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Summary (English)

In 3D multimedia productions, modeling is an activity that absorbs a considerable
amount of e�ort and during the years it has been the focus of an entire line of
research. This research �eld includes SQM, a method originally developed by J.
A. Bærentzen, M. K. Misztal and K. Welnicka [JAB12], where the �nal mesh is
procedurally inferred from the skeleton that the designer has modeled. It turned
out to be a great tool to quickly de�ne the high level structure of the object but it
is strongly limited in terms of mesh details, the exact opposite of a traditional 3D
tool.

This project aims to design a new modeling system that merges the bene�ts of
SQM with the strengths of a traditional sculpturing tool, recognizing the needs for
two di�erent modeling levels: at high level, polar meshes have been used to quickly
de�ne the structure of the object, while at low level the designer is free to add mesh
details like in any other 3D application.

In this thesis a core set of polar mesh operations have been de�ned and implemented
in a small modeling prototype. On top of that, it has also been developed a behavior
based animation engine and an L-System, to evaluate the bene�ts that a modeling
system based on polar meshes can o�er to these areas.

The new modeling system pushes the production of 3D assets towards a more AGILE
process, it can procedurally recognize and generate the mesh skeleton and it naively
supports structure based operations, including morphing, bottom-up animations and
procedurally generated content.
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Summary (Italian)

Nella produzione di contenuti multimediali, la modellazione di asset 3D è un'attività
che richiede una consistente porzione del costo complessivo di sviluppo ed è al cen-
tro di un intero �lone di ricerca che include SQM, un metodo sviluppato da J.
A. Bærentzen, M. K. Misztal e K. Welnicka [JAB12] in cui la mesh viene auto-
maticamente generata dall'ossatura indicata dal designer. Si tratta di un metodo
estremamente e�cace per de�nire la struttura ad alto livello del modello, ma che è
anche fortemente limitato per quanto riguarda i particolari che è possibile aggiungere
alla mesh stessa, l'esatto opposto del tipico software di modellazione tradizionale.

L'obiettivo di questo lavoro è la progettazione di un sistema di modellazione che sia
in grado di unire i vantaggi di SQM con i punti di forza dei tradizionali software
3D, riconoscendo la necessità di due distinti livelli operativi: ad alto livello verranno
sfruttate le proprietà delle mesh polari per de�nire la struttura di base dell'oggetto,
mentre a basso livello il designer sarà libero di aggiungere particolari alla mesh come
in ogni altro software 3D.

In questa tesi sono state progettate un insieme di operazioni per mesh polari, poi
implementate in un piccolo tool di modellazione. E' stato inoltre sviluppato un
motore di animazione comportamentale e un L-System per valutare i bene�ci che
un sistema di modellazione basato su mesh polari può o�rire anche in riferimento a
questi ambiti.

Il nuovo sistema di modellazione spinge la produzione di elementi 3D verso un
processo di sviluppo più AGILE, è in grado di generare automaticamente la struttura
della mesh e supporta nativamente operazioni come morphing, animationi bottom-
up e la generazione automatica di asset multimediali.
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Preface

This thesis was prepared at DTU Compute, Department of Applied Mathematics
and Computer Science at the Technical University of Denmark in ful�llment of the
requirements for acquiring a M.Sc. in Digital Media Engineering as well as a M.Sc.
in Computer Engineering, respectively at the Technical University of Denmark and
at the University of Padova, according to the bilateral agreements that regulate the
collaboration between these institutions in the frame of the T.I.M.E. double degree
program (https://www.time-association.org/).

This project represents an evolution of the SQM method which has been originally
developed by J. A. Bærentzen, M. K. Misztal and K. Welnicka [JAB12] and that
has been later analyzed and extended by Michael Mc Donnell [Don12]. SQM is part
of a more general line of research that aims to provide a better support for 3D mesh
manipulation not only from the point of view of modeling but also for animations
and procedurally generated content. In this framework, more abstract tools can
contribute to reduce the cost of 3D digital assets, increasing the productivity of
designers and animators.

In his thesis, Mc Donnell proved that SQM is a�ected by severe limitations when
the object which needs to be modeled is inorganic or it hasn't a clear structure.
These limitations are more an intrinsic characteristic of the modeling system rather
than a consequence of the limited set of node types of the original SQM method.

This project proposes a new modeling system, based on the same mesh topology
that characterizes SQM, but it has been developed from a completely di�erent set
of principles: the mesh is a numerical approximation of the smooth surface that
the designer wants to model, it includes structural information regarding the object
which has been represented as well as surface details, but de�ning what is structure

https://www.time-association.org/
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and what is detail is a pure design choice. An e�ective modeling system maintains
a balance between those two layers and it supports both of them with di�erent,
although integrated, sets of mesh tools.

The modeling system that will be presented in this report is the result of an iterative
process that has rede�ned multiple times the characteristics of the desired tool, led
by a progressively deeper understanding of the of the mesh topology which ultimately
has a�ected also the concept of polar mesh itself.

This thesis doesn't provide a complete modeling tool, neither it is an exhaustive
exploration of opportunities and limitations o�ered by this approach, but it does
provide an overview of the potential that a modeling system based on polar meshes
can o�er. In this perspective this project yielded a positive outcome, it is de�nitely
a proof of concept that motivates further developments, both academically and
commercially, and there are the basics for a �rst integration with existing production
tools.

Lyngby, 15-July-2013

Daniele Brazzolotto

daniele.brazzolotto@gmail.com
http://linkedin.com/in/danielebrazzolotto

mailto:daniele.brazzolotto@gmail.com
http://linkedin.com/in/danielebrazzolotto
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Chapter 1

Introduction

Figure 1.1: Polar Mesh: example with an annular region (blue) surrounded by two
polar regions (red)

1.1 Prerequisites

In order to understand the frame that generates and supports this project, it is
important to have some preliminary knowledge on basic modeling concepts.



2 Introduction

The core of this thesis is the development of a modeling system, a collection of
technologies, tools and techniques that designers can use to produce 3D assets. In
other words a modeling system is the set of principles that are at the base of a 3D
modeling software and which are indirectly shown through the operations that the
tool makes available to the user.

A second key concept for this project is polar meshes, polygonal meshes charac-
terized by a strictly regulated topology that supports the polar subdivision scheme
[KP07b] and that can be seen as a collection of polar and annular regions [KP07a],
or more informally as a collection of cones and cylinders (�gure 1.1).

A fundamental property of polar meshes is that it is possible to procedurally infer
their skeleton, an abstract representation of the structure of the mesh, where the
object has been collapsed into a set of connected segments with the same branching
structure of the original model. This operation isn't always easy for general meshes,
but this particular topology makes it fast and convenient: cones and cylinders in
the mesh can be easily and intuitively collapsed into skeleton segments between the
top and the base of these individual elements, while the mesh connectivity de�nes
the way these bones are linked together to form the complete skeleton.

Figure 1.2: Polar Mesh: example of skeleton recognition for polar (red) and annular
(blue) regions

1.2 Purposes

In 3D multimedia productions, modeling is an activity that absorbs a considerable
portion of the overall e�ort: for example, according to a recent analysis [Sta, Ros]
and direct experience, in the development of a typical 3D video-game, the art
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department absorbs 40% to 75% of the entire production manpower. Modeling,
rigging1 and texturing2 the few organic objects requires 60% to 90% of the resources
of the art team and it a�ects 30% to 65% of the entire production cost. Therefore
a 30% optimization of the modeling phase will directly reduce the production cost
of 10% - 20%.

This project is part of a more general line of research that aims to speed-up and
simplify the modeling of complex objects, providing a better support for 3D mesh
manipulation. In this work, this goal will be reached de�ning and implementing
a set of mesh operations that will positively a�ect the modeling phase as well as
animations and procedurally generated content.

Nowadays the main problem with 3D modeling is the low level of abstraction: most
of the 3D tools allow the designers to work with vertices and faces, but nothing
more than that. It is like to construct a building with bricks and mortar: it surely
can be done, but prefabricated components can make the work faster, cheaper and
easier.

The idea behind this thesis is to exploit some of the characteristics of polar meshes
to give to designers the right tools to build and use the virtual equivalents of
prefabricated concrete components:

Skeleton: every polar mesh has an implicit skeleton, that can be procedurally in-
ferred run time. This isn't only suitable to automatically generate a bone
structure for future animations, but it is also a way to group vertices and
faces together. This is a �rst abstraction level to design operations that
a�ect several faces at once in a meaningful and coherent way.

Features: in a typical polar mesh, most of the skeleton segments are simply placed
in a line, without any branching. A consecutive, connected sequence of skele-
ton segments can be grouped in a feature. This is a second important ab-
straction level for interesting mesh operations, that get closer to how human
brain gives meaning to things: if you look at �gure 1.3, you will have no doubt
that it is a little man thanks mainly to the branching structure of the lines.
Mesh operations at feature level re�ect the way a designer thinks and means
and, for this reason, they can play an important role in tools that aim to be
e�ective and easy to use.

1Rigging: http://en.wikipedia.org/wiki/Skeletal_animation
2Texturing or texture mapping: http://en.wikipedia.org/wiki/Texture_mapping

http://en.wikipedia.org/wiki/Skeletal_animation
http://en.wikipedia.org/wiki/Texture_mapping
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Figure 1.3: Stylized man: example of human brain's capability to recognize shapes
based on branching structure

1.3 Expected outcomes

The bene�ts of the improved modeling system and of the higher abstraction level
not only cover di�erent areas of the 3D modeling pipeline but they are also the
basics for new real time techniques.

1.3.1 Faster modeling

A �rst important expected outcome is surely a faster modeling system: as it has
been previously discussed, modeling time can be signi�cantly reduced with feature
based tools and operations. This single improvement would be enough to justify the
entire thesis work as it has a direct impact on the costs of most 3D productions.

1.3.2 Agile modeling

A lesson that every software developer quickly learns is that a software (or a digital
product in general) is always a unique piece. Probably a similar need can be required
in the future, but the exact same need is very unlikely; therefore one can surely use
a previous work, but it must be changed and customized to the new request.

This fuzzy concept of re-usage is well known in the world of software development
as well as in some other areas, but unfortunately the production of 3D assets is far
behind on this process: ask a 3D artist to change the structure of a model and most
likely he will start from scratch again.

Although the mainstream culture in the art department is still waterfall based rather
than AGILE, it is also true that most of existing tools don't support approaches based
on re�nements and probably these two aspects are related.

A modeling system based on polar meshes can actually support an AGILE approach,
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not only because the designer can step by step re�ne the mesh up to the desired
level of details, but also because there is an implicit skeleton that can be used to
automatically rig the mesh to the bones. The designer at this point is free to adjust
and re�ne a completely animated character without compromising the entire rigging
and animations already set up.

Moreover it is also possible to select entire features, to copy them into other models
or to save them for later usage. This is the base of a new generation of object
libraries, where the old copy-paste pattern is replaced by the more �exible recombine-
customize: the upper body of an alien and the lower body of a humanoid can be
mixed together, can be re�ned to adjust the mesh details and a complete new
character is served. Rigged, animated and textured for free.

Waterfall and AGILE development

Waterfall [Roy70] is a linear development process where the project follows a se-
quential life cycle: the new development phase starts only when the previous has
been fully completed. This was the �rst method that has been applied to the devel-
opment of digital products and it often leads to unbounded delays and increments
of the production cost.

The antithesis of waterfall is AGILE [HF01], a term introduced in 2001 to group a
class of iterative and incremental development methods, where the digital product
evolves in rapid cycles: in each iteration self organized and cross functional teams
execute the entire production pipeline, from requirements speci�cation to release
and consequently at the end of each cycle a working product is always available for
reviews. The feedback that is possible to gain at the end of each iteration is an
important component of the AGILE method and it allows the team to start the new
cycle with the most updated requirements.

The bene�ts of the AGILE approach has been largely proven in the software devel-
opment world, but the same principles can be applied straight forward in almost any
digital production.

1.3.3 Animations

Some of the bene�ts of a mesh with an implicit skeleton is the animation system,
which can be simpli�ed to support a more direct application of the standard IK
technique.

Polar meshes provide also a good support to physically based behaviors, computed
in real time using the structural information intrinsically embedded in the mesh
topology: the global deformation can be implemented as a combination of localized
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behaviors which are substantially independent from the speci�c skeleton shape and
that can be therefore applied to a broad range of di�erent meshes.

A completely di�erent world of possibilities is provided by morphing: features and
skeleton segments give meaningful information about the object structure and they
can be exploited to coherently blend the mesh among two states. The deep under-
standing of the mesh structure that the algorithm have at run-time is so powerful
that it is possible to dynamically add, change or remove entire mesh features, such
as character tails and horns.

1.3.4 Procedurally generated content

Another set of applications of the new modeling system is related to procedurally
generated content. This vast area can clearly bene�t from a mesh topology that
includes clear structural information and that can be exploited to simplify the design
of a broad range of algorithms, from procedural shape deformation to graphical
representations of L-Systems.

