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Abstract

Background: The technology that supports human motion analysis has

advanced significantly in the past two decades. Gait Analysis has become

a well established paradigm for the diagnosis of the patho-mechanics

related to musculoskeletal diseases, and for the development and evaluation

of rehabilitative treatments. Recently, the aquatic environment has

gained an important role within the rehabilitation world. A biomechanics

characterization of normal and pathologic walking in water could be useful

to contribute to a more appropriate prescription of walking in water

as part of alternative water-based rehabilitation programs. However,

the measurement of common biomechanical parameters during water

locomotion is more complicated than in laboratory conditions, since

most instruments are not suitable for operating in a water environment.

Therefore, the development of new technologies is highly sought. In this

context, a markerless motion capture system has been investigated and its

accuracy in 3D lower limbs joint kinematics reconstruction has been tested.

Methods: Three healthy males and an ACL-injured subject who

underwent surgical reconstruction of the ligament, were recruited. Six

walking trials at a self-selected speed have been acquired with 6 subaqueous

video cameras, in a swimming pool, with water at a shoulder level. Two

setups have been experimented to investigate the critical aspects in the

definition of camera’s position. Lower limbs joint angles with the markerless

technique have been extracted. Correlation was used to aid in selecting

which of each subject’s representative walking trials were to be included in

the computation of the mean; thus the correlation coefficient was calculated
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for each subject’s kinematic parameter. Walking trials with a correlation

coefficient less than 0.75 (75%) were excluded from the statistical analysis.

The outcomes for each subject have been summarized representing the

corresponding correlated trials mean and its standard deviation. The

resulting subject-specific representative bands have been compared with

Normative Out of Water Bands, to assess differences between walking on

land and in water. Pathologic patterns have been compared to the obtained

underwater bands as well, to examine walking modifications caused by the

ACL injury in the same underwater condition.

Results: The two different setups tested in this study yield to comparable

results. However, an appropriate definition of cameras configuration turns

out to be crucial, since common drawbacks come up handling underwater

data. Correlation and repeatability have been found in the angular values,

especially for the stance phases. Common patterns have been registered

among the healthy subjects, which can be proposed as indicative of a normal

underwater walking. Each subject walks in water with a 20◦greater knee

flexion angle during the early contact phase and at the end of the whole

gait cycle. Moreover, during the stance phase, they present a pronounced

extension of hip joint, while a slightly higher knee and hip flexion have

been observed during swing phase. Only the first two characteristics

are representative of a pathologic locomotion in water as well. When

compared with the controls one, pathologic trends are characterized by

less knee flexion in the early phase of contact and at the end of the gait cycle.

Conclusions: The results demonstrate the feasibility of calculating

meaningful joint kinematics from subjects walking underwater without any

markers attached to the limb. Thus, a markerless approach seems to offer

the promise of expanding the applicability of human motion capture in an

aquatic environment. However, the markerless framework introduces in this

thesis should be taken as just a basis and a starting point for developing a

broader application of markerless motion capture, and additional evaluations

of the system are still needed. Future developments should concentrate on

enhancing the background subtraction step, as well as the model matching.
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The recruitment of a larger number of subjects, both healthy and pathologic,

either to establish more reliable Normal Underwater Bands, or to be able

to assess more general differences in the strategy of walking among the two

groups, should be considered as well.





Sommario

Background: La tecnologia che supporta l’analisi del movimento umano

è progredita in modo significativo negli ultimi due decenni. L’analisi

del cammino è diventata un paradigma ben consolidato per la diagnosi

della patomeccanica connessa alle malattie muscolo-scheletriche, e per

lo sviluppo e la valutazione di trattamenti riabilitativi. Recentemente,

l’ambiente acquatico ha acquisito un ruolo importante all’interno del mondo

della riabilitazione. Una caratterizzazione biomeccanica della camminata

normale e patologica in acqua potrebbe essere utile per contribuire ad

una prescrizione più appropriata di camminate in acqua come parte

di programmi alternativi di riabilitazione. Tuttavia, la misurazione di

tradizionali parametri biomeccanici durante la locomozione in acqua è più

complicata che in condizioni di laboratorio, poiché la maggior parte degli

strumenti non è adatta ad operare in un ambiente acquatico. Pertanto, lo

sviluppo di nuove tecnologie è molto ricercato. In questo contesto, è stato

studiato un sistema markerless di motion capture ed è stata valutata la

sua precisione nella ricostruzione della cinematica articolare 3D degli arti

inferiori.

Metodi: Per questo studio, sono stati reclutati tre uomini sani e un

soggetto infortunato al legamento crociato anteriore, che ne ha subito la

ricostruzione chirurgica. Con 6 telecamere subacquee sono state acquisite

6 camminate a velocità naturale in una piscina, con acqua a livello delle

spalle. Sono stati sperimentati due setup per indagare gli aspetti critici nella

definizione della posizione delle telecamere. Sono stati estratti gli angoli

articolari degli arti inferiori con una tecnica markerless. Si è utilizzata
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la correlazione come indicatore per la selezione dei trials rappresentativi

della camminata da includere nel calcolo della media; di conseguenza, il

coefficiente di correlazione è stato calcolato per ogni parametro cinematico

di ciascun soggetto. I trials con un coefficiente di correlazione inferiore a

0.75 (75%) sono stati esclusi dall’analisi statistica. I risultati per ciascun

soggetto sono stati riassunti rappresentando la media e la deviazione

standard dei corrispondenti trials correlati. Le fasce soggetto-specifiche

risultanti sono state confrontate con le fasce standard di normalità fuori

dall’acqua, per valutare differenze tra il camminare a secco e in acqua.

Allo stesso modo, i patterns patologici sono stati confrontati con le fasce

ottenute in acqua dai controlli, per esaminare modificazioni nel cammino a

parità di condizione, dovute quindi all’ infortunio del legamento crociato.

Risultati: I due diversi setups provati in questo studio portano a

risultati comparabili. Ad ogni modo, un’appropriata definizione della

posizione delle telecamere si rivela determinante, dato che inconvenienti

comuni sono emersi elaborando i dati sott’acqua. Correlazione e ripetibilità

sono state trovate nei valori angolari, soprattutto nella fase di stance. Si

sono registrati andamenti comuni tra i soggetti sani, che possono essere

proposti come indicativi di una generica camminata normale in acqua.

Ogni soggetto, infatti, cammina in acqua con un angolo di flessione del

ginocchio maggiore di 20◦durante la fase iniziale di contatto e alla fine

dell’intero ciclo del passo. Inoltre, durante la fase di stance, presentano

tutti un’estensione pronunciata dell’articolazione dell’anca, mentre è stata

osservata una flessione solo leggermente superiore sia per l’anca che per il

ginocchio durante la fase di swing. Solamente le prime due caratteristiche

si possono considerare rappresentative anche di una camminata patologica.

Se confrontati con quelli dei controlli, gli andamenti patologici sono

caratterizzati da una minor flessione del ginocchio nella fase iniziale di

contatto e alla fine del ciclo del passo.

Conclusioni: I risultati dimostrano che è possibile calcolare in modo

affidabile la cinematica articolare di soggetti che camminano in acqua

senza alcun marcatore attaccato all’arto. Perciò, un approccio markerless
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sembra offrire l’opportunità di espandere l’applicazione del motion capture

in ambiente acquatico. Tuttavia, la struttura markerless introdotta in questa

tesi va considerata solo come una base e un punto di partenza per lo sviluppo

di un’applicazione più amplia di markerless motion capture, e sono ancora

necessarie ulteriori valutazioni del sistema.

Sviluppi futuri potrebbero concentrarsi sul miglioramento della fase di

sottrazione dello sfondo, cos̀ı come in quella del matching del modello. Anche

il reclutamento di un numero maggiore di soggetti, sani e patologici, sia per

stabilire fasce di normalità in acqua, che per poter valutare differenze più

generali nella strategia di cammino tra i due gruppi, andrebbe considerato.
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Introduction

The present thesis has been realized in the Bioengineering of Movement

Laboratory of the University of Padova (Department of Information

Engineering), in collaboration with the Faculty of Exercise and Sport Science

of the University of Bologna.

A markerless motion capture system for an underwater application has been

investigated and tested.

The systematic measurement, description and assessment of those quantities

which characterized human locomotion is known as gait analysis. It

generally involves the investigation of different aspects of movement, such as

kinematics, which is the description of the motion of body segments, kinetics,

that represents the analysis of the forces that generate the motion, motor

control and muscle activation. The technology most commonly employed in

clinical gait analysis requires a laboratory equipped with infra-red cameras

and makes use of reflective markers placed on the skin. This approach

is traditionally used for the analysis of the patho-mechanics related to

musculoskeletal diseases, and, recently, it has also been employed in the

development and evaluation of traditional rehabilitative treatments and

preventive interventions for musculoskeletal disease.

Nowadays, the aquatic environment is gaining an even important role within

the rehabilitation world, thanks to water physical properties. A variety of

physical activities different from swimming can be proposed in water to

take advantages of its unique characteristics. Walking may be one of the

most common motor tasks in water-based exercise programs and it may be

considered a major underwater rehabilitative tool. Nevertheless, at present,

few empirical data have been collected in order to quantitatively assess its
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effectiveness [9].

A biomechanics characterization of normal and pathologic walking in water

could be useful to contribute to a more appropriate prescription of walking

in water as part of training and alternative water-based rehabilitation

programs. However, the measurement of common biomechanical parameters

during water locomotion is more complicated than in laboratory conditions,

since most instruments are not suitable for operating in a water environment.

Therefore, new technologies, which allow to evaluate and quantify the

progression of an aquatic therapy, may be extremely useful, and give

an important incentive to the development of even better rehabilitative

programmes.

The aim of this work is to test the applicability of a markerless

approach for an underwater gait analysis. So far, three healthy males

and an ACL-injured subject who underwent surgical reconstruction of the

ligament, were recruited. Six walking trials at a self-selected normal speed

in a swimming pool, with water at a shoulder level, have been acquired with

6 subaqueous video cameras. Lower limbs joint angles with the markerless

technique were then evaluated.

The present thesis is organized as follow: the first chapter outlines the

current state of the art of human body analysis. After an introduction

on optical marker-based systems, the fundamental principles, together with

the main features and steps, of markerless motion capture are accurately

described. The second chapter is dedicated to aquatic therapy: an

introduction to water properties is followed by a comparison between

biomechanical characteristics of normal walking strategy and alterations due

to ACL injury as reported in literature. A description of the experimental

setups and the explanation of the markerless data processing steps can

be found in the third chapter. Results are then presented and, finally,

conclusions and future developments are outlined.



Chapter 1

Human Motion Analysis

Figure 1.1: Eadward Muybridge, The human figure in motion (1907) [58].

1.1 What is Motion Capture?

A common and widespread definition of Motion Capture is the one given

by Menache [85] in his book: ”Motion Capture is the process of recording

a live motion event and translating it into usable mathematical terms by

tracking a number of key points in space over time and combining them to

obtain a single 3D representation of the performance.”. According to this

description, motion capture consists on a mathematical representation of the

movement of a subject. It makes possible to translate a live movement or

performance into a digital model to be used for further studies and specific

applications.
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Motion capture started as a photogrammetric analysis tool in biomechanics

research in the 1970s and 1980s, and nowadays, the interest in the topic is

growing exponentially. The main reason of this development can be found

in the large number of potential applications that arise from its technologies

[18], [102]. In Table 1.1 are listed some of the current uses of motion capture.

Application Areas

General Domain Specific Domain

Virtual Reality Interactive virtual worlds

Character animation

Teleconferencing

Virtual film/TV production

Computer Games

Smart surveillance systems Indoor and outdoor scenes

Gait recognition

Motion Analysis Clinical studies

Assisted sport training

Choreography of dance/theatre

Content based indexing of TV footage

Advanced user interfaces Social Interfaces

Sign Language interpretation

Choreography of dance/theatre

Gesture driven application interface

Model-Based Encoding Clinical studies

Assisted sport training

Choreography of dance/theatre

Content based indexing of TV footage

Table 1.1: Potential Applications of Motion Capture Technologies [18].

One of the established use of motion capture technologies is in clinical

and sports analysis. Clinical studies take advantages from the reconstruction

of the movement for a better understanding of locomotion difficulties in

patients and for prosthesis design. In sports activities motion capture
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systems are useful to record the athletes in order to achieve improvements

in their performance [18].

In the aspects related to security, both police and army are interested in the

capability of automatically monitor human activities in different contexts.

Another notable field of application for these technologies is virtual

reality, which allows users to interact with digital content in real time.

This can be useful for training simulations, visual perception tests, or

computer-generated virtual character animation, largely used, for example,

for the rendering of TV special effects and computer video games. Motion

capture has begun to be used extensively to produce moves which attempt

to simulate and approximate live-cinema, with nearly photorealistic digital

character models, while video games often use motion capture to animate

athletes, martial artists, and other in-game characters [48].

Prior to discuss the established motion capture technologies commonly

used to reach all these targets, a brief history of human movement analysis

is introduced in the next section.

1.2 Brief History

The science of motion analysis dates back to ancient Greeks, and its

history is marked by the name of some of the most important scientists

ever, like Aristotele (384-322 BC), Leonardo da Vinci (1452-1519), Galileo

Galiei (1564-1643), Giovanni Borelli (1608-1679), Newton (1652-1727),

Euler (1707-1783), Young (1773-1829) [7], [24]. Each of them gave their

contribution to its development in terms of biomechanics studies.

However, it has been the invention of photography in the 19th century

that led to the birth of what is now known as motion capture. In the

late 1800s, Ètienne-Jules Marey (1830-1904) and Eadweard Muybridge

(1830-1904) were the first to study human and animal motion by shooting

multiple photographs of moving subjects over a short period of time [18].

Marey’s invention of chronophotography made possible to record several

phases of movement on one photographic surface (Fig: 1.2) and his

studies strongly influenced Muybridge’s work, who in 1878 succeeded in

photographing a horse in fast motion [96]. The photos collected in that
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occasion form the notable series The Horse in Motion (Fig: 1.3).

Figure 1.2: Marey’s studies on human locomotion [57].

Figure 1.3: Eadward Muybridge, The Horse in Motion (1878) [96].

In the following years, Muybridge continued his analysis about the way in

which both animals and humans moved taking photographs of people and

animals performing a variety of tasks. His experiments have been collected

and became famous under the names Animal Locomotion and The human

figure in motion (Fig:1.4) [97]. For all his valuable studies in animation,

Muybridge is considered the father of motion pictures.

A significant development of motion analysis science took place starting

from the 1950s, when this kind of studies gained more importance as a means

to find treatments for World War II veterans [93].
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Figure 1.4: Eadward Muybridge, The human figure in motion (1907) [97].

In 1973, Johansson, in his Moving Light Display experiments [63], used

small reflective markers attached to the joints of human subjects to record

their motion. His purpose was to be able to identify known movements just

starting from the markers trajectories. This is just an example among the

numerous works of those years which set the basis of the main techniques

currently used in the analysis of human motion [18].

The following section presents a short description of the most common ones.

1.3 Current Motion Capture Technologies

There are different ways of capturing motion. Existing motion capture

technologies can be firstly divided into two main branches according to the

leading principle: the optical and non optical ones. Non optical strategy

includes electromechanical and electromagnetic devices, while the optical

part consists of marked-based systems and the recent markerless approach

(Fig: 1.5) [102].
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Figure 1.5: Taxonomy of Motion Capture Technologies.

1.3.1 Non Optical Systems

Electromechanical systems are generally made up of potentiometers and

sliding rods fixed at specific point in the body. The movement of a subject

is detected thanks to small changes in the potentiometers. As a direct result

of their weight and encumbrance, they limit the range of motion that can be

performed. Simple activities like walking, for example, cannot be analyzed

with them [18].

On the other hand, electromagnetic devices involve the use of sensors able

to register changes in an electromagnetic field. The required suits are lighter

and more comfortable if compared with the electromechanical equipment.

This gives the possibility to improve the range of motion that is possible

to capture, but the need of wires attached to each sensor is still a strong

limitation [18].

1.3.2 Optical Systems: Stereophotogrammetry and

Marker-Based Techniques

Optical systems utilize data captured from video cameras in order to

assess the 3D position of a subject. They are nowadays largely the most
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popular in movement analysis, thanks to several advantages of the video

images over the other techniques, especially in terms of quality of results

[41]. Next paragraphs will focus only on marker-based methods, which can

be classified according to a passive or active use of markers, since markerless

approach will be the object of part 1.5.

