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Abstract	
	
We	have	 studied	both	 the	 linear	 approximation	 and	 the	 exact	 form	of	 a	plane	 gravitational	
wave,	which	interacts	with	an	electromagnetic	wave.	Using	the	linearized	Einstein	equations	
we	calculated	the	changes	induced	on	the	four-potential	field	𝐴# 	of	the	electromagnetic	wave	
by	describing	 the	null	geodesics	 followed	by	photons	and	we	have	 identified	 the	associated	
physical	 effects,	 namely	 phase	 shift,	 change	 of	 polarization	 vector,	 angular	 deflection	 and	
delay.	Moreover,	we	have	calculated	the	null	geodesics	of	a	space-time	describing	a	sandwich	
pp-wave	which	is	an	exact	solution	of	vacuum	Einstein	equations,	and	representing	an	exact	
plane	 gravitational	 wave.	 	 In	 this	 way	 we	 were	 able	 to	 identify	 the	 same	 physical	 effects	
calculated	 in	 the	 linearized	 theory.	 Finally,	we	have	 calculated	 the	 response	 of	 a	Michelson	
laser	 interferometer	 (e.g.	 the	 LIGO	 and	 VIRGO	 detectors)	 to	 a	 linearized	 and	 exact	
gravitational	wave.	
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Introduction	
	

Gravitational	waves	are	the	radiative	component	of	the	gravitational	field,	propagating	
at	the	same	speed	of	light	in	vacuum	and	originated	by	the	rearrangements	of	energy/matter	
distributions.	(Misner,	Thorne	and	Wheeler,	1973)	Their	existence	is	not	prescribed	only	by	
Einstein’s	 theory	 of	 Gravitation,	 but	 also	 by	 any	 theory	 based	 on	 a	 metric	 tensor.	 On	
September	 14th	 2015	 gravitational	waves	 have	 finally	 been	 detected	 by	 the	 LIGO	 detectors	
(Abbott	et	al.,	2016).	An	entire	century	has	gone	by	since	Einstein	 formulated	his	 theory	of	
gravitation	and	such	a	peculiar	aspect	of	his	theory	has	been	tested	with	a	positive	result.	

The	purpose	of	this	thesis	is	to	study	the	linearized	theory	of	gravitational	waves,	and	a	
particular	 exact	 solution	 of	 the	 vacuum	 Einstein	 equations,	 which	 corresponds	 to	 the	
propagation	 of	 a	 strong	 gravitational	 wave.	 In	 particular,	 we	 study	 the	 interaction	 of	
linearized	 and	 exact	 gravitational	 waves	 with	 an	 electromagnetic	 wave	 with	 the	 aim	 of	
describing	 the	 response	 of	 Michelson	 interferometers,	 such	 as	 LIGO	 and	 VIRGO,	 to	 a	
gravitational	 wave.	 We	 eventually	 compare	 the	 two	 calculations,	 and	 we	 will	 show	 that	
physical	effects	of	the	linearized	and	exact	gravitational	wave	on	an	electromagnetic	wave	(or	
equivalently	the	effects	on	null	geodesics	followed	by	photons)	are	the	same.	
The	plan	of	this	thesis	is	as	follows.	
	 In	 chapter	 1	we	will	 introduce	 the	 linearized	 theory	 of	 Einstein	 equations.	We	 then	
discuss	the	use	of	a	particular	coordinate	system,	the	TT-gauge	to	set	the	right	framework	to	
proceed	 with	 calculations.	 We	 must	 note	 that	 the	 TT-gauge	 doesn’t	 represent	 a	 physical	
system	that	can	be	defined	using	clocks	and	measuring	rods,	but	since	we	are	 interested	 in	
measurable	quantities	that	are	scalars	we	can	calculate	them	in	this	particular	gauge,	where	
it’s	easier	to	perform	calculations	and	then	we	know	that	the	scalars	obtained	are	the	same	in	
any	coordinate	system.	In	section	1.4	we	write	Maxwell	equations	in	curved	space-times.	We	
then	study	how	the	electromagnetic	wave	is	affected	by	the	passage	of	a	plane	gravitational	
wave.		

In	section	1.6	we	will	calculate	the	effects	 that	 the	gravitational	wave	causes	when	 it	
encounters	 the	 electromagnetic	wave.	We	 calculate	 both	 the	 general	 situation	 in	which	 the	
electromagnetic	 wave	 vector,	 polarization	 vector,	 gravitational	 wave	 vector	 and	 principal	
direction	 of	 the	 polarization	 tensor	 have	 arbitrary	 directions	 and	 a	 particular	 situation	 in	
which	all	expressions	take	a	particular	simple	form.	We	identify	an	angle	𝜃	between	the	two	
wave	vectors	and	other	 two	angles	𝜙	and	𝜓	which	altogether	give	us	 the	 three	Euler	angles.	
Once	the	general	calculation	is	over	we	study	the	case	where	𝜃 = (

)
,	which	means	that	the	two	

waves	are	propagating	along	mutually	orthogonal	directions.	We	will	further	assume	that	the	
electromagnetic	polarization	vector	has	only	one	component.	

In	 chapter	 2	 we	 will	 analyze	 a	 particular	 exact	 solution	 of	 Einstein	 equations.	 This	
solution	belongs	to	a	particular	class	of	plane	waves,	defined	to	be	pp-waves	in	which	the	field	
components	are	the	same	at	every	point	of	the	wave	surfaces.		

In	 section	2.1	we	will	mathematically	describe	 the	 situation	 in	which	we	are	 in.	The	
space-time	throughout	which	the	strong	wave	runs	can	be	divided	into	three	regions.	Region	Ι	
and	 region	ΙΙΙ	represent	 flat	 regions	 of	 space-time	 and	 region	ΙΙ	represent	 the	 region	 of	 the	
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wave.	It	will	be	using	this	fact	that	we	will	manage	to	describe	this	physical	problem.	Then	we	
start	 calculating	 the	 geodesics	 that	 describe	 the	 path	 followed	 by	 photons	 in	 these	 three	
regions.	We	proceed	writing	the	matching	conditions	between	the	three	regions.	

	Section	2.3	allows	us	to	“neglect”	the	wave	region	and	connect	the	in-photons	with	the	
out-photons.	In	section	2.4	we	will	perform	a	coordinate	transformation	in	region	ΙΙΙ	since	it’s	
a	 property	 of	 gravitational	wave	 to	 distort	 the	metric	 at	 its	 passage	 (Landau	 and	 Lifschitz,	
1976).		

In	section	2.6,	we	will	study	the	interactions	between	the	two	waves	as	we	did	in	the	
linearized	regime	and	we	conclude	by	showing	that	the	results	obtained	in	the	exact	theory	
reminds	those	of	the	linearized	theory.	
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Chapter	1	
	

Linearized	Theory	
	
1.1	Einstein	Equations	
	
Einstein	equations	read		
	
	 𝑅#, −

1
2𝑔

#,𝑅 =
8𝜋𝐺
𝑐5 𝑇#,.	 (1.1.1)	

	
It	is	a	set	of	ten-second	order	partial	derivative-equations	(Landau	and	Lifschitz,	1976);	here	
G	 is	 the	 gravitational	 constant	 and	 c	 is	 the	 speed	 of	 light;	𝑔#, 	is	 the	 metric	 tensor	 which	
defines	 the	 infinitesimal	 distance	 between	 two	 events	 occurring	 in	 the	 space	 time:	𝑑𝑠) =
𝑔#,𝑑𝑥#𝑑𝑥,.	With	the	metric	tensor	we	can	construct	the	Christoffel	symbols	
	
	 Γ	#,> =

1
2	𝑔

>? 𝜕,𝑔?# + 𝜕#𝑔?, − 𝜕?𝑔#, 	 (1.1.2)	

	
and	the	Riemann	Tensor	
	
	 𝑅		#B,> = 𝜕BΓ	#,> − 𝜕,Γ	#B> + Γ	#,

C ΓCB> − Γ	C,> Γ	#B	
C ,	 (1.1.3)	

	
which	 represents	 the	curvature	of	 space-time.	The	Ricci	 tensor	𝑅#, = 𝑅	#>,> 	is	 then	obtained	
contracting	 the	Riemann	 tensor	and	𝑅 = 𝑔#,𝑅#, 	is	 the	 curvature	 scalar.	 In	 the	end	we	have	
the	stress-energy	tensor	𝑇#, 	that	satisfies	equations	
	
	 																				𝑇						;,

#, = 0,	 (1.1.4)	
	
which	represent	the	equation	of	motion	of	the	matter	under	the	influence	of	the	gravitational	
field	(Hobson	and	others,	2006).	The	symbol	“;”	represents	the	covariant	derivative	
	
	 𝐴	;,

# = 𝜕,𝐴# + Γ	,?
# 𝐴?.	 (1.1.5)	

	
It	is	important	to	show	that	because	of	Bianchi’s	identity	we	have	
	
	 (𝑅#, −

1
2𝑔

#,);, = 0.	 (1.1.6)	

	
We	 can	 therefore	 state	 that	 the	 conservation	 of	 energy	 and	momentum	 is	 implemented	 in	
Einstein	equations.	For	this	reason,	it’s	not	possible	to	assign	a	priori	the	sources	distribution:	
the	 energy-stress	 tensor	 is	 one	 of	 the	 variables	 of	 our	 problem.	 The	 ten	 equations	 are	
sufficient	to	find	the	energy	density	and	three	of	the	four	components	of	the	matter’s	velocity	
(since	the	fourth	is	given	by	the	relation	𝑢#𝑢# = 1),	in	addition	to	six	of	the	ten	components	of	
the	metric	tensor	𝑔#, .	The	missing	components	give	rise	to	the	freedom	of	choice	with	which	
we	 can	 execute	 four	 coordinate	 transformation	𝑥L# = 	𝑥L# 𝑥, 	(Landau	 and	Lifschitz,	 1976).	
As	 in	 electromagnetism	 we	 choose	 a	 particular	 gauge	 in	 general	 relativity	 we	 chose	 a	
particular	coordinate	system.	
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Using	 this	 gauge	 freedom	 we	 can	 impose	 the	 Hilbert-De	 Donder	 condition	 on	𝑔#, 	which	
reminds	us	the	Lorentz	condition	in	electromagnetism	on	the	four-potential	𝐴#:	
	

𝜕, −𝑔𝑔#, = 0	
	
with	𝑔 = det 𝑔#, .	We	know	that	the	Lorentz	condition	does	not	univocally	fix	the	potentials	
which	are	defined	unless	a	restricted	gauge	transformation,	so	the	De	Donder	condition	fixes	
the	coordinate	system	unless	transformations	𝑥L# = 	𝑥L# 𝑥, 	such	as	
	
	 ☐𝑥L# = 0.		 (1.1.7)	
	
By	taking	advantage	of	this	gauge	freedom	we	will	successfully	linearize	Einstein	equations.	
	
1.2	Linearized	equations	
	
We	 know	 that	 in	 the	 case	 of	 a	 null	 gravitational	 field	 the	 space-time	 is	 flat.	 Then,	 in	 the	
presence	 of	 a	 weak	 gravitational	 field,	 the	 space-time	 must	 remain	 almost	 flat.	 In	 this	
situation	the	metric	tensor	can	be	written	as	(Hobson	and	others,	2006;	Landau	and	Lifschits,	
1976)	
	
	 𝑔#, = 𝜂#, + ℎ#,	,	 (1.2.1)	
	
where	𝜂#, 	represents	 a	 flat	 space-time	 and	ℎ#, ,	 with	 ℎ#, ≪ 1,	 represents	 the	 perturbation	
on	 the	 space-time	 induced	 by	 a	 weak	 gravitational	 wave.	 We	 are	 using	 the	 convention	
+−−− 	for	𝜂#, .	By	using	the	linear	approximation,	neglecting	all	the	terms	𝑂(ℎ)),	we	will	
obtain	a	linearized	form	of	Einstein	equations.	The	radiative	solutions	of	these	equations	will	
represent	the	gravitational	waves.	In	this	approximation	we	have:	
	
	 Γ	#,> =

1
2 𝜂

>B 𝜕#ℎB, + 𝜕,ℎB# − 𝜕Bℎ#, ,	 (1.2.2)	

	
and	similar	equations	hold	for	the	Riemann	tensor,	the	Ricci	tensor	and	the	curvature	scalar.	
We	can	now	write	the	linearized	Einstein	equations	(here	we	are	using	the	SI	convention):	
	
	

☐ℎ#, − 𝜕#𝜕,ℎ + 𝜕#𝜕>ℎ	,> + 𝜕,𝜕>ℎ	#> − 𝜂#,☐h − 𝜂#,𝜕>𝜕Bℎ>B =
16𝜋𝐺
𝑐5 𝑇#,.	 (1.2.3)	

	
We	change	variables	using	
	
	 Ψ#, = ℎ#, −

1
2 𝜂#,ℎ	,	

(1.2.4)	

	
where	ℎ = 𝜂#,ℎ#, .	We	obtain	
	
	 𝜓 = −ℎ	,	 (1.2.5)	
	
	 ℎ#, = 𝜓#, −

1
2 𝜂#,𝜓.	

(1.2.6)	
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If	we	now	express	equation	(1.2.3)	 in	 terms	of	𝜓#, 	and	use	the	De	Donder	condition,	where	
we	have	–𝑔 = −det 𝑔#, = 1 + ℎ	hence	 −𝑔 ≅ 1 + Y

)
ℎ	we	have	

	
	 𝜕,Ψ#, = 0	 (1.2.7)	
	
and	so	Einstein	equations	become	
	
	

☐Ψ#, =
16𝜋𝐺
𝑐5 𝑇#,.	 (1.2.8)	

	
The	 solution	 to	 the	 homogenous	 associated	 equation	 gives	 as	 a	 solution	 a	 linearized	
gravitational	wave.	
	