Another interesting application is the automatic tweaking of the level of detail,
that can be achieved in both direction exploiting the properties of polar meshes:
it is possible to automatically reduce the level of detail, rating the importance
of each edge compared to its position in the structure and evaluating a possible
simpli�cation, but it is also possible to analyze the curvature of the surface in order
to increase its detail level (for certain extent) without compromising the shape
de�ned by the designer. This can be done using di�erent interpolation techniques.

1.4 The project

The main focus of this project is therefore exploring the bene�ts that a modeling
system based on polar meshes can lead, regarding the pure object modeling as well
as the animation system and the production of procedurally generated content.

Although these three aspects will be independently analyzed and presented in the
three main parts of this document, it is important to acknowledge how they relate
to each other and their own relative weight.

The modeling tool isn't only a good start point for the project but it is also a
fundamental prerequisite for the animation system and the procedurally generated
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Procedurally generated

content

Animation engine

Modeling system

Figure 1.4: Project structure

content, and both those aspects use the same core operations de�ned in the model-
ing tool. The same role of prerequisite is also played by the animation engine towards
the procedural content creation when the output of the algorithm is animation poses
rather than (or additionally to) object shapes.

The core of the modeling system, will be described in the homonymous part, while
the following sections will explore the possibilities that the modeling tool can o�er
on top of that. The reader is highly recommend to follow the document step
by step, or in case she/he needs a quicker, although incomplete, overview on the
project, the suggestion is to read the modeling part and the conclusions, which
are both de�nitely a must, while the discussion regarding animation systems and
procedurally generated content can be eventually skipped.
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Part I

Modeling





Chapter 2

A new modeling system

Figure 2.1: Polar mesh: examples of polar (top left) and annular (bottom left)
regions. (source: [JAB12])

2.1 Concept of polar mesh

Most of the interesting models in computer graphics are, or they are composed by,
subdivision surfaces[Wik] and in these cases the mesh of the object is just a numerical
approximation of the smooth surface that the designer wants to represent. In this
sense it is possible to obtain a better representation of the underlying surface using
subdivision methods and techniques.
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As presented by Thomas J. Cashman, over the past 15 years di�erent subdivision
schema have been developed, and nowadays they are a fundamental component of
every modeling system. The standard de facto in this �eld is Catmull-Clark, the
�very �rst subdivision schema for surfaces� [Cas12] that inspired several others, all
based on recursion of simple rules.

An easy way to de�ne subdivision surfaces is using �a sequence of nested spline rings
converging to an extraordinary point� [KP07a], and in this case Catmull-Clark (and
most of the other methods) poorly performs, especially when the valence is high.

Kar£iauskas and Peter, instead, proposed an alternative layout where the valency can
be progressively adjusted in such a way that if n is the valency of the extraordinary
point, then each ring is a sequence of n segments smoothly interconnected. Meshes
that shows this layout are called polar regions and they completely avoids the typical
corners yield by the Catmull-Clark subdivision schema. As an extension, it is also
possible to de�ne annular regions, where the extraordinary point has been removed
together with the triangle fan that it supports.

A mesh composed by an interconnected set of polar and annular regions is called
polar mesh [JAB12]and it supports and has a closure under the polar subdivision
schema.

2.2 SQM: Skeleton to Quad Mesh

Figure 2.2: ZBrush: usage of ZSpheres to de�ne the model's structure (left) before
creating the polygonal mesh (right). Source: http://pixologic.com/

http://pixologic.com/
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Skeletons are the de facto standard for most of the animations that are daily im-
plemented in the 3D industry, however in the typical production pipeline the mesh
is �rstly created and later skinned to match its skeleton. It is important to notice
that, in this case, the CGI artist doesn't exploit the shape information that he can
get from an easy to create skeleton: not only the high poly mesh is created directly
from scratch but later it has to be manually skinned to match its skeleton, so the
designer has to deal twice with a complex mesh object rather than exploit a simple
skeleton structure.

In their work J. A. Bærentzen, M. K. Misztal and K. Welnicka �ipped all of this:
they developed an algorithm to procedurally generate a polar mesh based on a given
skeleton (SQM: Skeleton to Quad Mesh[JAB12]). A similar approach is also used
in Z-Brush, the well known modeling software, and it requires that the CGI Artist
designs a skeleton for the object before the mesh generation.

In SQM the CGI artist models the skeleton, that is considerably simpler than a full
high poly object, then he just needs to procedurally generate the �nal mesh. In
�gure 2.3 it is shown an example.

This method surely requires CGI artists with good abstraction skills, as it isn't always
easy to recognize the right skeleton for a desired polygonal mesh, but it is incredibly
faster than any traditional sculpturing tool.

Figure 2.3: SQM: example from Bærentzen's paper [JAB12]
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2.3 This project as an evolution of SQM

In his thesis [Don12], Michael Mc Donnell proved that SQM is a fairly good tool
to model rough organic objects, but it su�ers from severe limitations when the
object that needs to be shaped is inorganic or it hasn't a clear structure. His initial
assumption was that these limitations can be overcome with a richer set of skeleton
nodes. This wasn't only supported by Leblanc's work [LLP11], but somehow it also
makes sense: the skeleton de�nes the branching structure of the entire objects but
it lacks of all the skin details. Imagine to �nd the bones of an alien, not the skin
just the skeleton; is it really possible to infer its silhouette? Not really. In the same
way SQM can guess the skin of the skeleton that has been modeled, but additional
information is needed in order to correctly infer the right mesh.

It turned out that a richer set of nodes isn't enough to substantially expand the
expressiveness of the SQM method, that remains strongly limited in its original
�eld.

From this point of view, this thesis represents an evolution of the SQM method,
but it does it from di�erent considerations, those leads to a completely di�erent
modeling system.

Figure 2.4: Example of di�erent level of details for a humanoid skeleton

A comparison of the head and the gear modeled with the (improved) SQM showed
both sides of the problem: the character head is pour because it hasn't a clear
skeleton structure, while the gear has a correct structure but it lacks of details (the
�nal vertices are in the wrong positions).

Together these two observations lead to a more general problem: in each mesh it is
surely possible to identify a skeleton structure that can (and should) be exploited
to speed up the modeling, but there are also mesh details, parts of the mesh that
aren't a�ected by the skeleton structure but that are important to model high quality
objects.

De�ning what is skeleton and what is mesh detail is a pure design choice.
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In �gure 2.4 it is shown the skeleton of an humanoid at di�erent levels of details. It
is easy to imagine a full human body on top of each skeleton and, from this point
of view, moving to a more complex bones structure reduces the features that are
de�ned as mesh details.

The same concept can be seen comparing a traditional modeling system (Maya,
3DS Max..) where each mesh feature is in fact a mesh detail, with SQM where
everything is skeleton and the concept of mesh detail has been completely removed.

In a good modeling system there must be a balance between mesh
skeleton and mesh details.

This will be one of the basic assumptions behind this project, and it is the result
of considerations on Mc Donnell's work as well as on some of the design choices in
Z-Brush.

Goal Improved Skeleton Improved SQM

Figure 2.5: Example of SQM: Comparison of the head and the gear, images from
[Don12]

2.4 The new modeling system

One of the main goals of this thesis is the de�nition of a modeling system than can
o�er a balanced combination between the needs of an high level modeling (structure
de�nition) and low level modeling (mesh details).
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Two di�erent set of operations will be used to make the de�nition of the mesh
structure (and consequently its skeleton) easy and fast, as well as to model mesh
details with precise vertices placement:

The High level modeling: a set of operations that interact with the polar struc-
ture of the model:

� Add/Remove Re�nement: increase or decrease the valency of a pole

� Add/Remove feature: create or remove a branch on the speci�ed po-
sition.

� Merge/Split feature(s): merge two polar regions on a single annular
region. In the inverse operation an annular/polar region is split in two
separate polar regions.

Low level modeling: the mesh details instead can be fully de�ned with the 3 most
traditional mesh operations. Please note how none of the following tools can
a�ect the mesh structure in any way:

� Move: translate the selected group of vertices

� Scale: increase or decrease the relative distance of a group of vertices

� Rotate: spin the selected group of vertices around its relative center

The bene�ts of this approach will be proved developing a prototype that will strictly
support only this new modeling paradigm, where the mesh operations will be closed
towards the polar/annular property (each operation will be applied to a polar mesh
and it will output a polar mesh) and the mesh skeleton will be inferred run-time
directly from the mesh vertices. In order to test the real expressiveness of this
approach no additional post-processing will be supported.

2.5 Consideration on mesh topology

2.5.1 Triangles vs Quad dominant meshes

Although the rendering systems historically support mesh based on arbitrary (con-
vex) polygons, today the entire modeling world processes only quad or triangles
based meshes. The main reason for this evolution is the huge performance bene�ts
leaded both by the limited number of vertices per primitive and the hardware paral-
lelization that characterizes modern GPUs; but although both the recent GPUs and
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the rendering engines are designed, implemented and optimized for triangle based
meshes, designer and CGI Artists often prefer quads.

Quad dominant meshes have two big bene�ts [Dil] compared to triangles based
meshes:

Subdivision methods: there are subdivision methods that work on triangles as well
(
√
3 Subdivision by Kobbelt [Kob00] for example), but quad based subdivision

methods give, in general, a better control to the designer regarding the desired
level of detail and they yield more balanced meshes.

Edge loops: another interesting aspect is the de�nition and preservation of edge
loops, set of connected edges that de�ne close rings. It is easy to prove that
general triangle meshes don't easily yield edge loops, simply due to their odd
number of vertices per primitive, but edge loops are an important feature to
avoid artifacts on animations that involve blending and folding.

Figure 2.6: Polar Mesh: edge loops highlithed in red.

2.5.2 Polar meshes from a topology prospective

Polar meshes are surely an interesting case of quad dominant meshes and they
fully preserve edge loop structure: as previously de�ned a polar mesh is a smoothly
interconnected set of polar and annular regions, each of them de�ned as a sequence
of spline rings. It is trivial to see that each spline ring is in fact an edges loop.

Polar meshes naturally supports the polar subdivision schema [KP07b], a subdivision
methods that changes the valency of the polar/annular region without compromising
the loops of edges.
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Chapter 3

Polar Meshes

Polar meshes can be more formally de�ned with few de�nitions:

Annular region If Q = (q1, q2..qn) is a tuple of quads, each of them de�ned by
four edges qi = (hi1, hi2, hi3, hi4), Q is called an annular region if ∀qi ∈ Q hi1 =
h(i−1)3 ∧ hi3 = h(i+1)1. In this case the tuples L1 = (h12, h22, ..hn2) and L2 =
(h14, h24, ..hn4) are nested spline rings and they are called loops of the annular
region.

Pole and pole region A pole is a vertex p center of the triangle fan T =
(t1, t2..tn), marked as a �pole�. If each triangle is de�ned by ∀ti ∈ T ti =
(p, hi, hmodn(i+1)), than L = (h0, ..hn) is called loop of the pole. T , the trian-
gle fan itself is called pole region.

Loop A loop is a tuple of edges L = (h0, ..hn), where each edge hi ∈ L is de�ned
by two vertices hi = (vi, vmodn(i+1)).

For each loop in the mesh, there are at least 2 elements that share the loop, which
are either annular or polar regions;
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For each loop edge in the mesh there are exactly 2 elements that share the loop,
which are either annular or polar regions;

Backbone A backbone is a connected path of non-loop edges either between two
poles or that loop itself:

� if the backbone, de�ned as the tuple of edges B = (h0, ..hn), is a path
between the poles p1, p2, then each edge is de�ned by two vertices ∀hi ∈
B \ {h0, hn} hi = (vi, vi+1), h0 = (p1, v2) and hn = (hn−1, p2).

� if the backbone, de�ned as the tuple of edges B = (h0, ..hn), is a closed path,
then each edge is de�ned by two vertices ∀hi ∈ B hi = (vi, vmodn(i+1)).

In both cases none of the internal edges can be part of a loop: ∀hi ∈ B ¬∃L in
the mesh |hi ∈ L (design constrain).

Figure 3.1: Polar mesh: example

3.1 Notation

In order to keep a precise but concise description, for the following sections a math-
ematical notation will be used to describe polar mesh components and some basic
operations that a�ect them:
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3.1.1 Mesh elements

V set of vertices of the mesh

P ⊆ V set of poles of the mesh

H set of halfedges of the mesh

F set of faces of the mesh

3.1.2 Properties of mesh elements

3.1.2.1 Vertices

v = vert(h) vertex v ∈ V pointed by the halfedge h ∈ H

Vx = vert(Hx) Vx = {vert(h)|h ∈ Hx ⊆ H}
Hx = out(v) set of halfedges Hx outgoing from the vertex v

Hx = out(Vx) Hx = {out(v)|v ∈ Vx ⊆ V }
p = pos(v) position of the vertex v in global coordinates

3.1.2.2 Faces

f = face(h) face f ∈ F associated with the half edge h ∈ H.