Passive markers

Passive optical systems are the most widespread, especially for clinical

applications. Data acquisition is implemented using retroreflective markers

attached to the subject’s skin according to various protocols. The scene is

illuminated with infra-red light produced by an array of emitting diodes,

mounted around the lens of each digital camera recording the scene (Fig:

1.6)[41]. The reflective material which coated the surface of the markers

reflects the light back. In this way, markers appear much brighter than

the background, making their detection simpler. Moreover, the camera’s

threshold can be adjusted so only the bright reflective markers will be

sampled, ignoring skin and fabric [84].

Multiple cameras are needed, since the position of markers in space is

calculated triangulating their position in space on at least two camera planes

[32]. A rigid wand and a 3 axes grid, with markers attached at known

positions, are usually used respectively to calibrate the cameras (intrinsic

calibration) and to obtain their positions in the global frame reference

(extrinsic calibration).

Figure 1.6: Array of infrared-emitting diodes mounted around a digital

camera of a motion capture optical system with passive markers (BTS S.r.l

motion capture system).



10 1.3 Current Motion Capture Technologies

Optical marker-based systems for motion capture succeed in overcoming

the other technologies mainly because they do not cause encumbrance on

the subject: they do not require any powering and are less sensed by the

subjects. However, the introduction of markers in human motion analysis

gives rise to a drawback: when a marker is hidden to the cameras by a

body part, the motion capture looses track of it. This chance represents

one limitation concerning marker-based technologies, which can be partially

overcome with the use of multiple cameras [32].

Despite its popularity, this approach has some important limitations that

should be considered [41]. Even if the encumbrance on the subject is limited

when compared with other systems, the presence of markers attached to the

skin still influences the subject’s movement. In addition, marker placement

is time-consuming, non completely repeatable, as shown in [31], and the

presence of soft tissue between the bones and the markers causes a relative

motion which introduces a relevant artifact in the measurements, technically

called ”soft tissue artifact” [30]. Finally, a controlled environment is also

required to acquire high-quality data [93].

Numerous solutions have been proposed in literature to overcome these

constrains, but the purpose of a reliable evaluation of human movement has

not yet been achieved satisfactorily. For this reason, an increasing interest

in finding valid alternatives to this methodology is emerging, and a new area

of research in Markerless Motion Capture is under continuous development.

Active markers

Active markers are LEDs which, differently from passive ones, emit light

themselves. This represents an advantage because less power is needed,

since light travels half the space than in the passive markers case before

reaching the camera. They are usually activated sequentially, so the system

can detect automatically each marker by virtue of the pulse timing, making

marker tracking more easy [32]. Despite these positive considerations on

active markers, the use of the passive ones is still widely preferred, mainly

due to the fact that the wiring necessary to power the markers limits even

more the subject’s possibilities of motion [23].
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1.4 Measuring Human Movement for

Biomechanical Applications

In general, human movement analysis refers to studies on lower limb

or whole-body human motion, with applications to posture studies, human

identification, and detection of abnormal gait. As stated at the beginning of

this chapter, it was first introduced in the biomechanical field, where it has

become a well established paradigm for the diagnosis of the pathomechanics

related to musculoskeletal diseases, the development and evaluation of

rehabilitative treatments and preventive interventions for musculoskeletal

diseases. Over the centuries, its development has been mostly motivated

by the need for new information on the characteristics of normal and

pathological movements, and consequently, by the need for new approaches

for the treatment and prevention of diseases that are influenced by small

changes in the movement patterns.

Therefore, one of the major application of motion capture in medicine

can be considered the systematic study of human walking, known as gait

analysis. It generally involves the investigation of different aspects of

movement, such as kinematics, which is the description of the motion of body

segments, kinetics, that represents the analysis of the forces that generate

the motion, motor control and muscle activation.

Kinematics evaluation of human locomotion is dependent on the methods

used to acquire the movement. At present, as explained in the previous

section, the most common methods for accurate capture of three-dimensional

human movement require a laboratory environment and the attachment

of markers, fixtures or sensors to body segments. The constraints of the

laboratory environment as well as the markers placed on the subjects

can mask subtle but important changes occuring to the patterns of

locomotion. The accurate capture of normal and pathological human

movement without the artifacts associated with standard marker-based

motion capture techniques such as soft tissue artifacts, spurious reflections

and marker swapping is a requirement for modern biomechanical and clinical

applications, where excellent accuracy and robustness are necessary. In fact,

it has been demonstrated that also minor changes in the biomechanics of
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locomotion are clinically relevant, since they can strongly influenced the

outcome of treatment or progression of musculoskeletal pathology. For

example, studies show how the gait cycle changes as a result of anterior

cruciate ligament (ACL) deficiency [4], and how single gait variables can be

predictive of a serious of pathologies of the musculoskeletal system. In these

cases, the need for improving our understanding of normal and pathological

human movement is the leading principle towards the introduction of new

methods to acquire human movement.

A next critical advancement in human motion capture is the development

of a non-invasive and markerless system. A technique for human body

kinematics estimation that does not require markers or fixtures placed

on the body would greatly expand its applicability. Gait analysis itself,

has been recognized as clinically useful. However, eliminating the need

for markers placement would reduce patient preparatory time and enable

simple, time-efficient, and potentially more meaningful assessments of

human movement in research and clinical practise.

To date, a markerless approach offers an attractive solution to the problems

associated with marker based systems. However, the use of markerless

techniques to capture human movement for biomechanical and clinical

applications is still limited by the low accuracy of the current methods.

The next section will provide an overview on markerless motion capture

approach.

1.5 Markerless Motion Capture

1.5.1 State of the Art

Markerless Motion Capture originated from the fields of computer vision

and machine learning, instead of coming from a clinical perspective. Over

the past two decades, the registration of human body motion and the

reconstruction of its structure and movement using just sequences of images

has gained in interest among the scientific communities, thanks to the wide

spectrum of application they may have. In computer vision, new algorithms

to detect, track and recover articulated motion are constantly researched.
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A great variety of vision-based systems have been proposed for tracking

human motion. These systems vary in the number of cameras used (camera

configuration), algorithm scheme, representation of acquired data, use of

different models and the application to specific body regions and whole body.

Many examples of tracking and estimating human motion using models of

different kinds have been proposed [114], [39], [15], [52], [66], [67], [27], [116],

[115], [29].

In this brief review, the discussion of methods for human tracking for

surveillance purposes, which aim at associating humans present in a video

frame with those in the previous frames, as well as for action recognition,

whose objective instead is to recognize the identity of individuals and

understand behaviors and activities they perform, is neglected.

More attention is given to methods for 3D human pose estimation, and,

in particular, to methods which employ multiple camera views. Pose

estimation is defined as the process of identifying how a human body and/or

individual limbs are configured in a given scene [91], and the use of a human

model is a central aspect. This is the main reason why pose estimation

methods are typically classified into three categories, according on how they

make use of human models: model-free methods attempt to reproduce body

features without a prior knowledge; a model can be used as a reference to

constrain and guide the interpretation of measured data (indirect use of a

model), or it can be a representation of the observed subject, continuously

and updated by the data, that provides any desired information, including

the pose at any time (direct use of a model).

An example of model-free algorithm is the ”probabilistic assembly of

parts”, in which likely locations of body parts are first detected and

then assembled to achieve the configuration which best matches the

observations. Among model-free approaches, a classic one involves a

stick-figure representation of the subject obtained from the images using

medial axis transformation [12] or distance transformation. Isomaps [33]

and Laplacian Eigenmaps [36], [34] have also been proposed to transform a

3D representation into a pose-invariant graph for extracting kinematics.

Indirect models make use of a-priori knowledge, which can vary from

height of the subject to body part shape, relative size and configuration,
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including dynamic information. Labeling and localization of different body

parts are usually accomplished, on 2D images or on 3D visual hull data (for

details on visual hull see section 1.5.3), looking for structures similar to the

model. Tracking can be performed using an extended Kalman filter [87], or

through 3D-to-3D non-rigid surface matching [113].

Anyway, the majority of approaches are model-based: an a priori model

with relevant anatomic and kinematic information is tracked or matched

to 2D images or 3D representations [52]. Its use introduces important

advantages, such as the possibility of handling occlusion and the ease by

which various kinematics constraints may be incorporated into the system,

thus limiting the search space and the number of possible poses. Human

models employed by direct use techniques are usually very detailed. Different

model types, such as stick-figure, cylinders, super-quadrics [52], and CAD

model, are often adopted. A typical model definition, with joints, the sticks

(bones) connecting them and a surface representation, is described in section

1.5.4.

Different approaches can be used to relate the image-data acquired

to this pose-data representation; the most common one is known as

”analysis-by-synthesis” and is based on a matching process, either on the

camera planes (reprojecting the model on them and finding correspondences

with cues like edges, silhouettes, blobs, texture) or directly in 3D space, for

example generating a 3D representation like a visual hull.

The matching problem is generally formulated as an optimization function,

solved through numeric iterative procedures. Gradient-descent methods

or Kalman filter were commonly used until few years ago, when research

started to move towards more sophisticated stochastic approaches, like the

simulated annealing [34], [37] or the particle filter tracker [14]. However,

the computational cost required to solve a human pose problem typically

characterized by an high-dimension state space makes the application of

these methods rather complicate. For that reason, a combination of

stochastic and deterministic approaches is often preferred. The annealed

particle filter [39] and the stochastic meta descent [68] techniques have been

proposed and tested.

The existing methods have been classified into different categories in
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several surveys published in recent years and concerned with computer vision

[1], [48], [91], [121]. Moeslund et al. [91] reviewed more than 130 human

motion capture papers published between 1980 and 2000 and categorized

motion capture approaches by the stages necessary to solve the general

problem instead of by techniques used. Moeslund proposed a classification

into 4 stages: initialization, tracking, pose estimation, and recognition. The

majority of research on human motion capture in the field of computer

vision and machine learning has concentrated on tracking, estimation and

recognition of human motion for surveillance purposes, and to date, the

developed methods have been mostly assessed through the use of qualitative

tests and visual inspections. The comparison of performances presented by

different groups is often not easy and feasible because no standard error

measures exist and results are reported in a variety of ways which prevent

direct comparison. Common datasets have been recently made available,

such as the HumanEva [111], which aim at providing synchronized video

sequences and marker-based motion capture data, along with a set of error

measures and support software for manipulating the data and evaluating

the results.

Markerless motion capture, as introduced in the previous section, offers

great potential also for biomechanical applications, but here it has not been

so extensively developed and tested as well as in other fields. To date,

the detailed analysis of 3D joint kinematics through a markerless system is

still lacking. Thus, evaluating this approach within a framework focused on

addressing biomechanical applications may be of great interest. Moreover,

quantitative measurements of the movement are fundamental for valuable

3D gait studies.

In the following sections, the main concepts and the basis of the

markerless motion capture technique will be introduced.

1.5.2 Background Subtraction

Almost all markerless video based approaches requires an initial step for

identifying the objects of interest from the video sequence. This process is

technically called segmentation and it is a critical task in many computer
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vision applications. A typical method used is background subtraction, which

identifies moving objects from the portion of a video frame that differs

significantly from a background model [28]. Many background models have

been introduced to deal with different problems [65], and many challenges

have to be taken into account in developing a good background subtraction

algorithm [28].

A controlled environment, where walls and floor of the area are covered

by panels painted in a plain color not present in the subject, i.e. blue or green

[62], would be preferable to perform this step in the simplest way. In such a

case, the portions of the videos which match the preselected color are easily

recognized as background. However, most applications involve relatively less

controlled environment, such as clinical gait laboratories, where multiple

instruments are used that remains in view of the cameras. Thus, a more

general approach is necessary, where a reference background image, without

the presence of the subjects, is taken and compared to each frame of the

video sequence.

When color video cameras are employed, as commonly proposed in

literature, the first step of the comparison consists in subtracting from

each channel (Red, Green, Blue) of the considered frame the corresponding

channels of the background image [25]. If the sum of the values of the three

channels for one pixel in the image thus generated is below a fixed threshold

(the sum is almost zero, due to the presence of noise), that pixel will be

labeled as ”background”. This is usually not enough to achieve a satisfying

foreground-background separation due to the presence of the soft shadows

cast by the subject. To avoid considering these shadows as part of the

subject itself, a second comparison is performed in the RGB space (Fig.1.7):

the vectors for each pixel in the two images are computed, and if the angle

between them is small enough (below a certain threshold) the pixel is still

labeled as background.

The result is a binary segmentation of the image, which highlights

regions of non-stationary objects. A typical problem is that in a wide

range of situations, the background itself is subject to changes during

the sequence, with the consequence that the adoption of a single static

reference background image may become inadequate. That’s the reason why
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Figure 1.7: RGB space

more sophisticated stochastic approaches, developed in the computer vision

field, are needed. They generally create a model of the background, based

on the past history of the video sequence and which must be constantly

reestimated [65]. Many adaptive background-modelling methods have been

proposed to deal with different problems and applications [45], [53], [107].

A standard method of adaptive backgrounding is averaging the images over

time, creating a background approximation which is similar to the current

static scene except where motion occurs [114]. Another common approach

entails the definition of eigenbackgrounds [103], obtained from dimensional

reduction of the series of frames in the video sequence through principal

component analysis: the assumption is that the PCA-reduced space will

represent only the static parts of the scene.

A successful solution has been introduced by Grimson et al. [114], and

later it has been slightly modified and improved by Kaewtrakulpong and

Bowden [65]. The basic idea stands on model the RGB values of each

specific pixel as a mixture of Gaussians, rather than explicitly modeling

the values of all the pixels as one particular type of distribution. Based on

the persistence and the variance of each of the Gaussians of the mixture, it is

possible to determine which Gaussians may correspond to background colors.

Pixel values that do not fit the background distributions are considered

foreground until there is a Gaussian that includes them with sufficient,

consistent evidence supporting it. The algorithm implemented for the data
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processing in this study follows this approach.

However, regardless the actual technique employed for

background/foreground segmentation, only the information relative to

the shape of the subject is retained from the images. Each frame image is

binarized assigning, for example, the value 0 (black) to all the background

pixels and the value 1 (white) to all the foreground pixels. Often

morphological operations, such as dilation and erosion (binary closure) are

performed in order to get rid of spurious pixels or holes in the foreground

patch. The images thus obtained are called silhouettes (Fig 1.8).

Figure 1.8: Example of original video frame (top) and the binary silhouette

image (bottom) resulting from the background subtraction.
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1.5.3 Visual Hull Creation

Silhouettes from all the different, synchronized views resulting from the

background subtraction, are used to compute a visual hull [73], which is

commonly defined as a locally convex over-approximation of the actual

volume occupied by the object. The 3D representation of the motion of the

subject across the motion capture volume consists of one visual hull for each

instant of time acquired by the camera system. Knowing the position and

the orientation of each camera, a generalized cone can be back-projected into

space, and from the intersection of all these cones, a 3D volume is obtained

(Fig. 1.9).

Figure 1.9: Visual Hull Generation from silhouettes

The simplest way to reconstruct the visual hull of a person is by

partitioning the calibrated volume in small cubic samples, called voxels, and

checking all the vertices against the input silhouettes: only the voxels whose

projections on the camera planes belong to the silhouette are considered as

belonging to the visual hull. The resolution of the visual hulls depends on

the size of the voxels. When the projection of a voxel on a camera plane has

smaller size than a pixel, a quantization error is more likely to occur.

However, one of the main problems affecting the visual hull approach

is the presence of phantom volumes, artifacts which appear when an area

of the working volume is occluded from the view of all cameras. For

example, it can be registered when the body limbs of the subject occupy
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an undesired position in a specific moment during the acquisition (Fig.

1.10). Furthermore, the number of cameras has been proved to be a critical

parameter in order to deal with this problem [95].

Figure 1.10: Example of visual hull. Phantom volumes are present, i.e.

between arms.

1.5.4 Model Definition

The model represents the a priori knowledge available about the subject’s

morphology (3D shape) and kinematics.

