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Notation

�= Alternating group of degree =
(= Symmetric group of degree =
Sym(⌦) Symmetric group on the set ⌦
E[�] Expected value of a random variable �

F@ Finite field of @ elements
P Probability function
AGL=(?) The affine general linear group of degree = over F?
⌧ � � Central product of ⌧ and �
⌧.� (Not necessarily split) extension of ⌧ by �
⌧ : � or ⌧ o � Split extension of ⌧ by �
⌧

0 Derived subgroup of ⌧
⌧ o � Wreath product ⌧= o �, where �  (= permutes the coordinates of ⌧=

3(⌧) Minimal number of generators for ⌧
log 0 Base two logarithm of 0
= A natural number
? A prime number
@ A prime power
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0.1 Introduction
In this thesis, we are interested in generation and invariable generation of finite groups.
While the first has a long and rich history in finite group theory, the latter is still quite
new and unexplored. Invariable generation was firstly introduced in the early nineties,
with motivation from computational Galois theory, by Dixon (see [Dix92]). Following
his work, we say that a subset {61 , . . . , 6C} of a finite group ⌧ invariably generates ⌧ if
{61

G1
, . . . , 6C

GC } generates ⌧ for every C-tuple (G1 , . . . , GC) 2 ⌧
C .

The motivating question of the present work is the following:

Question 1. Let⌧ be a direct product of : non-abelian finite simple groups. If we choose
random elements from ⌧ independently, with replacement, and with the uniform dis-
tribution, how many should we expect to pick until the elements chosen generate ⌧?
And how many to invariably generate ⌧?

We can formalise the quantities needed to answer the question above in the fol-
lowing way. Let ⌧ be a non-trivial finite group and let G = (G=)=2N be a sequence of
independent, uniformly distributed, ⌧-valued random variables. We may define two
random variables (two waiting times) by:

(i) �⌧ B min{= � 1 : hG1 , . . . , G=i = ⌧} 2 [1,+1];

(ii) �� ,⌧ B min{= � 1 : {G1 , . . . , G=} invariably generates ⌧} 2 [1,+1].

We denote the expectations of �⌧ and �I,⌧ respectively with 41(⌧) and ⇠(⌧). The
latter is known as the Chebotarev invariant of ⌧, and was firstly introduced by Kowalski
and Zywina in 2012 [KZ12], taking its name from its relation with the Chebotarev density

theorem.
In this thesis we answer Question 1 by deriving upper bounds for 41(⌧) and for ⇠(⌧),

where ⌧ is a direct product of : non-abelian finite simple groups. In both cases, we give
a polynomial bound for these expectations in terms of the logarithm of the number of
direct factors and we show that such logarithmic bounds are best possible.

Layout of the thesis

Chapter 1. In the first chapter we deal with the case of (classical) generation. For
= 2 N, denote by <=(⌧) the number of maximal subgroups of ⌧ with index =. We are
interested in the following quantity, which is roughly equal to 41(⌧):

M(⌧) = sup
=�2

log<=(⌧)

log = .

Indeed, in [LM20], Lucchini and Moscatiello have proved that

dM(⌧)e � 4  41(⌧)  dM(⌧)e + 3.

Using Goursat’s lemma, we provide a description of the maximal subgroups of a direct
product of groups, and then we prove the following upper bound for M(⌧).
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Theorem (Theorem 1.10). Let ⌧ = )1 ⇥ · · · ⇥ ): be a direct product of : non-abelian finite

simple groups. Then

M(⌧)  max
18:

3 log :
log ;()8)

+ 8,

where ;()8) denotes the minimum index of a proper subgroup of )8 .

Finally, we show that this logarithmic bound is best possible, modulo improving the
constants, at least when the direct factors are all isomorphic.

Chapter 2. The aim of this chapter is to outline some information about finite almost
simple groups and, in particular, about their maximal subgroups, which will be used in
Chapter 3 to deal with the Chebotarev invariant of a direct product of non-abelian finite
simple groups. The proof of the main result of Chapter 3 heavily relies on the Classi-
fication of Finite Simple Groups, therefore a wide range of tools is required. Among
the others, we discuss the powerful subgroup structure theorems for the maximal sub-
groups of the alternating and symmetric groups (O’Nan Scott theorem) and of the
almost simple classical groups (Aschbacher theorem [Asc84]). We also provide a brief
description of Shintani descent, equipped with several detailed examples.

Chapter 3. The third chapter investigates the case of invariable generation. Our main
result reads as follows.

Theorem (Theorem 3.6). Let ⌧ = )1 ⇥ · · · ⇥ ): be a direct product of : non-abelian finite

simple groups. Then there exists an absolute constant ✏ such that

⇠(⌧)  ✏ log :.

The strategy of the proof is discussed in Subsection 3.1.2. We conclude the chapter
by proving that the bound obtained for the Chebotarev invariant is best possible, at least
when the direct factors are all isomorphic, and, finally, we observe that although both
⇠(⌧) and 41(⌧) are $(log :), the difference between the two invariants can be arbitrarily
large.



1
An upper bound for M(⌧)

Let ⌧ be a non-trivial finite group and let G = (G=)=2N be a sequence of independent,
uniformly distributed, ⌧-valued random variables. As mentioned in the introduction,
in this chapter we are interested in the following waiting time:

�⌧ B min{= � 1 | hG1 , . . . , G=i = ⌧},

and we denote by 41(⌧) the expectation E[�⌧] of this random variable. In other
words, 41(⌧) is the expected number of elements of ⌧ which have to be picked at
random, with replacement, before a generating set for ⌧ is found.

Note that �⌧ > = if and only if hG1 , . . . , G=i < ⌧, so we have

P(�⌧ > =) = 1 � P⌧(=),

where P⌧(=) denotes the probability that = randomly chosen elements of ⌧ generate ⌧,
i.e.

P⌧(=) =
|{(61 , . . . , 6=) 2 ⌧

= | h61 , . . . , 6=i = ⌧}|

|⌧ |=
.

One may ask why should we be interested in probabilistic generation, i.e. in the
study of the probability that a random 3-tuple of elements of a group generate the
group, rather than just in minimal generation, i.e. in the minimal 3 such that there
exists such a 3-tuple. The following example, taken from [Tra20], answers to this moral
question.

Example 1.1. Let 3(⌧) denote the minimal number of generators for a group ⌧ and let
us consider the group ⌧ B �

19
5 . Then:

• 3(⌧) = 2 (moreover, it is a well-known result that �19
5 is the largest 2-generated

direct power of �5);
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• but P⌧(2) ⇡ 0.00000000001046624 (this can be obtained using [[KL90a], Proposi-
tion 9]);

• on the other hand, 41(⌧) ⇡ 4.2969719.

There are different approaches to the study of probabilistic generation. For example,
in [Pak99], Pak defined the following invariant:

V(⌧) B min
⇢
: 2 N | P⌧(:) �

1
4

�
,

and he observed that 41(⌧) is related toV(⌧) in the following way (see [[Pak99], Theorem
2.5]):

1
4

41(⌧)  V(⌧) 
4

4 � 1 41(⌧).

Significant estimations for V(⌧) have been obtained by Lubotzky in [Lub03].
In this chapter, we are interested in another related invariant: for = 2 N, denote by

<=(⌧) the number of maximal subgroups of ⌧ with index = and let

M(⌧) = sup
=�2

log<=(⌧)

log = .

M(⌧) can be seen as the polynomial degree of the rate of growth of <=(⌧) and it is
roughly equal to V(⌧), indeed we have (see [[Lub03], Proposition 1.2]):

M(⌧) � 3.5  V(⌧)  M(⌧) + 2.02.

Moreover, as already pointed out in the introduction, this rate is roughly equal to
41(⌧), and precisely we have ([[LM20], Theorem 1.1]):

dM(⌧)e � 4  41(⌧)  dM(⌧)e + 3.

This invariant has been studied for finite and profinite groups by various authors, see
for example [LM20], and the references therein.

The aim of this chapter is to give an estimate of M(⌧) for

⌧ �
÷

18A
)
:8

8
, (1.1)

with )8 a non-abelian simple group and )8 � )9 for all 8 < 9.
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1.1 The maximal subgroups of ⌧

In order to estimate M(⌧), first of all we need a description of the maximal subgroups
of ⌧. The key observation is the following.

Proposition 1.1.

(i) If ⌧1 and ⌧2 are two groups without common composition factors, then the maximal

subgroups of ⌧ = ⌧1 ⇥ ⌧2 are all and only of the form "1 ⇥ ⌧2, with "1 <
<0G

⌧1, and

⌧1 ⇥"2, with "2 <
<0G

⌧2.

(ii) If ⌧ = (C is a direct product of C isomorphic non-abelian simple groups, then the maximal

subgroups " of ⌧ are of two types:

• given 1  8  C and - <
<0G

(, " = {(B1 , . . . , BC) 2 (
C | B8 2 -},

• given 1  8 < 9  C and � 2 Aut((), " = {(B1 , . . . , BC) 2 (
C | B9 = B

�
8
}.

Proposition 1.1 is a consequence of a result of É. Goursat that dates back to 1889,
known as Goursat’s lemma [Gou89], that gives a description of the subgroups of a direct
product ⌧ ⇥�, which involves isomorphisms between factor groups of subgroups of ⌧
and �.

We follow [Thé97] for the proof of Goursat’s lemma and the subsequent Lemma 1.3
and Proposition 1.4, which correspond respectively to [[Thé97], Lemmas 1.1, 1.2 and
1.3].

Theorem 1.2 (Goursat’s lemma). Let ⌧ and � be two groups. Then, the subgroups of ⌧ ⇥�

are in bĳection with the set of 5-tuples ((̃1 , (1 , (̃2 , (2 , )), where (1 E (̃1  ⌧, (2 E (̃2  � and

) : (̃1/(1 ! (̃2/(2 is an isomorphism. Specifically:

(i) if ( is a subgroup of ⌧⇥�, then ( = {(B1 , B2) 2 (̃1 ⇥ (̃2 | ((1B1)
) = (2B2}, where (̃1 and

(̃2 are the projections of ( onto the two factors ⌧ and �, (1 and (2 are the intersections of

( with ⌧ ⇥ 1 and 1 ⇥ �, and the map ) : (16 7! (2⌘, with (6 , ⌘) 2 ( is a well-defined

isomorphism.

(ii) Conversely, if ) : (̃1/(1 ! (̃2/(2 is an isomorphism between sections of ⌧ and �

respectively, then ( = {(B1 , B2) 2 (̃1 ⇥ (̃2 | ((1B1)
) = (2B2} is a subgroup of ⌧ ⇥ �.

And the two constructions are inverse to each other.

Proof. If ( is a subgroup of ⌧ ⇥ �, we define (1 B ( \ (⌧ ⇥ 1), (2 B ( \ (1 ⇥ �),
(̃1 B �1((), (̃2 B �2((), where �1 : ⌧ ⇥ � ! ⌧ and �2 : ⌧ ⇥ � ! � are the canonical
projections onto the two factors. We identify (1 with a subgroup of ⌧ and so (1 E (̃1.
Indeed, if B1 2 (1 and 6 2 (̃1, (B1 , 1) 2 ( and 9⌘ 2 (̃2 such that (6 , ⌘) 2 (. So,
(6 , ⌘)�1(B1 , 1)(6 , ⌘) = (6�1

B16 , 1) 2 ( and therefore 6�1
B16 2 (1. Similarly, we identify

(2 with a subgroup of � and we have (2 E (̃2.
Note that (1 ⇥ (2  (  (̃1 ⇥ (̃2.
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Now, for any 6 2 (̃1, 9⌘ 2 (̃2 such that (6 , ⌘) 2 (, and the class (2⌘ 2 (̃2/(2 is
uniquely determined by 6, because if (6 , ⌘), (6 , ⌘0) 2 (, then (6 , ⌘)�1(6 , ⌘0) = (1, ⌘�1

⌘
0) 2

(2, and thus (2⌘ = (2⌘
0. Moreover, if 6 2 (1, then (6 , 1) 2 (, and so (2⌘ = (2.

Therefore, the class (2⌘ only depends on the class (16 2 (̃1/(1. This well defines a
group homomorphism ) : (̃1/(1 ! (̃2/(2 mapping (16 to (2⌘. Exchanging the role
of the two factors of the product, we obtain similarly a group homomorphism # in the
other direction and it follows easily that the two are inverse to each other.

Conversely, any isomorphism of sections ) : (̃1/(1 ! (̃2/(2 determines uniquely a
subgroup ( of ⌧ ⇥ � by the above procedure and the two constructions are inverse to
each other. ⇤

Remark 1.1. If ( is a subgroup of ⌧ ⇥ �, and if (1, (2, (̃1, (̃2 and ) are as in point (8)
of the previous theorem, then ( coincides with the inverse image ��1(�)), where �) is
the graph of the isomorphism ), and � : (̃1 ⇥ (̃2 ! (̃1/(1 ⇥ (̃2/(2 is the quotient map.

To describe the maximal subgroups of ⌧ ⇥ �, we shall need the following fact.

Lemma 1.3. Let ) : ⌧ ! � be an isomorphism and �) be the graph of ). Then the lattice of

subgroups of ⌧ ⇥ � containing �) is isomorphic to the lattice of normal subgroups of ⌧. In

particular �) is maximal if and only if ⌧ is simple (and hence H too).

Proof. If �) 6 ( 6 ⌧⇥�, we define # B (\ (⌧⇥1), and we identify it with a subgroup
of ⌧. Then, # E ⌧, because if = 2 # and 6 2 ⌧, then (6�1

=6 , 1) = (6 , 6))�1(= , 1)(6 , 6)).
This defines the required map ( 7! # . If, conversely, # E ⌧, we set ( B #�) and it is
easy to check that this defines the inverse map. ⇤

We are ready for the description of the maximal subgroups of ⌧ ⇥ �.

Proposition 1.4. Let ( be a maximal subgroup of ⌧ ⇥ �. Then:

(i) either ( is a standard subgroup of ⌧ ⇥ �, i.e. ( = (1 ⇥ � with (1 <
<0G

⌧ or ( = ⌧ ⇥ (2

with (2 <
<0G

�,

(ii) or S corresponds, by the construction in Theorem 1.2, to an isomorphism ) : ⌧/(1 !

�/(2 of simple groups.

Proof. Let ( <
<0G

⌧ ⇥ �, corresponding to ) : (̃1/(1 ! (̃2/(2, via the construction of
Goursat’s lemma. If (1 < ⌧, then (  (̃1 ⇥� < ⌧ ⇥�, so ( = (̃1 ⇥�, and consequently
( is standard, (1 = (̃1 and (1 <

<0G

⌧. Similarly, ( is standard if (2 < �.
Now, assume that (̃1 = ⌧ and (̃2 = �. We claim that ⌧/(1(� �/(2) is a simple

group. Indeed, (/((1 ⇥ (2) is equal to the graph of the isomorphism ) : ⌧/(1 ! ⌧/(2
and therefore we can conclude by the previous Lemma 1.3. Namely, ( <

<0G

⌧⇥� implies
that �) = (/((1 ⇥ (2) <

<0G

(⌧ ⇥�)/((1 ⇥ (2) and thus, by Lemma 1.3, ⌧/(1 is simple. ⇤

Now, we can prove proposition 1.1.
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Proof. (8) If ⌧1 and ⌧2 don’t have common composition factors, condition (88) of Propo-
sition 1.4 cannot occur. Therefore all the maximal subgroups of ⌧1 ⇥ ⌧2 are standard.

(88) For the second case, where ⌧ � (C , with ( a non-abelian simple group, we can
assume C = 2. If " <

<0G

( ⇥ (, by Proposition 1.4, either " = "1 ⇥ (, with "1 <
<0G

(,
or " = ( ⇥"2, with "2 <

<0G

(, or " corresponds to an isomorphism of simple groups

) : ( ! ( and so, by Goursat’s lemma, " = {(B1 , B2) 2 (̃1 ⇥ (̃2 = ( ⇥ ( | B
)
1 = B2}. The

same reasoning works for C � 3 and so we have obtained description (88). ⇤

Observation 1.1. Thanks to Proposition 1.1, we have a complete description of the
maximal subgroups of ⌧ �

Œ
18A )

:8

8
, with )8 a non-abelian finite simple group and

)8 � )9 for all 8 < 9. Let us ponder for a moment on this description.
Since ):8

8
and ):9

9
don’t have common composition factors, the maximal subgroups

" of ⌧ are all of the form:

" = ):1
1 ⇥ · · · ⇥ )

:8�1
8�1 ⇥"8 ⇥ )

:8+1
8+1 ⇥ · · · ⇥ )

:A

A
,

for 8 2 {1 . . . A} and "8 <
<0G

)
:8

8
.

