure, as well as in the other similar ones that we are going to show, confidence interval bars 

take into account that groups of tracks belong to the same school (i.e., they control for intra-clusters 

correlation). We report these averages also in table form (Table 12, p. 51) and test the Kruskal-

Wallis Test’ null hypothesis. Within group averages are very similar and there is not significant 

difference across groups both in males’ and females’ matriculation rates (although slightly lower 

in the Gender group). In Figure 3 (and Table 12, p.51) we show the within-group average 

percentage of males and females that chose STEM (Science, Technology, Engineering and 

Mathematics) fields among those who successfully applied for any University. With this variable 

that we call “STEM choice” we also control for math intensity in academic programs of tracks 

involved in our sample. Looking at confidence interval bars and p-values in Table 12 we see that 

also in this case our three treatment groups are not significantly different. Further examining the 

reported figure we want to underline two facts. First, also in this case the Gender group has lower 

means, in particular for females. This is a potential threat since in the group in which we want to 

foster women’s performance with the gender-based incentive scheme, the average number of 

females choosing the STEM field is lower (although the difference is not significant in the cross-

groups comparison). Second, it is evident that, while the average matriculation rates in the previous 

figure (Figure 2) seem to be almost equal across genders, the percentage of males choosing STEM-

based careers results to be significantly higher than that of females. Of course averages refer to 

tracks involved in our matched sample but this is certainly in line with evidence from the past 

literature described in Chapter 2. In order to have a synthetic measure of tracks’ quality we finally 

exploit the FGA index. This index is computed by FGA that assigns a score from 0 to 100 to each 

single track based on students’ (that got high school diploma in that track) performance in the 

University career in the period 2014-2017. Data about these performance include grades (weighted 

for the number of credits associated to respective courses) and obtained credits in the first year of 

course at University were these two informations have equal weights (50:50). In particular, the 

index3 is a standardized measure that takes into account for heterogeneity across Universities and 

courses and for this reason it makes scores comparable across tracks.  

 
3 For further explanations see FGA’s website (https://eduscopio.it/dati-e-metodologia)  

https://eduscopio.it/dati-e-metodologia
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We will see that the effect of schools’ quality on students’ participation could be either positive or 

negative. On the contrary, for what concerns the effect of tracks’ quality on students’ performance 

we certainly expect to find a positive effect just because pupils are better trained. In Figure 4 (and 

Table 12, p.51) we show averages within treatment groups and also in this case we find that, thanks 

to randomization, students are well distributed among schools with different FGA Index scores. 

We want to clarify that shown averages do not exactly reflect those present in the FGA’s dataset. 

First, because in this dataset data were not ready to use for our analysis’ purpose. This is true both 

for matriculation rates and STEM choices. In the latter case we identified fields to include in the 

broader category “STEM”. Adding up single careers data (e.g., math, statistics, engineering etc) 

we obtained the percentage of students choosing STEM fields (for single genders). Second, there 

is little difference in the way we have collected data. When collecting data about tracks we had a 

single item called “Istituto Tecnico” while they make a further distinction between “Istituto 

Tecnico – Economico” and “Istituto Tecnico – Tecnologico”. For this reason, for schools in which 

both kind of curricula were included we simply computed means for all cited variables.  
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5. Regression Analysis 

In this Chapter we deepen our analysis with a regression approach. In previous Sections we have 

first looked at realized outcomes in our experiment in terms of participation and performance. In 

particular, we have investigated these outcomes in several subgroups both examining cross-gender 

differences and analyzing how these results vary along the students’ ability distribution. Most 

important, we have seen how participation and performance vary across treatment groups in order 

to understand whether incentive schemes have differently (or not) influenced students’ outcomes. 

From this first look we have found evidence of lower participation for females in the Gender Group 

and of a positive gender gap in performance in favor of males, in particular among the pool of high-

ability students. No difference in performance across treatment groups has emerged. The 

interpretation of these results hardly depends on the characteristics of considered subsamples. 

Looking at variable at our disposal we have seen that our three treatment groups differ in some 

factors, although the most significant difference is in the distribution of students among school 

curricula. This is a relevant difference since tracks differ in math intensity and other important 

factors.  In a perfect randomization scenario it would not be necessary to further analyze outcomes 

since the treatment variable would be perfectly exogenous, samples would be balanced and the 

interpretation of results exploiting differences across means would be unbiased. Since randomized 

groups result to be not perfectly balanced and different in some characteristics we want now to 

check the robustness of previous results analyzing the effect of our treatments. In case the treatment 

variable is correlated with observed variables, the inclusion of the latters in our regressions allows 

to eliminate (or, at least, reduce) the bias coming from this correlation since the treatment variable 

would no longer be correlated with the error. We exploit this approach to investigate the effect of 

the two incentive schemes both on participation and on students’ performance. The Baseline group 

permits to analyze the cited effects comparing the No Gender and the Gender group with a “no 

intervention” scenario represented from the control group itself. 

5.1. Participation 

In this Section we focus on the first outcome variable: participation. Here we want to understand 

whether incentive schemes have caused participation to vary across treatment groups. We can 

exploit already shown variables to check whether eventual differences in participation are driven 

by other factors (or schools’ characteristics). In Table 5 we report results of this regression where  
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Table 5. Treatments’ effect on the percentage of participants  

 (1) (2) (3) (4) 

 OLS OLS OLS OLS 

Percentage of Participants in School 1     

No Gender 2 -0.101 

(0.0671) 

0.0248 

(0.0539) 

0.0195 

(0.0511) 

0.0582 

(0.0524) 

Gender 2 -0.197*** 

(0.0408) 

-0.0650 

(0.0531) 

-0.0641 

(0.0464) 

-0.0339 

(0.0572) 

FGA   -0.00346 

(0.00216) 

-0.00448* 

(0.00206) 

-0.00604** 

(0.00170) 

Females in School   0.000163 

(0.000116) 

0.000160 

(0.000128) 

-0.0000286 

(0.0000997) 

Students in School   -0.000136 

(0.0000810) 

-0.000112 

(0.0000786) 

-0.0000153 

(0.0000699) 

Selection3: Suggested   0.0767 

(0.0654) 

0.0831 

(0.0493) 

0.0549 

(0.0348) 

Selection3: Mandatory   0.213*** 

(0.0413) 

0.208*** 

(0.0395) 

0.216*** 

(0.0324) 

Constant 0.356*** 

(0.0303) 

0.388** 

(0.118) 

0.366* 

(0.177) 

0.503** 

(0.161) 

Track Dummies No Yes Yes Yes 

Matriculation Rates 4 No No Yes Yes 

Stem Choice 4 No No Yes Yes 

Location 5 No No No Yes 

Observations 10132 8447 8391 8391 

R2 0.263 0.653 0.684 0.774 
1. The dependent variable is the percentage of students in the school participating at the Math  

Olympiad. 