With the only exception of non model-based approach that doesn’t rely on

feature tracking, a model is definitely necessary to be matched with the

experimental data, in order to discriminate for different body segments and

recognize them, smooth errors in the visual hull reconstruction and measure

joints parameters. It should be considered that the points cloud generated

by the visual hull reconstruction has not itself information about which

points belong to which segment. Moreover there is not a correspondence

between the points generated in one frame and the ones generated in the

previous or the next ones. Therefore, without a model, no tracking of single

point is possible.
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Morphology

The 3D shape information is expressed as a triangle mesh (Fig. 1.11),

preferably obtained using a laser scanner. A general triangle mesh is

described by an ordered list of 3D points, called vertices of the mesh, and by

a list of the triangles which describe how the vertices are connected. Each

vertex is uniquely identified by its position in the list, and defined by its

three coordinates in a reference coordinate system, while each triangle is

described by the identifiers of its three vertices in counter-clockwise order

(when viewed from outside).

Figure 1.11: Model mesh: detail of the triangles (left) and whole subject’s

mesh (right).

Kinematics

The kinematic information is represented by an articulated model of the

human body. The model for general full-body analysis consists of 15 rigid

segments (Fig: 1.12), corresponding to the principal clusters of rigidly-linked

bones (head, torso, pelvis, arms, forearms, hands, thighs, shanks, and

feet), linked through joints with 6 degrees of freedom (3 translations and

3 rotations). However, different models can be defined, depending on the

particular needs or problems. Each segment has a ”parent” segment (except
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for the root), to which it is connected through its ”parent joint”; segments

can have multiple ”child segments”, to which they are connected through

”child joints”. A local technical coordinate system is embedded in each

segment: its origin is coincident with the parent joint and, for the segments

that only have one child, the longitudinal (Z) axis is the line connecting

child and parent joint. The root segment is initialized with the same

orientation as the global coordinate frame, while segments without children

inherit the Z orientation from their parent (Fig: 1.12). X and Y axes are

defined starting from the global frame of reference so that orthogonality is

respected for every segment. The pose of the model is completely determined

by the position and orientation of each body segment’s coordinate frame

relative to its parent’s, so that the body segments form a kinematic chain.

Rotations are expressed using exponential maps formulation [19] to allow an

easier calculation of point’s position derivatives with respect to rotational

parameters, which are needed in the matching process described in section

1.5.5.

Figure 1.12: Segmented model of the subject: each color represents a

body segment. Joint center’s position (red circles) and segment’s embedded

frames of reference are shown.
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Joint constrains are also part of the a priori information that can be

exploited, as they prevent the model from reaching anatomically incorrect

configurations.

Automatic Model Generation

The anatomic model can be obtained using a 3D laser scanner, which

gives an accurate acquisition of subject’s outer surface.

On the other hand, to define the kinematic model is necessary to state

which joints are considered and how they are modeled. In this case, the

most crucial task to be accomplished is the identification of joint centers.

Recently, an algorithm has been developed to automatically generate a

subject-specific model from simple 3D surface representations of the subjects

[35] and to directly embed kinematic information in the subject-specific

mesh, obtaining joint centers’ positions and segmentation of the mesh into

the different body parts.

This algorithm can be used with any human shape, since it has been built

on a database of laser scans of people in the same reference pose. Principal

Component Analysis (PCA) has been applied to reduce the dimensionality

of the space. In this way, human body shapes can be expressed as linear

combination of principal components. For most applications, the first ten

principal components are usually considered enough to achieve an acceptable

level of detail. Examples of body shapes’ variations as a function of principal

components are shown in Fig.1.13.

A reference mesh (the center of the space of human shapes) has been

segmented, assigning a body part to each of its vertices, so that registering

it with any other mesh will provide the segmentation of the latter. The

registration process iterates the following four steps, summarized in Fig.

1.14:

1. find the transformation to be applied to each segment of the reference

mesh to match the pose of the subject’s mesh, using a pose registration

algorithm such as the one described in section 1.5.5;

2. segment the subject’s mesh, assigning each vertex to the same segment
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Figure 1.13: Effects of principal components’ variation on human body shape

space.

as the closest vertex on the transformed mesh obtained in the previous

step;

3. apply the inverse of the transformation found in the first step to all

the segments of the subject’s mesh: in this way, the subject’s mesh is

registered in the reference pose;

4. morph the reference mesh into this new subject’s mesh: this is

achieved finding the human shape space parameters which describe

the mesh most ”similar” to the subject’s mesh, where the similarity

is mathematically defined as the sum of squared distances from the

vertices of the mesh to the corresponding closest vertices on the target

mesh.

At every iteration, the reference mesh has a different shape; usually, four or

five iterations are needed for the algorithm convergence, which occurs when

no differences are still present among the reference mesh and the subject’s

one.
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Figure 1.14: Automatic Model Generation pipeline.

The kinematic component of the model, that is each joint center location, is

then given as a linear combination of the positions of seven vertices on the

morphed reference mesh. The number of necessary vertices, their identifiers

and the regression coefficients were determined from a training set of 9

subject meshes, in which the joint centers had been previously identified

through virtual palpation, after they had been registered in the reference

pose and shape as described in Corazza et. al [35]. For most of the joints

the error has been shown to be similar to the markers placement error due to

inaccurate identification of the bony landmarks on the subject’s skin when

marker-based motion capture is performed [31].

Once all the joint centers were identified, the pose shape registration

algorithm formerly described was used to bring both the data mesh and
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the joint centers in the reference pose of the space of human shapes.

In order to make the process of model generation fully automatic, the joint

centers locations were linked to some reliable features on the mesh. In this

way, every time a pose shape registration was performed on some data mesh,

the joint centers location information would be automatically provided.

It has been proved that the presented automatic procedure can work

accurately also when using visual hull data as input instead of a laser scan,

which requires expensive dedicated hardware and is not always available [35].

In such a case, the subject can be requested to stand at the center of the

measurement volume in orthostatic posture while few frames are acquired. A

visual hull of the subject in the static configuration can be used to generate a

model, which usually looks ”fatter” than the actual subject, since the visual

hull is an over-approximation of the represented object. Even if the model

thus generated is generally less accurate than using a laser scanner, it can

serve properly if the number of cameras used is big enough (≥ 8, possibly

at least 16) [34].

The introduction of a completely automatic generation of the model

enable to eliminate the most time-consuming task in model-based markerless

motion capture. This is a crucial aspect since it makes easier the use of

markerless motion capture for clinical and other applications in which there

is an intensive acquisition process of different subjects.

1.5.5 Model Matching

As introduced in section 1.5.1, in order to identify the motion of the

subject throughout a sequence, an algorithm is needed to recover his

instantaneous pose frame by frame, exploiting all the available information.

This is achieved finding the particular configuration of the model which

better explains the data, represented by the visual hulls, while being

anatomically correct since it respects the bounds imposed on the kinematic

chain. This configuration can be found matching the points of the visual hull

to the points of the model mesh, using the Articulated Iterative Closest Point

(ICP) algorithm. The opposite matching (model to data) is also possible,

but the two approaches differ in the handling of corrupted data. In the



1.5 Markerless Motion Capture 27

first case, the algorithm is less robust to ”phantom volumes” in the visual

hull, caused by concavities or self-occlusion; in the second, missing parts

in the visual hull (especially missing limbs), due for example to errors in

the background subtraction, lead to the model reaching completely wrong

configurations.

Articulated ICP

The Articulated ICP [94] is a modification of the standard ICP [11].

ICP-like algorithms perform the point matching between two sets of points

(e.g. set V of points belonging to the visual hull, and set M of points

belonging to the model) iterating the two following steps:

1. for each point belonging to V, find the corresponding closest one in

M (or viceversa), according to some metric, which in our case is the

Euclidean distance;

2. find and apply the relative transformation between the two sets

(usually a rigid body transformation), which minimizes the total

distance between corresponding points.

In the second step, the transformation consists in a change of the model

configuration. The configuration of an articulated model with n body

segments is function of 6 · n, which can be represented by a vector β. Six

parameters represent the degrees of freedom associated to the position and

orientation of the root segment relative to the global coordinate system:

β0 = [ω1,0, ω2,0, ω3,0, t1,0, t2,0, t3,0]
T .

Parameters t1,0, t2,0, t3,0 are the components of the translation vector T0 ∈
R3 that defines the position of the origin of the root segment’s embedded

frame of reference. Parameters ω1,0, ω2,0, ω3,0 are the components of the

rotation vector ω0 ∈ R3, that is a concise representation of the rotation R0

of the root segment’s frame of reference.

Similarly, for all other body parts, the six parameters represent their position

and orientation, each relative to their own parent’s coordinate system.
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The position of a vertex on the model mesh is therefore a function of a subset

of these roto-translation parameters: only the segment the vertex belongs

to, and all the segments which link it to the root of the kinematic chain,

need to be taken into consideration for that vertex.

In mathematical formulae, this problem can be expressed as follows: given

a set VH of N points belonging to the visual hull, V Hi, i = 1...N , a

set of points M belonging to the model, which are function of a vector

of parameters β, and an injective function C:VH → M so that, for fixed

β,Mi(β) = C(V Hi) is the point on the model that is closest (Euclidean

distance) to point V Hi, we need to find

argminβ

N∑
i=1

‖V Hi −Mi(β)‖2 (1.1)

This comes out to be a typical nonlinear least-squared problem. The

Levenberg-Marquardt approach [50] can be employed in order to solve it.

It is an iterative procedure which interpolates between the Gauss-Newton

algorithm and the method of gradient descent, depending on a viscosity

(damping) factor which changes at each iteration according to the linearity

of the problem. A detailed description can be found in [46].

In order to prevent the model from reaching anatomically incorrect

configurations, an adopted solution is to add to the cost function 1.1 of the

least squares problem a soft bound in the form of a polynomial function,

which discourages the minimization algorithm from moving to unlikely

configurations close to the edges of the ”anatomically correct” range.

Moreover, a clipping routine, which at the end of each ICP iteration checks

if the bounds are respected, can be included, so that in case they are not,

that model configuration is replaced with the acceptable solution that best

approximates it.

The articulated-ICP approach to shape matching is based on

correspondence between couples of closest points on two meshes: the

algorithm therefore acts ”locally”, not considering all the possible

combinations of corresponding points on the two meshes. This reduces

significantly the computational costs, at the expense of an increased
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sensitivity to the initialization of the pose of the model.

Similarly, the choice of an iterative algorithm such as Levenberg-Marquardt

instead of MonteCarlo techniques, which are more robust, but extremely

computationally expensive, is motivated by the need to keep processing

times at an acceptable level.





Chapter 2

Aquatic Rehabilitation

Figure 2.1: Aquatic Therapy [56].

Recently, the aquatic environment has gained an important role within

the rehabilitation world. An extensive research base supporting aquatic

therapy has shown its great rehabilitative potential, mainly due to water

physical properties. Aquatic immersion causes physiological changes related

to the fundamental principles of hydrodynamics, that allow water to be used

with therapeutic efficacy for a great variety of common rehabilitative issues

and problems.
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2.1 Physical Properties of Water and Benefits of

Aquatic Rehabilitation

The main physical properties of water that affect aquatic therapy are

buoyancy and viscosity [106].

As a person is gradually immersed, water is displaced, creating the force of

buoyancy, which reduces the effect of gravity on the body, progressively

unloading immersed joints. This is explained by Archimedes’ principle,

which states that a body partially or completely immersed in a fluid

experienced an upward thrust equal to the weight of the fluid that was

displaced. Buoyancy is defined as the upward thrust acting in the opposite

direction of gravity. The capacity of decreasing the effective weight of

an individual in proportion to the degree of immersion is of primary

therapeutic utility. Axial loading on the spine and weigh-bearing joints,

especially the hip, knee and ankle is reduced with increasing depths of

immersion. By monitoring the depths at which functional movements and

exercises are performed, the effect of gravity can be reintroduced and,

consequently, gradual strengthening is promoted [108], [123]. Thanks to this

property, water provides a low-stress physical environment ideal when full

weight-bearing activities are premature, but at the same time mobilization

is likely to be avoided. Buoyancy can also be exploited to assist joints

for working through greater range of motion, promoting the recovery of

both active and passive natural range of motion. The advantages of early

restoration of joint mobility are well documented [61], [55].

Viscosity refers to the magnitude of internal friction specific of a fluid

during motion. A person moving relative to water is subjected to a resistance

due to the fluid. This resistive effect is called drag force. The degree of effort

necessary to overcome it, is determined by the size of the moving body,

or limb, plus the speed or velocity of the movement. Viscous resistance

increases as more force is exerted against it, and the faster the movement,

the greater the drag and the greater resistance to movement. Water is more

viscous than air, so it is particularly useful to promote muscle strengthening.

Since the resistance to movement in water equals the force exerted, matching

the patient’s effort, it also reduces the probability of reinjury.
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Another important property of water is hydrostatic pressure. Pascal’s

law states that at any given depth, the pressure from the liquid is exerted

equally on all surfaces of the immersed object. As the density and depth

of the liquid increase, so does the volume of liquid overhead and, therefore,

the hydrostatic pressure. As such, hydrostatic pressure may be used in

rehabilitation to reduce effusion or to allow patients to exercise an injured

extremity without increased the effusion. Hydrostatic pressure is the force

that aids resolution of edema in an injured body part and it is also

responsible for the cardiovascular changes seen with immersion.

Thanks to these properties and their positive effects, water provides

many benefits and alternatives to the traditional land-based physical therapy

program. The main advantages can be summarized in: decreased weight

bearing, increased range of motion and strength, early restoration of joint

mobility, decreased pain, increased balance training and reduced edema.

2.2 Biomechanical characteristics of adults

walking on land and in water

A wide variety of physical activities different from swimming can be

proposed in water to exploit its unique characteristics. Walking may be one

of the most common motor tasks in water-based exercise programs because

it can be practise by any age-group and with most medical conditions.

Moreover, it does not require any specific skills, unlike swimming for

example. Walking in water is considered a major rehabilitation therapy

for patients with orthopedic disorders. As already explained in section 2.1,

from a mechanical point of view, two main reasons can be found for this:

the lower apparent body weight due to the buoyant force (the larger the

submersed part of the human body, the lower the apparent body weight),

and the increased resistance to movement due to the drag force exerted

by water on the human body (the larger the frontal area and faster the

movement of the body, the larger the resistance to movement, see section

2.1). Consequently, it appears easier to support the body in water than on

land, movements are typically performed slowly in water with longer time
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to control them, and the impact forces on the musculoskeletal system are

diminished.

Even though walking on water has been an effective way of practising

such activities as both training and rehabilitation, there are few empirical

data about their effectiveness. Historically, research on water locomotion

has focused on cardiorespiratory responses and perceived exertion levels [22],

[42], [78]. More recently, a growing part of research is moving the attention

on biomechanical parameters during water locomotion. For examples,

numerous studies have been conducted to quantify muscle activity [82], [9],

[8], [80], [81], [79], [78], [88], [90], and to understand stride characteristics

[78], kinematics [9], [8], [88], [90], and kinetics [9], [8], [88] during locomotion.

It should be noticed that measurement of common biomechanical

parameters during water locomotion is more complicated than in laboratory

conditions since most instruments are not suitable for operating in a

water environment. A clear example is the quantification of muscle

activity through electromyography (EMG) techniques underwater. It is

challenging due to the difficulty in preventing water from interfering with the

recording of the electrical signal of a muscle and because of safety concerns

regarding the immersion of electrical components in water. Overcoming this

challenge is worthwhile because knowledge of muscle activity is crucial for a

comprehension of neuromuscular responses to water locomotion. Similarly,

a biomechanics characterization of walking in water could be useful for a

better understanding of the mechanical loads on the human body, on how

human behave and adapt to such a different environment, and consequently,

to contribute to a more appropriate prescription of walking in water as part

of training and rehabilitation programs.

Despite the increasing interest, still few studies have been conducted to

describe some aspects of walking in water [55], [80], [89], [88], and so far

only one provided a full description of the gait characteristics of a complete

gait cycle [9]. This work has been realized by Barela Ana M.F. and his

group, who first qualitatively and quantitatively characterized normal adults

walking biomechanics in shallow water and on land. The same analysis was

also repeated with elderly individuals.

Ten healthy adults walked at self-selected comfortable speeds in two different
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environment conditions: first ten repetitions were made on a walkway

in the laboratory (on land condition), and then they repeated it for ten

times on a walkway in the swimming pool (water condition), with water

at the Xiphoid process level. Kinematics, ground reaction forces (GRF),

and electromyographic data were investigated in order to compare walking

in both conditions. The experimental setup was designed to performed

a bi-dimensional gait analysis of one stride. The participants movement

on the sagittal plane (the main plane of movement) was recorded at 60

Hz with digital cameras, while, regardless the water environment, passive

reflective markers were placed on the participants right side of five bony

landmarks. The reconstruction of the real coordinates was performed using

the direct linear transformation (DLT) procedure on land, and using a

localized two-dimensional DLT procedure in water to account for refraction

in the underwater video. The surface electromyographic activity from eight

muscles on the body’s right side has been registered, while the vertical

and the anterior-posterior components of the ground reaction force has

been recorded using force plates. From the kinematics data, the following

variables were obtained: stride length, duration, speed, support phase

duration, ankle, knee, and hip joints range of motion (ROM), and 2-D foot,

shank, thigh, and trunk segments ROM during each stride. From the GRF

vertical component, the reduction of apparent body weight from land to

water, the magnitudes of the two peaks and the valley, and the impact

force, were considered.