1.3	TT	Gauge	
	
We’ll	now	study	a	special	coordinate	system	to	study	in	an	easier	way	the	gravitational	waves.	
In	this	coordinate	system	the	tensor	ℎ#, 	has	two	only	independent	components.	This	system	
is	called	TT	gauge	(Transverse-Traceless)	and	will	be	obtained	by	completely	fixing	the	gauge	
by	imposing	a	condition	on	the	residual	gauge	as	well	(Landau	and	Lifschitz,	1976).	
We	start	writing	
	

	 ☐Ψ#, = 0	 (1.3.1)	
	
and	
	

	 𝜕,Ψ#, = 0.	 (1.3.2)	
	
	
We	consider	the	solution	for	monochromatic	plane	waves	
	

	 𝜓#, = 𝐴#,𝑒[\]^
].	 (1.3.3)	

	
𝐴#, 	for	 now,	 are	 ten	 arbitrary	 constants.	 If	 we	 want	 equation	 (1.3.3)	 to	 be	 a	 solution	 of	
equations	(1.3.1),	the	following	equation	must	be	verified	
	

	 𝜒>𝜒> = 𝜒`	) − 𝜒 ) = 0.	 (1.3.4)	
	
If	we	apply	the	De	Donder	condition	to	equation	(1.3.3)	we	have	
	

	 𝐴#,𝜒, = 0,	 (1.3.5)	
	
which	 are	 four	 conditions	 to	 impose	 on	 the	 ten	 constants.	 We	 now	 have	 six	 independent	
constants.	We	can	 still	 execute	a	 coordinate	 transformation	𝑥L# = 	𝑥L# 𝑥, 	of	 residual	gauge	
type,	that	satisfy	the	De	Donder	condition.	We	must	have	then	
	

	 ☐𝑥L# = 0.	 (1.3.6)	
	
We	are	in	the	linearized	theory	regime,	so	the	transformation	executed	must	be	infinitesimal,	
of	the	kind	
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	 𝑥L# = 𝑥# + 𝜉#,	 (1.3.7)	

	
where	𝜉# ,	which	is	of	the	same	order	of	ℎ	(Hobson	and	others,	2006)	are	four	functions	and	
for	them	we	can	neglect	the	powers	higher	than	the	second.	Following	this	idea	the	functions	
𝜓#, 	transform	in	the	following	way:	
	

	 𝜓#,L = 𝜓#, − 𝜉#,, − 𝜉,,# + 𝜂#,𝜉			,>> 	 (1.3.8)	
	
and	it	follows	
	

	 𝜕#𝜓L#, = 𝜕#𝜓#, +☐𝜉#.	 1.3.9 	
	
In	this	way	we	see	that	with	the	condition		
	

	 ☐𝜉# = 0,	 (1.3.10)	
	
the	De	Donder	condition	is	satisfied	by	𝜉# .	A	solution	of	the	previous	equation	is	
	

	 𝜉# = −𝑖𝐶#𝑒[\]^],	 (1.3.11)	
	
where	𝐶# 	are	four	arbitrary	constants.	Substituting	equations	(1.3.3)	in	equations	(1.3.8)	we	
obtain	how	the	𝐴#, 	transform	using	equations	(1.3.7):	
	

	 𝐴#,L = 𝐴#, − 𝐶#𝜒, − 𝐶,𝜒# + 𝜂#, 𝐶>𝜒> .	 1.3.12 	
	
From	 equation	 (1.3.4)	 we	 can	 easily	 see	 that	𝜒` ≠ 0	since	𝜒Y, 𝜒), 𝜒f	can’t	 be	 all	 zero	 at	 the	
same	 time;	 thanks	 to	 this	 fact	 we	 can	 always	 divide	 for	𝜒`.	From	 the	 transformation	 rule	
(1.3.12)	of	𝐴#, ,	by	imposing	that	
	

	 𝐴[`L = 0,	 (1.3.13)	
	
we	can	fix	the	arbitrary	constants	𝐶[ 		
	

	 𝐶[ =
1
𝜒`

𝐴[` − 𝐶`𝜒[ .	 1.3.14 	

	
The	 De	 Donder	 condition	 tells	 us	 then	 that	𝐴``L = 0.	We	 managed	 to	 fix	 three	 of	 the	 four	
arbitrary	constants	𝐶# ,	we	still	have	to	put	the	condition	on	𝐶`.	We	can	manage	to	do	this	by	
saying	
	

	 𝐴			#
L# = 𝑡𝑟 𝐴L = 0.	 1.3.15 	

	
From	equation	(1.3.12)	we	also	have	
	

	 𝐶` =
1
4𝜒`

−𝐴		>> + 2𝐴`` 	 (1.3.16)	

	



	 11	

We	finally	managed	to	impose	8	conditions	on	the	arbitrary	constants	𝐴#, 	so	to	have	only	two	
independent	 components.	 If	we	 choose	 the	 z-axis	 as	 the	propagation	direction	of	 the	wave,	
we’ll	have	
	

	 𝐴Yf = 𝐴)f = 𝐴ff = 0	 (1.3.17)	
	
and	the	only	non-zero	components	are	𝐴Y) = 𝐴)Y	and	𝐴YY = −𝐴)).	We	note	that	in	this	gauge	
	

	 𝜓 = 𝜓		>> = 𝐴		>> 𝑒[\i^
i 	 (1.3.18)	

	
and	from	equation	(1.2.6)	we	have	
	

	 ℎ#, = 𝜓#,.	 (1.3.19)	
	
We	can	therefore	rewrite	the	form	that	takes	the	perturbation	of	the	metric	in	this	particular	
coordinate	system	in	the	hypothesis	of	propagation	along	the	z-axis	
	

	 ℎ#,jj = ℎk(𝜖k)#,𝑒[\]^
] + ℎ×(𝜖×)#,𝑒[\]^

],	 (1.3.20)	
	
where	ℎk	and	ℎ×	are	the	amplitudes	of	the	two	polarization	states	of	the	wave	and	𝜖k	and	𝜖×	
are	the	two	tensors	that	represent	the	two	states	of	polarization:	
	

	
𝜖k ≡

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

		 (1.3.21)	

	
	

𝜖× ≡

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

	 (1.3.22)	

	
In	 the	 case	 in	 which	 the	 wave	 is	 not	 propagating	 along	 one	 of	 the	 TT-axis,	 only	 the	𝜖#`	
components	 will	 remain	 zero	 because	 of	 equation	 (1.3.13)	 while	 it	 will	 remain	 true	 the	
following	
	

	 ℎ						,,
#, = 0	 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑎𝑙𝑖𝑡𝑦	

jj 	 (1.3.23)	
	

	 ℎ		 = 0	 𝑡𝑟𝑎𝑐𝑒𝑙𝑒𝑠𝑠 					
jj 	 1.3.24 	

	
	 ℎ#`	 = 0	 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠	𝑔𝑎𝑢𝑔𝑒	

jj .	 (1.3.25)	
	
	
1.4	Maxwell	Equations	in	General	Relativity	
	
We	now	want	 to	rewrite	Maxwell	equations	 in	a	 form	suitable	 to	General	Relativity.	To	this	
end	we	will	substitute	the	usual	derivative	with	the	covariant	derivative	with	the	form	
	

	 𝐴	;,
# = 𝜕,𝐴# + Γ	,?

# 𝐴?.	 (1.4.1)	
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We	 remember	 that	 in	 special	 relativity	 Maxwell	 equations	 take	 the	 form	 (Landau	 L.	 and	
Lifschitz	E.,	1976)	
	

	 𝐹							,,
#, = −

4𝜋
𝑐 𝑗# 	 1.4.2 	

	
and	
	

	 	𝐹[#,,>] = 0.	 (1.4.3)	
	
Here,	the	symbol	“,”	represents	the	ordinary	derivative:	
	

	 𝐹							,,
#, = 𝜕,𝐹#,,	 1.4.4 	

	
while	
	

	 𝐹#,,> = 𝜕>𝐹#, + 𝜕,𝐹>, + 𝜕#𝐹,>	,	 1.4.5 	
	
where	𝐹							#, 	is	the	electromagnetic	tensor	
	

	

𝐹#, =

0 𝐸^ 𝐸z 𝐸{
−𝐸^ 0 −𝐻{ 𝐻z
−𝐸z 𝐻{ 0 −𝐻^
−𝐸{ −𝐻z 𝐻^ 0

	 1.4.6 	

	
	
Since	 equations	 (1.4.2,3)	 are	 of	 the	 first	 order	 can	be	 easily	 generalized	 to	 a	 curved	 space-
time:	
	

	 𝐹							;,
#, = −

4𝜋
𝑐 𝑗# 	 1.4.7 	

	
	 𝐹#,;> = 0,	 1.4.8 	

	
and	we	know	that	from	equation	(1.4.4)	we	can	deduce	the	existence	of	a	four-vector	𝐴# 	such	
that	
	

	 𝐹#, = 𝐴,,# − 𝐴#,,.	 (1.4.9)	
	
Similarly,	in	a	curved	space-time	we	have	
	

	 𝐹#, = 𝐴,;# − 𝐴#;,,	 (1.4.10)	
	
but	because	of	the	symmetry	of	Christoffel	symbols	we	have	
	

	 𝐴#;, − 𝐴,;# = 𝐴#,, − 𝐴,,# − Γ,#? 𝐴? + Γ#,? 𝐴? = 𝐴#,, − 𝐴,,#.	 1.4.11 	
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We	 now	 want	 to	 see	 what	 condition	 has	 to	 obey	𝐴# 	such	 that	 equations	 (1.4.9)	 satisfies	
equation	(1.4.7).	We	obtain	
	

	 𝐴							,
,;# − 𝐴							,

#;, = −
4𝜋
𝑐 𝑗#.	 1.4.12 	

	
In	the	flat	space-time	we	have	
	

	 𝐴							,
,,# − 𝐴							,

#,, = −
4𝜋
𝑐 𝑗#,	 	 1.4.13 	

	
and	 at	 this	 point	 we	 use	 the	 Lorentz	 condition	𝐴			,,, = 0.	 Now	 we	 know	 that	 the	 usual	
derivative	commutes,	and	for	this	reason	the	 first	 term	of	equation	(1.4.13)	 is	equal	 to	zero	
and	therefor	we	obtain	
	

	
☐𝐴# = −

4𝜋
𝑐 𝑗#.	 (1.4.14)	

	
Differently	from	what	we	have	in	a	flat	space-time,	in	a	curved	space-time	we	have	to	apply	to	
the	Lorentz	condition	𝐴			;,, = 0	the	commutative	rule	of	covariant	derivative	
	

	 𝐴							,
,;# = 𝐴			;,

,					# + 𝐴?𝑅?
	# = 𝐴?𝑅?

	#.	 (1.4.15)	
	
Using	this	last	condition	Maxwell	equations	become	
	

	 −𝐴						,
#;, + 𝐴?𝑅?

		# = −
4𝜋
𝑐 𝑗#,	 1.4.16 	

	
which	goes	under	the	name	of	De	Rahm	equations.	
	
1.5	Electromagnetic	wave	in	the	field	of	plane	gravitational	wave	
	
We	have	just	seen	how	the	space-time	curvature	modifies	Maxwell	equations.	We	now	want	
to	 study	 the	 solution	 of	 these	 equations	 having	 in	 the	 background	 a	 monochromatic	
gravitational	wave.	By	doing	so	we	can	use	the	results	obtained	in	the	 linearized	theory.	To	
simplify	 our	 study,	 we	 will	 consider	 a	 gravitational	 wave	 propagating	 along	 the	 z-axis	
polarized	+	and	 an	 electromagnetic	 wave	 propagating	 along	 the	𝑥	axis	 with	 a	 general	
polarization.	We	will	se	later	that	even	though	here	we	are	thinking	of	a	general	polarization	
for	the	electromagnetic	wave,	we	will	find	a	polarization	vector	with	only	one	component.	
	
Let’s	 first	 introduce	 the	 principal	 direction	 of	 the	 polarization	 tensor.	 The	 angle	𝜓	can	 be	
identified	with	the	third	Euler	angle	that	is	needed	to	represent	the	gravitational	wave	in	the	
reference	system	of	the	electromagnetic	wave	defined	by	the	electromagnetic	wave	vector	𝑘,	
the	 electromagnetic	 wave	 polarization	 vector	𝑒	and	𝑘×𝑒.	 In	 general,	 we	 can	 describe	 a	
linearized	gravitational	wave	as	
	

	 ℎ#, = ℎ(𝜖)#,𝑒[~�,	 			(1.5.1)	
	
where		
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(𝜖)#, =

0 0 0 0
0 cos 2𝜓 sin 2𝜓 0
0 sin 2𝜓 −cos 2𝜓 0
0 0 0 0

,	 (1.5.2)	

	
𝜙� = 𝜒#𝑥# 	is	 the	 phase	 and	𝜌 = 2𝜓.	 In	 fact,	 the	 physical	 angle	 is	𝜓	and	2𝜓	is	 the	 angle	
between	the	principal	direction	of	polarization	and	the	arm	of	the	Michelson	interferometer.	
	
We	get	the	relations	
	

	 𝜒# = 𝜕#𝜙�						𝜖#,𝜒, = 0						𝜒#𝜒# = 0						𝜖## = 0,	 (1.5.3)	
	
where	𝜒# = (𝜒`, 𝜒)	is	 the	 gravitational	 wave	 vector.	 The	 second	 represents	 the	 transverse	
nature	of	the	wave,	the	third	tells	us	that	the	wave	is	propagating	at	the	speed	of	light	and	the	
last	one	is	the	traceless	condition.	
	
We	now	remember	that	Einstein	equations	in	the	vacuum	are	
	

	 𝑅#, = 0,	
	 (1.5.4)	

and	the	equation	(1.4.16)	for	an	electromagnetic	wave	(𝑗# = 0)	becomes	
	

	 𝐴						,
#;, = 0	 (1.5.5)	

	
or	
	

	 𝑔,�𝐴		;,
# = 0.	 (1.5.6)	

	
The	linearized	metric	tensor	is	given	by	
	

	 𝑔#, = 𝜂#, + ℎ#,,	 (1.5.7)	
	
with	the	condition		
	

	 𝑔,�𝑔�# = 𝛿	#, 	 (1.5.8)	
	
so	that	
	

	 𝑔#, = 𝜂#, −	ℎ#,.	 (1.5.9)	
	
We	now	write	D’Alembert	operator	☐	and	we	think	it	in	the	flat	space-time:	
	

	
☐ = ∆ −

1
𝑐)

𝜕)

𝜕𝑡) = −𝜂#,𝜕#𝜕,.	 (1.5.10)	

	
Using	now	the	notion	of	covariant	derivative	and	the	(1.5.9)	the	(1.5.6)	becomes	
	

	 (𝜂,� −	ℎ,�) 𝜕,𝐴# + Γ	,>
# 𝐴>

;�
= 0,	 (1.5.11)	
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and	if	we	forget	about	the	second	derivative	by	h	we	get	
	

	 (𝜂,� −	ℎ,�) 𝜕�𝜕,𝐴# + Γ	�?
# 𝜕,𝐴? − Γ	�,? 𝜕?𝐴# + 𝜕�Γ	,?

