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Abstract

Innovation diffusion analysis is an important tool for understanding how new ideas, products,
and technologies spread through time. While there are existing packages in R for conducting
this kind of analysis, there is a growing demand for similar tools in other data science-oriented
programming languages, particularly Python. Python is a popular language for data analysis
and machine learning, with a large and active community of users and developers. Having an
innovation diffusion analysis library in Python would allow researchers and practitioners to
leverage the language’s strengths in data processing, visualization, andmodeling. It would also
provide a more accessible and user-friendly option for those who are more comfortable with
Python than with R. This new Python library offers a comprehensive set of tools for conduct-
ing innovation diffusion analysis, including data preparation, visualization, andmodeling. It is
designed to be easy to use, with clear and intuitive functions and documentation. Additionally,
it offers flexibility and customization options to meet the needs of a wide range of users. Over-
all, this new Python library for innovation diffusion analysis fills a gap in the current landscape
of data analysis tools, providing a valuable option for those who prefer Python and opening up
new opportunities for research and innovation in this important area
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1
Introduction

The concept of innovation plays a central role in modern society, in particular, after the 20Th
century, it became very popular as the definition of technological innovation by people’s com-
mon understanding but also from the literature itself. However, the etymology and the history
of this concept is much broader. Innovation is generally understood as commercialized inno-
vation because of the close relationship between technology and firms’ marketing, but other
types of innovation are rarely discussed. To a certain extent, every individual is innovative:
artists, scientists, and so on. In his project series, starting from [1], Godin tries to bring to light,
through various hypotheses, the possible genealogical history that brought the actual concept
of innovation as intended nowadays. The first appearances are tracked back to the thirteenth
centurywith “novation”, with themeans of renewing (an obligation). Since then, this word has
been rarely used, since “create” and “invent” were preferred words for man’s productive power
and creative ability. Some use of the term as such are being cited from very few individuals,
some relevant examples are N.Machiavelli inThe Prince (1513) and F. Bacon inOf Innovation
(1625). It seems that the word in se appeared with negative connotations in the Middle age
since intended as “change” in a time in which traditions were the central point for politics and
religion. Just in the late 20th century, passing through sociological theories about “invention”
[2], the concept got the meaning of “creativity process” or “newness”, as a consequence of two
recurrent sequential steps: imitation and invention. To the point that “innovation” and “in-
vention” got often interchanged, Figure 1.1 shows the trends of the two words in the last two
centuries.
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Figure 1.1: Frequency in the use of the words ”invention” and ”innovation”.

The theory about the diffusion of innovation can be traced back to the early 20th century
with Schumpeter’s Theory of Innovation, he explains that the process of creative destruction,
referred to the technological change, in a freemarket consists of three parts: invention (conceiv-
ing a new idea or process), innovation (arranging the economic requirements for implementing
an invention), and diffusion (whereby people observing the new discovery adopt or imitate it).
However, it became popular after the first publication of Diffusion of Innovations [3]. In his
book, Rogers defined the diffusion of innovation as the result of the spread of information over
time and through specific channels among a population of individuals. It is perhaps possible
to determine the key factors influencing the diffusion process of these new ideas: the innova-
tion itself, the communication channel, the time window in which the innovation fulfills its
life cycle, and the adopter’s social system.
Rogers gave the following definitions and characteristics to the 4 key factors.
Innovation. “An innovation is an idea, practice or project that is perceived as new by an indi-
vidual or other unit of adoption”, this means that the newness of an idea, practice or object is
given by the adopter’s perception of it more than its effective being new if the idea seems new
to the individual than it is an innovation. Also, the adoption rate of innovations can be a lot
different from each other, depending on the characteristic of the innovations, which are:

1. Relative advantage. It is the degree to which an innovation is perceived as better than
the idea it exchange.

2. Compatibility.It is thedegree of perceived consistencyof the innovationwith the existing
values, potential past experience, and needs of the eventual adopters.

3. Complexity. It refers to the perceived difficulty to understand and use the innovation by
potential adopters, an higher complexity can bring a slower adoption.

4. Trialability. It represents the degree to which an innovationmay be experimented with
on a limited basis.
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5. Observability. This is the last one and represents the degree of visibility of the innova-
tion’s results.

Communication Channels. For Rogers, communication is “a process in which participants cre-
ate and share information with one another in order to reach a mutual understanding”, and
yet, “A channel is the means by which a message gets from the source to the receiver”. With
that, he states that diffusion is a specific kind of communication that includes these elements:
an innovation, two individuals or other units of adoption, and a communication channel. A
communication channel can have a different nature, depending on the relation with the so-
cial network, two main examples are Mass media which are classified as external sources, and
interpersonal communication (which will be also referred to as word-of-mouth) classified as
internal sources as well as the most representative form of interpersonal communication.
Time. Rarely an adoption happens instantaneously, the passage of time is necessary for a diffu-
sion process since the spread of communication itself relies on time and also on the innovative-
ness of an individual (as earlier to later adopter) compared to the other members of the social
system.
Social system. Rogers defines this last element as “a set of interrelated units engaged in joint
problem solving to accomplish a common goal”, he also states this is the main criterion for cat-
egorizing the adopters since the nature of the social system affects individuals’ innovativeness.
This is, in general, the result of internal and external social influence.

The history of innovation diffusion modeling finds its origin between the 19th and early
20th century with the logistic model proposed by [4], in which he study demographic growth
considering a maximum value for the population, his study will be discovered just in 1920. In
a similar way, in [5] the authors proposed a logistic function to model the growth in bacterial
cultures. Also, in [6], Mansfield used a logistic model to justify the spread of new techniques
between firms considering the spread of innovation just by the imitation point of view. It is just
in 1969, with the publication of the BassModel (Bass 1969), that the literature regarding inno-
vation diffusion modeling started its main growth. In his work, following Rogers’ wave, Bass
contributed the mathematical ideas of the concepts with the most successful modifications of
the logisticmodel. Thanks to the profound impact it brought,many newmodels and literature
has emerged, the most as an extension of the former, to cover an ever-increasing complexity of
new product growth given by factors such as new and fastest communication channels, mixed
market trends caused by globalization, increased competition, and so on.

The overall literature about innovation diffusion keeps increasing over the years [7], and the
theory is applied to further and further research areas: fromemerging economies (i.e. electronic
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communications, services, pharmaceutical industry, etc…) to individual decision-making stud-
ies, important to enterprisemanagement decision; but also, studies regarding the diffusion over
two dimensions of space and time, to understand factors such as multi-country diffusion; or
empirical researches about innovation diffusion, thanks to the decreasing difficulty in acquir-
ing data given by the development of networks inwhich companies store datasets and customer
relationshipmanagement systems. These reasons lead us to the definition of this library, which
aim is to start filling a gap in the landscape of these kinds of data analysis tools.

PyDiM was born as the Python version of R’s package DIMORA, to provide an extra tool
for ever-increasing professional figures such as data scientists and analysts, helping them in data
analysiswithout the need to change programming languages. Thanks to thewide range of tools
available, the library can speed up work and be a viable alternative for those who prefer Python
to R, since the former is already a widely used language for data analysis and machine learning
and can rely on a large community of users and developers. In addition, our library can also be
of great help to novices who are approaching the field of data analysis and modeling, speeding
up their learning process.

The next chapters of this thesis work will present the implemented models and their math-
ematical features (Chapter 2), a technical explanation of the differences between Python and
R, highlighting the criticism encountered during the development and the differences in the
running time between the two coding languages (Chapter 3), some analysis of real-world data,
with the aim of show the functioning of themodels on topics having different nature (Chapter
4). Then, an overall comment on the work and the future perspectives.
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2
DiffusionModels

The literature about diffusion models is becoming quite vast in the last 50 years. Its history
finds roots in the form of logistic models used in biology to study epidemic spread, but also
in fields such as sociology, chemistry, economics, and so on. In recent years it finds its uses in
almost all those fields in which there is a need to study diffusion processes, which are present
in many real-life stochastic systems between the heavy uses we can find physics, chemistry, biol-
ogy, finance, sociology, economics, and marketing. The interdisciplinary nature of diffusion
modeling, and the opportunities it offers make it worthy to be a very hot topic nowadays.
As mentioned, in this work we focused on implementing some of the models deployed in the
context of marketing science which aims to study the diffusion of innovation, starting from
the Bass Model [8] in Section 2.1, which defined the baseline of the literature in this field, and
then presenting three generalizations of the former: the Generalized BassModel [9] in Section
2.2 which integrates traditional economic variables not considered in the formulation of the
BM, but still retaining the properties of the former; theGuseo-GuidolinModel [10] in Section
2.3 which considers the communication process of the innovation as a key factor influencing
the market capacity, referred asmarket potential; lastly, in Section 2.4 will be presented a mul-
tivariate approach for competition between products, the Unbalanced Competition Regime
ChangeDiachronicModel [11] which relies on BM to analyze couples of trends to find param-
eters and describe the diffusion of them and detect the effect of the competition.
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2.1 BassModel

The Bass model [8], originally developed in the context of marketing science, describes the life
cycle of innovation by capturing the typical phases involved in this process: launch, growth,
maturity, and decline. Its purpose was to model the growth over time of a new product as
a result of the purchases by two classifications of adopters: the innovators, and the imitators
which differ from one another by the degree of interpersonal communication occurring in the
adoption phase. The former describes the portion of adopters influenced by external (to the
social network) information sources, such as mass media or advertisements. The latter, as the
name suggests, describes the portion influenced by the higher level of social interaction, that is,
by internal information, often referred to as imitation or word-of-mouth. Although the role
of the innovator was already present in the literature (Rogers defines these as early adopters),
the Bass Model is the first model that accounts for their presence. Differently from the logistic
approach proposed by Mansfield [6], Bass took into account the communication efforts real-
ized by firms considering, at the launch of the product, a constant level of innovators buying
the product. The Bass Model consists of a simple first-order differential equation:

z′(t) =

[

p+ q
z(t)

m

]

[m− z(t)] , t > 0 (2.1)

In Equation 2.1, the variation of adoption over time, z′ (t), is proportional to the number
of consumers who have not adopted yet, named residual market, m − z (t), wherem is the
market potential (or size), and z(t) is the cumulative number of adoptions at time t, i.e. z (t) =
∑t

i=0 z′ (i). Bass assumed the market potential to be constant over the entire life cycle and
represents the maximum number of possible adoptions. The factor p + q z(t)

m
influencing the

residual market represents the likelihood of purchase by a new adopter at time t, it is perhaps
in this factor that the adopters play the key role: p is called innovation coefficient and represent
the effect of exogenous variables, that is the external influence brought by external sources of
information (e.g. mass media and advertising), q is the imitation coefficient and represents the
portion of adopters which rely on internal influences to adopt the innovation, this influence is
given by the ratio z(t)

m
representing the capacity of themarket in a given time t. The component

q z(t)
m

defines the spreading of internal information among imitator adopters, it represents the
word-of-mouth. It is important to notice that innovators adopt at the very beginning of the
process, while imitators are assumed to adopt in a second stage (Figure 2.1), since q z(t)

m
= 0

when z (t) = 0, named, there are no cumulative sales when the product enters the market at
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Figure 2.1: New adoptions according to the BM

time t = 0, and the equation is therefore reduced to z′ (0) = pm.
Equation 2.1 can be rearranged as a durationmodel for survival analysis. By posing z(t)

m
= y (t)

so that the model can be re-written as

y′ (t) = [p+ qy (t)] [1− y (t)] , t > 0 (2.2)

Then, by rearranging Equation 2.2 it is possible to express the model as a hazard function of
the form

y (t)′

1− y (t)
= p+ qy (t) , t > 0 (2.3)

Equation 2.3 can now be seen as the hazard rate, the conditional probability, of adoption at
time t, where y′ (t) is the density function, 1 − y (t) is the survival function with y (t) as a
cumulative distribution function.