With respect to joint angles, it has been observed that ”the ankle was more

plantar flexed in water during the support phase (the first 60% of the stride

cycle approximately) and at the end of the swing phase (the remaining 40%

of the stride cycle approximately) than on land. The knee joint in water

presented a reduced flexion during about the first 15% of the stride cycle

(known as the weight acceptance phase during walking) compared to on

land, and as a result, the knee was more extended in water than on land

during the support phase. The hip joint in the water condition was similar

to the condition on land with the exception of a flexion peak at the swing

phase that was observed during walking in water” [9] (Fig: 2.2). Regarding

the joint ROM, participants presented the same ROM for all the three joints
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on land and in water.

Figure 2.2: Mean stride cycle of ankle, knee, and hip joint angles for the

participants walking on land (grey area) and in water (line). Positive values

mean ankle dorsiflexion, knee and hip flexion, negative values mean ankle

plantar flexion, knee and hip extension (N=10) [9]

.

According to the results of this study, walking in shallow water is shown to

be different from walking on land, and the observed differences have been

attributed to either the water drag force during movement, or the lower

apparent body weight in water, as well as the lower comfortable walking

speed selected by the subjects in water. Some of the differences have been
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connected also to the different speeds the subjects walked at, since it is

proved that when walking on land the speed is responsible for changes in

walking characteristics. Therefore, differences between the two conditions

have been found and reported, and it has been pointed out that these

differences are not only affected by the different environment conditions,

but also by the different walking speeds. The same authors, in a later work

[8] suggested that future research should aim at estimating joint moments

during walking in water for a better understanding of the mechanical load

and the neuromuscular demand in water. Moreover, they conclude that ”It

is also necessary to investigate subjects with locomotor impairments who

perform rehabilitation in the shallow water environment to understand how

they move in water and how exactly they may profit from this environment”

[8].

Starting from this statement and aiming at following this open research

path, this study has chosen to focus its attention on the biomechanics

characteristics of ACL-injured subjects, as explained in the next paragraphs.

2.3 Alteration in 3D joint kinematics after ACL

injury during walking

Figure 2.3: Anterior Cruciate Ligament Anatomy [59] .



38
2.3 Alteration in 3D joint kinematics after ACL injury during

walking

The ACL is a fundamental structure in controlling knee joint stability

and movement, and its rupture is one of the most common sports-related

injuries. It is one of a pair of ligaments in the center of the knee joint

that form a cross, and this is where the name ”cruciate” comes from (Fig.

2.3). Loss of the ACL disrupts the delicate balance of knee structures. ACL

injury and its effects on knee stability and movement have been investigated

extensively. The ACL has been shown to be the primary restrain to the

anterior tibial translation relative to the femur, providing about 86 % of the

restraining force [21]. Loss of the ACL causes excessive anterior displacement

of the tibia relative to the femur in the range of 30◦knee flexion to full

extension [54].

As stated by Chaudhari et al. [26], ACL injuries alter not only joint

stability, but also load-bearing pattern between contact joint surfaces,

resulting in abnormal loadings on the cartilage during functional activities.

Consequences of this change in biomechanical environmental could be an

high risk of cartilage degeneration and premature osteoarthritis development

[3], which have been clinically observed in ACL deficient knees (ACL-D).

Noyes et al.[99] reports a risk of knee osteoarthritis for untreated

ACL-deficient knees of about 44% after 11 years, while for Nebelung [98]

over the 50% of cases have led to a total knee arthroplasty before age 63.

ACL reconstructive surgery is typically recommended to restore the knee

joint stability and function after ACL injury. However, its effectiveness in

preventing cartilage degeneration and osteoarthritis development remains

controversial. Studies indicate that current reconstructive surgeries may not

effectively reduce the risk of early cartilage degeneration and osteoarthritis

development in ACL-reconstructed (ACL-R) knees [75], [38], [6].

Researchers have suggested this could be a consequence of the knee joint

kinematics that have not been fully restored by the reconstructive surgery

and the rehabilitation that follows [100], [17]. It has been hypothesized that

injury and subsequent repair of the anterior cruciate ligament leads also

to significant alterations in lower extremity joint kinetics, kinematics, and

energetic patterns during gait. These gait patterns may arise as a result of

muscle adaptations and neuromuscular reprogramming, possibly in response

to pain or instability, to stabilize the knee and to prevent re-injury during
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gait [10], [40], [122].

Zhang [124] investigated six degrees-of-freedom (DOF) kinematic

changes in ACL-D knees during locomotion and the possible compensatory

mechanism involved. The study showed differences in six DOF knee

kinematics between ACL-D and healthy knees, which indicated possible

adaptations adopted by chronic ACL-D patients to avoid unstable knee

positions due to the loss of the ACL or to avoid stretching a partially

torn ACL. Compared with healthy subjects, ACL-D patients walked with

increased tibial external rotation throughout most of the stride, increased

tibial abduction at the heel contact and the tibia was translated anteriorly

during swing phase. Considering the oblique orientation of the ACL, tibial

internal and external rotation relative to the femur load and unloads the

ACL, respectively (Fig: 2.4).

Figure 2.4: (a) The ACL is twisted and stretched when the tibia is internally

rotated relative to the femur, due to its oblique orientation inside the knee.

(b) The ACL is unwound and becomes slack and unload with the tibia

externally rotated relative to the femur. Similarly, the ACL may be loaded

and unloaded by tibial adduction and abduction, respectively. [124]

The increased tibial external rotation associated with ACL-D knees

indicated the patients’ tendency to avoid unstable knee positions due to the

loss of the passive constrain associated with complete rupture of the ACL, or
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to avoid loading the injured ACL if it was partially torn. Similarly, the more

abducted knee around heel contact associated with ACL-deficiency indicates

another possible compensatory mechanism adopted by the patients: an

abducted knee would unload the ACL because the opposite adduction

moment would load the ACL due to the oblique orientation of the ligament

in the frontal plane [77].

As already said, one of the most important function of the ACL is

restrain the tibial anterior displacement relative to the femur [77], [21]. A

loss of the ACL eliminates such restraint, and the posterior pulling generated

by the hamstrings and other soft tissue is not strong enough to pull the

tibia back fully. Therefore, the tibia of the ACL-D patients displaces more

anteriorly relative to the femur, as compared with that of normal controls.

This is consistent with a previous study on three-dimensional kinematics of

ACL deficient knees in which Marans et al. reported significantly increased

tibial anterior translation in ACL-D knees [76].

In order to identify the risk factors that contribute to the biomechanical

environment change after ACL injury, it is critical to understand the

three-dimensional joint kinematics not only between healthy and ACL-D

knees, but also to compare ACL-D and ACL-R knees during daily activities.

Ground walking is the most common and frequently performed ambulatory

activity. Quite a few studies have been performed to evaluate joint

kinematics of ACL-D/ACL-R knees during walking [2], [49], [51], [60], [69],

[70], [20], [5]. Most of them focused on joint movement in the sagittal plane,

even if movements on the other planes are considered clinically significant

[95]. Reduced anterior translation and tibial external rotation before heel

strike were observed in ACL-D knees by Andriacchi and Dyrby [5], while

more internal tibial rotation during the initial swing phase in ACL-D knees

compared to ACL-R knees was reported by Georgoulis et al. [49].

So far, little has been reported about kinematic alterations of frontal

plane movement in ACL-D knees or about secondary movement in ACL-R

knees during walking. Gao et al. [47] dealed with this topic, with

interesting results. Spatiotemporal parameters and three-dimensional knee

joint rotations and translations were measured in ACL-D, ACL-R, and

ACL-intact (ACL-I) knees during level walking. Kinematic differences were
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observed in 3-D rotations between the three groups (Fig. 2.5). In the

sagittal plane, the ACL-D knees were significantly less extended than the

ACL-I knees during a large portion of midstance (30-44% of gait cycle).

A consistent offset between the curves of the ACL-D and ACL-I knees in

both the frontal and transverse plane was observed. Greater varus and

internal tibial rotation were identified in the ACL-D knees, in agreement

with what affirmed by Georgoulis [49] and Andriacchi [5]. Although being

small in magnitude, these secondary kinematic alterations were consistent

throughout the whole gait cycle, and, what’s more, such trends were not

eliminated in the ACL-R knees. Overall, the kinematics profiles of the

ACL-R knees were closer to the ACL-D knees than to the ACL-I knees. This

finding indicated that the reconstructive surgery had not restored the joint

kinematics of the ACL-D knees to a normal level. This could potentially

explain the outcomes observed in clinic that early cartilage degeneration and

progressive development of knee osteoarthritis were not effectively prevented

even after ACL reconstruction [6], [38].

The influence of the ligament reconstruction on gait mechanics has

been investigated also by Ferber et al. [43]. 10 chronic anterior cruciate

ligament deficient subjects have been tested prior to and 3 months

following reconstructive surgery, together with 10 uninjured controls. The

results from this investigation support the thesis that ACL surgical repair

significantly alters lower extremity gait patterns. Several gait characteristics

observed three months following surgery come out to be considerably

different compared to pre-surgical values. The ACL reconstructed subjects

produced an appreciably greater knee extensor moment during early stance

if compared to controls and pre-surgical values, and a significantly reduced

knee flexor moment for the remainder of stance. They exhibited also a

greater hip extensor moment, perhaps to reduce anterior tibial translation.

Therefore, the re-establishment of pre-injury gait patterns is considered

feasible, but it is shown to take longer than 3 month to occur. Time

since injury is suggested to play an important role in the adaptation of

gait mechanics and must be considered when evaluating post-surgical ACL

subjects.

The disagreement in the results can be explained if considering that
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Figure 2.5: The 3-D joint rotations during walking of ACL-I, ACL-D and

ACL-R knees. Ensemble curves of each subject group were normalized from

heel strike to heel strike in a gait cycle. Segments with significant statistical

differences (P < 0.05) between the patients and the control groups were

marked with asterisks. Flexion, varus, and external tibial rotation were

illustrated as positive in the graphs [47].

different patients may adapt to ACL injury in quite different ways. In some

cases a surgical reconstruction of the ACL may reduce the need for the

adaptations or correct potential excessive compensations, while in others

may not have the desired effects.



2.4 Rehabilitation after Anterior Cruciate Ligament Reconstruction43

A better understanding of the adaptations following ACL injury may

help to develop more effective rehabilitation treatment for the injury,

selectively and differentially strengthen individual muscles crossing the

knee joint more appropriately to protect the ACL, and evaluate outcome

of ACL reconstructions more objectively. Identification of biomechanical

environment alterations that occur during daily activities in ACL-D and

ACL-R knees could help to better understand clinical outcomes, as well as

provide guidance for improvement in surgical technique and rehabilitative

regimens for ACL injury treatment.

2.4 Rehabilitation after Anterior Cruciate

Ligament Reconstruction

Water-based rehabilitation has been shown to have a wide range of

applicability. Some examples of common rehabilitative conditions which

may benefit mostly from aquatic therapy are: athletic injuries [106],

degenerative disc disease, spinal cord injuries, post-stroke treatments [64],

fibromyalgia, osteoarthritis/rheumatoid arthritis [112], [120] and chronic

pain disorders.

Among athletic injuries, shoulder and knee rehabilitation and training are

the most documented for respectively upper and lower extremities [118],

[16], [119], [44], [92]. Since in this work, all the recruited subjects suffered

a complete Anterior Cruciate Ligament (ACL) rupture and underwent a

surgical reconstruction, in this section more attention is dedicated to the

rehabilitation of patients with ACL lesion.

Rehabilitation after anterior cruciate ligament reconstruction is crucial

in guaranteeing a beneficial outcome following surgery [101]. It has evolved

over the past few decades thanks to the advances in surgical approaches, such

as graft placement and graft fixation, the use of arthroscopically assisted

procedures and new knowledge of stress-strain patterns in the ACL during

various exercises [110]. Since the first half of the 1990s, the widespread

twelve-month protocols requiring immobilization and non-weight bearing

have started to give way to accelerated rehabilitative programmes based
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on immediate weight bearing, no immobilization and aiming at a return

to activity in 6 months. The primary goals of accelerated rehabilitation

following ACL reconstruction are to recover joint range of motion, strength,

quadriceps femoris muscle force-generating capability, and ambulatory skills

[110], [119]. Postoperative joint effusion and the persistence of pain,

however, may delay the achievement of these aims. Therefore, early phases

of rehabilitation must minimize the deleterious effects of surgery without

overstressing the injured part.

Although traditional rehabilitation after ACL reconstruction has

taken place on land, published studies into the physical properties and

biomechanical effects of water on the knee provide support for the use of

hydrotherapy in knee rehabilitation [13], [104], [105], [106], [117].

Aquatic exercises have been recommended especially in the initial phase

of rehabilitation to allow early mobilisation and to improve neuromuscular

function [104].

In water, buoyancy greatly reduces the impact force, so the knee joint plays

no role in the absorption of forces. This is an important aid to accomplish

early full weight-bearing in water to enable gait re-education.

Moreover, exercises in water have been shown to be effective for improving

strength and passive range of motion, and even if they may not have the

same effects of exercise on land in regaining maximum muscle performance

[119], aquatic rehabilitation may minimize the amount of joint effusion [119],

leading to a significant reduction of pain.

To date, accelerated land-based and in water rehabilitation programmes

for patients with ACL reconstruction have been proposed, as well as a

combination of them. Future studies should continue to improve the

effectiveness of combined protocols. New techniques which allow to evaluate

and quantify the progression of the therapy may be extremely useful and

give an important incentive to the development of even better rehabilitative

programmes.



Chapter 3

Under-Water Markerless

Gait Analysis

3.1 Subjects

Group ACL-deficient Normal Total

Number of subjects 1 3 4

Male (No.) 1 3 4

Female (No.) 0 0 0

Age (year [mean±SD]) 47 27.3±5.5 32.2±10.8

Height (cm [mean±SD]) 180 177±11 177±9

Weight (kg [mean±SD]) 85 67.5±15.2 71.9±15.2

BMI (kg/m2 [mean±SD]) 26.2 21.3±2.6 23.8±3.3

Post-injury (year) 3.4 - -

Table 3.1: Subjects data.

Three healthy males with no past history of orthopedic and neurological

disorders, and no recent injury or surgery that could affect their walking

patterns, were recruited, in order to test the applicability of a markerless

approach for an underwater gait analysis. Their mean age, height and mass

(± 1 standard deviation) were 27.3±5.5 years, 1.77±0.11 m, and 67.5±15.2

kg respectively (Tab. 3.1), while single subject data are specified in Table

3.2.
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Control Subjects 1 2 3

Age (year) 31 21 30

Height (cm) 165 186 180

Weight (kg) 50 76.5 76

BMI 18.4 22.1 23.5

Table 3.2: Control subjects single data.

A male ACL-injured subject has been investigated in this study. The patient

was 47 years old and the complete ACL rupture occurred 3 years before the

experiment (Tab. 3.1). He underwent surgical reconstruction of the ligament

and the rehabilitative program was based on instrumental and functional

physiotherapy, muscle strength training and proprioceptive exercises. No

aquatic rehabilitation was included.

All subjects gave their informed consent before participating in the

experiment.

3.2 Experimental Setup

Recruited subjects performed 6 walking trials at a self-selected normal

speed in a swimming pool, with water at a shoulder level (water condition,

UW). At least an average of 3 complete gait cycles for both left and right

leg were extracted for each subject.

Video-based underwater markerless analysis requires subaqueous video

cameras to record the walking patterns. The latter should be synchronized

and spatially calibrated in order to perform a three-dimensional

reconstruction of the subject. Video acquisition of the sole background was

also performed.

The appropriate positioning of the set of cameras is one of the most

challenging aspects for the adoption of the markerless technique in a

swimming pool environment. Two different setups were tested to better

investigate and assess the critical aspects in the definition of cameras’

position. The equipment employed for this study, common for both setups,

will be described in the following paragraphs, along with a brief mention of
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the synchronization technique and the calibration procedure adopted.