Fx = face(Hx) Fx = {face(h)|h ∈ Hx ⊆ H}
Hx =

halfedges(f)

Hx = {h ∈ H|f = face(h)}, in other words Hx is the set of

halfedges that de�nes the face f

Hx =

halfedges(Fx)

Hx = {halfedges(f)|f ∈ Fx ⊆ F}

3.1.3 Basic mesh navigation

h2 = opp(h1) if h1 ∈ H exists between v1 ∈ V and v2 ∈ V , such as

v1 = vert(h1), then h2 ∈ H exists between v1 and v2 and

v2 = vert(h2)

h2 = next(h1) h2 immediately follows h1in the de�nition of f = face(h1), with

h1 ∈ H and h2 ∈ halfedges(face(h1))

h2 = prev(h1) if h1 = next(h2), with h1 ∈ H and h2 ∈ halfedges(face(h1)). In

other words h2 immediately precedes h1in the de�nition of

f = face(h1)
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3.1.4 Basic mesh operations

v = split_edge(h) splits the half edge h ∈ H in half by creating the new

vertex v ∈ V .

split_face(f, v1, v2) splits the face f ∈ F by creating a new edge between v1

and v2, with v1, v2 ∈ vert(halfedges(f))

merge_edges(h1, h2) if px = vert(h1) = vert(opp(h2)) then it merges the two

halfedges, removing the vertex px.

merge_faces(h, f1, f2) merges the faces f1 and f2 removing the common edge h

remove_vertex(v) removes the vertex v from V

remove_edge(h) removes the halfedge h from H

remove_face(f) removes the face f from F

(h1, h2) =

create_edge(v1, v2)

creates a pair of halfedges between the vertices v1 and v2,

such as h1 = opp(h2), vert(h1) = v1 and vert(h2) = v2

f = create_face(Vx ⊆ V ) creates a new face f from the list of vertices Vx

3.2 Topological Properties

Some of the topological properties that characterize polar meshes will be highlighted
in this section. These properties are important to understand the reasons of some
of the design choices that will be later presented in this report.

3.2.1 Poles arbitrariness

Prop It isn't always possible to uniquely identify the poles from the mesh topology.

Proof In �gure 3.2 it is shown a regular octahedron. The symmetry in the mesh
makes the choice of the poles (in red) completely arbitrary and both of the proposed
solutions are possible.

Consequences As poles can't be dynamically inferred on the �y, it is necessary
to explicitly store the list of vertices that assume this role in the mesh. This set of
pole markers can be created when a new mesh is imported into the system and it
has to be updated after the execution of each mesh operation.
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Figure 3.2: Poles arbitrariness: visual proof

3.2.2 Loops arbitrariness

Prop It isn't always possible to uniquely identify the loops from the mesh topology.

Proof In �gure 3.3 it is shown an example where the choice of loops and backbones
is completely arbitrary.

Consequences As loops can't be dynamically inferred on the �y, it is necessary
to explicitly store the list of halfedges that assume this role in the mesh. This set of
markers can be managed in the same way that the list of poles has been handled:
it can be created when a new mesh is imported into the system and it has to be
updated after the execution of each mesh operation.

Figure 3.3: Loops arbitrariness: visual proof
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3.2.3 Loop and backbone connectivity

Prop

� If h is a loop edge, then next(h) is a backbone edge.

� If k is a backbone edge and vert(k) isn't a pole, then next(k) is a loop edge.

Proof To demonstrate both sentences, lets analyze annular and polar regions sep-
arately:

� In annular regions each quad is by de�nition a sequence of backbone-loop-
backbone-loop edges, therefore both propositions are trivially true.

� In polar regions instead each triangle is de�ned by a loop edge followed by 2
backbone edges. As the pole is always between these last two, it is easy to
see that both statements are true also in polar regions.

3.3 Iterators

A key prerequisite of all the operations that have been implemented is their ability
to navigate the mesh. Some halfedge iterators has been built for this purpose:

Loop iterator: given an half edge, it walks along the entire loop or backbone where
the half edge lies.

Parallel iterator: given an half edge, it iterates through all the half edges that are
parallel to the initial one.

Fan iterator: given a pole, it iterates through all the halfedges outgoing from the
pole

3.3.1 Loop iterator

Input h0 ∈ H
Output O = {h0} ∪ {next(opp(next(h)))|h ∈ O ∧ vert(h) /∈

P} ∪ {prev(opp(prev(h)))|h ∈ O ∧ vert(opp(h)) /∈ P}
Function O = Loop(h0)
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3.3.2 Parallel iterator

Input h0 ∈ H
Output B = Loop(next(h0)) if vert(h0) /∈ P

B = Loop(prev(h0)) otherwise.
O = {next(h)|h ∈ B ∧ vert(h) /∈ P}

Function O = Parallel(h0)

3.3.3 Fan iterator

Input p ∈ P
Output O = {h|h ∈ H ∧ vert(opp(h)) = p}
Function O = Fan(p)

3.4 Features

3.4.1 De�nitions

Nesting Loop A nesting Loop is a Loop of the mesh that supports a breach in
the mesh skeleton. More formally a nesting loop is a loop L = (h0, ..hn) where
∃hi ∈ L|valency(hi) > 4 ∧ vert(hi) isn't pole.

Skeleton segment A skeleton segment is what most of 3D modeling systems call
bone and it is an abstract representation of an annular or polar region:

Annular region: de�ned by the loops L0 and L1 implicitly de�nes the skeleton seg-
ment S between the points P0 = 1

|L0|
∑

pos(vert(L0)) and P1 =
1
|L1|

∑
pos(vert(L1)).

Polar region: de�ned by the pole P and the loop L implicitly de�nes the skeleton
segment S between the points P and P1 = 1

|L|
∑

pos(vert(L)).

Feature A feature is a group of polar and annular regions that implicitly de�nes a
chain of consecutive and connected skeleton segments between 2 nesting loops, or
2 poles or 1 nesting loop and 1 pole. These elements are called boundaries of the
feature.
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3.4.2 Child features

The skeleton of a polar mesh is an undirected graph therefore there is no notion of
parent-child relation between features. It is important to acknowledge that SQM
yields tree based skeletons instead, and due to some of its design choices, it does
have a parent-child relation between skeleton nodes, while it doesn't natively support
loops. Both these aspects will have an important impact on the capabilities of the
newly designed modeling system.

Proof In �gure 3.4 it is shown a clear example where it is impossible to infer any
parent-child relationships between features. In facts all these scenarios are possible:

� The feature associated with pole A is a child of the features associated with
B-C

� The feature associated with pole B is a child of the features associated with
A-C

� The feature associated with pole C is a child of the features associated with
A-B

Pole A Pole B

Pole C

Figure 3.4: Example polar mesh where it is impossible to infer a parent-child rela-
tionship between features
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Core Operations

In this chapter it will be presented the 7 polar mesh operations that have been
designed, implemented and tested. These operations represent the core of the high
level modeling system and they concretely increase the abstraction level of the tool
that has been developed.

4.1 Add re�nement

Add a loop or a backbone at the speci�ed point. Conceptually:

� when a loop is added, it generates a new annular region from an existing polar
or annular region

� when a backbone is added, it increase the valency of the interested regions.

4.1.1 Speci�cation

1 vo i d addRef inement ( ha l fEdge h0 )
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h0 is one of the half edges those will be splitted during the operation. In general
H0 = Parallel(h0 ∈ H) are all and only the a�ected half edges.

Figure 4.1: Example of addRe�nement used to add a loop

4.1.2 Implementation

1 l i s t t o S p l i t
2 f o r h i n H0 :
3 p = sp l i t_edg e ( h )
4 d e f i n e P o s i t i o n ( p )
5 t o S p l i t . push_back (h , p )
6

7 f o r i i n [ 0 . . t o S p l i t . l e n g t h ] :
8 h = t o S p l i t [ i ] . h
9 p0 = t o S p l i t [ i ] . p

10 p1 = t o S p l i t [ ( i +1)%t o S p l i t . l e n g t h ] . p
11 i f ( v e r t ( nex t ( h ) ) i s Pole ) :
12 p1 = v e r t ( nex t ( h ) )
13 s p l i t_ f a c e ( f a c e ( h ) , p0 , p1 )
14

15 newH = ha l f e d g e ( p0 , p1 )
16 i f ( ! i sLoop ( h0 ) ) se tLoop (newH)
17 e l s e se tLoop ( next (newH) )
18

19 px = v e r t ( p r ev ( opp ( h ) ) )
20 i f ( px i s Pole ) :
21 s p l i t_ f a c e ( f a c e ( opp ( h ) ) , p0 , px )
22 newH = ha l f e d g e ( p0 , px )
23 se tLoop ( next (newH) )

4.1.3 Description

Add re�nement is an operation to add loops and backbones to the mesh:
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� to add a loop, addRe�nement needs to be applied to one of the backbone
edges that is going to be splitted with the new loop.

� to add a backbone, addRe�nement needs to be applied to one of the loop
edges that is going to be splitted with the new backbone.

The algorithm operates in 3 steps:

1. it collects all the edges that are parallel to the given parameter, until it closes a
loop or it will reach the extreme poles (standard usage of the parallel iterator).

2. it splits the collected edges with new vertices

3. it splits the faces associated with the collected edges, generating the new
re�nement and it marks the newly created edges as loops and backbones.

4.1.4 Limitations

AddRe�nement can be applied to every edge of the mesh without any speci�c
limitation.

4.2 Remove re�nement

Remove a loop or a backbone from the mesh. Conceptually:

� when a loop is removed, it merges an annular region into a polar region or
into another annular region

� when a backbone is removed, it reduced the valency of the interested regions

4.2.1 Speci�cation

1 vo i d removeRef inement ( ha l fEdge h0 )

h0 is one of the half edges that are part of the re�nement that needs to be removed.
In general all edges in H0 = Loop(h0 ∈ H) will be removed at the end of the
operation, which can be applied if and only if ∀h ∈ Loop(h0) Loop(h) =



30 Core Operations

Loop(h0), or in other words if and only if the selected half edge isn't part of
a loop where a feature is nested.

Figure 4.2: Example of removeRe�nement used to remove a backbone

4.2.2 Implementation

1 l i s t toRemove
2 f o r h i n Loop ( h0 ) :
3 f 1 = f a c e ( h )
4 f 2 = f a c e ( opp ( h ) )
5 i f ( v e r t ( h ) i s not Pole ) :
6 toRemove . push_back ( opp ( next ( h ) ) )
7 merge_faces (h , f1 , f 2 )
8 f o r h i n toRemove :
9 merge_edges (h , nex t ( h ) )

4.2.3 Description

This operation can be used to remove a loop or a backbone from the mesh. In both
cases it must be applied to an edge of the loop or backbone you wish to remove.
removeRe�nement applies two steps:

1. It removes each edge in the re�nement, merging the two adjacent faces

2. It removes the unnecessary vertices

4.2.4 Limitations

In order to keep the structure of the mesh coherent, this operation can't be applied:
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� To remove the last loop that keeps two poles separated (Figure 4.3-a).

� To remove loops that support nested features (Figure 4.3-b). In order to
remove these re�nements it is necessary to remove all the nested features
�rst.

� To decrease to 0 the valency of one or more regions (Figure 4.3-c).

(a) (b) (c)

Figure 4.3: removeFeature: examples where it isn't possible to proceed.

4.3 Add Feature

It adds a new feature and it nests it at the speci�ed position. The size of the gap
that will host the new feature and its valency are de�ned with the number of input
vertices.

4.3.1 Speci�cation

1 vo i d addFeature ( v e r t e x [ ] VV)

VV collection of vertices that de�nes the size of the supporting gap and the valency
of the new feature.

� Constrains:

� ∀p ∈ V V p ∈ V ∧ p /∈ P

� VV is a collection of consecutive vertices on the same loop, therefore
@h ∈ H|vert(h) ∈ V V ∧vert(next(h)) /∈ V V ∧vert(next(next(h)) ∈
V V

� If p is the newly created pole, |out(p)| = 2 ∗ (|V V | − 1)
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Figure 4.4: Example of addFeature

4.3.2 Implementation

1 Hal fEdge ex t r emeLe f t , e x t r emeR igh t
2 e x t r emeLe f t = ge tLe f tMos tVe r t e x ( vv )
3 ex t r emeR ight = getR ightMos tVe r t ex ( vv )
4 l oop = g e t I n t e r e s t e d L o op ( vv )
5

6 H = Loop ( opp ( e x t r emeLe f t ) )
7 l i s t newVerts
8 newVerts . push_back ( v e r t ( e x t r emeLe f t ) )
9 f o r h i n H:

10 i f ( h==ext r emeR ight ) : break
11 newTop = sp l i t_edg e (h , h+1)
12 s p l i t_ f a c e ( f a c e ( h ) , newVerts . back ( ) , newTop )
13 se tLoop ( h a l f e d g e ( newVerts . back ( ) , newTop ) )
14 newVerts . push_back (newTop )
15

16 d e f i n e P o s i t i o n ( h )
17 d e f i n e P o s i t i o n ( newTop )
18 i f ( h!= ex t r emeLe f t ) merge_faces ( f a c e ( h ) , h−1)
19

20 s p l i t_ f a c e ( f a c e ( h ) , newVerts . back ( ) , ex t r emeR ight )
21 se tLoop ( h a l f e d g e ( newVerts . back ( ) , ex t r emeR igh t ) )
22 merge_faces ( f a c e ( h ) , h−1)
23

24 Ver tex p = sp l i t_ f a c e_v e r t e x ( f a c e ( h ) )
25 s e tPo l e ( p )

4.3.3 Description

The algorithm follows 4 steps:

1. It identi�es the left most and right most vertices of the input
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2. It iterates over the selected vertices left to right, splitting the top faces in order
to generate the upper side of the loop gap. It reuse the existing loop to de�ne
the lower side and it sets the newly generated edges as loop components.