2.1.1 Closed-From solution

By applying the basic definitions of survival analysis and some transformations to Equation 2.2
it is possible to derive the closed-form equation of the Bass Model for product adoption, that

7



Figure 2.2: Cumulative adoption on different magnitudes withm = 100

is

y (t) =
1− e−(p+q)t

1 + q

p
e−(p+q)t

, t > 0 (2.4)

The function y (t) in Equation 2.4 takes values in 0 < y (t) < 1, and directly depends on p
and q to determine the speed of growth until saturation. Because z (t) = my (t), the closed
form described in Equation 2.4 can be re-written as

z (t) = my (t) = m
1− e−(p+q)t

1 + q

p
e−(p+q)t

, t > 0. (2.5)

Just as in the previous equation, in Equation 2.5 parameters p and q act on the speed of dif-
fusion, while the market potential m is, again, a scale parameter that allows for modeling the
diffusion process in absolute terms. Typical values for the innovation and imitation coefficients
are:

• Between 0.01 and 0.03 for p, on average 0.03

• Between 0.3 and 0.5 for q, on average 0.38

The higher the values the higher the fastest the adoption.
InFigure 2.2we can see the effect of the coefficients on the cumulative adoptionnumber,which
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Figure 2.3: Instantaneous adoption on different magnitudes withm = 100

reaches the saturation of the market potential, m, with different speeds. The corresponding
instantaneous adoptions, z′ (t), are defined as

z′ (t) = m
p (p+ q)2 e−(p+q)t

(p+ qe−(p+q)t)
2 , t > 0. (2.6)

In Figure 2.3 we can see the instantaneous adoptions of Equation 2.6 on different coefficients
magnitude, considering a market potential of 100. The figure highlights a positive start of the
process givenby the initialization z′ (0) = pm, but also thepresence of amaximumpeakwhich
indicates the maximum instantaneous expansion of the diffusion process at time

t∗ =
log (q/p)

p+ q
, (2.7)

and should indicate themoment ofmaturity of a product in its life cycle. The time t∗ in which
the process reaches its peak is described as follows And the instantaneous function takes the
value

z (t∗) =
m

2
− p

2q
(2.8)

Taking into consideration the peak of a diffusion process is very important from a marketing
perspective since, in strategic terms, it represents themoment before the decline of the life cycle

9



for which the firm can, for example, take action to try to change the trend on time.

2.2 Generalized BassModel

The Generalized Bass Model [9] comes from the same F.M. Bass to overcome the lack of the
BassModel over the combination of contagion effect with traditional economic variables, such
as price and marketing strategies. So they implemented a generalized version of the BM that,
based on certain circumstances, includes turning points and irregularities in the penetration
curve, has a closed-form solution, and reduces to the standard BM if there exist plausible reg-
ularity conditions for the decision variables. This model has been built seeking to preserve the
fundamental character of its predecessor, inwhich p and q are permitted to vary over time, thus,
the variation in adoption is given by

z′ (t) =

[

p+ q
z (t)

m

]

[m− z (t)] x (t) , t > 0, x (t) > 0. (2.9)

In Equation 2.9, they define x (t) as “current marketing effort”, his role is to reflect the current
effect of dynamicmarketing variables on the number of adoptions at time t, which the authors
define to be variation in pricing and advertising. As it is possible to notice in the last property
listed earlier, the reduction of GBM to BM, is possible in case x (t) = 1 or x (t) = c, named,
when no changes occur in the market during the time. In the other cases, it influences the
speed of the diffusion process, if 0 < x (t) < 1 the process slows down, whereas if x (t) > 1 it
accelerates. In the next sections, we will see how the model gets his closed form, and how x (t)

canmap some sort of “carryover effects” over the lags, possibly given bymarketing variables and
other forms of strategies, for which some examples of the implemented ones will be shown.

2.2.1 Closed-From solution

Asmentioned, one interesting property of this model is to have a closed-form solution. Just as
the Bass Model, it is achieved by studying the model under survival analysis assumptions. We
have already seen how this generalization preserves the fundamentals of the BM by allowing p
and q to be variable over time. This allows the following generalization on the hazard function
described in Equation 2.3, recalling that we posed z(t)

m
= y (t), defined as

z′ (t) =

[

p+ q
z (t)

m

]

[m− z (t)] x (t) , t > 0, x (t) > 0. (2.10)
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Equation 2.10 shows how the right-hand side of the equation remains unchanged and, perhaps,
the coefficients do not get affected by x (t) which, instead, serves to shift the hazard function
upward or downward depending on marketing variables, as the mentioned price and advertis-
ing, or other strategies that are not set to control the timing of a diffusion process. By skipping
all the transformations on Equation 2.10, the resulting closed-form equation for the model is
given by

y (t) =
1− e−(p+q)

∫
t

0
x(τ)dτ

1 + q

p
e−(p+q)

∫
t

0
x(τ)dτ

, t > 0. (2.11)

Thus it is possible to re-write this closed-form solution in terms of cumulative adoption

z (t) = my (t) = m
1− e−(p+q)

∫
t

0
x(τ)dτ

1 + q

p
e−(p+q)

∫
t

0
x(τ)dτ

, t > 0. (2.12)

Equation 2.12 can then be differentiated with respect to t to get the corresponding density
function

z′ (t) = m
p (p+ q)2 x (t) e−(p+q)

∫
t

0
x(τ)dτ

(

pe(p+q)
∫
t

0
x(τ)dτ + q

)2 , t > 0. (2.13)

2.2.2 Mapping carryover effects trough x(t)

As mentioned above, the current marketing effort, x (t), introduced by this generalization of
the BassModel could be mapped to represent possible carryover effects on the lags of the trend.
In [9] the authors proposes a possible solution to use this to model the trend over common
marketing variables, such as price and advertising, with a function considering a percentage
variation of the form:

x (t) = 1 + β1
Pr′ (t)

Pr (t)
+ β2

A′ (t)

A (t)
, t > 0 (2.14)

In Equation 2.14, Pr (t) and A (t) represent price and advertising at time t, and Pr′ (t) and
A′ (t) are, respectively, the rate of changes in price and advertising. In [12] the author proposes
a set of “structured shock”,mappedonx (t), which aim is to generalize theuse of theBassmodel,
thought to be just a strategic marketing analysis tool, to describe diffusion processes referring
to different applicative context also a lot far from the cited one, such as epidemiological or
technological migration phenomena. In the book, the author describes three kinds of shocks:
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rectangular, exponential, andmixed. The three of them are being deployed in the GBM imple-
mentation of this library and will be described in the following. The first two kinds of shock
formulas are presented as general cases which consider an indefinite number of shocks since in
this way are being implemented in the library.

Rectangular Shock.

This is an easy representation of the function x (t) as having a transient stationary behavior
on the trend over a given period. This kind of shock is formalized as follows

x (t) = 1 +
n

∑

i=1

ciIt≥aiIt≤bi , t > 0, ai < bi (2.15)

Equation 2.15 describes the most general case in which n rectangular shocks are considered,
parameters ai and bi represent interval circumscribing the shock, ci identifies the intensity of
the local effect of the shock, be it positive or negative. The Indicator functions I contribute
to the selective activation of the shock, being 1 if the event verifies at time t in the described
domain, and 0 if not.
The corresponding integral for this function gets the form

∫ t

0

x (τ) dτ = t+
n

∑

i=1

ci (t− ai) It≥aiIt≤bi + ci (bi − ai) It>bi , t > 0, ai < bi (2.16)

Exponential Shock.

In some cases, the stationary behavior of the function x (t) can be altered by intense instan-
taneous shocks characterized by subsequent uptakes happening at different speeds. This kind
of shock is defined as

(t) = 1 +
n

∑

i=1

cie
bi(t−ai)It≥ai , (2.17)

In Equation 2.17, parameters ai describes the timing of the shocks’ outbreak; bi describes the
speed of the uptake for the shock to return to the stationarity of the function, this is typically
negative, suggesting an exponentially decaying behavior; parameters ci represents the intensity
of the shock and can be positive or negative; and I is as described for the rectangular shock, the
indicator function, it is 1 if the starting point of the shock, ai is observed after the time t.
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The respective integral of this function is given by

∫ t

0

x (τ) dτ = t+
n

∑

i=1

ci
1

bi
(ebi(t−ai) − 1)It≥ai . (2.18)

Mixed Shock.
In some cases, x (t) should be able to consider local events having different natures and dif-

ferent causes. A mixed shock combines the structures of the shocks described above to model
a more complex behavior of the trend during its lifetime. Amixed structure of this kind can be
defined as follows

x (t) = 1 + c1e
bi(t−a1)It≥a1 + c2It≥a2It≤b2 , (2.19)

Differently from the solely rectangular and exponential shocks, in the case of the mixed shock,
it is considered just the simpler case that includes a single couple of shocks, the first exponential,
and the second rectangular. That is because empirically, it has been observed that too complex
functions tend to poorly estimate, endangering the renowned parsimony of the Bass and Gen-
eralized Bass models. The respective integral for this last function is given by

∫ t

0

x (τ) dτ = t+ c1
1

b1
(e

b1(t−a1)

− 1)It≥a1 + c2 (t− a2) It≥a2It≤b2 + c2(b2 − a2)It>b2 .

(2.20)

2.3 Guseo-GuidolinModel

Another main feature that makes BM’s structure so simple is the assumption that the market
potential remains constant during the diffusion process, and considers a certain number of
adopters from the very beginning of the process. This can be reasonable under particular cir-
cumstances, such as the diffusion of the next generations of already existing products already
knownbypossible customers. In the other cases, literature [13] observes that theoretically there
is no rationale for a constant population of adopters, so a dynamic nature of the market poten-
tial need to be considered in several situations, some examples can be: the so-called incubation
period of innovative products, when it is still unclear if they will be a success or a failure; or the
difficulty in the adoption of high complexity innovations. Both the previous cases highly rely
on the effect of information spreading for the good outcome of the process, delineating a con-
sequent dynamic behavior in the market potential. These are the considerations behind the
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GGM [10], which considers the adoption as a two-stage process where the actual purchase/ac-
quisition of the innovation is a direct consequence of the “awareness” spreading, named, the
communication process, this same can vary over time and so indirectly reflect the same effect on
the market potential. Before going deep into the presentation of the GGM, a general overview
of this kind of BM generalization will be given. In general, these kinds of models consider a
dynamic market potentialm(t) in the BM equation, such that

z′ (t) = m (t)

[

p+ q
z (t)

m (t)

]

[m (t)− z (t)] +m′ (t)
z (t)

m (t)
, t > 0 (2.21)

Equation 2.21 simply adds to the instantaneous adoption described by the standard BM a fac-
torm′ (t) z(t)

m(t)
that is, a portion, given by the growth rate z(t)

m(t)
, of the variation of the market

potential m′ (t). This means that the variation m′ (t) will cause fluctuation on the instanta-
neous adoption, and this will be directly given by the size of market potential: the larger the
m (t) the most positive and reinforcing the effect on z′ (t), as a consequence, it gets a negative
effect the smaller them (t), expressing the outcome of the adoption process as dependent from
either the expansion or the declining of the market.
Also in this case, Equation 2.21 can be rearranged to express the formula as a hazard function:

z′ (t)m (t)− z (t)m′ (t)

m2 (t)
=

[

z (t)

m (t)

]′

=

[

p+ q
z (t)

m (t)

]

[m (t)− z (t)] (2.22)