# 𝐴? + Γ	,?
# 𝜕�𝐴? = 0.	 (1.5.12)	

	
If	 we	 use	 the	 linearized	 approximation	 in	 Christoffel	 symbols	 and	 the	 traceless	 transverse	
condition,	we	obtain	
	

	 −☐𝐴# − 𝛿	?
#ℎ,�𝜕,𝜕�𝐴? + ℎ					,?

#� + ℎ		?,
#			� − ℎ		?,

�				# 𝜕�𝐴? = 0	 (1.5.13)	
	
or	
	

	 ☐𝐴# + 𝐿		?
# 𝐴? = 0,	 (1.5.14)	

	
where	has	been	introduced	the	linear	operator	(Braginsky	and	others,	1990)	
	

	 𝐿		?
# = 𝛿	?

#ℎ,�𝜕,𝜕� + ℎ					,?
#� + ℎ		?,

#			� − ℎ		?,
�				# 𝜕�.	 (1.5.15)	

	
The	4-potential	vector	that	represents	the	unperturbed	electromagnetic	field	reads	
	

	 𝐴 `
# = 𝐴`𝑒#𝑒[~�,	 (1.5.16)	

	
where	𝐴`	represents	 the	 wave	 amplitude,	𝑒# 	is	 the	 space-like	 polarization	 vector	 and	𝜙� =
𝑘>𝑥> 	is	the	electromagnetic	wave	phase	with	𝑘> = (𝑘`, 𝑘)	wave	vector.	
In	what	follows	these	relations	will	be	helpful:	
	

	 𝑘# = 𝜕#𝜙� 						𝑒#𝑘# = 0						𝑒` = 0						𝑒#𝑒# = −1,	 (1.5.17)	
	
where	the	second	relation	represents	the	transverse	nature	of	the	electromagnetic	wave	and	
the	third	is	a	convenient	choice	for	the	gauge	and	the	last	one	represents	the	normalization	of	
the	polarization	vector.	
Now	we	 know	 that	 the	 equation	 (1.5.16)	 is	 the	 unperturbed	 solution	 of	 the	 usual	Maxwell	
equations	with	the	Lorentz	gauge	in	flat	space-time	
	

	 ☐𝐴 `
# = 0								 𝜕#𝐴(`)

# = 0.	 (1.5.18)	
	
We	can	calculate	the	perturbation	induce	on	the	second	term	of	(1.5.14)	using	𝐴 `

# 	instead	of	
𝐴# .	We	have	(Braginsky	and	others,	1990)	
	

	 𝐿		?
# 𝐴(`)? = 𝐴`ℎ −𝑒#𝜖,�𝑘,𝑘� + 𝜖#�𝑘�𝜒?𝑒? + 𝜖		?

# 𝑒?𝜒�𝑘�
− 𝜖		?� 𝑘�𝑒?𝜒# 𝑒[ ~�k~� 	

(1.5.19)	

or	
	

	 𝐿		?
# 𝐴(`)? = 𝐴`ℎ𝑏#𝑒[ ~�k~� ,	 (1.5.20)	

	
where	we	see	that	
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	 𝑏# = −(𝜖,�𝑘,𝑘�)𝑒# + (𝜖#�𝑘�)𝜒?𝑒? + (𝜖		?
# 𝑒?)𝜒�𝑘�

− (𝜖		?� 𝑘�𝑒?)𝜒#.	
(1.5.21)	

	
Maxwell	equations	for	the	vector	potential	take	the	form		
	

	 ☐𝐴# = −𝐴`ℎ𝑏#𝑒[ ~�k~� .	 (1.5.22)	
	
The	 solution	 to	 this	 equation	 is	 given	 by	 the	 sum	 of	 the	 solution	 of	 the	 associated	
homogeneous	equation	and	a	particular	solution	to	the	equation.	The	first	one	is	given	by	the	
(1.5.16)	while	the	second	one	has	the	form		
	

	 𝐴(����)
# = 𝐴(Y)

# = 𝐴`𝑏#𝐹𝑒[~�.	 (1.5.23)	
	
The	unknown	function	Ϝ	(𝑥#)	will	be	proportional	to	h	and	will	oscillate	with	the	gravitational	
wave.	
If	we	now	use	this	hypothetical	solution	in	equation	(1.5.22)	we	have	
	

	 −𝜕,𝜕, 𝐴`𝑏#𝐹𝑒[~� = 𝐴`𝑏#𝑒[~� −2𝑖𝜕,𝜙�𝜕,𝐹 +☐F
= −𝐴`ℎ𝑏#𝑒[ ~�k~� ,	

(1.5.24)	

	
so	that	F	must	satisfy	
	

	 ☐F − 2𝑖𝑘,𝜕,𝐹 = −ℎ𝑒[~�.	 1.5.25 	
	
The	Lorentz	gauge	in	TT	is	given	by	
	

	 𝐴		;#
# = 𝜕#𝐴# + Γ	#,

# 𝐴, = 𝜕#𝐴#,	 1.5.26 	
	
since	 the	Γ	term	reduces	 to	zero	 for	 the	 traceless	condition.	 If	we	apply	 the	 last	equation	 to	
the	4-potential	𝐴# = 𝐴(`)

# + 𝐴(Y)
# 	we	obtain	

	
	 𝜕# 𝐴` 𝑒# + 𝐹𝑏# 𝑒[~� = 𝐴` 𝑖𝑘#𝑒# + 𝑖𝑘#𝑏#𝐹 + 𝜕#𝐹𝑏# 𝑒[~�

= 𝐴` 𝑖𝑘#𝑏#𝐹 + 𝜕#𝐹𝑏# 𝑒[~� = 0	 (1.5.27)	

	
or	
	

	 𝑏# 𝑖𝑘#𝐹 + 𝜕#𝐹 = 0.	 1.5.28 	
	
It	is	possible	to	demonstrate	that	𝑏#𝑘# = −𝑏#𝜒# 	so	that	the	(1.5.28)	becomes	
	

	 𝑏# −𝑖𝜒#𝐹 + 𝜕#𝐹 = 0	 (1.5.29)	
	
and	for	the	first	of	the	(1.5.3)	we	have	
	

	 𝑏# 𝐹𝑒�[~�
,#
= 0.	 (1.5.30)	

	
We	assume	now	that	the	region	of	space	we	are	working	in	is	much	smaller	than	the	typical	
wavelength	 of	 a	 gravitational	 wave.	 Therefore	 we	 can	 give	 less	 importance	 in	 equation	
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(1.5.28)	to	the	terms	proportional	to	𝑘𝜒	in	respect	to	the	terms	𝑘),	where	𝑘 = 𝑘 	and	𝜒 = 𝜒 	
By	doing	so	the	last	equation	becomes	(Braginsky	and	others,	1990)	
	

	 𝑒# 𝐹𝑒�[~�
,#
= 0.	 1.5.31 	

	
Let’s	remember	that	in	our	coordinate	system	the	electromagnetic	wave	is	propagating	along	
the	x-axis	so	that	we	have	𝑘` = 𝑘Y = 𝑘	and	we	can	think	that	the	function	F	takes	the	form:	
	

	 𝐹 = 𝑔 𝑥 ℎ𝑒[~�	.	 (1.5.32)	
	
In	 this	coordinates	we	have	𝑒f = 0	and	so	 the	equation	(1.5.31)	 is	automatically	satisfied.	 If	
we	 put	 the	 equation	 (1.5.32)	 inside	 (1.5.25)	 we	 have	 an	 equation	 with	 the	 term	𝑔 𝑥 	that	
resembles	the	harmonic	oscillator	equation.	Hence	it	is	useful	to	write		
	

	 𝑔 𝑥 = 𝑓 𝑥 𝑒[(�k\ ����)^	 1.5.33 	
	
to	obtain	the	actual	harmonic	oscillator	equation.	By	doing	so	the	function	F	becomes		
	

	 𝐹 = 𝑓 𝑥 ℎ𝑒[[~�k(�k\ ����)^].	 1.5.34 	
	
Let’s	explicit	how	reads	the	gravitational	wave	in	this	coordinate	system.	We	have	
	

	 𝜙� = 𝜒#𝑥# = 𝜒[𝑐𝑡 − sin 𝜃(cos𝜙𝑥 + sin𝜙𝑦) − cos 𝜃𝑧],	 1.5.35 	
	
where	𝜃	is	the	angle	between	𝑘	and	𝜒	and	𝜙	is	the	angle	that	completes	the	three	Euler	angles	
altogether	with	𝜓	and	𝜃.	Let’s	put	this	expression	inside	the	expression	(1.5.34)	and	it	reads	
	

	 𝐹 = 𝑓 𝑥 ℎ𝑒[[\[������ �(���~^k���~z)]k �{ ]	 (1.5.36)	
	
We	remember	now	that	in	this	coordinate	system	𝑘` = 𝑘Y = 𝑘	the	equation	(1.5.25)	becomes	
	

	 𝑑)𝑓
𝑑𝑥) + [ 𝑘 + 𝜒

) − 𝜒) (sin 𝜃))] 𝑓 = −𝑒�[ �k\ ���� ^	 (1.5.37)	

	
and	if	we	define	
	

	 Ω = 𝑘 + 𝜒 cos 𝜃						Ω` = 𝑘 + 𝜒 ) − 𝜒) (sin 𝜃))	 1.5.38 	
	
the	last	equation	becomes	
	

	 𝑓" + Ω`)𝑓 = −𝑒�[¡¢	 1.5.39 	
	
which	is	the	harmonic	oscillator	equation.	If	we	impose	the	initial	conditions		
	

	 𝑓 0 = 0	𝑓L 0 = 0	 1.5.40 	
	
the	solution	of	(1.5.39)	takes	the	form	
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𝑓 𝑥 =

𝑒�[¡^

2Ω`
𝑒[ ¡�¡£ ^ − 1
Ω` − Ω

+
𝑒[ ¡k¡£ ^ − 1
Ω` + Ω

	 1.5.41 	

	
and	so	we	can	write	
	

	 𝐹 = 𝑓 𝑥 ℎ𝑒[(~�k¡^)	 (1.5.42)	
	
and	using	(1.5.41)	we	obtain	
	

	
𝐹 = ℎ

𝑒[~�
2Ω`

𝑒[ ¡�¡£ ^ − 1
Ω` − Ω

+
𝑒[ ¡k¡£ ^ − 1
Ω` + Ω

	 1.5.43 	

	
1.6	Perturbations	on	the	electromagnetic	wave	
	
The	aim	of	 this	 section	 is	 to	calculate	 the	effects	 that	 the	gravitational	wave	 induces	on	 the	
electromagnetic	wave	such	as:	variation	in	amplitude,	variation	in	phase	and	rotation	of	the	
polarization	angle.	We	can	therefore	compare	the	wave	as	we	defined	it	earlier,	which	takes	
the	form	
	

	 𝐴# = 𝐴` 𝑒# + 𝐹𝑏# 𝑒[~� 	 (1.6.1)	
	
with	the	formal	expression	of	a	perturbed	wave	(Braginsky	and	others,	1990):	
	

	 𝐴# = 𝐴`	 1 +
𝛿𝐴
𝐴	

𝑒# + 𝛿𝑒# 𝑒[ ~�k?~�

= 1 +
𝛿𝐴
𝐴	
+ 𝑖𝛿𝜙� 𝑒# + 𝛿𝑒# ,	

1.6.2 	

	
where	 the	 last	 equality	has	been	given	expanding	 to	 the	 first	 order	 the	 exponential.	 In	 this	
situation	?¤

¤	
	indicates	 the	 perturbation	 in	 respect	 to	 the	 unperturbed	 potential.	 From	 this	

comparison	we	deduce		
	

	 𝑏# ℜ(𝐹) + 𝑖ℑ(𝐹) =
𝛿𝐴
𝐴	
+ 𝑖𝛿𝜙� 𝑒# + 𝛿𝑒# 	 1.6.3 	

	
and	if	we	multiply	times	𝑒# 	we	obtain	
	

	 𝛿𝐴
𝐴	
= − 𝑏#𝑒# ℜ 𝐹 + ℜ 𝛿𝑒#𝑒# 	 (1.6.4)	

	
	 𝛿𝜙� = − 𝑏#𝑒# ℑ 𝐹 + ℑ 𝛿𝑒#𝑒# 	 (1.6.5)	

	
Let’s	remember	now	that	in	this	coordinate	system	the	electromagnetic	wave	is	propagating	
along	 the	 x-axis.	 Let’s	 put	𝜌 = 0	and	𝑎# 	is	 the	 versor	 that	 completes	 the	 spatial	 tern	 in	 this	
system.	Moreover	we	assume	that	𝑒# 		has	only	the	z-component.	We	also	choose	𝜃 = (

)
	and	𝜙	

is	kept	generic.	We	have	
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	 𝑒# = 0,0,0,1 	𝑎# = 0,0,1,0 	𝑘# = 𝑘, 𝑘, 0,0 	𝛿𝑒# =
𝛿𝑒`, 𝛿𝑒Y, 𝛿𝑒), 𝛿𝑒f 	 1.6.6 	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	

	
	
	
Figure	 1.6.1:	𝑘	and	𝜒	are	 respectively	 the	 electromagnetic	 and	 gravitational	 wave	 vectors,	𝑒	is	
the	polarization	vector,	𝑎	is	the	vector	orthogonal	to	𝑘	and	𝑒,	𝑛§	is	the	unitary	projection		of	𝜒	in	
the	plane	orthogonal	to		𝑘,		𝑝§	is	the	unitary	projection	of	𝑘	in	the	plane	orthogonal	to	𝜒	and	𝜖	is	
the	principal	direction	of	the	polarization	tensor.	
	