3. It merges the inner faces in a single big polygon

4. It creates the �nal triangle fan splitting the big polygon with a vertex

4.3.4 Limitations

� Features must be nested on skeleton nodes, therefore it isn't possible to de�ne
features along backbones, only on loops (Figure 4.5-a).

� It is possible to nest several features on the same skeleton node, therefore it
is possible to de�ne multiple features on the same loop (Figure 4.5-b).

� It is possible to de�ne features on loop edges that are the boundary of an
existing nested feature (Figure 4.5-c).

� It isn't possible to de�ne features only partially overlapped with other features
or, in other words, if a loop supports nested features, then it must support
the entire features' gap (Figure 4.5-d).

(a) (b) (c) (d)

Figure 4.5: addFeature: examples.

4.4 Select Feature

Identify and select all the components of the feature associated with the given face.

4.4.1 Speci�cation

1 se t<face s > s e l e c t F e a t u r e ( f a c e f )
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f face of the mesh

return the set of faces that are part of the same feature of f

4.4.2 Implementation

1 r e t = new set<face s >()
2 b = getBackboneEdge ( f )
3 B = Loop ( b )
4 f e a tu r eFound=f a l s e
5 f o r backbone i n B:
6 i f ( f ea tu r eFound ) : break
7 i f ( i s P o l e ( v e r t ( backbone ) ) ) :
8 fanLoop = Fan ( v e r t ( backbone ) ) :
9 f o r l i n fanLoop :

10 r e t . push_back ( f a c e ( l ) )
11 break
12 l oop = Loop ( next ( backbone ) )
13 f o r l i n l oop :
14 r e t . push_back ( f a c e ( l ) )
15 i f ( v a l e n c y ( v e r t ( l ) )>4) :
16 f e a tu r eFound=t r u e
17

18 i f ( f ea tu r eFound ) :
19 B = Loop ( opp ( b ) )
20 f o r backbone i n B:
21 i f ( f ea tu r eFound ) : break
22 i f ( i s P o l e ( v e r t ( backbone ) ) ) :
23 fanLoop = Fan ( v e r t ( backbone ) ) :
24 f o r l i n fanLoop :
25 r e t . push_back ( f a c e ( l ) )
26 break
27 l oop = Loop ( next ( backbone ) )
28 f o r l i n l oop :
29 r e t . push_back ( f a c e ( l ) )
30 i f ( v a l e n c y ( v e r t ( l ) )>4) :
31 f e a tu r eFound=t r u e
32

33 re tu rn r e t

4.4.3 Description

First of all, the algorithm identi�es a backbone edge of the input face, then it moves
forward and backwards along that backbone adding each loop to the result set. The
process stop when one of the following conditions is met:

� The backbone loops and the algorithm is at the original start point.
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� A pole is reached and the polar region is added to the result set.

� A vertex with higher valency is detected, unique sign of the presence of nested
features.

4.5 Remove Feature

Remove the feature associated with the given face.

4.5.1 Speci�cation

1 vo i d removeFeature ( f a c e f )

f face associated to the feature to remove.

� Constrains:

� In the loop that represent the boundary of the feature there must
be exactly two vertices with valency higher than 4 (split vertices)

� Along the boundary loop, the split vertices are connected with two
di�erent paths. These paths must have the same number of internal
vertices.

Figure 4.6: Example of removeFeature

4.5.2 Implementation
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1 po l e = ge tFea t u r ePo l e ( f )
2 B = Loop ( out ( po l e ) )
3 // 1 − S t r u c t u r a l check
4 f e a tu r eFound = f a l s e
5 f o r backbone i n B:
6 i f ( f ea tu r eFound ) : break
7 l oop = Loop ( next ( backbone ) )
8 f o r l i n l oop :
9 i f i s S p l i t ( l ) :

10 i f ( ! i s G o o dSp l i t P o i n t ( l ) ) re tu rn
11 s p l i t E d g e = l
12 stopLoop = next ( backbone )
13 f e a tu r eFound=t r u e
14 break
15

16 // 2 − Remove i n t e r n a l l o op s
17 f e a tu r eFound=f a l s e
18 whi le ( ! f ea tu r eFound ) :
19 Hal fEdgeID b = out ( po l e )
20 Hal fEdgeID h = next ( b )
21 L = Loop ( h )
22 f o r l i i n L :
23 i f ( l i . i s S p l i t ( ) ) : f ea tu r eFound=t r u e
24 i f ( ! f ea tu r eFound ) removeLoops ( h )
25

26 // 3 − Prepa re edge l i s t s
27 L1 = Loop ( s p l i t E d g e )
28 L2 = Loop ( s p l i t E d g e )
29 l i s t faceTop , faceBottom , edgeTop , edgeBottom
30 i 1=1
31 i 2=0
32 do :
33 i 2=( i 2 +1)%L2 . l e n g t h
34 i 1 = ( i1 −1)%L1 . l e n g t h
35 l 1=L1 [ i 1 ]
36 l 2=L2 [ i 2 ]
37 faceTop . push_back ( f a c e ( ck . opp ( l 1 ) ) )
38 faceBottom . push_back ( f a c e ( opp ( l 2 ) ) )
39 edgesTop . push_back ( l 1 )
40 edgesBottom . push_back ( l 2 )
41 pos ( v e r t ( l 2 ) ) = ( pos ( v e r t ( l 2 ) )+pos ( v e r t ( opp ( l 1 ) ) ) ) /2 .0 f
42 whi le ( v e r t ( l 2 ) != v e r t ( opp ( l 1 ) ) )
43

44 // 4 − Remove t r i a n g l e fan
45 F = Fa n I t e r a t o r ( po l e )
46 f o r f i i n F :
47 remove_face ( f a c e ( f i ) )
48 remove_edge ( opp ( f i ) )
49 remove_edge ( f i )
50

51 remove_vertex ( po l e )
52

53 // 5 − F i x S t r u c t u r e
54 eTop = edgesTop . beg in ( )
55 eBottom = edgesBottom . beg in ( )
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56 fTop = faceTop . beg in ( )
57 fBottom = faceBottom . beg in ( )
58 whi le ( eTop!=edgesTop . end ( ) ) :
59 s e t_ve r t ( opp ( eTop ) , v e r t ( eBottom ) )
60 s e t_ve r t ( opp ( next ( opp ( eTop ) ) ) , v e r t ( eBottom ) )
61

62 s e t_ve r t ( eTop , v e r t ( opp ( eBottom ) ) )
63 s e t_ve r t ( p r ev ( opp ( eTop ) ) , v e r t ( opp ( eBottom ) ) )
64

65 s e t_face ( eBottom , f a c e ( opp ( eTop ) ) )
66 connect_next_and_prev ( p r ev ( opp ( eTop ) ) , eBottom , , nex t ( opp ( eTop ) ) )
67

68 s e t_ l a s t ( fTop , eBottom )
69 set_out ( v e r t ( eBottom ) , opp ( eBottom ) )
70 set_out ( v e r t ( opp ( eBottom ) ) , eBottom )
71

72 i f ( v e r t ( eTop ) != v e r t ( opp ( eBottom ) ) )
73 remove_vertex ( ck . v e r t ( eTop ) )
74

75 remove_edge ( opp ( eTop ) )
76 remove_edge ( eTop )
77

78 ++eTop
79 ++eBottom
80 ++fTop
81 ++fBottom

4.5.3 Description

To remove an existing feature several steps are necessary:

1. Check the structure to identify the split vertices (valency higher than 4). If
more than 2 split vertices are detected or if they are placed in inconvenient
positions, the operation is aborted.

2. Remove all internal loops to reduce the feature to a triangle fan

3. Adjust vertices position

4. Remove the triangle fan

5. Close the gap, paring and merging top and bottom faces.

4.5.4 Limitations

A �rst important limitation is actually related to the current prototype implementa-
tion: it is possible to remove features only if they are bounded between a loop and
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a pole. Features bounded by two loops can't be removed straight away but they
need to be �rstly splitted and then removed with a distinct operation.

This algorithm is also a�ected by other limitations, more deeply connected to the
modeling system: in facts in its last step, it can actually compromise the polar
structure of the mesh unless some conservative constrains are maintained. In order
to safely remove the feature there must be exactly 2 split vertices on the boundary
loop of the mesh to remove (�gure 4.7-b) and they need to be connected with two
di�erent paths, which must have the same number of internal vertices (�gure 4.8).

It is easy to demonstrate that these constrains are su�cient but not necessary (in
�gure 4.7-a for example it is theoretically possible to remove the yellow feature but
it isn't allowed in the current prototype), nonetheless it is important to maintain
the polar structure and, on the other hand, none of these conditions really limits
the expressiveness of the system.

(a) operation possible, but unsupported (b) operation impossible

Figure 4.7: removeFeature: limitations due to nested features.

(a) operation impossible (b) operation possible

Figure 4.8: removeFeature: symmetric limitations.
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4.6 Merge Features

Merge two features, bridging the poles

4.6.1 Speci�cation

1 vo i d mergeFeature ( v e r t e x p1 , v e r t e x p2 )

p1 pole associated with the �rst feature

� Constrains: p1 ∈ P

p2 pole associated with the second feature

� Constrains: p2 ∈ P , valency(p2) = valency(p1)

Figure 4.9: Example of mergeFeature

4.6.2 Implementation

1 f an1 = Fan ( p1 )
2 f an2 = Fan ( p2 )
3

4 // 1 − f i n d i ndex o f v e r t e c i s a t min d i s t a n c e
5 ( i1 , i 2 )=ve r t e c i s_min_d i s t anc e ( fan1 , fan2 )
6

7 // 2 − remove t r i a n g l e f a n s
8 f o r i i n [ 0 . . f an1 . l e n g t h ] :
9 remove_face ( f a c e ( fan1 [ i ] ) )

10 remove_face ( f a c e ( fan2 [ i ] ) )
11 a r r a y L i s t edges
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12

13 // 3 − b r i d g e l o op s
14 f o r i i n [ 0 . . f an1 . l e n g t h ] :
15 p a i r ( h1 , h2 )=create_edge ( v e r t ( fan1 [ i ] ) , v e r t ( fan2 [ i ] ) )
16 edges . push_back ( p a i r ( h1 , h2 ) )
17 f o r i i n [ 0 . . f an1 . l e n g t h ] :
18 hh0 = fan1 [ i ]
19 hh1 = edges [ i ] . h1
20 hh2 = opp ( fan2 [ i ] )
21 hh3 = edges [ ( i −1)%fan1 . l e n g t h ] . h2
22 c r e a t e_ fac e ( hh0 , hh1 , hh2 , hh3 )

4.6.3 Description

In order to merge two features, identi�ed by the 2 given poles, the following steps
are necessary:

1. Find a match between the vertices of the two base loops. In the current
implementation the risk of a twist e�ects has been minimized using the closest
vertices to initialize the pairing procedure.

2. pairing the closest vertices together.

3. Remove the two triangles fans

4. Bridge the loops, generating new halfedges and new faces between the matched
vertices.

4.6.4 Limitations

mergeFeature can be applied to any pole pairs, as long as their valencies matches.