Then, by substituting z(t)
m(t)

with y (t)we get

y′ (t) = [p+ qy (t)] [1− y (t)] , t > 0 (2.23)

which is the same hazard function of the BM, fromwhich can be derived the closed-form equa-
tion related to the generalization:

z (t) = m (t) y (t) = m (t)
1− e−(p+q)t

1 + q

p
e−(p+q)t

, t > 0. (2.24)

2.3.1 Structure ofm(t) in the GGM

Equation2.24 shows thatm(t) is anuninterpreted function thatmultiplies thedynamics of the
adopters of a diffusion process over time. Then,m(t) can take several structures depending on
the hypotheses made on the market potential development. In [10], as mentioned before, the
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authors hypothesize that the effective adoption phase is preceded by a communication process
that is needed to pave the way for the market. For this purpose, they definem(t) as

m(t) = K

√

1− e−(pc+qc)t

1 + qc
pc
e−(pc+qc)t

(2.25)

Equation 2.25 describes the communication process under some concepts taken from the net-
work science theory that wewill seemore in detail later. However, in the equation, pc describes
the behavior of innovative consumerswhich act as communicators, whereas qc acts as a receiver,
and then, a means of spreading this information helping make it viral. The parameterK indi-
cates the asymptotic behavior ofm(t), that is, the limit of this communication phase when all
the possible customers are informed about the innovation andwill eventually become adopters.
Then, by applying that kind of dynamicmarket potential structure to Equation 2.24we get the
cumulative form of the GGM, but with some changes:

z (t) = K

√

1− e−(pc+qc)t

1 + qc
pc
e−(pc+qc)t

1− e−(ps+qs)t

1 + qs
ps
e−(p+q)t

, t > 0 (2.26)

In the Equation 2.26, we can perhaps notice that the cumulative adoption function, z(t), can
be described as the product of two distinct factors, one indicating the communication phase
characterized by parameters pc and qc, and the other as the adoption phase, which in Equation
2.24 was used to describe the dynamics of the adopters, characterized by parameters ps and qs.
Note that, GGMcan reduce to the standardBM in the case inwhichm(t) immediately reaches
K , named when the spread of information is immediate.

2.3.2 The assumptions behindm(t)

To formulate the functionm(t), authors in [14] extended the concept of absorptive capacity
discussed byCohen andLevinthal [15], in this last, the authors argue that a prior related knowl-
edge defines the ability to assimilate and exploit a novelty, both on an individual and in a social
context. That represents the main contribution to the hypothesis lying behindm(t), since the
adoption of an innovation in a specific social context may be viewed as direct evidence of an
existing absorptive capacity. In Cohen and Levinthal [15], authors highlight the importance
of designing a communication structure of an organization in order to better understand its ab-
sorptive capacity, and for this purpose, they assumed a cross-sectional model to describe such
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structure. InGuseo andGuidolin [10], the authors redesigned themodel, considering an evolu-
tionary perspective based on a stochasticCellular Automatamodel, inspired byBoccara [16], it
considers a communication structure involving a set of informational linkages among the unit
of the system in order to develop a collective knowledge through a cellular AutomataNetwork.
The reflection of this kind of network on a socio-economic domain on knowledge of this kind
can be interpreted like that: the unit of analysis is represented by edges representing interper-
sonal links, they can be of two kinds, standard edges between two different agents, or reflexive
edges representing a single agent which “auto-communicate” the information; the state of an
edge can be active on inactive, and the activation occurs in case information passes or is passed,
without accounting the means nor the direction of the vertex.

By putting these concepts in amore intuitive way, let us define them from a network science
point of view. LetG = (V,E) be a graphwith a set of nodes V = {1, ..., N} representing the
individuals, and a set of edgesE defined as ordered pairs (i, j) such thatE ⊆ {(i, j)} : i, j ∈
N,E ⊂ V 2, that represents the possible relationships between the nodes V .
By representing the network using an adjacency matrix Y having 3 nodes:

Y =





0 1 1
1 0 0
1 0 1





We get a square matrix of size N × N , with edge (i, j), written as Yi,j , equal to 1 if there
is a connection in the pair (or a self-connection in case i = j), otherwise equal to 0. Under a
perfect communication regime, all pairs Yi,j = 1, however, in a realistic situation not all nodes
will be connected, implying that the size U of the network, will be U ≤ N ×N .

The GGM assumes that the market potentialm(t) is formed by all the individuals aware of
the product, this same awareness process is assumed to be a communication diffusion process
that evolves over time, thus, can be described using a BM:

h(t) = mcv(t) = mc

1− e−(pc+qc)t

1 + qc
pc
e−(pc+qc)t

(2.27)

In Equation 2.27 coefficientsmc, pc, and qc are the parameters of BM referred to the commu-
nication process, therefore pc, and qc represent innovative and imitative behaviors respectively,
whilemc is the total amount of possible connections in the network. Then, the quantity h(t)
represents the number of active edges of a network, the size U mentioned above, which for
the definition of the market potential m(t), accounts just for the informed individuals (i.e.
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Vi,j = 1). The approximation of this value is thus obtained in a straightforward way, by con-
sidering the square root of h(t)

√

h(t) =
√
mc

√

v(t) = K

√

1− e−(pc+qc)t

1 + qc
pc
e−(pc+qc)t

(2.28)

2.3.3 Compact form of GGM

In “Innovation Diffusion Models: Theory and Practice” [7], the author rearranges GGM in a
compact way for possible useful usages, such as this implementation, as follows:

z(t) = KS(t; pc, qc, ps, qs) = K
√

F (t; pc, qc)G(t; ps, qc) (2.29)

In Equation 2.29 S(t; pc, qc, ps, qs) is the product of the two cumulative distribution func-
tions corresponding to the communication and adoption phases, respectively

√

F (t; pc, qc)

andG(t; ps, qc).
The corresponding instantaneous process z′(t)may be defined accordingly

z′(t) = KS ′(t) = K
1

2
√

F (t)
G(t)f(t) +

√

F (t)g(t) (2.30)

In Equation 2.30 f(t) and g(t) are respectively the derivative of F (t) andG(t), and are given
by:

f(t; pc, qc) =
(pc(pc + qc)

2et(pc+qc)

(pcet(pc+qc) + qc)2

g(t; ps, qs) =
(ps(ps + qs)

2et(ps+qs)

(pset(ps+qs) + qs)2

By rearranging S ′(t) in a more compact notation it is possible to highlight the presence of
the two distinct phases of the diffusion process described by k1(t) and k2(t) in the following
equation

S ′(t) =
1

2
√

F (t)
G(t)f(t) +

√

F (t)g(t) = k1(t) + k2(t) (2.31)
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2.4 Unbalanced Competition Regime Change
DiachronicModel

UCRCD is the last model implemented in PyDiM, developed by Guseo and Mortarino [11],
it is part of a series of models that uses multivariate approaches to analyze the innovation diffu-
sion by considering a crucial dynamic characterizing almost all commercial and technological
markets: the competition. It is indeed a factor that can determine the trend of diffusion, rep-
resenting an obstacle that can eventually cause its failure in the market, or bring benefits.

In general, the literature about these kinds of approaches extends the structure of the BM
and focuses on bivariate models more than multivariate, due to the complexity of the differ-
ential equations systems involved, having an increasing number of parameters to estimate. In
[17], authorsmake a review of the literature regarding these types ofmodels, all the approaches
seem characterized by a common thread concerning the introduction of a complex two-part
imitation component that comprehends a within-product imitation, which accounts for the
product’s specific sales, and a cross-product imitation, which provides information on the ef-
fect of the competitor’s sales on the product’s life cycle. Another component we are interested
in, and that characterizes thesemodels, is the timing ofmarket penetration of the twoproducts,
there are two possible scenarios that can present: the products enter themarket at two different
times, in this case, the competition is said to bediachronic; otherwise, in case the products pene-
trate themarket simultaneously, the competition is said to be synchronic. As the name suggests,
UCRCD is specialized in the former and thus assumes that the diffusion process is character-
ized by a first stage inwhich there is only one product in themarket, and a second stage starting
from the entrance into the market of the second product which rises the competition.

z′1(t) =

{[

p1a + q1a
z(t)

m

]

(1− It>c)

+

[

p1c + (q1c + δ)
z1(t)

m
+ q1c

z2(t)

m

]

It>c

}

[m− z(t)],

z′2(t) =

[

p2 + (q2 − γ)
z1(t)

m
+ q2

z2(t)

m

]

[m− z(t)]It>c,

Where

m = ma(1− It>c) +mcIt>c,

z(t) = z1(t) + z2(t)It>c.

(2.32)
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Parameters Description
ma market potential of 1 before competition
p1a innovation of 1 before competition
q1a imitation of 1 before competition
mc market potential in competition
p1c innovation of 1 in competition

q1c + δ within imitation of 1 in competition
q1c cross imitation of 2 on 1
p2 innovation of 2
q2 within imitation of 2

q2 − γ cross imitation of 1 on 2

Table 2.1: UCRCD parameters and relative description

The two components of the model can be described by the differential equations expressed in
System 2.32, where, as it is possible to notice, the market potential is given by different factors
depending on the considered phase: in the first one, when there is no competition, we con-
siderma; in the second, the competition phase,mc is added to the equation. The cumulative
adoption is given by the sum between the first product (which equation accounts for the two
phases) and the second product, i.e., z(t) = z1(t)+ z2(t)It>c. The residual market,m− z(t),
is common to the two equations, and terms δ and γ are added to the imitation coefficients and
are needed to define the within and cross imitation mentioned before. In addition, It>c is the
indicator function, it is equal to 1 when t > c.

In the first phase of no competition, the life cycle of the first product, z′1, is described by
parametersma, p1a , and q1a , modeled according to a standard BM. In the phase of the com-
petition, when t > c, z′1 and the new product z′2 are still described according to BMs, the
parameters returned by the models, defined by the tuples (m1, p1c , q1c) and (m2, p2, q2), are
used to define the parameters of UCRCD in the competition phase. For instance, we get new
parameters: themarket potential under competition,mc = 2(m1+m2); thewithin imitation
coefficient q1c + δ; and the cross imitation coefficient given by q2 − γ.

In z′1(t), factor (q1c + δ) z1(t)
m

describes imitative behavior given by internal dynamics, while
q1c

z2(t)
m

provides a measure of the influence of the sales of the second product on the first. The
second product, z′2(t), describes in a symmetric way the competition phase of the former prod-
uct: (q2−γ) z1(t)

m
describes the influence of sales of the first product on the second, and q2 z2(t)m

describe the imitative behavior in the internal market.

Table 2.1 summarizes the parameters of the model. In general, the relationship between
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q1c (q2 − γ) Effect on the diffusion
− − The competition results unfavorable for both the competitors
− + Competition given by Product 2 results unfavorable just for Product 1
+ − Competition given by Product 2 results favorable just for Product 1
+ + Competition benefits both the Products

Table 2.2: Interpretation of the cross imitation coefficient signs

the first and second products is controlled by the cross imitation coefficients, q1c and (q2 −
γ). While it would be straight to think about competition as a factor bringing negative effects
on the competitors, empirical studies (also carried by using the same UCRCD, see [18, 19])
demonstrate that other scenarios are possible, as described in Table 2.2. Another aspect we
must consider refers to the parameters δ and γ. According to what proposed by [11], when
they are assumed to be equal, i.e., δ = γ, the UCRCD is said to have standard form, in this
case, themodel can get closed form. The implication behind that choice is thatwe are assuming
symmetry between the two competitors, which does not apply in realistic scenarios. Instead,
by imposing no constraint, δ ̸= γ, the UCRCD takes amore flexible formwhich cannot allow
a closed form. In [11] authors define it unrestrictedUCRCD.
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3
Implementation

To render PyDiM the most similar to its elder brother DIMORA [20], a lot of arrangements
had to be done on different levels, starting from all the methods needed to display statistical
summaries and plots for which Python has a lack of built-in libraries such as R’s summary
and plot (for the last one in particular, even though Python offers libraries, e.g. Matplotlib
[21], there are no dedicated methods such as R’s plot capable to handle multiple trends, in
our case from competition models such as UCRCD, in an intuitive way). In any case, by the
nature of the coding languages, PyDiM results 3 times faster in the computations compared
to DIMORA, moreover, this Python implementation has been written more efficiently, with
almost 400 lines of code versus 900 of the R version.