If	we	multiply	the	equation	(1.6.3)	times	𝑎# 	we	have	
	

	 𝑏#𝑎# ℜ(𝐹) + 𝑖ℑ(𝐹) = ℜ 𝛿𝑒#𝑎# + 𝑖ℑ 𝛿𝑒#𝑎# 	 (1.6.7)	
	
and	so	we	have	
	

	 𝛿𝜖 = − 𝑏#𝑎# ℜ 𝐹 	 1.6.8 	
	
Phase	Shift	
	
In	 the	 last	 paragraph	 we	 saw	 that	 a	 gravitational	 wave	 induces	 a	 phase	 shift	 on	 the	
electromagnetic	wave	that	reads	
	

	 𝛿𝜙� = − 𝑏#𝑒# ℑ 𝐹 + ℑ 𝛿𝑒#𝑒# 	 (1.6.9)	
	
This	 equation	 quantifies	 an	 electromagnetic	 wave	 phase	 shift	 that	 can	 be	 observed	 by	 an	
observer	if	the	electromagnetic	wave	has	propagated	having	in	the	background	a	gravitational	
wave,	differently	than	what	would	have	happened	if	we	didn’t	have	a	gravitational	wave	at	all.	
Staying	in	the	TT	Gauge	we	can	give	a	physical	explanation	to	this	phase	shift.	If	we	write	𝜙� =
𝑘`𝑥` + 𝑘[𝑥[ 	we	see	that	𝛿𝜙� = 𝑘`𝑐∆𝑡.	We	can	conclude	that	in	TT	the	phase	shift	is	related	to	

a	

𝜒	k	

𝜖	

e	

𝜃	

𝜙	

𝑝§	

𝑛§	

𝜌	
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the	delayed	propagation	of	the	electromagnetic	wave	caused	by	the	gravitational	perturbation	
on	the	flowing	of	time.	
	
Let’s	calculate	equation	(1.6.9).	Using	equation	(1.5.21)	we	obtain	
	

	 𝑏#𝑒# = − 𝜖,�𝑘,𝑘� 𝑒#𝑒# + 𝜖#?𝑒#𝑒? 𝜒�𝑘�	 1.6.10 	
	
and	we	remember	 that	 in	 the	 limit	𝜒 ≪ 𝑘	we	neglect	 the	second	 term	 in	respect	 to	 the	 first	
one	obtaining	
	

	 𝑏#𝑒# = 𝜖,�𝑘,𝑘� 	 (1.6.11)	
	
In	 the	 hypothesis	 explained	 earlier,	 where	 we	 have	 the	 electromagnetic	 wave	 propagating	
along	the	x-axis	and	putting	the	𝜖`# = 0	as	we	are	in	TT	gauge	the	last	equation	becomes	
	

	 𝑏#𝑒# = 𝑘)𝜖ff = 𝑘) (sin 𝜃))(cos 𝜚 cos 2𝜓 − sin 𝜚 sin 2𝜓)	 1.6.12 	
	
Remembering	the	definition	of	𝐹	we	have	
	

	
ℑ𝐹 =

ℎ
2Ω`

sin 𝜙� + Ω − Ω` 𝑥 − sin𝜙�
Ω` − Ω

+
sin 𝜙� + Ω + Ω` 𝑥 − sin𝜙�

Ω` + Ω
	

1.6.12 	

	
In	the	limit	𝜒 ≪ 𝑘	in	equations	(1.5.38)	we	obtain:	
	

	 Ω` = 𝑘) + 2𝑘𝜒 = 𝑘 + 𝜒	 	
	

	 Ω` − Ω = 𝜒(1 − cos 𝜃)	 (1.6.13)	
	

	 Ω` + Ω = 2𝑘 + 𝜒(1 + cos 𝜃)	 	
	
In	this	limit	we	have	
	

	
ℑ𝐹 =

ℎ
2(𝑘 + 𝜒)

sin[𝜙� + 𝜒(cos 𝜃 − 1)𝑥] − sin𝜙�
𝜒(1 − cos 𝜃)

+
sin[𝜙� + (2𝑘 + 𝜒(1 + cos 𝜃))𝑥] − sin𝜙�

2𝑘 + 𝜒(1 + cos 𝜃)

=
ℎ
2𝑘
sin[𝜙� + 𝜒(cos 𝜃 − 1)𝑥] − sin𝜙�

𝜒(1 − cos 𝜃) ,	

1.6.14 	

	
where	we	neglected	the	terms	of	order	 Y

�k\
	with	respect	to	the	terms	Y

\
.	So	now	we	are	able	to	

calculate	the	first	of	equation	(1.6.9):	
	

	 𝑏#𝑒# ℑ 𝐹

= (ℎk cos 2𝜓)
𝑘 (sin 𝜃))

2
sin[𝜙� + 𝜒 cos 𝜃 − 1)𝑥 − sin𝜙�

𝜒(1 − cos 𝜃) 	
(1.6.15)	
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Let’s	evaluate	the	scalar	product	𝛿𝑒#𝑒# 	that	appears	in	equation	(1.6.9),	we	use	the	relations	
expressed	in	equation	(1.6.6)	and	the	following:	
	

	 𝑒# + 𝛿𝑒# = 𝛿𝑒`, 𝛿𝑒Y, 𝛿𝑒), 1 + 𝛿𝑒f 	 (1.6.16)	
	
Using	the	fact	that	the	polarization	vector	has	to	be	unitary	we	have	
	

	 −1 = 𝑒# + 𝛿𝑒# 𝑒, + 𝛿𝑒, 𝜂#, + ℎ#,
= −1 + 2𝜂#,𝑒#𝛿𝑒, + ℎ#,𝑒#𝑒, 	

	

	
hence	
	

𝛿𝑒Y =
1
2

jj

ℎYY	
	

	
𝛿𝑒#𝑒# = −

1
2

jj

ℎYY.	 1.6.17 	

	
In	the	limit	�

\
≫ 1	the	term	in	(1.6.17)	goes	with	h,	and	we	can	neglect	 it	with	respect	to	the	

term	(1.6.15)	that	goes	with	h�
\
.	In	the	end	we	have	

	
	

𝛿𝜙� = −(ℎk cos 2𝜓)
𝑘 (sin 𝜃))

2
sin[𝜙� + 𝜒 cos 𝜃 − 1)𝐿 − sin𝜙�

𝜒(1 − cos 𝜃) ,	 1.6.18 	

	
where	we	supposed	that	the	electromagnetic	source	is	placed	in	the	origin	of	the	coordinate	
system	and	the	observer	is	put	at	a	distance	x=L.	
We	can	write	
	
	

𝛿𝜙� = −𝑘 (sin 𝜃))(ℎk cos 2𝜓)
sin 𝜒 cos 𝜃 − 1 𝐿

2
𝜒(1 − cos 𝜃) 	cos 𝜙�

+
𝜒 cos 𝜃 − 1 𝐿

2 	

= −
𝐿𝑘
2 (sin 𝜃))(ℎk cos 2𝜓)

sin 𝜂 cos 𝜃 − 1
𝜂(1 − cos 𝜃) cos 𝜙�

+
𝜒 cos 𝜃 − 1 𝐿

2 ,	

1.6.19 	

	
where	we	introduced	the	parameter		
	

	 𝜂 = 𝜒
𝐿
2	

1.6.20 	

	
that	represents	the	relation	between	the	dimensions	of	a	interferometer	and	the	length	of	the	
gravitational	wave.	
	



	 22	

Rotation	of	the	polarization	vector	
	
We	saw	that	the	gravitational	wave	applies	a	rotation	of	the	polarization	vector	in	the	plane	
orthogonal	to	the	direction	of	the	propagation	of	the	wave.	
	
We	will	calculate	the	effect	denoted	by	𝛿𝜖	with	𝜓 = 0.	
	
We	remember	that	
	

	 𝛿𝜖 = − 𝑏#𝑎# ℜ𝐹	 1.6.21 	
	
Remembering	the	expression	of	𝑏# 	we	obtain	
	

	 𝑏#𝑎# = 𝜖#�𝑎#𝑘� 𝜒?𝑒? + 𝜖#?𝑎#𝑒? 𝜒�𝑘� − 𝜖�?𝑘�𝑒? 𝜒#𝑎#,	 1.6.22 	
	
where	we	used	the	second	of	expressions	(1.5.17).	We	want	to	write	the	vector	𝑘[ 	in	the	two	
components	parallel	and	orthogonal	to	the	vector	𝜒[;	obviously	𝑝∥[ =

\
\
	

	
	 𝑘[ = 𝑘(𝑝∥[ cos 𝜃 + 𝑝§[ sin 𝜃)	 1.6.23 	

	
We	 can	 execute	 a	 similar	 decomposition	 to	 the	 spatial	 part	 of	𝜒[ 	in	 two	 vectors	𝑛∥	and	𝑛§	
respectively	parallel	and	orthogonal	to	the	vector	𝑘[:	
	

	 𝜒[ = 𝜒(𝑛∥[ cos 𝜃 + 𝑛§[ sin 𝜃)	 1.6.24 	
	
So	we	can	finally	calculate	the	terms	in	equation	(1.6.22)	
	

	 𝜖#�𝑎#𝑘� = 𝑘𝜖[𝑎[(𝑝∥
 cos 𝜃 + 𝑝§

 sin 𝜃) = 𝑘 sin 𝜃 𝜖[𝑎[𝑝§
 ,	 1.6.25 	

	
where	we	 used	 the	 fact	 that	𝜖#`	valid	 in	 TT.	We	 note	 the	 fact	 that	 the	 components	𝑝∥[ 	don’t	
contribute	because	of	the	transverse	nature	of	the	gravitational	wave.	
	
In	fact	from	the	second	of	(1.5.3)	we	have	
	

	 𝜒 𝜖[𝑝∥[ = 𝜖[𝜒[ = 0	 1.6.26 	
	
Similarly		
	

	 𝜒?𝑒? = 𝑒[𝜒(𝑛∥[ cos 𝜃 + 𝑛§[ sin 𝜃) = 𝜒 sin 𝜃𝑒[𝑛§[ 	 1.6.27 	
	
because	the	second	and	the	third	of	equations	(1.5.17)	give	
	

	 𝑘 𝑒[𝑝∥[ = 𝑒[𝑘[ = 0	 1.6.28 	
	
Now	we	calculate	the	second	term	of	equation	(1.6.22)	
	
	 𝜖#?𝑎#𝑒? 𝑘�𝜒� =	

𝜖[𝑎[𝑒 [𝑘`𝜒` + 𝑘(𝑝∥[ cos 𝜃 + 𝑝§[ sin 𝜃)𝜒[] = 𝜖[𝑎[𝑒 𝑘𝜒(1 − cos 𝜃)	
1.6.29 	
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From	equation	(1.6.22)	we	also	have		
	

	 𝜖�?𝑘�𝑒? = 𝜖[𝑘[𝑒 = 𝑘 sin 𝜃 𝜖[𝑒[𝑝§
 	 1.6.30 	

At	last	we	have	
	

	 𝜒#𝑎# = 𝜒(𝑛∥[ cos 𝜃 + 𝑛§[ sin 𝜃)𝑎[ = 𝜒 sin 𝜃𝑛§[ 𝑎[,	 1.6.31 	
	
where	in	the	last	equality	we	used	the	fact	that	𝑎[ 	is	orthogonal	to	𝑘[ 	
	

	 𝑘 𝑎[𝑛∥[ 𝑎[𝑘[ = 0	 1.6.32 	
	
It	is	possible	to	see	that	(Figure	1.6.1)		
	

	 𝑒[𝑛∥[ = cos𝜙	 𝑎[𝑛§[ = sin𝜙	 1.6.33 	
	
From	the	previous	equations	we	deduce	that	
	

	 𝑏#𝑎# = 𝑘𝜒 (sin 𝜃)) cos𝜙	 𝜖[𝑎[𝑝§
 + 𝑘𝜒(1 − cos 𝜃)	 𝜖[𝑎[𝑒

− 𝑘𝜒 (sin 𝜃)) sin𝜙 𝜖[𝑒[𝑝§
 	

1.6.34 	

	
It	is	possible	to	deduce	from	figure	(1.6.1)	the	following	components	
	
𝑝§Y = −cos 𝜃 cos𝜙	 𝑝§) = −cos 𝜃 sin𝜙	 𝑝§f = sin 𝜃	 1.6.35 	

	
and	we	obtain	the	scalar	products	in	equation	(1.6.34)	
	

𝜖[𝑎[𝑝§
 = − cos 𝜃 sin𝜙	

	
𝜖[𝑎[𝑒 = cos𝜙 sin𝜙 [1 + (cos 𝜃))]	

	
	 𝜖[𝑒[𝑝§

 = − cos 𝜃 cos𝜙.	 1.6.36 	
	
And	so	equation	(1.6.34)	becomes	
	
	 𝑏#𝑎# = 𝑘𝜒 1 − cos 𝜃 {

1
2 	[1 + cos 𝜃 )] sin 2𝜙}.		 1.6.37 	

		
From	the	definition	of	𝛿𝜖	from	equation	(1.6.21),	we	have	that	the	rotation	of	the	polarization	
vector	is	given	by	
	
	 𝛿𝜖 =

1
2
ℎk
2 	[1 + cos 𝜃 ) sin 2𝜙 cos[𝜙� + 𝜒 cos 𝜃 − 1 𝐿 − cos𝜙�},	 1.6.38 	

	
where	ℜ𝐹	has	been	deduced	from	equation	(1.6.12)	substituting	to	the	imaginary	part	of	the	
complex	exponents,	 the	 real	part.	 If	we	now	use	 the	parameter	𝜂	defined	earlier	 in	 this	 last	
equation	we	have	
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𝛿𝜖 =

𝜒𝐿
2

ℎk
2 	[1 + cos 𝜃 ) sin 2𝜙

sin[𝜂 (1 − cos 𝜃)]
𝜂 sin[𝜙� +

𝜒 cos 𝜃 − 1 𝐿
2 ]

≈
𝜒𝐿
2 (1 − cos 𝜃)

ℎk
2 	[1 + cos 𝜃 ) sin 2𝜙 sin𝜙�,	

1.6.39 	

	
where	the	last	equation	has	been	obtained	by	expanding	considering	𝜂 ≪ 1.	
	