4.7 Split Feature

Split the feature in two parts, replacing a loop with two poles

4.7.1 Speci�cation

1 vo i d s p l i t F e a t u r e ( h a l f e d g e h0 )
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h0 halfedge part of the loop that needs to be replaced by the two new poles

Figure 4.10: Example of splitFeature

4.7.2 Implementation

1 s p l i t = Loop ( h0 )
2 b e f o r e = Loop ( opp ( next ( nex t ( h0 ) ) ) )
3 a f t e r = Loop ( next ( nex t ( opp ( h0 ) ) ) )
4

5 // 1 − remove c u r r e n t b r i d g e
6 f o r h i n s p l i t :
7 remove_face ( f a c e ( opp ( h ) ) )
8 remove_face ( f a c e ( h ) )
9

10 // 2 − cove h o l e s w i th s i n g l e po lygon
11 f 1 = c r ea t e_fac e ( v e r t s ( b e f o r e ) )
12 f 2 = c r ea t e_fac e ( v e r t s ( a f t e r ) )
13

14 // 3 − c r e a t e p o l e s i n the midd l e o f new f a c e s
15 newPole1 = sp l i t_ face_by_ve r t ex ( f 1 ) ;
16 s e tPo l e ( newPole1 )
17 newPole2 = sp l i t_ face_by_ve r t ex ( f 2 ) ;
18 s e tPo l e ( newPole2 )

4.7.3 Description

In order to split two features, it is important to have 3 loops next to each other:
a loop that can support the �rst new triangle fan (feature 1), the loop that needs
to be replaced by a two poles (split loop) and �nally a loop that can support the
second new triangle fan (feature 2).

This sandwich structure is important in order to correctly split the mesh. Addition-
ally no nested feature are allowed on the split loop, which will be removed.
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Under these conditions the split operation requires:

1. To remove the split loop and the ring of faces on both its sides.

2. Generate 2 polygons to cover the holes on both sides, along the two supporting
loops

3. Split the newly generated polygons with a vertex in order to convert them
into triangle fans. Both new vertices will be marked as poles.

The triangle fans can be generated in di�erent ways of course, but this is surely one
of the easiest.

4.8 Example

In this section the modeling process of the a gear has been described step by step.
This is an illustrative example than can give a deeper understanding on how the
di�erent polar mesh operations interact with the model as well as how low level
sculpturing tool have been integrated into the system.

Figure 4.11: Gear: goal of the following modeling process (mesh and skeleton)
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1 A procedurally generated regular octahedron has
been used as starting point for the modeling process.

2 Two re�nement operations have been used to add the
highlighted loops.

3 The middle loop has been removed with
removeRe�nement

4 The highlighted loops have been scaled and
repositioned. They will be the external edges of the
gear disk. (Low level modeling)

5 Other two loops have been added with
addRe�menent. These will be the internal edges of
the gear disk, de�ning the central hole.

6 Like in (4), the newly added loop have been scaled
and repositioned. (Low level modeling)
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7 The two poles have been merged together, replacing
the corresponding polar regions with an annular
region (the faces that de�ne the central hole)

8 With addRe�nement, 4 more backbones have been
added to the model, doubling the valency of all the
annular regions.

9 The new vertices have been repositioned to shape the
model as a raw disk (Low level modeling)

10 Like in (8), addRe�nement has been used to add 8
more backbones

11 Again, the new vertices have been repositioned to
shape the model as a disk (Low level modeling)

12 addRe�menent has been used one more time to split
the external annular region. This middle loop will
support the features that represent the gear teeth.
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13 As the disk hasn't the desired level of detail yet, a
new series of addRe�nement operations double the
valency of the annular regions again.

14 Consequently a new adjustment of the vertices
positions is necessary. (Low level modeling)

15 At this point the mesh is ready to support the new
features

16 Multiple application of addFeature have been used to
create the teeth of the gear. In the following steps
the demonstration will focus on a single tooth only.

17 The valency of the newly created pole has been
increased with addRe�nement.

18 The vertices at the base of the feature have been
repositioned to have a squared gear tooth. (Low level
modeling)
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19 The pole has been moved upward to extrude the
tooth. (Low level modeling)

20 addRe�nement has been used one more time to
create the upper edge of the tooth.

21 The newly created loop has been scaled and moved
according to the desired shape. (Low level modeling)

22 Another re�nement operation has been applied to
add a middle loop to the feature.

23 In the �nal step the position of the vertices have been
adjusted to reach the �nal hexagonal shaped tooth.
(Low level modeling)
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Analysis

It is important to test the expressiveness of the modeling system in order to have
a better understanding of the limits that a design tool based on polar meshes
involves. An important set of tests have been performed to compare the power of
the current modeling system with the SQM algorithm [JAB12] which is in many
ways the father of this project. According to Michael Mc Donnell [Don12], SQM
su�ers from some important limitations especially regarding non organic objects.
He investigated the limits of the SQM approach de�ning some interesting modeling
goals and evaluating the performances of the SQM algorithm towards them. He
also proposed some extensions to that modeling system in order to improve those
performances.

It is interesting at this point to evaluate the behavior of the proposed modeling
system against the same modeling goals, to visualize the improvements that have
been reached:

� Modeling of a Lollipop

� Modeling of a Gear

� Modeling of a Ladder

� Modeling of a Head
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Each object will be presented in its desired shape (goal), modeled by SQM, modeled
with the improved SQM from Mc Donnell and �nally modeled using the current
prototype. All screenshot are part of Mc Donnell's work [Don12], expect the ones
related to the current implementation, of course.

5.1 Lollipop

Figure 5.1: Test result: Lollipop

Figure 5.2: Lollipop: skeleton of the new model

Goal Skeleton (SQM) SQM
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The model produced with SQM is already very close to the goal, but there is still
room for improvements: the shape of the lollipop is more a drop than a sphere and
the base of the stick isn't perfectly �at [Don12]. These problems aren't related in
anyway with the structure of the object and they are di�cult to solve with skeleton
based operations (SQM). The new modeling system overcame easily both of them
thanks to low level sculpturing tools that let the designer to de�ne the precise
position of each individual vertex.

Another problem that a�ects the model produced in SQM is related to the skeleton
structure: in order to use it in future animations, it is important that the skeleton
re�ects the structure of the object. Although SQM doesn't provide a method to
procedurally generate a �nal skeleton for the model, it is interesting to notice how
the structure that has been used to produce the mesh, includes quite unnaturally,
4 branches to shape the lollipop sphere. The new model, instead, doesn't use any
branch to de�ne the object (in �gure 5.1, the mesh is painted in a single color,
therefore it has only one feature) and the entire structure is reduced to a sequence
of skeleton segments, as expected. In this case it is actually possible to use the
procedurally inferred skeleton straight forward in the animation engine.

5.2 Gear

Figure 5.3: Test result: Gear
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(a) Front view (b) Close view

Figure 5.4: Test result: Gear, front, close view and skeleton

Goal SQM Improved SQM

A gear is a good example of inorganic object as it is characterized by sharp edges and
large �at surfaces. The model produced with SQM is a very pour representation of
this object, that failed not only in details like the rotation of the gear teeth, but also
in its basic structure that has been modeled as a pipe, rather than a �at disk. This
is a general problem in SQM, where the size of the section of a skeleton segment
can be in�uenced but it isn't practically possible to shape it: although Mc Donnell
worked on this aspect providing di�erent types of skeleton nodes, SQM remains very
limited compared to a tool that allow free vertices placement.

Great improvements have been made with the new modeling system, that produces
an high quality mesh much closer to the goal and that includes some tiny details like
the hexagonal section of the gear teeth. At a closer look, the new mesh still shows
some imperfections, small vertices mispositions that can be easily �xed improving the
low level operations of the prototype, for example including the standard sculpturing
tools already available in most commercial software (�rst of all, global and local
coordinate system to move, scale and rotate vertices).

It is also worth to mention that the new model took 10-15 minutes to be completely
developed, an amount of e�ort that can be partitioned according to the 80/20 law:
the �rst 20% of the time has been spent with high level modeling operations,
to de�ne the basic structure of the object, while the remaining 80% has been
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spent adjusting the individual vertices (low level modeling). SQM is clearly a faster
development method but, on the other hand, it limits itself to an high level modeling
tool and, from this point of view, the e�ort required to produce a complete object
in SQM is comparable to the e�ort spent with high level structural de�nition in this
new system.

5.3 Ladder

Figure 5.5: Test result: Ladder

Goal SQM Improved SQM

The ladder is another example of inorganic object, that the new modeling system
is able to produce almost perfectly.
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In this case it is interesting to notice how the basic SQM method performs better
than the improved SQM, which uses di�erent node types to model details like the
shape of the rungs section or a �at end in the ladder structure. The reason of this
behavior is related, one more time, on how mesh details are implemented: in the
new system they are handled with simple vertices displacements, which can't a�ect
the skeleton structure, but in SQM they have to be part of the skeleton and this
clearly interferes with its anatomy.

Another advantage of the new modeling system is the level of detail, which can
be locally controlled in each individual part of the mesh: the ladder produced with
SQM has been kept extremely low poly in order to preserve the sharp edges on the
main structure, inducing equally raw rungs as well; while the new model is able to
di�erentiate these areas and, to some extent, it shows fairly round rungs in a low
poly support.

5.4 Head

Figure 5.6: Test result: Head
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(a) (b)

Figure 5.7: Test result: Head, alternative views

Goal SQM Improved SQM

Although SQM seems a good approach for most organic objects, it poorly performed
in this task and the technical limitations that Mc Donnell well documented in his
report (lack of e�ective support for concavities, issues related to quads alignment..
) are only part of the problem: in this case the features that need to be modeled,
in order to produce the head, are almost entirely mesh details, simple vertices dis-
placements of a sphere that SQM has to force into arti�cial skeleton nodes to be
able to model.

The new system instead, embraces the idea that some of the characteristics of the
object aren't related to its structure and that can be more conveniently de�ned with
traditional mesh tools. The result isn't perfect yet, mainly due to some technical
limitation of the current implementation, which make low level modeling tricky and
time consuming, but on the other hand, it is fairly easy to theoretically prove that
the head can be actually drawn with any desired level of detail: the target object can
be in facts horizontally scanned with an arbitrary number of sections and each of
them will be a di�erent loop in the model. The valency of these annular regions can
also be arbitrary chosen, de�ning the number of vertices per loop, whose positions
can be freely adjusted according to the correspondent scan of the target object,
creating a deformable lattice dense as needed.

This test highlights an important aspect of the modeling of organic objects, �rst of
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all characters: SQM can be used to quickly produce a basic mesh but in practical
cases there are a lot of details that are simply impossible to model with skeleton
bones and a completely di�erent approach is necessary. In this perspective, an
integration between a modeling system based on polar meshes and a traditional
sculpturing tool can be an e�ective solution.

5.5 Conclusions

In all the performed tests, the new modeling system produced fairly convincing
results and it was able to overcome the limitations that deeply a�ected the SQM
method.

The new models contains a richer set of mesh details that they reproduce with more
�delity from the desired target object. This has been reached integrating traditional
sculpturing tools (low level modeling) in the polar modeling system, allowing the
designer to adjust the position of each individual vertex.

This is a feature that SQM isn't able to o�er, not only because its implementation
lacks of vertices manipulation tools but also because it is a one way process: in
SQM there isn't a bidirectional map between the skeleton and the mesh, therefore
each adjustment in the structure of the model completely overwrites the entire
model (Figure 5.8). In the new system instead, the modeling process have been
pushed towards a more AGILE approach where, exploiting the structural information
naturally embedded in the polar topology, both high and low level operations have
been speci�cally designed as non disruptive mesh improvements (Figure 5.9).

Skeleton Mesh
SQMSkeleton design Post process

Figure 5.8: Modeling process of SQM

Mesh

Low level
Modeling

-translate
-scale
-rotate

High level
Modeling

- polar refinements
- features

Figure 5.9: Modeling process of the new modeling system

Finally, another important improvement that have been reached is related to the
skeleton, which now re�ects more naturally the intrinsic structure of the object:
SQM uses the skeleton anatomy to include mesh details in the model, but this
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generates objects with arti�cial and overcomplicated bones structures that are dif-
�cult to model and that can't be used for animations without a dramatic (manual)
simpli�cation.

The new modeling system moreover, allows any combination of polar and annular
regions, providing full native supports to skeletons based on non-simple graphs. This
overcomes some limitations of SQM that requires tree based skeletons and forces
a branch on the root node, therefore models with loops and holes, like the ladder,
can now be shaped in their real structure rather than faked in a post process.

Although in general the new modeling system is a positive proof of concept, it also
leaves room for some improvements: the low level modeling system needs to be
expanded with the set of tools that already characterize most of commercial 3d
software, while symmetric constrains and copy-paste of features can optimize the
high modeling operations.
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Part II

Animation





Chapter 6

Animation engines

Animation description

Input interpretation

Animation core engine

Figure 6.1: Animation system: Structure

Animations are a fundamental part of all modern 3D productions, from videogames
to movies and simulations. During the years, several animation systems have been
developed , based on di�erent principles and approaches, but they all are grounded
by a common property: they have been developed independently from the modeling
system and they don't make any assumption regarding the mesh structure.

This is a clear advantage in term of applicability, but on the other hand it limits
their possibilities in terms of expressiveness: every animation system is in facts an
algorithm to procedurally move the mesh vertices according to speci�c high level
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inputs and, from this point of view, animation engines use basic modeling operations
as a low level API library.

It makes sense, at this point, to investigate if a di�erent modeling system can lead
to an improved animation engine and if more advanced modeling features can be
exploited to implement complex dynamic behaviors.