2. Base Category: Control group “Baseline”. 
3. Base Category : “Free”; 

4. Track Specific variables defined by gender (included both for males and females); 

5. Includes regional dummies and the number of inhabitants of the city where the school is located. 

Standard errors in parentheses. . Standard errors adjusted for 27 clusters in school. 
* p < 0.05, ** p < 0.01, *** p < 0.001 
 

the dependent variable is the percentage of participants in the school. This is our main regression 

for the first outcome variable since we do not want to analyze the treatment effect on the absolute 

number of participants that does not take into account the different school size (in terms of number 

of students). As you can notice from the bottom panels we add in each column variables to control 

for any difference across treatment groups. Among the set of controls we include variables 

described in  Chapter 4. We further add only the “number of inhabitants of the city where the school 

is located”. This because we think that the variable “region” in our regression does not perfectly 

describe the location of involved schools. In the same region schools could be located either in big 

cities/centers or in small towns. In this sense, the location can, for example, differently influence 

school’s quality or financial resources. The location can also capture the different attitude in the 

school toward students and teaching methods. Coming back to our regression, the observations are 

students coming from the 27 considered schools, and standard errors are adjusted for the intra-

clusters correlation (that is, the regression takes into account that observations in our sample are 

divided in clusters). In this regression we exploit the whole sample at our disposal, including both 
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students that filled the survey and students that enjoined the math competition. In the top panel we 

show the coefficients of most relevant variables. In the first specification (column 1) only the 

Gender treatment has a negative and significant effect. This effect is no longer significant when 

adding controls in our regression. Remember that the base category for the treatment variable is 

the Baseline group. Hence, the observed treatment effects are with respect to the no-intervention 

scenario. The FGA index, our proxy for school quality, has a negative and significant effect both 

in the third and the forth columns and is robust to the introduction of control variables. This means 

that the higher the quality of the school the lower is the percentage of participating students (with 

respect to the total number of students in the school). The negative effect of the FGA index could 

capture the different approach that high quality schools have with these extra-curricular 

competitions. For example, high quality schools could allow only best student to participate in 

order to obtain higher average performance in the competition. When adding controls in our 

regression we can notice that the “Selection Criteria” is the most relevant variable driving cross-

schools (and, in turn, cross-groups) differences in the percentage participation. This, in pair with 

the not-significant coefficients of the treatment variable, suggests that realized differences do not 

depend on the introduction of the incentive schemes. Therefore, looking at the second outcome 

variable (performance) it is necessary to control both for participation and selection criteria when 

analyzing treatment effects on students’ score at the Math Olympiad. The cross-groups difference 

in selection and participation could hardly bias interpretation of results and policy outcomes. At 

the end of this work (Appendix A, p.56) we study the same treatment effects using as dependent 

variable the individual participation. In particular, it is a dummy that takes 1 if the student enjoined 

the math competition, 0 otherwise. In the greater part of our sample students seem not to be free to 

choose whether to participate or not. In this scenario it is hard for monetary incentives to motivate 

students or change their participation choice. For this reason, we suggest that the interpretation of 

results from the probit model in Appendix A should be simply interpreted as the effect that 

treatments have on individual probability to enjoy the competition. Even if regression outcomes 

remains hard to interpret, we add this Appendix to show that also changing the dependent variable, 

the main factor influencing students’ participation is the adopted selection criterion. From the same 

regression it emerges that there is a positive and significant gender gap in participation in favor of 

males. Also in this regression the coefficient of the FGA index variable remains negative and 

significant. 
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5.2. Treatments’ Effect on Score 

Interventions with monetary incentives in our experiment seem not to have significantly affected 

participation at the Math Olympiad, neither at school nor at individual level. As we have argued, 

the way in which participants are selected in involved schools indicates that there was little room 

for treatments to have any significant effect. In this paragraph we investigate the effect that the No 

Gender and the Gender treatment had on the second outcome variable: individual scores. We 

include in our regression model (OLS) all control variables at our disposal, as in the previous 

Section. In Table 6 we include in the analyzed sample the Baseline, the Gender and the No Gender 

groups, where the first one is the base category of the treatment variable. Since from now on we 

analyze individual scores, we include in the set of controls also dummies for the attended class 

(i.e., year of the course that goes from 1 to 5). It is important to consider the attended class for two 

reasons: first, the Math Olympiad test is different for the first two years (and normalizing individual 

Table 6. Treatment Effect on Score 

 (1) (2) (3) (4) (5) 

Normalized Score OLS OLS OLS OLS OLS 

No gender 0.292 

(2.080) 

-3.381* 

(1.511) 

-3.733 

(1.835) 

-4.450* 

(1.703) 

-4.425* 

(1.714) 

Gender 0.0820 

(2.455) 

-0.136 

(1.520) 

-0.783 

(1.499) 

-5.529* 

(2.228) 

-5.119** 

(1.831) 

Female -3.719*** 

(0.807) 

-3.563*** 

(0.580) 

-3.517*** 

(0.570) 

-4.215*** 

(0.915) 

-4.506*** 

(0.954) 

FGA  

 

0.212* 

(0.0883) 

0.248* 

(0.109) 

0.204* 

(0.0907) 

0.275* 

(0.124) 

Female # No gender  

 

 

 

 

 

1.686 

(1.090) 

2.052 

(1.111) 

Female # Gender  

 

 

 

 

 

0.242 

(1.657) 

0.449 

(1.721) 

Constant 32.04*** 

(1.374) 

12.02* 

(5.271) 

12.09* 

(5.539) 

25.63*** 

(6.242) 

29.12** 

(9.238) 

Class Dummies 1 Yes  Yes Yes Yes Yes 

Track Dummies  No Yes Yes Yes Yes 

Location 2 No Yes Yes Yes Yes 

Info on School 3 No No Yes Yes Yes 

Participation 4 No No No Yes Yes 

Selection No No No Yes Yes 

Matriculation Rates 5 No No No No Yes 

Stem Choice 5 No No No No Yes 

Observations 6048 5094 5094 5094 5076 

R2 0.073 0.137 0.138 0.165 0.167 
1. Dummies for Years of the course (1 to 5). ; 

2. Includes regional dummies and the number of inhabitants of the city where the school is located. 
3. Includes the number of females and the total number of students in school; 

4. Includes the percentage of participants in school with respect to the total number of students and the percentage of females with respect 

to the total number of participants in school; 
5. Track Specific variables defined by gender (included both for males and females); 

Standard errors in parentheses. Standard errors adjusted for 27 clusters in school.  
* p < 0.05, ** p < 0.01, *** p < 0.001 
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scores could not be enough to make scores comparable across students attending different classes); 

second, the attended class influences participants’ preparedness in math topics (it also includes the 

information “age” that we do not add in the set of controls to avoid collinearity). As underlined in 

the previous Section, we include in our controls both the number of participants in the school and 

the selection criterion adopted. We control also for the percentage of female participants since the 

selection criteria could have an heterogenous effects across genders (and simply because schools 

significantly differ in the number of female participants). In columns (4) and (5), where we control 

first for selection and participation and then for track-specific past performance, the coefficients of 

the treatment variable are negative and significant. This evidence suggests that monetary incentives 

had a negative impact on individuals performance. We will come back on this evidence in Section 

5.3 questioning the effective comparability of the treatment groups with the control one. As evident 

from the Chapter 4, the gender gap in performance is negative and significant (coefficient of the 

dummy female). Being female has almost the same effect, in magnitude, of our interventions. The 

coefficient of the FGA Index, as expected, is positive: the higher the quality of the school the better 

are individual performance. As you can see in our Table, we have interacted the treatment variable 

with the dummy “female” to investigate any gender-specific effect of our treatments. In Chapter 2 

we have shown that in the past literature there is evidence of heterogenous effect across genders of 

single-gender competitions. This gender-specific effect is captured from these interactions. Neither 

the No Gender nor the Gender treatment has a significant impact on females’ Olympiad scores. 

This evidence is in line with the one found in Chapter 4 when looking at the cross-groups difference 

in mean performance.  