3.2.1 Equipment

Six underwater colour analog cameras (TS-6021PSC, Tracer Technology

Co. Ltd) has been used in the experiment presented in this thesis (Fig: 3.1).

Figure 3.1: Colour analog camera by Tracer Technology Co. Ltd.

Each camera was connected to a FireWire (IEEE 1934a)-equipped notebook

through an Analog to Digital Video Converter (Canopus ADVC55; output

DV video, PAL interlaced, 25 frames/second). A total of 5 notebooks

were involved: one of them was equipped with a PCMCIA IEEE 1394a

card, which enable it to be connected to two cameras. Although in theory

two cameras could be connected to the same FireWire controller, provided

that multiple input ports are available, this solution has proved to be

experimentally unreliable. All notebooks were linked to a hub through

Ethernet cables. The swimming pool where cameras were placed was 25

meters long and 16 meters wide. Depth varied from 1.20 to 1.70 meters, but

acquisitions only regarded the most shallow half.

3.2.2 Synchronization

A custom-made software that could allow to acquire data simultaneously

from different A/D converters has been adopted in order to synchronize the

acquisition from all cameras.

It has been developed in C++ language and it is based on the Microsoft

DirectShow engine, which is an extensible, filter-based framework that can
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render or record media files. In particular, software code for accessing DV

video streams from FireWire inputs, and writing them to hard disk, was

based on the DVapp Sample application (http://msdn.microsoft.com/en −
us/library/ms783409(v=VS.85).aspx ), included in the Windows Software

Development Kit (SDK). Handling of multiple video devices, which is a

feature needed when more than one converter are connected to the same PC

through additional FireWire cards, was implemented following the design

provided by the open source videoInput library by Theodore Watson (http :

//www.muonics.net/school/spring05/videoInput/).

Nevertheless, no direct control is possible on the operation of A/D video

converters, which are independent one from the other. Therefore, due to the

temporal discreteness of input video signals, delays of up to one frame have

sometimes been found on the videos, and in such cases corrected through the

identification of the same event in all the video sequences (i.e. heel contact).

3.2.3 Calibration

Calibration of the subaqueous cameras is a crucial step for the

three-dimensional reconstruction of the subject. It involves the estimation of

two different sets of parameters: the intrinsic ones, which are the parameters

of the optical model that explains how the 3D scene is projected to the

2D image frame, and the extrinsic parameters, which are associated to the

position and orientation of the cameras in the space.

Calibration techniques commonly proposed in literature are based on direct

linear transformation (DLT) [71]. Intrinsic and extrinsic parameters are

estimated at the same time from the projection image of a calibration grid

of known size. Similarity equations are written for every control point, and

then combined into a system that is solved by standard methods.

In this study, a two steps calibration algorithm has been adopted instead

[125], performed using the Camera Calibration Toolbox for Matlab by

Jean-Yves Bouguet (http://www.vision.caltech.edu/bouguetj/calib doc/).

The optical model that has been assumed is the ”pin-hole” camera, and the

intrinsic (or internal) parameters are:

• focal length f : the distance from the center of projection (focal point)
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to the image plane;

• principal point c: the projection on the image plane of the focal point;

• skew coefficient α: the angle between the pixels axes; usually pixels

are assumed to be square, so that this parameter is often set to zero;

• distortion coefficients β, γ, ξ, ζ: represent the radial and tangential

distortion with which the nonlinearities due to the difference of the

camera from the pin-hole model are modeled.

For ideal pin-hole cameras, the relationship between a 3D point P = [x y z]T

expressed in the camera frame of reference, and the corresponding point’s

projection on the image plane p = [u v]T is:

p = 1
z

[
fx α cx

0 fy cy

]
P

(3.1)

where f=[fx, fy] is the focal length expressed in pixel size, respectively

horizontal and vertical, c=[cx, cy] is the position on the image plane of the

central point, α described the skewness of the two image axes, but is often

considered unnecessary and set to 0.

Defining r2 = (x2+y2)/z2, lens distortion can be included as a multiplicative

factor (representing the radial distortion) and an additive factor (tangential

distortion), so the projection equation becomes:

p = (1+βr2+γr4)
z

[
fx α cx

0 fy cy

]
P + 1

z

[
2ξxy + ζ(r2 + 2x2)

ξ(r2 + 2y2) + 2ζxy

]

(3.2)
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Initial estimate of focal length and central point parameters is given by the

closed form solution of the pin-hole camera equations. From these, an initial

estimation of distortion parameters is calculated, then all parameters are

optimized minimizing the global distance between feature points measured

on the images, and the projection, through the complete model, of the 3D

points that generate them. A non-linear least square minimization algorithm

(Levenberg-Marquardt) is employed.

In this work, intrinsic parameters are calculated from a series of images

of a wooden panel with checkerboard-pattern drawn on it (13 x 9

black and white squares, side 42 millimeters), acquired from different

angulations in space (Fig: 3.2). This allows their evaluation on a greater

number of points (all corners, in all images), distributed on the whole image.

Figure 3.2: Checkerboard panel employed for intrinsic calibration.

The presence of water, however, renders this operation more complicated,

because of the distortion due to refraction of the light beams [72]. Since

calibration of intrinsic parameters has been performed out of water, they

need to be corrected for use in the underwater environment. The change

in refractive index from air (na) to water (nw) must be taken into account.

Following the work of Lavest et al. [74], the focal length has to be multiplied

by na/nw = n = 1.333; radial distortion coefficients consequently become



3.2 Experimental Setup 51

ρ1,w = ρ1/n, ρ2,w = ρ2/n
2

Extrinsic (or external) parameters are instead obtained capturing a

calibration grid (Fig: 3.3) of known geometry (sized 2.07 x 1.07 x 1.40

meters). 24 control points were identified on it, and their position relative

to an embedded system of reference were known.

Figure 3.3: Grid employed for extrinsic calibration of the cameras.

Once the intrinsic parameters are available, the position (a 3x1 translation

vector T ) and orientation (a 3x3 rotation matrix R) of the calibration grid

relative to each camera (which represent the desired extrinsic parameters)

can be computed from the projections of the predefined set of control points.

The transformation from the coordinate system embedded in the camera to

the global coordinate system associated to the object and a DLT technique

are usually exploited. A point P of coordinated [XG, YG, ZG] in the global

coordinate system will have coordinates


X

Y

Z

 = R


XG

YG

ZG

 + T

(3.3)
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in the camera frame of reference. More numerous sets are usually

advantageous to increase the estimation robustness.

3.2.4 Setup 1

Most acquisitions have been made with this setup. The position and

orientation of the cameras as reconstructed by calibration is shown in Fig.

3.4, while an example of an image frame from each video sequence is

illustrated in Fig. 3.5.

Figure 3.4: Setup 1: Camera’s position as resulting from extrinsic

calibration.

Calibration accuracy has been evaluated both in terms of calibration

error and reconstruction error for the 24 control points. Calibration error

is determined for each camera as the mean squared distance between

measured control points’ positions and projections of the corresponding 3D

control points. Reconstruction error is the mean squared distance between

known coordinates of 3D control points, and the corresponding points

reconstructed from measured 2D projections. Both results are reported
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Figure 3.5: Setup 1: Frame from each synchronized view of the gait analysis

trial acquisition.

respectively in Table 3.3 and 3.4.

Calibration Error

camera ID 1 2 3 4 5 6

calibration error (pixel) 1.8429 1.8824 1.6807 2.1395 2.2900 1.6327

Table 3.3: Setup 1: Calibration error (average over the 24 calibration points

in each camera).

Reconstruction Error

coordinate X Y Z 3D

reconstruction error (mm) 6.8134 6.4722 3.7025 8.8017

Table 3.4: Setup 1: Average reconstruction error on the 24 calibration

points.
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3.2.5 Setup 2

This setup represents an attempt to enhance some critical aspects

observed during the processing phase of data acquired with the previous

setup. The position and orientation of the cameras in this case, as

reconstructed by calibration, is shown in Fig. 3.6. Calibration and

reconstruction errors are reported respectively in Table 3.5 and 3.6.

Figure 3.6: Setup 2: Camera’s position as resulting from extrinsic

calibration.

Calibration Error

camera ID 1 2 3 4 5 6

calibration error (pixel) 1.2230 1.8616 1.8589 2.1048 1.7668 1.8106

Table 3.5: Setup 2: Calibration error (average over the 24 calibration points

in each camera).

An example of an image frame from each video sequence is shown in Fig. 3.7.
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Reconstruction Error

coordinate X Y Z 3D

reconstruction error (mm) 4.0122 6.3600 3.6847 7.6526

Table 3.6: Setup 2: Average reconstruction error on the 24 calibration

points.

Figure 3.7: Setup 2: Frame from each synchronized view of the gait analysis

trial acquisition.

3.2.6 Dry setup

A laboratory equipped with a 9-cameras BTS s.r.l motion capture system

was also available. It has been exploited for a full-body static acquisition

of the subjects in a reference pose, since from underwater video is not

achievable due to head lack. Grayscale images have been acquired at 50Hz

with a resolution of 640x480 pixels. Calibration was performed following

manufacture’s recommendations (Thor2 calibration system, BTS SMARTD,

http://www.btsbioengineering.com/BTSBioengineering/Kinematics):

a rigid wand, with three markers mounted on it, is swept through the

volume of interest, in a dynamic acquisition, for simultaneous calibration

of intrinsic parameters, and relative position of the video-cameras (Fig. 3.8
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left). A three axes calibration grid was then placed on the ground and

acquired for determination of the global frame of reference (Fig. 3.8 right).

Figure 3.8: Rigid wand with three markers, employed for intrinsic calibration

of the cameras (left) and calibration grid with 9 markers, for extrinsic

calibration (right).

3.3 Data Processing

3.3.1 Out of Water data

Out of water data are represented by the static acquisitions of the

subjects in the reference pose with the dry setup previously described

(paragraph 3.2.6). These are necessary to generate the visual hulls input

of the algorithm described in section 1.5.4 for the creation of each subject

specific model.

Background subtraction and visual hull creation

Generally, foreground/background segmentation of gray scale images

is more difficult than for color data, since the chromatic component is

often more discriminative than sole luminance. However, in this case,

the foreground has been extracted by simple subtraction of a reference

background image from each frame of the video sequence. Pixels of the
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resulting image that present values greater than a fixed threshold (usually

set in the 4-6 range) are considered foreground. A Matlab function has been

exploited to perform this operation. A visual hull has been created from

the silhouettes thus obtained as indicated in section 1.5.3. An example of

the silhouettes extracted from the nine cameras’ views, together with the

corresponding visual hull are shown in Fig. 3.9.

Figure 3.9: Static acquisition of the subject: silhouettes from all the cameras

(left) and corresponding visual hull (right).

Model definition and initialization

A subject-specific model has been generated automatically employing

the procedure explained in section 1.5.4. The full-body dry visual hull of

each subject, obtained as explained above, has been taken as starting point.

The kinematic relationship between the segments is shown in Fig. 3.10. The

pelvis is chosen as root of the kinematic chain.

A transformation has been applied to the segments’ frames of reference so

that they could assume a little more anatomical meaning, helpful in the later

interpretation of joint angles. Since the longitudinal axes connecting child

and parent joint has no anatomical correspondence, a 90◦ rotation around

X axis reports it into the medio-lateral direction, while Y axis assumes a

vertical positive orientation. A model with the orientation of the initial

markerless technical frames for the right leg is illustrated on the left in Fig.
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Figure 3.10: Scheme of the model kinematic chain: each arrow point from

”parent” to ”child” segment.

3.11, while on the right the same model with the frames of reference after

the modification is displayed.

Model initialization has also to be considered. The model’s orientation

could be different from the swimming pool’s global frame of reference and

they must be aligned for a successful matching process. Another important

adjustment is the barycenter’s position. Since the subjects walked with the

head out of water, the reconstructed underwater visual hulls (see section

3.3.2) have no head. This represents a problem for the matching algorithm,

which always tries to fit the head with the points in the visual hull that

belong to the body. A future enhancement could be to eliminate the head

from the model chain, even if a model initialization will still remain an

unavoidable step.

3.3.2 Under-Water data

In the present section, all the processing steps that have been followed

to extract kinematics data from the video acquired with the two underwater

setup presented in paragraphs 3.2.4 and 3.2.5 are explained.
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Figure 3.11: Model with markerless technical frames of reference of the

right leg (left) and the same model with the rotated reference frames for

joint angle calculation.

Deinterlacing

DV videos obtained from A/D video converters are interlaced. This

means that each frame consists of two consecutive sub-fields, one containing

all even lines, another with the odd lines. The fields are captured in

succession at a rate twice that of the nominal frame rate. For instance,

a PAL video has a nominal acquisition rate of 25 frames per second, while

a half image (a single field) is captured every 50 seconds.

Analog television employed this technique because it allowed for less

transmission bandwidth and matched the properties of CRT screens. Only

traditional CRT-based TV sets are capable of displaying interlaced signal,

which requires a screen that can natively show the individual fields in a

sequential order. Most modern monitors, such as LCD, DLP and plasma,

are not able to work in interlaced mode, because they are fixed-resolution

and only support progressive scanning. Moreover, since the interlaced signal

contains two fields of a video frame shot at two different times, images thus
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recorded cannot be directly employed for 3D reconstruction. Therefore, the

two frames need to be combined to a single progressive frame.

Deinterlacing refers to this process of creating a progressive video, where

each frame corresponds to a different time instant, from an interlaced video.

The most advanced deinterlacing techniques consist basically in a spatial

and temporal interpolation of pixel values in the images (bob-deinterlacing),

so that the resulting video has double frame rate. Implementation has

been realized with Smart-Bob filter for VirtualDub developed by Donald

Graft (http://neuron2.net/bob.html). VirtualDub is a video processing

utility for Microsoft Windows, written by Avery Lee and available as free

software (www.virtualdub.org). In order to apply the bob-deinterlacing filter

to videos, they need to be input to VirtualDub as double rate, half vertical

resolution videos. This is achieved on-the-fly through the use of the Avisynth

frameserver (www.avisynth.org). The result of this operation on one of the

acquired frames is shown in Fig. 3.12.

Figure 3.12: Example of original frame from a DV video (top), and the

corresponding frames obtained through interpolation (bottom).
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Background subtraction

The background of underwater videos is not static, mainly due to

water unavoidable movement, which causes a continuous variation of the

scene. Therefore, the use of a single background image as reference for the

subtraction comes out to be inappropriate. The creation of a background

model from a video sequence of the empty swimming pool is necessary to

characterize the variations in pixel intensity values belonging to the moving

background. The Gaussian-mixture model approach, described in section

1.5.2, has been adopted. The implementation provided by the Intel OpenCV

open source C++ library (http : //opencv.willowgarage.com/wiki/) has

been taken as a starting point. The algorithm has been slightly modified to

account for the water environment.

However, reflexes remain the main problem within underwater images. They

appear so similar to the actual subject in the original videos, that it is not

possible to discriminate between the two on the sole base of pixels color

content. An example of this kind of artifact is reported in Fig. 3.13.

Silhouettes extraction from underwater videos recording walking patterns

suffers also for specific drawbacks connected to the application itself. The

subject shadow on the pool pavement, for instance, moves with the subject

and, at the beginning of the video sequence, is often recognized as a

foreground element, with the result shown in Fig. 3.14(left). This, in

some cases, makes necessary to impose more strict parameters, which leads

to a loss in feet details with the consequent higher uncertainty in their

reconstruction (Fig. 3.14 right).

Presence of other subjects or external moving objects inside the cameras’

views during the acquisition is highly undesirable and must be avoid, to

not be extracted as a foreground elements together with the actual subject.

Particular features of the swimming pool has to be considered as well, such

as, for example, color lines on the pool pavement, which can be identified

as background even if the subject in a specific frame covered them (see the

three horizontal lines that cross the subject lower limbs in the silhouette of

Fig. 3.14 left).

Improving this first initial step is challenging but highly desirable, since it
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Figure 3.13: Background subtraction: example of reflexes.

is critical for the accuracy achievable in the following processing phases.

Visual hull creation

Visual hulls are created from silhouettes as indicated in section 1.5.3.

The volume of interest is partitioned into voxels of size 0.01 m; then, each of

the voxels’ vertices is projected on the silhouettes, exploiting the calibration

functions of the OpenCV library, that are analogous to those provided by the

Calibration Toolbox for Matlab. The 3D meshes thus obtained are saved

in PLY format, also known as Polygon File Format or Stanford Triangle

Format. An example is shown in Fig. 3.15.