Therefore we have two possibilities.

(i) "8 = )8 ⇥ · · · ⇥ f"8 ⇥ · · · ⇥ )8 , with f"8 <
<0G

)8 . In this case, |"8 | = |)8 |
:8�1 |f"8 | and

thus [⌧ : "] = [)
:8

8
: "8] = [)8 : f"8].

(ii) "8 = {(C1 , · · · , C9 , · · · , C: , · · · , C:8 ) 2 )
:8

8
: C: = C

)
9
}, given 9 < : and ) 2 Aut()8). In

this case, |"8 | = |)8 |
:8�1 and thus [⌧ : "] = [)

:8

8
: "8] =

|)8 |
:
8

|)8 |
:
8
�1 = |)8 |.

1.2 Proof of the main result

Let us consider Out(⌧), the outer automorphism group of ⌧. Recall that this is defined
as the quotient Out(⌧)=Aut(⌧)/Inn(⌧), where Inn(⌧) is the subgroup of inner auto-
morphisms, i.e. Inn(⌧)= {�6 | 6 2 ⌧}, with �6(G) = G

6 . In the proof of the main result
of this chapter we will need the following.

Lemma 1.5. If ( is a non-abelian finite simple group, then | Out(()|  log |( |.

Proof. This follows from the Classification of Finite Simple Groups. See, for example,
[Koh03] for a proof. ⇤

Remark 1.2. Here and throughout this thesis, the symbol log denotes the logarithm to
the base 2.

Lemma 1.6. If ( is a non-abelian finite simple group, then | Aut(()|  |( | log |( |.
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Proof. Let us consider Out(()=Aut(()/Inn((). Since ( is non-abelian simple, |Inn(()|=|( |
and, by Lemma 1.5, |Out(()|  log |( |. Therefore, |Aut(()| = |Inn(()| |Out(()| 

|( | log |( |. ⇤

Finally, we will use these crucial results.

Theorem 1.7 ([Luc15]). Let ( be a finite non-abelian simple group. Then,

41(()  41(�6) ⇡ 2.494

For convenience, we now restate the following result.

Theorem 1.8 ([LM20]). Let ⌧ be a finite group. Then

dM(⌧)e � 4  41(⌧)  dM(⌧)e + 3.

Combining Theorems 1.7 and 1.8 we obtain

Corollary 1.9. Let ( be a finite non-abelian simple group. Then,

dM(()e  6.

We are ready for the main result of this chapter.

Theorem 1.10. If⌧ is a product of non-abelian finite simple groups as in (1.1) and : B
Õ
A

8=1 :8 ,
then

M(⌧)  max
18A

3 log :
log ;()8)

+ 8, (1.2)

where ;()8) denotes the minimum index of a proper subgroup of )8 .

Proof. Using the above description of Observation 1.1 for the maximal subgroups of ⌧,
we have

<=(⌧) =
A’
8=1

:8<=()8) +

’
8 ,|)8 |==

✓
:8

2

◆
|Aut()8)|

 : max
18A

<=()8) +

✓
:

2

◆
= log = ,

where we used Lemma 1.6 to say that |Aut()8)|  |)8 | log |)8 | = = log =. Therefore

log<=(⌧)

log = 

log
⇣
:max18A <=()8) +

�
:

2
�
= log =

⌘
log = .
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We now estimate log
⇣
:max8 <=()8) +

�
:

2
�
= log =

⌘
. Note that it makes sense to assume

: � 2 and therefore

log
✓
:max

8

<=()8) +

✓
:

2

◆
= log =

◆

 log(:max
8

<=()8)) {max8 <=()8)�1} + log
✓✓
:

2

◆
= log =

◆

 max
8

log<=()8) {max8 <=()8)�1} + 3 log : + 2 log = ,

where we used: log
⇣ �
:

2
�
= log =

⌘
= log

⇣
:

2�:
2 = log =

⌘
 2 log : � 1 + 2 log =. We obtain:

sup
=�2

log<=(⌧)

log =  sup
=�2

3 log :
log = + max

8

sup
=�2

log(<=()8))

log = + 2

= sup
=�2

3 log :
log = + max

8

M()8) + 2.

Using Corollary 1.9, we have M()8)  6, thus

M(⌧)  sup
=�2

3 log :
log = + 8. (1.3)

To conclude, we can obtain a better estimate of the constant that multiplies 3 log :.
Note that <=(⌧) < 0 if and only if there exist 8 2 {1, . . . , A} and "8 <

<0G

)8 such that
|)8 : "8 | = =, or |)8 | = =, so we can replace sup

=�2
1

log = with max8 1
log(;()8)) , where ;()8) is

the minimum index of a proper subgroup of )8 . ⇤

Remark 1.3. The estimate of Theorem 1.10 is accurate and such logarithmic bound
is best possible, at least when the direct factors are all isomorphic. Indeed, consider
⌧ = �

:

5 . �5 has:

• 5 maximal subgroups of index 5 (�4);

• 6 maximal subgroups of index 6 (⇡10);

• 10 maximal subgroups of index 10 (twisted (3 in �5).

So, the non-zero values of <=(�
:

5) are:

• <5(�
:

5) = 5:,

• <6(�
:

5) = 6:,

• <10(�
:

5) = 10:,

• <60(�
:

5) =
�
:

2
�
| Aut(�5)| =

�
:

2
�
5!.
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And thus we obtain:

M(�
:

5) = sup
=�2

log<=(�
:

5)

log = = max
8>><
>>:

log 5:
log 5 ,

log
⇣ �
:

2
�
5!
⌘

log 60

9>>=
>>;
=

log :
log 5 + 1.



2
The maximal subgroups of the finite

almost simple groups

This chapter aims to briefly discuss some information about finite almost simple groups
and, in particular, about their maximal subgroups, that we shall need in Chapter 3
to deal with the Chebotarev invariant of a direct product of non-abelian finite simple
groups. The proof of our main result heavily relies on the Classification of the Finite
Simple Groups (CFSG). Therefore, we start by recalling its statement.

Theorem 2.1 (CFSG, Gorenstein). Each finite non-abelian simple group is isomorphic to one

of the following groups:

(i) an alternating group �= , for = � 5,

(ii) a classical group,

(iii) an exceptional group of Lie type,

(iv) one of the 26 sporadic groups.

Definition 2.1. A group ⌧ is called almost simple if there exists a simple group ( such
that ( E ⌧  Aut(().

Note that, in this case, soc(⌧) = (.

Definition 2.2. A group⌧ is called quasisimple if⌧ is perfect, that is⌧ = ⌧
0, and⌧//(⌧)

is simple.

The next easy lemma highlights the fact that, for a quasisimple group ⌧, there is a
natural 1 � 1 correspondence between the maximal subgroups of ⌧ and the maximal
subgroups of the simple quotient ⌧//(⌧).
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Lemma 2.2. Let ⌧ be perfect and let " be a maximal subgroup of ⌧. Then:

(i) " contains /(⌧);

(ii) "//(⌧) is maximal in ⌧//(⌧);

(iii) the preimage in ⌧ of every maximal subgroup of ⌧//(⌧) is maximal in ⌧.

Proof. (8) Assume that / B /(⌧) ⇥ ". Then, " < /" gives /" = ⌧, by maximality
of ". Hence, " E ⌧ and ⌧/" � //(" \ /) is abelian. This implies that ⌧0  ",
contradicting the assumption ⌧0 = ⌧.

(88) and (888) are straightforward. ⇤

2.1 The symmetric and alternating groups
It was known to Galois that �= is simple for = � 5. If = � 7, then the almost simple
groups with alternating socle are only �= and (= , and this is a consequence of the fact
that, for those =, Aut(�=) � (= (see [Wil09], Subsection 2.4.2 for a proof).

The maximal subgroups of �= and (= fall into three classes: the intransitive, the
imprimitive and the primitive. The first two families of maximal subgroups are quite
easy to classify, and the latter family is described by O’Nan Scott theorem, which we
shall state later.

First of all, we recall the notions of transitivity and primitivity.

Definition 2.3 (Transitivity). Let ⌧  Sym(⌦). We define an equivalence relation ⇠ on
⌦ by the rule that � ⇠ � if and only if there is an element 6 2 ⌧ with �6 = �. The
equivalence classes of ⇠ are the orbits of ⌧, and we say that ⌧ is transitive if there is just
one orbit, and intransitive otherwise.

Definition 2.4 (:-transitivity). Let ⌧  Sym(⌦) and let : be a positive integer less than
|⌦|. We say that ⌧ is :-transitive on ⌦ if it acts transitively on the set of all :-tuples of
distinct elements of⌦, where the action is componentwise: (�1 , . . . , �:)6 = (�61 , . . . , �

6

:
).

Note that if ⌧ is :-transitive on ⌦, then =(= � 1) · · · (= � : + 1) divides |⌧ |.
A non-empty subset � of ⌦ is a block for a permutation group ⌧  Sym(⌦) if for all

6 2 ⌧ either �6 = �, or �6 \ � = ú. That is, each element of ⌧ either permutes the
elements of � among themselves, or maps all of them outside �. If � is a block for ⌧, it
is easy to show that �6 is also a block, for all 6 2 ⌧. The set of translates {�6 | 6 2 ⌧} is
called a block system for ⌧. Observe that⌦ is a block, and {$} is a block for every $ 2 ⌦.
The blocks ⌦, {$} are called trivial blocks.

Definition 2.5 (Primitivity). If ⌧ is a transitive subgroup of Sym(⌦) and there exists a
non-trivial block for ⌧, then G is imprimitive; all other transitive groups are primitive.

Let us assume that ⌧ is transitive. A partition of ⌦ is a family P = {�1 , . . . ,�:}
of non-empty subsets of ⌦ such that ⌦ = �1 [ · · · [ �: and �8 \ �9 = ú, whenever
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8 < 9. We say that a group ⌧ stabilises the partition P if �6
8
2 P for all 6 2 ⌧ and for all

8 2 {1, . . . , :}. If ⌧ stabilises a partition P, since ⌧ is assumed to be transitive on ⌦, it
is clear that ⌧ acts on P by (�8 , 6) 7! �6

8
, and that this action is transitive: if �8 ,�9 2 P,

� 2 �8 and � 2 �9 , then there exists 6 2 ⌧ such that �6 = �, so �6
8
\ �9 < ú and this

implies that �6
8
= �9 . We deduce that all of the members of P have the same size, and

that if � is one of them, then either �6 = �, or �6 \ � = ú. Therefore, the partitions
stabilised by ⌧ correspond exactly to the block systems for ⌧.

Note that, if � is a block for ⌧, then 3 B |�| is a divisor of = = |⌦|. In particular, if
the block � is non trivial, then = cannot be a prime number.

Definition 2.6 (Wreath product). If � and  are two groups and   (= , then � o  

denotes the wreath product between � and  , i.e., the semidirect product � o  , where
 acts on �= by permuting the coordinates, namely, � 2  acts on �= by

(G1 , . . . , G=)
� = ��1

(G1 , . . . , G=)� = (G1��1 , . . . , G
=��1).

We are ready to describe the intransitive and imprimitive maximal subgroups of �=
and (= .

2.1.1 Intransitive and imprimitive maximal subgroups

In order to prove the next proposition, we shall need the following results: the first is
due to Jordan and the second to Frobenius. Proofs can be found for example in [[Gar21],
Theorems 6.6 and 8.1].

Theorem 2.3 (Jordan). Assume that ⌧ is primitive on⌦ and let ⌧� be the pointwise stabiliser

of � ✓ ⌦ in ⌧. If ⌧� is primitive on � B ⌦ \ � and 1 < |�| = < < = = |⌦|, then ⌧ is

(= � < + 1)-transitive.

Theorem 2.4 (Embedding argument). Let� be a subgroup of a finite group ⌧, let G1 , . . . , G=
be a right transversal for� in⌧ and let! be any homomorphism with domain�, say! : � ! -.

Then the map

5 : ⌧ ! !(�) o (= , G 7! (!(G1GG
�1
1�), . . . , G=GG

�1
=�))�,

where � 2 (= is the unique permutation that satisfies G8G 2 �G8� for all 8 = 1, . . . , =, is a

well-defined homomorphism with ker 5 = (ker !)⌧, the normal core of ker ! in ⌧.

Proposition 2.5. If - is �= or (= and " is any maximal subgroup of -, with " < �= , then

the following holds:

(i) if " is intransitive, then " = ((: ⇥ (;) \ -, with = = : + ; and : < ;;

(ii) if " is imprimitive, then " = ((: o (;) \ -, with = = :;, : > 1 and ; > 1.
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Proof. We prove the proposition for - = (= , the case - = �= being similar, and we
follow the proofs of Garonzi contained in [[Gar21], Chapters 7 and 8].

Intransitive case. Let ⌦ = {1, . . . , =} and let ⌧  Sym(⌦) = (= be an intransitive
permutation group. Then, ⌧ has more than one orbit on ⌦, and letting $ be one of
them, ⌧ is contained in Stab($) = {6 2 (= | $6 = $}. Note also that we have a natural
isomorphism:

Stab($) � Sym($) ⇥ Sym(⌦ \ $), 6 7! (6|$ , 6|⌦\$ ).

Thus, the maximal intransitive subgroups of (= , i.e. maximal among the intransitive
subgroups, are of the form⌧ = Stab($), where$ is a non-empty proper subset of⌦. We
have therefore obtained that these subgroups are of type (: ⇥ (; , where 0 < : = |$ | < =

and ; = = � : = |⌦ \ $ |. Now, we want to prove that such subgroups are indeed
maximal in (= , unless : = ;. Assume that ⌧ = Stab($) is not a maximal subgroup of (= ,
then, it is properly contained in some maximal subgroup "  (= , which is therefore
transitive on⌦. Let us first assume that " is primitive. Note that, since we can assume
that = � 3, either $ or ⌦ \ $ has at least two elements, and therefore ⌧ (and thus ")
contains a 2-cycle, interchanging those two elements. Now, Jordan theorem 2.3 implies
that " = (= , a contradiction. Indeed, let � = (01) be the transposition contained in ",
let � = {0 , 1} and let � = ⌦ \ �. Note that "� acts primitively on �, since � 2 "� and
|�| = 2 is prime. Therefore, using Jordan theorem, " is (= � 1)-transitive and thus =!
divides |" |, implying that " = (= .

So, we can assume that " is imprimitive, and let � be a non-trivial block for ".
Then � is also a non trivial block for ⌧, therefore � \ $ is either empty or a block for
⌧
$ B {6|$ | 6 2 ⌧} and �\ $̄ is either empty or a block for ⌧$̄ . Since ⌧$ � Sym($) is

primitive on $ and ⌧$̄ � Sym($̄) is primitive on $̄, we deduce that either |� \ $ |  1
or � \ $ = $, and either |� \ $̄ |  1 or � \ $̄ = $̄. We investigate such cases.

• If � \ $ = {�} and � \ $̄ = {�}, then � = {�, �}. If there exists ✏ 2 $ \ �, then,
since ⌧ = Stab($), 6 = (�✏) 2 ⌧ and �6 = {�, ✏}. This contradicts the fact that �
is a block. Therefore $ \ � = ú and similarly $̄ \ � = ú, so ⌦ = �, contradicting
the fact that � is a non-trivial block.

• If �\$ = {�} and � ◆ $̄, then, � = {�} [ $̄. Since � is a non-trivial block, there
exists � 2 ⌦ \ �, hence there exists 6 2 ⌧ such that �6 = �, so �6 = {�} [ $̄ is not
disjoint from � and not equal to �, a contradicition.