The peculiarity of our intervention (a quota on the top) suggests that the treatments potentially have 

a significant effect on students in the upper tail of the ability distribution as they represent the 

portion of students that can more reasonably expect to get the compensation. In order to investigate 

these effects, in next regressions we separately compare first the No Gender and then the Gender 

group with the Baseline. In this regressions we include a dummy “Top10” that takes 1 if the student 

is in the top ten of the school-level ability distribution (based on the Raven Test Scores) among 

those who filled the survey. Exploiting this information we restrict the analysis to the “matched 

group”. It is necessary because among students that did not fill the survey there could be potential 

top-ability pupils that we cannot compare due to this missing information. In Table 7 we report 

results of the comparison between the No Gender and the Baseline group. The dependent variable 

is “Normalized Score”. We include the dummy “Top10” and let it to interact both with the dummy  
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Table 7. Treatment Effect (Comparison Baseline – No Gender) on Score of Top 10 at School Level 

 (1) (2) (3) (4) (5) 

Normalized Score OLS OLS OLS OLS OLS 

Female -3.738* 

(1.681) 

-5.465* 

(2.009) 

-5.556* 

(2.199) 

-5.733* 

(2.212) 

-5.309* 

(2.177) 

No Gender 0.125 

(1.969) 

-5.883 

(2.926) 

-5.387 

(2.709) 

-4.941 

(3.017) 

-2.392 

(2.135) 

Female # No Gender 0.0603 

(1.895) 

3.905 

(2.130) 

4.078 

(2.332) 

4.244 

(2.327) 

3.716 

(2.268) 

FGA  

 

0.184* 

(0.0833) 

0.230** 

(0.0752) 

0.254 

(0.131) 

0.250 

(0.181) 

Top10  

 

 12.67*** 

(1.655) 

17.13*** 

(1.629) 

16.98*** 

(1.586) 

16.83*** 

(1.663) 

Female # Top10  

 

-6.449** 

(1.780) 

-5.975 

(3.975) 

-5.639 

(4.004) 

-5.366 

(4.022) 

No Gender # Top10  

 

 

 

-6.989** 

(2.346) 

-6.941** 

(2.217) 

-6.947** 

(2.243) 

Female # No Gender # 

Top10 

 

 

 

 

-0.0289 

(4.478) 

-0.532 

(4.417) 

-0.668 

(4.441) 

Constant 32.18*** 

(1.263) 

17.25** 

(5.748) 

20.76*** 

(4.832) 

34.64*** 

(8.522) 

25.52 

(14.44) 

Class Dummies 1 Yes  Yes Yes Yes Yes 

Track Dummies  No Yes Yes Yes Yes 

Location 2 No Yes Yes Yes Yes 

Info on School 3 No No Yes Yes Yes 

Participation 4 No No No Yes Yes 

Selection No No No Yes Yes 

Matriculation Rates 5 No No No No Yes 

Stem Choice 5 No No No No Yes 

Observations 4747 1666 1666 1666 1666 

R2 0.062 0.206 0.215 0.223 0.233 
1. Dummies for each Year of the course (1 to 5); 

2. Includes regional dummies and the number of inhabitants of the city where the school is located. 

3. Includes the number of females and the total number of students in school; 
4. Includes the percentage of participants in school with respect to the total number of students and the percentage of females with respect 

to the total number of participants in school; 

5. Track Specific variables defined by gender (included both for males and females); 
Standard errors in parentheses. Standard errors adjusted for 18 clusters in school.  
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

“female” and the treatment variable (where we consider only the treatment “No Gender” with a 

compensation scheme that does not take into account ranked students’ gender). We finally include 

the triple interaction between the female dummy, the treatment variable and the dummy “Top10”. 

The dummy “female” still has a negative and significant coefficient in each column confirming the 

gender gap in performance, even if it is not specific of the upper tail in the ability distribution 

(coefficient of the interaction “Female # Top10” not significant). Controlling for heterogenous 

effects along the ability distribution the coefficient of the treatment variable is no longer significant, 

suggesting that the treatment did not influence all students’ scores. As expected the dummy 

“Top10” has a positive and significant effect: being an high-ability students strongly influences 

realized score in the math competition. This evidence proves that the Raven Test score, also in our 

sample, is a good proxy for students’ abilities. The No Gender treatment has a significant and 
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negative effect on high-ability individuals’ scores. This means that the effect that we found in the 

previous regression is mainly located at the top of the ability distribution. Indeed, coefficients of 

the interaction “No Gender # Top10” are significant in each column. The triple interaction allows 

to understand whether the interaction between the first two variables (Female and No Gender), 

hence the gender-specific treatment effect, is present among high-skilled students (for who the 

dummy Top10 is equal to 1). The coefficient for this interaction is never significant in different 

specifications (that the differ in the number of control variables included). We do the same exercise 

in Table 19 (p.54) looking at the top 25 of the within-school ability distribution. We find almost 

the same evidence. A positive and significant coefficient of the dummy “Top25” in column (3), (4) 

and (5). Hence, being in the Top25 of the ability distribution as a positive effect on own 

performance. The negative and significant coefficient of the interaction “Female # Top25”, in pair 

with a lower coefficient for the dummy “Female” with respect to the previous table, suggests that 

the gender gap is even wider among students in the top 25. This is the main difference with the 

Table 7 since the treatment still has no effect but at the top of the ability distribution (“No Gender 

# Top25”). There is not significant gender-specific treatment effect neither in the whole sample 

(Female # No Gender) nor among top students (Female # No Gender # Top25).  

In Table 8 we compare the Baseline and the Gender group adding, as for the No Gender group in 

previous analysis, specific effects for students in the Top10. The Gender treatment is the one in 

which we expected the most significant gender-specific effect on females’ performance, in line 

with the evidence from literature that single-sex contests lower the distortion of competition on 

women’s outcomes. We have to underline that in this case females are still competing against men, 

what is gender specific are monetary incentives for top-ranked students (incentive scheme 

explained in Section 3.). Evidence from this regression is in line with the one found in the No 

Gender treatment. In this subsample the gender gap is no longer significant when including in the 

regression the whole set of controls (column 5). Neither the gap is significant among high-ability 

student (Female # Top10). Monetary incentives seem to have also in this case negative and 

significant effect on students’ performance, in particular when controlling for participation and 

selection (column 4). The negative effect is stronger for high-skilled students (Gender # Top10). 

Also in this case the effect is never gender specific along the ability distribution (see Female # 

Gender and Female # Gender # Top10), although the coefficient of the triple interaction is notable 

in magnitude. Also for the Gender group we have reported in the Section “Tables” (p.50) the same 

regression that considers students in the top 25. We found the same evidence as Table 8, the only  
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Table 8. Treatment Effect (Comparison Baseline - Gender) on Score of Top 10 at School Level 

 (1) (2) (3) (4) (5) 

Normalized Score OLS OLS OLS OLS OLS 

Female -3.676* 

(1.680) 

-5.899* 

(2.068) 

-5.118* 

(2.300) 

-4.698* 

(2.175) 

-4.245 

(2.208) 

Gender -0.284 

(2.520) 

-1.997 

(2.604) 

0.0836 

(2.508) 

-7.217* 

(2.716) 

-8.796** 

(2.219) 

Female # Gender 0.0767 

(2.097) 

0.753 

(2.448) 

-0.443 

(2.959) 

-0.758 

(2.856) 

-1.266 

(2.869) 

FGA  

 

0.140 

(0.0744) 

0.224** 

(0.0594) 

-0.0717 

(0.153) 

-0.0944 

(0.148) 

Top10  

 

    11.57*** 

(1.653) 

16.82*** 

(1.617) 

16.73*** 

(1.627) 

16.53*** 

(1.632) 

Female # Top10  

 

-2.209 

(2.576) 

-6.578 

(4.031) 

-6.074 

(4.120) 

-6.055 

(4.026) 

Gender # Top10  

 

 

 

-9.039*** 

(1.810) 

-9.140*** 

(1.783) 

-9.345*** 

(1.841) 

Female # Gender # 

Top10 

 

 

 

 

7.223 

(4.915) 

6.596 

(4.821) 

7.139 

(4.708) 

Constant 31.23*** 

(1.259) 

   19.12*** 

(4.491) 

17.42*** 

(3.927) 

66.46** 

(18.26) 

37.60 

(21.44) 

Class Dummies 1 Yes  Yes Yes Yes Yes 

Track Dummies  No Yes Yes Yes Yes 

Location 2 No Yes Yes Yes Yes 

Info on School 3 No No Yes Yes Yes 

Participation 4 No No No Yes Yes 

Selection No No No Yes Yes 

Matriculation Rates 5 No No No No Yes 

Stem Choice 5 No No No No Yes 

Observations 3644 1173 1173 1173 1173 

R2 0.076 0.277 0.287 0.293 0.302 
1. Dummies for each Year of the course (1 to 5); 
2. Includes regional dummies and the number of inhabitants of the city where the school is located. 