3.3 Data Processing 63

Figure 3.14: Background subtraction: example of subject’s shadow

extraction (left) and loss of feet details (right).

Figure 3.15: Visual hull reconstructed from a frame of an acquired gait trial.
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Model Matching

The sequence of visual hulls is tracked employing the articulated-ICP

algorithm described in section 1.5.5, with a data-to-model approach. An

example of a matching result, with the comparison between the model and

the visual hull at the corresponding frame beside, is shown in Fig. 3.16.

The position and orientation in space of each body segment’s embedded

frame of reference are obtained for the whole sequence.

Figure 3.16: Example of matching result (left) and a comparison between

the model and visual hull at the corresponding frame (right).

Joint angles calculation

Joints angles evaluated with a markerless system are inevitably different

from those assessed using a marker-based technique. This is one of the

main difficulty in comparing the two approaches and it is due to the basic

discrepancy in the definition of the segments’ frames of reference. Several

studies have been realized to quantitatively compare the two technologies

[25], [86]. In this work, a purely markerless joint angles definition has been

given and its feasibility tested. Only flexion/extension (flex/ext) angles
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have been taking into account. Frames of reference of pelvis, femur, tibia

and foot, oriented as shown on the right in Fig. 3.11, have been considered

(Fig. 3.17 left). Hip, knee and ankle joint angles have been calculated as

the rotation around Z axis (medio-lateral axis) of the parent segment which

causes the X axis of the child segment’s frame of reference to overlap to

the same forward direction axis of the parent segment. Thus, hip flex/ext

angle is obtained from relative rotation of femur frame of reference on

pelvi coordinate system, knee flex/ext angle from tibia and femur relative

rotation around Z-femur axis, while ankle flex/ext angle from the relative

rotation of foot and tibia reference’s frame. Positive and negative signs are

defined according to clinical conventions. A clarification can be found in

Fig. 3.17 (right).

Figure 3.17: Left leg’s frames of reference (left) and clarification of flex/ext

joint angles calculation.

Statistical Analysis

A Matlab code has been developed to compute the correlation among all

stances and gait cycles available from the 6 acquired trials of each subject.

Mean and standard deviation have been evaluated considering just those

which show a correlation coefficient with almost another one greater than
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0.75 [109], [83]. For each subject, representative bands of the correlated

results for both stances and gait cycles are thus obtained. An example taken

from control subject 1 is proposed. In Fig. 3.18 and 3.19, all correlated trials

used to assess subject joint ankles mean and standard deviation are shown,

while on Fig. 3.20 and Fig. 3.21 the resulting bands are displayed.

Figure 3.18: Subject 1: all correlated trials used to compute the mean

patterns (reported in red).

The same strategy has been adopted considering all the control subjects

together: correlation has been assessed combining all the already correlated

trails of each control subject. Inter-subjects mean and standard deviation

has been calculated and from them Control UW Markerless Bands have been

obtained. These are indicative of how healthy people can walk underwater.

To understand differences among dry and underwater conditions of walking,

these UW Control Bands, with their strong limitation of accounting just

for three subjects, have been then compared with Normative Out of Water

(OW) Bands taken from Sawacha et. al [109].
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Figure 3.19: Subject 1: all correlated gait cycles used to compute the mean

patterns (reported in red).

Figure 3.20: Underwater bands from control subject 1.
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Figure 3.21: Gait Cycle underwater bands from control subject 1.



Chapter 4

Results

4.1 Control Subjects

4.1.1 Subject 1

This subject has been acquired with Setup 1 (see section 3.2.4). Stance

phases and gait cycles (gc) analyzed for each recorded trials are reported

on Table 4.1. Stances between which the gait cycles are considered, are

indicated in parentheses.

Trails Left Right

Stance and Gait Cycles

1. I,II,gc(I-II) II,gc(I-II)

2. I,gc(I-II) I

3. I,II,gc(I-II),gc(II-III) I,II,gc(I-II)

4. I gc(I-II)

5. I,II,gc(I-II),gc(II-III) I,II,gc(I-II)

6. I,II,gc(I-II),gc(II-III) I,gc(I-II)

Table 4.1: Processed stance phase and gait cycles for each trial.

Findings regarding stance and gait cycle analysis are presented in the

following distinct sections.
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Stance Results

Left and right leg are examined separately, since it has been possible

to extract a considerable number of both stance and gait cycle for each.

Left correlated trials are first represented in Fig. 4.1, followed by the

corresponding correlation values reported in Tab. 4.2, 4.3 and 4.4 for hip,

knee and ankle joint respectively (for each trials the considered stance is

specified below brackets). The same is then presented for the right leg (Fig.

4.2 and Tab. 4.5, 4.6, 4.7).

Figure 4.1: Subject 1: Left Correlated Trials.

Gait Cycle Results

Whole gait cycles have been examined as well. Correlated trials are

shown in Fig. 4.3 and 4.4, while correlation coefficients are specified in Tab.

4.8, 4.9 and 4.10 for the left limb, Tab. 4.11, 4.12 and 4.13 for the right one.
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Left Hip Correlation

Trials

1. (Ist) 1 0,997 0,995 0,997 0,994 0,981 0,991 0,984 0,995 0,994

1. (IIst) 0,997 1 0,993 0,993 0,997 0,980 0,984 0,993 0,989 0,988

2. (Ist) 0,995 0,993 1 0,994 0,995 0,981 0,992 0,981 0,992 0,995

3. (Ist) 0,997 0,993 0,994 1 0,990 0,973 0,988 0,981 0,992 0,995

3. (IIst) 0,995 0,997 0,995 0,990 1 0,990 0,989 0,991 0,991 0,990

4. (Ist) 0,981 0,980 0,981 0,973 0,986 1 0,991 0,971 0,985 0,979

5. (Ist) 0,991 0,985 0,992 0,988 0,989 0,991 1 0,970 0,996 0,994

5. (IIst) 0,984 0,993 0,981 0,981 0,991 0,971 0,970 1 0,971 0,974

6. (Ist) 0,995 0,989 0,992 0,992 0,991 0,985 0,996 0,971 1 0,995

6. (IIst) 0,994 0,988 0,995 0,995 0,990 0,979 0,994 0,974 0,995 1

Table 4.2: Subject 1: Left Hip Correlation Coefficients.

Left Knee Correlation

Trials

1. (Ist) 1 0,702 0,653 0,805 0,703 0,471 0,936 0,546 0,787 0,765

1. (IIst) 0,702 1 0,877 0,665 0,946 0,817 0,751 0,611 0,886 0,802

2. (Ist) 0,653 0,877 1 0,826 0,871 0,893 0,813 0,461 0,671 0,704

3. (Ist) 0,805 0,665 0,826 1 0,639 0,753 0,871 0,510 0,609 0,547

3. (IIst) 0,703 0,946 0,871 0,639 1 0,722 0,785 0,384 0,787 0,881

4. (Ist) 0,471 0,817 0,893 0,753 0,722 1 0,616 0,566 0,623 0,472

5. (Ist) 0,936 0,751 0,813 0,871 0,785 0,616 1 0,483 0,736 0,786

5. (IIst) 0,546 0,611 0,461 0,510 0,384 0,566 0,483 1 0,699 0,234

6. (Ist) 0,787 0,887 0,671 0,609 0,787 0,623 0,736 0,699 1 0,799

6. (IIst) 0,765 0,802 0,704 0,547 0,881 0,472 0,786 0,234 0,799 1

Table 4.3: Subject 1: Left Knee Correlation Coefficients.
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Left Ankle Correlation

Trials

1. (Ist) 1 0,903 0,919 0,576 0,951 0,808 0,831 0,582 0,175 0,154

1. (IIst) 0,903 1 0,948 0,603 0,857 0,924 0,895 0,820 0,096 0,493

2. (Ist) 0,919 0,948 1 0,607 0,934 0,806 0,779 0,671 0,030 0,330

3. (Ist) 0,576 0,603 0,607 1 0,651 0,547 0,532 0,552 0,414 0,515

3. (IIst) 0,951 0,856 0,934 0,651 1 0,751 0,749 0,568 0,040 0,191

4. (Ist) 0,808 0,924 0,806 0,547 0,751 1 0,968 0,866 0,106 0,576

5. (Ist) 0,831 0,895 0,779 0,532 0,749 0,968 1 0,744 0,045 0,450

5. (IIst) 0,582 0,820 0,671 0,552 0,568 0,866 0,744 1 0,499 0,826

6. (Ist) 0,175 0,096 0,030 0,414 0,040 0,106 0,045 0,499 1 0,827

6. (IIst) 0,154 0,493 0,330 0,516 0,191 0,576 0,450 0,826 0,827 1

Table 4.4: Subject 1: Left Ankle Correlation Coefficients.

Right Hip Correlation

Trials

1. (IIst) 1 0,922 0,972 0,961 0,984 0,993 0,933

2. (Ist) 0,921 1 0,982 0,983 0,933 0,901 0,986

3. (Ist) 0,972 0,982 1 0,998 0,979 0,960 0,990

3. (IIst) 0,961 0,983 0,998 1 0,975 0,951 0,995

5. (Ist) 0,984 0,933 0,979 0,975 1 0,990 0,959

5. (IIst) 0,993 0,901 0,960 0,951 0,990 1 0,924

6. (Ist) 0,933 0,986 0,989 0,995 0,959 0,924 1

Table 4.5: Subject 1: Right Hip Correlation Coefficients.
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Figure 4.2: Subject 1: Right Correlated Trials.

Right Knee Correlation

Trials

1. (IIst) 1 0,996 0,991 0,957 0,954 0,826 0,907

2. (Ist) 0,996 1 0,982 0,953 0,948 0,797 0,894

3. (Ist) 0,991 0,982 1 0,943 0,958 0,862 0,893

3. (IIst) 0,957 0,953 0,943 1 0,968 0,841 0,965

5. (Ist) 0,954 0,948 0,958 0,968 1 0,864 0,940

5. (IIst) 0,826 0,797 0,862 0,841 0,864 1 0,814

6. (Ist) 0,907 0,894 0,893 0,965 0,940 0,814 1

Table 4.6: Subject 1: Right Knee Correlation Coefficients.
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Right Ankle Correlation

Trials

1. (IIst) 1 0,389 0,123 0,229 0,334 0,438 0,286

2. (Ist) 0,389 1 0,384 0,261 0,823 0,099 0,876

3. (Ist) 0,123 0,384 1 0,398 0,495 0,557 0,537

3. (IIst) 0,229 0,261 0,398 1 0,070 0,453 0,284

5. (Ist) 0,333 0,893 0,495 0,070 1 0,091 0,913

5. (IIst) 0,437 0,099 0,557 0,453 0,091 1 0,335

6. (Ist) 0,286 0,876 0,537 0,285 0,913 0,335 1

Table 4.7: Subject 1: Right Ankle Correlation Coefficients.

Figure 4.3: Subject 1: Gait Cycle Left Correlated Trials.
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Left Gait Cycle Hip Correlation

Trials

1. (I-II) 1 0,283 0,910 0,938 0,985 0,967 0,983 0,909 0,751

2. (I-II) 0,283 1 0,561 0,513 0,299 0,492 0,377 0,566 0,785

3. (I-II) 0,910 0,561 1 0,992 0,935 0,966 0,957 0,996 0,939

3. (II-III) 0,939 0,513 0,992 1 0,958 0,976 0,978 0,990 0,908

4. (I-II) 0,985 0,299 0,935 0,958 1 0,971 0,989 0,938 0,781

5. (I-II) 0,967 0,492 0,966 0,976 0,971 1 0,981 0,968 0,881

5. (II-III) 0,984 0,377 0,957 0,978 0,989 0,981 1 0,955 0,822

6. (I-II) 0,909 0,566 0,996 0,990 0,938 0,968 0,955 1 0,940

6. (II-III) 0,751 0,785 0,939 0,908 0,781 0,881 0,822 0,940 1

Table 4.8: Subject 1: Left Gait Cycle Hip Correlation Coefficients.

Left Gait Cycle Knee Correlation

Trials

1. (I-II) 1 0,824 0,840 0,860 0,868 0,925 0,872 0,902 0,670

2. (I-II) 0,840 1 0,951 0,964 0,527 0,640 0,599 0,938 0,852

3. (I-II) 0,840 0,951 1 0,978 0,582 0,650 0,664 0,986 0,931

3. (II-III) 0,859 0,964 0,978 1 0,624 0,699 0,695 0,980 0,926

4. (I-II) 0,868 0,527 0,582 0,624 1 0,968 0,930 0,679 0,457

5. (I-II) 0,925 0,639 0,650 0,699 0,968 1 0,935 0,738 0,503

5. (II-III) 0,872 0,599 0,664 0,695 0,930 0,935 1 0,736 0,540

6. (I-II) 0,902 0,938 0,985 0,980 0,679 0,738 0,736 1 0,907

6. (II-III) 0,670 0,852 0,931 0,926 0,457 0,503 0,540 0,907 1

Table 4.9: Subject 1: Left Gait Cycle Knee Correlation Coefficients.
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Left Gait Cycle Ankle Correlation

Trials

1. (I-II) 1 0,729 0,140 0,867 0,010 0,281 0,148 0,558 0,038

2. (I-II) 0,729 1 0,264 0,791 0,488 0,656 0,358 0,100 0,355

3. (I-II) 0,140 0,264 1 0,134 0,828 0,695 0,850 0,801 0,708

3. (II-III) 0,867 0,791 0,134 1 0,108 0,356 0,110 0,543 0,136

4. (I-II) 0,011 0,487 0,828 0,108 1 0,943 0,923 0,601 0,785

5. (I-II) 0,281 0,656 0,695 0,356 0,943 1 0,798 0,347 0,715

5. (II-III) 0,148 0,358 0,850 0,110 0,923 0,798 1 0,799 0,777

6. (I-II) 0,558 0,100 0,801 0,543 0,601 0,347 0,799 1 0,559

6. (II-III) 0,038 0,355 0,708 0,136 0,785 0,715 0,777 0,559 1

Table 4.10: Subject 1: Left Gait Cycle Ankle Correlation Coefficients.

Figure 4.4: Subject 1: Gait Cycle Right Correlated Trials.
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Right Gait Cycle Hip Correlation

Trials

1. (I-II) 1 0,990 0,985 0,787

3. (I-II) 0,990 1 0,993 0,815

5. (I-II) 0,985 0,993 1 0,793

6. (I-II) 0,787 0,815 0,793 1

Table 4.11: Subject 1: Right Gait Cycle Hip Correlation Coefficients.

Right Gait Cycle Knee Correlation

Trials

1. (I-II) 1 0,979 0,988 0,855

3. (I-II) 0,979 1 0,966 0,781

5. (I-II) 0,988 0,966 1 0,883

6. (I-II) 0,855 0,781 0,883 1

Table 4.12: Subject 1: Right Gait Cycle Knee Correlation Coefficients.

Right Gait Cycle Ankle Correlation

Trials

1. (I-II) 1 0,295 0,305 0,055

3. (I-II) 0,295 1 0,199 0,181

5. (I-II) 0,305 0,199 1 0,792

6. (I-II) 0,055 0,181 0,792 1

Table 4.13: Subject 1: Right Gait Cycle Ankle Correlation Coefficients.
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4.1.2 Subject 2

Setup 1 (section 3.2.4) has been exploited to acquire the second control

subject as well. Table 4.14 shows what has been achieved through data

processing.

Trials Left Right

Stance and Gait Cycles

1. I -

2. II -

3. II,III,gc(II-III) -

4. I,II,III,gc(I-II),gc(II-III) II,gc(II-III)

5. I,II,gc(I-II),gc(II-III) gc(I-II)

6. I,II,gc(I-II) I

Table 4.14: Processed stance phases and gait cycles for each trials.

Stance Results

Hip, knee and ankle angles’ patterns during stance phases which show

high values (> 0.75) of correlation are reported in Fig. 4.5 for the left side,

and in Fig. 4.6 for the right one. Correlation coefficients for each joint are

indicated in Tab. 4.15-4.18.

