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Abstract

The aim of this Thesis is to test gravity models through the cross-correlation of
the Cosmic Microwave Background (CMB) temperature anisotropies with tracers
of the Large-Scale-Structure (LSS). This cross-correlation is sensitive to the Inte-
grated Sachs-Wolfe (ISW) effect, which is a secondary contribution to the temper-
ature anisotropies in the CMB and a powerful probe for gravity. The ISW effect
is a way to test gravity since it arises when a photon of the CMB travels through
gravitational potentials that evolve in time due to the accelerated expansion of the
Universe. Thus, exploring the late ISW effect is a powerful method to test Dark
Energy and gravity models. However, the ISW effect is faint compared to the other
Cosmic Microwave Background temperature anisotropies and to cosmic variance at
large angular scales. Cross-correlation of the CMB temperature with tracers of the
Large-Scale-Structures ensures the detection of the ISW effect, making it a viable
tool. As a tracer of LSS, we considered the galaxy number count with an Euclid-like
number distribution. When considering the various Dark Energy/Modified Gravity
models we adopted an Effective Field Theory (EFT) formalism. The EFT approach
allows for more straightforward analytical and numerical results since it encompasses
any model but it still can be mapped to specific cases. We computed the cross-
correlations for some state-of-the-art models using CAMB and EFTCAMB codes.
For each model, we computed the Signal-to-Noise ratio according to an Euclid-like
prescription and explored the parameter space that affects cross-correlation ampli-
tudes. The state-of-the-art models investigated are the K-mouflage, the Generalized
Cubic Covariant Galileon (GCCG), the Galileon Ghost Condensate (GGC), and the
Transitional Planck Mass (TPM) model, and all are reviewed in the work. All the
cross-correlations found are compatible with the costraints set by theory and obser-
vations. The TPM cross-correlation proved to be the most interesting case, being
quite different with respect to the ΛCDM one. In this regard, we further investigated
this model finding and studying the key parameters affecting the cross-correlation
amplitude.
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Introduction

Among other sciences, Cosmology finds itself to study a peculiar object, the Uni-
verse. This is quite a task since the Universe is vast and complicated. However,
when scientists want to describe general behaviors, statistical tools are an impor-
tant contribution to simplifying things since statistical information on random fields
in the universe provides vital knowledge on a broad range of issues. For instance, re-
garding the Large-Scale-Structure (LSS), statistical properties of the fields can help
to put constraints on the primordial Universe (e.g. inflation models, Guth 1981) and
also contain information about the evolution of the Universe. The structures we see
in the Universe today originate from initial density fluctuations, which are believed
to be generated by cosmic inflation in the very early universe. Different theories
predict different statistical properties of the initial density field, so constraints be-
come crucial. However, extracting statistical information from the observed fields
is quite challenging (Verde 2009). The first challenge is to understand which kind
of statistics is useful and which statistical description is better to adopt. One of
the fundamental properties used within the standard cosmological model is that the
Universe is statistically isotropic and homogeneous when smoothed over suitably
large scales. So, it is possible to do statistics over different spatial regions of the
Universe and we can expect the same results regardless of position and direction -
barring cosmic variance. This fruitful result helped Cosmologists model a theory
that could describe the observable Universe. While still do not have a complete
perfect model, the most reliable we have so far is the so-called Λ Cold Dark Matter
cosmological model (the ΛCDM model). Its name highlights the two most abun-
dant components in our Universe at the present epoch, which are two among the
most important questions in cosmology. The first is the so-called Dark Matter, the
latter the Dark Energy, represented by the cosmological constant Λ. Regarding the
latter, Dark Energy is considered the source of our late accelerated expansion of
the Universe and it is still a mystery (Abdalla et al. 2022). Its nature is yet to
be explained in detail while some of its features are known: accelerated expansion
and cosmic structure growth. In the Standard Model of Cosmology, it is treated as
a constant, the Λ constant, but such a description could not be satisfactory. This
thesis moves from the boundaries and the limits of the ΛCDM to explore alterna-
tive theories that could alleviate some of the cosmic tensions that have appeared in
recent years, and describe Dark Energy in a more detailed way. The methodology
adopted to probe gravity is to exploit a temperature anisotropy effect (the so-called
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viii CHAPTER 0. INTRODUCTION

Integrated Sachs-Wolfe effect) in the Cosmic Microwave Background which is sensi-
tive to gravitational potentials and their evolution. Testing it directly in the CMB
is nearly impossible and once again statistics come to our aid. The tools used to
probe these models and their depiction of gravity are once again of statistical nature:
cross-correlations (Crittenden and Turok 1996). Cross-correlating CMB tempera-
ture anisotropies to tracers of the LSS (hence the sources of gravitaional potentials)
effectively showcases the Integrated Sachs–Wolfe effect. This is the main aim of
the thesis: to obtain these cross-correlations for some of the state-of-the-art cos-
mological models. The methodology, however, is not bound to the model and it is
a feat of strength of the investigation in this work. In fact, the various cosmolog-
ical models (alternative to ΛCDM) considered in this Thesis are described within
the so called Effective Field Theory approach. In this way, rather than using one
single model each time, the most general EFT action (or Lagrangian) is employed
(Gubitosi et al. 2013), reducing the computational cost and generalizing some of
the results. Recovering the specific result for each case is still possible since from
the EFT action each specific theory can be mapped. The EFT approach can be a
very useful addition to the toolkit of a Cosmologist and it goes well hand in hand
with the computation of correlations of cosmological perturbations. Investigating
the Universe in this fashion is a powerhouse for the near future: forthcoming surveys
and space missions (one above all, Euclid) will provide some new information and
possibly help paint a better picture of these unanswered questions. In this sense, a
Euclid-like distribution (Euclid Collaboration et al. 2020) of the tracers of the grav-
itational potential is implemented. This work is organized in a linear and sequential
order: in the first Chapter, we will review the current most supported model, the
ΛCDM. We will explore its fundamentals and its strenghts, but also its few limits
with the well-known tensions (Abdalla et al. 2022) and the Λ problem (S. Weinberg
1989). In Chapter 2, adopting the ΛCDM we will recover the key effect that we want
to investigate: the Integrated Sachs-Wolfe effect (Sachs and Wolfe 1967). Thus, we
will describe the CMB and how anisotropies and inhomogeneities characterize our
Universe and how they are described (see e.g. Modern Cosmology 2021). In Chapter
3 we will introduce the basics of Dark Energy and Modifief Gravity models (w.r.t
to General Relativity) as alternative to the standard ΛCDM model (see e.g. Clifton
et al. 2012). In addition, we will review the formalism of the EFT approach and its
results (see e.g. Frusciante, Peirone, et al. 2020). Finally, we will briefly summarize
the models used for our computations (Kable et al. 2021, Benevento, Kable, et al.
2022). In Chapter 4 we will introduce the cross-correlation formalism and relate it
to Dark Energy/Modified Gravity theories (Nakamura et al. 2019). There we will
present the results obtained. In the last chapter, Chapter 5, we will summarize the
main features of the work and make considerations on what can be built upon the
results and the method of investigation we used.



CHAPTER 1

The Standard ΛCDM Cosmological Model

The most comprehensive and well-supported model of our Universe is the so-called
Λ-Cold-Dark-Matter (ΛCDM) cosmological model (see Modern Cosmology (2021)
for a general review on its building blocks). Supported by years of observations, it is
considered the standard cosmological model to which cosmologists refer when making
computations. The model itself is built on the validity of the Cosmological Principle
and the Friedmann-Robertson-Walker metric (Ellis and van Elst 2008). Upon this,
the description of the components of our Universe is based on General Relativity and
Einstein Equations (Einstein 1917). In this picture, the most abundant component of
the Universe at the present epoch is the so-called Dark Energy (DE), a contribution
that is expressed by the cosmological constant Λ. Following, the most abundant
component is Dark Matter, which is a (pressureless) matter that does not interact
with the electromagnetic field, making it sensible only to gravitational interaction.
While the ΛCDM model proved to be valid and still results in the one that best fits
a variety of cosmological data, the premise of the model itself leaves the door open
for alternatives that could better describe the Universe. Obtaining the equations of
the ΛCDM and its key quantities prove to be the best example of how to approach
a cosmological model. In this light, we will review the ΛCDM and its discontents in
this chapter.

1.1 The Homogenous and Isotropic Friedmann Universe

It is useful here to summarize some basic concepts about the homogeneous and
isotropic Friedmann Universe. These concepts are the basis for our understanding
and description of the Universe in its present structure and evolution. While highly
structured on scales smaller than a few to several tens ofMpc, all observations show
excellent evidence for isotropy and homogeneity of the Universe on larger scales,
and particularly almost perfect homogeneity on scales larger than a few hundred
Mpc. The above is the first fundamental evidence about the global properties of the
Universe, and makes the content of the Cosmological Principle: “Viewed on a suffi-
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2 CHAPTER 1. THE STANDARD ΛCDM COSMOLOGICAL MODEL

ciently large scale, the properties of the universe are the same for all observers”. The
two testable structural consequences of the cosmological principle are homogeneity
and isotropy. Homogeneity means that the same observational evidence is available
to observers at different locations in the universe. Isotropy means that the same
observational evidence is available by looking in any direction in the universe. The
principles are distinct but closely related because a universe that appears isotropic
from any two (for spherical geometry, three) locations must also be homogeneous.
In fact, it looks to share the same properties as any fundamental observer at a given
cosmic time. This is key to any attempt to describe the general properties of the
Universe based on what we observe in our past light cone. This behavior can be ef-
fectively formalized into a metric, called the Friedmann-Lemâıtre- Robertson-Walker
(FLRW) metric. This is the general cosmological metric and our description of the
Universe at large scales:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdϕ2

)]
(1.1)

with the adopted signature (−,+,+,+). a(t) is the scale factor detailing the uniform
expansion of the Universe. This metric involves only the symmetry properties of
space and nothing else, in particular, it does not require any precise law of gravitation
(like General Relativity). The parameter k is the curvature constant, it does not vary
with time and it can be set to either 0,−1,+1 (corresponding to flat Euclidean, open
hyperbolic, and closed spherical models). Inflation results (Guth 1981) will allow
us to set k = 0. The radial r and angular coordinates θ and ϕ are expressed in
the so-called comoving units, that is they make a time-invariant coordinate grid to
identify cosmic objects at a given time, typically the present time t0. Proper (or
physical) coordinates (those that would be measured in a reference frame at time t)
are simply scaled from the comoving ones as

d(t) = a(t)

� r

0

dr̃√
1− kr̃2

. (1.2)

This distance cannot be physically measured, and in cosmology we define and mea-
sure luminosity and angular distances. A first application of the FLRW metric is
the fundamental generalization of the Hubble law cz ∼ v = H0r which linked the
recession velocities of galaxies to their distances (Hubble 1937). The proportionality
constant is the so-called Hubble constant H0 = ȧ(t0)/a(t0). This generalization is
the computation of the redshifting of light rays due to the expansion of the universe.
In terms of the frequency of a light ray emitted at time te and observed at t0, we
have

a(te)

a(t0)
=
ν0
νe

(1.3)

and because of the definition of redshift, we have (1 + z)−1 = a(te), a relation
generalizing the concept of redshift (cosmological redshift) to sources at any distance
in space-time. The conclusion is that the cosmological redshift z is a measure of how
much the scale factor has changed from the epoch when the signal has been sent to
that it has been received. This introduces a substantial modification of the standard
Doppler redshift. For large distances, the redshift is a very fundamental measure of
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distance and expresses the ratio of the scale factor at the time the photon is emitted
to that when it is received.

1.2 General Relativity and Friedmann Equations

1.2.1 General Relativity

In 1915 A. Einstein presented to the scientific community field equations that related
spacetime curvature to the stress-energy tensor. The result was obtained thanks to
the results obtained in differential geometry given by Bianchi and the known applica-
tions and solutions regarding curvature, obtained by Gauss and Riemann. Einstein’s
approach was to link the geometry of the spacetime to the matter distribution, im-
posing the weak-field limit to be consistent with Newtonian Gravity. Later on, as
a description of Dark Energy, the Λ constant was introduced to compensate for the
presence of such unknown energy (Einstein 1917). The nature of Λ will be discussed
later. This is the historical approach, later formalized through the introduction of
the Einstein-Hilbert action with the Λ constant (Hilbert 2007):

S =

�
d4x

√−g
(
M2

pl

2
R− 2Λ

)
(1.4)

which yields the Einstein field equations through the stationary-action principle.
Deriving equations of motion from an action has several advantages. First, it allows
for easy unification of General Relativity with other classical field theories (such as
Maxwell’s theory), which are also formulated in terms of an action. In the process,
the derivation identifies a natural candidate for the source term coupling the metric
to matter fields. Moreover, symmetries of the action allow for easy identification
of conserved quantities through Noether’s theorem. In General Relativity, the ac-
tion is usually assumed to be a functional of the metric (and matter fields), and
the connection is given by the Levi-Civita connection. The Palatini formulation of
General Relativity (Palatini 1919) assumes the metric and connection to be inde-
pendent and varies with respect to both independently, which makes it possible to
include fermionic matter fields with non-integer spin. The Einstein equations in
the presence of matter are given by adding the matter action (Sm(ψm, gµν)) to the
Einstein-Hilbert action. To obtain Einstein’s equations we have to vary with respect
to the metric. Let’s consider the previous action with Sm(ψm, gµν) more compactly:

S =

� [
1

2κ
(R− 2Λ) + LM

]√−g d4x (1.5)

where LM is the Lagrangian density associated with the Sm. Taking variations with
respect to the inverse metric:

δS =

� [√−g
2κ

δR

δgµν
+
R

2κ

δ
√−g
δgµν

− Λ

κ

δ
√−g
δgµν

+
√−g δLM

δgµν
+ LM

δ
√−g
δgµν

]
δgµνd4x

=

� [
1

2κ

δR

δgµν
+
R

2κ

1√−g
δ
√−g
δgµν

− Λ

κ

1√−g
δ
√−g
δgµν

+
δLM

δgµν
+

LM√−g
δ
√−g
δgµν

]
δgµν

√−g d4x.

(1.6)
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The variation of action is zero:

0 = δS =
1

2κ

δR

δgµν
+
R

2κ

1√−g
δ
√−g
δgµν

− Λ

κ

1√−g
δ
√−g
δgµν

+
δLM

δgµν
+

LM√−g
δ
√−g
δgµν

(1.7)

and we insert some known results:

δR

δgµν
= Rµν

1√−g
δ
√−g
δgµν

=
−gµν
2

Tµν = LMgµν − 2
δLM

δgµν
.

(1.8)

Finally, we obtain:

1

2κ
Rµν +

R

2κ

−gµν
2

− Λ

κ

−gµν
2

+

(
δLM

δgµν
+ LM

−gµν
2

)
= 0

Rµν −
R

2
gµν + Λgµν + κ

(
2
δLM

δgµν
− LMgµν

)
= 0

Rµν −
R

2
gµν + Λgµν − κTµν = 0,

(1.9)

with the final result:

Gµν = Rµν −
1

2
gµνR+ Λgµν =

1

M2
pl

Tµν . (1.10)

Varying the action is the standard procedure to obtain the equations of motion from
a given action. This is an important example since the methodology used is general
and not specific to the case of General Relativity. Thus, the same procedure has
to be applied to any Modified Gravity action to obtain the respective equations of
motion.

1.2.2 Friedmann equations

Given the Einstein Equations, the set of equations that drive the Universe on large
scales can be obtained by inserting the FRLWmetric into the gravitational equations
(Friedman 1999). Let us consider k = 0. In computing the stress-energy tensor, the
assumption made is that the cosmological expansion is driven by a perfect fluid:

Tµν = (ρ+ p)uµuν + pgµν (1.11)

where ρ is the density; p is pressure, uµ is the 4-velocity. Computing the Einstein
tensor components and the energy tensor yields:

ȧ2

a2
=

ρ

3M2
pl

+
Λ

3

2ä

a
+
ȧ2

a2
=

−p
M2

pl

.

(1.12)
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If we consider Bianchi Identities (∇µG
µν = 0), which assure local conservation of

energy-momentum, we obtain a third equation that is, however, not independent:

ρ̇+
3ȧ

a
(ρ+ p) = 0. (1.13)

To obtain solutions for the scale factor and ρ we have to add a relation between ρ
and p. If we consider an equation of state w = p

ρ , it is different according to different
fluids. The three cases known are:

� Vacuum energy w = −1: in this case ρ̇ = const. thus it does not dilute as the
space expands. It is associated with the space itself. this is the case of the
cosmological constant which behaves as a source with ω = −1. Solving in this
case gives:

ρ = const. , a = aine
ρ1/2√
3Mpl

(t−tin)
(1.14)

� Radiation w = 1
3 : it is given by the radiation pressure. The result can be

obtained by observing a photon in a metallic box and the pressure of such
photons on the wall of the box. Solving for radiation gives:

ρ = ρin

(ain
a

)4
, a = ain

(
t

tin

) 1
2

(1.15)

� Matter w = 0. It is obtained with the same reasoning as the radiation, but
with massive particles. In the case of the matter:

ρ = ρin

(ain
a

)3
, a = ain

(
t

tin

) 2
3

(1.16)

1.2.3 Cosmic Inventory

We can now express quantitatively the amount and which components are in the
Universe. A constituent can be made up of several particle species but each has to
have the same equation of state. It is useful to define the density parameters

Ωs =
ρs(t0)

ρcrit
(1.17)

where s is a generic constituent. It could be Cold Dark Matter (c), Baryons (b),
photons (r), and a cosmological constant Λ or dark energy.

� Photons: The majority of radiation contribution to the cosmic energy budget
is in the form of the Cosmic Microwave Background (CMB). They are charac-
terized by a Bose-Einstein distribution. Photons make up a very small fraction
of the universe’s energy budget today. Using the zeroth-order Bose-Einstein
distribution function for the photons we find that ργ depends only on time. In
fact, there are small perturbations around this zeroth-order distribution func-
tion. These do have a spatial and momentum dependence and correspond to
the anisotropies in the Cosmic Microwave Background (CMB), which we will
see next Chapter.
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� Baryons: we refer to all ordinary matter, i.e. nuclei and electrons, as baryons,
even though this is technically incorrect as electrons are leptons. However,
nuclei are so much more massive than electrons that virtually all of the mass
is in the baryons. Unlike the CMB, baryons cannot be simply described with
an equilibrium distribution function. This is because baryons come in many
different phases: diffuse neutral gas and ionized plasma, stars and planets,
compact objects, and so on. This makes a baryonic inventory much more
difficult.

� Dark Matter: The anisotropies in the CMB provide a measurement of the
physical matter density parameter. The sensitivity of the CMB to the mat-
ter density is both due to the effect of matter on the expansion history in the
early universe, as well as the fact that dark matter dominates the gravitational
potential wells which also leave their imprint in the CMB anisotropies. The
large-scale structure provides two beautiful ways to probe gravitational poten-
tial wells and hence the amount of matter: galaxy velocities and gravitational
lensing (Fermi-LAT Collaboration et al. 2014). Velocities are probed through
the characteristic distortion they imprint on the three-dimensional statistics of
galaxy number counts. Gravitational lensing is detected through the statistics
of galaxy shapes. Finally, another way of measuring the total mass density
is to pick out observations sensitive to Ωb/(Ωb + Ωc) and use the value of
Ωb, determined through either Big Bang Nucleosynthesis or CMB, to infer the
matter density. Massive galaxy clusters are perhaps the most promising target
(Bleem et al. 2015) since most of the baryonic mass in a galaxy cluster is in the
form of hot gas which is observable through its thermal X-ray emission or the
so-called Sunyaev-Zel’dovich (SZ) effect (Sunyaev and Zeldovich 1980). There
is now agreement among a wide variety of probes (Abdalla et al. 2022) that
the total matter density in the universe is about 30% of the critical density,
with 80% of that being in the form of non-baryonic dark matter.

� Dark Energy: We now know that there is an additional ingredient in the
universe’s energy budget, dark energy, a substance whose equation of state
w is neither 0 (as it would be if the substance was nonrelativistic) nor 1/3
(ultra-relativistic), but rather close to −1. A multitude of independent pieces
of evidence has accumulated for the existence of dark energy, a substance that
has this negative equation of state and does not participate in gravitational
collapse. For one, we have strong evidence that the universe is Euclidean, with
a total density parameter close to 1. Since Ωb+Ωc ∼ 0.3 is very far from 1 (and
radiation is negligible today), something that does not clump as does matter
has to make up this budgetary shortfall. Second, the expansion of the universe
is accelerating, as measured by standard candles and rulers (Riess, Filippenko,
et al. 1998). Accelerated expansion occurs only if the dominant constituent in
the universe has a negative equation of state, i.e. negative pressure. Observing
supernovae reported direct evidence for an accelerating universe, one that is
best explained by postulating the existence of dark energy. The evidence is
based on measurements of the luminosity distance. Moreover, we now have yet
another piece of independent evidence for dark energy: the Baryon Acoustic
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Oscillation (BAO) standard ruler provides both a measurement of the angular
diameter distance to a given redshift and the distance interval corresponding to
a certain redshift interval (Alam et al. 2017). The existence of dark energy can
be inferred not only using probes that measure the expansion history directly
(sometimes called geometric probes). Accelerated expansion also directly af-
fects the evolution of structure in the universe. The growth of structure probes
independently supports the Euclidean concordance cosmology. A compelling
argument for the existence of dark energy is that both geometric (background)
and dynamic (structure) probes agree on the same cosmological model.

Figure 1.1: Evidence for dark energy from SN-only constraints. Here we show confidence
contours at 68% and 95% for the ΩΛ,Ωm (where Ωm = Ωb +Ωc) cosmological parameters
for both the Riess, Filippenko, et al. (1998) discovery sample and the Pantheon sample (a
combination of several datasets, see Scolnic et al. (2018)). The Pantheon constrains with
systematic uncertainties are shown in red and with only statistical uncertainties are shown

in gray (line) quantifying the contribution of matter and cosmological constant to the
cosmic energy budget from the Type Ia supernovae. Image from Scolnic et al. (2018)PS1 and the Pantheon Sample 21

Table 8.

Analysis Model w ⌦m ⌦⇤

SN-stat ⇤CDM 0.284 ± 0.012 0.716 ± 0.012

SN-stat oCDM 0.348 ± 0.040 0.827 ± 0.068

SN-stat wCDM �1.251 ± 0.144 0.350 ± 0.035

SN ⇤CDM 0.298 ± 0.022 0.702 ± 0.022

SN oCDM 0.319 ± 0.070 0.733 ± 0.113

SN wCDM �1.090 ± 0.220 0.316 ± 0.072

Notes: Cosmological constraints for the SN-only sample
with and without systematic uncertainties. Values are given
for three separate cosmological
models: ⇤CDM, oCDM and wCDM.

dataset mainly to be in-line with general community re-
producibility. We still use the binned distances to gen-
erate the systematic covariance matrix, which is used as

a 2d 40-bin interpolation grid to create a covariance ma-
trix for the full SN dataset. Diagonal uncertainties from
the individual distances can be added together with the

full systematic matrix following Eq. 6. Di↵erences in
w between the binned and un-binned datasets are at
a < 1/16� level for the statistical measurements, and
< 1/8� when including the systematic covariance ma-

trix.
The cosmological fits to the SN-only sample are shown

in Table 8 with and without systematic uncertainties.

Using our full SN sample with systematic uncertainties,
with no external priors, we find ⌦m = 0.298 ± 0.022.
Without systematic uncertainties, the uncertainty on ⌦m

is roughly 2⇥ smaller. When not assuming a flat uni-
verse, we combine various probes together to constrain
the oCDM model. When using SN alone, we find that
⌦m = 0.319 ± 0.070 and ⌦L = 0.733 ± 0.113. We find

the evidence for non-zero ⌦⇤ from the SN-only sample
is > 6� when including all systematic uncertainties. As
shown in Fig. 18, this is a factor of ⇠ 20 improvement

over the Riess et al. (1998) constraints in this plane. Fur-
thermore, the significance for non-zero ⌦⇤ is much higher
than the < 3� e↵ect quoted by Nielsen et al. (2016)

which re-analyzed the B14 sample though their analy-
sis technique is disputed by (Rubin & Hayden 2016). A
study using the Pantheon sample and null tests done in
this analysis to examine non-standard cosmological re-

sults like those from Nielsen et al. (2016) and Dam et al.
(2017) is currently in prep. (Shafer et al. in prep.).

To evaluate the impact of the systematic uncertainties,

we combine constraints from the Pantheon SN sample
with those from the compressed likelihood of the CMB
from Planck Collaboration et al. (2016b) and measure
⌦m and w in the wCDM model. Constraints from BAO

and H0 measurements are included later in this section.
The impact of systematic uncertainties is shown in terms
of the relative size of the uncertainty of w in Table 9.

Figure 18. Evidence for dark energy from SN-only con-
straints. Here we show confidence contours at 68% and
95% for the ⌦m and ⌦⇤ cosmological parameters for
the oCDM model for both the Riess et al. (1998) dis-

covery sample and the Pantheon sample. The Pantheon
constrains with systematic uncertainties are shown in red
and with only statistical uncertainties are shown in gray

(line).

We find that the systematic uncertainty (�w = 0.025)
is smaller than the statistical uncertainty (�w = 0.031).
Unlike previous analyses (e.g., B14 and S14) that found

that calibration uncertainties made up > 80% of the sys-
tematic error budget, we find a more even split between
the various systematics. The calibration uncertainties
are due to uncertainties of the individual photometric

systems of each sample as well as the calibration uncer-
tainties propagated through the SALT2 model. We find
that the SALT2 calibration uncertainty is larger in mag-

nitude than the combined impact from all the various
systems, which are reduced by S15 and are independent
of each other. Still, all of the systematic uncertainties
related to calibration have a net e↵ect of roughly 66% of

the total systematic error.
The systematic uncertainties increase the uncertain-

ties of the best fit parameters, and also shift the best fit

parameters by reweighting the pulls of each SN in the
fit. These two impacts are shown in Table 9 as both
the best-fit value of w is shifted and the uncertainty on

w is increased. The shifts are mainly due to systematic
uncertainties that most strongly a↵ect the low-z sample:
calibration, MW extinction, intrinsic-scatter and selec-
tion.
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1.3 Cosmological parameters

The ΛCDM is fully described by a set of fundamental parameters. Five parameters
determine the background homogeneous spacetime (matter density Ωm, radiation
density Ωr, vacuum energy density ΩΛ, baryon density Ωb, and Hubble parameter
H), four parameters determine the spectrum of primordial perturbations (scalar
and tensor amplitudes AS and AT of the primordial power spectrum and power
law indices ns and T ), and a single parameter τ describing the total optical depth
since reionization. Obtaining their measurement is no easy task and nowadays the
Cosmic Microwave Background (CMB) is currently the strongest probe of precision
cosmology. It was first detected in 1965 by Penzias and Wilson during an investiga-
tion of the sources of atmospheric noise in telecommunication (Penzias and Wilson
1965). The Cosmic Microwave Background consists of photons that last interacted
with matter, leading to information about the hot primordial Universe and its sub-
sequent evolution. Thus, it is a rich footprint with which to test any cosmological
model. The power spectrum of CMB anisotropies has a rich structure, and its shape
depends on cosmological parameters. By measuring it precisely, we can constrain
the various parameters that describe the ingredients that enter the calculation. The
price of this multidimensional parameter space is that there are partial degenera-
cies: the effect of varying one parameter can be mimicked by varying, in general,
several other parameters in specific ways. CMB anisotropies are widely recognized
as one of the most powerful probes of cosmology and early-Universe physics. Given
a set of initial conditions and assumptions concerning the background cosmology,
the angular power spectrum of the CMB anisotropies can be computed numerically
to high precision using linear perturbation theory. The combination of precise ex-
perimental measurements and accurate theoretical predictions can be used to set
tight constraints on cosmological parameters. Planck is the third-generation space
mission, following Cosmic Background Explorer (COBE) and Wilkinson Microwave
Anisotropy Probe (WMAP), dedicated to measurements of the CMB anisotropies
(Smoot 1999, Bennett et al. 2013). The primary aim of Planck is to measure the tem-
perature and polarization anisotropies with micro-Kelvin sensitivity per resolution
element over the entire sky. The wide frequency coverage of Planck (30-857 GHz)
was chosen to provide accurate discrimination of Galactic emission from the primor-
dial anisotropies and to enable a broad range of ancillary science, such as detections
of galaxy clusters, extragalactic point sources, and the properties of Galactic dust
emission. We report in Table 1.1 the latest cosmological parameters measurements
from Planck (P. Collaboration, Aghanim, Akrami, Ashdown, Aumont, Baccigalupi,
M. Ballardini, Banday, Barreiro, N. Bartolo, Basak, Benabed, et al. 2020). The re-
sults were first presented in P. Collaboration, Ade, et al. (2014). These were based
on temperature (TT) power spectra and CMB lensing measurements from the first
15.5 months of Planck data combined with the WMAP polarization likelihood at
multipoles l ≤ 23 to constrain the reionization optical depth τ . Since then, multiple
instances of Planck Collaboration presented finer and finer values of the cosmological
parameters, as the data gathering went on. In the analysis, the baseline assumption
is the ΛCDM model with purely adiabatic scalar primordial perturbations with a
power-law spectrum. They assumed three neutrinos species, approximated as two
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massless states and a single massive neutrino of mass mν = 0.06ev. They put flat
priors on the baryon density Ωbh

2, cold dark matter density Ωch
2, an approxima-

tion to the observed angular size of the sound horizon at recombination θMC , the
reionization optical depth τ , the initial super-horizon amplitude of curvature pertur-
bations As at k = 0.05Mpc−1, and the primordial spectral index ns. The baseline
likelihood is a hybrid, patching together a low-multipole likelihood at l ≤ 30 with
a Gaussian likelihood constructed from pseudo-cross-spectrum estimates at higher
multipoles. Correlations between the low and high multipoles are neglected. In the
paper, they used two independent high-multipole TT, TE, and EE likelihoods. The
Plik high-multipole likelihood (described in detail in P. Collaboration, Aghanim,
Akrami, Ashdown, Aumont, Baccigalupi, M. Ballardini, Banday, Barreiro, N. Bar-
tolo, Basak, Benabed, et al. (2020)) is a Gaussian approximation to the probability
distributions of the TT, EE, and TE angular power spectra, with semi-analytic co-
variance matrices calculated assuming a fiducial cosmology. The CamSpec likelihood
has been used to analyze Planck temperature and polarization maps of the cosmic
microwave background since the first Planck data release. These two likelihoods are
in very good agreement in TT but show small differences in TE and EE. A detailed
description of CamSpec can be found in G. Efstathiou and Gratton (2021).