• We are left with the case in which one of �\$ and �\ $̄ is empty, say �\$ = ú,
therefore � = $̄. Since " is transitive, there exists < 2 " that takes an element
of $̄ to an element of $, hence �< ✓ $. But then �< = �< \ $ is a block for
⌧
$ = Sym$, of size at least 2, hence �< = $, and in particular |$̄ | = |$ |.

This shows that if $ is a proper subset of⌦ and ⌧ = Stab($) is not a maximal subgroup
of (= , then = > 2 and |$̄ | = |$ |. So, ⌧ has type (: ⇥ (: , with 2: = =. Indeed, such
a subgroup is not maximal if = > 2: it is contained in an imprimitive wreath product
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(: o (2, the stabilizer of a partition with two parts of size :, which, as we are now going
to see, is a maximal subgroup of (= .

Imprimitive case Let : , ; > 1 such that :; = =. Then, the wreath product (: o (;
embeds into (= as an imprimitive group. To see this, it is enough to check that (: o (;
acts faithfully and imprimitively on the set {1, . . . , :} ⇥ {1, . . . , ;}, which is a set of size
:; = =, by the rule:

(8 , 9)
(G1 ,...,G;)� B (8

G9
, 9

�
).

It is straightforward to check that the above rule defines an action. This action is
imprimitive, admitting �9 B {1, . . . , :} ⇥ { 9} as a block system, 9 = 1, . . . , ;. Indeed,

�(G1 ,...,G;)�
9

= ��
9
= �9� .

Finally, it is easy to see that this action is faithful: assume that (8 , 9)(G1 ,··· ,G;)� = (8 , 9) for
all (8 , 9). Fix 9 2 {1, . . . , ;}, then 8G9 = 8 for all 8 2 {1, . . . , :}, and therefore G9 = 1 for all
9. Moreover, 9� = 9 for all 9 and so � = 1.

Actually, (: o (; is a maximal imprimitive subgroup, meaning that it is no properly
contained in any imprimitive subgroup of (= . Moreover, every maximal imprimitive
subgroup of (= is of this type. This can be proved using the Embedding argument 2.4 as
follows. Let ⌧  (= be an imprimitive subgroup: this means that there is a non-trivial
block � ✓ ⌦ for ⌧; let : B |�| and let � B Stab⌧(�) be the setwise stabiliser of �
in ⌧. Since ⌧ acts transitively on the block system {�6 | 6 2 ⌧}, by the fundamental
counting principle we have that |{�6 | 6 2 ⌧}| = [⌧ : �], call ; this number. Since the
translates of � partition {1, . . . , =}, we have that :; = =. The action of � on � induces
a homomorphism ! : � ! Sym(�) � (: . By the Embedding argument, we obtain a
homomorphism

5 : ⌧ ! !(�) o (;  (: o (; ,

with kernel the normal core of ker(!) in ⌧. Note that ⌘ 2 ker(!) if and only if ⌘ fixes
� pointwise, and ⌘ 2 (ker !)6 if and only if ⌘ fixes �6 pointwise. Therefore, ker ! = 1
and hence ⌧ embeds in the wreath product (: o (; .

To conclude, we observe that (: o (; is actually a maximal subgroup of (= . Indeed,
a subgroup properly containing it would be primitive and would contain a 2-cycle
(moving two elements of a block), therefore, as observed in the proof of the intransitive
case, such a subgroup would be equal to the whole group (= .

⇤

2.1.2 Primitive maximal subgroups

The O’Nan–Scott Theorem constitutes one of the most influential results in permutation
group theory. There are many different versions of this theorem, some giving much
more details than others; the following formulation is taken from [LPS87].

Theorem 2.6. If - is �= or (= and " is any primitive maximal subgroup of -, with " < �= ,

then " satisfies one of the following:
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(i) " = AGL:(?) \ -, with = = ?
:

and ? prime (affine case);

(ii) " = (): .(Out) ⇥ (:)) \ -, with ) a non-abelian simple group, : � 2 and = = |) |:�1

(diagonal case);

(iii) " = ((: o (;) \ -, with = = :
;
, : � 5 and ; � 2, excluding the case where - = �= and

" is imprimitive on ⌦ (wreath case);

(iv) ) E " 6 Aut), with ) a non-abelian simple group, ) < �= and " acting primitively

on ⌦ (almost simple case).

Since we will not need to use the explicit structure of these subgroups later, we shall
not give details of the structure of the groups in each of these cases, and we refer the
reader, for example, to Cameron’s textbook [Cam99] for more information. Note that
this theorem does not say that the groups listed are maximal in -, but certainly every
maximal subgroup of - is of one of the types listed. We mention that, in [LPS87],
Liebeck, Praeger and Saxl investigated when the groups " in (8) � (8E) are maximal in
"�= .

We conclude this section by stating the following two results, which will be useful
in the next chapter.

Theorem 2.7 ([LMS05]). The symmetric group (= has =
>(1)

conjugacy classes of primitive

maximal subgroups.

Here, >(1) denotes a number that tends to 0 as = tends to infinity.

Theorem 2.8 ([LP93]). The fraction of elements of (= that belong to a non-trivial transitive

subgroup decreases with = as =
��

, for some absolute constant � > 0.

2.2 The classical groups

We now provide a short introduction to classical groups. We commend the unfamiliar
reader to the book of Kleidman and Liebeck [[KL90b], Chapter 2], which we will mostly
follow, for a detailed introduction to the topic.

Preliminaries
Let us start with some preliminary definitions. Let + be a vector space over a field F.
A map 5 : + ⇥ + ! F is a left-linear form if for each E 2 + , the map + ! F given by
D 7! 5 (D , E) is a linear map. 5 is called non-degenerate if for each E 2 + \ {0}, the maps
+ ! F given by D 7! 5 (D , E) and D 7! 5 (E , D) are non-zero. We will mostly omit the
symbol 5 by writing (·, ·) for 5 (·, ·).

If (·, ·) is bilinear, we say that (·, ·) is alternating when (E , E) = 0 for all E 2 + .
Recall that a quadratic form on + is a map & : + ! F such that

&(⌫E) = ⌫2
&(E), for all E 2 + and ⌫ 2 F,
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endowed with an associated bilinear form (·, ·)& defined as

(D , E)& = &(D + E) �&(D) �&(E).

& is said to be non-degenerate if (·, ·)& is non-degenerate and & is non-singular if

A03(&) = {D 2 + | &(D) = 0 and (D , E)& = 0 for all E 2 +} = 0.

Assume that (+ , F, �) and (+0
, F, �0) are two spaces of dimension = over F, where

� and �0 are either both left-linear or both quadratic forms. Therefore, � and �0 are
maps from +

; to F, where ; = 1 if � and �0 are both quadratic and ; = 2 otherwise. An
invertible element 6 2 HomF(+ ,+

0) is

(i) an isometry if �0(E6) = �(E), for all E 2 +; ;

(ii) a similarity if there exists ⌫ 2 F⇤ such that :0(E6) = ⌫�(E), for all E 2 +; .

If there exists such an isometry or similarity, we say that (+ , F, �) and (+0
, F, �0) are

isometric or similar. If (+ , F, �)=(+0
, F, �0) , the sets of isometries and similarities of such

a form are groups under composition and we denote them with �(+ , F, �) and�(+ , F, �)
respectively.

Now, we recall that a map 6 : + ! + is called an F-semilinear transformation of +
if there is a field automorphism �(6) 2 Aut(F) such that for all D , E 2 + and ⌫ 2 F,

(D + E)6 = D6 + E6 and (⌫E)6 = ⌫�(6)
(E6).

If 6 is an F-semilinear transformation, then 6 is non-singular if {E 2 + | E6 = 0} = 0.
We define ΓL(+ , F) as the set of all non-singular F-semilinear transformations of + . It
is straightforward to check that if 6 , ⌘ 2 ΓL(+ , F), then their composition 6⌘ also lies
in ΓL(+ , F) and �(6⌘) = �(6)�(⌘). Therefore, ΓL(+ , F) forms a group, called the general

semilinear group of + over F.
Finally, an element 6 2 ΓL(+ , F) is called a �-semisimilarity if there exist ⌫ 2 F⇤ and

� 2 Aut(F) such that
�(E6) = ⌫�(E)� ,

for all E 2 +; . The set of �-semisimilarities forms a group, which we denote by �(+ , F, �).
It is easy to verify that the element ⌫ appearing in the definition of 6 is uniquely
determined by 6. Thus, there is a well-defined map

� : �(+ , F, �) ! F⇤ , 6 7! ⌫,

whose restriction to �(+ , F, �) is a homomorphism with kernel �(+ , F, �).

Classical forms
Let ? be a prime number, let A be a positive integer and let @ be the number ?A . Unless
otherwise specified, from now on + is an =-dimensional vector space over a field F of
characteristic ? > 0, where F = F@D , with D 2 {1, 2}, or F = F? is algebraically closed.
Let � be a a left-linear form 5 or a quadratic form & defined over the vector space + .
We consider four cases.
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L: � = 5 is identically 0.

S: � = 5 is a symplectic form, that is, a non-degenerate bilinear alternating form.

O: � = & is a non-degenerate quadratic form.

U: � = 5 is a unitary form over a finite field F = F
@

2 , that is, 5 is linear in the first
variable, additive in the second, non-degenerate and 5 (E ,F) = 5 (F , E)� for all
E ,F 2 + , where � is the (unique) field automorphism of F of order 2.

The above forms are known as the classical forms.
If � is a classical form on + and , is a vector subspace, we may consider �, , the

restriction of � to, (this is a minor abuse of terminology, for strictly speaking, �, is the
restriction to, ⇥, in cases L, U and S). We will be concerned with the cases when, is
non-degenerate, which means that �, is non-degenerate, and when , is totally singular,
which means �, = 0.

We recall that a symplectic form exists on + if and only if = = 2< is even. The
number D is defined as follows:

D =

(
2 if case U holds;
1 otherwise.

Moreover, when case O holds and F is a finite field, we distinguish three cases, according
to the parity of the dimension = of + and the Witt index of the quadratic form on + ,
namely, the dimension of a maximal totally singular subspace of + with respect to the
form (see [[KL90b], §§2.5-2.8]). We have the following trifurcation:

O�, if = = 2< + 1 is odd (here @ is assumed to be odd, see Remark 2.2);

O+, if = = 2< and (& ,+) has Witt index <;

O�, if = = 2<, and (& ,+) has Witt index < � 1.

We will refer to these forms, as zero, plus-type and minus-type quadratic forms, respec-
tively. Instead, when F is an algebraically closed field, all non-degenerate quadratic
forms on a 2<-dimensional vector space + have Witt index <, and therefore we will
omit the superscripts � and +.

Remark 2.1. We highlight uniqueness of the just defined forms up to isometry/similarity
and we describe standard bases in each case. Proofs can be found in [KL90b], Proposi-
tions 2.3.1, 2.3.2, 2.4.1, 2.5.3 and 2.5.4.

(i) Up to isometry, there is a unique symplectic form (·, ·) on a 2<-dimensional vector
space + and we consider the standard basis

B = (41 , 51 , . . . , 4< , 5<)

and define the bilinear form (·, ·) as

(48 , 49) = ( 58 , 59) = 0, (48 , 59) = ⇣8 9 .
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(ii) A non-degenerate quadratic form & = &
+ of plus-type on a 2<-dimensional

vector space + is unique up to isometry and we fix the standard basis

B
+ = (41 , 51 , . . . , 4< , 5<)

and define the quadratic form &
+, with associated bilinear form (·, ·) = (·, ·)&+ , as

&
+
(48) = &+

( 58) = 0, (48 , 49) = ( 58 , 59) = 0, (48 , 59) = ⇣8 9 .

(iii) The uniqueness of a non-degenerate quadratic form & on a (2< + 1)-dimensional
vector space + is up to similarity. We fix the basis

B = (41 , 51 , . . . , 4< , 5< , G)

and define & and (·, ·) = (·, ·)& as

&(48) = &( 58) = 0, &(G) = 1,
(48 , 49) = ( 58 , 59) = (48 , G) = ( 58 , G) = 0, (48 , 59) = ⇣8 9 .

(iv) Now, assume that F = F@ and consider a non-degenerate quadratic form & = &
�

of minus type over a 2<-dimensional vector space + , which is uniquely defined
up to isometry. To be consistent with Subsection 2.2.10, we deviate from [KL90b]
and we follow [GLS98]. We fix the basis

B
� = (41 , 51 , . . . , 4< , 5< , G< , H<)

and define &� and (·, ·) = (·, ·)&� as

&
�(48) = &�( 58) = 0, &�(G<) = &�(H<) = 1,

(48 , 49) = ( 58 , 59) = (48 , G<) = ( 58 , G<) = (48 , H<) = ( 58 , H<) = 0,
(48 , 59) = ⇣8 9 , (G< , H<) = ✓2 + ✓�2

,

where ✓ 2 F
@

2 \ F@ satisfies ✓@+1 = 1.

(v) Finally, up to isometry, there is a unique unitary form (·, ·) on + and we may
consider the standard basis

B B

(
{41 , 51 , . . . , 4< , 5<} if = = 2< ,

{41 , 51 , . . . , 4< , 5< , G} if = = 2< + 1,

where

(48 , 49) = ( 58 , 59) = 0, (48 , 59) = ⇣8 9 , (48 , G) = ( 58 , G) = 0, (G , G) = 1.
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Let & 2 {�,+,�}. We write

GU=(F), Sp
=
(F) and O&

=
(F)

for the isometry groups of a unitary, symplectic and quadratic form of &-type on a
F-vector space + . We omit the superscript & if F = F? , since there is no ambiguity. If
F = F@D , we adopt the notation:

GL=(@), GU=(@), Sp
=
(@) and O&

=
(@).

Note in particular that with GU=(@) we denote the isometry group of a unitary form on
F=
@

2 .

Remark 2.2. Although the uniqueness of a quadratic form& on a (2<+1)- dimensional
vector space+ is only up to similarity, note that similar forms have isomorphic isometry
groups, therefore it makes sense to write O�

2<+1(F) for the isometry group of such a
form. Moreover, in this case it is not restrictive to assume that ? is odd, since when
? = 2, then & is degenerate and O2<+1(F) � Sp2<(F) (see [[Cam00], Theorem 6.1]).

If - is any subgroup of GL=(F), then we write %- for the corresponding projec-
tive group -/- \ F⇤. Moreover, let ((+ , F, �) denote the subgroup of �(+ , F, �) of
determinant one maps.

As a matter of convenience we shall write

- = -(+ , F, �),

where - ranges over the symbols (, �, � and �. Thus, we obtain a chain of groups:

(  �  �  �. (2.1)

We finally give the definition of finite classical group.

Definition of the finite classical groups
Let F be the finite field F@D , as defined before, and let � be a classical form on a finite-
dimensional F-vector space + . For each of the cases L, S, O& and U we obtain the
sequence of groups appearing in (2.1), and we define further groups � = �(+ , F, �) and
⌦ = ⌦(+ , F, �) as follows. In case L with = � 3, the group ( = SL(+ , F) possesses an
inverse-transpose automorphism � ([see [KL90b], §2.1]), and in cases O&, the group (

contains a certain subgroup of index 2 (see [[KL90b], §2.5]). We define

� B

(
�h�i in case L with = � 3,
� otherwise.

⌦ B

(
this subgroup of index 2 in ( in cases O&

,

( otherwise.
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Thus, we obtain a chain of groups:

⌦  (  �  �  �  �. (2.2)

This chain is �-invariant, that is, each group is normalized by �. Moreover F⇤ E �, and
denoting by ¯ reduction modulo scalars, we obtain also a projective version of (2.2). The
notation for the groups in chain (2.2) in the cases L, S, O& and U is contained in Table
2.1.