Gait Cycles Results

Since only two of the acquired right gait cycles led to results, left and

right outcomes for this subject are presented together without distinction

(Fig. 4.7, Tab. 4.19, 4.20, 4.21).
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Figure 4.5: Subject 2: Left Correlated Trials.
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Left Hip Correlation

Trials

1 (I st) 1 0,979 0,917 0,976 0,984 0,700 0,808 0,947 0,968 0,964 0,976

2 (II st) 0,979 1 0,850 0,945 0,989 0,702 0,760 0,948 0,945 0,936 0,951

3 (II st) 0,916 0,850 1 0,967 0,849 0,734 0,822 0,788 0,956 0,950 0,952

3 (III st) 0,976 0,945 0,967 1 0,944 0,760 0,835 0,898 0,990 0,987 0,994

4 (I st) 0,984 0,989 0,849 0,944 1 0,650 0,746 0,959 0,944 0,926 0,944

4 (II st) 0,700 0,702 0,734 0,760 0,650 1 0,922 0,693 0,683 0,841 0,811

4 (III st) 0,808 0,760 0,823 0,835 0,746 0,922 1 0,808 0,752 0,904 0,878

5 (I st) 0,947 0,948 0,788 0,898 0,959 0,693 0,808 1 0,873 0,910 0,917

5 (II st) 0,968 0,945 0,956 0,990 0,944 0,683 0,752 0,873 1 0,957 0,972

6 (I st) 0,964 0,936 0,950 0,987 0,926 0,841 0,904 0,910 0,957 1 0,997

6 (II st) 0,976 0,951 0,952 0,994 0,944 0,811 0,878 0,917 0,972 0,997 1

Table 4.15: Subject 2: Left Hip Correlation Coefficients.

Left Knee Correlation

Trials

1 (I st) 1 0,808 0,418 0,924 0,946 0,779 0,303 0,938 0,987 0,787 0,806

2 (II st) 0,808 1 0,201 0,556 0,851 0,827 0,539 0,854 0,785 0,289 0,455

3 (II st) 0,418 0,201 1 0,466 0,150 0,415 0,200 0,277 0,406 0,579 0,386

3 (III st) 0,924 0,556 0,466 1 0,846 0,551 0,172 0,833 0,946 0,932 0,921

4 (I st) 0,946 0,851 0,150 0,846 1 0,680 0,522 0,973 0,943 0,630 0,786

4 (II st) 0,779 0,827 0,415 0,551 0,679 1 0,075 0,666 0,740 0,437 0,287

4 (III st) 0,303 0,539 0,200 0,172 0,522 0,075 1 0,600 0,304 0,0828 0,375

5 (I st) 0,938 0,854 0,277 0,833 0,973 0,666 0,600 1 0,927 0,629 0,809

5 (II st) 0,987 0,785 0,406 0,946 0,943 0,740 0,304 0,927 1 0,798 0,826

6 (I st) 0,787 0,289 0,579 0,932 0,630 0,437 0,0828 0,629 0,798 1 0,841

6 (II st) 0,806 0,455 0,386 0,921 0,786 0,287 0,375 0,809 0,826 0,841 1

Table 4.16: Subject 2: Left Knee Correlation Coefficients.
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Left Ankle Correlation

Trials

1 (I st) 1 0,933 0,861 0,838 0,166 0,892 0,844 0,910 0,917 0,840 0,869

2 (II st) 0,933 1 0,882 0,897 0,289 0,708 0,823 0,911 0,955 0,750 0,835

3 (II st) 0,861 0,882 1 0,970 0,616 0,789 0,797 0,974 0,957 0,929 0,975

3 (III st) 0,838 0,897 0,970 1 0,624 0,705 0,871 0,982 0,974 0,886 0,925

4 (I st) 0,166 0,289 0,616 0,624 1 0,141 0,290 0,522 0,499 0,570 0,547

4 (II st) 0,892 0,708 0,789 0,705 0,145 1 0,740 0,816 0,748 0,869 0,859

4 (III st) 0,844 0,823 0,797 0,871 0,290 0,740 1 0,897 0,865 0,770 0,814

5 (I st) 0,910 0,911 0,974 0,982 0,522 0,816 0,897 1 0,980 0,931 0,957

5 (II st) 0,917 0,955 0,957 0,974 0,499 0,748 0,865 0,980 1 0,883 0,920

6 (I st) 0,841 0,750 0,929 0,886 0,570 0,869 0,770 0,931 0,883 1 0,949

6 (II st) 0,869 0,835 0,975 0,925 0,547 0,859 0,814 0,957 0,920 0,950 1

Table 4.17: Subject 2: Left Ankle Correlation Coefficients.

Right Correlation

Hip Knee Ankle

Trials

4 (II st) 1 0.877 1 0.484 1 0.779

6 (I st) 0.877 1 0.484 1 0.779 1

Table 4.18: Subject 2: Hip, Knee and Ankle Right Correlation Coefficients.

Gait Cycle Hip Correlation

Trials

3. (II-III sx) 1 0,902 0,853 0,849 0,892 0,947 0,849 0,915

4. (I-II sx) 0,902 1 0,730 0,709 0,864 0,933 0,886 0,915

4. (II-III sx) 0,853 0,730 1 0,662 0,917 0,703 0,743 0,764

4. (II-III dx) 0,849 0,709 0,662 1 0,712 0,834 0,899 0,821

5. (I-II sx) 0,892 0,864 0,917 0,712 1 0,814 0,867 0,781

5. (II-III sx) 0,947 0,933 0,703 0,834 0,814 1 0,930 0,926

5. (I-II dx) 0,894 0,886 0,743 0,899 0,867 0,931 1 0,884

6. (I-II sx) 0,915 0,915 0,764 0,821 0,781 0,926 0,884 1

Table 4.19: Subject 2: Gait Cycle Hip Correlation Coefficients.
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Figure 4.6: Subject 2: Right Correlated Trials

Gait Cycle Knee Correlation

Trials

3. (II-III sx) 1 0,749 0,964 0,904 0,961 0,890 0,929 0,823

4. (I-II sx) 0,749 1 0,806 0,713 0,858 0,936 0,821 0,737

4. (II-III sx) 0,964 0,806 1 0,825 0,960 0,908 0,942 0,885

4. (II-III dx) 0,904 0,713 0,825 1 0,915 0,859 0,894 0,606

5. (I-II sx) 0,961 0,858 0,960 0,915 1 0,948 0,976 0,817

5. (II-III sx) 0,890 0,936 0,908 0,859 0,948 1 0,910 0,807

5. (I-II dx) 0,929 0,821 0,942 0,893 0,976 0,910 1 0,797

6. (I-II sx) 0,823 0,737 0,885 0,606 0,817 0,807 0,797 1

Table 4.20: Subject 2: Gait Cycle Knee Correlation Coefficients.
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Figure 4.7: Subject 2: Gait Cycle Correlated Trials.

Gait Cycle Ankle Correlation

Trials

3. (II-III sx) 1 0,087 0,670 0,330 0,102 0,144 0,300 0,845

4. (I-II sx) 0,087 1 0,387 0,243 0,682 0,738 0,863 0,083

4. (II-III sx) 0,670 0,387 1 0,468 0 0,235 0,175 0,840

4. (II-III dx) 0,330 0,243 0,468 1 0,277 0,027 0,499 0,482

5. (I-II sx) 0,102 0,682 0 0,277 1 0,877 0,467 0,292

5. (II-III sx) 0,144 0,738 0,235 0,027 0,877 1 0,495 0,170

5. (I-II dx) 0,300 0,863 0,175 0,499 0,467 0,495 1 0,231

6. (I-II sx) 0,845 0,083 0,840 0,482 0,292 0,170 0,231 1

Table 4.21: Subject 2: Gait Cycle Ankle Correlation Coefficients.
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4.1.3 Subject 3

Differently from the previous two subjects, this one has been acquired

with Setup 2 (section 3.2.5). Less trials have been tested in this case:

just 3 instead of 6, due to inconvenience with the swimming pool availability.

Trails Left Right

Stance and Gait Cycles

1. I, gc(I-II) -

2. I,II,gc(I-II) I, gc(I-II)

3. II, gc(I-II) I

Table 4.22: Processed stance phases and gait cycles for each trial.

Because of the limited number, left and right side’s findings of both stance

and gait cycles are grouped together.

Stance Results

Fig. 4.8 displays all the obtained correlated trials for this subject.

Tables 4.23, 4.24 and 4.25 reported correlation coefficients for the three

joints. The same results regarding the whole gait cycle are presented in the

next paragraph (Fig. 4.9, Tab. 4.26-4.28).

Hip Correlation

Trials

1 (Ist sx) 1 0,952 0,987 0,981 0,930 0,965

2 (Ist sx) 0,952 1 0,918 0,967 0,833 0,943

2 (IIst sx) 0,987 0,918 1 0,958 0,966 0,965

2 (Ist dx) 0,982 0,967 0,958 1 0,896 0,969

3 (IIst sx) 0,930 0,833 0,966 0,896 1 0,955

3 (Ist dx) 0,965 0,943 0,965 0,969 0,955 1

Table 4.23: Subject 3: Hip Correlation Coefficients.
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Figure 4.8: Subject 3: Correlated Trials.

Knee Correlation

Trials

1 (Ist sx) 1 0,505 0,508 0,612 0,850 0,589

2 (Ist sx) 0,505 1 0,317 0,435 0,387 0,588

2 (IIst sx) 0,508 0,317 1 0,664 0,248 0,440

2 (Ist dx) 0,612 0,435 0,664 1 0,488 0,803

3 (IIst sx) 0,850 0,387 0,248 0,488 1 0,631

3 (Ist dx) 0,589 0,588 0,440 0,803 0,632 1

Table 4.24: Subject 3: Knee Correlation Coefficients.

Gait Cycle Results
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Ankle Correlation

Trials

1 (Ist sx) 1 0,222 0,147 0,601 0,352 0,194

2 (Ist sx) 0,222 1 0,605 0,353 0,539 0,631

2 (IIst sx) 0,147 0,605 1 0,615 0,697 0,920

2 (Ist dx) 0,601 0,353 0,615 1 0,889 0,851

3 (IIst sx) 0,352 0,539 0,697 0,889 1 0,877

3 (Ist dx) 0,194 0,631 0,920 0,851 0,877 1

Table 4.25: Subject 3: Ankle Correlation Coefficients.

Figure 4.9: Subject 3: Correlated Gait Cycles.
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Gait Cycle Hip Correlation

Trials Gait Cycles

1 (I-II sx) 1 0,938 0,913 0,966

2 (I-II sx) 0,938 1 0,983 0,932

2 (I-II dx) 0,913 0,983 1 0,939

3 (I-II sx) 0,966 0,932 0,939 1

Table 4.26: Subject 3: Gait Cycle Hip Correlation Coefficients.

Gait Cycle Knee Correlation

Trials Gait Cycles

1 (I-II sx) 1 0,930 0,969 0,969

2 (I-II sx) 0,930 1 0,899 0,882

2 (I-II dx) 0,969 0,899 1 0,955

3 (I-II sx) 0,969 0,882 0,954 1

Table 4.27: Subject 3: Gait Cycle Knee Correlation Coefficients.

Gait Cycle Ankle Correlation

Trials

1 (I-II sx) 1 0,833 0,665 0,287

2 (I-II sx) 0,833 1 0,421 0,317

2 (I-II dx) 0,664 0,422 1 0,208

3 (I-II sx) 0,287 0,317 0,208 1

Table 4.28: Subject 3: Gait Cycle Ankle Correlation Coefficients.



88 4.2 UW vs OW Gait Analysis

4.2 UW vs OW Gait Analysis

This section is dedicated to a comparison between the under-water and

the normal dry condition of walking.

The total mean, which takes into account both sides, with its standard

deviation, has been calculated for each control, obtaining UW bands

representative of that subject. A comparison between these UW

subject-specific bands and the mention OW bands is proposed (Subject 1:

Fig. 4.10, 4.11, Subject 2: 4.12, 4.13, Subject 3: 4.14, 4.15).

Figure 4.10: Subject 1: Global Mean (± 1 SD) vs Normative OW Bands.
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Figure 4.11: Subject 1: Global GC Mean (± 1 SD) vs Normative OW Bands.

Figure 4.12: Subject 2: Global Mean (± 1 SD) vs Normative OW Bands.
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Figure 4.13: Subject 2: Global GC Mean (± 1 SD) vs Normative OW Bands.

Figure 4.14: Subject 3: Correlated Trials Mean (± 1 SD).
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Figure 4.15: Subject 3: Correlated GC Mean (± 1 SD)vs Normative OW

Bands.

UW Bands from control subjects

The same UW bands have been evaluated taking into account all

control subjects correlated trials at once, as explained in section 3.3.2

(Statistical Analysis). Fig. 4.16 reported all controls correlated trials for

the stance phase, and Fig. 4.18 for the whole gait cycle, used to compute

the respective mean patterns. Resulting UW Bands from control subjects

over the Normative OW Bands [109] are displayed in Fig. 4.17 and Fig. 4.19.
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Figure 4.16: All Controls (sbj 1, sbj 2 and 3) Correlated Trials and Mean.

Figure 4.17: Normative OW vs Control UW bands.
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Figure 4.18: All Controls Correlated Gait Cycle and Mean.

Figure 4.19: Normative OW vs Control UW bands.
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4.3 Pathologic Subject

An ACL-injured subject has been investigated. The available stance

phases and gait cycles extracted from the recorded videos are listed in the

following table (Tab. 4.29).

Trials Left Right

Stance

1. I, gc(I-II) I

2. I,II I

3. I,gc(I-II) II

4. I,II,gc(I-II) I,gc(I-II)

5. I,gc(I-II) I

6. I,gc(I-II) I,II,gc(I-II)

Table 4.29: Processed stance phases and gait cycles for each trial.

Results are reported as for control subjects in section 4.1 (Fig. 4.20-4.22,

Tab. 4.30-4.38).

Stance Results

Left Hip Correlation

Trials

1 (I st) 1 0,908 0,987 0,839 0,987 0,992 0,891 0,553

2 (I st) 0,908 1 0,877 0,950 0,941 0,934 0,993 0,844

2 (II st) 0,987 0,877 1 0,784 0,971 0,972 0,853 0,490

3 (I st) 0,839 0,950 0,784 1 0,902 0,850 0,950 0,848

4 (I st) 0,987 0,941 0,971 0,902 1 0,977 0,925 0,628

4 (II st) 0,992 0,934 0,972 0,850 0,977 1 0,920 0,619

5 (I st) 0,891 0,993 0,853 0,949 0,925 0,920 1 0,853

6 (I st) 0,553 0,844 0,490 0,848 0,628 0,619 0,853 1

Table 4.30: Pathologic subject: Left Hip Correlation Coefficients.
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Figure 4.20: Pathologic subject: Left Correlated Trials.

Left Knee Correlation

Trials

1 (I st) 1 0,961 0,478 0,865 0,876 0,865 0,813 0,746

2 (I st) 0,961 1 0,540 0,888 0,924 0,876 0,840 0,740

2 (II st) 0,478 0,540 1 0,187 0,762 0,588 0,831 0,790

3 (I st) 0,865 0,888 0,187 1 0,727 0,641 0,607 0,507

4 (I st) 0,876 0,924 0,762 0,727 1 0,815 0,959 0,897

4 (II st) 0,865 0,876 0,588 0,641 0,815 1 0,785 0,696

5 (I st) 0,813 0,840 0,831 0,607 0,959 0,785 1 0,964

6 (I st) 0,746 0,740 0,790 0,507 0,897 0,696 0,964 1

Table 4.31: Pathologic subject: Left knee Correlation Coefficients.
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Left Ankle Correlation

Trials

1 (I st) 1 0,971 0,985 0,980 0,793 0,151 0,910 0,965

2 (I st) 0,971 1 0,989 0,980 0,809 0,085 0,928 0,943

2 (II st) 0,985 0,989 1 0,993 0,770 0,048 0,948 0,955

3 (I st) 0,980 0,980 0,993 1 0,779 0,069 0,930 0,965

4 (I st) 0,793 0,809 0,770 0,779 1 0,599 0,547 0,872

4 (II st) 0,151 0,085 0,048 0,069 0,599 1 0,252 0,292

5 (I st) 0,910 0,928 0,948 0,930 0,547 0,252 1 0,821

6 (I st) 0,965 0,943 0,956 0,965 0,872 0,292 0,821 1

Table 4.32: Pathologic subject: Left Ankle Correlation Coefficients.

Figure 4.21: Pathologic subject: Right Correlated Trials.