Table 1.1: Best fit parameters of Planck experiment. Taken from P. Collaboration,
Aghanim, Akrami, Ashdown, Aumont, Baccigalupi, M. Ballardini, Banday, Barreiro,

N. Bartolo, Basak, Battye, et al. (2020)

Parameter Plik Best Fit Value Plik CamSpec Combined

Ωbh
2 0.022383 0.02237 ± 0.00015 0.02229 ± 0.00015 0.02233 ± 0.00015

Ωch
2 0.12011 0.1200 ± 0.0012 0.1197 ± 0.0012 0.1198 ± 0.0012

100θMC 1.040909 1.04092 ± 0.00031 1.04087 ± 0.00031 1.04089 ± 0.00031

τ 0.0543 0.0544 ± 0.0073 0.0536+0.0069
−0.0077 0.0540 ± 0.0074

ln(109As) 3.0448 3.044 ± 0.014 3.041 ± 0.015 3.043 ± 0.014

ns 0.96605 0.9649 ± 0.0042 0.9656 ± 0.0042 0.9652 ± 0.0042

H0 67.32 67.36 ± 0.54 67.39 ± 0.54 67.37 ± 0.54

S8 0.8331 0.832 ± 0.013 0.828 ± 0.013 0.830 ± 0.013

In the table are presented the latest Planck results for the parameter best fits,
marginalized means, and 68 % errors from our default analysis using the Plik likeli-
hood are given in the first two numerical columns. The CamSpec likelihood results
give some idea of the remaining modeling uncertainty in the high-temperature po-
larization, though parts of the small shifts are due to slightly different sky areas in
polarization. The “Combined” column gives the average of the Plik and CamSpec
results, assuming equal weight. The last two parameters are derived values on the
Hubble value today and the S8 parameter. This parameter is another way to express
σ8 and to be specific:

S8 = σ8(
Ωm

0.3
)0.5 (1.18)

The parameter σ8 is the variance of the density fluctuation field calculated by aver-
aging on the spatial scale of 8h−1Mpc.
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1.3.1 Cosmological tensions

The preponderance of different cosmological probes allows the cosmological model
to be tested in various ways, and a situation may arise when the different probes
appear to give incompatible results (Abdalla et al. 2022). There is currently a
debate about the compatibility of results from probes of the Hubble constant H0

and to a lesser extent from the degree of clustering of matter, often measured by
the quantity S8. “Tension” is the term used to describe results that appear to be
discrepant, the interesting question being whether such tensions are indications of
the need for a revision to the standard cosmological model, or whether they are
due to statistical fluctuations, errors, or approximations in analysis, or unmodelled
systematic effects in the data. Finding the reasons for the apparent discrepancies is a
major driver of cosmological research soon. The 2018 legacy release from the Planck
satellite of the Cosmic Microwave Background (CMB) anisotropies, together with
the latest Atacama Cosmology Telescope (ACT-DR4, Aiola et al. (2020)) and South
Pole Telescope (SPT-3G, Balkenhol et al. (2021)) measurements, have confirmed the
standard ΛCDM cosmological model. However, the improvement of the methods and
the reduction of the uncertainties on the estimated cosmological parameters have
seen the emergence of statistically significant tensions in the measurement of various
quantities between the CMB data and late-time cosmological model independent
probes. While some proportion of these discrepancies may eventually be due to the
systematic errors in the experiments, their magnitude and persistence across probes
strongly hint at a possible failure in the standard cosmological scenario and the
necessity for new physics.

1.3.1.1 H0 tension

The most statistically significant and long-standing tension is in the estimation of
the Hubble constant H0 between the CMB data, which are cosmological model
dependent and are obtained assuming a vanilla ΛCDM model, and the direct local
distance ladder measurements. In particular, we refer to the Hubble tension as the
disagreement at 5.0σ between the Planck collaboration value, and the latest 2021
SH0ES collaboration (R21, Riess, Yuan, et al. (2022)) constraint, H0 = (73.04 ±
1.04)kms−1Mpc−1 at 68% CL, based on the Supernovae calibrated by Cepheids.
However, there are not only these two values, but actually, two sets of measurements
and all of the indirect model dependent estimates at early times agree between them,
such as CMB and BAO experiments, and the same happens for all of the direct late
time ΛCDM-independent measurements, such as distance ladders and strong lensing.
We can see a collection of these measurements in fig.1.2.

1.3.1.2 S8 tension

Recent observations of probes of the large-scale structure have allowed us to con-
strain the strength with which matter is clustered in the Universe. These constraints
on the strength of matter clustering differ from that inferred by probes of the early
Universe. In particular, the primary anisotropies of the CMB as measured by the
Planck satellite exhibit a tension in the matter clustering strength at the level of
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2-3σ when compared to lower redshift probes such as weak gravitational lensing and
galaxy clustering. This tension is often quantified using the S8 parameter, which
modulates the amplitude of the weak lensing measurements. The S8 parameter is
closely related to fσ8(z = 0) measured by redshift space distortions (RSD) , where
f = [Ωm(z)]0.55 approximates the growth rate in GR as a function of the matter
density parameter, Ωm(z), at redshift z. The lower redshift probes generally prefer
a lower value of S8 compared to the high redshift CMB estimates. Measuring S8
is model dependent and in all cases where the underlying model is the standard
flat ΛCDM model. This model provides a good fit to the data from all probes but
predicts a lower level of structure formation compared to what is expected from the
CMB observations. We can see a collection of these measurements in Fig. 1.3.
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Figure 1.2: H0 measurements, image from Abdalla et al. (2022)
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Figure 1.3: S8 measurements, image from Abdalla et al. (2022)
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1.3.2 The Λ problem

In addition to cosmological tensions, there is one flaw in the ΛCDM which resides
in the Λ parameter itself. While we have seen that there are some tensions, there is
overwhelming observational evidence that the universe is undergoing accelerated ex-
pansions: from observations of type Ia supernovae, CMBmeasurements, and detailed
studies of LSS. All of them are in agreement for a value of an observed cosmological
constant of about:

Λobs ≈ (10−3eV )4 (1.19)

This value is absurdly small and it is clear if we recast it in units of Planck mass:

Λobs ≈ (10−30Mpl)
4 (1.20)

This value represents the cosmological constant problem when compared to the theo-
retical value that should arise from quantum fluctuations (S. Weinberg 1989). Such a
small, value, by itself, is nothing extraordinary in physics, since small values appear
all the time. However, if we consider the field theory language and the Standard
Model particles, the contributions to the cosmological constant are ludicrously big.
These contributions arise from:

⟨Tµν⟩ ≈ −⟨ρ⟩gµν (1.21)

and the form of this contribution may be deduced by noting that on flat space,
Lorentz invariance forces ⟨Tµν⟩ ∝ ηµν . Then, we invoke the equivalence principle
to promote ηµν → gµν . As a first approximation, we can estimate the size of these
contributions by modeling the Standard Model fields as a collection of independent
harmonic oscillators at each point in space and then summing over their zero-point
energies

⟨ρ⟩ ∼
� ΛUV

0

d3k

(2π)3
1

2
ℏEk ∼

� ΛUV

0
dkk2

√
k2 +m2 ∼ Λ4

UV (1.22)

with ΛUV the cutoff. One could argue that in this case the leading divergence in the
integral could be kept. If we then focus on the logarithmically divergent piece, which
is the most optimistic assumption about ultraviolet physics, it leads to a logarithmic
dependent ⟨ρ⟩ which however does not appreciably change the results. If we consider
ΛUV ∼ 1Tev, then

Λth ≈ (TeV )4 ≈ 10−60M4
pl. (1.23)

This discrepancy of 60 orders of magnitude is the cause of disconcerting. In this
sense, the cosmological constant is not technically natural. Let’s consider for instance
the electron mass me ∼ 10−7Tev, which is a small value. It is, however, stable under
quantum corrections which in technical terms is technically natural. This means that
the theory enjoys enhanced symmetry in the limit where the electron mass goes to
zero (chiral symmetry), which tells us that quantum corrections to the electron mass
must be proportional to the mass itself. So if we set the electron mass to be small,
it stays small. No such symmetry is known for the cosmological constant. Given
this problem, it is only natural to ponder if Λ could be better modeled.



CHAPTER 2

Einstein-Boltzmann Equations

The linear Einstein–Boltzmann equations describe the evolution of perturbations
in the Universe and its numerical solutions play a central role in Cosmology. We
revisit this system of differential equations and present a detailed investigation of its
mathematical properties. For this purpose, we focus on a simplified set of equations
aimed at describing the broad features of the matter power spectrum. We will
follow the methodology used in Modern Cosmology (2021) and W. Hu and Sugiyama
(1995) for the description of the matter inhomogeneities and the Cosmic Microwave
Background (CMB) temperature anisotropies. The scope of this chapter is to provide
the derivation and characterization of the Integrated Sachs-Wolfe Effect (ISW) and
the distribution of matter and galaxies which we will cross-correlate. While doing
so, we will introduce all the relevant tools that we will use for the explanation of the
cross-correlation in Chapter 4, such for instance the power spectrum.

Perturbed metric

To derive the equations, we need to specify the form of the metric which should
account for perturbations around the smooth universe. While the smooth universe
is characterized by a single scale function a(t), the perturbed universe requires two
functions, Ψ and Φ, both of which depend on both space and time. These are the
perturbations to the metric which correspond to the Newtonian potential, and the
perturbation to the scalar curvature. Since we consider small perturbations, we will
consider Ψ and Φ as small quantities. The line element in conformal time η is:

ds2 = a2(η)
[
−(1 + 2Ψ(x⃗, η))dη2 + (1− 2Φ(x⃗, η))δijdx

idxj
]

(2.1)

This is the case of a particular gauge choice, the conformal Newtonian gauge. This is
necessary due to the fact that even if only scalar perturbations are considered, there
is still considerable freedom in the variables one chooses to describe the fluctuations.
Although any physical result must be insensitive to the gauge choice, it is possible
to use a gauge quite different from this and still describe the same physics.

15
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2.1 Boltzmann equations

The Boltzmann equations describe the statistical behavior of a thermodynamic sys-
tem even out of equilibrium. This is the perfect candidate to investigate the universe,
as we know that non-equilibrium conditions have contributed to the formation of
the present Universe, from the baryonic asymmetry to the production of Dark Mat-
ter, and many more. To put it simply, it tells us how the distribution in the phase
space of every component of the Universe (photons, neutrinos, electrons, baryons,
dark matter, and dark energy) changes due to their interactions. Schematically, the
unintegrated Boltzmann equation is:

df

dt
= L[f ] = C[f ] (2.2)

where the left hand is the Liouville operator, representing the total derivative of the
distribution function f of a given specie, and the right-hand side contains all the
information regarding the collision terms. These can be complicated functions of the
distribution function. In the absence of collision terms the right-hand side vanishes,
and in this case, the equation says that the number of particles in a given element
of phase space does not change with time. Taking into account the previous metric,
f , in a relativistic environment, is dependent on the space-time point and also on
the 4-momentum vector. The Liouville operator with the geodesic equation, in a
relativistic environment, can be expressed as

L = Pµ ∂

∂xν
− Γµ

νγP
µPν

∂

∂Pµ
(2.3)

where Pµ = dxµ

dλ is the 4-momentum with λ an affine parameter. Let’s briefly review
the Boltzmann equations for photons, baryonic matter, and dark matter. The main
idea is to “unwrap” the Boltzmann Equation by considering piece by piece the total
derivative of the equation. The main tools to do so lay in the quantities related to
the 4-momentum:

P 2 = gµνP
µP ν , p2 = gijP

iP j , p⃗ = pi = p
P i

|P | . (2.4)

(2.5)

2.1.1 The case for the photons

In principle f is a function defined in a 8-dimensional space. However, not all compo-
nents of the momentum are independent due to the fact that the photon is massless.
The independent components, then, are only three which can be constrained if we
take into account the previous metric.

P 2 = 0 = −1(1 + 2Ψ)(P 0)2 + gijP
iP j (2.6)

thus we find a constraint equation to the time component P 0. Now, unwrapping the
total derivative, the calculation relies on the magnitude p of the momentum and the
angular direction p̂.

df

dt
=
∂f

∂t
+
∂f

∂xi
∂xi

∂t
+
∂f

∂p

∂p

∂t
+
∂f

∂p̂i
∂p̂i

∂t
(2.7)
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Immediately we can simplify the equation by neglecting the last term since it is
a product of two terms that are necessarily non-zero or since they depend on the
direction p̂. Now all the remaining terms are computed considering the useful rela-
tions of the four-momentum and the fact that the potentials in the metric are small
quantities. In particular, after churning some math, we have the relation:

∂xi

∂t
=
p̂i

a
(1 + Ψ + Φ) (2.8)

An overdense region has Ψ < 0 and Φ > 0, meaning that the parenthesis becomes
less than 1 and so photons slow down while traveling through such regions. If we
insert this expression in (2.7), it is multiplied with ∂f

∂xi which is the first-order term,
so we can neglect the potentials. The next term computed is:

∂p

∂t
= p

[
−H +

∂Φ

∂t
− p̂i

a

∂Ψ

∂xi

]
(2.9)

This equation describes the photon momentum as it moves through a perturbed
FRW Universe. The first term accounts for the expansion of the Universe. The
second and the third terms relate to the overdense regions and how photons lose
energy while exiting gravitational wells. We can now recast (2.7):

df

dt
=
∂f

∂t
+
p̂i

a

∂f

∂xi
− p

∂f

∂p

[
H − ∂Φ

∂t
+
p̂i

a

∂Ψ

∂xi

]
(2.10)

Now what we are missing is the distribution function f . In a situation of equilibrium,
the photon distribution is the Bose-Einstein distribution. We have now to expand
the distribution:

f(x⃗, p, p̂, t) =

[
exp

(
p

T (t)(1 + Θ((x⃗, p̂, t))

)
− 1

]−1

(2.11)

where T is the zero-order temperature as a function of time only, and Θ = δT
T is the

perturbation. If we consider the zero-order distribution, T (t) must depend only on
time, due to the anisotropy and homogeneity. Now that we introduce perturbations,
Θ must include inhomogeneities (thus the dependence on x⃗) and anisotropies (thus
the dependence on p̂). Inserting the perturbed distribution in (2.7) we can get the
zero-order and first-order perturbed equation. For future reference and the sake of
generalization, it is useful to consider quantities in conformal time η and expand the
temperature perturbation field in multipoles:

Θl =
1

(−i)l
� 1

−1

dµ

2
Pl(µ)Θ(µ) (2.12)

where Pl is the Legendre polynomial of order l. This multipole expansion is necessary
since relativistic particles such as photons require more information to characterize.
The monopole and dipole perturbations (which are equivalent to an overdensity δ
and a velocity for matter particles) are not enough to fully characterize the photon
distribution since it has quadrupole and higher moments too. The distribution, then,
depends not only on x̂ and time but also on p̂, the direction of propagation. If we
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switch to Fourier space, which custom, the photon perturbations would depend on k,
η, and µ = p̂ ·k. Thus, the perturbation variable is Θ̃ = Θ(k, µ, η) where we dropped
the tilde for simplicity. Given the multipole expansion, the photon perturbations
can be described by a whole hierarchy of moments, Θl(k, η). Until now, we focused
on the Liouville operator acting on the distribution and we neglected any collision
term. To get the full extension of Boltzmann Equations we need to take into account
Compton scattering too.

e−(q⃗) + γ(p⃗) ↔ e−(q⃗′) + γ(p⃗′) (2.13)

While considering the scattering, we need to take into account the amplitude depen-
dence on the polarization. The dependence means that a small portion of the CMB
will be polarized due to Compton scattering so that the temperature anisotropies
are coupled with the polarization field. Taking this contribution into account re-
quires some lengthy calculations and for the specifics we refer to Modern Cosmology
(2021). Just to put it simply, we can incorporate the polarization effects in what
we can call strenght of polarization ΘP . It describes the change in the polarization
fields and it can be expanded in multipoles, ΘP l. If it is Fourier transformed, it will
depend on k, η, and µ as well. We can now write the equations for photons:

Θ̇ + ikµΘ = +Φ̇− ikµΨ− τ̇

[
Θ0 −Θ+ µvb −

1

2
P2(µ)Π

]
Π = Θ2 +ΘP2 +ΘP0

Θ̇P + ikµΘP = −τ̇
[
−ΘP +

1

2
(1− P2(µ))Π

] (2.14)

where we introduced the optical depth with σT the Thomson cross-section.

τ(η) =

� η0

η
dη′neσTa(η′) (2.15)

2.1.2 The case for matter

The same line of reasoning can be applied to matter and cold dark matter, with the
appropriate caveats: these are non-relativistic particles and we have to remember
that dark matter does not have a collision term. It should be reminded that often in
cosmology “matter” is constituted of electrons and protons, both commonly grouped
under the label “baryonic matter” even if technically electrons are leptons. In both
cases it is useful to express the equations in terms of number density and velocity:

n =

�
d3p

(2π)3
fvi =

1

n

�
d3p

(2π)3
f
pp̂i

P 0
(2.16)

As we perturbed Temperature in the case of photons, here the perturbations are
fluctuations of density, expressed as overdensities δ = δρ

ρ . So by expanding after the
first order:

n = n0(1 + δ(x⃗, t)) (2.17)
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In the case of baryonic matter, electrons and protons are coupled through Coulomb
scattering, whose rate is much larger than the expansion rate at all epochs of in-
terest. The coupling forces electrons and protons to have the same overdensity δb.
Eventually, the equations for matter, in Fourier space, are:

δ̇dm + ikv = +3Φ̇

v̇dm +
ȧ

a
vdm = −ikΨ

δ̇b + ikvb = +3Φ̇

v̇b +
ȧ

a
vb = −ikΨ+

τ̇

R
[vb + 3iΘ1]

(2.18)

where the subscripts dm and b refer to dark matter and baryonic matter respectively.

2.2 Einstein Equations perturbed

In the previous section, we described how perturbations in the gravitational field
affect particle distribution. However, this is not the full picture, since perturbations
in the distributions affect the gravitational field too. When studying the Boltz-
mann Equations, what effectively has been done is to consider how the universe
components are determined by the gravitational potential Ψ and Φ introduced in
the metric. Now, in order to see the effect of the distributions on the metric, the
natural thing to do is to consider Einstein Equations. In these, the distributions are
sources for the energy tensor, while the gravitational potential will play a role in
the metric. Coupling the Boltzmann equations and the Einstein equations will give
the exact and complete picture. Practically, we can expand the Einstein equations
around a zero-order homogeneous solution and extract information. We will sketch
only the steps for the calculation, given that it is lengthy and without any tricky
passages. The fundamental equation in this case is

Gµν = Rµν −
1

2
gµνR = 8πGTµν . (2.19)

In principle, we should also include a term for the perturbation of the dark energy.
In practice, though, most models of dark energy predict that it should be important
only very recently. Therefore, we are justified in neglecting dark energy as a source
of perturbations to the metric in this case. Considering then the tensorial equation,
there should be 16 different equations but due to the symmetric nature of the tensors
involved, just 10 equations appear. When the metric is considered too, we are only
interested in only 2 equations, focusing on the two independent functions Ψ and
Φ. If we proceed with the calculations, let’s look first at the left-hand side of the
equation. Firstly, the Christoffel symbols are computed according to the metric
involved.

Γσ
µν =

1

2
gασ(gαµ,ν + gαν,µ − gµν,α) (2.20)

As we know the Christoffel symbols are the building blocks for the Riemann tensor
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Rρ
σµν = Γρ

νσ,µ − Γρ
σµ,ν + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ. (2.21)

From the Riemann tensor, we are interested in the Ricci tensor Rρ
σρν = Rσν , which

is given by contracting the first and third indices. Going further, the Ricci scalar is
obtain by contracting the Ricci tensor with the metric R = Rσνg

σν .
Let’s now look at the right-hand side and how to derive the evolution equations for
Ψ and Φ, the perturbations to the metric. As we said before, in

Gµ
ν = 8πGTµ

ν (2.22)

there are 10 equations and we need only two. The others will be zero at first order
or redundant. When considering the stress energy-momentum tensor, the general
formulation would be:

Tµ
ν = −

∑
allspeciesi

gi

�
d3p(i)

(2π)3
(Pµ)(i)(Pν)(i)

P 0
(i)

√−gf(i) (2.23)

which is straightforward for the T 00 component but tricky for the T i
j . When con-

sidering the spatial part of Gµ
ν :

Gi
j = Cδij +

kikj(−Φ+Ψ)

a2
(2.24)

where C contains numerous terms that come from the spatial part of the Ricci
tensor. To avoid dealing with these terms, a projection only on the longitudinal
traceless part of Gi

j can be performed, so that:

(k̂ik̂
j − 1

3
δji )G

i
j =

2

3a2
k2(Ψ− Φ). (2.25)

Likewise, this projection should be performed on the spatial part of the energy
tensor. Finally, it is now just a matter of inserting the results in the equations and
expressing the final equations in Fourier space and conformal time, which is custom:

k2Φ+ 3
ȧ

a
(Φ̇ + Ψ

ȧ

a
) = −4πGa2(ρdmδdm + ρbδb + 4ργΘ0 + ρνN0)

k2(Ψ− Φ) = −32πGa2[ργΘ2 + ρνNa2].
(2.26)

We have now the full set to study perturbations: inhomogeneities and anisotropies.
In particular, we are interested in a source of anisotropy known as the Integrated
Sachs Wolfe effect. The solution of these coupled equations is only allowed due to ini-
tial conditions given by the Inflation, which “started” the primordial perturbations.
These, we will see in the next section.

2.3 Eintein-Boltzmann equations at early times

The system of equations obtain describes the evolution and growth of matter and
radiation. However, if we want to solve it we need to set initial conditions, which
are given by inflation (Guth 1981). The theory of inflation lets us understand how
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scales that should be uncorrelated today are observed to have the same temperature;
it explains some cosmological concordance problems, like the flatness problem, and
it is also the fundamental mechanism for generating primordial perturbations. In
the case of our interest, inflationary conditions set the conditions on matter and
radiation equations. Let’s consider the Boltzmann equations first. If we impose
that we consider times so early that for any k-mode k/aH ≪ 1, then we have
simplifications in all the equations: all the terms containing k can be neglected at
early times. We obtain:

Θ̇ = Φ̇

δ̇dm + ikv = +3Φ̇

δ̇b + ikvb = +3Φ̇

. (2.27)

If we consider the Einstein equations (2.26), from the first we obtain

Φ̈η + Φ̇ + Ψ̇ = −2Φ̇ (2.28)

by neglecting once again k terms, considering that at early times radiation dominates
the universe (so that ȧ/a = 1/η), and implementing the just found results. If we
consider now the second equation in (2.26) and neglect the higher modes for photons
and neutrinos, we get the condition: Ψ = Φ. This can be inserted in the previous
relation:

Φ̈η = −4Φ̇. (2.29)

From this equation, we can obtain a solution for adiabatic perturbations for some
early-times ηi

Φ(k, ηi) = 2Θ0(k, ηi) (2.30)

from which we obtain

δb = δdm = 3Θ0. (2.31)

In this equation, there should be an integration constant which however can be set
to zero when considering adiabatic perturbations. It can be shown that for velocities
and dipole moments of matter and radiation, the initial condition is

Θ1(k, η) = N1(k, η) =
ivb(k, η)b,dm

3
= − k

6aH
Φ(k, η). (2.32)

We have now the full set of coupled Einstein-Boltzmann equations with inflationary
initial conditions. While here we computed the analytical form of the coupled equa-
tions, in the thesis the computation has been conducted through numerical solvers.
They are much more precise due to the accuracy and the higher degree of expansion
that they can have, compared to the first-order expansion presented here. Neverthe-
less, it shows to be useful when trying to understand the computations underlying
CAMB, the main numerical tool used for this thesis. In the next section, we will
see how inhomogeneities and anisotropies arise since both play a pivotal role in our
task.
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2.4 Matter Perturbations

With the coupled equations we have obtained so far we can describe both the case
for matter and radiation. In this section, we will focus on the former, while in the
next we will compute the effect our thesis is focused on: the Integrated Sachs-Wolfe
effect. The ultimate goal of this section is to introduce the matter’s power spectrum
and its features since it will be a key ingredient in the scope of the thesis. Firstly,
it is necessary to give a panoramic view of inhomogeneities at early and late times,
since perturbations have different behaviors when considering small or large scales
and the epoch of the universe. Since our task is to relate galaxies to the temperature
of the CMB, it is fundamental to describe matter inhomogeneities, which gave life
to the galaxies that we know today.

2.4.1 Primordial power spectrum

On the largest scale, the Universe is considered homogeneous, however, one can
recognize that inhomogeneities arise when zooming in. Two surveys broke new
ground: the Sloan Digital Survey (Abdurro’uf et al. 2022) and the Two Degree
Field Galaxy Redshift Survey (G. P. Efstathiou et al. 1999), which comprehends
over a million galaxies. They highlighted that the galaxies are not randomically
distributed, rather there is a large-scale structure. To understand this structure one
has to introduce new tools. The most important statistic used when studying the
LSS and the CMB is certainly the two-point correlation function, which translates
into the so-called power spectrum when moving to the Fourier space. If we consider
the number density of galaxies ng of a survey, we can define an overdensity over the
mean of the whole survey:

δg =
ng − n̄g
n̄g

. (2.33)

We can define the Power Spectrum Pg(k) as:

⟨δ̃g(k′)∗δ̃g(k)⟩ = (2π)3δ
(3)
D (k − k′)Pg(k) (2.34)

where on the left we have the ensemble average over the overdensities and on the
left δD is the Dirac delta over the momenta. Intuitively, we can understand the
power spectrum as the variance in the distribution: if the distribution is smooth
then the power spectrum will be small, otherwise big in the presence of under-
or overdensities. Once again, if we want to compute the power spectrum related to
matter perturbations, we have to take into account primordial perturbations given by
inflation. The scalar perturbations generated during inflation can be parametrized
in terms of the power spectrum of the gauge-invariant curvature perturbation R.
This has the great advantage of being conserved on super-horizon scales, regardless
of whether matter or radiation dominated, making it a good starting point:

PR(k) =
2π

k3
H2

M2
plϵsr

∣∣∣∣
k=aH

= 2π2Ask
−3

(
k

kp

)ns−1

(2.35)

where As is the variance of curvature perturbations in a logarithmic wavenumber
interval centered around the pivot scale kp, and ns is the scalar spectral index. From
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this expression, we can start taking into account the evolution of perturbations. Let’s
see how perturbations behave differently according to the scale and epoch.

2.4.2 Matter Power Spectrum

To find the power spectrum at later times and relate it to the primordial power
spectrum, we have to understand how matter perturbations evolve over time. Con-
sequently, the initial task is to consider the evolution of the gravitational potential
as a function of the scale factor for different wave modes. The behavior changes
accordingly to when the modes enter the horizon, and schematically it is possible to
sum it up as:

� At early times, all the modes are outside the horizon and the potential is
constant

� At intermediate times, the wavelength can enter the horizon and the Universe
evolves from radiation domination to matter domination.