Delay	and	Deflection	
	
So	 far	we	have	 seen	 that	 the	 interaction	between	 the	electromagnetic	 and	 the	gravitational	
wave	gives	two	important	effects	i.e.	phase	shift	and	rotation	of	the	polarization	vector.	Now	
we	 will	 discuss	 briefly	 other	 two	 effects,	 namely	 delay	 and	 deflection.	 In	 fact,	 the	
electromagnetic	wave	 is	 subject	 to	a	delay	 in	 time	and	a	change	 in	direction	because	of	 the	
warping	of	space-time	due	to	the	presence	of	the	gravitational	perturbation.		
To	calculate	these	two	terms,	we	remember	that:	
	
	 𝑘# = 𝜕#𝜙�.	 1.6.40 	
	
Earlier	 we	 calculated	 the	 phase	 shift	𝛿𝜙�and	 we	 can	 therefore	 calculate	 the	 delay	 and	 the	
deflection	 remembering	 that	 	𝑘# = (𝑘`, 𝑘).	 We	will	 calculate	 this	 two	 terms	 in	 a	 particular	
situation,	we	are	considering	𝜃 = (

)
	and	𝜙 = (

)
.		

We	have	
	
	 𝜕�𝛿𝜙� = −

𝐿𝑘
2 ℎk sin 𝜒 𝑡 − 𝑦 −

𝜒𝐿
2 𝜒,	 1.6.41 	

	
	 𝜕z	𝛿𝜙� =

𝐿𝑘
2 ℎk sin 𝜒 𝑡 − 𝑦 −

𝜒𝐿
2 𝜒.	 1.6.42 	

	
In	this	section	we	also	give	the	expression	for	the	phase	shift	using	the	same	conventions	as	
above,	namely		
	
	 𝛿𝜙� =

𝐿𝑘
2 ℎk cos[𝜙� −

𝜒𝐿
2 ],		

1.6.43 	

	
We	must	note	now	that	what	has	been	obtained	is	not	taking	in	consideration	the	round	trip	
of	 the	 photons.	 In	 fact,	𝐿	is	 the	 length	 of	 the	Michelson	 interferometer,	 therefore	 the	 round	
trip	of	 the	photons	consists	of	2𝐿.	 If	we	take	 into	account	that	there	are	two	photon	beams,	
one	for	each	arm	of	the	interferometer,	we	have	that	the	total	phase	shift	is:	
	
	 𝛿𝜙�(�±�) = 𝐿𝑘ℎk cos[𝜙� − 𝜒𝐿].	 1.6.44 	
	
Therefore	the	delay	and	the	deflection	of	the	photon	beams	take	the	form	
	
	 𝜕�𝛿𝜙�(�±�) = −𝐿𝑘ℎk sin 𝜒 𝑡 − 𝑦 − 𝜒𝐿 𝜒,	 1.6.45 	
	
	 𝜕z	𝛿𝜙�(�±�) = 𝐿𝑘ℎk sin 𝜒 𝑡 − 𝑦 − 𝜒𝐿 𝜒.	 1.6.46 	
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Because	of	how	the	interferometer	is	built	the	phase	shift	is	the	only	measurable	effect.	As	far	
as	 it	regards	the	rotation	of	 the	polarization	vector	we	keep	 its	expression	with	a	generic	𝜙	
angle.	We	must	note	that	this	effect	exists	but	it’s	not	measured	by	the	interferometers.	
	 What	 has	 been	 done	 here	 describes	 the	 interaction	 between	 gravitational	 and	
electromagnetic	waves	 in	general.	The	results	obtained	can	be	particularized	 to	recall	 some	
well	known	phenomena	i.e.	gravitational	lensing,	redshift,	etc.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	

Figure	1.6.2:	Round	trip	of	the	photon	beams.	The	vertical	line	represents	the	geodetic	of	one	
mirror.	

	
	
	

	
	

	
	
	

	
	
	

	
	
	
	

	
Figure	1.6.3:	Directions	of	propagation	of	the	electromagnetic	and	gravitational	waves.	

𝑡	

𝑥	𝐿	

𝑘	

𝜒	

𝑥	

𝑧	
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Chapter	2	
	

Exact	Theory	
	
2.1	Metric	
	
We	now	want	 to	examine	an	exact	solution	of	Einstein	equations	 in	 the	vacuum.	 In	General	
Relativity,	an	important	class	of	exact	solutions	of	Einstein	field	equations	are	known	as	pp-
waves.	 These	 are	 plane-fronted	 gravitational	waves	with	parallel	 rays.	 They	 are	defined	by	
the	property	that	they	admit	a	covariantly	constant	null	vector	field.	It	is	possible	to	interpret	
such	a	field	as	the	rays	of	gravitational	waves.	These	solutions	model	radiation	that	travels	at	
the	speed	of	light.	In	Einstein–Maxwell	theory,	the	particular	class	of	plane	waves	are	defined	
to	 be	 pp-waves	 in	 which	 the	 field	 components	 are	 the	 same	 at	 every	 point	 of	 the	 wave	
surfaces.	In	this	sense	they	are	said	to	have	‘plane	symmetry’.		

	The	space-time	metric	of	an	exact	gravitational	plane	wave	with	a	single	+	state	polarization	
can	be	written	as	(Bini,	Fortini,	Haney	and	Ortolan,	2011):	

	 𝑑𝑠) = 𝑔#,𝑑𝑥#𝑑𝑥,
= −𝑑𝑡) + 𝑑𝑧) + 𝐹) 𝑡 − 𝑧 𝑑𝑥) + 𝐺) 𝑡 − 𝑧 𝑑𝑦)	 2.1.1 	

	
It	is	now	convenient	to	introduce	two	null	coordinates	𝑢	and	𝑣	that	are	related	to	a	standard	
temporal	coordinate	𝑡	and	a	spatial	coordinate	𝑧	(the	direction	of	propagation	of	the	wave)	by	
the	transformation	
	

	 𝑢 = 𝑡 − 𝑧,		𝑣 = 𝑡 + 𝑧	 2.1.2 	
	
which	implies	
	

	 𝑑𝑢 = Y
)
	 𝑑𝑡 − 𝑑𝑧 ,	𝑑𝑣 = Y

)
	 𝑑𝑡 + 𝑑𝑧 .	 2.1.3 	

	
The	inverse	of	this	transformation	is	then	
	

	 𝑡 = (²k³)
)
,	𝑧 = (³�²)

)
	 (2.1.4)	

	
and	therefore	we	have	
	

	 𝑑𝑡 = 𝑑𝑢 − 𝑑𝑣,	𝑑𝑧 = 𝑑𝑣 + 𝑑𝑢	 (2.1.5)	
	
The	vacuum	Einstein	field	equations	associated	with	the	metric	described	above	reduce	to	the	
single	equation	𝑅²² = 0,	i.e.	
	

	 𝐹LL 𝑢
𝐹 𝑢 +

𝐺LL 𝑢
𝐺 𝑢 = 0,	 2.1.6 	

	
where	a	prime	denotes	differentiation	with	respect	to	𝑢.	The	wave	is	then	propagating	along	
the	positive	z-axis	with	axes	of	polarization	aligned	with	the	coordinate	axes	x	and	y.	 In	the	
following	we	will	 consider	 a	 sandwich-wave	 solution,	 i.e.	 a	 curved	 space-time	 region	 in	 the	
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interval	𝑢 ∈ 0, �
µ

¶
	between	 the	 two	 Minkowskian	 regions	𝑢 ∈ −∞, 0 ∪ �µ

¶
,∞ ,	where	 the	

constant	 parameters	𝑎	and	𝜏	have	 been	 introduced,	 with	𝜏	representing	 the	 duration	 of	 the	
interaction	of	particles	or	fields	with	the	wave	and	Y

�
	the	overall	curvature	of	the	wave	region.		

	
	
	
	
	
	
	
	
		

	
	
	

	
	
	
	
Figure	2.1.1:	It	shows	the	gravitational	wave	propagating	along	the	𝑢-axes	and	the	three	regions	
that	characterize	the	problem.	
	
A	possible	choice	of	metric	functions	is:	
	

𝐹 𝑢 =

1																									𝑢 ≤ 0																								 Ι

cos
𝑢
𝑎 										0 ≤ 𝑢 ≤

𝑎)

𝜏 																				 ΙΙ

𝛼 + 𝛽𝑢										
𝑎)

𝜏 ≤ 𝑢																										 ΙΙΙ

	

	
	

	

𝐺 𝑢 =

1																									𝑢 ≤ 0																								 Ι

cosh
𝑢
𝑎 										0 ≤ 𝑢 ≤

𝑎)

𝜏 																				 ΙΙ

𝛾 + 𝛿𝑢										
𝑎)

𝜏 ≤ 𝑢																										 ΙΙΙ

	 2.1.7 	

	
where	labels	Ι, ΙΙ	and	ΙΙΙ	refer	to	in-zone,	wave-zone	and	out-zone,	respectively.	The	constants	
𝛼, 𝛽, 𝛾	and	𝛿	can	 be	 found	 y	 requiring	𝐶Y	regularity	 conditions	 at	 the	 boundary	 of	 the	
sandwich,	𝑢 = 0	and	𝑢 = �µ

¶
,	that	is	

	

𝛼 = cos
𝑎
𝜏 +

𝑎
𝜏 sin

𝑎
𝜏 ,										𝛽 = −

1
𝑎 sin

𝑎
𝜏 ,	

	
	 𝛾 = cosh

𝑎
𝜏 −

𝑎
𝜏 sinh

𝑎
𝜏 ,										𝛿 =

1
𝑎 sinh

𝑎
𝜏.						

2.1.8 	

	

𝑣	

𝑢	

Ι	

ΙΙ	

ΙΙΙ	
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We	 point	 out	 that	 for	𝑢 < 0 	with	 the	 choice	𝐹 𝑢 = 1 = 𝐺(𝑢) 	the	 space-time	 is	 flat	
(Minkowski)	and	the	metric	reduces	to	
	

	

𝑔#, =

0 −
1
2 0 0

−
1
2 0 0 0
0 0 1 0
0 0 0 1

,					 − det 𝑔 =
1
2	 2.1.9 	

	
The	 coordinates	(𝑡, 𝑥, 𝑦, 𝑧)	associated	 with	(𝑢, 𝑣, 𝑥, 𝑦)	by	 means	 of	 equation	 (2.1.2)	 are	 then	
standard	 Cartesian	 coordinates.	 Finally,	 in	 order	 to	 compare	 the	 results	 of	 the	 present	
analysis	 with	 the	 existing	 literature	 we	 recall	 that	 the	 metric	 functions	𝐹	and	𝐺	in	 the	
linearized	approximation	and	in	the	transverse-traceless	gauge	are	usually	such	that	
	

	 𝐹 𝑢 ) = 1 + ℎk 𝑢 				𝐺 𝑢 ) = 1 − ℎk 𝑢 ,	 				 2.1.10 	
	
where	ℎk	is	a	first-order	perturbation	to	the	flat	background.	
	
2.2	Geodesics	
	
Let	us	now	consider	null	geodesics	with	respect	to	the	coordinates	(𝑢, 𝑣, 𝑥, 𝑦)	in	all	space-time	
regions.	Denoting	by	𝑝> 	the	vector	tangent	to	these	world	lines	and	by	𝜆	an	affine	parameter	
(associated	with	proper	time),	we	have	𝑝> = À^]

À�
,	with	

	
	 𝑝>∇>𝑝B = 𝜌,					𝑝>p> = 𝜌,	 2.2.1 	

	
where	the	parameter	𝜌	discriminates	among	the	classes	of	geodesics	we	are	considering,	 i.e.	
𝜌 = −1,0,1	corresponding	 to	 time-like,	 null	 and	 space-like	 geodesics,	 respectively	 (Bini,	
Fortini,	 Haney	 and	 Ortolan,	 2011).	 The	 solution	 for	 the	 geodesics,	 using	𝑢	as	 a	 convenient	
parameter,	can	be	written	as	follows	
	

𝑢 𝜆 = −2𝑝³𝜆 + 𝑢�,					𝑣 𝑢 =
1
4𝑝³)

−𝜌 +
𝑝^)

𝐹 𝑢 ) +
𝑝z)

𝐺 𝑢 ) 𝑑𝑢 + 𝑣�,
²

	
	

	
	

𝑥 𝑢 = −
𝑝^
2𝑝³

𝑑𝑢
𝐹(𝑢)) + 𝑥�,					𝑦 𝑢 =

𝑝z
2𝑝³

𝑑𝑢
𝐺 𝑢 ) + 𝑦�,					

²

	

²

	
	 2.2.2 	

	
where	 the	 quantities	𝑝³ ,	𝑝^	and	𝑝z	(covariant	 components	 of	 the	 momentum)	 are	 Killing	
constants,	while	 𝑢�, 𝑣�, 𝑥�, 𝑦�	 	mark	coordinates	of	a	generic	point.	
From	 now	 on	 we	 will	 only	 consider	 null	 geodesics	 since	 we	 are	 working	 with	 massless	
particles,	i.e.	𝜌 = 0.	
The	associated	momentum	is	
	

	
𝑝 = −2𝑝³𝜕² −

1
2𝑝³

𝑝^)

𝐹 𝑢 ) +
𝑝z)

𝐺 𝑢 ) 𝜕³ +
𝑝^)

𝐹 𝑢 ) 𝜕^ +
𝑝z)

𝐺 𝑢 ) 𝜕z	 2.2.3 	

	
or	equivalently	
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𝑝Ã =

1
4𝑝³

𝑝^)

𝐹 𝑢 ) +
𝑝z)

𝐺 𝑢 ) 𝑑𝑢 + 𝑝³𝑑𝑣 + 𝑝^𝑑𝑥 + 𝑝z𝑑𝑦.	 2.2.4 	

	
Note	that	within	the	linear	approximation	(small	overall	curvature	of	the	wave	region,	𝑎 → ∞)	
we	recover	the	results	in	the	wave	region:	
	

	 𝑝Ã Å[Æ =
1
4𝑝³

𝑝^) 1 − ℎk + 𝑝z) 1 + ℎk 𝑑𝑢 + 𝑝³𝑑𝑣 + 𝑝^𝑑𝑥

+ 𝑝z𝑑𝑦.	
2.2.5 	

	
With	the	choice	of	F	and	G	functions	given	in	equation	(2.1.7)	we	can	also	identify	
	

	
ℎk 𝑢 ≅ −

𝑢)

𝑎) + 𝑂
𝑢f

𝑎f .	 2.2.6 	

	
By	 specifying	 the	 metric	 in	 the	 various	 regions	 of	 space-time	 we	 find	𝐶Y	solutions	 of	 the	
geodesic	equations	before,	during	and	after	the	passage	of	the	wave.	
	