Table 2.1: Notation for the finite classical groups

case X notation terminology

L

⌦ = ( SL=(@)

linear groups� = � GL=(@)
� ΓL=(@)

� = �h�i

U

⌦ = ( SU=(@)

unitary groups� GU=(@)

�
� = � �U=(@)

S
⌦ = ( = � Sp

=
(@)

symplectic groups� GSp
=
(@)

� = � �Sp
=
(@)

O&

⌦ ⌦&
=
(@)

orthogonal groups
S SO&

=
(@)

� O&
=
(@)

� GO&
=
(@)

� = � �O&
=
(@)

Definition 2.7. We define a (finite) classical group to be any group ⌧ satisfying

⌦  ⌧  � or ⌦  ⌧  �, (2.3)

in one of the cases L, S, O& or U. If ⌧ is such a classical group, then ⌧ is called a linear,

symplectic, orthogonal or unitary group, in the cases L, S, O& or U, respectively. Moreover,
the vector space + over which � is defined is called the natural module for ⌧.

Apart from a few special cases, the groups ⌦ are non-abelian simple and comprise
the (finite) classical simple groups, which are described in Table 2.2 (note that each excluded
group is either not simple or coincides with another simple group [[KL90b], Theorem
2.1.3 and Proposition 2.9.1]). Furthermore, with only a few exceptions, � � Aut(⌦). We
state with more precision some of these results, which correspond to Theorem 2.1.3 and
Theorem 2.1.4 in [KL90b].
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Theorem 2.9. (i) Assume that = = dimF(+) is at least 2, 3, 4, 7 in cases L, U, S and O&
,

respectively. Then ⌦ is non-abelian simple, except for PSL2(2), PSL2(3), PSU3(2) and

PSp4(2).

(ii) Assume that ⌦ is simple and that = is as in (i). Then � = Aut(⌦), except when

⌦ = Sp4(@) with @ even and when ⌦ = ⌦+

8 (@).

Table 2.2: Finite simple classical groups

PSL=(@) PSU=(@) PSp
=
(@) PΩ&

=
(@)

lower bound on = 2 3 4 7
excluded (= , @) (2,2),(2,3) (3,2) (4,2)

2.2.0 Aschbacher theorem

A similar program to the O’Nan-Scott theorem for classifying the maximal subgroups
of the classical groups began in 1984 with the publication of Aschbacher’s paper on the
subject [Asc84]. For an almost simple classical group ⌧, Aschbacher introduces eight
classes of natural, geometrically defined subgroups, labelled C8 , for 1  8  8, and
shows that if " is a maximal subgroup of ⌧ not containing soc(⌧), then either " is
contained in one of these natural subgroup collections, and we refer to it as a geometric

subgroup, or it belongs to a family, denoted S or C9, of almost simple irreducible groups.
The book of Kleidman and Liebeck [KL90b] contains a definitive investigation of

Aschbacher theorem, establishing the structure, conjugacy and, when = � 13, maximal-
ity of each geometric subgroup of each almost simple classical group. More precisely,
they classify the conjugacy classes of maximal groups � of those almost simple groups
⌧ for which ⌦ B soc(⌧) = ⌦//(⌦) for some classical quasisimple group ⌦, with
� \ ⌦ =  //(⌦) for a subgroup  of ⌦ of geometric type. If =  12, then complete
information on the maximal subgroups of almost simple classical groups is given in
[BHR13]. We adopt Kleidman and Liebeck’s formulation of the theorem (see [[KL90b],
§3.1]) and, in particular, when we talk of Aschbacher class C8 , we refer to the defini-
tion given in [[KL90b], §4.i], which differ slightly from Aschbacher’s original definition.
We roughly describe Aschbacher classes in Table 2.3 and we give a brief discussion
of each class in the next paragraphs, closely following the presentation given by Bray,
Roney-Dougal and Holt in [BHR13]. Sometimes, we also follow the book of Burness
and Giudici [[BG16], subsections 2.6.2.1-2.6.2.8].

Theorem 2.10 (Aschbacher). Let⌧ be an almost simple classical group and let" be a maximal

subgroup of ⌧ not containing soc(⌧). Then " belongs to one of Aschbacher classes C1 , . . . , C8
or to the residual subgroup collection C9.
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Table 2.3: Aschbacher classes

structure stabilised rough descrpition in GL=(@)

C1 tot. sing. or non-sing. subspace maximal parabolic
C2 + =

…
C

8=1+8 , dim(+8) = 0 GL0(@) o (C , with = = 0C

C3 Ext. fields of F@ of prime index 1 GL0(@1).1, = = 01

C4 Tensor product + = +1 ⌦ +2 GL0(@) � GL1(@), = = 01

C5 Subfields of F@ of prime index 1 GL=(@0), @ = @
1

0

C6 symplectic-type A-groups (⇠@�1 � A
1+20). Sp20(A), = = A

0

C7 + =
À

C

8=1+8 , dim(+8) = 0 (GL0(@) � · · · � GL0(@)).(C , = = 0
C

C8 non-degenerate classical form GSp
=
(@), GO&

=
(@), GU=(@

1/2) � ⇠@�1

Remark 2.3. Note that maximality among the members of each class is described in
[[KL90b], §7 and §8].

Before starting discussing Aschbacher classes, we recall the following notions from
representation theory, following [[KL90b], §2.10].

Let ⌧ be any subgroup of GL(+ , F). ⌧ is irreducible in GL(+ , F) if ⌧ stabilises
no proper non-zero subspace of F= , and is reducible otherwise. Let F  K be a field
extension. If {E1 , . . . , E=} are linearly independent vectors of F= , then they remain
linearly independent in K= . We can extend the =-dimensional F-vector space + to an
=-dimensional vector space overK, by considering the tensor product+⌦FK. Moreover,
⌧ acts on + ⌦F K via

(E ⌦ ⌫)6 = E6 ⌦ ⌫, for E 2 + ,⌫ 2 K and 6 2 ⌧, ⌘

and thus we may view ⌧  GL(+ ⌦F K,K). In general, if ⌧ is irreducible in GL(+ , F),
this does not imply that ⌧ is irreducible in GL(+ ⌦F K,K).

Definition 2.8. We say that ⌧ is absolutely irreducible in GL(+ , F) if ⌧ remains irreducible
in GL(+ ⌦F K,K) for all field extensions K of F.

It is straightforward to see that ifF  K1  K2 and⌧ is irreducible in GL(+⌦FK2 ,K2),
then ⌧ is irreducible in GL(+ ⌦F K1 ,K1). Therefore ⌧ is absolutely irreducible if and
only if ⌧ is irreducible in GL(+ ⌦F F, F), where F is the algebraic closure of F.

2.2.1 Aschbacher class C1: subspace stabilisers

All members of class C1 are reducible groups. More in detail, the following holds.

Definition 2.9. Let ⌧ be a group such that ⌦ E ⌧  � as in series (2.3), and let   ⌧.
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(i) If ⌧  �, then  lies in class C1 if  = #⌧(,) B {6 2 ⌧ | ,6 = ,} or
 = #⌧(* ,,) B #⌧(*) \ #⌧(,) for certain non-degenerate, totally-singular or
non-singular subspaces * and , of + , as in [[KL90b], Table 4.1.A].

(ii) Otherwise,  lies in Aschbacher class C1 if  = #�(�) \ ⌧, where � is a C1-
subgroup of �.

Example 2.1. Fixing a basis {41 , · · · , 4=} for + = F@= such that , = h41 , . . . , 4<i, in
GL=(@), the stabliser of the subspace , takes the forms of a block matrix:

✓
� ⌫

$ ⇠

◆
,

with � 2 GL<(@), ⇠ 2 GL=�<(@) and ⌫ 2 "< ,=�<(@).

Further information on the groups in this class can be found in [[KL90b], §4.1].

2.2.2 Aschbacher class C2: imprimitive subgroups

Let = = 0C, where 1  0 < =, and consider a decomposition of the =-dimensional vector
space + as a direct sum:

+ = +1 � · · · � +C , (2.4)

where dim+8 = 0, for all 8 = 1, . . . , C. We refer to such a decomposition as an 0-
decomposition of + .

Definition 2.10. A subgroup� of�L(+ , F) is imprimitive if� stabilises an 0-decomposition
of + , for some 0 | =, i.e. � permutes the spaces +8 among themselves.

Roughly speaking, class C2 consists of imprimitive subgroups. More specifically, the
following holds.

Definition 2.11. Let ⌧ be a group such that⌦ E ⌧  � as in series (2.2), and let   ⌧.

(i) If ⌧  � then  lies in class C2 if  is the stabiliser in ⌧ of an 0-decomposition,
where the +8 are either all non-degenerate or totally singular, as described in
[[KL90b],Table 4.2.A].

(ii) Otherwise,  lies in C2 if  = #�(�) \ ⌧, where � is a C2-subgroup of �.

Example 2.2. The stabiliser of the decomposition (2.4) in GL=(@) is

GL0(@) o (C .

More details on the C2-subgroups can be found in [[KL90b], §4.2].
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2.2.3 Aschbacher class C3: extension field stabilisers

The subgroups in class C3 arise as stabilisers of prime degree field extensions of F.
As usual, let + be an =-dimensional vector space over F@D . Let 1 be a positive integer
such that 1 | = and let F# be a field extension of F of degree 1, so that F# � F(@D)1 . Then
+ acquires the structure of an F#-vector space in a natural way. Namely, let +# be an
=

1
-dimensional vector space over F#. Since F is a subfield of F#, we may view +# as an
=-dimensional vector space over F, and we may therefore identify it with + . (In the
following, we write +# for + regarded as a vector space over F#). Moreover, since any
F#-linear map of + must also be F-linear, we obtain an embedding

GL
=/1(@

1
) � GL(+# , F#)  GL(+ , F) � GL=(@).

Suppose now that case S holds, so that � is symplectic. Furthermore suppose that
�# is a symplectic form on (+# , F#). Writing ) = )F#

F (the trace map from F# to F), it easy
to see that )�# is a non-degenerate symplectic form on (+ , F). Consequently

Sp
=/1

(@
1
) � �(+# , F# , �#)  �(+ , F,)�#) � Sp

=
(@).

Since, as already stated, all symplectic forms over an =-dimensional F-vector space
are isometric, without loss of generality we may take � = )�#, and hence we obtain
an embedding �# = �(+# , F# , �#)  �. In a similar fashion we obtain various other
embeddings in the cases U and O& of an isometry group �# = �(+# , F# , �#) in the isometry
group of � = �(+ , F, �) (see [[KL90b], §4.3]).

Now, let �#  � be an embedding as in [[KL90b], Table 4.3.A], let �# = �(+# , F# , �#)
and put �# = �+# ,F# ,�# , where we recall that � is the map that we have defined in the
Preliminaries of this section. Define

�#,F = {6 2 �# | �#(6) 2 F}.

Then one checks that �#,F  �.

Definition 2.12. If ⌧ is a subgroup such that ⌦  ⌧  �, as in chain (2.3), a subgroup
  ⌧ is a member of C3 if the following holds.

(i) If ⌧  �, then  = �#,F \ ⌧, with 1 = [F# : F] prime, which arise with � and �# as
in [[KL90b], Table 4.3.A].

(ii) Otherwise,  = #�(�) \ ⌧, where � is a C3-subgroup of �.
Example 2.3. If ⌧ = GL=(@), then � = �# = 0 and  = GL

=/1(@
1) o h!@i, where !@ is

the standard @-Frobenius endomorphism. If ⌧ = Sp
=
(@), then :# is symplectic, : = )�#

and  = Sp
=/1

(@1) o h!@i. Similarly, if ⌧ = .=(@), where . ranges over the symbol U
or SO&, then  = .

=/1(@
1).1, where  denotes the semidirect product of .

=/1(@
1) with

the cyclic group of order 1 generated by a (generalised) Frobenius endomorphism. The
generators of these cyclic groups are described in detail in Example 2.8 . We note that
all the subgroups that we exemplified are indeed maximal, and we will use them in
Chapter 3, Lemma 3.9.

For more information about the C3-subgroups, we refer the reader to [[KL90b], §4.3].
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2.2.4 Aschbacher class C4: tensor product stabilisers, I

Definition 2.13. A group ⌧  �L(+) preserves a tensor product decomposition + =
+1 ⌦ +2 if for all 6 2 ⌧ there exist 61 2 �L(+1) and 62 2 �L(+2) such that for all E1 2 +1
and E2 2 +2

(E1 ⌦ E2)6 = E161 ⌦ E262.

Aschbacher class C4 consists of groups which preserve appropriate tensor product
decompositions + = +1 ⌦ +2. More in detail, this subgroup collection is defined as
follows.

Definition 2.14. Let ⌧ be a group such that⌦ E ⌧  �, as in series (2.3), and let   ⌧.
Then the following holds.

(i) If ⌧  � then  lies in Aschbacher class C4 if  is the stabiliser in ⌧ of a tensor
product decomposition +1 ⌦ +2, where +1 and +2 are equipped with zero or non-
degenerate forms 58 (i=1,2), as described in [[KL90b], Table 4.4.A], such that (+1 , 51)
is not similar to (+2 , 52).

(ii) Otherwise,  lies in C4 if  = #�(�) \ ⌧, where � is a C4-subgroup of �.

Example 2.4. If ⌧ = GL=(@), the stabiliser of the tensor product + = +1 ⌦ +2, where
dim+1 = =1 and dim+2 = =2 is

GL=1(@) ⌦ GL=2(@) � GL=1(@) � GL=2(@).

See [[KL90b], §4.4] for more details on this class.

2.2.5 Aschbacher class C5: subfield stabilisers

Definition 2.15. A subgroup� of GL=(@) is a subfield group if� is absolutely irreducible
and there exists a proper subfield F@0 of F@ and an element 6 2 GL=(@) such that

�
6
 h/(GL=(@)),GL=(@0)i,

i.e., up to scalars, � is conjugate to a group over a proper subfield of F@ .

The members of Aschbacher class C5 can be described as subfield groups. More
in detail, let F# be a subfield of index 1 in F, so that F# � F@D/1 . Let � = {E1 , . . . , E=}
be a F-basis of + and define +# to be the F#-span of �. Then +# is an =-dimensional
F#-space isomorphic to F=

@
D/1

. If E =
Õ
=

8=1 ⌫8E8 , with ⌫8 2 F, is an arbitrary element of +
and 6 2 GL(+# , F#) such that E8 6 B F8 , then GL(+# , F#) acts naturally on + by setting
E6 =

Õ
=

8=1 ⌫8F8 . This action is faithful and hence there is a natural inclusion:

GL=(@D/1) � GL(+# , F#)  GL(+ , F) � GL=(@D),

which extends to �L=(@D/1)  �L=(@D).
In the following definition, for ⌧  �, let #⌧(+#) denote the set of elements that fix

+# and in addition, if +# is equipped with a form, act as semi-similarities of +#.
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Definition 2.16. Let ⌧ be a group such that⌦ E ⌧  �, as in chain (2.3), and let   ⌧.

(i) If ⌧  �, then  lies in class C5 if  = #⌧(+#)(/(GL=(@D))\⌧), for some F#-vector
space +# equipped with a form �# = �+# as in [[KL90b], Table 4.5.A], and where
1 = [F : F#] is prime.

(ii) Otherwise,  lies in class C5 if  = #�(�) \ ⌧, where � is a C5-subgroup of �.

Example 2.5. If ⌧ = GL=(@), then  = GL=(@1/1) � ⇠@�1.

Further information about the groups in this class can be found in [[KL90b], §4.5].

2.2.6 Aschbacher class C6: symplectic-type group stabilisers

We start the discussion of this class by recalling the following notions.

Definition 2.17. Let ' be an A-group for some prime A.

(i) ' is called special if /(') = '
0 = Frat(').

(ii) A special group is said extraspecial if also |/(')| = A.

(iii) ' is said to be of symplectic-type if every characteristic abelian subgroup of ' is
cyclic.

The description of the structure of extraspecial groups dates back to an old result of
P. Hall. See [[Suz82], p.69] for a proof. The structure of symplectic-type A-groups is also
well-understood, and is closely linked to that of extraspecial groups. More precisely,
' is the central product of an extraspecial A-group and a group that is either cyclic,
dihedral, semidihedral or quaternion (see [[Suz82], pp.75-76]). For the definition of
the members of this Aschbacher class, we are only interested in those symplectic-type
A-groups of minimal exponent: this is A, if A is odd and it is 2 or 4, if A = 2.