Conceptually an animation system can be split in two distinct layers: a language
to describe the desired mesh deformation and an internal component that actually
implements those behaviors (�gure 6.1).

6.1 Animation description

Animations can be described in several di�erent languages, each of them charac-
terized by its own level of details. The most common methods [ana] to describe
complex deformations are:

� Keyframes: an old and simple technique, originally developed in the Walt
Disney studios [BW, Las87], where the designer de�nes the poses (vertices
position) in correspondence of speci�c time stamps, called keyframe, that the
system linearly interpolates in order to approximate the full con�guration set
in all the in-between frames.

� Animation scripting languages, where the deformation is de�ned using de-
scriptive languages. A typical example of animation scripting is the Improv
System [PG96], developed by Ken Perlin and Athomas Goldberg at the Media
Research Laboratory (New York University).

� Goal directed motions, where the animator specify the desired �nal behavior
and the animation system computes the motion to reach or to performs that
behavior.

� Motion capture: a physical movement is tracked, recorded and coded into
a virtual animation. In this case the deformation isn't designed in a virtual
space but it is initially performed by an actor, a person or an object, who
actually moves in the real world, while a speci�c system keeps track of the
movements with dedicated hardware and software.

For the readers who aren't familiar with them, a more detailed description of these
techniques can be found in the appendix, including a short discussion on the pros
and cons of each method.
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6.2 Animation engines

The internal animation engine is where the input is processed and the movements
are performed. The principle itself is very simple: providing an updated position for
the mesh vertices at every screen refresh.

As most of animations aren't described with complete per-frame con�guration sets,
interpolation is a fundamental component of every animation engine: in all key
frame based animations, including motion capture, interpolation is obviously nec-
essary in order to �ll up the in-betweens, to uniquely de�ne the full con�guration
set for every non-key frame; but interpolation still plays an important role in goal
oriented motions and scripted animations, not only because there are cases where
the dynamic description of the con�guration set is incomplete in some of the times-
tamps, but also because the simulation engine that applies physical forces, performs
the dynamic behavior and/or executes the scripts can be independent from the pure
animation engine and it can work on a di�erent rate. For example in Unity3D the
physical simulation is executed at a �xed interval (controlled by the developer),
while the animation engine still needs to produce a con�guration set per frame (and
the frame rate isn't controllable by the developer) [unib].

Whatever it has been used to de�ne the motion, key framing rather than a more
dynamic description, interpolation isn't a trivial task: in the general case a pure
linear interpolation performs poorly and more complex techniques should be used
to convey smoothness and naturalism in the animation. This has been clearly
described by John Lasseter in his paper �Principles of traditional animation applied
to 3D computer animation� [Las87], but it is also present in the modern game
industry that Martin Jonasson and Petri Purho well represent with a famous talk
on juicing [jui].
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Chapter 7

Animation of polar meshes

Obviously the basic structure of a traditional animation system can be applied also
to polar meshes, but an animation system speci�cally developed for this topology
can exploit some of its properties to gain bene�ts that a more general animation
system can't o�er.

The most important aspect of polar meshes is the possibility to procedurally infer the
mesh skeleton from the model with a clear and well structured skinning. This leads
to an animation system that can describe complex animations as a combination
of basic local behaviors, that a�ect singular skeleton nodes without an extensive
knowledge of the entire skeleton structure.

7.1 Inferring the skeleton

The mesh skeleton can be inferred with a fairly simple recursive algorithm, that
performs a depth-�rst graph visit of the mesh. Variants of this algorithm are also
used in the selectFeature operation and in the rendering module to highlight di�erent
features in di�erent colors.

Although these variants have speci�c per-node operations, the basic recursive struc-
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ture is a constant:

SkeletonInit explores the current feature, loop after loop, following a speci�c back-
bone. This function relies on skeletonInitLoop and skeletonInitPoleLoop to
explore respectively annular and polar regions. Here new skeleton nodes are
created and linked to each other.

1 s k e l e t o n I n i t ( Ha l fEdge backboneEdge , Node pa r en t ) :
2 Backbone = Loop ( backboneEdge )
3 b i = arg ( Backbone , backboneEdge ) // s e t i such as Backbone [ i

]=backboneEdge
4 i = b i
5 f e a tu r eFound=f a l s e
6

7 // boundary l oop f o r ne s t ed f e a t u r e
8 i f ( i s P o l e [ v e r t ( opp ( b ) ) ]==0) :
9 f o r l i i n Loop ( p rev ( b ) ) :
10 p r o c e s s e dVe r t e x [ v e r t ( l i ) ]= t r u e
11 c e n t e r s [ v e r t ( l i ) ]= pa r en t
12 o f f s e t s [ v e r t ( l i ) ]=pos ( v e r t ( l i ) )−pa r en t . t a r g e t P o s i t i o n
13

14 f o r i i n [ b i . . Backbone . l e n gh t ] :
15 i f ( f ea tu r eFound ) : break
16 Node n = new Node ( )
17 parent−>addCh i l d ( n )
18 i f ( i s P o l e ( v e r t ( Backbone [ i ] ) ) ) :
19 s k e l e t o n I n i t P o l e L o o p ( v e r t ( Backbone [ i ] ) , n )
20 break
21

22 h = next ( Backbone [ i ] )
23 f e a tu r eFound = s k e l e t o n I n i t L o o p (h , n )
24 pa r en t = n

SkeletonInitLoop explores a single mesh loop to pair each vertex to its skeleton
node (skinning). Whenever a nested feature is detected, it is queued and later
processed with skeletonInit.

1 boo l s k e l e t o n I n i t L o o p ( Hal fEdge loop I tem , Node c u r r e n t ) :
2 H = Loop ( l oop I t em )
3 f e a tu r eFound=f a l s e
4 l i s t n e x tF e a t u r e s
5 f o r l i i n H:
6 p r o c e s s e dVe r t e x [ v e r t ( l i ) ]= t r u e
7 i f ( l i . i s S p l i t ( ) ) :
8 f e a tu r eFound=t r u e ;
9 r e fBackbone=next ( l i )
10 cu r=next ( opp ( re fBackbone ) )
11 cu r=next ( opp ( cu r ) )
12 whi le ( cu r != re fBackbone ) :
13 ne x tF e a t u r e s . push_back ( cu r )
14 cu r=next ( opp ( cu r ) )
15 cu r=next ( opp ( cu r ) )
16
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17 c u r r e n t . i n i t ( c e n t e r (H) )
18 f o r l i i n H:
19 c e n t e r s [ v e r t ( l i ) ]= c u r r e n t
20 o f f s e t s [ v e r t ( l i ) ]=pos ( v e r t ( l i ) )−c e n t e r (H)
21

22 f o r f i n ne x tF e a t u r e s :
23 i f ( p r o c e s s e dVe r t e x [ v e r t ( f )]== f a l s e ) :
24 s k e l e t o n I n i t ( f , c u r r e n t )
25

26 re tu rn f e a tu r eFound

skeletonInitPoleLoop explores the polar region and map its pole to the correct
skeleton node.

1 s k e l e t o n I n i t P o l e L o o p ( Ver tex ID po le , Node c u r r e n t ) :
2 c u r r e n t . i s P o l e=t r u e
3 c u r r e n t . i n i t ( pos ( po l e ) )
4 p r o c e s s e dVe r t e x [ po l e ]= t r u e
5 c e n t e r s [ p o l e ]= c u r r e n t
6 o f f s e t s [ p o l e ]=Vec3f (0 )

7.1.1 Relative root node

Although the skeleton itself is an undirected graph, that is devoid of parent-child
relationship, the extracted skeleton has been reduced to a rooted tree in order to
simplify future skeleton visits: as the user has full control on where to place the root
node, the lack of information regarding loops becomes an actual bene�t in terms of
simplicity and it assures that each skeleton segment will be visited exactly once.

This behavior is a design choice of the current prototype and it can be easily changed
to generate the skeleton with its full graph structure, if needed.

7.1.2 Examples

In �gure 7.1 it is shown how this algorithm explores the mesh, feature after feature,
with the typical behavior of a depth-�rst graph visit. Please note how the algorithm
fully supports both meshes that lead to tree-based skeletons as well as meshes that
lead to graph-based skeletons (�gure 7.2).

Another interesting example is shown in �gure 7.3 where the algorithm explores a
mesh with annular regions only.
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Figure 7.1: Skeleton recognition: tree

Figure 7.2: Skeleton recognition: mesh with loops (ladder)
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Figure 7.3: Skeleton recognition: mesh without poles

7.2 Skeleton based coordinates

An interesting aspect of this approach is the possibility to de�ne mesh deformations
in a skeleton oriented coordinate system. The position of each vertex is de�ned as
the sum of:

� The position of its skeleton node, relative to the parent node.

� The o�set of the speci�c vertex, relative to the position of its node.

In this way it is possible to de�ne deformations that independently a�ect the struc-
ture (the position of the skeleton nodes) and the mesh details (o�set of the vertices
relative to their nodes).

7.3 Skinning of polar meshes

In skeletal animations, skinning is the process of assigning each vertex to one or
more skeleton segments, in order to make the mesh following the skeleton when
it will be animated. An important part of the animation quality is de�ned by the
skinning algorithm which has to assure that the mesh folders properly in any possible
skeleton pose.

Skinning is a complex activity and, at the state of the art, it has been only partially
automated: several algorithms for automatic skinning have been proposed so far (for
example [JT05] from the Computer Graphic Lab of the University of California -
San Diego) but manual adjustments are often necessary to reach the desired quality
level and to avoid undesired e�ects like the �collapsing elbow� [LCF00].

As skinning is a localized behavior, each vertex is always a�ected by skeleton seg-
ments in its limited neighborhood. Polar meshes provide a good support to this
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Figure 7.4: Simple Skinning method: example

activity and skinning algorithms can easily gather the structural information that is
needed to weight each vertex to the proper skeleton nodes.

The approach that has been used in this thesis is what is called �simple skinning�:

�Every vertex in the mesh is attached to exactly one joint in the
skeleton, and when the skeleton is posed, the vertices are transformed
by their joint's world space matrix.�[ski]

This basic technique assures a continuous mesh skin and, although it is clearly
limited and in general it can't provide high quality results, it is fairly adequate for
low poly meshes. Simple skinning can represent a good �quick and dirty� solution
for the current prototype, but it is obviously inadequate for any further development
and it should be replaced with a more advanced technique.

A concrete possible improvement is the �smooth skinning algorithm� [ski], where
more skeleton joints contribute to de�ne the position of each vertex, according to
their weight. A speci�c application of this approach can use, for example, the
relative angle between two consecutive skeleton segments to adjust the positions of
the vertices mapped to the node between them, as shown in �gure 7.5. Despite
its relative simplicity, this solution would lead to considerable advantages when the
skeleton is deformed with very wide angles.
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Figure 7.5: Smooth skinning: possible application with polar meshes, where the
relative angle between the skeleton segments in�uences the position of
the vertices associated with the middle node.
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Chapter 8

Implementation

In the prototype a small animation system has been implemented, in order to demon-
strate the applicability of some of the techniques that have been described as well as
to investigate the advantages of the usage of polar meshes regarding the animation
development. This isn't a complete engine, and it isn't intended to be used in real
productions, but it will show some of the possibilities o�ered by the new modeling
system.

8.1 The prototype

From a more technical prospective it has been implemented a behavior based ani-
mation system, where the �nal deformation is de�ned as a combination of a variable
number of simpler behaviors.

Although these behaviors have been hard coded in the current prototype, the struc-
ture of the engine is already oriented towards a plug-in based animation system and
it will be fairly easy in the future to add a script engine to the system. In this way
the designer will be able to dynamically de�ne new behaviors via scripts or graphical
tools.
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Despite the technique used to store and describe them, each behavior de�nes the
evolution of a single skeleton node and the associated mesh vertices in skeleton
based coordinates.

The deformation is therefore applied to the skeleton, automatically inferred from
the mesh structure with the standard algorithm, and for each node it is possible to
de�ne:

Position: in the global coordinate system

Thickness: the scale factor applied to the relative distance between the vertices
and their node. If this parameter is 0 then the ring of vertices collapses on
the node position, while if this is 1 then all the vertices of the ring are at their
original relative positions.

Root node: a reference to the node of the skeleton de�ned as root for the current
animation.

Parent: a reference to the parent node relative to the root node

Children: reference to the children of the current node, relative to the root node

Node
Skeleton node

SkeletonBasedAnimation

SkeletonModifier
Basic modifier

MorphingModifier GravityModifier

1 1

Animation
1

1..*

Figure 8.1: Animation system: structure of the prototype

In this framework, behaviors are coded into skeleton modi�ers and they are applied
independently to each skeleton node. This locality is a key feature to develop
animations for completely general meshes, without any previous knowledge on their
skeleton structure.
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Each skeleton node can be deformed by a list of di�erent modi�ers, that are se-
quentially applied to de�ne its �nal position: at each iteration, a general modi�er
in the list receives in input the position of the current node, deformed by all the
previous behaviors, and it outputs its updated position to the modi�er that follows.