In the next sections, we will compare the two programming languages by first presenting
their technical differences, in Section 3.1, then, in Section 3.2 will be presented some glimpse
of the Python implementation and the difference in running time between it and R.

3.1 Main Differences Between Python and R

In data science and analytic, it is well known the hot debate about which one, between Python
and R, is more suitable in the field. The reality is that they are two different languages provid-
ing different features and tools whichmake one a better fit for some specific use cases compared
to one another. In general, they both have strengths and weaknesses that should be considered.
In many ways they are very similar: open source, well suited for data science tasks such as data
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manipulation, exploitation, and modeling, they are both easy to learn and execute. Python is
a general-purpose programming language that emphasizes code readability. It supports data
science tasks with libraries such as Numpy [22] for handling large dimensional data structures,
Pandas for datamanipulation and analysis, andMatplotlib [21] for building data visualization,
but also libraries for statistics like Scipy [23], andmachine anddeep learningdeploying. Python
allows us to take advantage of all that in scalable production environments, for example, it is
possible to use it to build machine learning applications and put them on mobile APIs. More-
over, Python is a high-level language, that ensures a smooth approach to object-oriented pro-
gramming and higher readability, since it is more like the natural language, it also allows data
rendering at a much higher speed compared to a low-level language like R, thanks to the short-
est codes. R is a programming language optimized for statistical analysis, data preparation, and
visualization, it can count on a rich ecosystem of complex datamodels and tools for data visual-
ization (at least count, there are more than 13,000 packages on the Comprehensive R Archive
Network, CRAN). R is particularly popular among scholars and researchers since it permits
us to deploy deep statistical analysis using few lines of code and beautiful data visualization. As
said above, R is a low-level language, it means longer codes for computations and more time
for processing

3.2 Implementation and Running Time

This section will present the main insight of ’s implementation with snippets of code for the
functions related to the formulas presented in 2 organized bymethods. Then, a comparison in
running time between Python and R will be presented in most of the subsections.
Before going forward, note that:

• The models shares some parameters having the same use, hence they will be described
there and not repeated later, if not necessary, to avoid redundancies:

– series: data vector containing the series to be fitted
– prelimestimates: vector containing the starting values used by the model
– alpha: the confidence interval’s significance level (default is always 0.05)
– oos: the number of predictions after the last observed value in the series, if not

specified (default will be set as the 25% of series length)
– display: a boolean value, if “True” allows displaying the fitted values for cumula-

tive and instantaneous observed data and oos (default is “True”)
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• The comparisons are beingmade on twomain instances for the models: parameters esti-
mation, named, the computation of z(t); wholemodule running time; statistics compu-
tation and summary-displaying time of the summary module for each model; and pre-
dictions and plottings time for the plot module (this last process is timed using Python
Jupiter’s notebook since using the standard script does not allows for inline plotting).

• all the timings are given by the average running time computed on three code executions;

• PyDiM, at its first version (0.1.0), is implemented in Python v3.10.11 and ran on Visual
Studio Code;

• for the comparison it is beenusedDIMORAversion 0.3.5 executed inRv4.2.2 onRStu-
dio;

• Both the libraries/packages are being runonamachine thatmounts an Intel(R)Core(TM)
i5-6200U 2.30GHz-2.40 GHz processor, andWindows 10 as OS.

The following subsections will present the generic methods of the library, useful to under-
stand some logic implemented in themodels, and all themethods implemented for eachmodel,
in the same order they are being described in Chapter 2.

3.2.1 Generic modules

Apart from the models, additional modules are being implemented in the library to simplify
the use of generic functions between themodels’methods, some examples are the computation
of the statistics, the plots, and the prediction for the models.

Some conventions are being used in the following implementations, which include “private”
modules and “protected” functions: in Python, a private/protected object (module, class, func-
tion) is an object that should neither be accessed outside a class nor by any base class ormethod,
it is used to hide its inner functionalities from the outside. A private object is defined by a dou-
ble underscore “__”, a protected object by a single underscore “_”, as a prefix of the name. Pay
attention that this is just a convention used to communicate to other developers that those ob-
jects are not meant to be accessed, since Python objects are public by default.

summary.py
Themodule summary, as the name suggests, is used to display the statistics related tomodels’

coefficient estimations to the user. This module contains just one callable function named
print_summarywhich presents as follows
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1 def print_summary(model):
2

3 if model['type'] == "UCRCD model":
4 stats = model['estimate']
5 __ucrcd_summary(stats)
6 else:
7 stats = lib.get_stats(model['optim'], model['data'],
8 model['prelimestimates'], model['method'], model['alpha'],
9 model['type'], model['df'], model['residuals'])
10 __standard_summary(stats)

As it is possible tonotice, print_summary requires amodel in input then, dependingonwhether
it is a UCRCD model or not it retrieves and prints the statistics in two possible ways: in case
the input is a UCRDCmodel, the statistics are retrieved from the model itself, since its param-
eters and statistics are computed internally to the model’s module as we will see later, just as
made in the R version; whereas the other models’ statistics are computed externally through
the get_stats function implemented in the __libmodule, that will also be presented later. The
private functions __ucrcd_summary and __standard_summary are built to actually display the
statistics the more similar to R’s summary function, they are very similar with the only differ-
ence in the logic, in fact, the former is thought to be able to handle multiple series input.

1 def __standard_summary(stats):
2 print('')
3

4 print('Residuals:')
5 print('Min. 1st Qu. Median Mean 3rd Qu. Max.')
6 res_stat = st.describe(stats['Residuals'])
7 print('% 5.6f % 5.6f % 5.6f % 5.6f % 5.6f % 5.6f\n' % tuple([res_stat

[1][0], \
8 np.percentile(stats['Residuals'], 25), np.median(stats['Residuals']),

res_stat[2], \
9 np.percentile(stats['Residuals'], 75), res_stat[1][1]]))
10

11 print('Coefficents:')
12 print(" Estimate Std. Error Lower Upper p-value")
13 significance = __assign_significance(stats['p-value'])
14

15 if type(stats['Std. Error'][0]) is str:
16 string = "% s % .4e % s % s % s % s % s"
17 else:
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18 string = "% s % .4e % .4e % .4e % .4e % .4e % s"
19

20 for i in range(len(stats['Param'])):
21 print(string \
22 % tuple([stats['Param'][i], stats['Estimate'][i], stats['Std. Error'][i

], \
23 stats['Lower'][i], stats['Upper'][i], stats['p-value'][i], significance[

i]]))
24 print('---')
25

26 print("Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n")
27 print('Residual Standard Error: % 5.6f on %i degrees of freedom' %
28 tuple([stats['RMSE'], stats['Df']]))
29 print('Multiple R-squared: % 5.6f Residual sum of squares: % 5.6f' %
30 tuple([np.sqrt(stats['R-squared']), stats['RSS']]))
31 print('\n')

An example of the output of the above function, for a BM summary onCD sales in theUnited
States (Chapter 4 will present the full case study), would be

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-266.057614 -115.811925 -41.746993 -39.515035 78.083947 180.558900

Coefficients:
Estimate Std. Error Lower Upper p-value

m 1.4814e+04 4.9642e+01 1.4717e+04 1.4911e+04 0.0000e+00 ***
p 2.1919e-03 1.0573e-04 1.9847e-03 2.3991e-03 0.0000e+00 ***
q 2.5062e-01 3.5423e-03 2.4368e-01 2.5757e-01 0.0000e+00 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual Standard Error: 136.208147 on 37 degrees of freedom
Multiple R-squared: 0.999600 Residual sum of squares: 686448.396186

For the summary style, it is possible to notice that we have chosen to fully reply R’s summary
function since the result is displayed very clearly.
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plot.py
As the name suggests, plot is the module implemented to handle the plotting of the mod-

els, it relies on plotting libraries such as Matplotlib[21] and Statsmodels [24] to display all
the graphical information to understand the models fit: cumulative and instantaneous adop-
tions, residuals and residuals’ autocorrelation. Just as in summary, it has just one callable func-
tion: dimora_plot, which implements two different logic depending on whether a model is a
UCRCD or not, the only difference is that for UCRCD the module uses an inner protected
function that displays bivariate series and fit, instead of univariates as for the other methods.
The call for the function is the following

1 def dimora_plot(model, plot_type = 'all', oos=0, legend=None, index_as_label=
False)

the inputparameters are pretty simple since themethod is thought tobeof easyuse, and are: the
model given in output by the model’s implementedmethod; plot_typewith which the user can
choose to plot the fit of themodel using “fit”, the residual and autocorrelation plot by choosing
“res”, or both the fit and residual plots using “all”; oos requires an int value indicating howmuch
points, out of the sample, he/she wants to predict; legend is used for stylistic choices, it allows
the user to give a name to the series he is going to plot; the last parameter is index_as_label,
a boolean parameter also added for stylistic purposes, if false it uses a time step index for the
plot’s x label, otherwise it uses the index of the original dataset triggering a sequence of checks
implemented to recognize the kind of series it is handling (especially in case of time series).

The coding sequence for univariate series is implemented as follows

1 def _plot(len_series, data, len_w_oss, new_pred, model_pred, title, ax, labels,
legend):

2 ax.plot(len_series, data, 'k.-', linewidth = .7, markersize=2.)
3 ax.plot(len_w_oss, new_pred, 'g--')
4 ax.plot(len_series, model_pred, 'r')
5 ax.set_xlabel(labels[0])
6 ax.set_ylabel(labels[1])
7 ax.set_title(title)
8 ax.legend(legend)
9

10 def _plot_res(t, res, ax, title_res, title_acf):
11 ax[0].stem(t, res, markerfmt='k.', basefmt='k-')
12 ax[0].set_title(title_res)
13 ax[0].set_xlabel('t')
14 ax[0].set_ylabel('Residuals')
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15

16 plot_acf(res, title = title_acf, ax=ax[1], color= 'black', marker='.')
17 ax[1].set_xlabel('Lags')
18 ax[1].set_ylabel('ACF')
19

20 # product refers to the number of series
21 if model['type'] == "UCRCD model":
22 product = 2
23 else: product = 1
24

25 if product == 1:
26

27 cumsum = np.cumsum(model['data'])
28 res = model['residuals']
29

30 # retrieving fit and predictions
31 z_fit, z_prime_fit = predict.dimora_predict(model, t)
32 z, z_prime = predict.dimora_predict(model, xlim)
33

34 if plot_type == 'fit':
35 fig, ax = plt.subplots(1,2)
36 _plot(ind, cumsum, xlim, z, z_fit, 'Cumulative', ax[0], ['', 'z(t)'],

legend)
37 _plot(ind, model['data'], xlim, z_prime, z_prime_fit, 'Instantaneous',

ax[1], ['t', "z'(t)"], legend)
38

39 elif plot_type == 'res':
40 fig, ax = plt.subplots(1,2)
41 _plot_res(t, res, ax, title_res, title_acf)
42

43 else:
44 fig, ax = plt.subplots(2,2)
45 _plot(ind, cumsum, xlim, z, z_fit, 'Cumulative', ax[0,0], ['', 'z(t)'],

legend)
46 _plot(ind, model['data'], xlim, z_prime, z_prime_fit, 'Instantaneous',

ax[0,1], ['', "z'(t)"], legend)
47 _plot_res(t, res, ax[1], title_res, title_acf)