Definition 2.18. Let ⌧ be a group such that ⌦ E ⌧  �, as in Series 2.3, and let   ⌧.
Then  is a member of class C6 if  = #⌧('), where '  � is a symplectic-type A-group
of minimal exponent, for A a prime, A < ?, as described in [[KL90b], Table 4.6.A], which
acts absolutely irreducibly on the vector space + . To ensure that  is not contained in a
C5-subgroup of ⌧, it is required the condition F = F?4 , where 4 is the smallest integer
for which ?4 ⌘ 1 (mod |/(')|).

These are rather restrictive conditions, and class C6 is empty for “most” classical
groups. More details on this subgroup collection are contained in [[KL90b], §4.6].

2.2.7 Aschbacher class C7: tensor product stabilisers, II

While Aschbacher class C4 considers the stabilisers of a tensor product where the fac-
tors (+8 , �8) are not similar, the case when the tensor product factors are all similar is
covered by class C7. These subgroups are sometimes referred as wreathed tensor product
stabilisers, as their structure is, indeed, a wreath product.
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Definition 2.19. (i) A group ⌧  �L(+) preserves a tensor induced decomposition
+ = +1 ⌦ +2 ⌦ · · · ⌦ +C if for all 6 2 ⌧ there exist 68 2 �L(+8) and � 2 (C such that,
for all E8 2 +8 :

(E1 ⌦ · · · ⌦ EC)6 = E1�61� ⌦ · · · ⌦ = EC�6C� .

If non-degenerate forms 58 have been defined on the +8 , then, in addition, it is
required that the 68 are elements of the �-group for that form.

(ii) A subgroup � of GL=(@) is a tensor induced group if � preserves a tensor induced
decomposition F=

@
= +1 ⌦ · · · ⌦ +C , with dim+8 = 0 for all 8 and = = 0

C .

All members of class C7 are tensor induced. More in detail the following holds.

Definition 2.20. Let ⌧ be a group such that ⌦ E ⌧  � as in chain (2.3), and let   ⌧.
Write ⌧8 for the stabiliser in ⌧ of the set 0 ⌦ · · · ⌦+8 ⌦ · · · 0 of pure tensors with the only
nonzero element occurring in the 8-th position.

(i) If ⌧  �, then  lies in class C7 if  is the stabiliser in ⌧ of a tensor induced
decomposition, with the property that the induced action of  \⌧8 on+8 preserve
a certain form 58 on +8 , given in [[KL90b], Table 4.7.A]. In this case, (+1 , 51) is
similar to (+8 , 58) for each 8.

(ii) Otherwise,  lies in Aschbacher class C7 if  = #�(�) \ ⌧, where � is a C7-
subgroup of �.

Example 2.6. If ⌧ = GL=(@), then  = (GL0(@) � · · · � GL0(@)) o (C .

For a more detailed descripiton of the C7-subgroups we refer the reader to [[KL90b],
§4.7].

2.2.8 Aschbacher class C8 : classical subgroups

This class consists of classical subgroups.

Definition 2.21. Let ⌧ be a group such that ⌦ E ⌧  � as in chain (2.3), and let   ⌧.

(i) If ⌧  �, then  lies in class C8 if  is the intersection with ⌧ of the �-group
�(+ , F, :#) of a classical group, where �# is a non-degenerate form given in
[[KL90b], Table 4.8.A].

(ii) Otherwise,  lies in Aschbacher class C8 if  = #�(�) \ ⌧, where � is a C8-
subgroup of �.

Example 2.7. If ⌧ = GL=(@), then  is isomorphic to one of the following groups:

(i) GSp
=
(@), if :# is symplectic, = is even and = � 4;

(ii) GU=(@
1/2) � ⇠@�1, if :# is unitary, @ is a square and = � 3;

(iii) GO&
=
(@), if �# is a non-degenerate quadratic form of &-type, @ is odd and = � 3.

See [[KL90b], §4.8] for further details on this class.
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2.2.9 The collection C9

Recall that given a group  , we may define by induction its derived series { (8)}8�0,
where  (0) =  , and, for = � 0,  (=+1) = [ (=)

,  
(=)]. Moreover, we define  1 = \8�0 

(8).
Note that, if ( is non-abelian simple, with ( E ⌧  Aut((), then  1 = (.

The members of the residual collection C9 are defined as follows.

Definition 2.22. Let  be a subgroup of ⌧, where⌦E⌧  � as in series (2.3). Then  is
a member of the collection C9 if  /( \ /(⌧!=(@

D))) is almost simple and the following
all hold:

(i)  does not contain ⌦;

(ii)  1 acts absolutely irreducibly;

(iii) there does not exist a 6 2 GL=(@D) such that ( 1)6 is defined over a proper subfield
of F@D ;

(iv)  1 preserves a non-zero unitary form if and only if ⌦ = SU=(@);

(v)  1 preserves a non-zero quadratic form if and only if ⌦ = ⌦&
=
(@);

(vi)  1 preserves a non-zero symplectic form and no non-zero quadratic form if and
only if ⌦ = Sp

=
(@);

(vii)  1 preserves no non-zero classical form if and only if ⌦ = SL=(@).

2.2.10 Shintani descent

Shintani descent is a technique from the theory of algebraic groups that provides a
bĳection, the Shintani map, between conjugacy classes of almost simple groups. In this
paragraph we state Shintani descent without dwelling too much on the general theory,
since it goes beyond the scope of this work, and we refer the reader to the book of
Harper [[Har21], Chapter 3], which we will closely follow, for a detailed treatment of
the subject. Instead, we will consider some concrete examples that will be useful in the
next chapter, in the context of studing maximal subgroups in Aschbacher class C3.

We begin by establishing some terminology. By an algebraic group we mean a linear
algebraic group over an algebraically closed field F? , namely, a closed subgroup - of
GL=(F?), for some =, where GL=(F?) is endowed with the Zariski topology. We will
moreover require that algebraic groups are connected, meaning that that the underlying
affine variety is connected for the Zariski topology.

Definition 2.23. A Steinberg endomorphism of an algebraic group - is a bĳective mor-
phism � : - ! - whose fixed point subgroup

-� = {G 2 - | G
� = G}

is finite.
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The modern way of studying finite groups of Lie type is to view them as the fixed
points under Steinberg endomorphisms of semisimple algebraic groups. In the next
example we briefly show how to construct the finite classical groups GL=(@), Sp

=
(@),

GU=(@) and O&
=
(@) in this way and, in doing so, we will mostly follow the book of Malle

and Testerman [MT11].

Example 2.8. As usual, let @ = ?
A .

(i) The Frobenius automorphism !@ : F? ! F? , C 7! C
@ is a field automorphism of

F? which fixes F@ pointwise. In fact, the Galois group ⌧0;(F?/F@) is generated (as
a profinite group) by this map. Letting !@ act on the matrix entries, this induces
a Steinberg endomorphism of GL=(F?), which we call the standard q-Frobenius

endomorphism with respect to the basis B for F
=

?
:

!@ : GL=(F?) ! GL=(F?), (089) 7! (0
@

89
),

where the elements of GL=(F?) are written as matrices with respect to B. If the
basis B is understood, we will omit reference to it. Moreover, in the following, we
will also identify !@ with the map induced on !@-stable subgroups of GL=(F?).
The fixed point subgroup of !@ is

GL=(F?)!@ = {(089) 2 GL=(F?) | (0
@

89
) = (089)} = GL=(@).

(ii) Analogously, we can consider the standard @-Frobenius endomorphism !@ of -,
with respect to the basis B, where - 2 {Sp

=
(F?),O2<(F?),O2<+1(F?)} and B is

the corresponding standard basis described in Remark 2.1, points (8), (88) and (888)

respectively. In this way, the fixed point subgroups are respectively:

• Sp
=
(F?)!@ = Sp

=
(@),

• O2<(F?)!@ = O+

2<(@),

• O2<+1(F?)!@ = O�

2<+1(@).

(iii) Now, let us move to the unitary case. Let B be the orthonormal basis for a
unitary form described in Remark 2.1, point (E), and let us consider the Steinberg
endomorphism

) : GL=(F?) ! GL=(F?), (089) 7! (0
@

89
)
�C
,

which is the composite of !@ , which we write with respect to B, with the standard
involutory graph automorphism, which sends a matrix to the transpose of its
inverse, and these two maps commute. Here, the fixed point subgroup is

GL=(F?)) = GU=(@).
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Indeed, note that )2 : GL=(F?) ! GL=(F?), (089) 7! (0
@

2

8 9
) is the standard @

2-
Frobenius endomorphism and, therefore, the fixed points under ) satisfy

GL=(F?))  GL=(F?))2 = GL=(F?)!
@

2 = GL=(@2
).

To conclude, recall that, writing elements of GU=(@) with respect to the basis B,
an element � 2 GL=(@2) belongs to GU=(@) exactly when �(�(@))C = , where if
� = (089), then �(@) = (0

@

89
).

(iv) Finally, we move to minus-type orthogonal groups. Following a comment in
[[Har19], Introduction to Chapter 5], we remark that there are two natural defini-
tions of the minus-type orthogonal group O�

2<(@). On one side, as we previously
defined it, it is the isometry group of a quadratic form of minus-type on the vector
space F2<

@
, and consequently it is a subgroup of GL2<(@) in a natural way. On

the other side, as in [[MT11], Example 22.9], we can define it as the group of
fixed points under a Steinberg endomorphism of the algebraic group O2<(F?),
and the group obtained in this way is not a subgroup of GL2<(@) but is naturally
a subgroup of O+

2<(@
2). This perspective allows one to make use of the theory of

algebraic groups, in particular Shintani descent. We now define minus-type or-
thogonal groups using this second viewpoint and we highlight the isomorphism
between the two groups.
With respect to the basis B+ described in Remark 2.1, point (88), let us consider
the standard @-Frobenius endomorphism !@ of O2<(F?) and the element

6 B �2<�2 ?

✓
0 1
1 0

◆
2 O2<(F?),

that centralises the decomposition h41 , . . . , 5<�1i ? h4< , 5<i.

Let ✏ be the Steinberg endomorphism ✏ B 6!@ of O2<(F?). Following [MT11],
the general orthogonal group of minus-type is the fixed point subgroup O2<(F?)✏.
Following [[Har19], Lemma 2.6.17], there exists an inner automorphism  of
GL2<(F?) such that, if - = O2<(F?), then

 (-✏) = O�

2<(@).

To view this, let &+ be the quadratic form on F
2<
?

with bilinear form (·, ·). Let
 be the endomorphism of GL2<(F?) induced by conjugation by the element
� = �2<�2 ? �

0 that centralises h41 , . . . , 5<�1i ? h4< , 5<i, where

�
0 B

✓
✓ ✓�1

✓�1 ✓

◆
,

with ✓ 2 F
@

2 \ F@ , such that ✓@+1 = 1.
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Write G< = 4<� and H< = 5<�. An easy calculation yields &(G<) = &(H<) = 1
and (G< , H<) = ✓2 + ✓�2, therefore, without loss of generality, we may assume that
B+

� is the basis B� defined in Remark 2.1, point (8E).
Now, let !B& denote the standard @-Frobenius endomorphism with respect to
the basis B&, with & 2 {+,�}. It is straightforward to check that ���(@) = 6

and putting all this together, we obtain that  (-✏) = �
�1
-✏� = -!B� = O�

2<(@).
Note that in the following we will use both viewpoints and we adopt the notation
O�

2<(@) in both cases.

Now, we record the following crucial fact, known as the Lang-Steinberg theorem,
and the subsequent corollary, which allows us to well-define Shintani maps.

Theorem 2.11 (Lang-Steinberg Theorem). Let - be a connected algebraic group and let � be

a Steinberg endomorphism of -. The map ! : - ! - defined as !(G) = GG
��

is surjective.

Corollary 2.12. Let - be a connected algebraic group and let � be a Steinberg endomorphism

of -. The map !
0 : - ! - defined as !

0(G) = GG
���1

is surjective.

Proof. Let H 2 -. By Theorem 2.11, there exists G 2 - such that H�� = GG
��. Therefore,

H = GG
���1 and !0 is surjective. ⇤

Let - be a connected algebraic group and let � be a Steinberg endomorphism of -.
We consider the semidirect product - o h�i, where ��1

G� = G
� = �(G) for all G 2 -.

For 4 > 1 the subgroup -�4 is �-stable, so � restricts to an automorphism �̃ = � |-�4 of
-�4 . Therefore, we may also consider the finite semidirect product -�4 o h�̃i, where
6
�̃ = �̃(6) = �(6) for all 6 2 -�4 , noting that |�̃ | = 4.

Definition 2.24 (Shintani map). A Shintani map is a map of conjugacy classes of the form

( : {(6�̃)-�4oh�̃i | 6 2 -�4 } �! {G
-� | G 2 -�}

(6�̃)-�4oh�̃i 7�! (0
�1
(6�̃)4 0)-�

,

where 0 2 - satisfies 6 = 00
���1 (which exists by Corollary 2.12).

Remark 2.4. If 6�̃ and ⌘�̃ are (-�4 o h�̃i)�conjugate, then they are -�4�conjugate. For
the sake of brevity, in the following let us slightly abuse notation by writing � for �̃. To
see this, assume that 6� = (F�8)�1

⌘�(F�8), for some F 2 -�4 and 8 � 0. Then

6� = (6�)8(F�8)�1
⌘�(F�8)(6�)�8

and (6�)8(F�8)�1 2 -�4 , therefore 6� and ⌘� are in fact -�4�conjugate. Consequently, (
is a map from the set of -�4�conjugacy classes in the coset -�4� to the set of -��classes
in -�.

Theorem 2.13 (Shintani Descent). Let - be a connected algebraic group. Let � be a Steinberg

endomorphism of - and let 4 > 1. Let ( be a Shintani map of (- , �, 4). Then, the map ( is a

well-defined bĳection, which does not depend on the choice of 0 2 -.
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We give some explicit applications of Shintani descent, which will be useful in
Chapter 3, in the context of determining the number of conjugacy classes in maximal
subgroups of classical groups in Aschbacher class C3.

Example 2.9 (GL=). Let ( be the Shintani map of (- , !@ , 1), where - = GL=(F?) and !@
is the standard @-Frobenius endomorphism of -.

Note that -!@ = GL=(@) and -!1
@

= -!
@
1
= GL=(@1). Therefore, Shintani descent

tells us that the Shintani map

( : {(6!@)GL=(@1) | 6 2 GL=(@1)} ! {G
GL=(@) | G 2 GL=(@)}

gives a bĳection between the set of conjugacy classes of GL=(@1) o h!@i in the coset
GL=(@1)!@ and the set of conjugacy classes of GL=(@).

In a similar fashion, let us fix 1 < 8 < 1, with 8 | 1. Let now ( be the Shintani map
of (- , !8

@
, 4), where - and !@ are as before and 4 B 1/8. Then, -!8

@

= GL=(@8) and
-
(!8

@
)4
= -!1

@

= GL=(@1). Therefore, ( provides a bĳection between the set of conjugacy
classes of GL=(@1) o h!@i in the coset GL=(@1)!8@ and the set of conjugacy classes of
GL=(@8).

Let us consider other examples, respectively in the symplectic, unitary and orthog-
onal cases. We always denote with 1 a positive integer, and we consider 0 < 8 < 1, with
8 | 1 and 4 B 1/8.

Example 2.10 (Sp
=
). Proceeding as in the previous example, let now ( be the Shintani

map of (- , !8
@
, 4), where- = Sp

=
(F?) and !@ is the standard @-Frobenius endomorphism

with respect to the basis B, described in Example 2.8, point (8). Then ( gives a 1 � 1
correspondence between the set of conjugacy classes of Sp

=
(@1) o h!@i in the coset

Sp
=
(@1)!

@
8 and the set of conjugacy classes of Sp

=
(@8).

Example 2.11 (GU=). Now, we consider general unitary groups. Note that, given the
nature of the Steinberg endomorphism, in this case we also need to assume that 1 is
odd to obtain the desired bĳection. Let ( be the Shintani map of (- , )8 , 4), where
- = GL=(F?) and ) is the Steinberg endomorphism described in Example 2.8. Then (
puts in bĳection the set of conjugacy classes of GU=(@

1) o h)i in the coset GU=(@
1))8

and the set of conjugacy classes of GU=(@
8).