Finally the complete animation is the global combination of these local simple be-
haviors.
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Chapter 9

Analysis

In order to demonstrate the opportunities o�ered by an animation system completely
tailored on polar meshes, few examples has been developed:

Morphing: the animation simulates the growing process of plants, making the mesh
growing from the root node.

Gravity deforms the mesh in order to simulate the e�ect of the gravity. In this
process the root node is considered �xed, while the rest of the mesh bends
under the force.

9.1 Morphing

Morphing, an animation that changes the shape of the object, is typically unsup-
ported by traditional skeleton based engines and in general it requires a completely
di�erent animation system. A particularly interesting example of morphing is plant
development, the animation that simulates the biological growing process of weeds
and trees, where morphing techniques are often mixed with traditional skeleton
based transformations.
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According to Callum, Przemyslaw and Campbell [GPD], there are two di�erent
approaches to simulate plant development:

Bottom-Up methods, where the �nal animation is the result of the evolution of
single plant components: the algorithm is designed to model the deformation
of each singular part and, like in L-Systems [Lin04], the global evolution is
the result of a local application of growing rules. The main drawbacks of this
approach are the di�culties to design local behaviors that lead to the desired
�nal result.

Top-Down methods, where the initial and �nal plant shapes are set and the an-
imation itself is merely an interpolation between these two states. This ap-
proach extends the concept of key-framing into a goal oriented animation and
it is a more direct method when the focus is getting the desired shape rather
than exploring the dynamics behind plant development.

In this thesis it has been used a goal-oriented top down approach with a customized
interpolation system, where for each plant component it has been de�ned:

� The initial state and the �nal state of the interested plant component

� A delay before the interpolation is applied

� The growth time, the speed of the interpolation

� An interpolation function, a mathematical description of the interpolation
itself.

The morphing behavior that has been developed in the prototype is inspired by the
method presented by Callum, Przemyslaw and Campbell and it uses skeleton nodes
as plant component:

� The initial state is the plant collapsed to it is root, while the �nal state is
the plant as it has been originally modeled.

� The state of each node includes both its relative length to the parent node
and the thickness of the node itself.

� The delay and the growth speed of both the length and the thickness of the
node can be tweaked independently.

� It has been experimented both with a linear and a sigmoidal interpolation.
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Figure 9.1: Sigmoidal interpolation used in the prototype: f(x) = 1
1+e5−x∗10

None of the features has been removed or added during the morphing, but they are
simply scaled down when unnecessary. This isn't only a design choice to simplify
the algorithm itself, but it is also biologically correct as many plants develop the
entire structure at the very beginning, while their �parts mature in sequence from
base to apex� [Bel].

In �gure 9.2, the morphing algorithm, with a basic linear interpolation, has been
applied to a low poly plant. Despite the simplicity of the interpolation function, it
already produces a fairly convincing plant evolution, thanks to the distribution of
the loops along the structure: the red feature, ideally the fruit of the plant, appears
very late in the growing process, due to the high amount of loops between the
lower part of this feature and the root of the animation. This characteristic, that
generates a biologically correct evolution, isn't a singularity of the current example,
but it can be expected in most plant models, where a long straight stem precedes
more complex leaves, �owers and fruits.

A sigmoidal function (�gure 9.1), actually contributes to have a more natural plant
development and speci�cally it helps to remove the small �bumps�, that occur when
a feature reaches its maximum length. Although this e�ect can be seen only on live
demos, �gure 9.3 shows a set of screenshots for comparison purposes.
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Video: http://www.youtube.com/watch?v=tE4oZ5rpRYQ

Figure 9.2: Morphing: growing plant with linear interpolation. Screenshot are not
taken at constant intervals.

9.2 Gravity

In order to test the capability of the system to support dynamic behaviors, a gravity
modi�er has been implemented. It basically applies the Newton's law of motion
[Hol06] to each individual skeleton nodes in order to simulate the e�ect of the
gravity on a semi rigid body. The simulation has been implemented in 3 steps:

Mathematical model: in the �rst step a mathematical model applies the Newton's
Laws of motion to each individual skeleton node to simulate the behavior of
the mesh under these forces.

Constrains of skeleton structure: as the mathematical model has been applied
to each individual skeleton node individually, there is the possibility to a�ect
also the length of each skeleton segment, which are intended to be rigid. A
second step is therefore necessary to enforce a set of constrains and assure

http://www.youtube.com/watch?v=tE4oZ5rpRYQ
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Linear interpolation: http://www.youtube.com/watch?v=tE4oZ5rpRYQ

Sigmoidal interpolation: http://www.youtube.com/watch?v=v4KyYNLq0WM

Figure 9.3: Morphing: growing plant with sigmoidal (top) and linear (bottom)
interpolation.

that the mesh maintains the intended shape.

Rendering: �nally the position of the vertices are updated and the mesh is rendered.

9.2.1 Mathematical model

The mathematical model that a�ects each skeleton node includes:

� A constant force V ec3f(0, g, 0) to simulate the e�ect of the gravity

� A proportional force k4l to simulate the reaction of the object to the gravity.
This e�ect has been modeled with Hooke's law, where 4l = (pos(n) −
pos(n.parent)) − (posnominal(n) − posnominal(n.parent)) is the di�erence
between the current relative position and the nominal relative position of the
same skeleton node.

� A inherited velocity component 4v = pos(n)− posold(n) to simulate inertia
(�rst Newton's law). A constant drag (0.1 to 0.8) has been applied to assure
stability.

The �nal model therefore is:

pos(n) = drag ∗ 4v + a ∗ timeStep2 (9.1)

http://www.youtube.com/watch?v=tE4oZ5rpRYQ
http://www.youtube.com/watch?v=v4KyYNLq0WM
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a = V ec3f(0, g, 0) + k4l (9.2)

9.2.2 Constrains of skeleton structure

One of the consequences to apply the mathematical model to each skeleton node
individually, it is the possibility to a�ect also the length of each skeleton segment.
Although the structure can blend under the gravity, the skeleton segments are in-
tended to be rigid and they aren't supposed to change their length.

This can be enforced using the same relaxation technique that Thomas Jakobsen
presented in its paper �Advanced Character Physics� [Jak01] to solve multiple con-
strains for a set of particles.

�A common model for cloth consists of a simple system of intercon-
nected springs and particles. However, it is not always trivial to solve the
corresponding system of di�erential equations. It su�ers from some of
the same problems as the penalty-based systems: Strong springs leads
to sti� systems of equations that lead to instability if only simple inte-
gration techniques are used, or at least bad performance � which leads
to pain. Conversely, weak springs lead to elastically looking cloth.

However, an interesting thing happens if we let the sti�ness of the
springs go to in�nity: The system suddenly becomes solvable in a stable
way with a very simple and fast approach.�[Jak01]

The key idea here is iterating multiple times over each individual constrain until
the system reaches the desired level of stability. One of the interesting aspect of
this technique is that it always hits a good compromise between performances and
quality: in the current implementation for example each constrain has been relaxed
10 time, a number that in most cases leads to good looking animations, but when it
is insu�cient the animation will look a bit less clean without any disruptive results
both quality and performance wise.

9.2.3 Rendering

In the last phase, the new vertices positions are applied and the rendering is per-
formed.
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Although the physical simulation is actually performed before each rendering, the
independence of this last step is a key prerequisite to decouple the actual dynamic
model from its representation (rendering).

Video: http://www.youtube.com/watch?v=C_X6Rl5rCs0

Figure 9.4: Gravity: plant. Drag = 0.1. Screenshot are taken at constant inter-
vals.

9.3 Morphing and Gravity combined

The modularity of the animation system makes it possible to combine morphing and
gravity behaviors, so that the gravity a�ects the plants while it is growing. The result
(�gure 9.5) isn't perfect, probably due to some side e�ects of the mathematical
model used to emulate the gravity, but it is still impressive considering the generality
of the algorithms used, those have no extensive knowledge regarding the skeleton
structure.

9.4 Conclusions

An animation system tailored for polar meshes can surely exploit some of their fea-
tures, but the concrete bene�ts seem to be more evident on bottom-up animations:
if the desired movement can be de�ned with localized behaviors and they don't need

http://www.youtube.com/watch?v=C_X6Rl5rCs0
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Video: http://www.youtube.com/watch?v=D6-2HqmIPUE

Figure 9.5: Morphing and Gravity combined: growing plant. Drag = 0.5. Screen-
shot are not taken at constant intervals.

an extensive knowledge over the entire skeleton structure to perform the deforma-
tion, then polar meshes provide the necessary support for a system that is both
�exible and easy to use.

On the other hand there are scenarios where a global view on the entire skeleton is a
fundamental prerequisite to design the animations and in these cases polar meshes
don't have anything to add to the standard commercial tools: common techniques
remains the best solution to deal with top-down movements, like character anima-
tions. Nonetheless an interesting solution can be reach combining traditional tools
with a modeling system based on polar meshes: in this way the designer can proce-
durally generate the skeleton, exploiting the automatic skinning, before moving the
object on a traditional animation tool.

Characters animations are the perfect example for this paradigm: the recent release
of Mecanim [unia], the new Unity's animation technology, is partially changing
the traditional character animation pipeline and it is pushing towards a decoupling

http://www.youtube.com/watch?v=D6-2HqmIPUE
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between the character design and the animations design, in such a way that it is now
possible to apply a broad class of humanoid animations to any humanoid characters.
In this context it is important to exploit the existing animation database and to do
so it is necessary to export skinned characters with a skeleton as close as possible
to the standardized one.

It is clearly possible to develop a tool for generating the traditional bones structure,
for procedurally skinning the mesh to it and, with a bit more e�ort, to automatically
simplify the skeleton structure to make it �ts the standard avatar. This mixed ap-
proach, between polar meshes and traditional software, has already been suggested
by some Unity game designers, and probably it is the best way to publish a �rst
commercial tool strongly based on polar meshes.
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Part III

Procedurally generated
content





Chapter 10

L-Systems

10.1 Introduction to L-Systems

Lindenmayer systems or L-Systems are a mathematical description of the develop-
ment process of organic structures. Originally developed by Lindenmayer in 1968
[Lin68], this method has been initially applied to model the behavior of simple mul-
ticellular organisms and later it became one of the key modeling tools to describe
the growing process of plants and trees.

L-Systems represents the object as a string of symbols, which are iteratively replaced
applying a set of production rules in order to make the object evolving [Lin04]. It is
important to note that in each iteration all the symbol replacements are concurrently
applied, to simulate the biological evolution of the organic model at cellular level. As
illustrative example the production A→ AB applied to the initial string ABBAAB
generates ABBBABABB in output.

Technically L-Systems are strongly based on the formal language theory and they
can be de�ned with the grammar L =< V,w, P >, characterized by:

� An alphabet V , where:

� V ∗ is the set of words over V
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� V + is the set of nonempty words over V

� An initial axiom w ∈ V +

� A �nite set of production rules P ∈ V ×V ∗, where each production (a,X) ∈ P
can be written as a→ X.

The success of this method isn't only due to its strong theoretical foundations,
but it is also due to the several di�erent geometric interpretations that have been
developed during the years and that are currently used to get a graphical repre-
sentation of the L-System. Nowadays a wise combination of complex geometrical
features with L-Systems can produce �realistic visualizations of plant structures and
developmental processes� [Lin04].

10.2 Classes of L-Systems

There are di�erent classes of L-Systems, according to the expressiveness of their
grammars:

� D0L-Systems, de�ned by a deterministic and context-free grammar, where
each symbol appears at the left side in at most one production.

� Stochastic L-systems, based on a non-deterministic grammar, where for each
symbol and for each iteration, it is possible to choose between multiple legal
productions with the correspondent probabilities. This is used to generate
di�erent varieties of the same basic plant structure in di�erent executions of
the L-System.

� Context-sensitive L-systems, based on a context dependent grammar, where
the interactions between di�erent parts of the plant are taken into account,
de�ning productions that depends, not only from the current symbol but also
to its successors and predecessors.

� Parametric L-systems, based on parametric grammars, where the parameters
are typically used to in�uence the graphical representation of the plant.

If the reader isn't familiar with these concepts, additional details regarding L-Systems
can be found in [Lin04], while [Hop08] provides a good reference for grammars and
formal languages.
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10.3 Turtle representation of L-System

The traditional technique to visualize L-Systems is called turtle representation and
it uses a reduced alphabet to describe the relative position between the element that
represents the current symbol compared and the position of the previous symbol. A
simple 2D example of this visualization technique is shown in �gure 10.1, where the
alphabet V = {F,+,−} has been used to produce the string FF + F − FF − F .
Each symbol of the alphabet is associated with a speci�c rendering operation:

� F means move forward for a �xed o�set

� + means rotate right

� − means rotate left

F

F

F
F

F

F

+

-

-

Figure 10.1: L-System: example of 2D Turtle Representation for the string FF +
F − FF − F

The same technique can be applied in 3D spaces, simply de�ning an alphabet that
includes:

� +,− turning left and right

� &, � pitching up and down

� \, / rolling left and right



90 L-Systems

Figure 10.2: L-System: interpretation of alphabet for 3D turtle representation
(source: [Lin04])

Finally, the turtle representation can be also expanded to support the branching
structures of axial trees. This can be easily done using a stack and introducing two
more symbols in the alphabet:

� [ creates a branch at the current position, pushing the state on the stack.