An example of output for the below code using a (plot_type = “fit”, oos=20, legend “CD sales”,
index_as_label = True) configuration is shown in Figure 3.1
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Figure 3.1: BM on CD Sales plots

__lib.py
The __lib module is one of the two private modules of the library, it is meant to handle

generic computations of the library: the statistics (alreadymentioned in summary.py), or series
starting with long sequences of zeros. The function get_stats computes the statistics for the
model and represents the most prominent function of the method, defined as follows:

1 def get_stats(ls, series, prelimestimates, method, alpha, model, df = None, res=None
):

2 parameters = _lib.set_params(model)
3

4 if df != None: df = df
5 else: df = len(series) - len(prelimestimates)
6 # print(df)
7 y_mean = np.mean(prelimestimates)
8 TSS = np.sum((series-y_mean)**2)
9

10 if method == "nls":
11 if df == None:
12 df = len(series) - len(ls[0])
13 # Get the parameters
14 parmEsts = ls[0]
15 # Get the Error variance and standard deviation
16 res = ls[2]['fvec']
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17 RSS = np.sum(res**2)
18 MSE = RSS / df
19 RMSE = np.sqrt(MSE)
20 # Get the covariance matrix
21 cov = np.abs(MSE * ls[1])
22 # Get parameter standard errors
23 parmSE = np.diag(np.sqrt(cov))
24 # Calculate the t-values
25 tvals = parmEsts/parmSE
26 # Get p-values, 2-sided test
27 pvals = (1 - st.t.cdf(np.abs(tvals), df))*2
28 # Get biased variance (MLE) and calculate log-likehood
29 s2b = RSS / len(series)
30 logLik = -len(series)/2 * np.log(2*np.pi) - \
31 len(series)/2 * np.log(s2b) - 1/(2*s2b) * RSS
32 # Get R-squared
33 R_squared = 1 - RSS/TSS
34 # Get Lower & Upper bounds
35 lower = [(parmEsts[j] + -1 * np.dot(st.norm.ppf(1-alpha/2), parmSE[j]))
36 for j in range(len(parmSE))]
37 upper = [(parmEsts[j] + np.dot(st.norm.ppf(1-alpha/2), parmSE[j]))
38 for j in range(len(parmSE))]
39

40 elif method == "optim":
41 parmEsts = ls[0]
42 parmSE = ['-' for i in range(len(parmEsts))]
43 lower = ['-' for i in range(len(parmEsts))]
44 upper = ['-' for i in range(len(parmEsts))]
45 tvals = ['-' for i in range(len(parmEsts))]
46 pvals = ['-' for i in range(len(parmEsts))]
47 RSS = np.round(ls[1], 4)
48 MSE = RSS / df
49 RMSE = np.sqrt(MSE)
50 R_squared = 1 - RSS/TSS
51

52 stats = {
53 'Residuals': res,
54 'Param': parameters[:len(parmEsts)],
55 'Estimate': parmEsts,
56 'Std. Error': parmSE,
57 'Lower': lower,
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58 'Upper': upper,
59 't-value': tvals,
60 'p-value': pvals,
61 'RMSE': RMSE,
62 'Df': df,
63 'R-squared': R_squared,
64 'RSS': RSS
65 }
66 return stats

The need to implement such a function is given by the lack of built-in methods able to handle
the statistics of theminimization approaches implemented in SciPy [23], so, instead of looking
for alternatives we decided to implement our own simplemethod, that although being a pretty
long function it results very straightforward.

The other mentioned function is very easy and it is implemented to take care of the series
starting with more than two zeros:

1 def handle_zeros(series):
2 i=0
3 while series.iloc[i+1] == 0:
4 i += 1
5 return series.iloc[i:]

It cut all the zeros but the one before the effective start of the growth of the series, that is be-
cause it can happen, for example, handling NaNs and replacing them with 0, that the series
will present a long tail of zeros which does not help in describing any sort of life cycle that the
implemented models are meant to describe. This function is typically called by the models in
a preliminary phase of series and parameters checking.

__predict.py
This second privatemodule takes care of themodel’s predictions, it contains just one simple

function, called dimora_predict which retrieves models’ internal functions to compute cumu-
lative and instantaneous adoptions using the same models’ parameters, it presents as follows

1 def dimora_predict(model, t = None):
2 if model['type'] == "Standard Bass Model":
3 m, p, q = model['optim'][0]
4 fit = model['functions'][0](t, m, p, q)
5 instant = model['functions'][1](t, m, p, q)
6
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7 return fit, instant
8

9 elif model['type'] == "Generalized Bass Model":
10 params = model['optim'][0]
11 fit = model['functions'][0](params, t, model['shocks'][0], model['

x_functions'][0])
12 instant = model['functions'][1](params, t, model['shocks'][0], model['

x_functions'][0], model['x_functions'][1])
13

14 return fit, instant
15

16 elif model['type'] == "Guseo-Guidolin Model":
17 params = model['optim'][0]
18 fit = model['functions'][0](t, params, model['market_potential'])
19 instant = model['functions'][1](t, params)
20

21 return fit, instant
22

23 elif model['type'] == "UCRCD model":
24 raise KeyError("UCRCD does not allows for predictions in this implementation

")
25

26 else:
27 raise KeyError("Model type not recognized, be sure to input a PyDiM's model"

)

As it is possible to notice, all the univariate models call the functions from themodel’s instance
to make the predictions, except UCRCD that, as for now cannot allow predictions.

3.2.2 BassModel

This is the first implementedmethod of the package since it is the simpler and the base of most
of the other methods’ implementation, the implementation required just 49 LOC versus al-
most 107 of R. The call for the method presents like that:

1 def bm(series, method="nls", prelimestimates=[], alpha=0.05, oos=None, display=True)

Apart fromthedefault attributesmentionedbefore, BMrequires anoptional parametermethod
used to select theminimizationmethod for the adoption function, default is “nls”, but “optim”
can be chosen as an alternative, they respectively minimize the function using nonlinear least-
squares with the Levenberg-Marquardt algorithm [25], or Unconstrained minimization using
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a Limited Memory BFGS [26]. Both the algorithms used to minimize the function are imple-
mented by the SciPy library [23] and applied to our code as follows

1 if method == "nls":
2 optim = opt.leastsq(func=_residuals, x0=prelimestimates, args=(t),

full_output=1)
3 res = optim[2]['fvec']
4

5 elif method == "optim":
6 mass = np.sum(series) + 1000
7 min = opt.minimize(fun=_f, x0=prelimestimates, args=(t), bounds=[(1e-10,

mass), (1e-10, 1), (1e-10, 1)], method='L-BFGS-B')
8 res = _residuals(min.x, t)
9 optim = [min.x, min.fun, res]

Two main differences can be noticed in the declarations of the two options: parameter optim
is defined in different ways, that is because of the nature, and so the output, of the two mini-
mization algorithms; the functions given in input for the minimization algorithms are related
to the residuals and residuals sum of squares of the cumulative adoption function, then these,
and the instantaneous adoption function, are defined as follows

1 def _z(t, m, p, q):
2 return (m * (1 - np.exp(- np.multiply((p + q), t))) / (1 + q / p * np.exp(-

np.multiply((p + q), t))))
3

4 def _zprime(t, m, p, q):
5 return (p+q*_z(t, m, p, q)/m)*(m - _z(t, m, p, q))
6

7 def _residuals(par, t):
8 return cumsum - _z(t, par[0], par[1], par[2])
9

10 def _f(par, t):
11 return np.sum(_residuals(par, t)**2)

As it is possible to notice, _z and _zprime are the exact implementations of Equations 2.5 and
2.1 defined in Section 2.1:
As the last step, the BM method returns a dictionary containing all the useful parameters for
successive scopes, and eventually plots the results, if selected.

1 model = {
2 'type' :"Standard Bass Model",
3 'functions' : [_z, _zprime],
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4 'data' : series,
5 'prelimestimates' : prelimestimates,
6 'method' : method,
7 'alpha' : alpha,
8 'df' : None,
9 'optim' : optim,
10 'residuals' : res,
11 }
12

13 if display:
14 plot.dimora_plot(model, 'fit', oos)
15

16 return model

Table 3.1 contains the running times of the method applied to a time series about CD sales
in the USA (Subsection 4.1, this and the next models’ example will be analyzed in depth in the
next section.

Python (s) R (s)
Parameters optimization 0.00598 0.03101

Whole module 0.00747 0.20463
Summary computation 0.01944 0.01559

Prediction 0.0002 0.0012
Plotting 1.45731 0.06379

Table 3.1: Running Times for the BM

3.2.3 Generalized BassModel

GBM is the second implemented method and the one that deserves some clarifications as we
will se later, the call for the method presents as follows

1 def gbm(series, shock, nshock, prelimestimates, alpha=0.05, oos=None, display=True)

Among the parameters, those that characterize the method are shock and nshock. The former’s
inputmust be a string, between “exp”, “rett”, or “mixed” indicating the kind of shock(s) tomap
the trend; and the lattermust be an integer type, that indicates the number of shocks of the kind
defined in the previous parameter. In this case, prelimestimates has no default argument since it
is up to the user to indicate the approximate parameters for the BM and for each shock. GBM,
in its actual implementation, is not able to automatically find the shocks’ parameters.
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The function for the method is minimized just as BM, with a Non-Linear least squared
based on the Levenberg-Marquardt algorithm [25], on the residuals on the cumulative adop-
tion. The functions z(t) and z′(t) for this method are defined as

1 def _z(shock_par, t, nshock, intx):
2 z_part = 0.
3 m = shock_par[0]
4 p = shock_par[1]
5 q = shock_par[2]
6

7 for i in range(1, nshock+1):
8 z_part += intx(t, i, shock_par)
9 z_prime = z_part + t
10 z = m * (1 - np.exp((-(p+q)*z_prime), dtype= np.float64)) / (1+(q/p)*np.exp

((-(p+q)*z_prime), dtype=np.float64))
11

12 return z
13

14 def _zprime(shock_par, t, nshock, intx, xt):
15 xi = 0
16 m = shock_par[0]
17 p = shock_par[1]
18 q = shock_par[2]
19

20 for i in range(1, nshock+1):
21 xi += xt(t, i, shock_par)
22

23 x_t = 1 + xi
24 z_t = _z(shock_par, t, nshock, intx)
25 z_prime = (p + q * (z_t/m)) * (m - z_t) * x_t
26

27 return z_prime

From the code above it is possible to notice that the functions _z and _zprime are, again, the ex-
act codification of Equations 2.12 and 2.10. At rows 7 and 21, the loops are being implemented
to express the function x(t) (and its respective integral) as a sum of the shocks, as defined in
Equations 2.15, 2.17, and 2.19, and the respective integrals. In addition, the parameters “xt”
and “intx” refers to the current marketing effort function and its integral, they are given in in-
put as functions defined depending on the selected kind of shock as follows
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1 '''EXPONENTIAL SHOCKS GENERALIZED FUNCTIONS'''
2 def _exp_intx_gen(t, index, shock_par):
3 a = shock_par[3*index]
4 b = shock_par[3*index+1]
5 c = shock_par[3*index+2]
6 intx = c*(1/b)*(np.exp(np.dot(b,(t-a)))-1)*(t>=a)
7

8 return intx
9

10 def _exp_xt_gen(t, index, shock_par):
11 a = shock_par[3*index]
12 b = shock_par[3*index+1]
13 c = shock_par[3*index+2]
14 xt = (c*np.exp(np.dot(b, (t-a))))*(t >= a)
15

16 return xt
17

18 '''RECTANGULAR SHOCKS GENERALIZED FUNCTIONS'''
19 def _rett_intx_gen(t, index, shock_par):
20 a = shock_par[3*index]
21 b = shock_par[3*index+1]
22 c = shock_par[3*index+2]
23 intx = np.dot(c,(t-a))*(t>=a)*(t<=b) + c*(b-a)*(t>b)
24

25 return intx
26

27 def _rett_xt_gen(t, index, shock_par):
28 a = shock_par[3*index]
29 b = shock_par[3*index+1]
30 c = shock_par[3*index+2]
31 xt = c*(t>=a)*(t<=b)
32

33 return xt
34

35 '''MIXED SHOCKS GENERALIZED FUNCTIONS'''
36 def _mix_intx_gen(t, index, shock_par):
37 if shock[index-1] == 'exp':
38 intx = _exp_intx_gen(t, index, shock_par)
39 else:
40 intx = _rett_intx_gen(t, index, shock_par)
41 return intx
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42

43 def _mix_xt_gen(t, index, shock_par):
44 if shock[index-1] == 'exp':
45 xt = _exp_xt_gen(t, index, shock_par)
46 else:
47 xt = _rett_xt_gen(t, index, shock_par)
48 return xt
49

50 if shock[0] == 'exp':
51 intx = _exp_intx_gen
52 xt = _exp_xt_gen
53 elif shock[0] == 'rett':
54 intx = _rett_intx_gen
55 xt = _rett_xt_gen
56 elif shock[0] == 'mixed':
57 shock = ['exp', 'rett']
58 intx = _mix_intx_gen
59 xt = _mix_xt_gen

There we have tomake a clarification: as noticeable, the variable “shock” here is a list, and not a
string anymore, that is because the variable is meant to be more prone to changes in the future,
especially in the case ofmixed shocks havingmore than 2 shocks, so that the kinds of occurring
shocks can be listed and treated according to the clauses expressed in the declaration of the
functions.