• Region	Ι.	The	geodesics	are	straight	lines	from	(𝑢Ç, 𝑣Ç, 𝑥Ç, 𝑦Ç)	to	(0, 𝑣`, 𝑥`, 𝑦`):	
	

	 𝑢 𝜆 = −2𝑝³𝜆 + 𝑢Ç,					𝑣 𝑢 =
1
4𝑝³)

𝑝^) + 𝑝z) 𝑢 + 𝑣Ç,	 (2.2.7)	

	
𝑥 𝑢 = −

𝑝^
2𝑝³

𝑢 + 𝑥Ç,					𝑦 𝑢 = −
𝑝z
2𝑝³

𝑢 + 𝑦Ç,	

	
with	
	

	 𝑥Ç =
𝑝^
2𝑝³

𝑢Ç + 𝑥Ç,					𝑦Ç =
𝑝z
2𝑝³

𝑢Ç + 𝑦Ç,					𝑣Ç

= 𝑣Ç −
1
4𝑝³)

𝑝^) + 𝑝z) 𝑢Ç.	
(2.2.8)	

	
The	associated	momentum	is	
	

	 𝑝È = −2𝑝³𝜕² −
1
2𝑝³

(𝑝^) + 𝑝z))𝜕³ + 𝑝^	 𝜕^ + 𝑝z	 𝜕z.	 (2.2.9)	

	
• Region	 ΙΙ .	 The	 geodesics	 connect	 the	 space-time	 points	 from	 (0, 𝑣`, 𝑥`, 𝑦`) 	to	

(�
µ

¶
, 𝑣Y, 𝑥Y, 𝑦Y):	

	
	 𝑢 𝜆 = −2𝑝³𝜆 + 𝑢Ç,					𝑣 𝑢

=
1
4𝑝³)

𝑝^)𝑎 tan
𝑢
𝑎 + 𝑝z

)𝑎 tanh
𝑢
𝑎 + 𝑣`,	

(2.2.10)	

	
𝑥 𝑢 = −

𝑝^
2𝑝³

𝑎 tan
𝑢
𝑎 + 𝑥`,					𝑦 𝑢 = −

𝑝z
2𝑝³

tanh
𝑢
𝑎 + 𝑦`.	

	
The	associated	momentum	is	
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𝑝ÈÈ = −2𝑝³𝜕² −
1
2𝑝³

𝑝^)

(cos 𝑢𝑎)
)
+

𝑝z)

(cosh 𝑢𝑎)
)
𝜕³ +

𝑝^	

(cos 𝑢𝑎)
)
𝜕^

+
𝑝z	

(cosh 𝑢𝑎)
)
𝜕z.	

2.2.11 	

	
In	the	linearized	regime	the	above	relations	have	the	following	limit:	
	

𝑢 𝜆 = −2𝑝³𝜆 + 𝑢Ç,					𝑣 𝑢 =
𝑢
4𝑝³)

(𝑝^) + 𝑝z) +
(𝑝^) − 𝑝z))
3𝑎) 𝑢)] + 𝑣`

= 𝑣Ç −
𝜆
2𝑝³

(𝑝^) + 𝑝z)) −
𝜆
2𝑝³

(𝑝^) − 𝑝z))𝑓k(𝜆)	

	
	

𝑥 𝑢 = −
𝑝^
2𝑝³

1 +
𝑢)

3𝑎) 𝑢 + 𝑥`,					𝑦 𝑢

= −
𝑝z
2𝑝³

1 −
𝑢)

3𝑎) 𝑢 + 𝑦`,	
(2.2.12)	

	
where,	(M.	Rakhmanov,2009)	
	
	

𝑓k 𝜆 =
1
𝜆 ℎk 𝑢 𝜆 𝑑𝜆

�

`

≅ −
1
𝑎) 𝜆 𝑢) 𝜆 𝑑𝜆 =

1
6𝑝³𝑎)𝜆

𝑢Ç − 2𝑝³𝜆 f − 𝑢Çf
�

`
	

(2.2.13)	

	
denotes	the	average	amplitude	of	the	gravitational	wave	and	hence	
	

	
𝑝ÈÈ = −2𝑝³𝜕² −

1
2𝑝³

𝑝^) + 𝑝z) +
𝑢)

𝑎) (𝑝^
) − 𝑝z))]𝜕³

+ 𝑝^ 1 +
𝑢)

𝑎) 𝜕^ + 𝑝z 1 −
𝑢)

𝑎) 𝜕z

= 𝑝È +
𝑢)

𝑎) (𝑝^) − 𝑝z) 𝜕³ + 𝑝^	 𝜕^ − 𝑝z	 𝜕z .	

(2.2.14)	

	
• Region	 ΙΙΙ .	 The	 geodesics	 connect	 the	 space-time	 points	 (�

µ

¶
, 𝑣Y, 𝑥Y, 𝑦Y) 	and	

(𝑢�, 𝑣�, 𝑥�, 𝑦�),	where	𝑃� 	denoted	an	arbitrary	point	in	the	out-zone:	
	

𝑢 𝜆 = −2𝑝³𝜆 + 𝑢Ç,					𝑣 𝑢 = −
1
4𝑝³)

𝑝^)

𝛽 𝛼 + 𝛽𝑢 +
𝑝z)

𝛿 𝛾 + 𝛿𝑢 + 𝑣Y	

	
	 𝑥 𝑢 =

𝑝^
2𝑝³

1
𝛽 𝛼 + 𝛽𝑢 + 𝑥Y					𝑦 𝑢 =

𝑝z
2𝑝³

1
𝛿 𝛾 + 𝛿𝑢 + 𝑦Y,	 (2.2.15)	

	
with	
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𝑥Y = 𝑥Y +
𝑝^
2𝑝³

𝑎

sin 𝑎𝜏 cos
𝑎
𝜏
,					𝑦Y = 𝑦Y −

𝑝z
2𝑝³

	
𝑎

sinh 𝑎𝜏 cosh
𝑎
𝜏
,	

	
	

𝑣Y = 𝑣Y +
𝑎
4𝑝³)

𝑝^)

sin 𝑎𝜏 cos
𝑎
𝜏
+

𝑝z)

sinh 𝑎𝜏 cosh
𝑎
𝜏
.	 2.2.16 	

	
The	associated	momentum	is	
	

	
𝑝ÈÈÈ = −2𝑝³𝜕² −

1
2𝑝³

𝑝^)

𝛼 + 𝛽𝑢 ) +
𝑝z)

𝛾 + 𝛿𝑢 ) 𝜕³ +
𝑝^	

𝛼 + 𝛽𝑢 ) 𝜕^

+
𝑝z	

𝛾 + 𝛿𝑢 ) 𝜕z.	
(2.2.17)	

	
2.3	Matching	Conditions	
	
By	 imposing	 a	 matching	 condition	 at	 the	 boundaries	Ι − ΙΙ	and	ΙΙ − ΙΙΙ,	 we	 can	 relate	 the	
solutions	in	all	three	regions	to	the	initial	space-time	points	(𝑢Ç, 𝑣Ç, 𝑥Ç, 𝑦Ç)	(Bini,	Fortini,	Haney	
and	Ortolan,	2011).	
	
i) Matching	conditions	of	the	boundary	Ι − ΙΙ.	We	find	

	

𝜆` =
𝑢Ç
2𝑝³

,					𝑣` = 𝑣Ç −
1
4𝑝³)

𝑝^) + 𝑝z) 𝑢Ç,					𝑥` =
𝑝^
2𝑝³

𝑢Ç + 𝑥Ç,	

	
	 𝑦` =

𝑝z
2𝑝³

𝑢Ç + 𝑦Ç.	 (2.3.1)	

	
ii) Marching	of	the	boundary	ΙΙ − ΙΙΙ.	We	find		

	

𝜆Y =
𝑢Ç −

𝑎)
𝜏

2𝑝³
,					𝑥Y = −

𝑝^
2𝑝³

𝑎 tan
𝑎
𝜏 + 𝑥` = 𝑥Ç +

𝑝^
2𝑝³

𝑢Ç − 𝑎 tan
𝑎
𝜏 ,	

	
𝑦Y = −

𝑝z
2𝑝³

𝑎 tanh
𝑎
𝜏 + 𝑦` = 𝑦Ç +

𝑝z
2𝑝³

𝑢Ç − 𝑎 tan
𝑎
𝜏 ,	

	
	 𝑣Y =

𝑎
4𝑝³)

𝑝^) tan
𝑎
𝜏 + 𝑝z

) tanh
𝑎
𝜏 + 𝑣`

=
1
4𝑝³)

𝑝^) 𝑎 tan
𝑎
𝜏 − 𝑢Ç + 𝑝z) 𝑎 tanh

𝑎
𝜏 − 𝑢Ç

+ 𝑣Ç.	

(2.3.2)	

	
The	associated	momenta	at	the	boundaries	are	
	

𝑝È�ÈÈ = −2𝑝³𝜕² −
1
2𝑝³

(𝑝^) + 𝑝z))𝜕³ + 𝑝^	 𝜕^ + 𝑝z	 𝜕z,	

and	
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𝑝ÈÈ�ÈÈÈ = −2𝑝³𝜕² −

1
2𝑝³

𝑝^)

(cos 𝑢𝑎)
)
+

𝑝z)

(cosh 𝑢𝑎)
)
𝜕³ +

𝑝^	

(cos 𝑢𝑎)
)
𝜕^

+
𝑝z	

(cosh 𝑢𝑎)
)
𝜕z.	

(2.3.3)	

	
2.4	Coordinate	transformation	in	region	𝚰𝚰𝚰	
	
In	 the	 flat	 region	ΙΙΙ	it	 is	 convenient	 to	 restore	 Cartesian	 coordinates.	 This	 is	 practically	
achieved	by	the	double	mapping	 𝑢, 𝑣, 𝑥, 𝑦, → 	 (𝑈, 𝑉, 𝑋, 𝑌) 	→ 	 (𝑇, 𝑍, 𝑋, 𝑌),	as	specified	above,	
namely	
	
𝑢, 𝑣, 𝑥, 𝑦, → 	 𝑈, 𝑉, 𝑋, 𝑌 :	
	

	 𝑈 = 𝑢,					𝑋 = 𝐹 𝑢 𝑥,					𝑌 = 𝐺 𝑢 𝑦,							V= 𝑣 + 𝐹 𝑢 𝐹L 𝑢 𝑥) +
𝐺 𝑢 𝐺L 𝑢 𝑦),	 (2.4.1)	

	
and	
	
𝑈, 𝑉, 𝑋, 𝑌 → 	 𝑇, 𝑍, 𝑋, 𝑌 :	
	

	 𝑇 =
𝑈 + 𝑉
2 ,					𝑍 =

𝑉 − 𝑈
2 ,					𝑋 = 𝑋,					𝑌 = 𝑌.	 2.4.2 	

	
Thus,	in	region	ΙΙΙ	we	obtain	
	

𝑈 𝜆 = −2𝑝³𝜆 + 𝑢Ç,	
	

𝑋 𝑈 =
𝑝^
2𝑝³𝛽

+	𝑥Y 𝛼 + 𝛽𝑈 ,					𝑌 𝑈 =
𝑝z
2𝑝³𝛿

+ 𝑦Y 𝛾 + 𝛿𝑈 ,	

	
	 𝑉 𝑈 = 𝑥Y)𝛽 𝛼 + 𝛽𝑈 + 𝑦Y)𝛿 𝛾 + 𝛿𝑈 +

𝑝^
𝑝³
𝑥Y +

𝑝z
𝑝³
𝑦Y + 𝑣Y,	 (2.4.3)	

	
which	can	be	represented	in	the	same	way	as	the	geodesics	in	region	Ι,	i.e.	
	

𝑋 𝑈 = −
𝑄^
2𝑄³

𝑈 + 𝑋Ç, 					𝑌 𝑈 = −
𝑄z
2𝑄³

𝑈 + 𝑌Ç,	

	
	 𝑉 𝑈 =

1
4𝑄³)

𝑄^) + 𝑄z) 𝑈 + 𝑉Ç, 					𝑈 𝜆 = −2𝑄³𝜆 + 𝑈Ç	 (2.4.4)	

	
with	
	

𝑈Ç = 𝑢Ç,					𝑄³ = 𝑝³,					𝑄^ = −2𝑝³𝛽𝑥Y,					𝑄z = −2𝑝³𝛿𝑦Y,					𝑋Ç =
𝑝^
2𝑝³𝛽

+ 𝛼𝑥Y,		

	
	 𝑌Ç	 =

𝑝z
2𝑝³𝛿

+ 𝛾𝑦Y,					𝑉Ç = 𝑣Y + 𝑥Y
𝑝^
𝑝³
+ 𝛼𝛽𝑥Y + 𝑦Y

𝑝z
𝑝³
+ 𝛾𝛿𝑦Y .	 (2.4.5)	
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The	associated	transformed	momentum	in	region	ΙΙΙ	is	then	
	

	 𝑝ÈÈÈ = −2𝑝³ 𝜕Ó + 𝛽𝑥Y ) + 𝛿𝑦Y ) 𝜕Ô + 𝛽𝑥Y 𝜕Õ + 𝛿𝑦Y 𝜕Ö ,	 (2.4.6)	
	
or	equivalently,	by	using	the	quantities	𝑄³, 𝑄^, 𝑄z	defined	above:	
	

	 𝑝ÈÈÈ = −2𝑄³𝜕Ó −
1
2𝑄³

𝑄^) + 𝑄z) 𝜕Ô + 𝑄Õ𝜕Õ + 𝑄Ö𝜕Ö.	 (2.4.7)	

	
By	passing	to	the	standard	Cartesian	temporal	and	spatial	coordinates	(𝑇, 𝑍, 𝑋, 𝑌)	we	rewrite	
the	momentum	as	
	

	 𝑝ÈÈÈ = −𝑄³
1
4𝑄³)

𝑄^) + 𝑄z) + 1 𝜕j − 𝑄³
1
4𝑄³)

𝑄^) + 𝑄z) − 1 𝜕×
+ 𝑄Õ𝜕Õ + 𝑄Ö𝜕Ö.	