3. Includes the number of females and the total number of students in school; 

4. Includes the percentage of participants in school with respect to the total number of students and the percentage of females with respect 
to the total number of participants in school; 

5. Track Specific variables defined by gender (included both for males and females); 

Standard errors in parentheses. Standard errors adjusted for 15 clusters in school.  
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

difference is the significant gender gap among high-skilled students, the same we found when 

considering top 10 and top 25 students in the No Gender group. 

5.3. Control the Control Group 

The evidence that we found investigating the effect of monetary incentives on students’ outcomes 

at the Math Olympiad is in some way counterintuitive. Indeed, prizes seem to negatively affect 

both males’ and females’ performance with no gender-specific effects. This evidence holds when 

comparing the Baseline group both with the No Gender and the Gender group. The fact that these 

two treatments, even if different in the compensation scheme, have the same significant effect 

(equal across genders and more relevant for top students when considering either the top 10% or 

the top 25% of the ability distribution) suggests that students may dislike monetary prizes. One 
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possible explanation could be that teenagers feel high pressure when competing for these prizes 

reacting with lower performance. Still this explanation results to be counterintuitive. In this Section 

we provide another explanation for this finding. 

Until now we have compared together all three groups to understand whether they are homogenous 

in terms of characteristics.  We have noticed that they are not perfectly balanced. Thanks to the 

regression approach we have controlled for differences across groups. Here we argue that the 

regression approach, even if rich in terms of control variables, could not efficiently investigate 

treatment effects when groups are not compatible. In our dataset we have a large set of variables, 

here we report the ones that, in our opinion, cause the argued incompatibility across groups. In 

Chapter 4 we used the Kruskal Wallis Test to test the hypothesis that all three groups are, at the 

same time, not significantly different in means (of considered variables). The main drawback of 

this type of randomization check is that it says nothing about the pair comparison across 

subsamples. In Table 9 below we report the pair comparison (for example B-NG compares means 

of the No Gender and the Baseline group) with a T-Test where the null hypothesis is that means 

are equal across groups (it is a clustered T-Test in the bottom panel were we compare individual 

data, the clusters are the schools). In the top Panel it is clear that the Gender group and the Baseline 

have significantly different participation rates. This is true for the subsample of females (p = 

0.0036), of males (p = 0.0067) and entire schools (p = 0.0009). In Section 5.1 we have shown that 

treatments had no room to influence participation both at school and individual level and that the 

selection criterion adopted within schools is the most relevant factor determining participation at 

the Math Olympiad, at least in our sample. In Figure 2 (p. 31) you can notice that more than the 

85% of schools included in the control group use the “mandatory” criterion. In none of them 

students are free to choose whether to enter the competition. This makes impossible the 

comparison, for example, across groups in which participation is always free. As we have argued, 

selection criteria can capture other school characteristics other than define the quality of students 

participating at the competition. Not surprisingly, the noted different in the distribution of schools 

among selection criteria here reflects (in Table 9) in a significantly different participation across 

groups, being much higher in the Baseline. In particular, the Gender group is very different from 

the control one. Also the No Gender group results to be different from the Baseline when 

considering within group averages of participation rates both for females (p = 0.0266) and the entire 

schools (p = 0.0009). While the Baseline group seems to be the special one, in the last column we  
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Table 9 . Comparison of samples  

 Baseline No gender Gender T-Test a 

(p-value) 

T-Test a 

(p-value) 

T-Test a 

(p-value) 

     B–NG B-G NG-G 

       

SAMPLE WITH SCORES c - 

PARTICIPATION e 

      

Average number of female participants in 

school  
145 (48%) 98 (43%) 57 (41%) 0.2562 0.0175 0.1549 

Average number of participants in school  316 219 144 0.2652 0.0183 0.2370 

Female participants vs Females in school  34% 19% 14% 0.0266 0.0036 0.3370 

Male participants vs Males in school  40% 28% 22% 0.2297 0.0067 0.5065 

Participants in school vs Students in school  36% 22% 17% 0.0495 0.0009 0.4272 

       

MATCHED DATA WITH SURVEY d       

       

TOP b 10       

Olympiad Score (Average) 46.92 36.64 40.23 0.0411 0.1685 0.3010 

     Olympiad Score Females (Average) 41.30 32.33 37.54 0.0572 0.4674 0.0849 

     Olympiad Score Males (Average) 52.64 41.96 42.21 0.0368 0.0381 0.9506 

       

B : Baseline, NG : No Gender, G: Gender. 
a. When comparing Olympiad Score it is a T-Test for clustered data. Clusters: Schools.  

b. Top students are defined based on their Raven Test Score in the Survey. In particular they belong to the top X if their score is above 

the top X threshold (100 - X percentile) of the score distribution at school level. The distribution includes all scores of students that 
filled out the questionnaire. 

c. The subsample includes all participants at the Math Olympiad. 
d. The subsample includes Olympiad participants that filled out the questionnaire. The potential respondents were randomly selected 

e. Observations are single schools. 

 

can notice that the two treatment groups with  monetary  incentives  are  very  similar  and  within  

group  averages  are  never  significantly different for every considered variable (or subsample). 

The control group is, in our opinion, not comparable to the others because of the missing variability 

of selection criteria in favor of the mandatory participation. Selection criteria have an effect on 

performance per se, but influence also participation at school and individual level. 

 

5.4. The “Gender” Effect 

In this Section we compare the two homogenous groups: No Gender and Gender group. Indeed, 

for reasons explained in the previous Section, we think it is reasonable to take away the control 

group that seems to be very different from these two. Here we want to investigate whether the 

single-sex competition for monetary compensations can foster students’ and, in particular, females’ 

performance. Also in this case we exploit the set of control variables seen in previous regressions. 

In Table 10 we report the regression outcomes in which we include five regressions that differ in 

the number of controls. Examining the effect of splitting prizes among genders, we want still to 

understand whether there was an heterogenous effect along the ability distribution and then include 

the dummy “Top10” letting it to interact both with the treatment variable and the dummy “female”. 