Example 2.12 (SO=). Finally, we consider orthogonal groups: let us first deal with
those of plus and zero-type. Let ( be the Shintani map of (- , !8

@
, 4), where - 2

{SO2<(F?), SO2<+1(F?)} and !@ is the standard @-Frobenius endomorphism with respect
to the corresponding standard bases in Example 2.8, points (88) and (888). Then, respec-
tively,-!8

@

= -!
@
8
2 {SO+

2<(@
8), SO�

2<+1(@
8)} and-

(!8
@
)4
= -!

@
1
2 {SO+

2<(@
1), SO�

2<+1(@
1)},

so ( is a bĳection between the set of -!
@
1
o h!@i- conjugacy classes in the coset -!

@
1
!
@
8

and the set of conjugacy classes of -!
@
8
.
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To conclude, let us consider the special orthogonal groups of minus-type. As in
Example 2.11, here we need to assume that 1 is odd. let ( be the Shintani map of
(- , ✏8 , 4), where - 2 SO2<(F?) and ✏ is the Steinberg endomorphism described in
Example 2.8. Then ( provides a bĳection between the set of conjugacy classes of
SO�

2<(@
1) o h✏i in the coset SO�

2<(@
1)✏8 and the set of conjugacy classes of SO�

2<(@
8).

2.3 Generals on finite groups of Lie type

Classical groups and exceptional groups together make up the so-called finite groups of

Lie type. Following [[Con+03], §§3.1 and 3.2] and [[Men13], §2.3], we shall now give a
very short general introduction to this important collection of groups, which will allow
us to define the exceptional groups and also to point out the division in untwisted and
twisted groups.

By the classification due to Killing and Cartan, simple complex Lie algebras are
parametrised by Dynkin diagrams, which are denoted:

�= , ⌫= , ⇠= ,⇡= , ⇢6 , ⇢7 , ⇢8 , �4 or ⌧2.

These are displayed the following figure.

Figure 2.1: Dynkin diagrams

�= ⇢6

⌫= ⇢7

⇠= ⇢8

⇡= �4 ⌧2

The subscripts denote the number of nodes in the Dynkin diagram. For each of
these diagrams we get a corresponding family of adjoint Chevalley groups defined over
finite fields F@ : these give us the untwisted groups of Lie type, which fall into the following
families:

�=(@), ⌫=(@), ⇠=(@),⇡=(@), ⇢6(@), ⇢7(@), ⇢8(@), �4(@) and ⌧2(@). (2.5)

Steinberg showed that new finite groups could be obtained from the previous ones
by considering the fixed points of particular automorphisms (induced by graph auto-
morphisms and Frobenius automorphisms). Elements of the groups �=(@2), ⇡=(@

2),
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⇡4(@
3) and ⇢6(@

2) which are fixed by such automorphisms give us the twisted groups:

2
�=(@),

2
⇡=(@),

3
⇡4(@) and 2

⇢6(@). (2.6)

Other automorphisms only occur over particular fields and give the remaining twisted
groups, discovered by Suzuki and Ree:

2
⌫2(22<+1

)  ⌫2(22<+1
),

2
⌧2(32<+1

)  ⌧2(32<+1
) and 2

�4(22<+1
)  �4(22<+1

). (2.7)

Definition 2.25. The finite groups of Lie type are the 16 families of untwisted and twisted
groups listed in (2.5), (2.6) and (2.7).

To each group of Lie type we can associate a Lie rank. For the untwisted groups,
such rank is given by the number of nodes in the Dynkin diagram. On the other hand,
twisted Lie groups have both a Lie rank and an untwisted Lie rank: the latter is just the
Lie rank of the corresponding untwisted group.

The following groups of Lie type are classical groups:

(i) �=(@) = PSL=+1(@),

(ii) 2
�=(@) = PSU=+1(@),

(iii) ⌫=(@) = PΩ2=+1(@),

(iv) ⇠=(@) = PSp2=(@),

(v) ⇡=(@) = PΩ+

2=(@),

(vi) 2
⇡=(@) = PΩ�

2=(@).

The remaining groups of Lie type are the exceptional groups: these are all simple,
except for

2
⌫2(2) � 5 : 4, ⌧2(2) � PSU3(3).2,

2
⌧2(3) � PSL2(8).3 and 2

�4(2) = 2
�4(2)

0
.2.

Remark 2.5. From the list (i)-(vi) of classical groups above we obtain the relation between
the untwisted Lie rank and the dimension of the natural module for a classical group.





3
An upper bound for ⇠(⌧)

3.1 Introduction
In this chapter, we consider the case of invariable generation, which was firstly introduced
in early nineties, with motivation from computational Galois theory, by Dixon [Dix92].
Following his work, we say that a subset {61 , ..., 6C} of a finite group⌧ invariably generates

⌧ if 61
G1
, . . . , 6C

GC generate ⌧ for every C-tuple (G1 , . . . , GC) 2 ⌧
C . Equivalently, following

Kowalski and Zywina [KZ12], we say that a subset {C1 , . . . , CC} of conjugacy classes of
⌧ invariably generates ⌧ if for any choice of representatives 68 2 C8 , for 1  8  C, the
elements 61 , . . . , 6C generate ⌧.

Example 3.1 ((3). Any 2-cycle and any 3-cycle invariably generate (3. The set {(12), (23)}
is an example of a generating set for (3 which is not an invariably generating set.

For every maximal subgroup " of a group ⌧, let e" = [62⌧"
6 denote the union

of the ⌧-conjugates of ". Clearly, e"1 = e"2 if the maximal subgroups "1 and "2
are conjugate in ⌧. Moreover, let M be a set of representatives of conjugacy classes of
maximal subgroups of G. The following lemma is straightforward.

Lemma 3.1. A subset {61 , . . . , 6C} of a finite group ⌧ invariably generates ⌧ if and only if

{61 , . . . , 6C} * e" for all " 2 M.

If ⌧ is a finite group, then a set of representatives for its conjugacy classes always
invariably generates the group. This immediately follows from the next lemma.

Lemma 3.2. If � is a proper subgroup of a finite group ⌧, then there is a conjugacy class of ⌧

which is disjoint from �.

Proof. Let us assume a well-known theorem of Jordan (see [Jor72]), which states that if
⌧ is a group acting transitively on a finite set⌦ of cardinality at least 2, then there exists
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6 2 ⌧ which acts on ⌦ without fixed points. Let now ⌧ be a finite group, acting by
right multiplication on the set ⌧/� = {�6 | 6 2 ⌧} of right cosets of � in ⌧. Clearly,
this action is transitive and therefore, by Jordan theorem, there exists 6 2 ⌧ which
acts on ⌧/� without fixed points. We claim that the conjugacy class of 6 has empty
intersection with �. Indeed, if 6⌧\� < ú, then there exists G 2 ⌧ such that G6G�1 2 �,
and therefore �G6 = �G, contradicting the hypothesis on the element 6. ⇤

Remark 3.1 ([KLS11]). The “only if” part of Lemma 3.1 also holds for infinite groups.
Moreover, note that. ✓ ⌧ generates an arbitrary group⌧ invariably only if. * e� for all
� < ⌧. As pointed out in [KLS11], this observation allows us to show that some infinite
groups are not invariably generated by any set of elements. For example, Higman, B.H.
Neumann and H. Neumann [HNN49] showed that there are countable groups ⌧ all of
whose non-trivial elements are conjugate, so that e� = ⌧ for every non-trivial subgroup
� and therefore not even ⌧ itself generates ⌧ invariably.

However, for finite groups we do not have this kind of anomalies, since e� < ⌧ for
all proper subgroups �, and, as pointed out in last Lemma 3.2, the cardinality of a
minimal invariably generating set is at most equal to the number of conjugacy classes
of elements in ⌧.

3.1.1 The Chebotarev invariant

Definition 3.1 (Chebotarev invariant). Let ⌧ be a finite group and let G = (G=)=2N be a
sequence of independent, uniformly distributed, ⌧-valued random variables. We may
define a random variable �� ,⌧ (a waiting time) by

�� ,⌧ B min{= � 1 | {G1 , . . . , G=} invariably generates ⌧ } 2 [1,+1].

The Chebotarev invariant of ⌧, denoted ⇠(⌧), is the expectation of this random variable:
in other words, it is the expected number of elements of ⌧ which have to be drawn at
random, with replacement, before a set of invariably generating elements is found.

The Chebotarev invariant was firstly introduced by Kowalski and Zywina in 2012
[KZ12], motivated by its relationship to the Chebotarev Density Theorem: now, we give
a rough idea of this.

Motivation from Number Theory
Let  be a Galois extension ofQwith Galois group ⌧ and let O be the ring of algebraic
integers of  .

Let ? be a prime ideal inZ. Then, the ideal ?O has the following unique factorization
in O (see for example [[Neu99], Chapter I, §8 and §9]):

?O =

 
A÷
8=1
pi

!
4

,
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where the pi’s are the distinct prime ideals of  above ?, i.e. the ideals p E O such that
p \ Z = ?, and 4 is called the ramification index of ?. If 4 is not equal to 1, the prime
ideal ? is called ramified in  . Otherwise, the prime ideal ? is unramified in  .

Let p be one of the pi’s and let ⌧p be the decomposition group of the ideal p over
?: this is the stabiliser of p in ⌧. Moreover, let :(p) = O /p and :(?) = Z/?: these are
finite fields of ?-power order. By basic ramification theory (see for example [[Neu99],
§9]), we have a surjective group homomorphism

⌧p
�p
�! ⌧0;(:(p)/:(?)), 6 7! 6̄ ,

and assuming that ? is unramified, this homomorphism becomes an isomorphism. For
each prime ? that is unramified in  , we have a well-defined Frobenius conjugacy class
in ⌧, defined in the following way.

The Galois group⌧0;(:(p)/:(?)) is the finite cyclic group generated by the Frobenius
automorphism:

G 7! G
?
.

The inverse image of the Frobenius automorphism of ⌧0;(:(p)/:(?)) under �p is the
Frobenius element �p 2 ⌧p. It can be easily shown that, if q is another prime ideal of O 

above ?, then the Frobenius elements �p and �q are conjugated in ⌧ and therefore it is
natural to consider the conjugacy class of the Frobenius element �p 2 ⌧, which depends
only on the prime ? and it is called the Frobenius class of ?, denoted Frob? .

For simplicity, we set Frob? = 1 when ? is ramified in  . The Chebotarev density

theorem (see for example [Neu99], Theorem 13.4) states that

lim
H!1

|{?  H | Frob? = C}|

�(H)
=

|C |

|⌧ |
, (3.1)

where C is a fixed conjugacy class of ⌧ and �(H) is the prime-counting function, i.e. the
number of primes ?  H. In other words, the Chebotarev density theorem says that,
asymptotically, a proportion |C |/|⌧ | of primes has associated Frobenius class equal to
C.

Now, fix a real number H large enough that every conjugacy class of ⌧ is of the form
Frob? for some ?  H. For each 8 � 1, select uniformly and independently a random
prime ? from the set {? | ?  H} and define ⇠?8 ,H = Frob? . We thus have a sequence of
independent and identically distributed random variables (⇠?8 ,H)82N with values in the
set of conjugacy classes of ⌧.

We define the waiting time

�⇠H B min{= � 1 | {⇠?1 ,H , . . . , ⇠?= ,H} invariably generates ⌧}.

Using the Chebotarev density theorem, one can show that

lim
H!1
E[�⇠H ] = ⇠(⌧). (3.2)

Therefore, in this setting, ⇠(⌧) can be thought of as the expected number of random
primes ? needed for Frob? to invariably generate ⌧, and this is the motivation for using
the name “Chebotarev invariant".
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Proof of (3.2). Let � be the set of C-tuples of conjugacy classes which invariably generate
⌧:

� B {(C1 , . . . , CC) | C1 , . . . , CC invariably generate ⌧}.

Then

P(G1 , . . . , GC invariably generate ⌧) =
’

(C1 ,...,CC )2�

P(G1 2 C1 , . . . , GC 2 CC)

=
’

(C1 ,...,CC )2�

|C1 |

|⌧ |
. . .

|CC |

|⌧ |
.

On the other side:

P(⇠?1 ,H , . . . , ⇠?C ,H inv. gen. ⌧) =
’

(C1 ,...,CC )2�

P(⇠?1 ,H = C1 , . . . , ⇠?C ,H = CC)

=
’

(C1 ,...,CC )2�

|{?  H | Frob? = C1}|

�(H)
. . .

|{?  H | Frob? = CC}|

�(H)
,

and taking the limit for H ! 1 in the last expression, using (3.1) we obtain
’

(C1 ,...,CC )2�

|C1 |

|⌧ |
. . .

|CC |

|⌧ |
.

To conclude, recall the fact that, for a real-valued random variable �:
1’
C=0
P(� > C) =

1’
C=0

1’
E=C+1

P(� = E) =
1’
E=1

E�1’
C=0
P(� = E) =

1’
E=1

EP(� = E).

Therefore

⇠(⌧) =
1’
C=0
P(�� ,⌧ > C) =

1’
C=0

(1 � P(G1 , . . . , GC inv. gen. ⌧)), (3.3)

E[�⇠H ] =
1’
C=0
P(�⇠H > C)) =

1’
C=0

(1 � P(⇠?1 ,H , . . . , ⇠?C ,H inv. gen. ⌧)).

The limit in (3.2) follows. ⇤

Comparing invariants
Given a finite group ⌧, one may ask how differently 41(⌧) and ⇠(⌧) behave: clearly we
have 41(⌧)  ⇠(⌧) and, if ⌧ is abelian, ⇠(⌧) = 41(⌧). Moreover, Kantor, Lubotzky and
Shalev [KLS11] showed that a finite group is nilpotent if and only if every generating set
is an invariable generating set, and therefore ⇠(⌧) = 41(⌧) also whenever ⌧ is a finite
nilpotent group. But the difference ⇠(⌧) � 41(⌧) is not small in general. For example,
Kowalski and Zywina have proved the following.
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Proposition 3.3 ([KZ12]). Let @ be a prime power, and consider the affine group ⌧@ B F@ oF⇤@ .
Then ⇠(⌧@) = @ � 5 (@), where 5 (@) ! 0 as @ ! 1, and in particular ⇠(⌧@) ⇠

p
|⌧@ | as

@ ! 1.

On the other side, Lubotzky [Lub03] and, independently, Detomi and Lucchini
[DL03] have proved the following estimate, which has settled a conjecture by Pak.

Theorem 3.4 ([Lub03],[DL03]). Let ⌧ be a finite group. Then

41(⌧) = 3(⌧) + $(log log |⌧ |) = $(log |⌧ |).

Therefore, comparing Proposition 3.3 and Theorem 3.4, we see that, even in the
metabelian case, ⇠(⌧) and 41(⌧) have a quite different behaviour.

To conclude this overview, we remark that the example of Proposition 3.3 led Kowalski
and Zywina to conjecture that ⇠(⌧) = $(

p
|⌧ |) for every finite group ⌧. Progress on

the conjecture was first made by Kantor, Lubotzky and Shalev in [KLS11], where it was
shown that ⇠(⌧) = $(

p
|⌧ | log |⌧ |), and the conjecture was confirmed by A. Lucchini

in [Luc18].

Theorem 3.5 ([Luc18], Theorem 1). There exists and absolute constant � such that ⇠(⌧) 

�
p
|⌧ | whenever ⌧ is a finite group.

Moreover, in [LT17], Lucchini and Tracey showed that �  5/3 whenever⌧ is soluble,
and that this is best possible, with equality if and only if ⌧ = ⇠2 ⇥ ⇠2. Furthermore, in
the same paper, they showed that, in general, for each & > 0, there exists a constant 2&
such that ⇠(⌧)  (1 + &)

p
|⌧ | + 2&.

3.1.2 Main result and strategy

Despite in general ⇠(⌧) can behave wildly differently to 41(⌧), the goal of this chapter is
to prove that, for a direct product of non-abelian finite simple groups, we can obtain an
analogous result to Theorem 1.10 for the Chebotarev invariant. Our main result reads
as follows.