(2.4.8)	

	
2.5	Scattering	of	electromagnetic	wave	by	the	gravitational	wave	
	
Maxwell	equations	in	the	Lorentz	gauge	
	

	 ☐𝐴> ≡ 𝑔#,∇#∇,𝐴> = 0,					∇#𝐴# = 0,	 (2.5.1)	
	
once	solved	for	the	vector	potential	A,	leads	to	
	

	
𝐴Ã =

𝐴`

𝐹𝐺
𝑒[~𝑒Ã.	 (2.5.2)	

	
This	 solution	 represents	 a	 field,	which	 is	 not	 a	wave	 in	 general,	 propagating	 in	 a	 direction	
associated	with	positive	𝑣, 𝑥, 𝑦	coordinates.	Since	it	is	a	wave	in	region	Ι,	we	will	refer	to	𝜙	as	
the	phase	and	𝑒# 	as	the	polarization	vector	of	the	field	also	in	the	other	regions.	
In	general,	the	phase	𝜙	is	given	by	
	

	
𝜙 = ( 𝑝²𝑑𝑢) + 𝑝³𝑣 + 𝑝^𝑥 + 𝑝z𝑦,					𝑝² = 𝑝² 𝑢

²

	

=
1
4𝑝³

𝑝^)

𝐹) +
𝑝z)

𝐺) ,	
(2.5.3)	

	
and	the	polarization	vector	by	
	

	 𝑒Ã = 𝑒¤Ã sin 𝜃 + 𝑒ØÃ cos 𝜃 ,	 (2.5.4)	
	
which	is	orthogonal	to	𝑝	and	a	linear	combination	of	two	independent	vectors	𝑒¤	and	𝑒Ø:	
	

	 𝑒¤Ã =
𝑝^
2𝑝³𝐹

𝑑𝑢 + 𝐹𝑑𝑥,					𝑒ØÃ =
𝑝z
2𝑝³𝐺

𝑑𝑢 + 𝐺𝑑𝑦,	 (2.5.5)	

both	also	orthogonal	to	𝑝.	
	
The	phase	𝜙	is	constant	along	the	integral	curves	of	𝑝,	namely	
	



	 34	

	 ∇�𝜙 = 𝑝>𝜕>𝜙 = 𝑝>𝑝> = 0.	 2.5.6 	
	
The	polarization	vector	is	parallely	transported	along	the	integral	curves	of	𝑝:	
	

	 ∇�𝑒Ã = 0,	 (2.5.7)	
	
and	its	contravariant	expression	is	represented	by	
	

	 𝑒 = −
1
𝑝³

𝑝^
𝐹 cos 𝜃 +

𝑝z
𝐺 sin 𝜃 𝜕³ +

cos 𝜃
𝐹 𝜕^ +

sin 𝜗
𝐺 𝜕z.	 	(2.5.8)	

	
It	should	be	stressed	that	the	solution	found	above	has	two	associated	invariants;	therefore,	in	
general,	 this	 field	 is	 non	 singular,	 even	 if	 in	 the	 flat	 space-time	 before	 the	 passage	 of	 the	
gravitational	wave	 it	represents	an	electromagnetic	wave.	After	 the	passage	of	 the	wave	we	
have	again	a	wave-like	behavior.	 For	our	analysis	of	 the	 response	of	 the	 interferometer	we	
have	 not	 considered	 the	 electromagnetic	 field	 inside	 the	 wave	 region	 since	 we	 are	 only	
interested	in	the	emerging	field.	
	
	Electromagnetic	field	before	the	passage	of	the	wave:	region	𝛪	
	
The	 space-time	 before	 the	 passage	 of	 the	 wave,	 corresponding	 to	𝐹È = 1 = 𝐺È,	 is	 flat.	 The	
metric	is	
	

	 𝑑𝑠) = −𝑑𝑢𝑑𝑣 + 𝑑𝑥) + 𝑑𝑦),	 (2.5.9)	
	
and	it	can	be	reduced	to	its	standard	form	by	using	the	transformation	in	equation	(2.1.2).	The	
solution	for	the	vector	potential	A	in	this	region	is	
	

	 𝐴ÈÃ = 𝐴`𝑒[~Û𝑒ÈÃ,	 (2.5.10)	
	
where	the	phase	𝜙È	is	given	by	
	

𝜙È =
1
4𝑝³

𝑝^) + 𝑝z) 𝑢 + 𝑝³𝑣 + 𝑝^𝑥 + 𝑝z𝑦 + 𝐶È = 𝑝>𝑥> + 𝐶È,		

	
	 	𝑝> = 𝑐𝑜𝑛𝑠𝑡.,	 (2.5.11)	

	
with	𝑝Ã = 𝑝>𝑑𝑥> 	the	null	vector	seen	above	and	a	constant	
	

	 𝐶È = −
1
4𝑝³

𝑝^) + 𝑝z) 𝑢Ç.	 (2.5.12)	

	
The	polarization	vector	reads	
	

	 𝑒È = −
1
𝑝³

𝑝^ cos 𝜃 + 𝑝z sin 𝜃 𝜕³ + cos 𝜃 𝜕^ + sin 𝜃 𝜕z.	 (2.5.13)	

	
Electromagnetic	field	after	the	passage	of	the	wave:	region	𝛪𝛪𝛪	
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After	 the	 passage	 of	 the	 wave,	 i.e.	 when	𝑢 > �µ

¶
,	 the	 metric	 functions	 are	𝐹ÈÈÈ = 𝛼 + 𝛽𝑢	and	

𝐺ÈÈÈ = 𝛾 + 𝛿𝑢,	but	the	space-time	is	still	flat.	Maxwell	equations	are	solved	by	
	

	 𝐴ÈÈÈÃ =
𝐴`
𝐹ÈÈÈ𝐺ÈÈÈ

𝑒[~ÛÛÛ𝑒ÈÈÈÃ =
𝐴`

𝛼 + 𝛽𝑢 𝛾 + 𝛿𝑢
𝑒[~ÛÛÛ𝑒ÈÈÈÃ .	 (2.5.14)	

	
This	solution	of	Maxwell	equations	have	a	“phase”	
	

	
𝜙ÈÈÈ = −

1
4𝑝³

𝑝^)

𝛽 𝛼 + 𝛽𝑢 −
𝑝z)

𝛿 𝛾 + 𝛿𝑢 + 𝑝³𝑣 + 𝑝^𝑥 + 𝑝z𝑦

+ 𝐶ÈÈÈ,	
(2.5.15)	

	
or	equivalently,	with	the	coordinate	transformation	induced	in	equation	(2.4.1):	
	

	
𝜙ÈÈÈ = 𝐶ÈÈÈ + 𝑝³𝑉 −

𝑝³𝛽
𝛼 + 𝛽𝑢

𝑝^
2𝑝³𝛽

− 𝑋
)
−

𝑝³𝛿
𝛼 + 𝛽𝑢

𝑝z
2𝑝³𝛿

− 𝑌
)
	 (2.5.16)	

	
with	a	constant	
	

	
𝐶ÈÈÈ =

𝑎
4𝑝³

−
𝑝^)

sin 𝑎𝜏 cos
𝑎
𝜏
+

𝑝z)

sinh 𝑎𝜏 cosh
𝑎
𝜏
.	 (2.5.17)	

	
The	 phase	 in	 region	ΙΙΙ,	 from	 equation	 (2.5.15),	 is	 generically	 a	 function	 of	 the	 coordinates	
𝑢, 𝑣, 𝑥, 𝑦 	(or	 equivalently,	 from	 equation	 (2.5.16),	 of	 the	 coordinates	 𝑈, 𝑉, 𝑋, 𝑌 ).	 It	 is	
dominated	by	its	value	along	the	null	geodesics,	namely	
	

	 𝜙ÈÈÈ	(Ý) =
1
4𝑄³

𝑄^) + 𝑄z) 𝑈 + 𝑄³𝑉 + 𝑄^𝑋 + 𝑄z𝑌 + 𝐶ÈÈÈ

= 𝑄>𝑋> + 𝐶ÈÈÈ,	
(2.5.18)	

	
with	
	

	 𝐶ÈÈÈ = 𝐶ÈÈÈ + 𝑄³ 𝑉Ç	 − 𝑣Y .	 (2.5.19)	
	
In	 fact,	 let	us	 consider	 the	 “phase”	given	by	equation	 (2.5.16)	along	 the	generic	 curve	𝑋> =
𝑋>(𝜆)	as	 a	 function	 of	 the	 parameter	𝜆	along	 the	 curve,	 and	 require	 its	 variation	 to	 be	
vanishing:	
	

	 𝑑
𝑑𝜆𝜙ÈÈÈ = 0,	 (2.5.20)	

	
in	 order	 to	 determine	 the	 dominant	 part.	We	 find	 that	 this	 extremal	 condition	 is	 satisfied	
exactly	by	the	null	geodesics	given	by	equation	(2.4.8).	In	addition,	we	can	say	that	even	if	our	
general	solution	for	the	electromagnetic	field	after	the	passage	of	the	gravitational	wave	is	not	
exactly	a	plane	wave,	it	is	dominated	by	a	plane	wave	with	the	wave	vector	aligned	with	that	
of	a	null	geodesic	of	the	background,	with	the	phase	given	by	equation	(2.5.18).	
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The	polarization	vector	is	given	by	
	

	 𝑒ÈÈÈ = −
1
𝑝³

𝑝^
𝛼 + 𝛽𝑢 cos 𝜃 +

𝑝z
𝛾 + 𝛿𝑢 sin 𝜃 𝜕³ +

cos 𝜃
𝛼 + 𝛽𝑢 𝜕^

+
sin 𝜃
𝛾 + 𝛿𝑢 𝜕z,	

(2.5.21)	

	
or,	transformed,	by	
	

	 𝑒ÈÈÈ = 2𝛽
cos 𝜃
𝛼 + 𝛽𝑈 𝑋 −

𝑝^
2𝑝³𝛽

+ 2𝛿
sin 𝜃
𝛾 + 𝛿𝑈 𝑌 −

𝑝z
2𝑝³𝛿

𝜕Ô
+ cos 𝜃 𝜕Õ + sin 𝜃 𝜕Ö.			

(2.5.22)	

	
Similar	 to	 what	 happens	 for	 the	 phase,	 the	 polarization	 vector	 is	 also	 dominated	 by	 the	
corresponding	value	along	the	null	geodesics	as	in	equation	(2.4.8),	 in	the	sense	that	the	𝑒ÈÈÈÕ 	
and	𝑒ÈÈÈÖ 	components	 do	 not	 depend	 on	 the	 curve,	 while	 the	𝑒ÈÈÈÔ 	component	 reaches	 its	
extremal	value	on	the	null	geodesics,	namely	
	

	 𝑒ÈÈÈ(À) = −
1
𝑄³

𝑄^ cos 𝜃 + 𝑄z sin 𝜃 𝜕Ô + cos 𝜃 𝜕Õ + sin 𝜃 𝜕Ö,	 (2.5.23)	

	
with	𝑉Ç		and	𝑄> = 𝑐𝑜𝑛𝑠𝑡.	given	 by	 equation	 (2.4.5)	 where	 the	𝑄> 	are	 the	 components	 of	 the	
dominant	 wave	 vector	 as	 emerging	 after	 the	 scattering	 by	 the	 gravitational	 wave.	
Summarizing,	the	dominant	part	of	the	electromagnetic	field	can	be	written	as	
	

	 𝐴ÈÈÈ(À) = 𝐴`𝑒[~ÛÛÛ(Þ)𝑒ÈÈÈ À 	 (2.5.24)	
	
and	represents	the	electromagnetic	wave	emerging	after	the	interaction.	
	
Variation	in	the	wave	and	polarization	vector,	phase	shift	
	
We	 will	 now	 consider	 the	 variation	 in	 the	 properties	 of	 the	 electromagnetic	 wave	 by	
comparing	 the	 dominant	 parts	 of	 the	 solutions	 before	 and	 after	 the	 passage	 of	 the	
gravitational	wave.	 Concerning	 the	 covariant	 components	 of	 the	wave	 vector	we	 find	𝑄> =
𝑝> + ∆𝑝> 	with	
	

∆𝑝² = 𝑝³
𝑥`)

𝑎) −
𝑝^)

4𝑝³
(sin

𝑎
𝜏)

)
+ 𝑝³

𝑦`)

𝑎) +
𝑝z)

4𝑝³
(sinh

𝑎
𝜏)

)
+ 𝑝^ sin

𝑎
𝜏 cos

𝑎
𝜏

𝑥`
𝑎

− 𝑝z sinh
𝑎
𝜏 cosh

𝑎
𝜏

𝑦`
𝑎 ,	

	
∆𝑝^ = 2𝑝³ sin

𝑎
𝜏
𝑥`
𝑎 − 𝑝^ 1 − cos

𝑎
𝜏 ,	

	
∆𝑝z = −2𝑝³ sinh

𝑎
𝜏
𝑦`
𝑎 − 𝑝z 1 − cosh

𝑎
𝜏 ,	

	
	 ∆𝑝³ = 0,	 (2.5.25)	
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where	equation	(2.2.17)	has	been	used.	For	the	contravariant	components	of	the	wave	vector	
we	find	𝑄> = 𝑝> + ∆𝑝> 	with	
	

	 ∆𝑝² = 0,					∆𝑝^ = ∆𝑝^,					∆𝑝z = ∆𝑝z,					∆𝑝³ = −2∆𝑝².	 (2.5.26)	
	
The	contravariant	polarization	vector	has	a	variation	only	in	the	𝑣-component,	namely	
	

	 ∆𝑒³ = 1 − cos
𝑎
𝜏
𝑝^
𝑝³
− 2 sin

𝑎
𝜏
𝑥`
𝑎 cos 𝜃

+ 1 − cosh
𝑎
𝜏
𝑝z
𝑝³
− 2 sinh

𝑎
𝜏
𝑦`
𝑎 sin 𝜃.	

(2.5.27)	

	
After	 the	 passage	 of	 the	 gravitational	 wave	 and	 in	 terms	 of	 the	 dominant	 mode	 analysis	
discussed	above,	the	phase	of	the	electromagnetic	wave	is	shifted	by	
	

	 ∆𝜙 = 𝜙ÈÈÈ − 𝜙È
= 𝑄^𝑋Ç + 𝑄z𝑌Ç + 𝑄³𝑉Ç − 𝑝^𝑥Ç	– 𝑝z𝑦Ç − 𝑝³𝑣Ç + 𝐶ÈÈÈ
− 𝐶È = −

𝑎
4𝑝³	

𝑝^	 tan
𝑎
𝜏 + 𝑝z

	 tanh
𝑎
𝜏 + 𝑝³ 𝑣Ç − 𝑣` .	