� At late times, during matter domination the potential is constant and starts
decaying when dark energy becomes relevant

Figure 2.1: The linear evolution of the gravitational potential Φ for modes of different
wavenumber in the fiducial ΛCDM cosmology., Image from Modern Cosmology (2021).
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FIGURE 8.1 The linear evolution of the gravitational potential ! for modes of different wavenumber in the fiducial
"CDM cosmology. In each case, we have normalized to the value of the potential at early times.

Apart from the attractive force of gravity, there are two counteracting effects: first, the
expansion of the background universe, which tends to drag particles of all species apart.
The faster the expansion, the slower the growth of structure. In non-expanding space,
a small overdensity will grow exponentially fast under gravity (if there are no pressure per-
turbations; see below); in the expanding universe, this exponential growth is slowed down
to a power-law or even logarithmic growth in time. In particular, we will see that structure
grows more slowly during radiation domination than later during matter domination and
finally slows down again once dark energy begins to dominate.

The second effect is specific to baryons and photons, which exert pressure: pressure
increases in proportion to density, and gas tends to move in the direction of lower pressure
(opposite to the pressure gradient). This means that an overdensity in the baryons does not
accumulate matter as quickly as one in the dark matter, since the larger pressure compared
to the environment tends to slow down or stop inflowing gas.

In this chapter we will treat super-horizon (kη ! 1) versions of gravitational growth as
well as the more familiar sub-horizon version (kη " 1), both with and without perturba-
tions in the radiation component. While going through the math, it is useful to bear in
mind the dueling forces of gravity, expansion, and pressure perturbations.

8.1.1 Three stages of evolution

The evolution of cosmological perturbations breaks up naturally into three stages. To see
this, let us cheat and look at the solutions for several different modes. Fig. 8.1 shows
the gravitational potential as a function of scale factor for long-, medium-, and short-
wavelength modes. Early on, all of the modes are outside the horizon (kη ! 1; recall that η

is positive after inflation) and the potential is constant. At intermediate times, two things
happen: the wavelengths enter the horizon and the universe evolves from radiation domi-
nation (a ! aeq) to matter domination (a " aeq). Fig. 8.1 illustrates that the order of these
epochs (aeq and the epoch of horizon crossing) greatly affects the potential. The large-scale

We can see that if the perturbation enters the horizon during the radiation-dominated
phase, the potential is greatly suppressed, contrary to the case if enters after the
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equivalence time. In addition, we can see that the smaller the mode is (conversely
the bigger the length scale), the later it enters the horizon. The behavior is neatly
understandable by the Fig. 2.1 The different behaviors can be taken into account by
introducing a transfer function and a growth factor. The transfer function is defined
as:

T (k) =
Φ(k, amatter)

Φlarge−scale(k, amatter)
(2.36)

and it describes the evolution of perturbations through the epochs of horizon crossing
and radiation/matter transition. The conventional normalization is set to the largest
scales since it is constant during matter domination. The growth factor describes the
wavelength-independent growth at late times after the transfer function has come
into play (so at a > amatter). This defines analytically the growth function as:

Φ(k, a)

Φ(k, amatter)
=
D+(a)

a
(2.37)

where D+ is the growth function. Thus, during matter domination D+ = a. Given
these two functions, we can write the potential as:

Φ(k, a) =
3

5
R(k)T (k)

D+(a)

a
. (2.38)

This parametrization neatly decouples early-universe physics (contained in T (k))
from late-universe physics (expressed inD+), since after decoupling structure growth
becomes scale-free.
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Figure 2.2: The evolution of dark matter density perturbations in the fiducial ΛCDM
cosmology. The amplitude of each mode starts to grow upon horizon entry. Well after aeq,
all sub-horizon modes evolve identically, and scale as the growth factor. At the very latest
times, we can see a slight suppression from this linear trend due to the onset of accelerated

expansion. Image from Modern Cosmology (2021).
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FIGURE 8.2 The evolution of dark matter density perturbations in the fiducial !CDM cosmology. We have normal-
ized to the potential at early times as in Fig. 8.1. The amplitude of each mode starts to grow upon horizon entry. Well
after aeq, all sub-horizon modes evolve identically, and scale as the growth factor D+(a). During matter domination,
before ! becomes relevant, D+(a) = a. At the very latest times, we can see a slight suppression from this linear trend
due to the onset of accelerated expansion.

perturbations at late times. This growth is completely consistent with our intuition that,
as time evolves, overdense regions attract more and more matter, thereby becoming more
overdense.

In the late universe, baryons closely follow the dark matter, so we typically describe
them together in form of the total matter overdensity δm. So let us now express the power
spectrum of the matter distribution in terms of the primordial power spectrum generated
during inflation, the transfer function, and the growth factor. The simplest way to relate
the matter overdensity to the potential at late times is to use Poisson’s equation (6.80) in
the large-k, no-radiation limit,

k2#(k, a) = 4πGρm(a)a2δm(k, a) (a > alate, k ! aH) . (8.5)

This equation is no longer correct if k is of order aH or less. For large-scale structure appli-
cations, this is not a big worry, as the most precise measurements are for modes that satisfy
k ! aH .2

Now, the background density of matter (including baryons) is ρm = &mρcr/a
3, and

4πGρcr = (3/2)H 2
0 , so

δm(k, a) = 2k2a

3&mH 2
0

#(k, a) (a > alate, k ! aH). (8.6)

2
Moreover, Eq. (8.5) does hold on all scales if δm on the right-hand side is defined in synchronous-comoving

gauge (see Exercise 5.1). The density in this gauge is in many cases more directly related to observables and
simulations than δm in conformal-Newtonian gauge.

Using the Poisson equation we can relate the matter density at late times to the
gravitational potential and the conserved curvature perturbation generated via in-
flation:

δm(k, a) =
2

5

k2

ΩmH2
0

R(k)T (k)D+(a) (a > amatter,k ≥ aH) (2.39)

and thus, considering the primordial power spectrum, we obtain the matter power
spectrum

PL(k, a) =
8π2

25

A∫
Ω2
m

D2
+(a)T

2(k)
kns

H4
0k

ns−1
p

. (2.40)

In Figure 2.3 we can see the power spectrum for the ΛCDM today and higher
redshifts with the predicted behaviors for the scales.
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Figure 2.3: The linear matter power spectrum in the fiducial ΛCDM cosmology at
different redshifts. Scales to the left of the vertical lines, which indicate non-linear regime
kNL(z) for each of the redshifts shown, are still evolving approximately linearly at each

redshift. Image from Modern Cosmology (2021)

.

Chapter 8 • Growth of structure: linear theory 199

FIGURE 8.3 The linear matter power spectrum in the fiducial !CDM cosmology at different redshifts. Scales to the
left of the vertical lines, which indicate kNL(z) for each of the redshifts shown, are still evolving approximately
linearly at each redshift.

This, together with Eq. (8.4), allows us to relate the overdensity in the late universe to the
primordial potential:

δm(k, a) = 2
5

k2

#mH 2
0

R(k)T (k)D+(a) (a > alate, k ! aH). (8.7)

Eq. (8.7) holds regardless of how the initial perturbation R was generated, as long as it is
an adiabatic perturbation. In the context of inflation, we saw in the previous chapter that
R(k) is drawn from a Gaussian distribution with mean zero and power spectrum PR(k) =
(2π2/k3)As(k/kp)ns−1 (Eq. (7.99)). So the linear power spectrum of matter at late times is

PL(k, a) = 8π2

25
As

#2
m

D2
+(a)T 2(k)

kns

H 4
0 k

ns−1
p

. (8.8)

Notice that (i) the power spectrum has dimensions of (length)3; and (ii) Eq. (8.8) implies
that PL(k) ∝ kns on large scales where T (k) = 1.

Fig. 8.3 shows the matter power spectrum for our fiducial !CDM cosmology, today as
well as at higher redshifts. While on large scales we see the expected behavior, on small
scales the power spectrum turns over. To understand this, look back at Fig. 8.1. The small-
scale mode there (k = 2h Mpc−1) enters the horizon well before matter/radiation equality.
During the radiation epoch the potential decays, so the transfer function is much smaller
than unity. The effect of this on matter perturbations can be seen in Fig. 8.2, where the
growth of δ is retarded starting at a $ 10−5 after the mode has entered the horizon and
ending at a $ 10−4 when the universe becomes matter dominated. Modes that enter the
horizon even earlier undergo more suppression. Thus, the power spectrum is a decreasing
function of k on small scales. This leads to the realization that there will be a turnover in
the power spectrum at a scale keq corresponding to the one which enters the horizon at

2.5 CMB anisotropies

Of the various epochs of the universe, Big Bang Nucleosynthesis (BBN) is of par-
ticular importance, as it produced the light elements of our universe. The BBN
happened when the Universe cooled to 1 Mev and after it is complete the ordinary
matter consists of protons, electrons, photons helium nuclei, and traces of heavier
nuclei. The next important event (and the center of attention of the section) is when
the Compton scattering between photons and electrons is not efficient enough to keep
the photons tightly coupled to the baryons. This decoupling happens when the tem-
perature drops to ≈ eV and the relic electromagnetic radiation that free-streams to
us is the so-called Cosmic Microwave Background. Therefore, perturbations to the
photons evolved completely different before and after the epoch of recombination
at z∗ = 1100. Before recombination, photons are tightly coupled to electrons and
protons, and after they free-stream to us. Thus, the observed anisotropy spectrum is
based on the anisotropies at recombination, computed accordingly to the constraints
imposed by the fact that the photons are coupled. When considering anisotropies,
on the largest scales we find them unaltered from the conditions imposed by infla-
tion, since there is no causal physics. On smaller scales, causal physics comes into
play and for the primordial fluid, the anisotropy moments can only be the monopole
and dipole, since we are in fact in a fluid approximation.
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2.5.1 CMB anisotropies today

We want to derive a solution for the photon moments today Θ0(k, η0) in the terms
of monopole and dipole at recombination. Starting from the Boltzmann equation
for photons (2.14) and subtract τ̇Θ:

Θ̇ + (ikµ− τ̇)Θ = +Φ̇− ikµΨ− τ̇

[
Θ0 + µvb −

1

2
P2(µ)Π

]
. (2.41)

The left-hand side can be rewritten as:

Θ̇ + (ikµ− τ̇)Θ = e−ikµη+τ d

dη

[
Θeikµη−τ

]
. (2.42)

Once we recast the left-hand side in this fashion, we can multiply both sides of (2.41)
by eikµη−τ and then integrate for η. In this way we obtain:

Θ(η0)−Θ(ηinit)e
ikµηinit−ikµη0−τ(ηinit) =

� η0

ηinit

dηSeikµ(η−η0)−τ(η) (2.43)

where we have defined the source function as S =
(
Φ̇− ikµΨ− τ̇

[
Θ0 + µvb − 1

2P2(µ)Π
])

.

Now some simplifications apply so that the second term vanishes and we can set the
lower limit of the integral to zero. Since τ is defined as the scattering optical depth-
integrated from today, the value τ(η0) = 0. On the other hand, τ(ηinit) will be large.
Thus the solution is

Θ(k, µ, η0) =

� η0

0
dηS(k, µ, η)eikµ(η−η0)−τ(η). (2.44)

Given that the integrand is given by a source function and an exponential, we can
integrate by parts the terms containing µ so that S does not depend on µ anymore.
In this way we obtain

Θ(k, µ, η0) =

� η0

0
dηS(k, η)eikµ(η−η0)−τ(η). (2.45)

with now S a source function that does not depend on µ. Given the expression of
the temperature anisotropy, we wish to expand in Θl moments. To do so we expand
using Legendre Polynomials Pl(µ) and integrate over µ. Remembering that

� 1

−1

dµ

2
Pl(µ)e

ikµ(η−ηo) =
1

(−1)l
jl[k(η − η0)] (2.46)

with jl a spherical Bessel function, we obtain an expansion of Θl in terms of Bessel
functions. To weigh the contribution of the terms, it is important to introduce the
so-called visibility function

g(η) = −τ̇ e−τ(η)

� η0

0
dηg(η) = 1 (2.47)

which accounts for the probability of a photon last scattering at a time η. Introduc-
ing this function in the source function, we obtain:
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S(k, η) ≈ g(η)[Θ0(k, η) + Ψ(k, η)] +
i

k

d

dη
[vb(k, η)g(η)] + e−τ [Ψ̇(k,η)+Φ̇(k,η)] (2.48)

With the strength of this function, we can integrate over η. When integrating, we
can see that the first two terms are dominant and the third is only weighted by e−τ ,
so that the terms contribute only to the case τ ≤ 1, so after recombination. Given
that the visibility function is sharply peaked we can treat it as a δ-function and
evaluate the first two terms at the time of recombination. However, this approxi-
mation is made only to show a more concise analytical result: the full computation
is considered in the thesis for the numerical computations. Anyway we obtain the
final expression:

Θl (k, η0) ≃[Θ0 (k, η∗) + Ψ (k, η∗)] jl [k (η0 − η∗)]

+ 3Θ1 (k, η∗)
(
jl−1 [k (η0 − η∗)]− (l + 1)

jl [k (η0 − η∗)]
k (η0 − η∗)

)
+

� η0

0
dηe−τ

[
Ψ̇(k, η) + Φ̇(k, η)

]
jl [k (η0 − η)]

(2.49)

The second term is obtained through the exploitation of spherical Bessel functions
properties and by the fact that vb ≈ −3iΘ1. The expression obtained is the fun-
damental equation to study CMB anisotropies. We can see that contributions are
given by monopole and dipole terms at recombination and a term integrated along
the path of photons from recombination to today.

� The monopole term is given by the combination of Θ0+Ψ of the temperature
anisotropy and gravitational redshift. Intuitively, the contribution of the po-
tential is given by the fact that the photons that we see today had to emerge
from potential wells at recombination. This contribution shows acoustic oscil-
lations (which will see later in detail), whose behavior is at first order described
by a tight-coupling solution.

� The Doppler-shift contribution 3Θ1 shows the same acoustic oscillations but
out of phase. In addition, this contribution is negligible on the larger scales

� These last corrections, encoded in the last line, are called integrated Sachs-
Wolfe effects. These are due to the time evolution of gravitational potentials
around recombination and at late times. Unlike the first two, it is an integrated
contribution.

At this point, it is useful to introduce the power spectrum for the CMB. Anisotropies
in the CMB can also be distinguished according to the scale, specifically on large
scales and on smaller scales where causal physics comes into play. The anisotropy
terms that we have found will have different effects according to the scale, but it is
useful to recast them in terms of the angular power spectrum.
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2.5.2 The angular power spectrum

The generic temperature perturbation we have introduced when considering the
CMB radiation field

T (x, p̂, η) = T (η)(1 + Θ(x, p̂, η)) (2.50)

has to be related to the anisotropy pattern we observe today (x0, η0). Thus, the
temperature change is set by p̂ and hence we have to map the direction of the in-
coming photons. The standard procedure is to use polar coordinates when describing
incoming directions on the sky map. Specifically, the temperature perturbation is
expanded in spherical harmonics:

Θ(x, p̂, η) =
∞∑
l=1

l∑
m=−l

alm(x, η)Ylm(p̂) (2.51)

All the information is contained in the (x⃗, η)-dependent amplitudes alm. We can
exploit the orthogonality property of spherical harmonics to recover such amplitudes:

�
dΩYlm(p̂)Y ∗

l′m′(p̂) = δll′δmm′ (2.52)

thus obtaining

alm(x, p̂) =

�
d3k

(2π)3
eikx

�
dΩY ∗

lm(p̂)Θ(x, p̂, η). (2.53)

As initially stated we are interested in the Θ(x, p̂, η). The amplitudes alm provide
us the link we need if we consider its square and the expectation value since they
can be related to their counterpart in Θs. However ⟨Θ(k, p̂)Θ∗(k′, p̂′)⟩ accounts for
two phenomena: the initial values of the perturbation (which is randomly given via
inflation from a Gaussian field) and the deterministic evolution into anisotropies.
To take into account this fact, we can introduce the ratio:

T (k, p̂) =
Θ(k, p̂, η)

R(k)
(2.54)

where R is the primordial curvature perturbation that does not depend on p̂. Now,

⟨Θ(k, p̂)Θ∗(k′, p̂′)⟩ = ⟨R(k)R∗(k′)⟩T (k, p̂)T ∗(k′, p̂)

= (2π)3δ
(3)
D (k − k′)PR(k)T (k, p̂)T ∗(k′, p̂)

(2.55)

where we used the definition of the power spectrum of curvature perturbations. We
can now define the variance of the alm

Clδll′δmm′ = ⟨alma∗l′m′⟩ (2.56)

and inserting (2.53) we can exploit the deltas:

Cl =

�
d3k

(2π)3
PR(k)

�
dΩ

�
dΩ′Y ∗

lm(p̂)Ylm(p̂′)T (k, µ)T ∗(k, µ′) (2.57)
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which we can relate to the Θl moments by expanding in terms of Legendre Polyno-
mials, leaving:

Cl =

�
d3k

(2π)3
PR(k)

�
dΩ

�
dΩ′Y ∗

lm(p̂)Ylm(p̂′)

×
∑
l′l′′

(−i)l′(i)l′′(2l′ + 1)(2l′′ + 1)Pl′(µ)Pl′′(µ
′)T (k, µ)T ∗(k, µ′).

(2.58)

We can now simplify the expression since the two angular integrals can be shown to
be identical and nonzero only if l = l′ = l′′. In such case:�

dΩYlm(p̂)Pl′(µ) =
4π

2l + 1
Ylm(k̂)δll′ (2.59)

then the integration over the angular part of d3k is simply over |Ylm|2 which is 1.
Thus leaving:

Cl =
2

π

� inf

0
dkk2PR(k)|Tl(k)|2. (2.60)

Then, this expression shows how Cl is the integral over all the Fourier modes of the
variance of Θl. We can obtain the anisotropy spectrum today by combining Eq.
(2.60) with Eq. (2.49). Let’s use the power spectrum to describe anisotropies.

2.5.3 Large-scale anisotropies

The large-angle CMB anisotropies are determined by extremely large-scale modes
that have enetered our horizon only recently. Therefore, on the largest scales we can
consider the super-horizon regime (kη << 1) so that Θ̇ = Φ̇ is valid and neglect the
dipole contribution. When integrating, the constant is set by the initial conditions
given by the inflationary scenario for which 2Θ0(ηini) = Φ(ηini). Since recombination
takes place long after the epoch of equality, the observed anisotropy (Θ0 + Ψ) can
be expressed in terms of Φ or the curvature perturbation.

(Θ0 +Ψ)(k, η∗) =
1

3
Φ(k, η∗) =

1

5
R(k) (2.61)

which expression in terms of R is useful when computing the anisotropy spec-
trum. This is the so-called Sachs Wolfe effect (Sachs and Wolfe 1967). To get
the anisotropy spectrum we have to plug this expression in the monopole term and
integrate (2.60), leaving

CSW
l ≈ 2

25

∞∑
0

dkk2PR(k)|jl[k(η0 − η∗)]|2. (2.62)

We can plug Eq. (2.35) into the expression and compute it analytically in terms
of the gamma function. If the spectrum is invariant, ns = 1, simplifications occur,
resulting in

l(l + 1)CSW
l =

8

25
As (2.63)

which is a constant. Intuitively, the Cl is related to the three-dimensional power
spectrum which is a constant itself if ns = 1. We can see in Fig. 2.4 that the
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deviation from a constant is due to the ISW effect and the dipole term, the latter
being nonnegligible at higher l.

Figure 2.4: Large-scale CMB power spectrum as measured by Planck (P. Collaboration,
Aghanim, Akrami, Ashdown, Aumont, Baccigalupi, M. Ballardini, Banday, Barreiro,

N. Bartolo, Basak, Battye, et al. 2020), and fiducial ΛCDM prediction (solid). The dotted
line shows the scale-invariant Sachs–Wolfe plateau predicted by (2.63). Image from

Modern Cosmology (2021).
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FIGURE 9.11 Large-scale CMB power spectrum as measured by Planck (Planck Collaboration, 2018b), and fiducial
!CDM prediction (solid). The dotted line shows the scale-invariant Sachs–Wolfe plateau predicted by Eq. (9.80).

of ns − 1, this scaling is, however, masked by the other contributions mentioned above. To
get constraints on the spectral index as well as the amplitude, the data have to span a larger
range in l. That is, we have to include anisotropies on smaller scales.

9.6.2 Acoustic peaks

On smaller scales, i.e. those that are inside the horizon at recombination, the anisotropy
spectrum depends on all terms in Eq. (9.59): the monopole "0, the dipole "1, and the in-
tegrated Sachs–Wolfe effect, ∝

∫
dη($ − %)′. Fig. 9.12 shows all these contributions to the

angular power spectrum. Let us consider each in turn.
The monopole at recombination ("0 + $)(k,η∗) free-streams to us today, creating

anisotropies on angular scales l ∼ kη0. This is what we expected back in Fig. 9.5, showed
to be true in Eq. (9.59), and what we can now see directly in Fig. 9.12. There are two in-
teresting features of the quantitative aspect of the free-streaming process. First, note that
the “zeros” in the monopole spectrum, here at l ∼ 70, 400, 650, and 1000, are smoothed
out because many Fourier modes contribute to anisotropy on a given angular scale. If only
the k = 400/η0 modes contributed to the anisotropy at l = 400, then C(400) would really
be zero. But many nonzero modes, with wavenumbers different from 400/η0, contribute.
These change the zero to a trough in the C(l) spectrum.

The second feature of free-streaming worth noticing is that our initial estimate of
the peak positions is not exactly right. Inhomogeneity on scale k does not show up as
anisotropy precisely on angular scale l = kη0. Rather, there is a noticeable shift, suggest-
ing that a given k-mode contributes to slightly smaller l than we anticipated. This shift
partially arises from the spherical Bessel function in Eq. (9.59). As shown in Fig. 9.13, the
peak in the Bessel function comes not when l = kη0, but rather at slightly smaller values of
l. A better approximation for the first peak position is lpk & 0.75πη0/rs .

The dipole at recombination is smaller than the monopole and out of phase with it. The
dashed line in Fig. 9.12 shows that the effect of adding it is to raise the overall anisotropy

2.5.4 Small scales anisotropies

On small scales, where causal physics comes into play, all terms in Eq. (2.49)
contribute to the anisotropies spectrum. Specifically, we can distinguish two phases
in which the terms play a role. Before the photon decoupling, the primordial fluid has
an established equilibrium when the gravitational potential is balanced by radiation
pressure. The result of this effect is acoustic oscillations and diffusion damping.
After recombination, the ISW contribution has to be taken into account, since it is
an anisotropy that arises during the path from recombination to us. In fact, it is an
integrated contribution.

Acoustic Peaks

Before recombination, the tightly coupled limit applies (τ ≫ 1) and the only non-
negligible moments are the monopole and dipole. In this sense, the photons behave
like a fluid, characterized by density and velocity. It is possible to find a first-order
differential equation, one for each moment. If combined, the result is a second-order



32 CHAPTER 2. EINSTEIN-BOLTZMANN EQUATIONS

differential equation, governing the soundwaves in the primordial fluid.

Θ′′
0 ++

a′

a

R

1 +R
Θ′

0 + k2c2sΘ0 = −k
2

3
Ψ +

a′

a

R

1 +R
Φ′ +Φ′′ (2.64)

where we define the baryon-to-photon energy ratio R and the sound speed of the
fluid cs

R =
rρb
4ργ

cs(η) =

√
1

3(1 +R)
. (2.65)

We can see that the sound speed is lower due to the presence of baryons and deter-
mines the period of oscillations. We will skip the procedure in solving the differential
equation, but it is necessary to point out that the solutions of monopole and dipole
are out of phase from each other and this mismatch has important implications in the
anisotropy spectrum: the dipole contributions lower the prominence of the peaks by
making the roughs less pronounced. Another feature is that they add incoherently,
implying the less importance of the dipole term.

Diffusion Damping

Diffusion damping is due to the finiteness of the mean free path of the photons before
scattering, and it is relevant on very small scales. In such a case, higher multiple
moments, like the quadrupole, have to be considered. We can see it as a correction
to the treatment of baryons and photons as a fluid.

Integrated Sachs-Wolfe effect

The last term in (2.49) is the so-called integrated Sachs-Wolfe and it arises after the
last scattering when the photons free stream toward the observer.

ΘISW
l (k, η0) ≃

� η0

ηrec

dηe−τ
[
Φ′(k, η) + Ψ′(k, η)

]
jl [k (η0 − η)] (2.66)

where the lower limit of the integration can be set to the time of recombination,
which we assume to be instantaneous. It is important to point out that ΘISW

l

depends on the derivatives of the gravitational potential. Therefore if these do not
vary in time, the anisotropy effect vanishes. This is a peculiar case during a matter-
dominated Universe but we can identify two periods of the Universe evolution during
which the ISW contribution is nonnegligible:

� early ISW: The transition from radiation dominated to matter dominated is
not abrupt and an ISW effect occurs right after recombination. In this case,
the largest effect is typically on scales of the horizon at the time at which the
potential evolves. The early ISW effect adds coherently to the monopole.

� late ISW: the effect occurs when potentials decay during the dark energy
epoch at recent times. This effect is restricted to the largest scales and barely
visible. The most direct way to detect the effect is to cross-correlate the CMB
temperature anisotropies with angular galaxy correlations, as did in this thesis
and which we will se in detail later.



CHAPTER 3

Alternative theories of gravity

As we have seen in the previous chapters, the ΛCDM model provides a strong
description of the Universe but might be deemed to have some flaws. The Λ value is
yet to be explained and the H0 and σ8 tensions still make cosmologists scratch their
heads. So far, we have always talked about the cosmological constant Λ, with the
one free parameter being the energy density associated with it. However, this is only
the simplest possibility for what dark energy could be, and introducing a constant
carries its own set of problems. However, there are other models that can come
to our aid which include cases where gravity is not strictly described by Einstein’s
General Relativity in the ΛCDM. In this particular work we consider an Effective
Field Theory (EFT) approach (Bloomfield et al. 2013) to the description of modified
gravity (MG) and DE, since the EFT framework has proved to be able to establish
a robust and economic way to connect data to fundamental theory. Being succesful
in many other areas of physics, such as in particle physics and condensed matter
systems, this particular line of work found its first application in cosmology to both
inflation and late-time acceleration. In this chapter we introduce the principles
behind building alternative cosmological models, we review the EFT approach to
Modified Gravity and Dark Energy, and finally describe the models considered in
this thesis.

3.1 Dark Energy and Modified Gravity models

The ΛCDM is remarkably robust and Einstein’s description of gravity (Einstein
1917) is unique where the gravitational force is mediated by a single rank-2 tensor
field. The simplest scenario to consider when one wants to describe gravity differ-
ently, is to add an extra scalar field. Of course, the effects of additional fields need
to be suppressed at scales where GR is accurately tested, like in the Solar System.
This is achieved through the so called screening mechanisms, like chameleon or Vain-
shtein mechanisms (see D. H. Weinberg et al. (2013) or see Joyce et al. (2015) for a
DE/MG review structured around screening mechanisms). We see now the simplest

33



34 CHAPTER 3. ALTERNATIVE THEORIES OF GRAVITY

examples of how another theory of gravity can be considered. The principles driving
the examples are the fundamental basics for the models we are going to consider.
Firstly we consider models where Dark Energy is not a simple constant anymore (see
reviews Copeland et al. (2006), Mortonson et al. (2013)) and then a simple example
of modification of gravity (Clifton et al. 2012).