Finally, we include the triple interaction to examine whether there is a gender-specific treatment  
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Table 10. Treatment Effect (Comparison No Gender - Gender) on Score of Top 10 at School Level 

 (1) (2) (3) (4) (5) 

Normalized Score OLS OLS OLS OLS OLS 

Female -3.711*** 

(0.899) 

-2.354* 

(0.887) 

-1.944* 

(0.810) 

-1.871* 

(0.811) 

-2.029* 

(0.842) 

Gender -0.225 

(2.536) 

4.992*** 

(1.125) 

5.508*** 

(1.191) 

3.925 

(2.160) 

3.177* 

(1.151) 

Female # Gender -0.150 

(1.560) 

-1.692 

(1.715) 

-2.955 

(1.883) 

-3.035 

(1.938) 

-2.960 

(1.977) 

FGA  

 

0.259* 

(0.0906) 

0.285* 

(0.102) 

0.281** 

(0.0936) 

0.125 

(0.0885) 

Top10  

 

9.861*** 

(1.175) 

10.77*** 

(1.820) 

10.43*** 

(1.653) 

9.973*** 

(1.534) 

Female # Top10  

 

-4.317* 

(1.710) 

-6.538** 

(2.152) 

-6.436** 

(1.903) 

-5.941** 

(1.874) 

Gender # Top10  

 

 

 

-1.954 

(2.157) 

-2.311 

(2.056) 

-2.108 

(1.948) 

Female # Gender # 

Top10 

 

 

 

 

5.887 

(3.280) 

6.372* 

(2.990) 

6.335* 

(3.006) 

Constant 33.50*** 

(1.731) 

6.546 

(6.106) 

5.684 

(6.508) 

9.530 

(8.626) 

3.344 

(5.742) 

Class Dummies 1 Yes  Yes Yes Yes Yes 

Track Dummies  No Yes Yes Yes Yes 

Location 2 No Yes Yes Yes Yes 

Info on School 3 No No Yes Yes Yes 

Participation 4 No No No Yes Yes 

Selection  No No No Yes Yes 

Matriculation Rates 5 No No No No Yes 

Stem Choice 5 No No No No Yes 

Observations 3705 1763 1763 1763 1763 

R2 0.092 0.207 0.209 0.223 0.230 
1. Dummies for each Year of the course (1 to 5); 
2. Includes regional dummies and the number of inhabitants of the city where the school is located. 

3. Includes the number of females and the total number of students in school; 

4. Includes the percentage of participants in school with respect to the total number of students and the percentage of females with respect 
to the total number of participants in school; 

5. Track Specific variables defined by gender (included both for males and females); 

Standard errors in parentheses. Standard errors adjusted for 19 clusters in school.  
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

effect among top-skilled students. We here show only the regressions that investigate the treatment 

effect on top ten students’ performance, since there is not remarkable evidence for the top 25. Still, 

we control for participation and selection criteria. The “Female” dummy’s coefficient is negative 

and significant in each regression, showing also in this case that there is a strong realized gender 

gap in performance. The Gender treatment seems to have a positive and significant effect on 

performance (columns (2), (3) and (5)) although it has no gender specific effect on females (see 

interaction “Female # Gender”). The standardized measure of school quality (FGA index) has not 

significant effect when including all controls and, however, the effect is weak in magnitude in all 

columns. Differently from the regressions in previous paragraphs but in line with the reported 

literature, the gender gap in performance is stronger and significant at the top of the ability 

distribution (Female # Top10). The positive effect of the Gender treatment is not specifically 
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present among top students (coefficients of the interaction “Gender # Top10” are never significant). 

The main interaction (triple interaction “Female # Gender # Top10”) allows to understand whether 

our intervention had the desired effect in narrowing the gender gap in performance fostering high 

ability females’ relative performance. As noted above, the Gender treatment had an overall positive 

effect on students’ performance with no gender-specific effect. The latter effect is significant and 

robust to the introduction of all controls. This may suggest that all students may prefer to perform 

against same-gender competitors. However, when looking at top students we notice that among 

these participants the effect is heterogenous across genders. The triple interaction has positive and 

significant coefficients in column (4) and (5). The gender-based reward has a significant effect in 

narrowing the gender gap in performance among students in the top ten improving females’ 

performance. This is clear also from the fact that the interaction Female # Top10 is lower when 

introducing together the triple interaction and controls for selection and participation. Taking away 

the control group, that we have shown to be not comparable to the other ones, we finally find 

evidence of a significant effect of our policy intervention, that efficiently improved women’s 

performance with gender-based rewards exploiting individual preferences toward single-sex 

competitions. 
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6. Final Discussion 

We have analyzed the effect of two policy interventions in a field experiment. In randomly selected 

schools we introduced monetary compensations for top-ranked students in the Math Olympiad’s 

competition. The purpose of these two interventions was to analyze the effect that different 

treatments can have in fostering females’ participation and improving their performance in a 

stereotyped-male task trying to manipulate the distortion of competition widely discussed in past 

literature. In particular, the No Gender treatment allowed us to investigate and isolate the effect of 

monetary incentives on students’ outcomes, while the Gender treatment was intended to examine 

whether gender-based rewards could have heterogenous effects across genders giving the 

opportunity to women to narrow or close the gap with their male peers. We also investigated 

whether these interventions had a remarkable effect on high-ability students since top-performing 

females seem to be those who mostly fail to enter and well-perform in competitive contexts. The 

latter evidence clearly is an economic (and equity) matter. Exploiting data about a subsample where 

there was no policy intervention, we had the possibility to examine policy effects comparing 

treatment groups with an “absent the action” scenario. Monetary prizes had no effects on 

participation neither at school nor at individual level. Unfortunately the participation was mostly 

driven by other factors, giving small room to incentive schemes to change students’ entry decision. 

Our data suggest that when looking at individual scores, ceteris paribus, monetary incentives had 

a negative and significant effect on students’ performance with no gender-specific effect. In Section 

5.3 we have argued that these results can be hardly driven by the control group being not 

comparable with the treatment ones. The missing variability in selection criteria and the scrupulous 

selection of participants in schools randomly included in the Baseline group make this subsample 

very special. Even without isolating the effect of monetary incentives per se we compared the No 

Gender and the Gender group to understand whether the introduction of a single-sex competition 

for monetary prizes had any remarkable effect on females’ relative performance. The Gender 

treatment had the desired effect in particular on performance of females in the top ten of the school-

level ability distributions. This findings are in line with the literature showing that females may 

prefer same-gender competitions. We think that results from this experiment, due to the peculiarity 

of the designed treatments, give us other suggestions. Monetary incentives were different across 

subsamples. In the No Gender group students had to overperform the entire pool of participants in 

order to get the reward. In the Gender group, instead, participants had to overperform only peers 

of the same gender. Even if different in rewards, both groups shared the fact that, regardless of the 
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compensation, the math Olympiad remained a mixed-gender competition. In the real world it is 

hard to imagine quotas in some contexts (e.g., entry exams, recruiting) and making females to 

compete only against individuals of the same gender could be not applicable. We suggest that 

gender-based rewards (even if nonmonetary) could potentially foster women’s performance also 

in mixed gender competitions, helping them to reduce the gap with their male peers. 
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Tables 

Table 11. Variables by Treatment 

 Baseline No gender Gender K-Wallis c 

(p-value) 

SAMPLE WITH SURVEY d     

     

INFO ON SCHOOLS e     

Number of participating schools 8 11 10  

Average number of females in school 495 (53%) 547 (51%) 464 (51%) 0.8680 

Average number of students in school 922 1060 935 0.7484 

Average number of tracks per school 3.87 3.73 4.2 0.6587 

Track Specific b :     

     Females' Matriculation Rate (University) 86% 89% 82% 0.0836 

     Males' Matriculation Rate (University) 85% 86% 81% 0.5873 

     Females choosing STEM fields 48% 49% 41% 0.2805 

     Males choosing STEM fields 64% 59% 61% 0.9786 

     FGA Index 68.44 71.43 68.44 0.2765 

     

INFO ON STUDENTS     

     