(2.5.28)	

	
Note	 that	 the	 transformed	 coordinates	(𝑈, 𝑉, 𝑋, 𝑌)	are	 Cartesian,	 so	 that	 the	 new	 metric	
functions	are	such	that	𝐹ÈÈÈ = 𝐺ÈÈÈ = 1.	As	a	consequence,	the	amplitude	of	the	dominant	part	
of	the	electromagnetic	field	is	unaffected	by	the	passage	of	the	gravitational	wave.	
	
2.6	Photon	moving	along	one	axis	
	
Let	us	now	consider	the	motion	of	photons	along	𝑥-	or	𝑦-axes	which	represent	the	direction	of	
the	 arm	 of	 a	 Michelson	 interferometer	 with	 the	 beam	 splitter	 in	 the	 origin	 (Fortini	 and	
Ortolan,	1991).	The	photons	start	at	the	beam	splitter	(denoted	by	∗)	and	are	reflected	once	
by	an	end	mirror	at	a	distance	L	from	the	origin,	denoted	by	small	s	(we	regard	the	mirrors	as	
fixed	and	therefore	do	not	consider	the	time-like	geodesics	associated	with	them).	At	the	start	
of	 the	 proper	 time,	𝜆 = 0,	 the	 photons	 are	 assumed	 at	 the	 generic	 point	𝑃Ç,^	or	𝑃Ç,z	on	 the	
mirror	 (where	𝑥Ç = 𝐿	and	𝑦Ç = 0	or	𝑥Ç = 0	and	𝑦Ç = 𝐿),	 where	 the	 momentum	 is	𝑝^	or	𝑝z	in	
the	negative	𝑥-	or	𝑦-direction	(towards	the	origin).	In	the	points	𝑃Ç,^	and	𝑃Ç,z	we	have	imposed	
𝑣Ç = 𝑢Ç,	 thereby	 ensuring	𝑧Ç = 0	at	 the	 start.	 The	 momenta	𝑝^	and	𝑝z	are	 constrained	 by	
demanding	𝑧∗ = 0	in	the	origin,	namely	(Bini,	Fortini,	Haney	and	Ortolan,	2011)	
	

	 𝑝^ = 2𝑝³,					𝑝z = 2𝑝³,					𝑝³ < 0.	 (2.6.1)	
	
The	choice	of	negative	momentum	𝑝³	ensures	that	𝑢	increases	with	𝜆.	
In	this	case	the	parametric	equations	for	the	unperturbed	photon	are	
	

𝑢 = −2𝑝³𝜆 + 𝑢Ç,	
	

	 𝑥 = 𝑘^ 𝑢 − 𝑢Ç − 𝐿 ,					𝑦 = 𝑘z 𝑢 − 𝑢Ç − 𝐿 ,					𝑧 = 0,						 (2.6.2)	
where	 the	choice	of	 	𝑘^	and	𝑘z	distinguishes	 the	motion	of	photons.	A	 factor	𝑘^ = 1	signifies	
the	 motion	 of	 a	 photon	 in	 positive	𝑥-direction	 (towards	 the	 beam	 splitter).	 Positive	 and	
negative	𝑦-directions	are	distinguished	along	the	same	lines.	
	



	 38	

For	 photons	 after	 the	 interaction	we	 use	 the	 parametric	 equations	 (2.4.4)	 and	 (2.4.5)	with	
𝑝^, 𝑥Ç, 𝑝z	and	𝑦Ç	defined	as	above,	and	we	obtain	
	

𝑈 = −2𝑝³𝜆 + 𝑢Ç,	
	

𝑋 = 𝑘^
𝑄^
2𝑝³

𝑈 − 𝑋Ç ,	

	

𝑌 = 𝑘z
𝑄z
2𝑝³

𝑈 − 𝑌Ç ,	

	
	

𝑍 =
1
2 𝑘^)

𝑄^)

4𝑝³)
+ 𝑘z)

𝑄z)

4𝑝³)
− 1 𝑈 + 𝑉Ç ,	 (2.6.3)	

	
where	
	
	 𝑉Ç = 𝑣Y + 𝑘^)𝑥Y 2 + 𝛼𝛽𝑥Y + 𝑘z)𝑦Y 2 + 𝛾𝛿𝑦Y ,	 	
	
	 𝑣Y = 𝑢Ç − 𝑘^) 𝑢Ç + 𝑎 cot

𝑎
𝜏 − 𝑘z) 𝑢Ç − 𝑎 coth

𝛼
𝜏 .	 (2.6.4)	

	
The	 directions	 of	 motion	 (towards	 the	 mirror	 or	 the	 origin,	 along	 the	𝑥-or	 the	𝑦-axis)	 are	
again	specified	by	the	choice	of	factors		𝑘^	and	𝑘z .	
The	 motion	 of	 the	 photons	 emerging	 from	 the	 gravitational	 wave	 is	 dependent	 on	 the	
coordinate	time	𝑢Ç	at	the	start	of	the	proper	time,	the	initial	momentum	𝑝³	of	the	photon,	the	
interferometer	 arm	 length	𝐿,	 the	 curvature	Y

�
	and	 duration	𝜏	of	 the	 gravitational	 wave;	

explicitly	
	

𝑥Y = 𝐿 + 𝑢Ç + 𝑎 cot
𝑎
𝜏,	

	
𝑦Y = 𝐿 + 𝑢Ç − 𝑎 coth

𝛼
𝜏,	

	

𝑄^ = 2𝑝³
𝐿 + 𝑢Ç
𝑎 sin

𝑎
𝜏 + cos

𝑎
𝜏 ,	 𝑄z = −2𝑝³

𝐿 + 𝑢Ç
𝑎 sinh

𝑎
𝜏 − cosh

𝑎
𝜏 ,	

	

𝑋Ç = 𝐿 + 𝑢Ç +
𝑎)

𝜏 cos
𝑎
𝜏 +

𝑎
𝜏 𝐿 + 𝑢Ç − 𝑎 sin

𝑎
𝜏,	

	
	

𝑌Ç = 𝐿 + 𝑢Ç +
𝑎)

𝜏 cosh
𝑎
𝜏 −

𝑎
𝜏 𝐿 + 𝑢Ç + 𝑎 sinh

𝑎
𝜏.	 (2.6.5)	

	
We	consider	two	photon	beams,	making	the	round	trip	trough	the	interferometer	along	the	𝑥-	
and	𝑦-	axes,	respectively,	and	arriving	again	at	the	beam	splitter	afterwards	(see	figure	2.6.1).	

The	 photons	 start	 from	 the	 origin	 at	𝑢∗ = 𝑢Ç + 𝐿,	 and	we	 can	 foresee	 three	 possible	
scenarios.	
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Scenario	𝛪.	The	photons	travel	from	the	origin	to	the	mirror	unperturbed	and	are	reflected	
by	 the	 mirror	 (in	𝑃Ç,^L 	or	𝑃Ç,zL )	 at	𝑢ÇL = 𝑢Ç + 2𝐿.	 On	 the	 return	 trip	 they	 encounter	 the	
gravitational	wave,	and	return	to	the	origin	at	𝑈^∗

à 	or	𝑈z∗
à 	respectively.	

	
	

	
	

	
	

	
	
	

	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	

	
Figure	 2.6.1:	 The	 two	 possible	 scenarios	 for	 the	 interaction	 of	 a	 photon	 with	 a	 gravitational	
wave	during	an	interferometer	round	trip:	(a)	scenario	𝛪,	and	(b)	scenario	𝛪𝛪.	(The	slopes	of	the	
geodesics	have	been	exaggerated	for	graphic	depiction)	
	

• Scenario	𝛪𝛪.	The	photons	 encounter	 the	 gravitational	wave	on	 the	way	 to	 the	mirror,	
where	 they	 are	 reflected	 at	𝑈Ç,^L

	 	or	𝑈Ç,zL
	 	(depending	 on	 the	 interferometer	 arm	 we		

consider).	They	return	to	the	origin	in	the	post-wave	region	and	arrive	there	again	at	
𝑈^∗

à 	or	𝑈z∗
à ,	respectively.	

• Scenario	𝛪𝛪𝛪.	The	photons	pass	the	interferometer	round	trip	without	encountering	the	
gravitational	 wave.	 They	 are	 reflected	 by	 the	 mirror	 (in	𝑃Ç,^L 	or	𝑃Ç,zL )	 at	𝑢ÇL = 𝑢Ç + 2𝐿,	
and	arrive	in	the	origin	again	at	𝑢∗à = 𝑢Ç + 3𝐿.	

	
The	 two	photon	 beams	 emerging	 from	 the	 gravitational	wave	 experience	 a	 deflection	 in	 Z-
direction	of	
	

𝑍^∗
à =

1
2

𝑄^
𝑝³
+ 1 𝐿 + 𝑢Ç − 𝑈^∗

à ,	 𝑍z∗
à =

1
2

𝑄z
𝑝³
+ 1 𝐿 + 𝑢Ç − 𝑈z∗

à ,	 (2.6.6)	

(a)	 (b)	

𝑃Çá,â	
𝑃Çá,â	

𝑃∗	

𝑃∗	

𝑃Çá,â
L 	

𝑃 	 𝑃 	

𝑃 ,z
∗àã 	

𝑃Çá,â
Lã 	𝑃 ,z

∗àã 	

𝑃Y	
	ã	 𝑃Y	

	ã	

𝑢 = 0	 𝑢 = 0	

𝑢 =
𝑎)

𝜏 	
𝑢 =

𝑎)

𝜏 	

𝑢	 𝑢	

𝑥, 𝑦	 𝑥, 𝑦	
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respectively,	and	arrive	at	the	origin	at	a	coordinate	time	
	

𝑈^∗
à =

𝑎)

𝜏 + 𝑎
2𝐿 + 𝐿 + 𝑢Ç cos 𝑎𝜏 − 𝑎 sin

𝑎
𝜏

𝐿 + 𝑢Ç sin 𝑎𝜏 + 𝑎 cos
𝑎
𝜏

,	

	
	

𝑈^∗
à =

𝑎)

𝜏 + 𝑎
2𝐿 + 𝐿 + 𝑢Ç cos 𝑎𝜏 − 𝑎 sin

𝑎
𝜏

𝐿 + 𝑢Ç sin 𝑎𝜏 + 𝑎 cos
𝑎
𝜏

.	 (2.6.7)	

	
We	can	regard	the	path	of	a	single	photon	travelling	through	the	interferometer	as	the	centre	
of	a	photon	beam.	The	deflection	decreases	the	intensity	of	the	interference	pattern	of	the	two	
photon	 beams,	 but	 the	 magnitude	 of	 the	 deflection	 compared	 to	 the	 cross	 section	 of	 the	
photon	beam	is	very	small,	whereas	the	change	in	the	interference	pattern	of	the	two	photon	
beams	due	to	their	shifted	phase	is	a	much	greater	effect.	
	 It	 should	 also	 be	 noted	 that	 the	 expressions	 for	 the	 deflection	 and	 delay	 of	 photons	
arriving	at	 the	origin	after	 the	passage	of	 the	wave	are	the	same	for	scenarios	Ι	and	ΙΙ.	They	
are	 distinguished	 by	 the	 relation	 between	𝑢Ç	and	𝐿.	 In	 the	 scenario	Ι,	 the	 photons	 have	 to	
leave	the	origin	at	𝐿 < 𝑢∗ < 2𝐿	to	meet	the	wave	on	the	return	trip	towards	the	origin,	while	
in	scenario	ΙΙ	the	photons	 leave	 from	the	origin	0 < 𝑢∗ < 𝐿	in	order	 to	encounter	 the	wave	
on	the	way	to	the	mirror.	
	 When	the	two	photon	beams	arrive	at	the	beam	splitter	again	after	the	round	trip,	they	
have	a	relative	phase	shift	
	
	 ∆𝜙 = ∆𝜙^ − ∆𝜙z = 𝑝³ tanh

𝑎
𝜏 − tan

𝑎
𝜏 	 (2.6.8)	

	
And	a	relative	change	in	polarization	
	

∆𝑒³ = 2 1 − cos
𝑎
𝜏 −

𝑢Ç + 𝐿
𝑎 sin

𝑎
𝜏 cos 𝜃

− 2 1 − cosh
𝑎
𝜏 +

𝑢Ç + 𝐿
𝑎 sinh

𝑎
𝜏 sin 𝜃	

	

(2.6.9)	

	
The	 scenario	 considered	 (Ι	or	ΙΙ)	 is	 distinguished	by	 the	 choice	 of	𝑢Ç	in	 terms	 of	𝐿	as	 above,	
yielding	different	expressions	for	the	relative	change	in	polarization.	The	relative	phase	shift	
depends	 only	 on	 the	 dimension	 of	 the	 gravitational	 wave,	 not	 on	 the	 construction	 of	 the	
interferometer.	
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Conclusions	
	
We	have	considered	the	propagation	of	a	test	electromagnetic	field	on	the	background	of	an	
exact	gravitational	plane	wave	with	a	linear	polarization.	
	 Furthermore,	 we	 determined	 the	 phase	 shift	 between	 the	 ingoing	 electromagnetic	
wave	and	the	dominant	part	of	 the	outgoing	field	as	the	significant	response	of	a	Michelson	
interferometer	to	the	presence	of	an	exact	gravitational	wave.	In	addition,	we	have	calculated	
the	change	of	 the	polarization	vector,	 the	angular	deflection	and	the	delay	of	photon	beams	
making	the	round	trip	of	photons	in	the	interferometer.	No	matter	how	small	these	effects	are,	
they	could	potentially	be	measured	by	way	of	different	detection	methods.	
	 It	is	now	possible	to	show	that	the	results	obtained	through	the	exact	theory	give	the	
same	 results	 obtained	 in	 the	 linearized	 regime	 using	 an	 opportune	 transformation.	 In	 fact,	
both,	 the	 linearized	 gravitational	waves	 and	 the	 strong	 gravitational	waves,	 have	 the	 same	
symmetry	group.	Moreover,	we	found	that	the	effects	of	both	waves	on	the	propagation	of	an	
electromagnetic	wave	are	qualitatively	the	same.	Although,	as	said	earlier,	all	of	these	effects	
are	present,	the	LIGO/VIRGO	interferometers	now	in	operation	are	able	to	measure	only	the	
phase	shift	of	the	electromagnetic	wave.	
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