3.1.1 Dynamical Dark Energy

The Λ-constant corresponds to a fluid with a constant equation of state w = −1.
We can broaden our comprehension by considering a situation in which the equation
of state of DE changes with time. One possibility is to consider the cosmological
constant to be zero, and the cosmic acceleration to be due to the potential of a
scalar field. We thus introduce a new degree of freedom to model the dark energy,
similarly to what has been done when modeling the inflationary period. These
dynamical dark energy models are the simplest modifications of ΛCDM and are
called quintessence models (Tsujikawa 2013). Quintessence is, then, described by a
scalar field ϕ minimally coupled to gravity and with a potential V (ϕ) that leads to
late time acceleration. The action for Quintessence is:

S =

�
d4x

√−g
(

R

16πG
− 1

2
gµν∂µ∂νϕ− V (ϕ)

)
+ Sm(ψm, gµν), (3.1)

where Sm is the action for the matter fields. In a FRW spatially flat spacetime
we can vary the action with repspect to ϕ or the metric, obtaining respectively the
equation of motion for the scalar field and the energy tensor:

ϕ̈+ 3Hϕ̇+
dV

dϕ
= 0 Tµν = ∂µϕ∂νϕ− gµν

[
1

2
gαβ∂αϕ∂βϕ+ V (ϕ)

]
(3.2)

Then, considering the stress-energy tensor components1:

ρ =− T 0
0 =

1

2
ϕ̇2 + V (ϕ) p =T i

i =
1

2
ϕ̇2 − V (ϕ) (3.3)

which we can insert in the bacgrkound equations and obtain:

H2 =
8πG

3

[
1

2
ϕ̇2 + V (ϕ) + ρm

]
(3.4)

Ḣ = −8πG

3

[
ϕ̇2 + (1 + wm)ρm

]
(3.5)

from which we can see that the Universe accelerates for a flat potential ϕ̇ < V (ϕ).
We also recover the equation of state for the field

wϕ(t) =
Pϕ

ρϕ
=

1
2 ϕ̇− V (ϕ)
1
2 ϕ̇+ V (ϕ)

(3.6)

and we can now see the dependence on time. The scenario obtained is similar
to the inflationary scenario, with the single field slow-roll condition. Importantly,

1The indeces of the Tensor T are not summed
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quintessence fields must be weakly coupled to matter, otherwise the scalar field would
mediate a fifth force. Precisely, for generic potentials the requisite flatness implies
that excitations of the field are nearly massless, mϕ ≈

√
V ′′(ϕ)/2 ≤ H0 ∼ 10−33eV .

To provide the necessary energy density, the present value of the potential must
be approximately V (ϕ) ∼ (10−3eV )4, so the field itself will typically be of order
ϕ0 ∼ Mpl. The exchange of very light fields gives rise to forces of very long range,
so it is interesting to consider the direct interaction of the quintessence field to or-
dinary matter (Carroll 1998). However, the absence of observable interactions of
quintessence with the fields of the standard model implies the existence of a symme-
try which suppresses such couplings. Unless there is an underlying symmetry that
suppresses these couplings, their values shall be very small, in order to satisfy tests
of gravity; this leads to another fine-tuning requirement apart from that necessary
to make the cosmological constant itself small. A different approach is to describe
gravity in a different way, leading to modified gravity models.

3.1.2 Modified Gravity

On cosmological scales, gravity is the dominant force, driving the evolution of the
Universe. It is natural to ask oneself if the gravitational interaction at the relevant
scales is sufficiently adequate or if a modification of it would describe the physics
better. (Jain et al. 2013, Joyce et al. 2015, Brax, Casas, et al. 2021) In order to
achieve a new theory of gravity, we introduce a modification of the Einstein-Hilbert
term (for instance introducing f(R) like in Sotiriou and Faraoni (2010)) or a new
coupling with, for instance, a scalar field. Introducing a scalar field is the example
we will adopt since it is the foundation for the models we are going to consider.
Specifically, we introduce now scalar-tensor theories, which are one among the most
established and well studied alternative theories of gravity. Let us consider the
action:

S =

�
d4x

√−g (f(ϕ)MplR−A(ϕ)gµν∇µϕ∇νϕ− 2Λ(ϕ)) + Sm(ψm, A(ϕ)gµν) (3.7)

where f,Λ, A are functions of the scalar field. The A function defines two different
confromal frames in which one can work. If we consider the conformal transformation

A(ϕ)gµν → gµν (3.8)

the resulting frame is characterized by no direct interaction between the scalar field
and matter fields. This frame is referred to as the Jordan frame, while its counterpart
is called Einstein frame. In the Jordan frame test particles follow geodesics of the
metric to which they are coupled. If we then move to the Jordan frame, the resulting
Lagrangian is:

S =

�
d4x

√−g
(
ϕMplR− ω(ϕ)

ϕ
gµν∇µϕ∇νϕ− 2Λ(ϕ)

)
+ Sm(ψm, gµν) (3.9)

where we have set f(ϕ) → ϕ without loss of generality and introduced ω as another
generic function. ω(ϕ) is an arbitrary function and studying its limits it is possi-
ble to reduce the theory to General Relativity. Varying the action with respect to
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the metric and the scalar field we obtain the equation of motion for this particu-
lar theory. While being very different from Einstein equations, we have to apply
the costraints that on smaller scales, like in the Solar System, it is necessary to
recover General Relativity. Therefore, different so called screening mechanisms can
be introduced (for a review: Joyce et al. 2015), according to the theory involved.
For instance, screening could be provided by regions with strong Newtonian poten-
tials. In this case, matter density contribution appears in the effective potential
to which the scalar field responds. Thus, a careful choice of the gravitational po-
tential can allow for screening. Two realizations of this kind of screening are the
chameleon (Khoury and Weltman 2004b, Khoury and Weltman 2004a) and sym-
metron mechanisms (Hinterbichler and Khoury 2010). Another kind of screening
can be identified in the derivatives of the scalar field. An example of a theory of
this type is K-mouflage (Babichev et al. 2009), but it can also be present in generic
models with kinetic interactions (Brax, Burrage, et al. 2013). These are mechanisms
which shut off the fifth force when the local gravitational acceleration, a⃗ = −∇⃗Φ,
exceeds some critical value. kinetic screening Armendariz-Picon et al. 2001 relies on
the first derivatives, while the Vainshtein effect (Vainshtein 1972) involves higher
order derivatives.

3.2 The Effective Field Theory approach

As a matter of fact, Nature comes in all kind of sizes. Galaxies, planets, molecules,
atoms and nuclei have all different sizes, all held togheter by different binding ener-
gies. Luckily, we do not need to have a all-comprehensive description to understand
how Nature works in a particular scale. The mathematical framework we can use
shares the same pecularity of Nature: it automatically limits the role which smaller
scales come into play when describing larger objects. This property has many practi-
cal applications as it let us oversee and neglect certain contributions when compared
to the scale at hand. It is possible to find a systematic identification when different
scales enter into calculations, providing a remarkable tool when analysing two dif-
ferent scales, l << L. In these cases it is usually profitable to expand quantities in
the powers of the small parameter, l/L. This is the general gist but eventually the
building blocks of an Effective Field Theory can be boiled down to a few and simple
rules: specify the symmetries of the theory, identify the low energy fields, and write
down all the different operators in the action consistent within the symmetry. As we
said, the power of the EFT lies in the fact that there’s some systematic expansion
over some small parameter (often by derivatives) which tells us what terms we can
ignore to a given order of accuracy. As the name suggests, EFTs are only effective
descriptions, valid only in the range prescribed, usually identified by a specific scale
called cutoff. While in the vailidity range, it is called infrared theory, and beyond
this energy scale, the theory stops being predictive and new elements need to be
introduced. Such high-energy parent theory is called ultraviolet (UV) theory.
This approach was firstly introduced in condensed matter physics and in parti-
cle physics theory but over the last decade the theoretical cosmology community
has increasingly shifted towards the viewpoint that the effective field theory (EFT)
framework offers the most promising and robust arena in which to explore extensions
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of ΛCDM. When exploring outside the range of General Relativity we get to what
we call modified gravity, but we are forced to face the fact that any infrared theory
departing from GR implies additional degrees of freedom, as a consequence of Love-
lock’s theorem (Lovelock 1971, Lovelock 1972). To put it simply, Lovelock’s theorem
says that from a local gravitational action which contains only second derivatives of
the four-dimensional spacetime metric, then the only possible equations of motion
are the Einstein field equations. Therefore, the simplest modification is to intro-
duce an extra scalar degree of freedom to General Relativity, and this degree can be
thought as a Goldstone field of broken time translations in an expanding Universe.
On the other hand spatial diffemorphisms are preserved. This peculiar situation, of
an expanding Universe, works well with the choice of the so called unitary gauge (i.e.
the guage where the fluctuations of the scalar field δϕ = 0, see below for details)
since it allows us to write down the most general action for cosmological perturba-
tions, without relying on any specific model, and thus being e good description of
modified gravity. This procedure was first applied to inflation (Cheung et al. 2008)
but eventually spread to DE/MG models (Gubitosi et al. 2013, Jérôme Gleyzes,
Langlois, and Vernizzi 2014, Frusciante and Perenon 2020). Considering the latter,
not only a vast amount of DE/MG models can be recovered from the general action,
but also it is possible to recover the so called ”Hordenski theories” (Horndeski 1974),
by requiring that the linear perturbation equations contain derivatives up to second
order. In addition, from this general EFT, new scalar-tensor theories have sparked
(GLVP for instance in Jérôme Gleyzes, Langlois, and Vernizzi 2014); moreover, the
EFT approach encodes theories such as Horava’s gravity (Horava 2009), degener-
ate higher-order scalar-tensor (DHOST) theories (Langlois and Noui 2016, Jérôme
Gleyzes, Langlois, Piazza, et al. 2015b), massive bi-gravity (Hassan and Rosen 2012),
up to the point that there’s been progress even in extending the framework to in-
clude non-linear perturbative effects (Bellini, Jimenez, et al. 2015, Bellini, Nicola
Bartolo, et al. 2012). The idea behind building an EFT for cosmological models is
to apply this EFT directly to cosmological perturbations, by treating them as Gold-
stone bosons of spontaneously broken time-translations. The analogy is with the
spontaneous breaking of the SU(2)×U(1) gauge symmetry in the Standard Model.
In the unitary gauge the would-be Goldston bosons are “eaten” by the longitudinal
degrees of freedom of W± and Z. While loosing manifest gauge invariance, one can
deal directly, at the EFT level, with the observable low energy degrees of freedom:
three massive vector bosons and the Higgs particle. The use of unitary gauge brings
into cosmology similar advantages. Historically, the approach to EFT for DE/MG
(from now on simply DE), followed to basic steps:

� It was assumed the validity of the weak equivalence principle (WEP) and
therefore the existence of a metric gµν coupled to a matter field ψ through the
action S[gµν , ψ];

� The action was written in the unitary gauge, so that the most general gravita-
tional action for a metric compatible with the symmetries of unbroken spatial
diffeomorphisms is recovered.

The first assumption makes it natural to work in the Jordan frame since it is uni-
vocally defined by the coupling to matter, once WEP is postulated, and it is more
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directly connected to observations. While the Jordan frame is still the standard
frame where the interpretation of cosmological meausrements are performed, the
WEP assumption can be relaxed considering a frame where the gravitational in-
teraction between the new DoF and the matter fields is explicit. However, since
the aim of this section is to introduce the EFT, it is convenient to keep the WEP
assumption and treat the direct couplings later on. The EFT action is constructed
in the unitary gauge and written in terms of relevant operators compatible with
residual symmetries. These operators are expressed in powers of the number of per-
turbations and spatial derivatives. Let’s start by describing the background and the
unitary gauge.

3.2.1 The Background and the Unitary gauge

In this framework, the background is assumed to be homogeneous and isotropic, so
the Friedmann-Lemaitre-Robertson-Walker (FLRW) line element is considered:

ds2 = −dt2 + a(t)2
(

dr2

1− kr2
+ r2dΩ2

)
(3.10)

where a(t) is the sacale factor, t is the cosmic time, k is the spatial curvature constant
and dΩ2 is the solid angle.
Given this background, let’s see what are the rules for writing down the most general
Lagrangian in the unitary gauge. The unitary gauge is also known as the velocity
orthogonal gauge. It corresponds to the choice of gauge in which the perturbation of
the extra scalar DoF, responsible of the spontaneous symmetry breaking, vanishes.
Consider a scalar field ϕ(t, x) and its decomposition in a perturbed FLRW metric
as follows:

ϕ(t, x⃗) = ˜ϕ(t) + δϕ(t, x⃗) (3.11)

where x⃗ are the spatial coordinates, ˜ϕ(t) is the homogeneus background value of
the scalar field, and δϕ is the perturbation. The unitary gauge is the one in which
the time coordinate t is chosen so that the perturbation vanishes, so the additional
DoF does not explicitly appear in the action. The choice is then to set t = t(ϕ).
With this choice ϕ defines a preferred time slicing where ϕ = const and constant
time hypersurfaces coincide with constant scalar field hypersurfaces. We can now
understand the name velocity orthogonal gauge: the gradient of the scalar field is
orthogonal to the constant time hypersurfaces. The choice of the unitary gauge im-
plies that the action that we will recover will not show any explicit dependence on
the scalar field, so that the EFT actions will be built on geometrical quantities and
the metric only. In addition, the unitary gauge breaks the full diffeomorphisms in-
variance leaving unbroken the subgroup of time-dependent spatial diffeomorphisms.
One can therefore build various terms:

� terms which are invariant under unbroken diffeomorphisms (such as polynomi-
als of the Riemann tensor and of its covariant derivatives, contracred to give
a scalar)

� The gradient ∂µϕ becomes δ0µ in the unitary gauge.
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� It is useful to define a unit vector perpendicular to surfaces of constant t̃

nµ =
∂µϕ√

−gµν∂µϕ∂νϕ
= − ∂µϕ√

−(∂µϕ)2
=

δ0µ√
−g00

(3.12)

This allows to define the induced spatial metric on sufaces of contant ϕ. Every
tensor can be projected on these surfaces using hµν = gµν + nµnν .

� Additional possibilities will come from the covariant derivatives of ∂µϕ or
equivalently from the covariant derivatives of nµ: the derivative acting on
the normalization factor just gives terms which are covariant on their own and
can be used in the unitary gauge Lagrangian. The covariant derivative of nν
projected on the surfaces of constant ϕ gives the extrinsic curvature of these
surfaces

Kµν = hσµ∇σnν . (3.13)

The index ν is already projected on the surface because nν∇σnν = 1
2∇σ(n

νnν) =
0. The covariant derivative of nν perpendicular to the surface can be rewritten
as

nσ∇σnν = −1

2
(−g00)−1hµν∂µ(−g00). (3.14)

Therefore all covariant derivatives can be rewritten in terms of Kµν and g00.

� A generic function of ϕ becomes f(t) in the unitary gauge so that we can use
generic functions of time in front of any terms of the action.

Considering in particular this last point, the symmetry of the action is still satisfied
if each operator is accompanied by a time dependent function. These functions
of time which scale with the perturbations on the FRLW background are called
EFT functions. Unlike standard covariant approaches, the EFT action is built on a
perturbative fashion. Thus, operators, let’s call one B, will be written as B(t, xi) =
B̃(t) + δB(t, xi). This perturbation scheme enables us to write an action up to any
order. In a cosmological context one usually stops at linear order perturbations. We
can conclude that the most generic action in the unitary gauge is given by

S =

�
d4x

√−gF (Rµνρσ, g
00,Kµν ,∇µ, t), (3.15)

where all the free indices inside the function F must be upper 0’s. Before presenting
the full actions, it is better to spend few words on the validity and shortcomings
of this EFT framework. If we consider the regime of applicability of such action, it
spans from the largest cosmological scales up to the ultraviolet cut-off. If we con-
sider a linear regime, the cut-off, shall it be Mcut, must be larger than the Hubble
parameter at present day, H0, so that the cosmological background and observ-
able perturbation modes can be described. However the linear framework can be
expanded to mildly non-linear scales by including appropriate operators and EFT
functions. Both the linear and non-linear regimes are regulated by strong coupling
scale of dark energy and the screening effect. The former corresponds to the scale at
which non-linear interactions of the EFT exit perturbative unitarity, thus setting a
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cut-off for predictability and where UV completition becomes necessary. The latter
is associated to the non-linear scale of the extra scalar field, but if the screening is
weak, the linear EFT is still valid.
Of the full action there are several versions and notations (Gubitosi et al. 2013,
Bloomfield et al. 2013, Jerome Gleyzes et al. 2013, Piazza et al. 2014, B. Hu et al.
2017, Tsujikawa 2015). We report here the action up to second order in perturba-
tions, using the notation as presented for the first time. This EFT actions reads
(Gubitosi et al. 2013):

S =
1

2

�
d4x

√−g
[
M2

plf(t)R− 2Λ(t)− 2c(t)g00

+M4
2 (t)

(
δg00

)2 − M̄3
1 (t)δg

00δK − M̄2
2 (t)δK

2

−M2
3 (t)δK

ν
µδK

µ
ν + µ21(t)δg

00δR+m2
2(t)h

µν∂µg
00∂νg

00

+ . . .] + Sm [gµν , χm]

(3.16)

In this equation: Mpl is the Planck Mass; g is the determinant of the metric; g00 =
−1 + δg00; δR and δRµν are the perturbations of the Ricci scalar and tensor; Sm is
the matter action for all the matter fields χm; f,Λ, c,Mi, M̄i, m̄i,mi, µi are the so
called EFT functions (Gubitosi et al. 2013). In the first line of the equations we read
the operators contributing both to the background evolution of the Universe and the
linear perturbation equations, as we will see later. Therefore, the functions f,Λ, c
are known as background EFT functions, while operators in the second and third
line enter only in the perturbation equations. The EFT function M4

2 is sourced
by a non-standard kinetic term of the scalar field, M̄3

1 is sourced by the mixing
between the metric and the scalar field, M̄2

2 is related to a non-standard speed of
gravitational waves, while all the other functions describe deviations from Hordenski
models. We omitt second order operators or higher order terms, which are hinted
in the ellipsis in the third line. The advantage of this action is that it can be
used both independently, without assuming any model, or it can be reshaped so
that specific models can be recovered (for a review:Frusciante, Peirone, et al. 2020).
The first approach is called pure EFT approach and it consists in selecting all the
EFT functions or a sub-set of them to identify general features of gravity without
assuming any specific model. On the other hand, it is possible to encode specific
models in the EFT through a mapping procedure, which will be explained later.
Other than the possibility of studying one specific model in detail, the advantage
of this procedure can be exploited on the computational side too. We will see it
better later on, but the idea is that it is faster to compute results for the general
EFT action and then map them to specific models, rather then set up different
computations, one for each model considered. The EFT action obtained is written
in the unitary gauge which is useful from a theoretical standopoint if we want to
identify the relevant operators at large scales. In addition, as said, it allows to select
sub-classes of models to study, yet it is not convenient if we want to look at the
evolution of the extra scalar field and the metric perturbations separately. In the
unitary gauge, the extra degree of freedom is hidden in the metric and it is possible to
make such field appear through the Stuckelber trick (Gubitosi et al. 2013). Without
going into detail, the idea is to restore the full diffeomorphism invariance forcing
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back the broken gauge transformation, imposing

t→ t+ π(xµ) (3.17)

where π is the perturbation of the scalar field. Time translation is restored and
induces time dependent functions in the action. Recasting the action while keeping
this restored transformation in mind, it is possible to obtain the dynamical equation
for the extra degree of freedom. Considering once again the unitary gauge action, it
is interesting now to see what background solutions can be obtained from a model
independent EFT.

3.2.2 Modified Friedmann Equations

In order to obtain the modified background Friedmann equations for MG/DE mod-
els we vary the action with respect to g00. We can intuitively predict that these
equations will depend on the EFT characterizing the background evolution (f,Λ, c).
We get:

c =M2
plf

(
−Ḣ +

k

a2
− 1

2

f̈

f
+
H

2

ḟ

f

)
− 1

2
(ρm + pm) (3.18)

Λ =M2
plf

(
Ḣ + 2

k

a2
+

1

2

f̈

f
+

5H

2

ḟ

f
+ 3H2

)
− 1

2
(ρm − pm) (3.19)

As we know, the set of equations is complete only if we include the the matter
continuity equation, here assumed to be a perfect fluid:

ρ̇m + 3H(ρm + pm) = 0. (3.20)

We can rewrite ρDE and pDE in terms of f,Λ, c:
The modified Friedmann equations can be rewritten following the fluid description:

H2 +
k

a2
=

1

3Mplf
(ρm + ρDE) (3.21)

Ḣ − k

a2
= − 1

2Mplf
(ρm + pm + ρDE + pDE), (3.22)

If we now include a “dark fluid” (ρDE + pDE) with

ρDE = c+ Λ− 3HḟM2
pl (3.23)

pDE = c− Λ + 2HḟM2
pl + f̈M2

pl, (3.24)

we can recover an equation governing the behaviour of ρDE :

ρ̇DE + 3H(ρDE + pDE) = 3M2
plḟ(H

2 +
k

a2
) (3.25)

These results are completely general and not related to a specific model. The equa-
tions have 4 unknowns: the background EFT functions and the expansion history
H. Therefore 2 of these must be fixed and the remaining can be obtained through
the equations. Which to fix have non trivial repercussions: for instance it is possible
to fix H to that of ΛCDM but this aslo fixes strong hypotheses on the behaviour of
the underlying gravity model.
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3.2.3 Stability conditions

We have built the general framework in MG models can be embedded. Now we need
to set the theoretical boundaries that such a general approach can have, specifically
pathological instabilities, such as ghosts (Gumrukcuoglu et al. 2016,Carroll et al.
2003,Cline et al. 2004, Sbisà 2015), gradient and tachyionic instabilities (De Felice,
Frusciante, et al. 2017). It is important to assess these possible problems since they
can help constraining the parameter space of specific models while testing gravity
with statistical tools. It could happen that these instabilities could even dominate
over the constraining power of data. Since instabilities are related to the extra scalar
and the matter fields, the latter can contribute to the instability condition. Hence,
there raises the need for a consistent expression for the matter action and the most
appropriate choice until now is the Sorokin-Schutz action (Schutz and Sorkin 1977),
which we mention for completeness. With this matter action, combined with the
EFT action, it is possible to construct an action for scalar modes and one for tensor
modes (i.e. gravitational waves). One can then construct this action S made by
the EFT action (3.16) (SEFT ) and the Sorkin-Schutz one (Sm), S = SEFT + Sm.
The action S then includes one DoF for the gravity sector, namely ζ, defined as the
scalar perturbation of hij

2, as many DoFs, δm,i, as matter fluids considered and the
tensor modes htij . As a result one obtain an action for scalar modes (Ss) and one
for tensor modes (ST ). In Fourier space they have the following compact forms:

Ss =
1

(2π)3

�
d3kdta3

(
˙⃗χtA ˙⃗χ− k2χ⃗tGχ⃗− ˙⃗χtBχ⃗− χ⃗tMχ⃗

)
,

ST =
1

(2π)3

�
d3kdta3

M2(t)

8

[(
ḣTij

)2
− ct(t)

2k
2

a2
(
hTij
)2]

,

(3.26)

where χ⃗t = (ζ, δi) is a dimensionless vector and A,G,B,M are matrices whose
coefficients are combinations of EFT functions and some matrices also manifest a
k dependence. We refer the reader to De Felice, Frusciante, et al. 2017 for further
details and the complete expressions of the matrices. Finally, M2(t) and c2(t) are
respectively the effective Planck mass and the speed of propagations of tensor modes.
In section 3.4 we provide their expressions in terms of EFT functions. Let us see
the three main sources of instability:

� The Ghost instability corresponds to having modes with negative kinetic en-
ergy. In this case the high energy vacuum is unstable to the spontaneous
production of particles(Cline et al. 2004, Carroll et al. 2003). Such a pathol-
ogy is regulated by demanding for a positive kinetic term if only one field is
involved, or a positive kinetic matrix if more fields define the system. In the
scalar modes action such condition corresponds to requiring A to be positive
definite, i.e. all eigenvalues must be strictly positive. The condition is im-
posed only in the high energy regime because the ghost instability generated

2The Anowitt-Deser-Misne (ADM) metric (which we will describe better later) perturba-
tions for the scalar and tensor components reads: ds2 = −(1 + 2δN)dt2 + 2∂iψdtdx

i +
a2

[
(1 + 2ζ)δij + hT

ij

]
dxidxj , where δN(t, x⃗) is the perturbation of the lapse function, ∂ψ(t, x⃗) is

the scalar perturbation of the shift function, ζ(t, x⃗) of the three dimensional metric and hT
ij(t, x⃗)

are the perturbed metric components which contribute to tensor modes.
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in the infrared regime corresponds to the physical phenomenon of the Jean-
s/tachyonic instability (Gumrukcuoglu et al. 2016), which can be controlled
demanding for specific conditions, as we will discuss in the following. Let us
note that in the case of the EFT framework, one has to consider that such
approach is valid up to a certain cutoff scale.

� The Gradient or Laplacian instability corresponds when there is a degree of
freedom characterized by a negative squared speed of its fluctuations. This
means exponentially growing modes and it is manifest in the high-modes
regime. The prescription is to require positive speeds.

� The Tachyonic and Jeans instabilities are the less severe instabilities and they
appear when the DoF has a negative mass squared. In particular, they arises
when the perturbations are not computed about the true vacuum of the theory
(Joyce et al. 2015). In order to account for this pathology, one can look at the
boundedness of the Hamiltonian at low momenta. These conditions are less
explored with respect to the no-ghost/nogradient conditions and a full and
general derivation in the context of the EFT framework is done in De Felice,
Frusciante, et al. 2017. Starting from the above action (3.26), it is possible
to obtain the associated Hamiltonian, namely H(Φi, Φ̇i) of canonical fields Φi,
which in the case of one fluid assumes the form

H
(
Φi, Φ̇i

)
=
a3

2

[
Φ̇2
1 + Φ̇2

2 + µ1(t, k)Φ
2
1 + µ2(t, k)Φ

2
2

]
(3.27)

where µ1 and µ2 are the mass eigenvalues. The Hamiltonian is unbounded
from below if the mass eigenvalues are negative, i.e. µi(t, 0) < 0. Requiring
µi > 0 would result in a too stringent condition. A less severe request, if the
µi are negative, is to demand they satisfy the condition |µi(t, 0)| ≲ H2. In this
case the time scale of evolution of the instability is larger than the Hubble time
so that it will not affect the stability of the system. Such condition will allow
to have µi negative at some times. This behavior is known as Jeans instability
and it is necessary in order for structures to form.

3.2.4 Gravitational couplings

Considering linear scalar perturbations around a FLRW background in the New-
tonian gauge, it can be shown that the Newtonian potential, and intrinsic spatial
curvature, on sub-horizon scales and with the quasi-static approximation (QS)3, are
related to gauge-invariant comoving matter density fluctuations through a modified
Poisson equation and a modified lensing equation (Amendola et al. 2007, Pogosian,
Silvestri, et al. 2010, Bertschinger and Zukin 2008). In scalar-tensor theories, two
new phenomenological functions appear and will play a pivotal role when consid-
ering cosmological probes (Pogosian and Silvestri 2016). The effective gravitational
coupling or the effective Newton constant µ(t, k) characterizes the modifications of
gravity on the clustering of matter. The light deflection parameter Σ(t, k) describes

3The quasi-static approximation prescribes to neglect terms with time derivatives in the Einstein
equations for linear perturbations.
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the modifications of gravity on null geodesics. The mathemtical definition of these
functions comes from the line element in Newtonian gauge (2.1) and are defined in
Fourier space as:

−k
2

a2
Ψ =4πGNµ(t, k)ρm∆m, −k

2

a2
(Ψ + Φ) =8πGNΣ(t, k)ρm∆m (3.28)

where GN is the Newtonian gravitational constant, ∆m = δm+3Hv
k is the comoving

density contrast, being v the irrotational component of the peculiar velocity. Galaxy
number counts and Redshift Space Distortion data are direct probes of µ, while Σ
measures the deviation in the potential Ψ+Φ

2 and can be probed through the lensing
of light. (Amendola et al. 2007) We can define a combination of the two functions,
called gravitational slip parameter :

η(t, k) =
Φ

Ψ
(3.29)

and it is linked to the other two functions through:

Σ(t, k) =
µ(t, k)

2
(1 + η(t, k)). (3.30)

We can see that for Σ = µ = η = 1 we recover General Relativity. It is necessary to
stress that Σ and µ being different from 1 can actually quantify the discrepancy from
General Relativity, thus making these functions optimal probes. Usually the values
of the functions are obtained through numerical computantions, specifically because
analytical forms is generally not possible. However, it is possible to link them to
specific theories in the QS approximation. Numerical computation consider the full
linear perturbative equations of the EFT formulation, making the EFT approach
advantageous. In addition, if we consider the QS limit, algebraic expressions in
terms of EFT functions can be found for these phenomenological functions.