Theorem 3.6. Let ⌧ = )1 ⇥ )2 ⇥ . . . ⇥ ): be a direct product of : non-abelian finite simple

groups. Then there exists an absolute constant ✏ such that ⇠(⌧)  ✏ log :.

At the end of the chapter (Subsection 3.6.1), we will note, however, that although
there is again a logarithmic bound for the case of invariable generation, the difference
between the two invariants ⇠(⌧) and 41(⌧) can be arbitrarily large.

Our strategy for proving Theorem 3.6 is the following. As observed in (3.3):

⇠(⌧) =
1’
C=0
P(�� ,⌧ > C) =

1’
C=0

(1 � P�(⌧, C)),
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where P�(⌧, C) denotes the probability that C randomly chosen elements of ⌧ invariably
generate ⌧. As noted in Lemma 3.1, a subset {61 , · · · , 6C} fails to invariably generate ⌧
if and only if it is contained in e", for some maximal subgroup " 2 M. Hence,

1 � P�(⌧, C) 
’
"2M

 
| e" |

|⌧ |

!
C

.

For a non-negative integer =, let e<=(⌧) denote the number of conjugacy classes of
maximal subgroups" of⌧ satisfying b |⌧ |/| e" |c = =. Our strategy for proving Theorem
3.6 is to prove that e<=(⌧) is polynomial in = whenever ⌧ is a non-abelian finite simple
group. Our claim is trivial for sporadic groups, so we need only prove that e<=(⌧) has a
polynomial bound in = when ⌧ is an alternating, classical or exceptional simple group.

We start by dealing with the alternating case.

3.2 Almost simple groups with alternating socle

Before stating the main result of this section, we require a theorem of Eberhard, Ford
and Green [EFG16]. Following their notation, we define the constant

⇣ := 1 �
1 + ln ln 2

ln 2 ⇡ 0.08607.

Their result is as follows.

Theorem 3.7 ([EFG16, Theorem 1]). For positive integers A and : with 1  :  A/2, let

8(A , :) denote the proportion of elements of the symmetric group (A which fix a :-set (set-wise).

There are absolute constants ⇡1 and ⇡2 such that

⇡2:
�⇣
(1 + log :)�3/2

 8(A , :)  ⇡1:
�⇣
(1 + log :)�3/2

.

Proposition 3.8. Let ⌧ be an almost simple group with alternating socle. Then there exists an

absolute constant ⇠1 such that e<=(⌧)  ⇠1=
1/⇣

for all = � 1.

Proof. Write soc (⌧) = �A . Note first that we have to show that the assertion holds for A
big enough, therefore we may assume that A > 6, since, for those A, ⌧ is equal to �A or
(A . We will also assume that ⌧ = (A , the case ⌧ = �A being similar.

Fix = � 1, and let C8=CA0=B(⌧) [resp. C8<?A8<(⌧), C?A8<(⌧)] be a set of representatives
for the ⌧-conjugacy classes of maximal subgroups " of ⌧ which are intransitive [resp.
imprimitive, primitive], and satisfy b |⌧ |/| e" |c = =. Moreover, define CCA0=B(⌧) B
C8<?A8<(⌧) [ C?A8<(⌧). We aim to show that, for all = � 1:

(i) |C8=CA0=B(⌧)|  28=CA0=B=
1/⇣, for some absolute constant 28=CA0=B ;

(ii) |CCA0=B(⌧)| = =
>(1).
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Since e<=(⌧) = |C8=CA0=B(⌧)| + |CCA0=B(⌧)|, the result will follow.
We first deal with the intransitive case. If C8=CA0=B(⌧) is empty then the claim is

trivial, so assume otherwise. Since, as we have seen in Proposition 2.5, the intransitive
maximal subgroups of ⌧ are of the form (: ⇥ (; , with : + ; = A and : < ;, we may write
⇠8=CA0=B(⌧) = {":1 ,":2 , . . . ,":B

}, where the :8’s are distinct integers, 1  :8 < A/2 and
each ":8

� (:8 ⇥ (A�:8 fixes a :8-set (set-wise). Assume also that :1 < :2 < . . . < :B . In
this way, |C8=CA0=B(⌧)|  :B .

Note that � 2 ⌧ fixes a :8-set if and only if � belongs to some subgroup of the form
(:8

⇥ (A�:8 , that is � 2 e":8
. Therefore, the proportion 8(A , :8) of elements of ⌧ fixing a

:8-set is equal to | e":8
|/|⌧ |.

By Theorem 3.7, there exists an absolute constant ⇡0

1 such that

⇡
0

1:
⇣
B
(1 + log :B)3/2

 |⌧ |/| e":B
|.

It follows that ⇡0

1:
⇣
B
 2b |⌧ |/| e":B

|c = 2=, and hence

|C8=CA0=B(⌧)|  :B 

✓
2
⇡

0

1

◆1/⇣
=

1/⇣
.

Therefore, we may set 28=CA0=B B
�
2/⇡0

1
�1/⇣.

Now, we consider CCA0=B(⌧), which again we may assume non-empty. By Proposition
2.5, the imprimitive maximal subgroups of ⌧ are of the form (: o (; , where :; = A , : > 1
and ; > 1. Therefore, |C8<?A8<(⌧)|  3(A), where 3(A) denotes the set of positive
integer divisors of A. Also, as stated in Theorem 2.7, (A has A>(1) conjugacy classes of
primitive subgroups, thus |C?A8<(⌧)|  A

>(1). Finally, by Theorem 2.8, = � A
� for some

� > 0. Since it is well known that 3(A) = A
>(1) (see the Appendix, Proposition A.1 for a

proof), we have |CCA0=B(⌧)| = =
>(1), and in particular there exists an absolute constant

2CA0=B such that |CCA0=B(⌧)|  2CA0=B=
1/⇣ for all = � 1. The result follows by taking

⇠1 B 28=CA0=B + 2CA0=B . ⇤

3.3 Classical simple groups
In order to prove the main result of this section, we will need the following preliminary
Lemma 3.9. The proof of this lemma relies on a series of papers by Fulman and
Guralnick on derangements (fixed-point-free elements in a transitive group), in which
they proved that the proportion of such elements is bounded away from zero for any
simple transitive group, confirming a conjecture of Boston and Shalev. Fulman and
Guralnick’s main result is stated and used later in this chapter (see Theorem 3.14).
Moreover, we will make use of Shintani descent, which we have described in Subsection
2.2.10.

Lemma 3.9. Let ⌧ = -A(@) be a finite simple classical group of (untwisted) Lie rank A, defined

over a field F of order @, and let < be the dimension of the natural module + for ⌧. Let " be
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a maximal subgroup of ⌧. Then there exist absolute constants ⇠1, ⇠2, ⇠4, ⌫
0
, � and �, and a

function 5 (A , @) which tends to 0 if either A or @ is increasing, such that the following holds.

(i) If " stabilises a :-dimensional subspace of + , with 1  :  </2, then b |⌧ |/| e" |c �

⇠1:
0.005

.

(ii) If " lies in the Aschbacher class C2, then b |⌧ |/| e" |c � ⇠2A
�
.

(iii) If " stabilizes an extension field of F of degree 1, for an odd prime 1, then | e" |/|⌧ | 

1/1 + 5 (A , @), where 5 (A , @) B ⌫
0(1 + log

@
A)/@A/2�1

.

(iv) If " lies in one of the Aschbacher classes C8 for 4  8  9, then b |⌧ |/| e" |c � ⇠4@
A/3

.

Proof. Part (i) follows from [FG18, Theorems 2.2, 2.3, 2.4 and 2.5] . More explicitly,
from [FG18, Theorem 2.2] we obtain that if 1  :  </2, then the proportion of
elements of SL<(@) which fix a :-space is at most �/:0.005 for a universal constant
� and, if �  SL<(@) is a maximal subgroup fixing a :-dimensional subspace, such
probability is exactly equal to |e� |/| SL<(@)|. Completely analogous results for the
groups SU<(@

1/2), Sp
<
(@) and ⌦&

<
(@) follow from [FG18], Theorems 2.3, 2.4 and 2.5,

respectively. Now, let &<(@) 2 {SL<(@), SU<(@
1/2), Sp

<
(@),⌦&

<
(@)}, and recall that if

⌧ = &<(@)//(&<(@)) is simple, then the corresponding group &<(@) is quasisimple.
Let us call & = &<(@) and / = /(&<(@)) for brevity. If " is a maximal subgroup of ⌧
fixing a :-dimensional subspace of + , then " = �//, where � is a maximal subgroup
of & that fixes a :-dimensional subspace of + . To conclude, just observe that

| e" |

|⌧ |
=

|
–
62⌧(�//)6 |

|&// |
=

|
–
H2&(�

H//)|

|&// |
=

|(
–
H2& �

H)// |

|&// |
=

|e� |

|& |
.

Part (ii) follows from [FG18, Theorem 1.4], which asserts that if " is a C2-subgroup,
then | e" |/|⌧ |  �/=⇣, for some absolute constants � and ⇣. To conclude, just recall from
Remark 2.5 the relation between the (untwisted) Lie rank A and the dimension < of the
natural module.

Part (iv) follows from [FG12, Lemmas 7.8, 7.9, 7.10, 7.11 and 7.12]. More explicitly,
Lemma 7.8 asserts that if X(⌧) denotes the set of maximal subgroups of ⌧ contained in
C8 , for 3 < 8 < 8. Then –

"2X(⌧)"

|⌧ |
< $(@

�A/3
).

A completely analogous result for the maximal subgroups of ⌧ contained in C9 follows
from Lemmas 7.9, 7.10, 7.11 and 7.12.
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Finally, Part (iii) follows by arguing as in the proof of Corollary 5.3 of [FG18]; we
repeat the details here for the readers benefit. (Note that our argument fixes a slight
imprecision in the use of Shintani descent in [FG18]). Set

(� ,�0) :=

8>>>>><
>>>>>:

(GL
</1(@

1).1 ,GL
</1(@

1)), if - = L
(GU

</1(@
1/2).1 ,GU

</1(@
1/2)), if - = U

(Sp
</1

(@1).1 , Sp
</1

(@1)), if - = S
(SO&

</1
(@1).1 , SO&

</1
(@1)), if - = O&

,with & 2 {+,�, �} .

Recall from Remark 2.5 that < = A + 1 if - = L or - = U, < = 2A if - = S or - = O±,
and < = 2A + 1 if - = O�.

Let.<(@) 2 {GL<(@),GU<(@
1/2), Sp

<
(@), SO&

<
(@)} and let&<(@) 2 {SL<(@), SU<(@

1/2),
Sp

<
(@), SO&

<
(@)}. Also, let ! be the generator of the cyclic group of order 1 in the defini-

tion of �, and recall that ! induces a generalised @-Frobenius map on �0, as described
in Examples 2.9�2.12.

As showed in the just mentioned examples, by Shintani descent, there is a bĳection
between�-conjugacy classes in the coset�0!8 and conjugacy classes in.

</1(@
8), for each

0 < 8 < 1, with 8 | 1. Now, by [FG12, Corollary 1.2], there is a constant 2 (independent
of @ and A) such that

:(.
</1(@

8
))  2@

A8/1
.

So there are at most
Õb1/2c
8=1 2@

A8/1
�-conjugacy classes in � \ �0. This number is easily

seen to be at most 22@A/2. Therefore, there are at most 22@A/2
.<(@)-conjugacy classes

of � that intersect � \ �0, and these are exactly the conjugacy classes of .<(@) that
intersect � \ �0. By [FG18, Theorem 2.1], there is an absolute constant � such that, for
all H 2 .<(@):

|⇠
.<(@)

(H)| �
@
A

�(1 + log
@
A)
. (3.4)

This implies that the proportion of elements of .<(@) which intersect some conjugate of
� \ �0 is bounded above by ⌫(1 + log

@
A)/@A/2 for some universal constant ⌫: indeed if

H
.<(@)

1 , . . . , H
.<(@)

C
are the distinct conjugacy classes of .<(@) which intersect � \�0, then

we have just proved that C  22@A/2, and using (3.4) yields:

–
C

8=1 |H
.<(@)

8
|

|.<(@)|
=

–
C

8=1[.<(@) : ⇠
.<(@)

(H8)]

|.<(@)|
=

Cÿ
8=1

1
|⇠
.<(@)

(H8)|

 C

�(1 + log
@
A)

@
A

 22@A/2
�(1 + log

@
A)

@
A

=
⌫(1 + log

@
A)

@
A/2 ,

where we defined ⌫ B 22�.
Thus, the proportion of elements of & = &<(@) contained in a conjugate of � \�0 is

at most ⌫0(1 + log
@
A)/@A/2�1 B 5 (A , @), for an absolute constant ⌫0.
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Finally, by the orbit-stabiliser theorem, |{�
H

0 | H 2 &}| = [& : #&(�0)], and
since [#&(�0) : �0] = 1, the union of the &-conjugates of �0 contains at most
[& : #&(�0)]|�0 | = |& |/1 elements and therefore the proportion of elements of &
contained in a conjugate of � is

|û� \& |

|& |


1
1

+

⌫
0(1 + log

@
A)

@
A/2�1 .

We can now conclude in the same way as Part (8).
⇤

We also require the following lemma.

Lemma 3.10. Let ⌧ be a classical simple group of (untwisted) Lie rank A, defined over a field F
of order @ and let < be the dimension of the natural module + for ⌧. Let ⌧8(⌧) be the number

of ⌧-conjugacy classes of maximal subgroups of ⌧ in Aschbacher class C8 . Then

(i) ⌧1(⌧)  (3/2)<;

(ii) ⌧2(⌧)  23(<) + 1, where 3(<) is the number of divisors of <;

(iii) ⌧3(⌧)  �(<) + 2, where �(<) is the number of prime divisors of m;

(iv) ⌧4(⌧)  23(<);

(v) ⌧5(⌧)  log log(@);

(vi) ⌧6(⌧)  1;

(vii) ⌧7(⌧)  3 log<;

(viii) ⌧8(⌧)  4;

(ix) ⌧9(⌧)  ⌫A
6
, for some absolute constant ⌫.

Proof. The statements (8) � (E888) are [[GKS94], Lemma 2.1], and their proof follows
from [[KL90b], Chapter 4]; while part (8G) follows from the proof of [[GLT12], Theorem
6.3]. ⇤

Proposition 3.11. Let⌧ be a finite simple classical group. Then there exists an absolute constant

⇠ such that e<=(⌧)  ⇠=
200

for all = � 1.

Proof. Fix a positive integer =, and for each 1  8  9, let C8(⌧) be a set of representatives
for the conjugacy classes of maximal subgroups" of⌧which lie in the Aschbacher class
C8 , and satisfy b |⌧ |/| e" |c = =. Write⌧ = -A(@), where A is the Lie rank of⌧, @ is the order
of the field over which ⌧ is defined, and let < be the dimension of the natural module.
Similarly to the proof of Proposition 3.8, our strategy will be to prove that for each
1  8  3, there exists an absolute constant 28 such that |C8(⌧)|  28=

200; furthermore,
we will show that there exists an absolute constant 24 such that |

–9
8=4 C8(⌧)|  24=

200.
The result will then follow by taking ⇠ := 21 + 22 + 23 + 24.
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If C1(⌧) is non-empty, write C1(⌧) = {":1 ,":2 , . . . ,":B
}, where for each 8, we have

1  :8  </2, and ":8
fixes a :8-dimensional subspace of the natural module for

⌧. We may also assume that :1  :2  . . .  :B . By [[KL90b], §4.1], for a fixed :8 ,
there at most 3 distinct conjugacy classes of maximal subgroups which fix a :8-set. So,
|C1(⌧)|  3:B  3(=/⇠1)

200, where the last inequality follows from Lemma 3.9 Part (i),
and therefore we may take 21 := 3(1/⇠1)

200.