ENTIRE SAMPLE d     

Number of participating students 1597 2369 2864  

     Males 709 (44.4%) 1007 (42.5%) 1463 (51.1%)  

     Females 888 (55.6%) 1362 (57.5%) 1401 (48.9%)  

Raven Test Score (Average) 4.99 (1.66) 4.89 (1.75) 4.80 (1.73) 0.6719 

     Raven Test Score Females (Average) 4.86 (1.66) 4.92 (1.70) 4.80 (1.70) 0.8457 

     Raven Test Score Males (Average) 5.17  (1.65) 4.84 (1.82) 4.80  (1.76) 0.1862 

TOP a 10     

Number of students in the Top10 303 380 502  

     Males 147 (48.5%) 159 (41.8%) 271 (54%)  

     Females 156 (51.5%) 221 (58.2%) 231 (46%)  

Raven Test Score (Average) 7.31 (0.65) 7.24 (0.87) 7.38 (0.63) 0.6884 

     Raven Test Score Females (Average) 7.24 (0.64) 7.14 (0.84) 7.39 (0.64) 0.3184 

     Raven Test Score Males (Average) 7.39 (0.66) 7.39 (0.89) 7.38 (0.62) 0.9951 

TOP a 25     

Number of students in the Top25 654 806 1167  

     Males 310 (47.4%) 330 (40.9%) 601 (51.5%)  

     Females 344 (52.6%) 476 (59.1%) 566 (48.5%)  

Raven Test Score (Average) 6.58 (0.86) 6.63 (1.00) 6.38 (1.07) 0.6798 

     Raven Test Score Females (Average) 6.50 (0.87) 6.56 (0.96) 6.36 (1.05) 0.7712 

     Raven Test Score Males (Average) 6.67 (0.84) 6.73 (1.06) 6.41 (1.09) 0.5137 

TOP a 50     

Number of students in the Top50 1039 1463 1850  

     Males 477 (45.9%) 590 (40.3%) 928 (50.2%)  

     Females 562 (54.1%) 873 (59.7%) 922 (49.8%)  

Raven Test Score (Average) 5.95 (1.08) 5.91 (1.20) 5.75 (1.24) 0.6936 

     Raven Test Score Females (Average) 5.85 (1.09) 5.85 (1.18) 5.71 (1.22) 0.8048 

     Raven Test Score Males (Average) 6.08 (1.07) 6.01 (1.23) 5.79 (1.27) 0.4830 
Percentages and standard deviations in parentheses.  

a. Top students are defined based on their Raven Test Score in the Survey. In particular they belong to the top X if their score is above 

the top X threshold (100 - X percentile) of the score distribution at school level. The distribution includes all scores of students that 

filled out the questionnaire. 
b. These data refer to single tracks within each school and come from Fondazione Agnelli. Data are not available for every track but 

almost the entire sample is covered. 

c. The null hypothesis is that means are equal across samples (i.e. samples belong to the same population).When comparing Track-
Specific data and Raven Test Scores it is a Kruskal-Wallis test for clustered data. Clusters: Schools. 

d. The sample includes all individuals that filled out the questionnaire irrespectively from participation in the Olympiad. 
e. Observations are single schools and single tracks both for averages and for tests 
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Table 12. Variables by Treatment     

 Baseline No gender Gender K-Wallis e 

(p-value) 

MATCHED DATA WITH SURVEY d     

     

INFO ON SCHOOLS     

Number of participating schools 7 11 9  

Average number of females in school 495 (52%) 547 (51%) 464 (51%) 0.8576 

Average number of students in school 938 1060 935 0.8132 

Average number of tracks per school 3.57 3.73 4.4 0.2938 

Track Specific c:      

     Females' Matriculation Rate (University) 84% 89% 82% 0.0783 

     Males' Matriculation Rate (University) 84% 86% 81% 0.7109 

     Females choosing STEM fields 53% 48% 41% 0.1860 

     Males choosing STEM fields 66% 59% 61% 0.9104 

     FGA Index 67.84 71.87 68.44 0.3199 

     

INFO ON STUDENTS     

Total Matched Individuals 621 1170 757  

     Males 309 (49.7%) 526 (45%) 433 (57.2%)  

     Females 312 (50.3%) 644 (55%) 324 (42.8%)  

Olympiads selection criteria a: 

     Free 

 

0 (0 %) 

 

52 (4.4%) 

 

232 (30.6%) 

 

     Suggested 22 (3.5%) 241 (20.6%) 134 (17.7%)  

     Mandatory 599 (96.5%) 877 (75%) 391 (51.7%)  

Raven Test Score (Average) 5.01 (1.62) 5.30 (1.68) 5.11 (1.71) 0.2558 

     Raven Test Score Females (Average) 4.90 (1.62) 5.35 (1.58) 5.14 (1.68) 0.1178 

     Raven Test Score Males (Average) 5.13 (1.61) 5.23 (1.79) 5.08 (1.72) 0.8130 

Olympiad Score (Average) 34.95 (18.02) 31.57 (14.20) 33.22 (15.21) 0.6518 

     Olympiad Score Females (Average) 31.07 (15.78) 29.75 (12.74) 30.58 (13.39) 0.9695 

     Olympiad Score Males (Average) 38.86 (19.28) 33.80 (15.53) 35.19 (16.18) 0.4494 

TOP b 10     

Number of students in the Top10 113 219 158  

     Males 56 (49.6%) 98 (44.7%) 91 (57.6%)  

     Females 57 (50.4%) 121 (55.3%) 67 (42.4%)  

Raven Test Score (Average) 7.34 (0.65) 7.53 (0.77) 7.51 (0.65) 0.5263 

     Raven Test Score Females (Average) 7.18 (0.57) 7.43 (0.72) 7.55 (0.68) 0.1228 

     Raven Test Score Males (Average) 7.50 (0.69) 7.64 (0.83) 7.48 (0.62) 0.7529 

Olympiad Score (Average) 46.92 (20.86) 36.64 (15.57) 40.23 (16.33) 0.1654 

     Olympiad Score Females (Average) 41.30 (19.41) 32.33 (13.53) 37.54 (15.41) 0.1502 

     Olympiad Score Males (Average) 52.64 (20.89) 41.96 (16.32) 42.21 (16.78) 0.2141 

TOP b 25     

Number of students in the Top25 247 420 315  

     Males 126 (51%) 180 (42.9%) 184 (57.7%)  

     Females 121 (49%) 240 (57.1%) 135 (42.3%)  

Raven Test Score (Average) 6.60 (0.86) 6.99 (0.90) 6.69 (0.96) 0.1862 

     Raven Test Score Females (Average) 6.51 (0.83) 6.88 (0.86) 6.72 (0.98) 0.3521 

     Raven Test Score Males (Average) 6.68 (0.89) 7.12 (0.93) 6.67 (0.94) 0.0775 

Olympiad Score (Average) 40.98 (20.54) 34.94 (14.76) 37.05 (15.92) 0.4202 

     Olympiad Score Females (Average) 35.96 (18.19) 31.95 (12.72) 33.59 (14.27) 0.6970 

     Olympiad Score Males (Average) 45.81 (21.55) 38.93 (16.30) 39.59 (16.61) 0.3848 

TOP b 50     

Number of students in the Top50 407 759 519  

     Males 207 (50.9%) 322 (42.4%) 282 (54.3%)  

     Females 200 (49.1%) 437 (57.6%) 228 (45.7%)  