Just as the BM, alsoGBMexits the execution by returning a dictionary containing the useful
parameters, and eventually displaying the plot of the fitted model on the series:

1 model = {
2 'type' :"Generalized Bass Model",
3 'functions' : [_z, _zprime],
4 'data' : series,
5 'prelimestimates' : prelimestimates,
6 'method' : "nls",
7 'alpha' : alpha,
8 'df' : None,
9 'optim' : optim,
10 'residuals' : res,
11 'shocks' : [nshock, shock],
12 'x_functions': [intx, xt],
13 }
14
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15 if display:
16 plot.dimora_plot(model, 'fit', oos)
17

18 return model

The running times for aGBMwith one rectangular on the birth rate in Japan[27] time series
(Case study analyzed in Subsection 4.2) are shown in Table 3.2

Python (s) R (s)
Parameters optimization 0.01795 0.02711

Whole module 0.01795 0.70096
Summary computation 0.0728 0.01041

Prediction 0.0002 0.005
Plotting 1.39327 0.10783

Table 3.2: Running Times for the GBM function with 1 rectangula shock

Running times for GBM with mixed shock on the trend of monthly interest in Facebook*
(the relative case study is presented in Subsection 4.2) are shown in Table 3.3

Topic Python (s) R (s)
Parameters optimization 0.10771 0.24512

Whole module 0.10871 0.29825
Summary computation 0.13264 0.00813

Prediction 0.0001 0.0058
Plotting 1.04022 0.10664

Table 3.3: Running Times for the GBM function with 2 mixed shock

3.2.4 Guseo-GuidolinModel

The GGM is the third and last univariate model implemented in PyDiM, its implementation,
as we will see, is quite clean and straightforward with its 68 LOC. The call is very similar to the
first two methods and defined as follows

1 def ggm(series, mt = None, prelimestimates = None, alpha = 0.05, oos=None,
display = True)

*According to Google Trends (n.d.), monthly interest in Facebook June, 2023
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The parameters are exactly the same as the BM, presented in 3.2.2, apart from the presence
of a parametermt in charge of the definition of the dynamic market potential function. The
method is, in fact, thought to describe market dynamics as described by Guseo and Guidolin
in [10] (and explained with Equation 2.25) by default, however, it is also able to get other func-
tions able to describe market dynamics based on time. That turns the method into a general-
purpose BMwith dynamicmarket potential behaviors. The defaultm(t) is defined as in Equa-
tion 2.25:

1 def _mt_func(t, K, pc, qc):
2 mt = K * np.sqrt(np.abs((1 - np.exp(-(pc + qc) * t)) / (1 + (qc / pc) * np.

exp(-(pc + qc) * t))))
3 return mt

and the two (cumulative and instantaneous) functions are described by the following Python
functions

1 def _z_base_mt(t, par, mt):
2 K, ps, qs, pc, qc = tuple(par[0:])
3 z = mt(t, K, pc, qc) * (1 - np.exp(-(ps + qs) * t)) / (1 + (qs / ps) * np.

exp(-(ps + qs)*t))
4 return z
5

6 def _z_defined_mt(t, par, mt):
7 K, ps, qs = tuple(par[0:2])
8 z = K * mt(t) * (1 - np.exp(-(ps + qs) * t)) / (1 + (qs / ps) * np.exp(-(ps

+ qs)*t))
9 return z
10

11 def _zprime(t, par):
12 K, ps, qs, pc, qc = tuple(par[0:])
13 F_t = (1 - np.exp(-(pc + qc) * t)) / (1 + (qc / pc) * np.exp(-(pc + qc) * t)

)
14 G_t = (1 - np.exp(-(ps + qs) * t)) / (1 + (qs / ps) * np.exp(-(ps + qs) * t)

)
15

16 ft = (pc * (pc+qc)**2 * np.exp(t*(pc+qc))) / ((pc * np.exp(t*(pc+qc)) + qc)
**2)

17 gt = (ps * (ps+qs)**2 * np.exp(t*(ps+qs))) / ((ps * np.exp(t*(ps+qs)) + qs)
**2)

18

19 k1_t = (1/2)* F_t**(-1/2) * G_t * ft
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20 k2_t = np.sqrt(F_t) * gt
21

22 return K*(k1_t + k2_t)

As it is possible to notice, two z(t) functions are implemented, the first (_z_base_mt) use the
GGM approach to fit the cumulative data, the second one takes care of an eventualm(t) de-
fined by the user. The choice between the two is handled by a conditional statement (if/else):

1 if type(mt) == 'function':
2 _z = _z_defined_mt
3 elif mt == 'base' or mt == None:
4 _z = _z_base_mt
5 mt = _mt_func
6 else:
7 raise KeyError("'mt' parameter must be either a function or None/left blank

")
8

9 def _residuals(par, t, mt):
10 return cumsum - _z(t, par, mt)
11

12 optim = opt.leastsq(func=_residuals, x0=prelimestimates, args=(t, mt),
full_output=1)

Regardless of the user’s choice, the cumulative function is allocated on a variable _z, and opti-
mized via nonlinear least-squares on the residuals

In table 3.4 are shown the running times of GGM applied to Japan’s birth rate analyzed in
the case study in Subsection 4.3

Topic Python (s) R (s)
Parameters optimization 0.04089 0.02779

Whole module 0.05386 0.08108
Summary computation 0.14062 0.015594

Prediction 0.001 0.005
Plotting 1.8361 0.11229

Table 3.4: Running Times for the GGM
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3.2.5 Unbalanced Competition Regime Change
Diachronic model

UCRCD is the last method implemented in this library, unlike the previous implementations,
this results to be a little more difficult since it requires fragmented computations on different
parts of the time series. Moreover, even thoughwepresented this as adiacronicmodel, aswewill
see, the implementation allows to handle synchronic competition too. The call for the method
is the following

1 def ucrcd(series1, series2, par = "double", prelimest_series1 = None,
2 prelimest_series2= None, alpha=0.05, delta=0.01, gamma=0.01,
3 display=True)

This method requires the following specialized parameters: par, it accepts a string between
“double” or “unique”, they are needed to set constraints on termsdelta and gamma, if “unique”
is chosen then a standard UCRCD (see Subsection 2.4), i.e., δ = γ, will be used, otherwise,
unrestricted UCRCDwill be used; parameters delta and gamma are the respective preliminary
estimates for the terms.

On a standard diachronic regime, themethod act as follows: it applies a standard BMon the
section of the first product trend to estimate the parameters under the non-competition phase

1 c2i = len(series1) - len(series2)
2 end = len(series1)
3

4 if c2i > 0 :
5 s1 = series1.iloc[:c2i]
6 series1 = series1.iloc[c2i : end]
7 t = np.arange(1, c2i+1, 1)
8 s2 = np.zeros(c2i)
9 Z1 = np.cumsum(s1)
10 Z2 = np.cumsum(s2)
11

12 BMs1 = BM.bm(s1, display=0)
13 m1, p1a, q1a = BMs1['optim'][0]
14

15 # making predictions on the non-competitive part of the series
16 pred_BM1 = BMs1['functions'][1](t, m1, p1a, q1a)
17

18 o_bass = pd.DataFrame.from_dict({'t': t, 's1': s1, 's2': s2, 'Z1': Z1, 'Z2': Z2
})
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19 p_bass = pd.DataFrame.from_dict({'t': t, 'pred_1': pred_BM1, 'pred_2': s2})

Then, we define the model so that it can fit with or without constraint, just by posing in Equa-
tion 2.32 (q2 − δ) instead of (q2 − γ)

1 t = np.arange(c2, end, 1)
2 Z1 = data1.iloc[c2:end]
3 Z2 = data2
4

5 data = pd.DataFrame.from_dict({'t': t, 's1': series1, 's2': series2, 'Z1': Z1, 'Z2':
Z2})

6

7 def _model(t, params, par):
8 Z = Z1+Z2
9

10 if par == 'unique':
11 mc, p1c, p2, q1c, q2, delta = tuple(params)
12 z2 = (p2 + (q2 - delta) * Z1 / mc + q2 * Z2 / mc) * (mc - Z)
13 elif par == 'double':
14 mc, p1c, p2, q1c, q2, delta, gamma = tuple(params)
15 z2 = (p2 + (q2 - gamma) * Z1 / mc + q2 * Z2 / mc) * (mc - Z)
16

17 z1 = (p1c + (q1c + delta) * Z1 / mc + q1c * Z2 / mc) * (mc - Z)
18

19 return {'z1':z1, 'z2': z2, 't':t}

At this point, the parameters are minimized and used to produce the remaining part of the
statistics, which will be stacked later.