4.3 Pathologic Subject 97

Right Hip Correlation

Trials

1 (I st) 1 0,972 0,979 0,835 0,982 0,930 0,965

2 (I st) 0,972 1 0,970 0,866 0,989 0,907 0,988

3 (II st) 0,979 0,970 1 0,752 0,959 0,976 0,979

4 (I st) 0,835 0,866 0,752 1 0,900 0,624 0,830

5 (I st) 0,982 0,989 0,959 0,900 1 0,888 0,975

6 (I st) 0,930 0,907 0,976 0,624 0,888 1 0,940

6 (II st) 0,965 0,988 0,979 0,830 0,975 0,940 1

Table 4.33: Pathologic subject: Right Hip Correlation Coefficients.

Right Knee Correlation

Trials

1 (I st) 1 0,216 0,742 0,931 0,672 0,386 0,175

2 (I st) 0,216 1 0,653 0,405 0,799 0,674 0,685

3 (II st) 0,742 0,653 1 0,885 0,941 0,711 0,710

4 (I st) 0,931 0,405 0,885 1 0,800 0,529 0,365

5 (I st) 0,672 0,799 0,941 0,800 1 0,720 0,762

6 (I st) 0,386 0,674 0,711 0,529 0,720 1 0,656

6 (II st) 0,175 0,685 0,710 0,365 0,762 0,656 1

Table 4.34: Pathologic subject: Right Knee Correlation Coefficients.

Right Ankle Correlation

Trials

1 (I st) 1 0,945 0,751 0,953 0,730 0,884 0,642

2 (I st) 0,945 1 0,729 0,984 0,742 0,858 0,737

3 (II st) 0,751 0,729 1 0,733 0,969 0,531 0,892

4 (I st) 0,952 0,984 0,733 1 0,722 0,914 0,688

5 (I st) 0,730 0,742 0,969 0,722 1 0,453 0,943

6 (I st) 0,884 0,858 0,531 0,914 0,453 1 0,399

6 (II st) 0,642 0,737 0,892 0,688 0,944 0,399 1

Table 4.35: Pathologic subject: Right Ankle Correlation Coefficients.
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Gait Cycle Results

Figure 4.22: Pathologic subject: Gait Cycle Correlated Trials.

Gait Cycle Hip Correlation

Trials

1. (I-II sx) 1 0,905 0,930 0,732 0,935 0,777 0,889

3. (I-II sx) 0,905 1 0,947 0,885 0,976 0,914 0,668

4. (I-II sx) 0,930 0,947 1 0,917 0,964 0,934 0,666

4. (I-II dx) 0,732 0,885 0,917 1 0,895 0,986 0,350

5. (I-II sx) 0,935 0,976 0,964 0,895 1 0,925 0,705

6. (I-II sx) 0,777 0,914 0,934 0,986 0,925 1 0,423

6. (I-II dx) 0,889 0,668 0,666 0,350 0,705 0,423 1

Table 4.36: Pathologic subject: Gait Cycle Hip Correlation Coefficients.
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Gait Cycle Knee Correlation

Trials

1. (I-II sx) 1 0,935 0,991 0,802 0,940 0,911 0,973

3. (I-II sx) 0,935 1 0,929 0,738 0,946 0,921 0,925

4. (I-II sx) 0,991 0,929 1 0,846 0,961 0,936 0,986

4. (I-II dx) 0,802 0,738 0,846 1 0,900 0,922 0,842

5. (I-II sx) 0,940 0,946 0,961 0,900 1 0,989 0,954

6. (I-II sx) 0,911 0,921 0,936 0,922 0,990 1 0,925

6. (I-II dx) 0,973 0,925 0,986 0,842 0,954 0,925 1

Table 4.37: Pathologic subject: Gait Cycle Knee Correlation Coefficients.

Gait Cycle Ankle Correlation

Trials

1. (I-II sx) 1 0,978 0,929 0,828 0,884 0,976 0,893

3. (I-II sx) 0,978 1 0,922 0,887 0,929 0,965 0,929

4. (I-II sx) 0,929 0,922 1 0,676 0,743 0,971 0,796

4. (I-II dx) 0,828 0,887 0,676 1 0,971 0,756 0,876

5. (I-II sx) 0,884 0,929 0,743 0,971 1 0,815 0,951

6. (I-II sx) 0,976 0,965 0,971 0,756 0,815 1 0,842

6. (I-II dx) 0,893 0,929 0,796 0,876 0,951 0,842 1

Table 4.38: Pathologic subject: Gait Cycle Ankle Correlation Coefficients.



100 4.4 Pathologic vs Controls

4.4 Pathologic vs Controls

A comparison between pathologic and normal condition is proposed. It

is divided into two parts: the first overlaps pathologic findings with standard

bands of normal gait patterns out of water [109], while the second aims at

showing up differences among an ACL-injured subject and an healthy one

in the same under-water condition. The UW bands obtained from the three

control subjects investigated in this study are used as reference (see section

??).

4.4.1 Pathologic vs OW Standard Bands

Correlated stance mean of each limb and the overall mean are represented

together with Normative OW Bands respectively on Fig. 4.23 and 4.25,

while Fig. 4.25 displays the same but for the whole strides.

Figure 4.23: Pathologic Left and Right Correlated Trials Means vs OW

Bands.
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Figure 4.24: Pathologic Global Mean (± 1 SD) vs OW Bands.

Figure 4.25: Pathologic GC Global Mean (± 1 SD) vs OW Bands.
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4.4.2 Pathologic vs UW Control Bands

UW bands from control subjects are an aid in evaluating differences

among healthy and injured subjects walking underwater. Prior to the total

mean of pathologic patterns (Fig. 4.28), left and right correlated stance are

compared to the UW bands from control as well (Fig. 4.26 and 4.28).

Figure 4.26: Pathologic Left Correlated Trials vs Control UW Bands.

Finally, correlated whole gait cycles and their mean versus the UW bands

are shown in Fig. 4.29 and 4.30.
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Figure 4.27: Pathologic Right Correlated Trials vs Control UW Bands.

Figure 4.28: Pathologic Global Mean (± 1 SD) vs Control UW Bands.
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Figure 4.29: Pathologic GC Correlated Trials vs Control UW Bands.

Figure 4.30: Pathologic Global GC Mean (± 1 SD) vs Controls UW Bands.



Chapter 5

Conclusions

A fundamental need for modern biomechanical and clinical application

is the ability to accurately capture normal and pathologic human movement

without the artifacts associated with standard marker-based motion capture

techniques. Moreover, the latter can not be employed in water environment,

where the attachment of skin surface markers is not physically possible. A

markerless approach, based only on synchronized video sequences, has been

proposed as a potential solution.

In the present thesis, an automatic markerless motion capture system has

been investigated and its accuracy in UW 3D lower limbs joint kinematics

reconstruction has been tested.

Three healthy males and an ACL-injured subject who underwent surgical

reconstruction of the ligament, were recruited. Six walking trials at a

self-selected speed have been acquired with 6 subaqueous video cameras,

in a swimming pool, with water at a shoulder level. Two setups have been

experimented to investigate the critical aspects in the definition of camera’s

position. Lower limbs joint angles with the markerless technique have been

extracted. Correlation was used to aid in selecting which of each subject’s

representative walking trials were to be included in the computation of

the mean; thus the correlation coefficient was calculated for each subject’s

kinematic parameter. Walking trials with a correlation coefficient less than

0.75 (75%) were excluded from the statistical analysis.

It should be mentioned that correlation is a shape index, which relates curves



106

on the basis of shape similarities, considering each time instant. That’s the

reason why some trials are reported as correlated even if they differ from the

others for a significant offset. Examples can be found among the correlated

trials obtained for control subject 1 (Fig. 4.1, section 4.1.1): ankle angle of

5IIstance sx starts at -35◦and remains settled between the range -30◦/-40◦,

while the standard trend usually varies from 10◦to -10◦. In Fig. 4.2 (section

4.1.1), the only two ankle correlated trials differ of about -15◦, but their

patterns are very similar.

Considering the gait cycles of the same subject displayed in Fig. 4.3 (section

4.1.1), the unusual knee trend of the stride indicated as 5II-III may be due

to an unsuccessful tracking during swing. An excessive knee flexion following

the stance phase is evident for gait cycle 1I-II. While for this subject it is

just an isolated case and may be attributed to some inconvenience in the

processing steps, for control subject 3 this prominent flexion of the knee

joint is a recurrent pattern. Moreover, several trials with extremely high

hip extension have been obtained for the same subject (Fig. 4.8 and 4.9,

section 4.1.3). However, by visual inspection of the original videos,it has

been verified that subject 3 really walked with a pronounced knee flexion

and hip extension. Thus, such findings can be considered consistent with

the acquired data.

By considering the data of subject 2, it can be noticed excessive extension

angles just for the hip joint: 1Istance sx (Fig. 4.5, section 4.1.2) reaches

about -100◦, while 4Istance sx and 3IIstance sx, as well as gait cycle 4I-II

(Fig. 4.7), exceed -60◦. These critical values arise some doubts about their

feasibility and make critical their acceptability.

Regarding the ankle joint, presence of less correlated trials is evident; for

instance, in Fig. 4.7, an unexpected shift in correspondence of the 50% of

stride can be found. It may be due to a problem in the matching step.

The outcomes for each subject have been summarized representing the

corresponding correlated trials mean and its standard deviation. The

resulting subject-specific representative bands have been compared with

Normative OW Bands [109], to assess differences between walking on land

and in water. In this context, a common finding among all the three

recruited control subjects has been found: all of them walked in water with



107

a 20◦greater knee flexion angle during the early contact phase and at the end

of the whole gait cycle (Fig. 4.10-4.15, section 4.2). Since this variation from

standard patterns out of water occurs for all controls, it may be expected

that it represents a characteristic strictly related to an underwater walking

gesture. This is in contrast with what is stated in literature [9], where it

is reported that the knee joint in water presents a reduced flexion during

the first 15% of the stride (known as the weight acceptance phase during

walking) compared to land, and as a result, the knee is more extended in

water than on land during the support phase (see section 2.2).

Knee flexion results greater also during all swing phase for subjects 1 and

3, while subject 2 presents values comparable with OW range.

With regard to the hip joint, the global mean reflects the excessive extension

previously reported for subjects 2 and 3 during the stance phase, while

findings for the swing phase are in disagreement: subject 1 shows a greater

flexion preceding heel contact, while for the other two controls a smaller

mean value at the end of stride cycle has been obtain.

Ankle mean and standard deviation have been computed considering the

correlated trials, without including those characterized by non-physiologic

offset. Thus, their number can not be considered enough to extrapolated

more general considerations about the single subjects. Such number

increases taking into account all control subjects correlated trials at once,

at the expense of an higher critical standard deviation.

Hip and knee trends representing the UW bands obtained from all the three

controls subjects point out what just discussed for each of them (Fig. 4.17

and 4.19). A significant difference comparing these UW bands with those

out of water proposed by Sawacha et al. [109] stands in the greater standard

deviations. This higher variability may be partially due to markerless

approach technical drawbacks. Nevertheless, it is highly recommended to

extend this study to a larger sample of subjects before taking into account

inter-subject variations.
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According to this study, the main differences between an underwater

walking and a walking in dry condition are:

• about 20◦greater values of knee flexion angle in correspondence of early

contact phase and just before, at the end of the gait cycle;

• a slightly higher knee flexion during swing phase;

• a pronounced extension of hip joint during the stance phase;

• an higher value of hip flexion during swing phase.

Only the first and the third points are confirmed in the pathologic case, while

hip and knee flexion mean in the mid swing well overlaps the corresponding

OW mean.

Pathologic patterns have been compared to the obtained UW bands as

well, to examine walking modifications caused by the ACL injury in the

same underwater condition. Less knee flexion in the early phase of contact

and at the end of the gait cycle characterized the pathologic trend when

compared with the controls one. A more accentuated hip extension for the

whole gait cycle is also evident in Fig. 4.30 (section 4.4).

According to the literature, it is known that significant changes in

locomotion patterns of ACL-injured patients mainly affect tibial rotation

and abduction, even though joint movement in the sagittal plane is the most

investigated. It has been reported that ACL-D knees are significantly less

extended than ACL-I knees during a large portion of midstance (30-44%

of gait cycle) [47]. However, this is not appreciable looking at findings

illustrated in section 4.4. This discrepancy may be explained considering

that the literature regarding kinetics alterations of locomotion patterns

following ACL injury is related to an out of water condition. No underwater

gait analysis of ACL-injured patients has been performed until now.

The results obtained indicate that markerless motion capture has the

potential to achieve a level of accuracy that facilitates the study of the

biomechanics of normal and pathological human movement. However, some

limitations have to be considered and improvements are still necessary.

Factors affecting the accuracy of a markerless motion capture system can

be classified into errors due to limitations of the technical equipment and
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errors due to the shape and/or size of the object or body under examination

[93]. The appropriate configuration of the set of cameras is known to be

a primary aspect for the adoption of a markerless technique [95]. Thus,

in this study, two setups have been experimented to investigate the critical

aspects in the definition of camera’s position. No significant differences came

out: the processing modules, including background subtraction, visual hull

creation and iterative closest point method, yielded to comparable results.

However, common drawbacks have been found handling underwater data

with a markerless approach. Background subtraction step is the most

sensitive to the unusual aquatic environment. The presence of water causes

continuous variation of the scene and makes necessary the adoption of an

adaptive background model. The main problem within underwater images is

represented by reflexes, which are identified as part of the foreground object

and, consequently, extracted from the background. The moving subject

shadow on the pool pavement is in same cases recognized as a foreground

element too. To avoid its detection, more strict parameters can be imposed,

at the expense of a loss in feet details. The consequence is a higher

uncertainty in feet reconstruction, which explains the less correlation and

less reliability of ankle joint angular patterns. The number of ankle angles

correlated trials is evidently minor if compared with hip and knee joints,

and the correlated patterns are often not able to follow smaller variations,

as it is possible with a marker-based technique and in dry condition (see

the comparison between UW and OW results about the flex/ext ankle angle

values proposed in section 4.2).

Presence of other subjects or external moving objects inside the cameras’

views during the acquisition can deeply influenced the outcomes of the

background subtraction and should be carefully considered as well. Since

very easily moving elements may be extracted as foreground together with

the actual subject, they are highly undesirable and must be avoid.

Moreover, it has been noticed that particular features of the swimming pool

such as, for example, color lines on the pool pavement, can be identified as

background even if the subject in a specific frame covered them.

Therefore, special attention must been taken in planning an appropriate

experimental setup.
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In addition, it has been reported that the accuracy of markerless methods

based on visual hulls does not rely only on cameras setting, but it is highly

dependent on the number of cameras used [95]: according to Mundermann

et al., ”Setups with less than 8 cameras yielded largely inaccurate visual

hull constructions and great fluctuations for different poses and positions

across a viewing volume, while setups with 16 and more cameras provided

good volume estimations and consistent results”. Thus, a partial solution

to the technical experimental inconveniences may be the adoption of a

larger number of cameras. It must be considered, however, that in UW

environments electronic equipments should be reduced due to safety issues.

A next critical step is the matching process. Since the subjects

walked with the head out of water, the reconstructed visual hulls appear

without heads, while the model has been still automatically generated

including all body parts. This causes the tracking algorithm to fit the head

with points in the visual hull that belong to the body, mainly altering

barycenter position, which have to be adjusted manually after few iterations.

This study supports the evidence that appropriate technical equipment

and approaches for accurate markerless motion capture is critical. Even if

additional evaluations of the system are still needed, the results demonstrate

the feasibility of calculating meaningful joint kinematics from subjects

walking without any markers attached to the limb. The markerless

framework introduced in this work should be taken as just a basis and a

starting point for developing a broader application of markerless motion

capture. Each of the modules should be independently considered and

improved as newer methods become available, thus making markerless

tracking a feasible and practical alternative to marker based systems.

A Markerless approach offers the promise of expanding the applicability of

human motion capture, since the implementation of this new technology will

allow for simple, time-efficient, and potentially more meaningful assessments

of gait in research and clinical practice.
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Future Developments

Future developments should concentrate on enhancing the background

subtraction step, as well as the matching process. An interesting

improvement to test could be a modification in the model kinematic chain.

It may be adapted to this underwater gait analysis specific application,

eliminating the head, which is not present in the reconstructed visual hulls.

The recruitment of a larger number of subjects, both healthy and pathologic,

either to establish more reliable Normal Underwater Bands, or to be able

to assess more general differences in the strategy of walking among the two

groups, should be considered as well.
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La vostra compagnia sarà senz’altro uno dei ricordi migliori che custodirò
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