3.2.5 Mapping Procedure

The power of the EFT approach relies on its capability to encompass DE/MGmodels
with a single additional DoF. However, it is still possible to map specific theories in
the EFT language and match the operators with the general EFT action. In this
subsection we will sketch the methodology for a general recipe of mapping and we
will comment on how the procedure allows for writing numerical codes for solving
the coupled Boltzmann-Equations of gravity in a perturbative fashion.
In order to map a theory we can use two paths: one more related to the theory
considered and one totally general. The first consists in starting from the covariant
action of a specific model and impose the unitary gauge. This is the usual procedure
when trying to find the EFT equivalent of the ultraviolet model at play. For instance,
if we consider the simple Quintessence model introduced at the beginning,

LQ ∼ −1

2
(∂ϕ)2 − V (ϕ) → −1

2
˙̄ϕ2g00 − V (ϕ̄) (3.31)
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where we applied the unitary gauge (δϕ = 0). When comparing to Eq. (3.16), we
can see the correspondence of

c(t) =− 1

2
˙̄ϕ2, Λ(t) =V (ϕ̄). (3.32)

While the steps are applicable to any theory, the actual computation is specific and
computations can become convoluted in more complicated cases. Nevertheless it
is a widespread approach and the results are useful from a computational point of
view, which we will explain later. For an in-dept computation, we refer to Kase and
Tsujikawa 2014. The general procedure involves the Anowitt-Deser-Misner (ADM)
formalism (Arnowitt et al. 1959), for which the line element can be written as:

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) (3.33)

where N(t, xi) is the lapse function, N i(t, xi) the shift and hij(t, x
i) is the three

dimensional spatial metric. Using the ADM formalism, a general Lagrangian can be
written as function of operators that depend on geometrical quantities

L(N,R,S,K,Z,U ,Z1,Z2, α1, α2, α3, α4, α5; t) (3.34)

where:
S = KµνK

µν ,Z = RµνRµν ,U = RµνK
µν

Z1 = ∇iR∇iR,Z2 = ∇iRjk∇iRjk, α1 = aiai

α2 = ai∆ai, α3 = R∇ia
i, α4 = ai∆

2ai, α5 = ∆R∇ia
i

(3.35)

where specifically aν is the acceleration of the normal vector and ∆ = ∇∇. The
operators considered describe gravity up to sixth order spatial derivatives. Since we
want to refer to the EFT action (3.16), we only need L(N,R,S,K, α1; t). The next
step is to expand the Lagrangian up to quadratic order when perturbing the opera-
tors and match it with the EFT action written in the ADM formalism. Expanding
the operators, we obtain

SADM =

�
d4x

√−g
[
L̄+ Ḟ + 3HF +

(
LN − Ḟ

)
δN

+

(
Ḟ +

1

2
LNN

)
(δN)2 + LSδKν

µδK
µ
ν +

1

2
A(δK)2

+ BδNδK + CδKδR+ LNRδNδR+ LRδR

+
1

2
LRRδR2 + Lα1∂iδN∂

iδN

]
,

(3.36)

where L̄ is the background expressions, LS the derivative of L with respect to S and
so on. For the others:

A = LKK + 4H2LSS + 4HLSK, B = LKN + 2HLSN
C = LKR + 2HLSR, F = LK + 2HLS, (3.37)

ff we write the EFT action in the ADM formalism. We skip the manipulations
which are based on the application of the Gauss-Codazzi relations (Gourgoulhon
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2007). These are geometrical relations that relate to the extrinsic and intrinsic
curvature:

SEFT =

�
d4x

√−g
{
M2

pl

2
fR+ 3H2M2

plf+ 2ḢM2
plf+ 2M2

plH ḟ+M2
plf̈

+ c− Λ +
[
H ḟM2

pl − 2ḢM2
plf−M2

plf̈ − 2c
]
δN −

(
M2

plḟ+ m̄3
1

)
δKδN

+
1

2

[
M2

plf− M̄2
3

]
δKµ

ν δK
ν
µ − 1

2

[
M2

plf+ M̄2
2

]
(δK)2 + µ21δNδR+[

2ḢM2
plf+ f̈M2

pl −HM2
plḟ+ 3c+ 2M4

2

]
(δN)2 + 4m2

2h
µν∂µδN∂νδ

}
(3.38)

And now we compare the equations and identify the operators (map)

f(t) =
2

M2
pl

LR, c(t) = −1

2

(
LN + Ḟ

)
+
(
HL̇R − L̈R − 2LRḢ

)
,

Λ(t) = −L̄+ Ḟ + 3HF + 2
(
3H2LR + L̈R + 2HL̇R + 2ḢLR

)
+ c,

M̄2
2 (t) = −A− 2LR, M4

2 (t) =
1

2

(
LN +

LNN

2

)
− c

2
,

m̄3
1(t) = −B − 2L̇R, M̄2

3 (t) = −2LS + 2LR,

m2
2(t) =

Lα1

4
, µ21(t) = LNR.

(3.39)

We have just sketched the main steps and results of the procedure, and we refer the
reader for more details and the full computations. A practical example is a clearer
way to show the actual computations: let’s consider then a f(R) theory with the
Lagrangian

Sf =

�
d4x

√−g
M2

pl

2
[R+ f(R)] (3.40)

where f(R) is a general function of the four dimensional Ricci scalar. Following the
prescription, we expand around the background value of the Ricci scalar R̄:

Sf =

�
d4x

√−g
M2

pl

2

{
[1 +

df

dR
(R̄)]R+ f(R̄)− R̄

df

dR
(R̄)

}
(3.41)

Now we use the Gauss-Codazzi relation to write the action in the ADM formalism:

Sf =

�
d4x

√−g
M2

pl

2

{
[1 +

df

dR
(R̄)][R+ S −K2]

+
2

N
ḟRK + f(R̄)− R̄

df

dR
(R̄)

} (3.42)

from which it is possible to identify

f(t) = 1 +
df

dR
(R̄) Λ(t) =

M2
pl

2
f(R̄)− R̄

df

dR
(R̄). (3.43)
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3.2.6 EFTCAMB

The link between theory and observations is exploited thanks to Einstein-Boltzmann
codes constructed on top of the EFT framework. The one used in this thesis is the
so called EFTCAMB (Raveri et al. 2014,B. Hu et al. 2017), a modification of the pri-
mary code CAMB4. CAMB (Code for Anisotropies in the Microwave Background) is
a cosmology code for calculating CMB, lensing, galaxy count, dark-age 21cm power
spectra, matter power spectra and transfer functions. There are also general utility
functions for cosmological calculations such as the background expansion, distances,
etc. The main code is Python with numerical calculations implemented efficiently
in Python-wrapped modern Fortran. EFTCAMB is a patch of CAMB, which imple-
ments the Effective Field Theory approach to cosmic acceleration. The code can be
used to investigate the effect of different EFT operators on linear perturbations as
well as to study perturbations in any specific DE/MGmodel that can be cast into the
EFT framework. In addition, it integrates a module that checks for instabilities in
the models. To interface EFTCAMB with cosmological data sets, it is equipped with
a modified version of CosmoMC (Lewis and Bridle 2002), namely EFTCosmoMC,
creating a bridge between the EFT parametrization of the dynamics of perturba-
tions and observations. In the case of our thesis, we exploited EFTCAMB to take
into account specific models of gravity, and we used CAMB to compute the cross-
correlations of CMB with LSS. There is one strong advantage in the computation
with CAMB and EFTCAMB: they compute the cross-correlations exactly without
any assumptions or simplifications that analytical results require. The structure of
EFTCAMB code is illustrated in the flowchart of Figure 3.1 and exploits a flag sys-
tem to control the behaviour of the code. In our case, we exploited the full mapping
of different models to the EFT action, but the code has other functions too. We
briefly explain the functionalities, which are recalled thorugh setting an EFTflag.

� EFTflag = 0: it corresponds to deactivating the EFT modification and the
standard CAMB code is used

� EFTflag = 1: enables the pure EFT models. The pure approach relies on the
parametrization of the EFT action through the choice of the EFT functions and
the background expansion history, with the corresponding flags. After setting
these flags the user has to define the values of the EFT model parameters for
the chosen model.

� EFTflag = 2: in this case the built-in parametrization is not used and some
other model-independent parametrization has to be implemented.

� EFTflag = 3: it is the designer mapping EFT procedure. In this case the
matching of the EFT functions is provided and the background evolution is
set.

� EFTflag = 4: it corresponds to the full mapping. In this case the background
expansion history is not set by a choice of wDE and the background equations
have to be fully specified. The code will solve the background equations and

4https://camb.readthedocs.io/
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map it into the EFT framework. Natively, only the low energy Horava gravity
is included as a module, and therefore, in this work all the specific models we
considered had to be implemented.
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Figure 3.1: Flowchart describing the functionality of EFCAMB and its features, from
B. Hu et al. 2017
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3.3 Horndeski Theories and Generalized Galileons

Since we consider tensor-scalar theories, it is useful to introduce the most general
scalar-tensor theory. Historically, it was introduced ahead of time by Horndeski
(1974), and only decades later was rediscovered. Coincidentally, the same result have
been found by making the galileon theory of gravity covariant. Galileon modification
of gravity was first introduced in Nicolis et al. (2009). The action of this model is
constitued by 5 terms:

L1 = ϕ

L2 =
1

2
(∂ϕ)2

L3 =
1

2
□ϕ(∂ϕ)2

L4 =
1

4
(∂ϕ)2

(
(□ϕ)2 − (∂µ∂νϕ)

2
)

L5 =
1

3
(∂ϕ)2

(
(□ϕ)3 + 2 (∂µ∂νϕ)

3 − 3□ϕ (∂µ∂νϕ)2
)

(3.44)

that are invariant under the Galilean shift transformation

ϕ(x) → ϕ(x) + c+ bµx
µ (3.45)

and lead to equations of motion that remain at second-order in field derivatives.
Covariantizing the galileon Lagrangians, turns out to be rather subtle; the natural
thing to do is to promote the background Minkowski metric to be a dynamical field
and to promote partial derivatives to covariant derivatives. For the terms L1 − L3,
this works fine. However, it turns out that the equations of motion following from
the covariantized versions of the last two terms involve third derivatives of both
the metric and the field, indicating that the coupled theory of galileons minimally
coupled to gravity propagates a ghost (C. Deffayet, Esposito-Farese, et al. 2009).
This problem can be removed, by introducing non-minimal couplings of the scalar
field with gravity as (C. Deffayet, Esposito-Farese, et al. 2009):

L1 = ϕ

L2 =
1

2
(∇ϕ)2,

L3 =
1

2
□ϕ(∇ϕ)2,

L4 =
1

4
(∇ϕ)2

[
(□ϕ)2 − (∇µ∇νϕ)

2 − 1

4
(∇ϕ)2R

]
,

L5 =
1

3
(∇ϕ)2

[
(□ϕ)3 + 2 (∇µ∇νϕ)

3 − 3□ϕ (∇µ∇νϕ)
2 − 6Gνρ∇µϕ∇µ∇νϕ∇ρϕ

]
(3.46)

The global galilean symmetry is now broken. The most general Lagrangian which
couples a scalar field to gravity non-minimally, and which has second order equations
of motion is for the so-called generalized galileons, in C. Deffayet, Deser, et al. (2009),
inspired exactly by this interest in covariantizing the galileon theory:
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Lgen.gal. = G2(ϕ,X)−G3(ϕ,X)□ϕ+G4(ϕ,X)R+G4,X(ϕ,X)
[
(□ϕ)2 − (∇µ∇νϕ)

2
]

+G5(ϕ,X)Gµν∇µ∇νϕ

− 1

6
G5,X(ϕ,X)

[
(□ϕ)3 − 3(□ϕ) (∇µ∇ν)

2 + 2∇µ∇αϕ∇α∇βϕ∇β∇µϕ
]
,

(3.47)
where the G terms are free functions of the scalar field and X = ∇µϕ∇µϕ . In 1974,
Horndeski (Horndeski 1974) wrote down the most general scalar-tensor Lagrangian
which has second order equations of motion but it has been overlooked for quite some
time. It was pointed out in Kobayashi, Yamaguchi, et al. (2010) that the generalized
galileons and Horndeski’s theory are equivalent (see Kobayashi, Yamaguchi, et al.
2011 for a dictionary translating between the two languages). From the general
action of Horndeski theory serveral data constraints should be applied, for instance
in light of Planck (Barreira, Li, et al. 2014). In addition,after the gravitational-wave
event GW170817 (Kase and Tsujikawa 2019,Sakstein and Jain 2017), the speed of
gravitational waves is constrained to be very close to that of light. The Lagrangian
of Horndeski theories allowing this constraint is restricted to be of the form

Lgen.gal. = G2(ϕ,X)−G3(ϕ,X)□ϕ+G4(ϕ,X)R (3.48)

This is the general form that K-mouglage, Generalized Cubic Covariant Galileon and
Galileon Ghost Condensate have and that we will briefly investigate in the following
section.

3.4 The α-parametrization

An alternative parameterization of the EFT action, dubbed the α-basis, was devel-
oped in Bellini and Sawicki (2014) in order to describe specific physical properties of
the Horndeski theory. In that case any departure from GR is described by four time
dependent phenomenological functions, namely αM (t), αB(t), αK(t), αT (t). This ba-
sis was later generalized to include GLPV models by adding an additional function,
αH (Jérôme Gleyzes, Langlois, and Vernizzi 2014,Jérôme Gleyzes, Langlois, Pi-
azza, et al. 2015a), and finally it was further developed to include higher spatial
derivatives operators accounting for Lorentz violation, αK2(t), α

GLPV
B (Frusciante,

Papadomanolakis, et al. 2016). The α-basis has the benefit of relating the evolution
of these α-functions to clear physical effects, hence it is a more phenomenological
approach. The quadratic action in the basis encompassing Horndeski, GLPV and
low-energy Horava gravity can be written in Anowitt-Deser-Misner ADM formalism
(see Section 3.2.5) and Fourier space as follows Frusciante, Papadomanolakis, et al.
(2016):

S =
1

(2π)3

�
d3kdta3

M2

2

{
(1 + αH) δNδ1R̃+ 2HαBδNδK̃

+ δK̃µ
ν δK̃

ν
µ −

(
αGLPV
B + 1

)
(δK̃)2 +

(
αK + αK2

k2

a2

)
H2(δN)2

+(1 + αT ) δ2(R̃δ(
√
h))
} (3.49)
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where in this case the tildas do not represent Einstein or Jordan frame but simply
the Fourer transforms. The δ2 refers to taking the expansion at second order, and
h is the determinant of the spatial metric hij . The identification with the EFT
functions reads:

αB(t) = −
M2

plf+ m̄3
1

HM2
, αT (t) =

M̄2
3

M2
≡ c2t − 1, αK(t) =

2c+ 4M4
2

H2M2
,

αK2(t) =
8m2

2

M2H2
, αH(t) =

2µ21 +M2
3

M2
, αGLPV

B (t) =
M2

3 +M2
2

M2
, (46)

(3.50)

where M2(t) = M2
plf − M̄2

3 is the effective Planck mass and ct is the speed of
propagation of gravitational waves. Another α-function can be implemented to take
into account the running of the effective Planck mass.

αM =
1

H

d lnM2

d ln t
(3.51)

We can now discuss the physical interpretation of the functions:

� αB is the braiding function. It describes the mixing between the metric and the
new scalar field. Thus, it is different from zero in all theores with non-minimal
coupling. The braiding function lies in the kinetic part and the propagation
speed of the scalar mode. The additional extended αGLPV

B is to extend the
braiding effect to scalar-tensor theories beyond GLPV.

� αK is called kineticity is called kineticity and is purely a kinetic function and
αK2 is the extension to Lorentz violating theories. They both enter into the
definition of the kinetic term. They affect the speed of propagation of the
DE field hence the condition for the absence of a scalar ghost. In particular,
large positive values of these functions suppress the sound speed of scalar
perturbations. αK is the only coupling present in quintessence or perfect-fluid
DE models (Tsujikawa 2015).

� αT is the tensor speed excess and describes the deviation of the speed of prop-
agation of gravitational waves from the speed of light.

� αH describes the departure from Horndeski theories. It also contributes to
the speed of propagation of the scalar and it couples gravity to the velocity of
matter.

3.5 The Adopted models

In this section we provide a brief summary of the models considered with their gen-
eral features. These models are state-of-the-art MG models that are well constrained
by the data and observations. The first model is the so called K-mouflage (Babichev
et al. 2009), due to the name of its screening mechanism. Other two models are sub-
classes of Hordenski theory, specifically the Generalized Cubic Covariant Galileon
(Frusciante, Peirone, et al. 2020) and the Galileon Ghost Condensate (Arkani-Hamed
et al. 2004, Peirone et al. 2019). The Galileon Ghost Condensate is reveiwed in this
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work, but the computation of the cross-correlation of CMB and Large Scale Struc-
ture is postponed to the near future, Finally, the Transitional Planck Mass model
(Benevento, Raveri, et al. 2019) is an EFT model, built starting from the general
EFT, characterized by a running Planck Mass with a step-like transition.

3.5.1 Shift-Symmetric Horndeski Action

The Generalized Cubic Covariant Galileon (GCCG) and the Galileon Ghost Con-
densate (GGC) share the same peculiarity when considering the relative Horndeski
lagrangian since they are minimally coupled with the Ricci scalar term. The common
cubic-order shift-symmetric Lagrangian is:

S =

�
d4x

√−g
(
M2

pl

2
R+G2(X) +G3(X)2ϕ

)
+ Sm(ψm, gµν) (3.52)

The interaction term G3(X)2ϕ contains a scalar-tensor kinetic coupling, due to the
Christoffel symbols present in the covariant D’Alembertian operator. A consequence
of these couplings is a novel kind of mixing which is named kinetic braiding (Cedric
Deffayet et al. 2010). We can investigate this Lagrangian without making assump-
tions on the shape of the free functions. The Friedmann equations and Klein-Gordon
for the scalar field assume the form:

3M2
plH

2 = ρDE + ρm + ρr

2M2
plḢ = −ρDE − PDE − ρm − 4

3
ρr(

G2,X − 2ϕ̇2G2,XX − 6Hϕ̇G3,X + 6Hϕ̇3G3,XX

)
ϕ̈

+ 3
(
HG2,X − Ḣϕ̇G3,X − 3H2ϕ̇G3,X

)
ϕ̇ = 0

(3.53)

where we use the coma (,) to denote the derivative in order to lighten the notation.
In the above equations we have introduced:

ρDE = −G2 − 2ϕ̇2G2,X + 6Hϕ̇3G3,X

PDE = G2 − 2ϕ̈ϕ̇2G3,X

(3.54)

We can see that the equations of motion contain a second derivative of the scalar
field. In order to find the form of the functions Σ and µ we apply the quasi static
approximation so we can relate the gravitational potentials to the matter density
contrast δm with 3.28. Therefore, an expression for δm is required and can be found
by looking at perturbations in the matter sector. Perturbing the line element in
the Newtonian gauge, equations of motions for the linear perturbation of the non
relativistic matter density δρm and velocity potential v in Fourier space can be
found. We present the recasted version in terms of density contrast:

δ̈m + 2Hδ̇m +
k2

a2
Ψ = 3Φ̈ + 6HΦ̇ (3.55)

The quasi-static approximation let us compute:
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µ = Σ = 1 +
4ϕ̇4G2

3,X

qsc2s
(3.56)

where

qs = 4M2
pl

(
−G2,X + 2ϕ̇2G2,XX + 6Hϕ̇G3,X − 6Hϕ̇3G3,XX

)
+ 12ϕ̇4G2

3,X

c2s =
−4M2

pl(G2,X−2ϕ̈G3,X − 4Hϕ̇G3,X + 2ϕ̈ϕ̇2G3,XX)− 4ϕ̇4G2
3,X

qs

(3.57)

c2s correpsonds to the scalar sound speed in the sub-horizon limit. Both quantities
are necessarily positive for stability requirements. Specifically qs ≥ 0 for the absence
of ghosts and c2s > 0 for the absence of Laplacian instability. Under these conditions
we can see that Σ and µ are larger than 1, making the gravitational interaction
inside the sound horizon stronger compared to the ΛCDM counterpart.

3.5.1.1 Generalized Cubic Covariant Galileon

The generalized covariant Galileon model (De Felice and Tsujikawa 2010) extends
the covariant Galileon (De Felice and Tsujikawa 2012a) by considering in the La-
grangians power laws functions of X (Gi ≈ Xpi , where pi are free constant param-
eters). The chosen form of the Gi functions allows for the existence of tracker solu-
tions (De Felice and Tsujikawa 2012a, De Felice, Frusciante, et al. 2017, Frusciante,
Kase, et al. 2019). This model has a viable parameter space, free from ghosts and
Laplacian instabilities (De Felice and Tsujikawa 2012a). Cosmological constraints
at the background level show that the DE equation of state wDE can take values
very close to 1, allowing for the tracker to mimic ΛCDM (De Felice and Tsujikawa
2012b). Furthermore, the additional freedom given by the parameters pi might over-
come the large enhancement of perturbations of the covariant Galileon model which
is proven to be disfavored by cosmological measurements (Renk, Zumalacárregui,
et al. 2017, Leloup et al. 2019). Let’s consider the GCCG as investigated in Kable
et al. (2021). In the paper they went further in the investigation of the generalized
covariant galileon, by considering the latest observational constraints that reduce
the free-functions to be only G2, G3. Hence, the name cubic and the reduction to
the case of (3.52) The choice is:

G2(X) = −c2α4(1−p2)
2 (−X)p2 G3(X) = −c3α1−4p3

3 (−X)p3 (3.58)

Where ci, αi, pi are dimensionless constants in particular:

α =
√
H0Mpl α3 =

(
M1−2p3

pl

H2p3
0

) 1
1−p3

(3.59)

As a sidenote, the form of the functions is different from the original introduction,
but it is equivalent: it is a matter of definition of X. The cubic covariant Galileon
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(C. Deffayet, Esposito-Farese, et al. 2009) is recovered in the limit p2 = p3 = 1.
It is possible to fix c2 = 1

2 without loss of generality (Renk, Zumalacárregui, et al.
2017,Barreira, Li, et al. 2014). In this thesis, it is more useful to recast the free
functions, following the treatment of Kable et al. (2021) and follow their analysis;

G2(X) = −c2M4(1−p)
2

(
−X

2

)2

G3(X) = −c3M1−4p3
3

(
−X

2

)p3

(3.60)

where c2, c3, p, p3 are dimensionless constants, and M2.M3 are constants having a
dimension of a mass. We can simplify the expression by introducing a parameter q
defined by:

q = p3 − p+
1

2
. (3.61)

This will prove useful in the investigation of a tracker solution5 that GCCG allows.
The tracker solution obeys the relation Hϕ̇2q = const. and in the following we will
assume p and q to be positive so that the stability conditions are set. To study the
cosmological dynamics, we introduce:

x =
ϕ̇

HMpl
,

r1 =
(xdS
x

)2q (HdS

H

)1+2q

,

r2 =

[(
x

xdS

)2 1

r31

] p+2q
1+2q

(3.62)

Since the interest is on late-time self accelerating de Sitter solution, we introduced
xdS and HdS as the values at which ϕ̇ and H are constants with r1 = r2 = 1. Armed
with these variables, we can recast M2,M3, c2, c3 as functions of them and obtain
the equivalent DE equation of state wDE :

wDE = −
(
Ωr − 3 + 12r1 − 6r21

)
p+ 3(2q − 1)r1 + 3r21

3
[(
2− 2r1 + r1+α

1 r2
)
p+ 2q − 1 + r1

]
[2p+ (1− 2p)r1]

(3.63)

where

α =
p+ 2q

1 + 2q
(3.64)

We can ispect different phases according to the values of r1 and r2. The differential
equations for r1, r2 (De Felice and Tsujikawa 2012a) show that fixed points are at
r1,2 = 0 and r1,2 = 1, making the behaviour close to those values interesting. The

5It is possible to introduce tracker fields that have an equation-of-motion with attractor-like
solutions in which a very wide range of initial conditions rapidly converge to a common, cosmic
evolutionary track. The term “tracker” is meant to refer to solutions joining a common evolutionary
track, as opposed to tracking closely the background energy density. A tracker solution is one which
undergoes long periods of attractor-like behavior in which solutions to the equation-of-motion are
drawn towards a common solution. For more details we refer to Steinhardt et al. (1998)
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� The tracker corresponds to the fixed point with r = 1 and r2 ≪ 1

� The de Sitter solution is given by r1 = r2 = 1.

� For the initial conditions r1, r2 ≪ 1 the evolution is set for r1 up to 1 during
the radiation and matter epochs. Then, the r2 has to evolve up to 1 and reach
the De Sitter fixed point.

Let us introduce some useful quantities associated with perturbations

s =
p

q

q̃s ≡
qs

4ϕ̇4G2
3,X

= 3 +
3

pr1+α
1 r2

[2p+ 2q − 1 + (1− 2p)r1]

c2s =
(
6
{(

2− 2r1 + r1+α
1 r2

)
p+ 2q − 1 + r1

}2)−1
· [(2p+ 2q − 1)Ωr

− 5 + r1
(
8− 6r1 + 3r1+α

1 r2
)
+ 2p

{
5− 8r1 + 6r21 + (5− 2q − 7r1) r

1+α
1 r2

}
+2q

(
5− 3r2+α

1 r2
)
− 2p2r1+α

1 r2
(
2− 2r1 + r1+α

1 r2
)]

µ =Σ = 1 +
1

q̃sc2s
(3.65)

Now, if we investigates the regimes:

� r1 ≪ 1 and r2 ≪ 2: we obtain

wDE ≃ 3− Ωr

12(p+ q)− 6
(3.66)

and the stability conditions for qs > and c2s are satisfied for

2p+ 2q − 1 > 0 (3.67)

. Specifically, expanding µ for small values of r1, r2 we obtain:

µ = Σ ≃ 1 +
2p

5 + Ωr
r1+α
1 r2 (3.68)

� r1 = 1 and r2 ≪ 1: we obtain

wDE = −1− 1

6
(3 + Ωr)s (3.69)

and for the stability conditions:

q̃s = 3 +
6q

pr2
> 0

c2s =
6p+ 10q − 3 + (2p+ 2q − 1)Ωr

24q2
> 0

(3.70)

and expanding µ in respect to values of r2:

µ = Σ ≃ 1 +
4pq

6p+ 10q − 3 + (2p+ 2q − 1)Ωr
r2 (3.71)
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� r1 = 1 and r2 = 1 de Sitter solution. In this case wDE = −1 and the stability
conditions read:

q̃s =
3(p+ 2q)

p
> 0

c2s =
1− p

3(p+ 2q) > 0

(3.72)

and the coupling functionals

µ = Σ =
1

1− p
(3.73)

which is larger that 1, for 0 < p < 1.

3.5.1.2 Galileon Ghost Condensate

Ghost condensation as modification of gravity was first introduced by Arkani-Hamed
et al. (2004). The so-called ghost condensate is a kind of fluid that can fill the
universe with the same equation of state of a cosmological constant, p = −ρ, but
it is not a cosmologocial constant. Thus, it gives rise to a de Sitter phase of the
universe and it is a physical fluid with physical scalar excitation. The background
arises from a theory where a real scalar field (ϕ) is changing with constant velocity
and with a scalar field excitation π around the background:

⟨ϕ⟩ =M2t ϕ =M2t+ π (3.74)

with an assumed shift symmetry of the field ϕ. The name Ghost Condensation
comes from the “wrong” sign of the ϕ-kinetic term. This wrong-sing implies that
the background ⟨ϕ⟩ = 0 has a false vacuum and thus a vacuum decay. In the theory,
the idea is that there are higher order terms such as (∂ϕ)4 in the lagrangian that
“stabilize” the ghost (thus with vacuum ⟨ϕ⟩ ≠ 0) in the same way the ϕ4 term stabi-
lizes the tachyon in the analogous tachyon condensation. The Ghost Condensation
theory can be recovered from the shift-symmetric Horndeski Lagrangian (3.52) with
the free functions (hence we refer as the Galileon ghost condensate):

G2(X) = a1X + a2X
2 G3(X) = 3a3X (3.75)

where a1,2,3 are constants. The existence of term a2X
2 leads to the modified evo-

lution of wDE and different cosmic growth history compared to those of the cubic
Galileon which corresponds to a2 = 0 (C. Deffayet, Esposito-Farese, et al. 2009).
The ghost condensate model can be recovered by taking the limit a3 → 0. Leaving
the term a3 ̸= 0 involves rather than a ghost condensation a kinetic condensation for
which we refer to Cedric Deffayet et al. (2010). We introduce dimensionelss variables
for the analysis

x1 = − a1ϕ̇
2

3M2
plH

2
x2 =

a2ϕ̇
4

M2
plH

2
x3 =

6a3ϕ̇
3

M2
plH

2
(3.76)

which to correspond to density parameters arising from the couplings. Armed with
these variables, we can express the background equations
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ΩDE = x1 + x2 + x3

Ḣ

H2
= −12x21 + 2 (16x2 + 12x3 + 3Ωm + 4Ωr)x1 + 16x22

4x1 + 8x2 + 4x3 + x23

+
+4 (6x3 + 3Ωm + 4Ωr)x2 + (9x3 + 6Ωm + 8Ωr)x3

4x1 + 8x2 + 4x3 + x23

ϕ̇

Hϕ
=

−12x1 − 8x2 + (6x1 + 4x2 + 3Ωm + 4Ωr − 6)x3 + 3x23
4x1 + 8x2 + 4x3 + x23

(3.77)

from which we can get the dark energy equation of state

wDE =
3x1 + x2 − ϕ̇

Hϕx3

3ΩDE
(3.78)

The detailed dynamics investigation can be found in Kase and Tsujikawa (2018)
which we summarize here since they are fundamental when costraining the stability
conditions.