If C2(⌧) is non-empty, then Lemma 3.9 Part (ii) implies that there exist absolute
constants ⇠2 and � such that = � ⇠2A

�. Moreover, by Lemma 3.10, |C2(⌧)|  23(<) + 1,
where 3(<) is the number of divisors of <. As mentioned in the proof of Proposition
3.8, it is well known that 3(<) = <

>(1). Recalling also the relation between the Lie rank
A and the dimension < of the natural module, it follows that |C2(⌧)| = =

>(1), and hence
that the constant 22 exists.

Now, we consider C3(⌧), which again we may assume non-empty. Write C3(⌧) =
{"11 ,"12 , . . . ,"1C

}, where the 18’s are prime divisors of <, and "18
stabilizes an

extension field of F of degree 18 . Assume also that 11  12  . . .  1C . Now, it follows
from Lemma 3.10 that at least C � 2 of the 18 are distinct. Hence, |C3(⌧)| = C  1C + 2.
If 1C = 2, then |C3(⌧)|  4 and the result is clear, so we may assume that 1C is odd. By
Lemma 3.9 Part (iii), there is an absolute constant ⇠3 such that if max {@ , A} > ⇠3, then
⌫
0(1 + log

@
A)/@A/2�1  1/A  3/<  1/1C . Hence, if max {@ , A} > ⇠3, then |C3(⌧)| = C 

1C + 2  21C  4=. If max {@ , A} < ⇠3, then C3(⌧) = $(1). Either way, the existence of
the constant 23 follows.

Finally, by Lemma 3.9 Part (iv), there exists an absolute constant ⇠4 such that if C8(⌧)
is non-empty for some 4  8  9, then = � ⇠4@

A/3. One can now easily deduce, from
the upper bounds (8E)� (8G) in Lemma 3.10, that |

–9
8=4 C8(⌧)| = 24=

6, for some absolute
constant 24, and this completes the proof. ⇤

3.4 Exceptional groups of Lie type
Proposition 3.12. Let ⌧ be a simple exceptional group of Lie type. For = � 1, we havee<=(⌧) = =

>(1)
and e<=(⌧) = $(=).

Proof. Write ⌧ = &
-A(@), where A is the (untwisted) Lie rank of ⌧, and @ is the order

of the field of definition. By Corollary 4 of [LS04], there exists an absolute constant ⇡
such that if a maximal subgroup " of ⌧ has order larger than ⇡, then " falls into at
most $(log log @) conjugacy classes of subgroups of ⌧. Furthermore, the number of
conjugacy classes of maximal subgroups " of ⌧ satisfying |" |  ⇡ is $(1), by [LMS05,
Theorem 1.2]. Also, it is shown in [FG03] that there exists an absolute constant ⇠ such
that |⌧ |/| e" | � ⇠@ if " is not a maximal subgroup of ⌧ which has maximal rank.
Finally, the number of conjugacy classes of maximal subgroups of ⌧ of maximal rank is
$(1), by [LSS92, Main Theorem and Table 5.1]. The proposition follows. ⇤
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3.5 A corollary
Before we deduce a key corollary of the results of this section, we require some additional
notation: suppose that ⌧ = ) ⇥ ), where ) is a non-abelian finite simple group, and fix
� 2 Aut()). Define the subgroup ⇡�  ⌧ by

⇡� := {(C , C
�
) : C 2 )} .

Then, it is easy to see that ⇡� and ⇡
� are conjugate in ⌧ if and only if )� = )� in

Out()) = Aut())/). Moreover, ⇡� is a maximal subgroup of ⌧, as we observed in
Chapter 1. Finally, we note that, for a fixed � 2 Aut()), the size of the ⌧-conjugacy
class of (C , C�) 2 ⌧ is [) : ⇠)(C)]2, i.e. the square of the size of the )-conjugacy class of C.
Indeed, (C , C�)⌧ = {(C 61

, C
�62) | 61 , 62 2 )}. Therefore |(C , C�)⌧ | = [) : ⇠)(C)][) : ⇠)(C�)],

and since ⇠)(C�) = ⇠)(C)
� we obtain the above equality.

We are now ready to prove the afore mentioned corollary.

Corollary 3.13. Let ⌧ = )1 ⇥ )2 ⇥ . . . ⇥ ): be a direct product of : non-abelian finite simple

groups. Then there exists an absolute constant ⇠
0
such that e<=(⌧)  ⇠

0
:

2
=

200
for all = � 1.

Proof. As shown in Chapter 1 (Observation 1.1), the maximal subgroups " of ⌧ fall
into two categories. We adopt here the following notation:

1. Product type: " is of the form " = "8 ⇥ )̂8 , where )̂8 :=
Œ

;<8 ); , 1  8  :, and "8

is a maximal subgroup of )8 .

2. Diagonal type: M is of the form " = ⇡8 , 9 ,� ⇥ )̂8 , 9 , where
)̂8 , 9 :=

Œ
;<8 , 9 ); , )8 � )9 , 1  8 < 9  :, � 2 Aut()8) and ⇡� � ⇡8 , 9 ,�  )8 ⇥ )9 .

Now, fix =, and let C?A>3(⌧) [resp. C3806(⌧)] be a set of representatives for the maximal
subgroups " of ⌧ of product [resp. diagonal] type satisfying b |⌧ |/| e" |c = =. Then
|C?A>3(⌧)|  ⇠?A>3:=

200 for some absolute constant ⇠?A>3 follows immediately from
Propositions 3.8, 3.11 and 3.12. So we just need to prove that there exists a constant
⇠3806 such that |C3806(⌧)|  ⇠3806 :

2
=

200.
Let " 2 C3806(⌧), and let ) := )8 � )9 , and � 2 Aut ()) be as in the description of

diagonal type subgroups at 2. Then, using the discussion preceding the corollary, we
have

|C3806(⌧)|  :(: � 1)| Out ())|. (3.5)
The result then follows when ) is an alternating group, since Out())  4. So, assume
that) is a finite simple group of Lie type, of (untwisted) Lie rank A, and field of definition
of order @. Moreover

e⇡� = {(C
G
, C

�H
) | C , G , H 2 )} = {(D , D

G
�1�H

) | D , G , H 2 )} = {(D , D
�I
) | D , I 2 )}.

Thus

| e" | = |)̂8 , 9 | |
e⇡� | = |)̂8 , 9 |

’
D2)

[) : ⇠)(D�
)] = |)̂8 , 9 |

’
D2)

[) : ⇠)(D)].
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Since |⇠)(C)| � (@ � 1)A by [FG03, Lemma 3.4], | e" |  |)̂8 , 9 | |) |
2/(@ � 1)A = |⌧ |/(@ � 1)A

and 2= = 2b |⌧ |/| e" |c � |⌧ |/| e" | � (@ � 1)A . Since | Out ())| = $(A log @) (see for example
[Koh03]), the result now follows from (3.5). ⇤

3.6 Proof of the main result
Before proceeding to the proof of Theorem 3.6, we note the following result of Fulman
and Guralnick, which has settled a conjecture of Boston and Shalev.

Theorem 3.14 ([FG18, Theorem 1.1]). Let ⌧ be a finite simple group acting faithfully and

transitively on a set - of cardinality =. With possibly finitely many exceptions, the proportion

of derangements in ⌧ is at least 0.016.

Note that any faithful transitive action of a finite simple group ⌧ is isomorphic to
the action by right multiplication on the set of right cosets of a subgroup " of ⌧, and
the stabiliser of "6 is "6 . Therefore, e" is the set of elements of ⌧ having at least one
fixed point under this action. Thus, Theorem 3.14 can be rephrased as follows.

Theorem 3.15. There is an absolute constant ⇣ > 1 such that |⌧ |/| e" | > ⇣ whenever ⌧ is a

non-abelian finite simple group and " is a subgroup of ⌧.

We are finally ready to prove Theorem 3.6.

Proof of Theorem 3.6. By Corollary 3.13, there exist absolute constants 2 and � = 200 such
that e<=(⌧)  2:

2
=
� for all = � 1. Moreover, by Theorem 3.15, there exists an absolute

constant ⇣ > 1 such that |⌧ |/| e" | > ⇣. Let

� =
⇠
max

⇢
log(2:2)

log(⇣)
, � + log(2:2

)

�⇡
.

Also, let Max2(G) be a set of representatives for the conjugacy classes of those maximal
subgroups " of ⌧ satisfying |⌧ |/| e" | < 2.

Then we have

1 � P�(⌧, C) 
’

"2Max2(G)

(| e" |/|⌧ |)
C
+

’
=�2

e<=(⌧)/=
C


2:

2

⇣C
+

’
=�2

2:
2
=
�

=
C


⇣log (2:2)/log(⇣)

⇣C
+

’
=�2

=
�+log(2:2)

=
C


⇣�

⇣C
+

’
=�2

=
�

=
C
=

1
⇣C

+

’
=�2

1
=
C��

.

Where we used the logarithm identities to obtain:
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2:
2 = ⇣log⇣(2:

2) = ⇣log (2:2)/log(⇣),

2:
2
=
� = =

log
=
(2:2)=� = =

log(2:2)
;>6(=)

+�
 =

log(2:2)+�.

Thus

⇠(⌧) =
’
C�0

(1 � P�(⌧, C))

 � + 2 +

’
C��+2

(1 � P�(⌧, C))

 � + 2 +

’
D�2

1
⇣D

+

’
D�2

’
=�2

1
=
D

= � + 2 +
1

⇣(⇣ � 1)
+

’
=�2

 ’
D�2

1
=
D

!

= � + 2 +
1

⇣(⇣ � 1)
+

’
=�2

1
=(= � 1)

= � + 2 +
1

⇣(⇣ � 1)
+

’
=�1

1
=(= + 1)

= � +
1

⇣(⇣ � 1)
+ 3 = d� + log(2:2

)e +
1

⇣(⇣ � 1)
+ 3.

We have thus obtained that there is an absolute constant ✏ such that

⇠(⌧)  ✏ log :.

⇤

To conclude, we show that the bound obtained for the Chebotarev invariant is best
possible, at least when the direct factors are all isomorphic.

Remark 3.2. Let ⌧ = �5
: and define

"8 = �5 ⇥ · · · ⇥ ⇡10 ⇥ · · · ⇥ �5 ,

where ⇡10 occupies position 8 and ⇡10 denotes the dihedral group of order 10. Note
that "8 is a maximal subgroup of product type in ⌧.

Let us consider

e"8 =
ÿ
62⌧

"
6

8
= �5 ⇥ · · · ⇥ e⇡10 ⇥ · · · ⇥ �5.

Since ⇡10 contains an element of order 5 and the 5-Sylow subgroups of �5 are cyclic
of order 5, ⇡10 contains a 5-Sylow subgroup, say %5. Since all the ?-Sylow subgroups
are conjugate,

–
62�5 %

6

5 contains all the 5-elements of �5. Therefore,
–
62�5 %5

6
✓
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–
62�5 ⇡10

6 , and thus e⇡10 contains all the 5-elements of �5. Moreover, the 2-elements
are conjugated in �5, since even cycles always remain conjugated in the alternating
group. Thus, since ⇡10 contains an element of order 2, e⇡10 also contains all the 2-
elements of �5. We obtained:

e"8 = {(G1 , · · · , G:) 2 �
:

5 | G8 is not a 3-cycle}.

So, since the 3-cycles in �5 are 20,

| e"8 |

|⌧ |
=

40
60 =

2
3 B �. (3.6)

For, 81 < · · · < 8A , let us define e"81 ,...,8A B
—
A

9=1
e"89

.Using (3.6), we have that | e"81 ,...,8A |

|⌧ |
= �A .

Moreover, let⌦C B
–

18: e"C

8
. Using the inclusion-exclusion principle and the fact that

a subset {61 , . . . , 6C} fails to invariably generate ⌧ if and only if it is contained in e" for
some maximal subgroup " of ⌧, we have

1 � P�(⌧, C) �
|⌦C |

|⌧ |C
=

=

Õ
8
| e"8 |

C �
Õ
81<82 |

e"81 ,82 |
C + · · · + (�1):+1 Õ

81<···<8: |
e"81 ,...,8: |

C

|⌧ |C

= :�C �

✓
:

2

◆
�2C

+ · · · + (�1):+1
✓
:

:

◆
�:C = 1 �

C’
9=0

✓
:

9

◆
(��C)9

= 1 � (1 � �C): .

Therefore,

⇠(⌧) =
1’
C=0

1 � P�(⌧, C) �
1’
C=0

1 � (1 � �C): .

To conclude, we show that

1’
C=0

1 � (1 � �C): �

✓
1 �

1
4

◆
log1/� :.

Observe that 1 � (1 � �G): is a decreasing function for G � 0. Therefore

1’
==0

1 � (1 � �=): �
’

=log� 1/:

1 � (1 � �=):

�

’
=log� 1/:

1 � (1 � �log� 1/:
)
:



52 | 3. An upper bound for ⇠(⌧)

=
’

=log� 1/:

1 �

✓
1 �

1
:

◆
:

= log1/0 :

 
1 �

✓
1 �

1
:

◆
:

!
� log1/0 :

✓
1 �

1
4

◆
,

where, to obtain the last inequality, we simply used the fact that (1 � 1/:):  1/4 for all
: � 1.

3.6.1 A final remark

Although we proved that both ⇠(⌧) and 41(⌧) are$(log :), one may ask if the difference
⇠(⌧) � 41(⌧) can be arbitrarily large, when ⌧ is a direct product of non-abelian finite
simple groups. The answer is affirmative and we can get it by comparing the results for
�
:

5 obtained in Remarks 1.3 and 3.2. We have that:

• 41(�
:

5) =
log :
log 5 + 2(:), where �3  2(:)  5;

• ⇠(�
:

5) �
log :

log 3/2
�
1 �

1
4

�
.

Therefore,

⇠(�
:

5) � 41(�
:

5) � log :
✓

1
log 3/2

✓
1 �

1
4

◆
�

1
log 5

◆
� 2(:),

and since 1
log 3/2

�
1 �

1
4

�
�

1
log 5 > 0, this shows that the difference between the two

invariants can be an arbitrarily large number.
This completes the thesis.
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Proposition A.1. For = 2 N, let 3(=) be the function counting the number of divisors of =,

including 1 and =. Then, for all ⇣ > 0:

3(=) = >(=
⇣
).

This is a very well-known result in number theory. We follow one of the proofs
contained in [HW79], (see [[HW79], Theorem 315]). Firstly, we require the following
lemma, which corresponds to [[HW79], Theorem 316].

Lemma A.2. If 5 : N ! R is a multiplicative function, and 5 (?<) ! 0 as ?
< ! 1, then

5 (=) ! 0 as = ! 1.

Proof. Given any positive &, we have:

(i) | 5 (?<)| < � for all ? and <,

(ii) | 5 (?<)| < 1 if ? > ⌫,

(iii) | 5 (?<)| < & if ?< > #(&),

where � and ⌫ are independent of ?, " and &, and #(&) depends on & only. If = has
prime factorisation = = ?

01
1 ?

02
2 · · · ?

0A

A
, then 5 (=) = 5 (?1)

01
5 (?2)

02 · · · 5 (?A)
0A .

Of the factors ?01
1 , . . . , ?

0A

A
, at most ⇠ are less then or equal to ⌫, where ⇠ is indepen-

dent of = and &. Hence, the product of the corresponding factors 5 (?0) is less than �⇠ ,
and the rest of the factors of 5 (=) is less than 1.

The number of integers which can be obtained by multiplication of factors ?0  #(&)
is "(&), and every such number is less than %(&). Therefore, if = > %(&), there is at
least one factor ?0 of = such that ?0 > #(&) and then, by (iii), | 5 (?0)| < &. It follows that
| 5 (=)| < �

⇠&, when = > %(&), and so that | 5 (=)| ! 0. ⇤
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Proof of Proposition A.1. Take 5 (=) = =
�⇣
3(=). Then 5 (=) is multiplicative and

5 (?
<
) =

< + 1
?
<⇣


2<
?
<⇣

=
2
?
<⇣

log ?<

log ? 
2

log 2
log ?<

(?<)⇣
! 0,

when ?< ! 1. Hence, using Lemma A.2, 5 (=) ! 0 when = ! 1, and thus 3(=) = >(=⇣)

for all ⇣ > 0. ⇤
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