1 fitval1 = opt.leastsq(func= _res_model, x0=params, args=(t, par), maxfev=10000,
full_output=1)

2

3 df = len(series1) + len(series2) - len(params)
4

5 parest = fitval1[0]
6

7 estimates = _model(t, parest, par)
8 z_prime = pd.DataFrame.from_dict({'t':estimates['t'], 'pred_1': estimates['z1'], '

pred_2': estimates['z2']})
9

10 data['t'] = np.arange(c2,end)
11 z_prime['t'] = np.arange(c2,end)
12
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13 # computing the coefficients stats
14 stats1 = lib.get_stats(BMs1['optim'], BMs1['data'], BMs1['alpha'], lib.set_params(

BMs1['type']))
15

16 no_competition_stats = np.row_stack([[stats1['Estimate'][i], stats1['Std. Error'][i
], stats1['Lower'][i],\

17 stats1['Upper'][i], stats1['p-value'][i]] for i in range(len(stats1['Estimate'])
)])

18

19 stats2 = lib.get_stats(fitval1, tot, alpha, lib.set_params('UCRCD'), df=df)
20

21 competition_stats = np.row_stack([[stats2['Estimate'][i], stats2['Std. Error'][i],
stats2['Lower'][i],\

22 stats2['Upper'][i], stats2['p-value'][i]] for i in range(len(stats2['Estimate'])
)])

The last part of the UCRCD code is in charge to make the final adjustments, to return all the
variables in a readable form

1 ### Final adjustments and statistics ###
2 obs = pd.melt(data.iloc[:,:3], id_vars=['t'], var_name='product', value_name='

consumption')
3 pred = pd.melt(z_prime, id_vars=['t'], var_name='product', value_name='consumption')
4

5 ss1 = obs['consumption'][0:end]
6 ss2 = obs['consumption'][end+c2 : 2*end]
7

8 pp1 = pred['consumption'][0:end]
9 pp2 = pred['consumption'][end+c2 : 2*end]
10

11 res = obs['consumption'] - pred['consumption']
12

13 res1 = res[0:end]
14 res2 = res[end+c2: 2*end]
15

16 tss = np.sum((obs['consumption']- np.mean(obs['consumption']))**2)
17 rss = np.sum(res**2)
18 r_squared = 1 - rss/tss
19

20 df = [len(ss1)-len(Estimate1[:,0]), len(ss2)-len(Estimate1[:,0])]
21 MSE = [np.sum(res1**2) / df[0], np.sum(res2**2) / df[1]]
22 RMSE = np.sqrt(MSE)
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UCRCD applied to the competition between Covid-19 daily cases and daily vaccination,
the relative case study is presented in Section 4.4

Topic Python (s) R (s)
Parameters optimization 0.35008 0.26772
Statistics computation 0.01795 0.026

Whole module 0.42885 0.30505
Summary computation 0.46187 0.015594

Plotting 1.91688 0.2342

Table 3.5: Running Times for the UCRCD
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4
Case Studies

In this chapter of the thesis, we are going to explore some applications of the presentedmodels
andmake a detailed analysis of the estimations by considering the statistics related to them and
the predictions graphically shown in the plots. Moreover, as anticipated in the Introduction 1,
we are going to demonstrate the efficiency of those models over events pertaining to different
natures, giving, if necessary, the relative key to reading to understand the parameters.

4.1 BassModel

In this section, wewill see an application of the BMapplied on the yearlyCompactDisc sales in
the USA’s market*, a beautiful bell-shaped trend related to the intercourse of one of the most
important products that characterized the music reproduction industry, and the perfect fit of
this model for the purpose.

4.1.1 CD Sales in USA

Recorded music is a very good example of a succession of innovations, in the last 60 years, al-
most six out of eight reproduction tools have served their purpose, leaving space for the succes-
sors, see for example the 8-Tracks, the cassettes, or the CDs. Others have fallen but are seeing
a new rise, see the vinyl that is riding the wave by the streaming music side. One of the bigger

*https://www.statista.com/chart/12950/cd-sales-in-the-us/
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Figure 4.1: CD Sales in million units between 1982 and 2021

Estimate Std. Error Lower Upper
m 1.4814e+ 04 4.9642e+ 01 1.4717e+ 04 1.4911e+ 04
p 2.1919e− 03 1.0573e− 04 1.9847e− 03 2.3991e− 03
q 2.5062e− 01 3.5423e− 03 2.4368e− 01 2.5757e− 01

R2 = 0.9996

Table 4.1: BM estimations on CD Sales

footprints in this market was for sure given by the advent of compact disks, they represent the
beginning of the digital music era and the bigger source of revenues as of today. In this first case
study, we analyze the Compact Disks’ yearly sales in million units, between 1982 and 2021, in
the United States. By looking at the trend in Figure 4.1 it is possible to notice that its life cycle
seems complete, and the diffusion process followed almost exactly a Bass-like behavior, apart
from some little perturbations near the peak, in 2000. Table 4.1 and Figures 4.2, 4.3 report
the results of the fitting. The model is representative, with an R2 = 0.9996 and all the pa-
rameters are significant, with p-value < 0.001. The innovation and imitation coefficients are
p = 0.0022 and q = 0.25 suggesting that the spread of compact disks was not so much based
on the innovation factor as on the imitation. Market potential ofm = 14, 814 (million units)
helps understand the extent of what was said before about CDs as bigger sources of income in
the music reproduction industry.
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Figure 4.2: Cumulative BM on CD Sales

Figure 4.3: Instantaneous BM on CD Sales
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4.2 Generalized BassModel

For GBMwe have two very different examples: the birth rate in Japan between 1872 and 2022,
and the number of research on Google Search regarding Facebook. In the former example, we
will explore and analyze how this kind of model can possibly analyze a trend highly affected
by economic, political, and social changes. While in the former we will adopt a point of view
always aimed at change, but understood as the interchange of technological means in our era.

4.2.1 Birth rate in Japan

An interesting trend we wanted to study, refers to the national birth rate, Japan’s case seemed
a good fit for a GBM example, as we will see below. But first, let us analyze some of the main
possible reasons that relate this kind of trend to economic and social factors. Individuals’ eco-
nomic conditions, such as disposable income, employment, economic security, and cost of liv-
ing, can influence decisions about procreation, it is not unusual that in situations of poverty or
economic uncertainty, peoplemay delay or avoid having children because of financial concerns
related to child nutrition, education, and health. On a social level, we can consider even more
aspects, internal, such as the cultural norms, social expectations, the perceptions about the role
of the family, and external, such as the availability of social policies and services designed to
assist families, guarantee health services and social protection. Figure 4.4 displays a trend of the
birth rate in Japan between 1872 and 2022, the rate is expressed as the annual number of births
per person, the data from 1872 to 2009 taken from [27], 2010-2022 from the United Nations
data-bank†, and missing data for 1944-45-46 are estimations taken from [28].
As we can see, the trend in Figure 4.4 shows an interesting behavior that can be divided into
three main phases. The first phase of growth, between 1872 and 1920, period in which Japan
went through rapid industrial development and modernization that accelerated the economic
growth and the rate of employment, and also through significant changes in the social structure
and living conditions of people. Then, a second phase of decline between 1921 and 1946 has
been influencedby a combinationof factors, includingurbanization, industrialization, cultural
and social change, the evolution of women’s roles, economic hardship, and improved access to
contraceptive methods. The third phase regards the war and postwar period, until nowadays,
where it is possible to notice a sudden peak in 1947, probably given by the economic recovery
and a desire for reconstruction, followed by an exponential decay after 1949 that started slow-

†https://population.un.org/wpp/
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Figure 4.4: Japan birth rate per person between 1872 and 2022

Estimate Std. Error Lower Upper
m 3.4216e+ 03 3.1171e+ 00 3.4155e+ 03 3.4277e+ 03
p 6.3789e− 03 1.4244e− 05 6.3509e− 03 6.4068e− 03
q 2.5888e− 02 9.9558e− 05 2.5693e− 02 2.6083e− 02
a1 8.3500e+ 01 8.1681e− 01 8.1900e+ 01 8.5101e+ 01
b1 9.2686e+ 01 9.5245e− 01 9.0819e+ 01 9.4553e+ 01
c1 −1.9375e− 01 3.0178e− 02 −2.5290e− 01 −1.3460e− 01

R2 = 0.9999

Table 4.2: GBM with 1 rectangular shock estimations on Japan birth rate

ing down after 1973, mostly given by an improvement of living conditions, urbanization, so-
cial changes, economic pressures, and the aging of the population. In Table 4.2 and Figures 4.5
and 4.6 are shown the results of aGBMwith a negative rectangular shock starting at a1 = 83.5

(1952) and ending at b1 = 92.69 (2006) with intensity c1 = −1.94. All the coefficients are
significant in the confidence interval. The model reaches an R2 = 0.9999. BM’s parameters
p and q assume, in this context, different meanings compared to a marketing or economic con-
text, a possible interpretation could be: p is the rate of people having a sort of innate will to
procreate, so people that do not accounts to external factors but rather to ideals and needs they
have; and q as the peoplewho aremore prone to have children based on the social and economic
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Figure 4.5: Cumulative GBM 1 rectangular shock on Japan birth rate

context, in this case, we speak about people using a more rational way of thinking in this sense.
Based on this interpretation of p = 0.0064 and q = 0.026we can say that the behavior of the
trend is attributable to the industrial and economic growth, westernization, and social changes
we were talking about earlier, rather than a cultural factor.
The choice of the use of a shock of the rectangular kind can be justified by the nature of this
phenomenon. If it is true that history is cyclic, then it is very likely that the birth rate of the na-
tion will eventually start to grow again, ending a transient period of decreasing birth rate that,
by definition (Section 2.2), this kind of shock should be able to fit well.

4.2.2 Interest in Facebook

With almost 3 billion monthly active users, Facebook is the most-used social network nowa-
days. Founded in 2004 byM. Zuckerberg, as themain founder, to connect university students.
Started spreading worldwide after September 2006, and in just one year it entered the top 10
visited websites, in march 2010, just for a week, traffic on Facebook surpassed Google’s search
engine, and in August 2015 the website reach a record of 1 billion active users on the platform
simultaneously, then, in July 2018 it is been announced the first drop in active users in Europe
and a global slowdown.
In this case studywe are going to analyze the trend of the interest rate in Facebook during time‡,
see Figure 4.7: the interest rate expressed by Google Trends is given by a numeration between

‡According to Google Trends (n.d.), monthly interest in Facebook June 2023
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Figure 4.6: Instantaneous GBM 1 rectangular shock on Japan birth rate

0 and 100, where 100 indicates the higher frequency in term search and 0 means that no suffi-
cient data for the term are being found.
Thus this is the trend in the search of the term “Facebook” on Google, it can be considered
an indicator of public interest that provides information about trendy thematic over a given
time span and can be used to study social phenomena or marketing campaign effects. As it is
possible to notice, the trend in Figure 4.7 is characterized by: a sudden growth between April
2008 ad December 2010, a time window in which Facebook started to be translated into other
languages and become accessible all over the world; then, the peak in interest is achieved in
November 2012 and remained almost constant until July 2013, in this time window Facebook
develops new features for mobile phones and holds a referendum over the users’ privacy. After
that, the rate of research on Google started dropping slowly, until reaching a value of 10 in
May 2022, seen for the last time in June 2008. Anyway, the drop in Google’s research does not
mean any consequent drop in Facebook usage, in fact, it still is the most used social network
worldwide, it may just indicate that the usefulness in the use in Google search for this topic
dropped due to a multitude of factors such as the migration on mobile phones’ app or the use
of other sources to find Facebook’s path and news. To fit the trend, a GBMwithmixed shocks
has been chosen, Table 4.3 and Figures 4.8 and 4.9 show the results. The parameters are all
significant and the model is representative, with R2 = 0.9998. Parameters p = 0.0003 and
q = 0.029 indicates that the innovativeness factor poorly affected the trend compared to the
imitative one, suggesting that the awareness about the Facebook phenomena has spreadmostly
through social interactions (byword-of-mouth, social media, or other sources of information).
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Figure 4.7: Facebook interest rate between 2006 and 2023

Estimate Std. Error Lower Upper
m 8.4147e+ 03 7.6641e+ 00 8.3997e+ 03 8.4297e+ 03
p 3.0430e− 04 2.0214e− 05 2.6468e− 04 3.4392e− 04
q 2.9129e− 02 2.6439e− 04 2.8611e− 02 2.9647e− 02
a1 2.3353e+ 01 4.8201e− 01 2.2408e+ 01 2.4297e+ 01
b1 −4.4364e− 02 1.2534e− 03 −4.6821e− 02 −4.1907e− 02
c1 3.3255e+ 00 1.2195e− 01 3.0865e+ 00 3.5646e+ 00
a2 7.3105e+ 01 6.6341e− 01 7.1804e+ 01 7.4405e+ 01
b2 8.5560e+ 01 5.9050e− 01 8.4403e+ 01 8.6718e+ 01
c2 2.6464e− 01 2.0635e− 02 2.2420e− 01 3.0508e− 01

R2 = 0.9998

Table 4.3: GBM with 2 mixed shocks estimations on Facebook interest rate
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Figure 4.8: Cumulative GBM 2 mixed shock on Facebook interest rate

The trend is modeled using an exponential and a rectangular shock. The former is needed to
describe the fast growth in the early stages of the life cycle, but due to the natural shape of
the exponential shock it does not capture very well the outline of the trend at the beginning
of the growth at a1 = 23.35 (around late 2008), nevertheless, it is able to well describe the
strong intensity of the shock c1 = 3.33 and the slow overtake phase after the shock given by
b1 = −0.044, giving to the fitted data the left-skewed shape we can see in Figure 4.9. The
latter shock is rectangular, with which we wanted to describe the peak between a2 = 73.11

(late 2012) and b2 = 85.56 (end of 2013) which is characterized by a fairly high intensity, i.e.
c2 = 0.265. In the next 24 months after June 2023, the model predicts the continuation of
decay, till an interest rate of 3% in June 2025.
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Figure 4.9: Instantaneous GBM 2 mixed shock on Facebook interest rate

4.3 Guseo-GuidolinModel

For the last univariate model, we go back into standard use to analyze the behavior of a no-
torious product that has struggled to achieve success, but that, thanks to effective marketing
campaigns and successive word spreading has reached the top: the Apple iPhone, its trend per-
fectly represents the idea laying behind the creation of this model.