� The de Sitter fixed point at which trajectories converge is set by

1− x1 = −x2 − x3 x3 = −1

3
(18x1 + 8x2 + 12) (3.79)

� The radiation and matter dominated epochs are characterized by Ω ≪ 1 al-
lowing us to consider the regime in which G3 dominates over G2 with the
condition of |x1|, |x2| ≪ |x3| ≪ 1. We have wDE ≈ 1

6 in the radiation era and
wDE ≈ 1

4 in the matter era.

� In the limit x2 → 0 there’s a tracker solution for which x3 = −2x1. In this
case wDE = −2 in the matter era and wDE = −7

3

The stability conditions are given from (3.57):

qs =
3H2M4

pl

ϕ̇2

(
4x1 + 8x2 + 4x3 + x23

)
> 0

c2s =
12x1 + 8x2 + 4 (ϵϕ + 2)x3 − x23

3
(
4x1 + 8x2 + 4x3 + x23

) > 0

(3.80)

which are satisfied for different values of xi according to the regime we set ourselves
in. Intersecting the possible xi values and accounting for all the regimes, we have
conditions on xi.

� In |x1|, |x2| ≪ |x3| ≪ 1, the conditions are satisfied for x3 > 0

� In x2 → 0, x3 = −2x1 (the tracker solution) we require x1 < 0

� In de Sitter solution the quatities are

qs =
4H2M4

pl

3ϕ̇2

(
x22 + 3x2 + 18

)
, c28 =

x2 (3− x2)

3
(
x22 + 3x2 + 18

) (3.81)

with the condition of 0 < x2 < 3
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These leave the conditions

x1 < 0, x2 > 0, x3 > 0. (3.82)

In this regard we can see the values the gravitational coupling function can adopt.
In general, from (3.56):

µ = Σ = 1 +
x23

12x1 + 8x2 + 4( ϕ̇
Hϕ + 2)x3 − x23

. (3.83)

We can see that since x3 > 0 the coupling are larger than one and therefore both Ψ
and Ψ + Φ are enhanced compare to those in GR.

3.5.2 K-mouflage

K-mouflage is a general structure for a large class of scalar-tensor theories (Babichev
et al. 2009, Brax and Valageas 2014a, Brax and Valageas 2014b, Benevento, Raveri,
et al. 2019), in which the scalar field “camouflages” in strong enough gravitational
fields, via a derivative self-interaction (the K in K-mouflage stands for “kinetic”).
This is its peculiar screening mechanism which we mentioned in Section 3.1.2: the K-
mouflage screening mechanism is present in models where the Lagrangian involves an
arbitrary function K(χ) of the kinetic terms. The case of the small-scale, specifically
the small-scale static configurations (Brax and Valageas 2014c), shows that the fifth
force is screened by the nonlinear K-mouflage mechanism if K ′(χ) grows sufficiently
fast for large negative χ. Let us see the general features of the K-mouflage. The
model is defined by the action

S =

�
d4x
√
−g̃
(
M2

pl

2
R̃+M4K(χ̃)

)
+ Sm(ψm, gµν) (3.84)

where g̃µν is the Einstein-frame metric and gµν the Jordan-frame metric, given by
the relation between the two

gµν = A2(ϕ)g̃µν (3.85)

The peculiarity of the K-mouflage model is that the Lagrangian of the scalar field
ϕ involves a non-canonical kinetic term, defined by a dimensionless function K(χ̃)
with

χ̃ = − g̃
µν∂µϕ∂νϕ

2M4
(3.86)

where M4 is of the order of the dark energy scale today, set by the cosmological
constant, to recover the late time accelerated expansion of the Universe. In the
Jordan frame, the Friedmann equation takes the form

H2 =
1

3M2
pl(1− ϵ2)2

(ρ̄+ ρ̄rad + ρ̄ϕ) (3.87)

with

Mpl = Ā−2M̄pl ϵ2 =
d ln Ā

d ln a
(3.88)
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where the background quantities are denoted with a bar. In the above expressions

we introduced the scalar field energy density with ¯̃χ = Ā2

2M4

(
dϕ̄
dt

)2
:

ρ̄ϕ = Ā−4M4(−K̄ + 2¯̃χK̄ ′) (3.89)

where t is the Jordan-frame cosmic time. The Klein-Gordon equation satisfied by
the scalar field writes as:

d

dt

(
Ā−2a3

dϕ̄

dt
K̄ ′
)

= −a3ρ̄d ln Ā
dϕ̄

(3.90)

Where in this case the derivative with respect to t is a total derivative. Considering
linear scalar perturbations around a FLRW background in the Newtonian gauge,
the two coupling functions (3.28) assume the form

µ = (1 + ϵ1)Ā
2 Σ =Ā2 (3.91)

with

ϵ1 =
2M̄pl

K̄ ′
d ln Ā

dϕ̄
. (3.92)

From these equations we can see how the kinetic term can supress the modification
of gravity in (3.28). As said, the function µ represents the effective gravitational
constant µ = GN,eff/GN (Pogosian and Silvestri 2016) and at the linear level in
perturbations, screening occurs when ϵ ≪ 1, which corresponds to backgrounds
where K ′ ≫ 1.

For the stability conditions it is useful to recast the action in the form of Hornseski
class. The action is similar to (3.52) without the G2ϕ term and with the Ricci
scalar. In the Jordan frame:

S =

�
d4x

√−g [G4(ϕ)R+G2(ϕ,X)] + Sm (ψm, gµν) (3.93)

which corresponds to a nonminimally coupled-kessence. We can recast the action in
the Einstein frame exploiting the relations

R = R̃+ 62̃ω − 6g̃µν∂µω∂νω, ω = − lnA G4(ϕ) =
M2

pl

2A2(ϕ)
(3.94)

with the normalizations of A(ϕ0) to be 1 and to recover G4(ϕ0) =
M2

pl

2 . Then the
action becomes:

S =

�
d4x
√

−g̃
(
M2

pl

2
R̃+

6M2
plM4A2

,ϕ

A2
χ̃+A4G2

)
+ Sm (ψm, gµν) (3.95)

and if we compare it with (3.84) we find the correspondence for G2:

G2(ϕ,X) =
M4

A4(ϕ)
K(χ̃)−

6M4M2
plA

2
,ϕ(ϕ)

A6(ϕ)
χ̃ (3.96)
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Since we have found the shape of the K-mouflage action in the Horndeski form of
(3.52), we can use its results for stability (3.57):

qs =
2M2

pl

A4
(K,χ̄ + 2χ̃K,χ̄) > 0,

c2s =
K,χ̄

K,χ̄ + 2χ̃K,χ̄χ̄
> 0,

(3.97)

In order to consider the EFT version of the theory (Brax and Valageas 2016), and
study the dark energy dynamics, the functionals K(χ̃) and A(ϕ) need to be specified
(Benevento, Raveri, et al. 2019). The parametrization adopted is the one used in
(Brax and Valageas 2016), where five parameters are introduced: ϵ2,0, γA,m, αU .γU .
The theoretically allowed parameter space were investigated in (Brax and Valageas
2014a, Brax and Valageas 2014b). The parametrisation comes from defining the
coupling function and the kinetic term as functions of the scale factor in terms of a
set of parameters. The background coupling functions are defined in terms of three
parameters: ϵ2,0, γA,m as:

Ā(a) = 1 + αA − αA

[
a (γA + 1)

a+ γA

]νA
(3.98)

with

αA = −ϵ2,0(γA + 1)

γAνA
, νA =

3(m− 1)

2m− 1
(3.99)

For K-mouflage models the kinetic function can be computed integrating the expres-
sion:

dK̄

dχ̃
=

U(a)

a3
√
χ̃
,

U(a) = U0

((√
aeq + 1

)
+

αU

ln (γU + 1)

)
a2 ln (γU + a)(√

aeq +
√
a
)
ln (γU + a) + αUa2

,√
˜̃χ = − ρ̄m0

M4

c2Ā
4

2U
(
−3ϵ2 +

d lnU
d ln a

) ,
(3.100)

where we introduced two additional parameters αU and γU . The allowed range of
parameters is restricted to fit the natural domain of the two functions U(a) and
Ā(a) and additional costraints that ensure the stability of the solutions have to be
satisfied. Specifically, all K-mouflage models must satisfy the conditions (Brax and
Valageas 2016) as well as Solar System and cosmological constraints (Barreira, Brax,
et al. 2015). For a more clear interpretation of the parametrizaion, let us describe
the physical meaning of the parameters and the bound they have to satisfy:

� ϵ2,0; this parameter sets the value of the ϵ2 function today. The ΛCDM limit is
recovered when ϵ2,0 → 0, independently of the values of the other four param-
eters. For K-mouflage models, adopting the same convention as (Benevento,
Raveri, et al. 2019, Brax and Valageas 2016) we choose this parameter to be
negative. Solar System tests (Barreira, Brax, et al. 2015) impose |ϵ2,0| ≲ 0.01.
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� m > 1; describes the large χ behaviour of the kinetic function. It is possible
to show (Brax and Valageas 2016) that, given the parametrization described
by (3.98), (3.99), in the limit of large χ the kinetic term follows the asymp-
totic power-law behaviour: K(χ) ∼ χm. We study the particular case called
cubic model which is obtained by fixing m = 3 (Benevento, Kable, et al. 2022
Benevento, Raveri, et al. 2019)

� γA > 0; describes the transition to the dark energy dominated epoch in the
A(a) coupling function. Natural values for this parameter are of order unity
(Brax and Valageas 2016). High values for this parameter push the model
toward the ΛCDM limit, however values of γA ≳ 20 are likely to be excluded
by the stability conditions (Benevento, Raveri, et al. 2019).

� γU ≥ 1 and αU > 0; these two parameters set the transition to the dark
energy dominated epoch in the K(a) kinetic function (Benevento, Raveri, et
al. 2019). Early time probes (like CMB temperature anisotropies), as well as
late time probes (CMB lensing) are practically insensitive to the parameter
γU which can be safely fixed to 1, i.e. the minimum value that that avoids
negative values of the U(a) function. The parameter αU has some influence
on late-time probes on large scales (Benevento, Raveri, et al. 2019)

3.5.3 Transitional Planck Mass

The last model we consider has been been presented just recently by Benevento,
Kable, et al. (2022). It prescribes a modification of gravity that arises at early time,
during which the Planck Mass goes through a smooth step-like transition between
two values. Such a Planck Mass is known as Running Planck Mass and models
implementing a transition of it are known in the context of modified gravity. For
instance, the K-mouflage model prescribes an evolving Planck Mass, ad the f(R)-
gravity too. Modification of gravity arising at early time, before recombination, is
known in literature and it is shown that it could alleviate tensions in the funda-
mental parameters (Mario Ballardini et al. 2020, Ballesteros et al. 2020, Benevento,
Raveri, et al. 2019, Braglia et al. 2021, Lima et al. 2016, Lin, Raveri, et al. 2019,Zu-
malacárregui 2020). In the Transitional Planck Mass (TPM) model, the approach
is to directly use the EFT. The step-like transition is directly implemented in the
EFT-functions, specifically in the scalar Ricci term. The action is built starting
from a subset of the EFT action (3.16) up to second order expansion. It consists of
all the operators consistent with time-dependent spatial diffeomorphism invariance
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up to quadratic order in the perturbations:

S =

�
d4x

√−g
{
m2

0

2
[1 + Ω(t)]R+ Λ(t)− c(t)δg00

+
M4

2 (t)

2

(
δg00

)2 − M3
1 (t)

2
δg00δKµ

µ − M2
2 (t)

2

(
δKµ

µ

)2
− M̄2

3 (t)

2
δKµ

ν δK
ν
µ +

M̂2(t)

2
δg00δR(3)

+m2
2(t) (g

µν + nµnν) ∂µ
(
g00
)
∂ν
(
g00
)}

+ SM

[
gµν , ψ

(i)
m

]
(3.101)

where the notation is the same as the EFT action. The factors ⟨Ω,Λ, c⟩ and
⟨M4

2 , M̄
3
1 , M̄

2
2 , M̄

2
3 ,m

2
2, M̂

2⟩ are the EFT functions. In particular ⟨Ω,Λ, c⟩ are the
EFT functions contributing to both the background and perturbation equations,
while the rest contribute only to perturbations. The Ω function is the rescaling of
the reduced Planck mass m0, on the cosmological background. We can define an
effective Planck mass M∗ which is given on large scale by M2

∗ = m2
0(1 + Ω). The

TPM model is then defined by the choice of the EFT functions that are compatible
with Horndeski models and by imposing that the speed of gravitational waves is
constant and equal to the speed of light. This leaves with:

S =

�
d4x

√−g
{
m2

0

2
[1 + Ω(t)]R+ Λ(t)− c(t)δg00 +

M4
2 (t)

2

(
δg00

)2 − M3
1 (t)

2
δg00

}
(3.102)

with the EFT functions left ⟨Ω,Λ, c,M4
2 , M̄

3
1 , ⟩. If we also consider the scale factor of

the metric a(t), or rather the Hubble expansion rate H, we have in theory 6 degrees
of freedom.The background Friedman equations can fix 2 and the rest needs to be
fixed.

� Ω: Given the model, the Ω function shape is fixed by the assumption of the
step-like transition

Ω(x) =
Ω0

2

(
1− erf

(
µ− x√
2πσ

))
(3.103)

Where

x = ln(a) µ = ln(aT ) aT = 10xT (3.104)

determine the transition; σ is the width of the transition (to which we refer
with the subscript T) and Ω0 sets its amplitude, assuming an initial value
Ω(xi) = 0. This choice implies that the value today of the effective Planck
Mass is not the local value obtained from the Solar System, therefore requiring
some kind of screening mechanism.
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� c: it is required to be a constant at all times.

c

3H2
0m

2
0

= c0 (3.105)

In this way c does not contribute to the energy balance of the Universe.

� M4
2 , M̄

3
1 are to be fixed to guarantee that the effect on linear cosmological

perurbations is suppressed by a factor H−2:

M4
2

3H2
0m

2
0

= c0
M̄3

1

3H2
0m

2
0

=
2c0
H

(3.106)

Armed with these prescriptions we can write the Friedmann euqations:

H2 =
1

3m2
0

(ρm,rad + ρTPM)

H ′ = −3H2m2
0 + PTPM + Pm,rad

2Hm2
0

(3.107)

where

ρTPM = 2c− Λ− 3m2
0H

2
(
Ω′ +Ω

)
PTPM = Λ+H2m2

0

[
Ω′′ +Ω′

(
H ′

H
+ 2

)
+Ω

(
2
H ′

H
+ 3

)]
.

(3.108)

The prime denotes derivatives with respect to the variable x. The fluid equation of
state is set as:

wDE =
PTPM

ρTPM
=

Λ+H2m2
0

[
Ω′′ +Ω′

(
H′
H + 2

)
+Ω

(
2H′

H + 3
)]

ρTPM = 2c− Λ− 3m2
0H

2 (Ω′ +Ω)
(3.109)

which can be simplified in the regime after the transition, i.e. when x > ln(aT ) + σ.
We can make the assumption Ω → Ω0 so that:

wTPM =
Λ− Ω0Pm,rad

2c− Λ− Ω0ρm,rad
. (3.110)

If we want to consider the gravitational couplings µ and Σ, we have to adopt the
QS approximation (Benevento, Kable, et al. 2022). For the TPM model:

µ(k, a) =
1

1 + Ω

1 +M2
C

a2

k2

f3/
(
2f1(1 + Ω)m2

0

)
+M2

C
a2

k2

,

Σ(k, a) =
1

2(1 + Ω)

1 + f5/f1 + 2M2
C

a2

k2

f3/
(
2f1(1 + Ω)m2

0

)
+M2

C
a2

k2

,

(3.111)

with



3.5. THE ADOPTED MODELS 65

M2
C =

3

f1

m2
0

(
2HḢ +

Ḧ

2

)
Ω̇ + c

2Ḣ −
(
Ḣ

H

)2

+
Ḧ

H


f1 = m2

0

Ω̇2

1 + Ω
+ c

Ḣ

H2

f3 =
3

2

(
m2

0Ω̇
)2

+m2
0Ω̇

2c

H
+m2

0(1 + Ω)
2cḢ

H2
− 2

( c
H

)2
f5 = m2

0

Ω̇2

2(1 + Ω)
+ c

Ḣ

H2

(3.112)

where the overdot represents derivatives with respect to time and MC is the so-
called Compton mass of the scalar field. MC sets a crucial transition scale: the one
below which the scalar field mediates a fifth force (Joyce et al. 2015). A fifth force
is characteristic of MG theories with extra DoFs and the transition scale depends
on the dynamical mechanism which screens the strength of the scalar fifth force in
local environments (Joyce et al. 2015). Astrophysical scales are typical examples of
screened environments. In other words, the transition scale relates to the Compton
wavelength of the scalar field, λC , as MC ∝ λ−1

C . Theories of the chameleon type
(Khoury and Weltman 2004b, Khoury and Weltman 2004a) display a small Compton
wavelength λC ≲ 1 Mpc, whereas models exhibiting self acceleration, and in a more
general sense, models where the extra DoF sources cosmic acceleration, bare a very
large Compton wavelength λC ∝ H−1. In the case of the TPM, on large scales
compared to the Compton mass k/a≪MC , the effect of modified gravity on matter
perturbations is small, and µ ∼ µ0 = (1 + Ω)−1,Σ ∼ Σ0 = (1 + Ω)−1, recovering
the background value. In the opposite regime, on sub-Compton scales, k/a ≫ MC ,
matter perturbations feel the effect of an increased µ. Indeed taking the limit k → ∞
in (3.111) we findµ∞ = 2f1/f3,Σ∞ = (1 + f5/f1)µ∞.

For the stability condition it is useful to express the TPM model as a subclass of
Horndeski models, specified by the usual action:

S =

�
d4x

√−g
[
m2

0

2
G4(ϕ)R+G2(ϕ,X) +G3(X)□ϕ

]
+ Sm(ψm, gµν) (3.113)

It is possible to obtain the shape of the Gi functions following the mapping rules
specified in this chapter. Specifically for the case c0 = 0, the model corresponds to
the standard f(R) model, with the identifications:

G2(ϕ,X) = −f(R) +R df
dR ,

G3(X) = 0,
G4(ϕ) = ϕ,

ϕ = 1 + df
dR , R = 6

(
2H2 + Ḣ

)
.

(3.114)

Rather than expressing the general Gi function and determine the stability condi-
tions, the general TPM model can be recasted using the α prescription. For the
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TPM model we can identify the following correspondences:

αM =
Ω′

1 + Ω

αB =
Ω′

2(1 + Ω)
+

c0
H2(1 + Ω)

,

αK = − 2c0
H2(1 + Ω)

(3.115)

In the assumption of an early-time transition (aT ≪ 1, σ ∼ 1) there are two regimes:

� early times: close to the transition we have Ω′ ≫ c0
H2 and the behaviour is

the one of a f(R) model, with

αM = 2αB αK = 0 (3.116)

� late times: the regime resembles the kinetic gravity braiding model (Cedric
Deffayet et al. 2010). It is given by

αM = 0 αK ∝ αB ∝ c0
H2

(3.117)

Requiring a ghost free theory and no gradient instabilities gives the conditions on
the α-functions as:

� The no-ghost can be expressed as

αK +
3

2
α2
B > 0 (3.118)

and it is satisfied for c0 < 0, which gives, αK > 0.

� The no-gradient instability condition is given by a positive speed of propaga-
tion of scalar perturbations squared c2s > 0. We can express this quantity with
the α prescription:

c2s = −
(2 + 2αB)

[
Ḣ +H2 (αB − αM )

]
− 2Hα̇B

H2
(
αK + 3

2α
2
B

) − (ρm, rad + Pm,rad)

(1 + Ω)H2
(
αK + 3

2α
2
B

)
(3.119)

The stability conditions are satisfied for the enitre cosmic evolution by the choice
Ω0 < 0 and c0 < 0. The ΛCDM model is recovered in the limits Ω0 → 0, c0 → 0.



CHAPTER 4

Cross-correlation analysis

We have seen in Chapter 2 where the ISW signal comes from and what it repre-
sents. In addition, we have seen how information on structures in the Universe is
encoded in the Matter Power Spectrum. In Chapter 3 we have seen how alterna-
tive theories of gravity (with respect to General Relativity) can be described and
their peculiarities. Now, in this chapter, we present how to exploit the ISW sig-
nal to test different models. Specifically, the late ISW effect is due to the decay
of the gravitational potentials because of the accelerated expansion of the Universe
at late times (W. Hu, Sugiyama, and Silk 1997). Different models would lead to
a different redshift evolution of the gravitational potential, thus different imprints
on the CMB anisotropies (Kofman and Starobinskij 1985). Measuring the late ISW
is difficult per se since the signal is faint compared to the other anisotropies. In
addition, on the largest scales, cosmic variance strongly affects the contribution.
Crittenden and Turok (Crittenden and Turok 1996) first proposed cross-correlation
as a tool to probe the ISW effect: the idea behind their method of investigation
is to correlate the ISW effect with sources of gravitational potentials. Specifically,
we can use tracers of the Large-Scale-Structure, e.g. galaxy counts. At the linear
level in the perturbations1, the gravitational potential is linked to the matter dis-
tribution by Poisson’s equation and the ISW can test the rate of evolution of the
growth factor with redshift (Crittenden and Turok 1996). If the late ISW signal is
non-zero, we expect a non-zero correlation too, allowing us to isolate the ISW contri-
bution. Unlike the case for the CMB, we do not have a direct way of measuring the
matter’s power spectrum. However, some observables indirectly probe the matter
distribution (see e.g., Modern Cosmology (2021)). Perhaps the most important one
is galaxy clustering (Mo et al. 2010), which uses galaxies as tracers of the large-
scale matter distribution. The most direct measurement of galaxy density field is
supplied by galaxy redshift surveys, i.e. angular positions and the redshifts of galax-
ies are recorded (Kaiser 1987). This allows us to measure the 3D position of each
galaxy and its three-dimensional statistics. There are, however, several problems

1to be precise, it is valid at any order, but here we consider the linear level
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with the interpretation of the galaxy power spectrum as measured from redshift
surveys. First, there is the problem of bias (Desjacques et al. 2018), second the
fact that most galaxies are not stationary but rather are characterized with peculiar
velocities, and last, there are modifications of galaxy statistics like redshift-space
distortions (Hamilton 1998, Raccanelli, Bertacca, Pietrobon, et al. 2013). However,
at first order, these effects do not change the shape of the large-scale clustering of
galaxies. In this chapter we will see the analytical shape of the cross-correlation
(Stölzner et al. 2018, Afshordi 2004), accounting for MG models too (Kable et al.
2021). Since the cross-correlation involves galaxy number counts, we will describe
the prescription chosen for its statistics, i.e. the Euclid mission2 and its statistical
prescription. Eventually, we will show the results obtained for each of the models
described in the previous chapter.

4.1 ISW-LSS cross-correlation

The idea behind cross-correlation is to correlate two different quantities (Rhodes
et al. 2014). In our case, in the sky map, we correlate the ISW effect (thus the CMB
temperature anisotropies) and tracers of gravitational potentials (Crittenden and
Turok 1996). Naively, one can consider cross-correlation as mixing the coefficients
of the spherical harmonics of different Cl. So, as for (2.56),

Clδll′δmm′ = ⟨alma∗l′m′⟩ (4.1)

we consider aISWlm and (agalaxiesl′m′ )∗ while up until now we considered the alm of the
same observable. Let us first develop the theoretical expectation value of the cross-
correlation of two random fields, projected on the sky (Rhodes et al. 2014, Afshordi
et al. 2004).

4.1.1 Cross-correlation of two random fields

Let us consider the fields A(x) and B(x) with their Fourier transforms:

Ak =

�
d3xe−ik·xA(x), and Bk =

�
d3xe−ik·xB(x). (4.2)

The cross-correlation power spectrum PAB(k) is defined by:

⟨Ak1Bk2⟩ = (2π)3δ3 (k1 − k2)PAB (k1) (4.3)

and the projections of A and B on the sky are defined using FA and FB projection
kernels

Ã(n̂) =

�
drFA(r)A(rn̂), and B̃(n̂) =

�
drFB(r)B(rn̂). (4.4)

2https://www.euclid-ec.org/
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Now expanding Ã and B̃ in terms of spherical harmonics, the angular cross-power
spectrum CAB

l is defined as:

CAB
l ≡

〈
ÃlmB̃

∗
lm

〉
=

�
dr1dr2FA (r1)FB (r2)×

�
d3k

(2π)3
PAB(k)(4π)

2jl (kr1) jl (kr2)Ylm(k̂)Y ∗
lm(k̂)

=

�
dr1dr2FA (r1)FB (r2)

�
2k2dk

π
jl (kr1) jl (kr2)PAB(k).

(4.5)

where we have used the orthogonality of the spherical harmonics. The small angle
approximation (large l) for the spherical Bessel function is

jl(x) =

√
π

2l + 1

[
δDirac

(
l +

1

2
− x

)
+O

(
l−2
)]
, (4.6)

which gives

CAB
l =

�
dr

r2
FA(r)FB(r)PAB

(
l + 1/2

r

)
·
[
1 + O

(
l−2
)]

(4.7)

in the Limber approximation (Limber 1954). We can apply the same procedure to
the case of the ISW effect and galaxy distributions, the two quantities we want to
cross-correlate (Afshordi 2004).

4.1.2 ISW-Galaxy cross-correlation in MG

As we have seen, the aim is to compute the Cls. We will do it with the New-
tonian Gauge without assuming any particular gravity model. This will yield an
expression which depends on the gravitational coupling functions Σ and µ (3.28)
and hence making it sensible to different descriptions of DE or MG (Kable et al.
2021): Essentially, the computation that needs to be done is:

CTg
l δll′δmm′ = ⟨aISWlm (agl′m′)

∗⟩ (4.8)

while computing the single alm. To do so we have to consider once again the per-
turbations. The steps to follow (Afshordi 2004, Giannantonio et al. 2008) are the
same as the one described in Chapter 1 for the angular power spectrum. Instead of
using the generic Θ perturbation, we write the ISW contribution δT to the CMB
temperature divided by the average temperature T̄ . Let’s then start with the ISW
effect and recast the anisotropy in terms of the redshift:

δTISW
T̄

(n̂) = −
� z∗

0
dze−τ(z)∂Φeff

∂z
(z, n̂χ(z)), (4.9)

where n̂ is the unit vector along the line of sight, z∗ is the redshift value at recom-
bination, Φeff = Ψ+Φ, and χ(z) is the comoving distance to redshift z. As usual,
we expand in terms of spherical harmonics:
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δTISW (n̂)

T̄
= −

� z∗

0
dz
δTISW
T̄

(z, n̂χ(z)) =
∞∑
l=1

l∑
m=−l

almYlm(n̂) (4.10)

and in Fourier space:

δTISW
T̄

(z, n̂χ(z)) =

�
d3k

(2π)3
eikχn̂

δTISW
T̄

(z, k). (4.11)

Using the property

�
dΩeik·rY ∗

lm(r̂) = 4πiljl(kr)Y
∗
lm(k̂), (4.12)

we can express (4.11) in terms of spherical Bessel functions jl(kr) with the notation
r̂ = r/r and k̂ = k/k. In this way we have

aISWlm = − il

2π2

� z∗

0
dz1

�
d3k1e

−τ(z1)∂Φeff

∂z
(z1, k1) jl (k1χ (z1))Y

∗
lm

(
k̂1

)
. (4.13)

We can repeat the same reasoning for the angular distribution of galaxies, with the
average number N̄g:

δNg(n̂)

N̄g
=

� z∗

0
dzδg(z, x

i)W (z) (4.14)

where δg is the galaxy density contrast which we can relate with the usual matter
density contrast with:

δg(z, x
i) = bδm(z, χ(n̂)), (4.15)

being b the bias factor (Desjacques et al. 2018). W (z) is a selection function that is
given by the survey of choice. In our case, we considered the shape of a Euclid-like
distribution (Laureijs et al. 2011) and the term will be discussed later in detail. For
now, the shape itself of W (z) does not matter (we will explain this term later).
Rehearsing the same calculations, we expand in terms of spherical harmonics

δNg(n̂)

N̄
= −

� z∗

0
dz
δNg

N̄
(z, n̂χ(z)) =

∞∑
l=1

l∑
m=−l

almYlm(n̂) (4.16)

and in the Fourier series:

δNg

N̄
(z, n̂χ(z)) =

�
d3k

(2π)3
eikχn̂

δNg

N̄
(z, k). (4.17)

and eventually obtaining:

aglm =
il

2π2

� z∗

0
dz2

�
d3k2bW (z2)δm(z2, k2)jl (k2χ (z2))Y

∗
lm

(
k̂2

)
. (4.18)

The cross-correlation is then expressed in terms of Legendre polynomials Pl with
the angle θ between the two unit vectors:
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〈
δTISW (n̂1)

T̄

δNg (n̂2)

Ng

〉
=

∞∑
l=2

2l + 1

4π
CTg
l Pl(cos θ) (4.19)

The amplitude of this cross-correlation is given by:

CTg
l = ⟨aISWlm (aglm)∗⟩. (4.20)

Up until now, we did not consider the specific case of late time ISW and its implica-
tions, nor the fact that we should consider MG models. First of all, we can consider
the importance of the DE component in the late universe by explicitly considering
the growth factor D, rewriting the matter density contrast (Kable et al. 2021):

δm(z,k) = D(z)
δm(0,k)

D0
. (4.21)

We can also introduce the quantity ψISW characterizing Φeff :

∂Φeff

∂z
= ψISW (z, k)

δm(0,k)

D0
(4.22)

Now we substitute these quantities in (4.13) and (4.18) to compute (4.20):

〈
aISWlm

(
agl′m′

)∗〉
=

=
16π2

(2π)6

�
d3k

�
d3k′

〈
δm(0,k)δm(0,k′)∗

〉
IISWl Igl′Y

∗
lm(k̂)Yl′m′(k̂′)

=
16π2

(2π)3

�
d3k

�
d3k′Pg(k)δ

3
(
k⃗ − k⃗′

)
IISWl Igl′Y

∗
lm(k̂)Yl′m′(k̂′)

=
2

π

�
dkk2Pg(k)I

ISW
l Igl′δll′δmm′ ,

(4.23)
where we exploited (2.34) for Pg(k) Thus, we get:

CTg
l =

2

π

�
dkk2Pg(k)I

ISW
l (k)Igl (k) (4.24)

where we defined the quantities IISW and Ig to simplify the notation:

IISWl (k) =

� z∗

0
dz1e

−τ(z1)ψISW(z, k)

D0
jl (kχ (z1)) ,

Igl (k) =

� z∗

0
dz2bW (z2)

D(z)

D0
jl (kχ (z2)) .