Raven Test Score (Average) 5.94 (1.08) 6.26 (1.12) 6.01 (1.18) 0.1337 

     Raven Test Score Females (Average) 5.85 (1.07) 6.19 (1.08) 5.95 (1.22) 0.1291 

     Raven Test Score Males (Average) 6.02 (1.08) 6.35 (1.18) 6.06 (1.15) 0.1904 

Olympiad Score (Average) 37.74 (18.93) 33.29 (14.65) 35.05 (15.54) 0.5405 

     Olympiad Score Females (Average) 33.74 (16.58) 30.90 (13.24) 31.97 (13.48) 0.8205 

     Olympiad Score Males (Average) 41.61 (20.25) 36.54 (15.83) 37.54 (16.63) 0.5553 

     
Percentages and standard deviations in parentheses. 

a. It is the criterion that professors in the school use to select Olympiads participants. The participation can be on a voluntary basis (i.e. 
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“Free”). On the other hand participants can be chosen by professors (“Suggested”) that invite best students to participate, or it can be 

that some classes or best students are forced to participate based on merits or other characteristics (“Mandatory”). Also these two 

criteria in some cases could imply that not invited or forced students can join the competition but it is likely to be rare. 

b. Top students are defined based on their Raven Test Score in the Survey. In particular they belong to the top X if their score is above 

the top X threshold (100 - X percentile) of the score distribution at school level. The distribution includes all scores of students that 
filled out the questionnaire. 

c. These data refer to single tracks within each school and come from Fondazione Agnelli. Data are not available for every track but 

almost the entire sample is covered. Numbers are within sample averages.  
d. The subsample includes Olympiad participants that filled out the questionnaire. The potential respondents were randomly selected. 

e. The null hypothesis is that means are equal across samples (i.e. samples belong to the same population. When comparing Track-

Specific data, Raven Test and Olympiad Scores it is a Kruskal-Wallis test for clustered data. Clusters: Schools. 
 

 

 

Table 13. Difference in Olympiad Scores – Sample with scores 
Variable Sample Subsample N° Obs: Not 

Matched  
N° Obs: 

Matched 

Average:  

Not 

Matched 

Average: 

Matched 

P-Value 

(T-Test a) 

Score c Entire b  3512 2548 31.70   32.88    0.5994 
Score c Entire b Females 1384 1280 30 30.28 0.9010 
Score c Entire b Males 2128 1268 32.79 35.51 0.3011 
Score c Baseline  1723 621 31.66 34.95 0.4708 
Score c Baseline Females 751 312 30.37 31.07 0.8841 
Score c Baseline Males 972 309 32.66 38.86 0.2890 
Score c No Gender  1234 1170 32.38 31.57 0.8503 
Score c No Gender Females 430 644 29.98 29.75 0.9491 
Score c No Gender Males 804 526 33.66 33.80 0.9788 
Score c Gender  545 757 30.22 33.22 0.4574 
Score c Gender Females 196 324 28.55 30.58 0.6913 
Score c Gender Males 349 433 31.15 35.20 0.4852 

a. T-Test for clustered data. Clusters: Schools.  

b. Includes the whole sample with Scores independently on the treatment.  
c. Normalized score. 

 

 

Table 14. Difference in Raven Test Scores – Sample with survey 

Variable Sample Subsample N° Obs: Not 

Matched  
N° Obs: 

Matched 

Average:  

Not 

Matched 

Average: 

Matched 

P-Value 

(T-Test a) 

Raven Score Entire b  4282 2584       4.70     5.17    0.0459 

Raven Score Entire b Females 2371 1280 4.68 5.20 0.0245 
Raven Score Entire b Males 1911 1268 4.72 5.15 0.0547 

Raven Score Top 10%  695 490 7.21 7.48 0.1903 
Raven Score Top 10% Females 363 245 7.16 7.40 0.2439 

Raven Score Top 10% Males 332 245 7.26 7.55 0.1769 

Raven Score Top 25%  1641 986 6.34 6.80 0.0813 

Raven Score Top 25% Females 890 496 6.30 6.75 0.0849 

Raven Score Top 25% Males 751 490 6.38 6.84 0.0842 

Raven Score Top 50%  2676 1676 5.70 6.10 0.0743 

Raven Score Top 50% Females 1492 865 5.65 6.05 0.0946 

Raven Score Top 50% Males 1184 811 5.76 6.17 0.1169 
a. T-Test for clustered data. Clusters: Schools.  
b. Includes the whole sample with the Raven Test Score (the sample of individuals that filled out the questionnaire).  
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Table 15. Distribution of Students Among Treatments by Region 

  Baseline No gender Gender Total 

Veneto  825 (35.2%) 1066 (44.3%) 474 (36,4%) 2365 

Emilia Romagna  491 (21%)  859 (35.7%) 429 (33%) 1779 

Friuli-Venezia Giulia  1028 (43.8%) 479 (20%) 154 (11.8%) 1661 

Trentino - Alto Adige  0 0 245 (18.8%) 245 

Total  2344 2404 1302 6050 

 

 

Table 16. Distribution of Participants Among Treatments by Track 

 Baseline No gender Gender Total 

Altro 48 0 0 48 

Istituto Professionale 0 15 0 15 

Istituto Tecnico 244 184 255 683 

Liceo Artistico 0 0 10 10 

Liceo Classico 72 205 45 322 

Liceo Linguistico 2 23 26 51 

Liceo Musicale 109 0 0 109 

Liceo Scientifico 619 1296 360 2275 

Liceo Scientifico - Indirizzo Sportivo 334 0 25 359 

Liceo Scientifico - Scienze Applicate 607 626 546 1779 

Liceo Scienze Umane 212 34 29 275 

Liceo Scienze Umane - Economico Sociale 71 21 6 98 

Total 2318 2404 1302 6024 

Pearson  P = 0.000     

 

 

Table 17. Distribution of Participants Among Gender Types by Track 

 Male Female Total 

Altro 29 19 48 

Istituto Professionale 7 8 15 

Istituto Tecnico 518 165 683 

Liceo Artistico 5 5 10 

Liceo Classico 85 237 322 

Liceo Linguistico 12 39 51 

Liceo Musicale 64 45 109 

Liceo Scientifico 1136 1139 2275 

Liceo Scientifico - Indirizzo Sportivo 221 138 359 

Liceo Scientifico - Scienze Applicate 1234 545 1779 

Liceo Scienze Umane 28 247 275 

Liceo Scienze Umane - Economico Sociale 39 59 98 

Total 3378 2646 6024 

Pearson  P = 0.000     
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Table 18. Distribution of Schools Among Selection Criteria - Treatment 

 Baseline No gender Gender Total 

Free 0 2 4 6 

Suggested 1 5 2 8 

Mandatory 6 4 3 13 

Total 7 11 9 27 

Fisher's exact =  0.134     

 

 

Table 19. Treatment Effect (Comparison Baseline – No Gender) on Score of Top 25 at School Level 

 (1) (2) (3) (4) (5) 

Normalized Score OLS OLS OLS OLS OLS 

Female -3.738* 

(1.681) 

-4.479* 

(1.863) 

-4.111* 

(1.796) 

-4.427* 

(1.792) 

-4.235* 

(1.742) 

No Gender 0.125 

(1.969) 

-4.782 

(2.767) 

-3.626 

(2.569) 

-3.699 

(2.995) 

-1.567 

(2.305) 

Female # No Gender 0.0603 

(1.895) 

3.165 

(2.027) 

2.722 

(2.061) 

2.954 

(2.062) 

2.639 

(1.993) 

FGA  

 

0.166 

(0.0870) 

0.201* 

(0.0863) 

0.244 

(0.138) 

0.281 

(0.183) 

Top25  

 

9.747*** 

(1.213) 

12.46*** 

(1.128) 

12.25*** 

(1.152) 