4.3.1 iPhone quarterly sales

In the history of smartphones, iPhone surely represented a turning point. However, even being
a flagship product in this sector, its success was slow in coming, it was launched, in its version
2g, in 2007 but it started gaining its very popularity with later versions, such as iPhone 3g and
4. The success of the smartphone has been reached by a multitude of factors: its features were
revolutionary at that time, such as the capacitive touchscreen interface, intuitive touch-based
navigation, and sleek design, but it did not stop there, with the new iterations of the product,
Apple packed every new product with substantial improvements; then, in 2008 it introduced
theAppStore that suddenly provided an abundance of apps, enriching the user experience; Ap-
ple’s ecosystemwas growing in themeanwhile, allowing the users to interconnect their devices;
the last key factor it is been the effective marketing campaigns, compelling, to generate curios-
ity among consumers and creating an aura of exclusivity end desirability around the iPhone.
In this subsection, we analyze the quarterly sales of the Apple iPhone from its launch in 2007
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Figure 4.10: iPhone quarterly sales between 2007 and 2018

Estimate Std. Error Lower Upper
K 1.9896e+ 03 1.2293e+ 02 1.7486e+ 03 2.2305e+ 03
pc 9.4627e− 03 1.3400e− 03 6.8363e− 03 1.2089e− 02
qc 1.4127e− 01 1.8279e− 02 1.0544e− 01 1.7709e− 01
ps 3.8431e− 04 1.5531e− 04 7.9913e− 05 6.8871e− 04
qs 1.3207e− 01 1.5940e− 02 1.0083e− 01 1.6331e− 01

R2 = 0.9997

Table 4.4: GGM estimations on iPhone quarterly sales

until the end of 2018, shown in Figure 4.10 in million pieces. As it is possible to notice, the
trend in Figure 4.10, is characterized by slow growth until quarter 18, after that, it starts being
characterized by seasonalities which peaks locates on 3rd quarter of each year. The instanta-
neous sales reach stationarity after quarter 30. In Table 4.4 and Figures 4.11 and 4.12 the re-
sults of a GGM over the iPhone’s quarterly sales trend. This kind of trend, characterized by
certain slowness in its growth, represents a good example of how the communication process
affected the adoption by passing through the various versions of the product. All the parame-
ters are significant and the model is representative, with an R2 = 0.9997. In particular, it is
possible to address the double effect the firm wanted to bring through its marketing strategies
by looking at the innovation and imitation parameters. On the one hand, pc = 0.0094 and

55



Figure 4.11: Cumulative GGM on iPhone quarterly sales

ps = 0.00038 tell us that innovation occurred almost only during the communication phase,
suggesting the effectiveness in creating curiosity before the launch of every product. On the
other hand, it is possible to notice that imitations parameters are prominent, with qc = 0.14

and qs = 0.13 that give us a clue about the desirability that led people to will to be part of an
exclusive group.

4.4 Unbalanced Competition Regime Change
Diachronic model

For the UCRCD model, we choose an example that leverages the assumptions laying behind
the creation of thesemodels, the epidemiological diffusion. We are going to analyze the natural
competition between a highly contagious virus, Covid-19 (one of its variants in particular), and
the vaccines created to counter it.

4.4.1 ThecompetitionbetweenCovid-19andAntiCovidVaccines

In this last case study, we are going to analyze the competition between theCovid-19 daily cases
vs/ daily vaccination in Italy[29], in an eleven-month time window from August 1st, 2020 to
July 1st, 2021, namely, from themonthbefore the identificationof the firstmain variant named
Alpha (also calledEnglish variant, orB.1.1.7), characterized fromthehigh virality, to themonth
in which the vaccinations reached the peak.
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Figure 4.12: Instantaneous GGM on iPhone quarterly sales

The two series’ trends are shown in Figure 4.13, a premise should be made. They are nor-
malized on their respectivemaximum values on the considered timewindow, so that one could
have an intuitive analysis, especially at the graphical level. This means that the values of the co-
efficients in Table 4.5 are slightly different in the estimation made on a proportional scale, yet
they retain the same properties, significance, and signs on all the coefficients. The plot in Figure
4.13 shows the trends regarding the daily Covid-19 new cases (in black) and the daily vaccine
doses administered (in grey), in Italy. Starting with the former, the first thing that can be no-
ticed is the inconstancy of the trend, mostly given by the inconstant quarantine policies put in
place and the people’s behavior in the periods of non-quarantine the first growth is temporally
placed after the summer reopening, characterized by high aggregations of people, after the first
decrease of the cases there was a general loosening in restrictions, characterized by less aggrega-
tion, leading to the April peak. Since we considered a time window in which most of the cases
are given by just the Alpha variant, so we consider an “almost-constant” virality. The latter
series is characterized by a starting slow increase, until March, then a rapid growth until July
2021, which is like that because of the vaccination policies that provided for staggered vaccina-
tion starting with the highly frail, the elderly, and health personnel, and only then to the broad
masses.
The effect of vaccinations is not fully shown in the plot, in fact, after the decrease of April-June,
in Italy, there has been a reopening for the summer, characterized by a very low diffusion until
January 2022 after the Beta variation diffusion. In Table 4.5 and Figures 4.14, and 4.15 are
shown the results of the analysis over the series. The coefficients result to be all significant in
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Figure 4.13: Italy Covid‐19 Daily cases vs/ Daily vaccinations between Aug. 2020 and Jul. 2021

Estimate Std. Error Lower Upper
ma 4.2970e+ 01 2.3139e− 01 4.2517e+ 01 4.3424e+ 01
p1a 2.3211e− 05 1.2081e− 06 2.0844e− 05 2.5579e− 05
q1a 7.5924e− 02 6.7681e− 04 7.4598e− 02 7.7251e− 02
mc 2.3419e+ 02 3.7758e+ 00 2.2679e+ 02 2.4159e+ 02
p1c −1.4371e− 03 1.6836e− 04 −1.7671e− 03 −1.1071e− 03
p2 8.7556e− 04 2.6192e− 04 3.6220e− 04 1.3889e− 03
q1c −1.7348e− 02 7.1780e− 04 −1.8755e− 02 −1.5941e− 02
q2 4.6753e− 02 2.4726e− 03 4.1907e− 02 5.1600e− 02
δ 3.3854e− 02 1.3792e− 03 3.1151e− 02 3.6557e− 02
γ 5.0454e− 02 3.6103e− 03 4.3378e− 02 5.7530e− 02

R2 = 0.9804

Table 4.5: UCRCD estimations on Italy Covid‐19 data

58



the confidence interval and the model is representative, with anR2 = 0.9804. Since UCRCD
is been created for marketing purposes, in this kind of analysis a different connotation of the
parameters should be given.
Let us suppose that the disputed market potential (m = ma(1 − It > c) + mcIt > c) rep-
resents humanity, then we have an initial phase in which the virus was free to diffuse, and a
second phase when the vaccines penetrate the market, and have the aim to contrast the diffu-
sion of the virus. Then, the significance and the behavior of the parameters make sense.
The first phase of no competition is characterized by an almost inexistent innovation p =

0.00002 and a very high imitation q = 0.076, a behavior that well describes the contagion
diffusion. The second phase of competition, instead, shows an expansion of themarket,mc =

234.19, almost quintupled of the former phase, that is because in the former the infectious
people were limited, thanks to restrictions and the use of protective equipment, while in this
latter phase, vaccines contributed the most because of the implementation of a pressing vacci-
nation campaign. The other parameters, then, describe perfectly the contrasting effects of the
vaccines on the virus: the increasing adoption described by p2 = 0.0088 and q2 = 0.047, of
the former, coincides with a negative adoption of the latter, which registers a p1c = −0.0014

and a q1c = −0.017, these last parameters actually describe the reduction of the viral load and
the reduced transmission provoked by the vaccines. The within imitation coefficient confirms
what just said, with q1c + δ = 0, 0165, indicating the slowdown effect on the virus. A negative
cross imitation coefficient, given by q2γ = −0.0037wrongly suggests a negative effect on both
trends, this is probably given by the slow increase described by the model (see Figure 4.15) in
both until the moment when they cross.
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Figure 4.14: Cumulative UCRCD fit on Italy Covid‐19 data

Figure 4.15: Instantaneous UCRCD fit on Italy Covid‐19 data

60



5
Conclusion and Future work

The aim of this thesis project was to present the implementation of PyDiM, a Python library
for InnovationDiffusionAnalysis which takes inspiration fromR’s package “DIMORA” [20],
to provide the Python community with a valuable option over these kinds of approaches, and
filling a gap in the data analysis tools landscape.

At the time of this thesis writing, PyDiM implements fourmodels: the standard BassModel
[3] who laid the foundations of modeling regarding innovation diffusion processes, giving in-
spiration for most, if not all, modeling approaches in this area developed to date; the Gener-
alized Bass Model [9], a generalization developed by the same BM’s author to overcome the
lacking of the former over basic economic variables needed to describe, the so-defined, car-
ryover effects that can present in the life cycle of any economic diffusion process; the Guseo-
Guidolin Model [10], a model belonging from a branch of approaches which generalize the
BM under hypotheses of dynamic market behaviors influencing the adoption of innovations,
this in particular accounts for the presence of structured shocks having different nature, and that
can suddenly influence the dynamics of a market with different intensities and duration; the
Unbalanced Competition Regime Change Diachronic Model, the last implemented model,
which differentiates from the others due to the fact that it is a bivariate model that analyzes the
competition between two products on a diachronic regime.

The flow of this work started from the history and etymology of the innovation, the innova-
tion diffusion until arriving at the modeling approaches, which aim to analyze and predict the
process of the innovation diffusion, and the relative literature. Then, a theoretical and math-
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ematical explanation of the implemented models has been given, followed by an overview of
the practical implementations, highlighting the basic differences, between this library and R’s
DIMORA from a programming point of view. In the end, each model’s functioning is dis-
played and commented on, demonstrating the usefulness of these approaches in various fields,
also very different frommarketing.

In the future, we aim to optimize and simplify the implementation evenmore, togetherwith
enlarging the number of provided approaches to render PyDiM an even more tools compre-
hensive library for Innovation Diffusion Analysis able to fill the gap, in the current Python
landscape, of these kinds of modeling approaches and eventually become a landmark for the
field.

Developing Data Science and Analysis tools is for all intents and purposes a very important
task in the field, besides, “tools do not determine success, but without the right tools, success is more
difficult to achieve.” - cit. Donald A. Norman.
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