(4.25)

Now it is useful to insert the gravitational couplings (3.28) that MG models intro-
duce. While for ΛCDM the functions µ = Σ = η = 1, for MG models they differ
from one.
To put them into the Cl equation, let’s consider the case in which matter fields
are minimally coupled to gravity. The background equation for ρm nonrelativistic
matter density:

ρm = ρm,0(1 + z)3 =
3H2

0

8πGN
Ωm,0(1 + z)3 (4.26)
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where the 0 subscripts refer to quantities evaluated at the present day. Using (3.28),
(4.21), (4.26), we obtain an expression of Φeff = Φ + Ψ in terms of the new gravi-
tational couplings:

Φeff = −3H2
0Ωm,0

k2
(1 + z)D(z)Σ(z, k)

δm(0,k)

D0
. (4.27)

which we can refer to ψISW by taking the derivative of the previous equation:

ψISW =
3H2

0Ωm,0

k2
DΣ(1 + (1 + z)

d

dz
ln(D(z)Σ(z, k))) (4.28)

Defining F(z, k) = 1 + (1 + z) d
dz ln(D(z)Σ(z, k)), we get

CTg
l =

6H2
0Ωm,0

πD2
0

�
dkPg(k)

� z∗

0
dz1e

−τ(z1)D(z)Σ(z, k)F(z, k)jl (kχ(z1))

� z∗

0
dz2bW (z)D(z)jl (kχ(z2)) .

(4.29)
For large values of k, we can use the Limber approximation:

�
dkk2f(k)jl (kχ(z1)) jl (kχ(z2)) ≃

π

2

δ (χ(z1)− χ(z2))

χ(z1)2
f

(
l + 1/2

χ(z1)

)
. (4.30)

It must be stressed that the Limber approximation is used for an analytical approach
in order to simplify the result form. However, the ISW effect is present for low
values of k. This problem is not present in the actual computation through the
codes EFCAMB and CAMB since they do not approximate any formula. We obtain
the final expression:

CTg
l ≈ 6H2

0Ωm,0

D2
0(2l + 1)2

� z∗

0
dze−τH(z)bW (z)D2(z)Σ(z, k)F(z, k)Pg

(
2l + 1

2χ

)
(4.31)

This is an analytical result (Nakamura et al. 2019, Kable et al. 2021) to show how the
gravitational couplings enter the cross-correlation value. We can ponder on the sign
of the Cl we can obtain. In ΛCDM we have Σ = µ = 1, hence the cross-correlation
is always positive. However, in MG theories, some dark energy models can realize
negative ISW-galaxy cross-correlation. We can see the condition necessary to obtain
CTg
l < 0: from (4.31) we can see that it is necessary that

F < 0 (4.32)

which we can express in terms of e-folding number N = ln a = − ln(1 + z):

F = 1− D′(N )

D(N )
− Σ′(N )

Σ(N )
< 0. (4.33)

In the standard model of cosmology, the linear growth rate can be efficiently parametrized

as D′/D = Ω
γ(a)
m (Peebles 1980) where Ωm = Ωb + Ωc and the parameter γ(a) is



4.1. ISW-LSS CROSS-CORRELATION 73

the so-called growth index (Linder 2005). MG models can predict a slight devia-
tion from ΛCDM parameterization yet detectable. Thus, we can write D′/D in Eq.
(4.33) in terms of the matter density parameter Ωm and the growth index γ(a), as
D′/D = (Ωm)γ(a), it follows that:

F = 1− (Ωm)γ(a) − Σ′(N )

Σ(N )
< 0. (4.34)

In the ΛCDM model, the growth index is well approximated by γ(a) ≂ 0.55 at
low redshifts (Wang and Steinhardt 1998). Since Σ = 1 in this case, we have
F = 1− (Ωm)γ(a) > 0 and hence the ISW-galaxy cross-correlation is positive in the
ΛCDM model. In modified gravity theories the growth index is generally different
from 0.55. In f(R) gravity, for example, it is in the range 0.40 ≲ γ(a) ≲ 0.55
(Tsujikawa et al. 2009). The observational data of RSDs and the clustering of
luminous red galaxies placed the bound γ(a) = 0.56± 0.05 for constant γ(a) (Pouri
et al. 2014), so the quantity 1− (Ωm)γ(a) is positive for the redshift z relevant to the
galaxy surveys (z ≲ 2). We can relate the growth rate D with the matter density
parameter Ωm with growth index γ(a):

F = 1− (Ωm)γ(a) − Σ′(N )

Σ(N )
< 0. (4.35)

For 0 < Ωm < 1 and 0 < γ(a) < 1 we have D′/D < 1, thus the realization of
negative ISW-galaxy cross-correlation is given by Σ′(N ) > 0.

4.1.3 Error Analysis

Associated with the cross-correlation we can find a variance in the Cls. Cl them-
selves are the variance of the harmonic coefficient alm. We cannot make predictions
about any particular alm, just about the distribution from which they are drawn, an
(almost) Gaussian distribution whose origin is in the quantum fluctuations during
inflation. The mean value of alm is zero, while the variance is the actual Cl. There is
a fundamental uncertainty in the knowledge about the Cl. This uncertainty is called
cosmic variance (Somerville et al. 2004) and it is the uncertainty on the estimate of
Cl after using 2l + 1 samples to infer it.(

∆Cl

Cl

)
=

√
2

2l + 1
. (4.36)

A way to test the effectiveness of the survey chosen and the results obtained is to
compute the Signal-to-Noise Ratio (SNR) for the cross-correlation we computed. It
is the ratio of the values of the Cls and the associated variance ∆Cl. The com-
putation is known in the literature (Afshordi et al. 2004, Giannantonio et al. 2008,
Afshordi 2004). To estimate the theoretical error, we restrict to the small angle limit
and the cross-correlation function can be approximated by:

CAB
l ≃ 4π

∆Ω
⟨ÃlmB̃

∗
lm⟩ (4.37)
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where ∆Ω is the common solid angle of the patch of the sky covered by observations
of both Ã and B̃. Assuming gaussianity, the standard deviation in CAB

l for a single
harmonic mode is given by:

(∆CAB)2l =
〈
(CAB)2l

〉
−
〈
CAB
l

〉2
= ∆Ω−2

[〈
ÃlmB̃

∗
lm

〉〈
ÃlmB̃

∗
lm

〉
+
〈
ÃlmÃ

∗
lm

〉〈
B̃lmB̃

∗
lm

〉]
= (CAB)2l + CAA

l CBB
l .

(4.38)

The equality from the first to the second line is actually a force of notation since
what is done is to call ⟨CAB⟩2 the quantity ⟨CAB⟩⟨CA′B′⟩. The product is calculated
directly from (4.5) and we used the orthogonality of the spherical harmonics (2.52).
Eventually, thanks to the Wick Theorem (Wick 1950, Leclercq et al. 2014), we have
the remaining terms. Returning to the case of the SNR for the ISW-galaxy cross-
correlation, we get:

(
S

N

)2

=
∑
l

(2l + 1)

[
CTg
l

]2
Cgg
l CTT

l +
[
CTg
l

]2 . (4.39)
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4.2 Euclid Survey

The modeling of the galaxy distribution is based on the Euclid preparations for the
upcoming mission (Laureijs et al. 2011). Euclid is a space mission planned by the
European Space Agency3 and the Euclid Consortium4 and it aims to provide a better
understanding of the late Universe, particularly on why the Universe is accelerating
at the present epoch. It will be set at its nominal L2 Sun-Earth Lagrangian position,
and will start 6 years observing mission to complete two surveys:

� A “Euclid Wide Survey” covering 15000 deg2 of the darkest sky. That is, the
sky free of contamination by light from our Galaxy and our Solar System.
The wide survey is the core of the dark energy mission out of which weak
lensing, baryon acoustic oscillation, and redshift space distortion signals will
be measured.

� Three “Euclid Deep Fields” about 2 magnitudes deeper than the wide survey
and covering around 40 deg2 in total will be also observed, primarily for cali-
brations of the wide survey data but also extending the scientific scope of the
mission to faint high redshift galaxies, quasars, and AGNs.

4.2.1 Spacecraft

The spacecraft itself is about 4.1 meters tall and 3.1 in diameter, for a total of
2100Kg. It is a medium-class mission and it is part of the Cosmic Vision campaign of
ESA’s Science Programme with an ESA budget cap of around ¿500 million. Euclid
was chosen in October 2011 together with Solar Orbiter, out of several competing
missions. The spacecraft is made up of two major assemblies:

� Payload module: houses the telescope, the focal plane components of the in-
struments, and some of the data processing electronics;

� Service module: contains the satellite systems: power distribution, attitude
control, propulsion, telecommand, telemetry, and data handling.

Specifically, the mounted telescope (a Korsch-type) is connected to electronic instru-
mentation that detects the spam from the visible wavelengths to the near-infrared.
The visible (VIS) instrument will be used to measure the shapes of galaxies and de-
rive the gravitational lensing effects induced by large-scale structures of the universe
on distant background galaxies. It will probe how dark matter is distributed and
how its distribution changed over the last 10 billion years. The wavelength range
is 550-900nm. The Near Infrared Spectrometer and Photometer (NISP) instrument
will be combined with VIS data to derive photometric redshifts and rough estimates
of the distances of galaxies seen by VIS. The near-infrared spectra will be used to
derive accurate redshifts and distances of galaxies and their 3-dimensional position
in the Universe. The NISP spectroscopic data will primarily be used to describe the
distribution and clustering of galaxies and how they changed over the last 10 billion

3https://www.cosmos.esa.int/web/euclid/euclid-survey
4https://www.euclid-ec.org/
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years under the effects of the dark matter and dark energy content of the Universe
and gravity. The wavelength range is 1100-2000nm.

4.2.2 Science implementation

The Euclid mission (Laureijs et al. 2011) distinguishes the so-called primary science
and the legacy science. The former is given by the direct imprints of the Dark En-
ergy, while the latter is consequential astrophysical and cosmological science that
comes from the observations. Regarding the primary Science, the imprints of dark
energy and gravity will be detected from their signatures on the expansion rate of the
Universe and the growth of cosmic structures using gravitational lensing effects on
galaxies (Weak Lensing) and the properties of galaxy clustering (Baryonic Acoustic
Oscillations and Redshift Space Distortion). Baryon acoustic oscillations provide a
direct distance-redshift probe to explore the expansion rate of the Universe. Weak
lensing provides an almost direct probe of dark matter but combines angular dis-
tances that probe the expansion rate and the mass density contrast that probes the
growth rate of structure and gravity. In contrast, redshift space distortion probes the
growth rate of cosmic structures and gravity. Combined these three probes are solid
and complementary probes of the effects of dark energy. These observations will be
complemented by independent observations also derived from Euclid data on clus-
ters of galaxies in combination with CMB data. They will be used to cross-check the
results obtained from Weak Lensing, Baryonic Acoustic Oscillations, and Redshift
Space Distortion and to better understand and control systematic errors (Scaramella
et al. 2022). Although primarily designed as a tool for cosmologists to quantify the
various components of the Universe in detail, Euclid’s unprecedented survey will
provide other astronomers with a treasure trove of information that can be used
in many fields of astrophysics. The Euclid Consortium set several Science Work-
ing Groups that focus on the following “Legacy” or “Additional” science projects
(E. Collaboration et al. 2022, Euclid Collaboration et al. 2020): clusters of galaxies;
CMB Euclid galaxy survey cross-correlations; strong lensing statistics; galaxy-galaxy
lensing; cool brown dwarfs; large streams and merger history of galaxies; study of
resolved stellar populations in the Galaxy and the universe nearby; galaxy evolu-
tion (galaxies, AGNs, highly magnified high redshift galaxies, study of the primeval
universe); high-z Lyman Break Galaxies Supernovae and transients; exo-planets.

4.2.3 Galaxy Counting Distribution in the Cl

One of the most important parts of the Euclid mission is setting up the implemented
cosmological science. In particular, the Euclid Consortium “prepared” cosmological
forecasts for Euclid (E. Collaboration et al. 2022). Reliable cosmological forecasts
are required for the verification of Euclid ’s performance before launch for an updated
technical description of the mission design (Laureijs et al. 2011). The cosmological
probes considered in the mission are weak lensing (WL); photometric galaxy clus-
tering (GCph); spectroscopic galaxy clustering (GCs); their combination; and the
addition of the data vector of cross-correlation (XC) between GCph and WL. The
statistical constraining power of a galaxy survey depends mainly on the abundance
of its target galaxy sample and how the survey strategy determines the survey’s se-
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lection function. Modeled simply, this means that the statistical errors on the power
spectrum can be estimated by knowing the observed number density of its galaxy
targets and the survey volume. This can be converted to the number density in each
redshift bin. This is actually what we used in the thesis since the computation of
the cross-correlation through CAMB just requires the n(z), the observed number
density of galaxies. Let us first see how the observables are described according to
the Euclid survey (Euclid Collaboration et al. 2020). The theoretical modeling of
the WL, GCp, and cross-correlation power spectra in each of those redshift bins con-
sists of computing integrals of the following form, assuming the flat-sky and Limber
approximations:

CXY
ℓ = c

�
dz

H(z)r2(z)
WX(z)WY (z)Pδδ

(
ℓ+ 1/2

r(z)
, z

)
+NXy

ℓ .

(4.40)

In the above expression, the letters X and Y can stand either for WLi or GCpi (the
subscript i referring to the ith redshift bin considered), and WX represents the so-
called ‘kernel’ associated with observable X. NXy

ℓ is the shot noise. The shot noise,
according to how the computation is made in this work, does not enter in the Cl but
has to be taken into account when computing the SNR. The kernel corresponding
to the GCp is

WGCpi(z) = bi(z)
ni(z)

n̄i

H(z)

c
. (4.41)

where n̄i is the galaxy surface density per bin, and bi is the bias factor for each
bin calculated as bi =

√
1 + zc,i. The kernel itself is based on one key ingredient:

the number density distribution ni(z) of the observed galaxies in the ith bin. For a
photometric redshift estimate, this can be written as:

ni(z) =

� z+i
z−i

dzpn(z)pph (zp | z)
� zmax

zmin
dz

� z+i
z−i

dzpn(z)pph (zp, | z)
(4.42)

where (z−i , z
+
i ) are the edges of the ith redshift bin. The underlying true distribution

n(z) appearing in this expression is chosed to be in agreement with the Euclid Red
Book (Laureijs et al. 2011):

n(z) ∝
(
z

z0

)2

exp

[
−
(
z

z0

)3/2
]

(4.43)
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Figure 4.1: the galaxy number density distribution n(z)
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where z0 = zm√
2
with zm = 0.9 the median redshift according to the Red Book.

According to the same book, the surface density of galaxies is n̄g = 30arcmin−2.
With this choice, the set edges of the 10-equi populated bins are:

zi = 0.0010, 0.42, 0.56, 0.68, 0.79, 0.90, 1.02, 1.15, 1.32, 1.58, 2.50. (4.44)

The distribution n(z) is convoluted in (4.42) with the probability distribution func-
tion pph(zp|z) describing the probability that a galaxy with redshift z has a measured
redshift zp (Kitching et al. 2009). A parametrization of it is:

pph (zp | z) = 1− fout√
2πσb(1 + z)

exp

{
−1

2

[
z − cbzp − zb
σb(1 + z)

]2}

+
fout√

2πσo(1 + z)
exp

{
−1

2

[
z − c0zp − z0
σ0(1 + z)

]2} (4.45)

where cb, zb, σb, co, zo, σo, fout are constant parameters. While we have described the
Euclid prescription for the Cl, the computation used in our thesis invokes a simple
spline interpolation for the galaxy counting kernel. CAMB, the tool used, builds the
window function (the kernel) starting from the underlying true galaxy distribution
n(z) with the provided redshift bin vector (4.44) and the respective bias vector. The
latter can be obtained through bi =

√
1 + zc,i where zc,i is the central redshift of the

ith bin. To put it simply, instead of using (4.41), we use a spline interpolation of
n(z). This procedure does not lose any information, it is simply an alternative way
for numerical computation (Kitching et al. 2009). The Cl computation has been
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performed up until l = 300. This is to not stretch the computation to useless modes
for the scales we are considering.
Let us open a small parenthesis and briefly explain what spline interpolation is
(Prenter and Mathematics 2008,Lyche and Schumaker 1973). Let us define what
a spline is: a function Sm(∆n, x) which is defined and has continuous (m − 1)-st
derivative on an interval [a, b], and which coincides on each interval [xi, xi+1] formed
by the partition ∆n: a = x0 ≤ x1 ≤ ... ≤ xn = b with a certain algebraic polynomial
of degree at most m. Splines can be represented in the following way:

Sm (∆n, x) = Pm−1(x) +
n−1∑
k=0

ck (x− xk)
m
+ (4.46)

where the ck are real numbers, Pm−1(x) is a polynomial of degree at most m−1, and
(x − t)m+ = max (0, (x− t)m). The points xi

n−1
i=1 are called the knots of the spline.

If a spline Sm(∆n, x) has a continuous (m− k)-th derivative on [a, b] for k ≳ 1 and
at the knots the (m − k + 1)-st derivative of the spline is discontinuous, then it is
said to have defect k. Besides these polynomial splines, one also considers more gen-
eral splines (L-splines), which are “tied together” from solutions of a homogeneous
linear differential equation Ly = 0, splines (Lg-splines) with different smoothness
properties at various knots, and also splines in several variables. Splines and their
generalizations often occur as extremal functions when solving extremum problems,
e.g. in obtaining best quadrature formulas and best numerical differentiation for-
mulas. Splines are applied to approximate functions (such as in our case the Spline
interpolation), and in constructing approximate solutions of ordinary and partial
differential equations. Interpolation by means of splines is the construction of an in-
terpolation spline taking given values f(xi) at prescribed points xi with i = 0, ..., n.
Interpolation splines usually satisfy the conditions at the endpoints. For example,
for cubic spline S3(∆n, x) where ∆n is a partition a = x0 ≤ x1 ≤ ... ≤ xn = b, which
on [a, b], consists of piecewise-cubic polynomials and has a continuous second-order
derivative, one requires that S3(∆n, xi) = f(xi) and, in addition, one condition at
each endpoint (e.g., S′

3(∆n, a) = y′0) and S3(∆n, b) = y′n or S′′
3 (∆n, a) = y′′0 and

S′′
3 (∆n, b) = y′′n

5. If the f(xi) are the values of a b − a periodic function, then one
requires the spline to be b− a periodic too. For polynomial splines of degree 2k+1,
the number of extra conditions at each endpoint a or b is increased by k. For in-
terpolation splines of degree 2k, the knots of the spline (the points of discontinuity
of the 2k-th derivative) are usually chosen halfway between the points xi, and a
further k conditions are assigned at a and b. Spline interpolation has some advan-
tages when compared to polynomial interpolation. There are sequences of partitions
∆n : a = x0(k) < x1(k) < ... < xnk

(k) = b and interpolation splines for which the
interpolation process converges for any continuous function, provided that

∥∆nk
∥ = max

0≤i≤nk−1
(xi+1(k)− xi(k)) → 0 (4.47)

Many processes of spline interpolation give the same order of approximation as the
best approximation. Moreover, spline interpolation of some classes of differentiable

5the derivatives are with respect to x
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functions has the property that the error does not exceed the width of the corre-
sponding class. Spline interpolation can be used to solve certain variational prob-
lems. E.g., under sufficiently general additional conditions at a and b, interpolation
splines satisfy the relation:

� b

a

[
f (m)(t)− S2m−1(m) (∆n, t)

]2
dt =

=

� b

a

[
f (m)(t)

]2
dt−

� b

a
[S2m−1(m) (∆n, t)]

2 dt.

(4.48)

This implies the existence and uniqueness of interpolation splines of odd degree, and
also the simplest results on convergence:

∥f (i)(t)− S2m−1(i) (∆n, t) ∥L2[a,b] ≤
≤ ci,m ∥∆n∥m−i

∥∥∥f (m)(t)
∥∥∥
L2[a,b]

∥f (i)(t)− S2m−1(i) (∆n, t) ∥C[a,b] ≤
≤ ci,m ∥∆n∥m−i−1/2

∥∥∥f (m)(t)
∥∥∥
L2[a,b]

(4.49)

i = 0...m− 1 , where the ci,m depend only on i and m, and

∥∆nk
∥ = max

0≤i≤nk−1
(xi+1(k)− xi(k)) . (4.50)

For some classes of differentiable functions, the sequence of interpolation splines
converges to the function to be interpolated on any sequence of partitions ∆nk

for
which ∥∆nk

∥ → 0. In addition to polynomial interpolation splines, one can also
use splines of a more general form. For many of these, results analogous also hold.
For splines with defects greater than 1 one usually carries out interpolation with
multiple knots.

4.3 Initial Conditions for the Models

Before presenting the Cl of cross-correlation, it is important to describe the initial
conditions set in the models so that the computation can happen. As we have shown,
each model has additional cosmological parameters whose values have to be fixed.
For K-mouflage, Galileon Ghost Condensate (GGC), Generalized Cubic Covariant
Galileon (GCCG) the best fit values are taken from the results of Kable et al. 2021,
and for Transitional Planck Mass (TPM), the values given by Benevento, Kable, et
al. 2022. In the first case, the model parameters are obtained through a likelihood
analysis. To construct an ISW-galaxy cross-correlation likelihood, the tomographic
analysis of the ISW signal has been extended to MG models (Kable et al. 2021),
using photometric measurements of the redshift of galaxies applied to the ΛCDM
model (see e.g. Stölzner et al. 2018). The Galileon Ghost Condensate has been
reviewed but the computation of the cross-correlation is left as a (near) future work.
Nevertheless, being one important candidate of an alternative theory, we decided
to review its most recent features and in this section we describe the costraints set
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by the theory on the cross-correlation. For the K-mouflage and GCCG, The best-
fit values for the MG models’ parameters are obtained from combining different
datasets:

� Planck 2018 measurements of CMB temperature and polarization anisotropy
(P. Collaboration, Aghanim, Akrami, Ashdown, Aumont, Baccigalupi, M. Bal-
lardini, Banday, Barreiro, N. Bartolo, Basak, Benabed, et al. 2020.

� Measurements of the BAO from BOSS DR12 (Alam et al. 2017), SDSS Main
Galaxy Sample DR7 (Ross et al. 2015), and 6dFGS (Beutler et al. 2011).

� The 2018 Pantheon Supernova compilation (Scolnic et al. 2018), which includes
1048 SNIa data in the redshift range 0.01 < z < 2.3.

For the TPMmodel, instead of a minimization, (Markov-Chain-Montecarlo), MCMC
simulations were run. In addition, the Gelman-Rubin convergence statistic R− 1 =
0.02 was used, for the least constrained parameter to determine when the chains have
converged (Gelman and Rubin 1992). It is interesting to notice that minimization
and MCMC give the same conclusion in the ΛCDM model (Stölzner et al. 2018).
In the TPM case, the observational datasets used to obtain the constraints include
Planck CMB likelihood, various BAO measurements, and a complete catalog of type
Ia supernovae. Specifically:

� For CMB, it was used the 2018 Plik Lite TTTEEE + Low ell TT + Low E
likelihoods as well as the Planck 2018 Lensing likelihood (P. Collaboration,
Aghanim, Akrami, Ashdown, Aumont, Baccigalupi, M. Ballardini, Banday,
Barreiro, N. Bartolo, Basak, Benabed, et al. 2020)

� For BAO, we use the completed SDSS-III Baryon Oscillation Spectroscopic
Survey (BOSS) survey DR 12 (Alam et al. 2017), the SDSS Main Galaxy
Sample (Ross et al. 2015), and the 6dFGS survey (Beutler et al. 2011).

� For Type Ia supernovae, we use the 2018 Pantheon compilation (Scolnic et al.
2018).

� A prior on H0 was included, which is obtained by comparing the independent
results of Riess, Yuan, et al. 2022 with Pesce et al. 2020 and Blakeslee et al.
2021

A fair comparison with the ΛCDM model can only be done by comparing each model
with the ΛCDM obtained from the same dataset. We then differentiate the ΛCDM
A as the one obtained from the first dataset used in (Kable et al. 2021); the ΛCDM
B as the one obtained from the second dataset used in (Benevento, Kable, et al.
2022). As we said, the parametrization used for the K-mouflage model is given by
Brax and Valageas (2016) and described in the previous chapter (see section 3.5.2).
Consequently, the EFTCAMB parametrization will have in input ϵ2,0, γA,m, αU , γU .
The parameters fixed are γU = 1, γA = 0.2,m = 3 as these are unconstrained by the
likelihood. In the case of the GCCG, the key quantities to set are the two parameters
q and s = p/q. At the background level, the deviation from wDE = −1 is quantified
by the parameter s. In the case of the GGC the xi parameters play the fundamental



82 CHAPTER 4. CROSS-CORRELATION ANALYSIS

role of deviation from the ΛCDM, giving rise to a different cosmic growth history.
Specifically, x3 leads to deviations of µ and Σ from 1. The initialization parameters
are then x01 and x03, which are today’s values of x1 and x3.

Table 4.1: Best fit parameters used for the computation of the cross-correlations. Taken
from Kable et al. (2021)

Model H0 Ωb,0h
2 Ωc,0h

2 109As ns τ S8
ΛCDM A 67.69 0.02242 0.1193 2.099 0.9673 0.055 0.8234

GGC 68.24 0.02245 0.1196 2.108 0.9656 0.057 0.8502

GCCG 68.93 0.02240 0.1200 2.106 0.9656 0.056 0.8394

K-mouflage 68.37 0.02241 0.1198 2.106 0.9670 0.056 0.8250

with the additional parameters:

Table 4.2: Best fit additional parameters used for the computation of the
cross-correlations. Taken from Kable et al. (2021)

Model Additional Parameters

GGC x01 = −1.20, x03 = 0.38

GCCG s=0.182, q=1.49

K-mouflage αU = 0.505, ϵ2,0 = −6.9× 10−4, γU = 1, γA = 0.2, m = 3

In the case of the TPM, the additional parameters are mostly given by the transition
of the Planck Mass. The amplitude is set by Ω0, with σ its width. Another important
parameter is xT which sets the time at which the transition happens aT = 10xT .
In addition, the final parameter is c0 which enters the background and perturbative
equations since it is what has been used to parametrize the EFT functions.