11.81*** 

(1.095) 

Female # Top25  

 

-4.573*** 

(0.994) 

-5.165** 

(1.504) 

-4.752** 

(1.537) 

-4.242* 

(1.594) 

No Gender # Top25  

 

 

 

-4.416* 

(1.766) 

-4.518* 

(1.771) 

-4.161* 

(1.687) 

Female # No Gender # 

Top25 

 

 

 

 

1.326 

(1.891) 

1.117 

(1.848) 

0.804 

(1.870) 

Constant 32.18*** 

(1.263) 

15.91* 

(6.106) 

18.00** 

(5.504) 

31.07** 

(8.935) 

15.10 

(14.77) 

Class Dummies 1 Yes  Yes Yes Yes Yes 

Track Dummies  No Yes Yes Yes Yes 

Location 2 No Yes Yes Yes Yes 

Info on School 3 No No Yes Yes Yes 

Participation 4 No No No Yes Yes 

Selection No No No Yes Yes 

Matriculation Rates 5 No No No No Yes 

Stem Choice 5 No No No No Yes 

Observations 4747 1666 1666 1666 1666 

R2 0.062 0.202 0.206 0.214 0.223 
1. Dummies for each Year of the course (1 to 5); 

2. Includes regional dummies and the number of inhabitants of the city where the school is located. 
3. Includes the number of females and the total number of students in school; 

4. Includes the percentage of participants in school with respect to the total number of students and the percentage of females with respect 

to the total number of participants in school; 
5. Track Specific variables defined by gender (included both for males and females); 

Standard errors in parentheses. Standard errors adjusted for 18 clusters in school.  
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 20. Treatment Effect (Comparison Baseline - Gender) on Score of Top 25 at School Level 

 (1) (2) (3) (4) (5) 

Normalized Score OLS OLS OLS OLS OLS 

Female -3.676* 

(1.680) 

-4.744* 

(1.862) 

-3.862 

(1.882) 

-3.561 

(1.786) 

-3.192 

(1.805) 

Gender -0.284 

(2.520) 

-1.555 

(2.445) 

1.021 

(2.045) 

-7.305* 

(2.721) 

-10.56*** 

(1.990) 

Female # Gender 0.0767 

(2.097) 

0.559 

(2.451) 

-0.806 

(2.681) 

-1.039 

(2.661) 

-1.405 

(2.642) 

FGA  

 

0.137 

(0.0798) 

0.210** 

(0.0692) 

-0.0391 

(0.145) 

-0.0268 

(0.115) 

Top25  

 

9.202*** 

(1.086) 

12.20*** 

(1.057) 

12.01*** 

(1.012) 

11.78*** 

(1.011) 

Female # Top25  

 

-3.060* 

(1.141) 

-5.131** 

(1.693) 

-4.776* 

(1.666) 

-4.715* 

(1.605) 

Gender # Top25  

 

 

 

-5.461** 

(1.430) 

-5.509** 

(1.432) 

-5.380** 

(1.453) 

Female # Gender # 

Top25 

 

 

 

 

3.590 

(2.087) 

3.255 

(2.053) 

3.496 

(2.034) 

Constant 31.23*** 

(1.259) 

15.72** 

(5.228) 

14.14* 

(4.823) 

56.53** 

(18.30) 

12.61 

(17.44) 

Class Dummies 1 Yes  Yes Yes Yes Yes 

Track Dummies  No Yes Yes Yes Yes 

Location 2 No Yes Yes Yes Yes 

Info on School 3 No No Yes Yes Yes 

Participation 4 No No No Yes Yes 

Selection No No No Yes Yes 

Matriculation Rates 5 No No No No Yes 

Stem Choice 5 No No No No Yes 

Observations 3644 1173 1173 1173 1173 

R2 0.076 0.267 0.274 0.280 0.288 
1. Dummies for each Year of the course (1 to 5); 
2. Includes regional dummies and the number of inhabitants of the city where the school is located. 

3. Includes the number of females and the total number of students in school; 

4. Includes the percentage of participants in school with respect to the total number of students and the percentage of females with respect 
to the total number of participants in school; 

5. Track Specific variables defined by gender (included both for males and females); 

Standard errors in parentheses. Standard errors adjusted for 15 clusters in school.  
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Appendix A: Individual Participation  

Probit Model - Treatment effect on individual participation 

 (1) (2) (3) (4) (5) 

Participation 1 Probit7 Probit7 Probit7 Probit7 Probit7 

No gender 2 -0.00790 

(0.0916) 

0.194*** 

(0.0429) 

0.190*** 

(0.0531) 

0.180*** 

(0.0449) 

0.131 

(0.0786) 

Gender 2 -0.263*** 

(0.0698) 

0.0133 

(0.0575) 

0.00920 

(0.0649) 

0.0152 

(0.0585) 

-0.0403 

(0.0661) 

Female -0.116*** 

(0.0210) 

-0.112*** 

(0.0215) 

-0.118 

(0.0608) 

-0.1000 

(0.0588) 

-0.114* 

(0.0554) 

FGA  

 

-0.00702* 

(0.00288) 

-0.00701* 

(0.00288) 

-0.00858** 

(0.00283) 

-0.00610* 

(0.00250) 

Selection3: Suggested  

 

0.179* 

(0.0802) 

0.179* 

(0.0801) 

0.158** 

(0.0518) 

0.187*** 

(0.0477) 

Selection3: Mandatory  

 

0.374*** 

(0.0487) 

0.373*** 

(0.0486) 

0.346*** 

(0.0472) 

0.357*** 

(0.0402) 

Female # No gender  

 

 

 

0.00896 

(0.0617) 

0.000697 

(0.0615) 

0.0191 

(0.0612) 

Female # Gender  

 

 

 

0.00792 

(0.0597) 

-0.0170 

(0.0592) 

0.00958 

(0.0576) 

Class Dummies 4 Yes Yes Yes Yes Yes 

Track Dummies No Yes Yes Yes Yes 

Matriculation Rates 5 No No No Yes Yes 

Stem Choice 5 No No No Yes Yes 

Location 6 No No No No Yes 

Observations 10342 8447 8447 8391 8391 

Pseudo R2 0.112 0.261 0.261 0.269 0.282 
1. The dependent variable is a dummy for participation equal to 1 if the student enjoined the competition.  

2. Base Category : Control group “Baseline”; 

3. Base Category : “Free”; 

4. Dummies for each Year of the course (1 to 5); 

5. Track Specific variables defined by gender (included both for males and females); 
6. Includes regional dummies and the number of inhabitants of the city where the school is located. 

7. Marginal effects are reported. 

Standard errors in parentheses. Standard errors adjusted for 27 clusters in school. 
* p < 0.05, ** p < 0.01, *** p < 0.001 
 

In this Appendix we want to show the also at individual level the treatments with monetary 

incentives had no effect on students’ probability to enter the competition. In the Table above we 

show results of the probit regression where the dependent variable is a dummy that takes 1 if the 

student participated at the Math Olympiad, 0 otherwise. Although the No Gender treatment has a 

positive and significant effect on individual participation in column (2), (3) and (4), the coefficient 

is not significant in the last column (where we add the full set of controls) for neither of the 

treatments. The negative and significant coefficient of the dummy “female” shows that the gender 

gap is present also when considering participation. The school quality is still negatively related to 

the probability to participate, here we confirm what we argued in Section 5.1. Finally, also in these 

regressions the selection criterion adopted within the attended school results to be the most relevant 

factor. Since our interventions needed the “free” participation in order to change individual 

decision to enjoy the Olympiad, it was hard for monetary incentives to have a considerable impact. 
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