Table 4.3: Best fit parameters used for the computation of the cross-correlations. Taken
from Benevento, Kable, et al. (2022)

Model H0 Ωb,0h
2 Ωc,0h

2 109As ns τ S8
ΛCDM B 68.44 0.02257 0.11777 3.058 0.9698 0.0621 0.811

TPM 71.38 0.022649 0.1191 3.049 0.9772 0.054 0.825

with the additional parameters:

Table 4.4: Best fit additional parameters used for the computation of the
cross-correlations. Taken from Kable et al. (2021)

Parameter Value

Ω0 -0.045

xT -4.29

σ 0.88

c0 -0.0176
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4.4 Results

The results presentation is split into two distinct sections, given the different datasets
from which the best-fit model parameters are considered (one for K-mouflage and
GCCG, and one for TPM). In addition to the cross-correlation, for all the models
we have computed the modes of the Cls of CMB angular power spectra. Generally,
the K-mouflage, and GCCG are much closer to the ΛCDM A values and it is shown
in all the plots presented. The TPM model, on the other hand, shows a slight but
noticeable different behavior on the largest scales, where the ISW is relevant. This
is reflected not only in angular power spectrum of the CMB temperature but specif-
ically in the amplitude of the cross-correlation. For all the models we investigated
different values of the additional parameters and we report the most interesting case
referring to the TPM model. While the cross-correlation obtained with the Euclid
description is a novelty, the parameters space of K-mouflage and GCCG had al-
ready been investigated (Kable et al. 2021). Instead, the results for the TPM are
new (Benevento, Kable, et al. 2022). In light of the future work on the GGC, we
report here what can be said on the possible values of the cross-correlation according
to the stability constraints that are imposed on the theory.

4.4.1 K-mouflage, GCCG results and GGC discussion

In the case of the K-mouflage models, for A > 0 and dA
dϕ > 0 with the general stability

criteria derived for full Horndeski theories (3.97), i.e. the absence of scalar ghosts
and Laplacian instabilities, the time derivative of ϕ is constrained to be negative,
when compatible with the background equations. This translates in ϵ2 < 0. Thus
the coupling function (3.91) becomes,

Σ′(ln a) = ϵ2A
2 (4.51)

which is negative given ϵ2 < 0. The necessary condition for realizing negative ISW-
galaxy cross-correlation is not satisfied in K-mouflage theories. This is well reflected
by the result obtained and by the data. Regarding the impact of the parameters on
the amplitude of the cross-correlation, ϵ2,0 affects it, with a tradeoff. A high value of
ϵ2,0 enhances the cosmic expansion at late times, suppressing the growth of matter
perturbations. However, the coupling µ = (1 + ϵ1)A

2 is enhanced by a positive ϵ1,
which at leading order ϵ1 ∼ −ϵ2 during matter era. The trade-off leads to a higher
amplitude of the ISW effect in the K-mouflage theories with respect to its ΛCDM
limit (ϵ2,0 → 0). The behavior is confirmed by the plot 4.3, and variations of the
parameter ϵ2,0 confirm the limit.
Contrary to the K-mouflage model, a negative ISW-galaxy is allowed for GGC and
GCCG. The cubic-order derivative interaction term G3(X)□ϕ gives rise to a differ-
ent cosmic growth history which can induce negative ISW-galaxy cross-correlation.
(more details are given in the next paragraph) Since G3(X) contributes to the dark
energy density, Σ grows at low redshifts, which then satisfies the negative cross-
correlation condition Σ′(ln a) > 0. In the case of the GCCG, the sign depends on
the two parameters s and q, making it possible to realize either negative or positive
cross-correlation (Giacomello et al. 2019, De Felice and Tsujikawa 2012b). Given
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the best fit values, we can see from the plot that in the case of GCCG a positive
cross-correlation is realized, with an amplitude slightly bigger than the ΛCDM one.

Considering the GGC, we leave the computation of the cross-correlation to a future
work but we can make some insightful considerations and use it as an example to ex-
plain the possibility of a negative ISW-LSS cross-correlation. This is another critical
difference between Galileon cosmologies and ΛCDM and concerns the evolution of
the gravitational potentials (Renk, Zumalacárregui, et al. 2017, Kobayashi, Tashiro,
et al. 2010). In Barreira, Li, et al. (2014) the authors demonstrated that the mod-
ifications to gravity in the Galileon model are such that the lensing potential can
deepen with time after matter domination, rather than strictly decaying as it is the
case in standard ΛCDM. This means that in ΛCDM the sign of the ISW effect is
always positive, whereas it can be negative in the Galileon model. In detail, let us
consider for instance a photon travelling through a supercluster whose potential is
getting shallower with time. This photon will get blueshifted (increase of temper-
ature) as it goes into the center of the potential well, but redshifted (decrease of
temperature) as it comes out of it. Since the potential was deeper at the time the
photon was entering it, overall the temperature of the photon will increase. This
causes a so-called hot spot in the CMB maps. If the potential of the supercluster
is getting deeper with time, then one would end up with a cold spot instead. The
amplitude of the ISW effect is proportional to the time derivative of the lensing
potential. In the standard ΛCDM picture, the lensing potential grows at the transi-
tion from the radiation to the matter dominated eras, stays approximately constant
during the matter era, and starts decaying at the onset of the Dark Energy era. The
physical picture in the Galileon models is more complex, since it is scale-dependent
(Barreira, Li, et al. 2014). At late times, on smaller length scales, the Galileon field
contributes significantly to the lensing potential, making it deeper. On the other
hand, on larger length scales, the Galileon terms become less important, which leads
to a gradual recovery of the ΛCDM behaviour, i.e., the lensing potential decays at
late times. Data analyses from galaxy surveys correlated with the CMB temperature
result in a ∼ 3σ detection of a positive ISW-LSS cross-correlation amplitude (e.g.
Giannantonio et al. 2008, P. Collaboration, Aghanim, Akrami, Ashdown, Aumont,
Baccigalupi, M. Ballardini, Banday, Barreiro, N. Bartolo, Basak, Benabed, et al.
2020). This implies that MG models that have a strictly growing lensing potential
on sub-horizon scales can be ruled out with at least 3σ significance since they predict
a negative ISW-LSS cross-correlation amplitude. The analysis of Barreira, Li, et al.
2014 suggested that this could well be the case for their resulting best-fitting models
but the discussion there was kept mostly qualitative. In the case of the GGC, we
can have a negative ISW-LSS cross-correlation value: consider the effective coupling
functions for the GGC (3.83). In the two early-time cosmological epochs discussed
in 3.5.1.2, the right hand side of (3.83) reduces to:

µ = Σ ≃
{
1 + x3

2+3Ωm+4Ωr
for {|x1| , |x2|} ≪ |x3| ≪ 1

1 + x3
2(1+3Ωm+4Ωr)

for x3 = −2x1, x2 → 0
(4.52)

With the growth of x3, Σ increases in time. The growth of Σ is particularly signifi-
cant in the late universe at which x3 contributes to the Dark Energy density. Hence
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it is possible to realize the negative ISW-galaxy cross-correlations in the GGC model.
As an example we can see the resulting cross-correlation obtained in Kable et al.
(2021). In their plot (Fig.4.2) the ISW-galaxy cross-correlation power spectra for two
different redshift bins are presented: (1) 0.1 ≤ z < 0.3 (left) and (2) 0.5 ≤ z < 0.7
(right). The Cl angular power spectra has been computed for three different cases:
(i) x01 = −1.35, x03 = 0.05, (ii)x01 = −1.20, x03 = 0.36, and (iii) x01 = −0.85, x03 = 1.06,
where x01 and x03 are today’s values of x1 and x3 respectively. The Sloan Digital Sky
Surveys (SDSS) data are shown as black points with error bars. Besides the ΛCDM
model, the cross-correlation power spectrum in the Cubic Galileon (G3) model is
shown. We can see the possibility for a negative GGC (but also a negative value
for the Cubic Galileon, which in our case resulted to be positive). They have found
that if the magnitude of |x01| increases relative to x03, the ISW signal approaches
the ΛCDM limit. For x03 exceeding the order of |x01|, the ISW signal approaches
the G3 limit. In this latter case, it is possible to generate a negative ISW-galaxy
cross-correlation, which is disfavored when data from all redshift bins are included.
In our case, if the ISW signal approaches the G3 limit, we expect this time a positive
value for the GGC. The behavior would correspond to their case (x03 exceeding the
order of |x01|), but the result would be different, given our positive cross-correlation
for GCCG. Future work will go into details regarding the cross-correlation of the
GGC model.

Figure 4.2: Cl of angular cross-correlation for the models GGC and GCCG compared to
ΛCDM model. Plot from Kable et al. (2021)
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Model H0 ⌦b,0h
2 ⌦c,0h

2 109As ns ⌧ S8 Additional model parameters �2

⇤CDM 67.69 0.02242 0.1193 2.099 0.9673 0.055 0.8234 – 2044.8
GGC 68.24 0.02245 0.1196 2.108 0.9656 0.057 0.8502 x0

1 = �1.20, x0
3 = 0.38 2037.2

GCCG 68.93 0.02240 0.1200 2.106 0.9656 0.056 0.8394 s = 0.182, q = 1.49 2039.7
K-mouflage 68.37 0.02241 0.1198 2.106 0.9670 0.056 0.8250 ↵U = 0.505, ✏2,0 = �6.9 ⇥ 10�4 2044.5

Table I. Best-fit cosmological parameters and corresponding �2 values derived from likelihood minimization fits of the ⇤CDM,
GGC, GCCG, and K-mouflage models, respectively (see Sec. III). For the K-mouflage case, we fix �U = 1, �A = 0.2, m = 3 as
these parameters are unconstrained by the likelihood.

Figure 1. In the GGC model, we plot the ISW-galaxy cross-correlation power spectra for two di↵erent redshift bins: (1)

0.1  z < 0.3 (left) and (2) 0.5  z < 0.7 (right). We show l(l+1)CTg
l /(2⇡) for three di↵erent cases: (i) x0

1 = �1.35, x0
3 = 0.05,

(ii) x0
1 = �1.20, x0

3 = 0.36, and (iii) x0
1 = �0.85, x0

3 = 1.06, where x0
1 and x0

3 are today’s values of x1 and x3 respectively. The
SDSS data are shown as black points with error bars. Besides the ⇤CDM model, we also depict the cross-correlation power
spectrum in the Cubic Galileon (G3) model. In all cases, we fix the ⇤CDM model parameters to the ⇤CDM best-fit values
presented in Table I. If the magnitude of |x0

1| increases relative to x0
3, the ISW signal approaches the ⇤CDM limit. For x0

3

exceeding the order of |x0
1|, the ISW signal approaches the G3 limit. In this latter case, it is possible to generate a negative

ISW-galaxy cross-correlation, which is disfavored when data from all redshift bins are included.

A. Galileon Ghost Condensate (GGC)

In the GGC model, the existence of the Galileon Lagrangian 3a3X⇤� gives rise to a di↵erent cosmic growth history
compared to ⇤CDM. As we observe in Eq. (3.34), the variable x3 leads to deviations of µ and ⌃ from 1. In Fig. 1,
we plot the ISW-galaxy cross-correlation power spectrum for several di↵erent sets of the GGC model parameters x0

1

and x0
3 (which are today’s values of x1 and x3). In the same figure, we also include the ⇤CDM and G3 models for

comparison. To plot the power spectra for each model in Fig. 1, we fix the ⇤CDM model parameters for each of the
models depicted to the ⇤CDM best-fit values presented in Table I.

In Fig. 1, we also show data from the cross-correlation of SDSS galaxy number counts with Planck temperature
data in the redshift ranges 0.1  z < 0.3 and 0.5  z < 0.7. For the theoretical power spectra, we adopt the same
selection function as used in the two redshift ranges of SDSS to elucidate the power spectrum for those particular
redshift bins. Overall, the strength of ISW signal is weaker in the higher redshift bin than in the lower redshift bin
as the scalar field is subdominant to the background fluid at earlier times.

As we observe in Fig. 1, irrespective of the redshift bins, larger values of x0
3 work to suppress the ISW-galaxy

cross-correlation power with respect to ⇤CDM. In the limit x0
3 ! 0, GGC mimics ⇤CDM. As x0

3 exceeds the order of
|x0

1|, GGC approaches the G3 limit. In Fig. 2, we plot the evolution of F defined by Eqn. (2.29) for the same model
parameters as those used in Fig. 1. From Eqn. (2.30), the negative ISW-galaxy cross-correlation is accompanied by

It has been shown (Peirone et al. 2019, Frusciante, Peirone, et al. 2020) that both
GCCG and GGC are significantly favored over the ΛCDM for particular combina-
tions of data sets. In detail, The GCCG is able to ease the tension in the estimation
of the present-day value of the Hubble parameter between CMB and low-z measure-
ments. However, the tension is again present when including the BAO data. GCCG
is favored when considering the Planck data alone because the GCCG is able to
better fit the ISW tail (Frusciante, Peirone, et al. 2020). To quantify the preference
of the GCCG model with respect to the ΛCDM, the Deviance Information Criterion
(DIC) has been considered (Spiegelhalter et al. 2014). The DIC accounts for both
the goodness of the fit and the Bayesian complexity of the model. The DIC test
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favors the GCCG when considering the Planck dataset. However, when considering
the combined datasets (the so called PBRS ) of Planck (P. Collaboration, Aghanim,
Akrami, Ashdown, Aumont, Baccigalupi, M. Ballardini, Banday, Barreiro, N. Bar-
tolo, Basak, Battye, et al. 2020), BAO (Beutler et al. 2011), RSD (Alam et al. 2017),
SNIa (Betoule et al. 2014) the ΛCDM is once again favored (Frusciante, Peirone,
et al. 2020). In the case of the GGC, the DIC exhibits a preference for the GGC
in both Planck and PBRS dataset (Peirone et al. 2019). In addition, the Bayesian
evidence factor has been considered (along the lines of Heavens et al. 2017) and it
shows a significant preference for GGC.

Figure 4.3: Cl of cross-correlation for the models K-mouflage and GCCG compared to
ΛCDM model
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In addition, we have computed the SNR (4.39) expected for a detection of the cross-
correlation signal in each model, using a Euclid-like galaxy redshift distribution.
The possible sources of noise entering in SNR computation are the cosmic variance
and the shot noise. Regarding the latter, the uncorrelated part of the intrinsic
(unlensed) ellipticity field (Schäfer and Merkel 2017) acts as a shot noise term in
the observed galaxy matter power spectrum. This is non-zero for auto-correlation
(intra-bin) power spectra but is zero for cross-correlation (inter-bin) power spectra
because ellipticities of galaxies at different redshifts should be uncorrelated (Euclid
Collaboration et al. 2020). Therefore, the shot-noise does not enter into the Noise
term for our cross-correlations since the intrinsic ellipticity dispersion is zero for
cross-correlations(E. Collaboration et al. 2022). The values are quite similar:

SNRK−mouflage ∼ 6.43; SNRGCCG ∼ 6.46; SNRGR ∼ 6.34. (4.53)
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Figure 4.4: Cl modes of CMB angular power spectrum for the ΛCDM A, K-mouflage,
and GCCG.
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4.4.2 TPM results

In the case of the TPM, the departure on large scales is evident from the CMB
angular power spectra. We can see in Fig. 4.9 that for low l the distinction is
remarkable. Thus the computation of the residuals has been performed as:

∆CX

σX
=
CTPM
X − CΛCDM

X

σX
(4.54)

where X can stand for TT, EE, TE, BB. It can be seen in Fig.(4.10). The denom-
inator σ is the cosmic variance, used to normalize the residuals shown in Fig 4.10,
which prescription is given by (Lin, W. Hu, et al. 2020):

σX =


√

2
2ℓ+1C

TT
l , X = TT√

1
2ℓ+1

√
CTT
ℓ CEE

ℓ +
(
CTE
ℓ

)2
, X = TE√

2
2ℓ+1C

EE
ℓ , X = EE

(4.55)

which is obtained from the Cl of ΛCDM. For the BB modes, the normalization is
with respect to simply CΛCDM

BB .

When considering the cross-correlation (Fig. 4.5), we can see the significantly dif-
ferent amplitude compared to the ΛCDM. This is also reflected in the SNR com-
putation, which shows SNRGR ∼ 6.48 and SNRTPM ∼ 3.49. Some considerations
on the parameters of the model have to be done in regard to the smallness of the
amplitude. Specifically, we have to look at the effective coupling functions (3.111).
As we can see, they depend on the form of the transition function (thus Ω0, σ) and
c0. On the largest scales µ ∼ (1− Ω)−1 and Σ ∼ (1 + Ω)−1. On the smaller scales,
the dependence lies also on c0. This parameter plays a pivotal role when defining 2
regimes, at early epochs and later epochs. At early epochs the main effect on µ and
Σ is sourced by the evolution of Ω, having Ω̇ ≫ c/H. At later epochs the effect of
c0 becomes dominant and µ and Σ on small scales grow again. Given the interest
in the late ISW effect, the contribution of c0 greatly affects the amplitude of the
cross-correlation.
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Figure 4.5: Cl of cross-correlation for the TPM and ΛCDM B models. We can clearly see
the difference in amplitude.
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A first approach to understanding what makes the amplitude so small is to vary the
relevant cosmological parameters. We varied all the parameters of the model of a
value of 1σ of the best-fit value. In this way, we identified the key quantities. In
detail, small6 variations (see Figs. 4.8, 4.7) happen when varying As (the amplitude
of primordial perturbations) and Ω0 (the amplitude of the transition of the Mass
Planck), while varying the other parameters produce no distinguishable difference,
including σ (the width of the transition). The last two parameters modify the
expansion history and the growth of perturbations only before recombination. For
this reason they do not affect the late ISW-LSS cross-correlation amplitude, as
confirmed by our results. While they should be relevant on large scales, at later
epochs c0 is the key parameter, overcoming Ω. In fact, varying c0

7 greatly affects the
amplitude and we report here the same cross-correlation computed with 3 different
values of c0 each one closer to the limit 0. In agreement with Benevento, Kable, et al.
(2022), in the limit c0 → 0 we recover ΛCDM. The parameter c0 itself alleviates the
tension on H0: the late-time effect of a negative c0 parameter also contributes to
bringing the present H0 to higher values, through a reduction of the present value
of wTPM,0 to below -1 for negative values of c0.

6these are small variations in amplitude if compared to the amplitude variations that happen
when varying the parameter c0, which is discussed shortly after

7the c0 parameter regulates the EFT function c(t) that enters into the background equations.
See (3.105)
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Figure 4.6: Cl of cross-correlation for the TPM model in the case of different values of
the parameter c0.
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Figure 4.7: Cl of cross-correlation for the TPM model in the case of different values of
the parameter Ω0.
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Figure 4.8: Cl of cross-correlation for the TPM model in the case of different values of
the parameter As.
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Figure 4.9: Cl modes for the ΛCDM B and TPM.
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Figure 4.10: Residuals computed for the TPM model.
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CHAPTER 5

Conclusions

In this work, we wanted to investigate gravity through the so called CMB ISW
(Integrated Sachs-Wolfe) effect, exploiting the statistical tool of cross-correlation of
the CMB temperature anisotropies and the Large-Scale-Strctures. As we have seen,
the current standard cosmological model is the most robust description of the Uni-
verse we have today. With plenty of observations supporting it, it can describe in
a precise manner both the early Universe and the late Universe (P. Collaboration,
Aghanim, Akrami, Ashdown, Aumont, Baccigalupi, M. Ballardini, Banday, Bar-
reiro, N. Bartolo, Basak, Benabed, et al. 2020). However, one thing that still eludes
cosmologists is the accelerated expansion of the Universe: as we know, this latest
phase is characterized by an accelerated expansion and an inexplicable growth of
matter (Abdalla et al. 2022). The reason behind this behavior is attributed to the
so-called Dark Energy, a component that constitutes most of the cosmic inventory
today. Its fundamental nature however is still completely unknown: in the ΛCDM it
is described by a cosmological constant Λ and set to be constant. The nature of it is,
however, unknown. Moreover, from the quantum field theory theoretical depiction
of the constant, we have a colossal difference with the observed constant: about 60
orders of magnitude (S. Weinberg 1989). Looking at our measurements, there is still
room for improvement. Moreover, cosmological tensions arise from the discrepancies
in the values of fundamental parameters (Abdalla et al. 2022). Parameters obtained
from late Universe measurements are in contrast with the values derived from the
early universe observations: this is still an open question in Cosmology with multiple
possibilities for an answer. One could be a fundamental flaw in the procedure of late
time measurements: distance ladders are usually the offspring of several approxima-
tions; another could be that the standard description of gravity and our Universe
that we assume today isn’t the best one. At the largest scales, ΛCDM constraints
are not so tight (see e.g. Joyce et al. 2015), and at such scales, modifications of
gravity are a concrete possibility. This is the route we wanted to explore in this
thesis, by looking at what nature has given us to test gravity: the late Integrated-
Sachs-Wolfe effect (W. Hu, Sugiyama, and Silk 1997). As we have seen in Chapter

95



96 CHAPTER 5. CONCLUSIONS

2, the Cosmic Microwave Background is a rich environment for cosmological studies
since it is an imprint of our early universe. The anisotropies in temperature of the
CMB are one of the best tools to study the tumultuous evolution of our Universe. A
secondary contribution to these anisotropies is the so-called ISW effect and the main
goal of our thesis. The Integrated-Sachs-Wolfe, as the name says, is an integrated
effect that takes into account the anisotropies in temperature of a photon during
its travel up to us. As this is an effect that arises after the decoupling of photons
from electrons, it can be a test of our late universe too. In particular, the ISW is
sensitive to time-dependent gravitational potentials: the photon traveling thorugh
such potential would result redshifted/blueshifted, leaving imprinting on it. Given
this behavior, it is natural to try to use it to test the environment of an accelerated
expansion of the Universe, since it alters the gravitational potential. In this way,
everything is set to probe gravity described in different ways in different models.
In Chapter 3 we have introduced these alternative theories: ones that change the
description of Dark Energy as dynamical, and ones that introduce a modification
in the gravitational sector. Among the plethora of different prescriptions, a useful
methodoolgy of investigation is the so called Effective Field Theory approach : the
EFT approach (Gubitosi et al. 2013). Using the EFT action of gravity has numer-
ous advantages that we have reviewed. In a few words, the EFT encompasses not
only specific models, but also classes of Dark energy/modified models, making it a
powerful way to test gravity without specific assumptions. Nevertheless, it allows to
recover specific solutions, once mapped into the EFT fomalism. This is an approach
that we found not only convenient from a theoretical standpoint but also from a
computational point of view. EFTCAMB (B. Hu et al. 2017), the code used in the
thesis, is a large patch to CAMB, the main code, that incorporates the EFT descrip-
tion of modified gravity models. The EFT approach, with its mapping procedure,
let us compute the same quantities for different models in a more efficient way: the
general action is “shared” among the models and the specific result is given by map-
ping and applying the necessary constraints. The full mapping to a theory can just
be set by inserting modules containing the background equations and a parametriza-
tion. We then exploited this feature by setting the modules for the state-of-the-art
theories we wanted to explore. These models have been introduced in Chapter 3 and
briefly described in their parametrization and their stability conditions. Two models
are sub-cases of Horndeski theories (Horndeski 1974) that are with the latest con-
straints. One model is the K-mouflage (Babichev et al. 2009), a large set of theories
with its screening mechanism. Finally, we explored for the first time a recent model,
the so-called Transitional Planck Mass model (Benevento, Kable, et al. 2022). It
has been written directly in the EFT language and prescribes a peculiar transition
of the Planck Mass at early times. Testing the ISW effect for each of these models is
difficult. The ISW effect is faint, being a secondary effect, and the cosmic variance
can be dominant on the largest scales. In Chapter 4 we introduce the solution to this
problem and the effective tool we used to test gravity: cross-correlation. Correlating
the CMB temperature to the tracers of time-dependent gravitational potentials can
effectively highlight the ISW effect. These tracers, to put it simply, are the galaxies
of the LSS and of its gravitational potentials. Thus, we cross-correlated the CMB
temperature anisotropies with galaxy number counts. The idea, first proposed by
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Crittenden and Turok 1996, is that if there is an evolving late time potential, this
is a source for the cross-correlation between these two quantities. The modelization
of the galaxy number counts has been carefully chosen. In light of the future Euclid
mission, choosing the distribution prescribed by the Euclid Consortium has many
advantages: first and foremost the fact that the promising data that Euclid will
gather would allow a future analysis (E. Collaboration et al. 2022) be based on the
latest dataset. We then presented the results in Chapter 4, having found that all
but one (the TPM) cross-correlation is similar to the ΛCDM counterpart. Investi-
gating each cross-correlation, we have found promising results. All the amplitudes
are of positive value, which is established by previous ISW observations (Stölzner
et al. 2018). In addition, the stability criteria that are necessary to impose to each
model parametrizaion translate well into the cross-correlation obtained, confirming
the behavior of the parameters. Specifically, this is shown in the effective coupling
functions which depend on the parametrizaion of each model. Moreover, consider-
ing the limit of the parameters in which we recover General Relativity, the ΛCDM
cross-correlation is recovered. These considerations are valid for the Transitional
Planck Mass model too, even if is characterized by a smaller cross-correlation. By
investigating further this model, we have found that the key parameter affecting the
amplitude is c0, a parameter (prescribed by the model) that enetrs into the back-
ground equations and which is relevant on large scales. Looking forward from these
results, there is plenty to build upon. The immediate next step is to compute the
Fisher Information Matrix (see e.g. Verde 2009) for these cross-correlations. The
Fisher matrix can provide (under some assumptions) forecasting errors from a given
experimental setup and thus is often the work-horse of experimental design. It is
defined as:

Fij = −
〈
∂2 lnL

∂θi∂θj

〉
(5.1)

where L is the likelihood and θi are the parameters of L . Here the average is the
ensemble average over observational data (those that would be gathered if the real
Universe was given by the model around which the derivative is taken). The power
of the Fisher Matrix lies within the Cràmer-Rao relation (see e.g. Verde 2009):

σθi ≥
(
F−1

)1/2
ii

(5.2)

Let’s spell it out for clarity: this is the square root of the element ii of the inverse of
the Fisher information matrix. This assumes that the likelihood is Gaussian around
its maximum. The terrific utility of the Fisher Information matrix is that, if you can
compute it, it enables you to estimate the parameters errors for a given survey. If it
can be computed quickly, it also enables one to explore different experimental setups
and optimize the experiment. This is a procedure that is planned for the very near
future and it will put forecasted errors on the parameters of the model. Hopefully,
in the long run, future data analysis and comparison will help us constrain these
gravity models and direct us to a better understanding of the Universe. The method
of investigation used in this thesis can be very well applied to some related topics. So
far we investigated the cross-correlation of ISW and LSS, but relativistic corrections
(Raccanelli, Bertacca, Jeong, et al. 2016) can be found even in the correlation LSS-
LSS. In that direction, it would be interesting to study which contribution is relevant
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in different models of gravity. In the same fashion as Renk, Zumalacarregui, et
al. (2016), the relativistic contributions can be investigated in an EFT formalism.
Specifically, if we consider the galaxy number counts:

∆(n, z) =
ng(n, z)− ⟨ng⟩ (z)

⟨ng⟩ (z)
(5.3)

In the Newtonian gauge, the ∆ is given by a multitude of contributions (Raccanelli,
Bertacca, Maartens, et al. 2016, Raccanelli, Bertacca, Jeong, et al. 2016, Raccanelli,
Bertacca, Dore, et al. 2014, Raccanelli, Bertacca, Pietrobon, et al. 2013, Challinor
and Lewis 2011):

∆δ(n, z) =b(z)δco(r(z)n, τ(z))

∆rsd(n, z) =
1

H(z)
∂r(v · n),

∆κ(n, z) =− (2− 5s(z))

2

� r(z)

0
dr
r(z)− r

r(z)r
∆2(Φ + Ψ),

∆dop(n, z) =

[H′

H2
+

2− 5s(z)

rH + 5s(z)−
�
evo

(z)

]
(v · n)+

+

[
3−

�
evo

(z)

]
H∆−1(∇ · v),

∆lp(n, z) =(5s(z)− 2)Φ + Ψ+H−1Φ′

+

[H′

H2
+

2− 5s

rH + 5s(z)− fevo(z)

]
Ψ,

∆td(n, z) =
2− 5s

r(z)

� r(z)

0
dr(Φ + Ψ),

∆ISW(n, z) =

[H′

H2
+

2− 5s

rH + 5s(z)− fevo(z)

]� r(z)

0
dr
(
Φ′ +Ψ′)

(5.4)

which all depend on the gravitational potentials. This would be interesting to study
with an EFT approach in Modified Gravity models. There is one final topic that
could be explored following the same method of investigation we used so far. This
time, the cross-correlation would be between the weak lensing of the CMB and the
LSS. It would be a further probe to test gravity. The results obtained so far are
promising in the near future more will be built upon, since the methodology used is
general and not bound to some specific model or case. Hopefully, all these areas of
investigation will be covered, and eventually a data analysis and matching will shed
some light on our dark energy-driven Universe.
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