� ] moves the rendering back to the previous branch point, restoring the state
from the stack (pop)

A couple of very simple 2D examples are shown in �gure 10.3.

F

F

+F-F
F

F

F

F
+F

-FF

F +F -FF

(a) String: FF [+F ][−F + FF ] (b) String: FF [+F − F [+F − F ]F ]FF

Figure 10.3: L-System: examples of 2D Turtle Representation with branches
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10.4 L-System and polar meshes

Polar meshes are a good graphical tool to visualize L-Systems and they can easily
produce fairly complex graphical interpretations with a relative small e�ort: each
segment of a turtle based L-System can be mapped into a di�erent (set of) feature
in the polar mesh, while the branching structure is ensured by the capability of
procedurally generate nested features.

As it has been discussed in depth above, skeleton branches are strictly de�ned in
polar meshes and they are implemented with a clear, deterministic and well organized
mesh topology. This unique characteristic of polar meshes is a key factor to keep
the rendering operation simple and ensuring an high quality mesh, independently of
the relative angle between the skeleton segments involved in the branch.
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Chapter 11

Implementation

In order to evaluate and test the usage of polar meshes in this frame, a context-
free, stochastic and parametric L-System has been integrated in the prototype. The
current implementation is intended to be a simple proof of concept and it is in facts
a�ected by several limitations, the most critical one is maybe the lack of real time
string parser for L-Systems that forces the production rules to be hard-coded in the
prototype.

The L-System that has been implemented uses a turtle-like graphical representation,
where each symbol describe the behavior of a speci�c skeleton segment:

� Alphabet V = {P,L, L0, [
L, LR, ]}, where

� P moves forward and draws a pole

� L moves forward and draws a simple loop

� L0moves forward and draws a simple loop that can eventually be replaced
(see productions)

� [L moves forward, it pushes the state on the stack, and it creates a
nested feature on the left, drawing a loop to support it.

� [R moves forward, it pushes the state on the stack, and it creates a
nested feature on the right, drawing a loop to support it.
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� ] pops the state from the stack and it restores the previous position and
direction

� Initial axiom: user de�ned w ∈ V +

� Production rules:

� L(step)
1→ L(step)

� P (step)
1→ P (step)

� L0(step)
pr(step)−pr(step)2→ [LL0(step+ 1)L(step+ 1)P (step+ 1)]

� L0(step)
pr(step)−pr(step)2→ [RL0(step+ 1)L(step+ 1)P (step+ 1)]

� L0(step)
pr(step)2→ [LL0(step + 1)L(step + 1)P (step + 1)][RL0(step +

1)L(step+ 1)P (step+ 1)]

� L0(step)
1−2∗pr(step)+pr(step)2→ L(step)

The probabilities are de�ned by the pr(step) function, that is also used to prevent an
unbounded growth of the plant. It is also important to notice how the probabilities
sum to 1, de�ning a consistent grammar [odAtD94].

pr(step) = 1− 1

1 + e5.2−step
(11.1)

Figure 11.1: L-System: probability function used to limit the growth process (Eq.
11.1)
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Similar functions have also been applied to adjust length and thickness of the fea-
tures from the root to the leafs of the plant (Eq. 11.2). Sigmoidal functions are
good approximations of a wide range of biological growing processes, where �the
initial part of the curve represents the growth of a young organism, while the latter
part corresponds to the organism close to its �nal size� [Lin04] and they can be
easily implemented exploiting the parametric nature of the underlying grammar.

L = 1− 1

1 + e2−step
(11.2)

11.1 Implicit string representation and real time

mesh operations

Usually L-Systems produces an explicit string of symbols that is later converted in
its graphical representation often with o�ine methods, but in this prototype it has
been implemented a di�erent approach: polar meshes contain by themselves enough
structural information to completely avoid any explicit symbol representation and
to apply the productions directly to the mesh, in real time. In this case the mesh
itself can be considered the direct output of the L-System, where loops represent
symbols and backbones represent the string structure.

In this framework, the productions have been coded as a sequence of polar mesh
operations, a procedural application of the same modeling tools that have already
been presented in the �rst part of this report. This is a powerful approach that
can be used, in the future, to develop more advanced tools, where procedurally
generated L-Systems may use variants of a manually de�ned feature.
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Chapter 12

Analysis

Despite it is just a proof of concept, this prototype already produces fairly good
results (Figure 12.1): the feature nesting is smooth and clean, it doesn't present
any singularity and the level of details is adjusted in real-time, a�ecting only a
localized area of the mesh and making sure that new features can always be added.

On the other hand, the prototype is a�ected by several limitations, due to both the
current implementation as well as some speci�c characteristics of the method itself.

The �rst comment is regarding the current branching behavior that produces nested
features always from the side of the parent feature, which doesn't continue to grow
after the branch. This is a design choice that has been made because of its simplicity
and it is the actual reason why the �nal plant looks more like a shrub than a tree,
but it can be easily changed.

A deeper problem that isn't easy to �x instead, is the lack of direction: in order to
nest a new feature on an existing loop, it is necessary to de�ne which vertices of
the loop will be a�ected by the nesting operation, but selecting the right vertices
in order to have the gap oriented into a particular direction, isn't a trivial task and
brute forcing seems to be the only way to chose an optimal solution.

It is interesting to notice how this problem isn't due to any speci�c detail of the
current implementation but it is instead a consequence of the usage of polar meshes:
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Figure 12.1: L-System: example.

they do support mesh operations that directly a�ect (or that are a�ected by) the
skeleton, but any structural information needs to be inferred in real time and this is
computationally heavy.

The system is, in facts, already a�ected by performance issues, that can be easily
seen removing the stochastic branching limitation and allowing the generation of
two nested features at each iteration. Figure 12.2 is an example that took several
seconds to be computed and in 11 iterations it becomes so time consuming to reach
the boundaries of what it is usually considered real-time.

The pro�ler used for a deeper analysis revealed that most of the e�ort is partitioned
between the actual generation of the new features (20%) and the updates of the
rendering data (44%), where most of the time (34% out of 44%) is actually spent
computing the new per-vertex normals.

Although the code isn't completely optimized it is clear that a drastic reduction of
the overall e�ort is impossible and the theory of computational complexity actually
supports this conclusion: although each feature requires roughly the same e�ort
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Figure 12.2: L-System: example of plant with performance issues (11 steps, 400K
vertices)

(this is true regarding both creation time and rendering time), at each step, for
each leaf, two new feature are created. This leads to a full binary tree with a depth
proportional to the number of iterations applied and where all the nodes induces
a constant e�ort. It is well known [CLRS01] that in this case a tree traversal will
require an exponential complexity over the number of steps:

steps∑
i=0

O(2i) = O(2steps) (12.1)

All considered this example shows that it is de�nitely possible and convenient to
use polar meshes to visualize stochastic and parametric L-Systems, although there
are some challenges that a real production tool needs to solve, and this can be
easily extended to context dependent L-Systems, providing the correct support and
per-feature data.
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Part IV

Conclusions





Chapter 13

Conclusions

As presented in the �rst part of the report, the main goal of this project was
evaluating the potential of a modeling system based on polar meshes, in relation to
modeling, animations and procedurally generated content.

Modeling

From the modeling point of view, this project can be seen as an evolution of SQM
and it is interesting to compare the new system with this older method. In his
thesis Mc Donnell [Don12] showed that SQM has a limited expressiveness and only
a narrow range of shapes can be conveniently modeled with this technique. This is
mainly because in SQM the �nal vertices positions aren't controlled by the designer
but they are inferred from the skeleton structure.

In the current modeling system, these limitation have been completely overcome
and it is now possible to model any arbitrary shape as long as it leads to a closed
mesh. This has been reached allowing the user to de�ne the exact position of each
individual vertex (low level modeling) as well as with a deeper understanding of the
concept of polar mesh: in the new system any combination of polar and annular
regions is allowed and it leads to a mesh structure that is no longer based on a
rooted tree (an important detail in the implementation of the SQM method) but
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that now supports the generality of a non-simple graph (high level modeling).

This new modeling system can be de�nitely exploited to push the development of
3D assets into a more AGILE process and to some extent this is already supported
in the prototype, but on the other hand the current implementation doesn't seem
to provide a fair platform for a fast-paced designing process: the actual modeling
still feels quite clumsy, mainly due to the poor GUI and limited low-level modeling
tools. In this perspective an integration with a traditional 3D software can actually
improve the user experience and provide a better support for the low level modeling.

Animations

One of the key characteristics of polar meshes is their implicit skeleton which can
be inferred in real time from the topological structure of the mesh and that can be
used to design more �exible animations. In this project a behavior based animation
engine has been developed, where the mesh skeleton is automatically gathered and
deformed according to the desired movement.

This approach turned out to be very e�ective for bottom-up animations, such as
morphing, physically based motion and whenever the global movement is de�ned
as a combination of local behaviors a�ecting each skeleton node individually; but
it doesn't seem to help when an extensive knowledge on the entire skeleton struc-
ture is needed, like in humanoid animations. In these situations polar meshes still
represent a valid modeling tool and they can always be used to procedurally gener-
ate the skeleton structure, but this topology doesn't lead to any real improvements
animations wise.

Finally, polar meshes seems to provide a fairly good support for skinning algorithms,
that typically correlate each vertex with skeleton nodes in a limited neighborhood,
and further developments can actually provide a better overview of the potential of
polar meshes in this sense.

Procedurally generated content

In principle a procedurally generated content is no more than a repeatable sequence
of API calls, either related to modeling and/or animations. In this project it has
been implemented an L-System to demonstrate the applicability of this principle to
polar meshes and to evaluate to what extent polar mesh operations can be used as
coherent and invokable API.
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The outcomes show that it is de�nitely possible to automate sequences of mesh op-
erations and polar meshes provide a really good support for procedurally generated
content that massively a�ects the model structure: usually L-Systems are designed
to produce an explicit string of symbols that is later converted in its graphical repre-
sentation, but polar meshes contain enough structural information to be considered
by themselves the direct representation of the L-system, which can apply the pro-
ductions directly to the model. In this case the mesh itself can be considered the
direct output of the rewriting rules, where loops represent symbols and backbones
represent the string structure.

Finally, the L-System implemented in the prototype is based on context-free, stochas-
tic and parametric grammars, which is a fairly broad and powerful class of formal
languages, but that doesn't exploit the full potential of polar meshes. A further
development in this direction should de�nitely consider to move towards a more
general class of grammars, including context-dependent behaviors.
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Chapter 14

Further Work

The project represents a positive proof of concept on the potential of polar meshes
and it provides an overview across three lines of research: modeling, animation and
procedurally generated content. The next step is clearly a deeper exploration in
each of these areas speci�cally, a further development that carries on the academic
investigation alongside to a more product oriented research.

In this project, thanks also to previous works, the concept of polar mesh reached a
discrete maturity and the potential of a modeling system based on this topological
pattern has been fundamentally proved. It is therefore time to evaluate its e�ective-
ness with real world problems, designing how this modeling system can be delivered
to the community and how it can be integrated with the large set of tools already
available to CGI artists.

In this prospective it can be interesting to develop this tool as a plug-in for a
popular 3D modeling software, such as Blender1, 3DS Max2 or Z-brush3, in order
to distribute it among the community, with a user interface that most designers are
already familiar with and facilitating the integration of polar meshes into the assets
production pipeline. An important part of this plug-in will also be the possibility to

1Blender: http://www.blender.org/
2Autodesk 3DS Max:http://www.autodesk.com/products/autodesk-3ds-max/
3Pixologic ZBrushhttp://pixologic.com/

http://www.blender.org/
http://www.autodesk.com/products/autodesk-3ds-max/
http://pixologic.com/
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automatically generate the bones structure associated with the implicit skeleton in
order to export the skinned model to standard tools for further manipulation.
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Appendix A

Project management

A.1 Development process

This project has been developed between the 11 February and the 15 July 2013,
using an incremental development process based on 22 iterations. In order to get
the best out of the weekly Friday meetings, that provided feedback throughout the
entire working process, each iteration started on Friday at noon and it �nished one
week later before the next meeting.

A short report, at the end of each iteration, summarized the weekly achievements
and set the goals for the next 7 days. Part of these documents were also brief
discussions on problems that were challenging the development of the thesis.

The preliminary plan, which has been made at the beginning of the thesis, focused
mainly on the modeling aspect of the project and it turned out to be over pessimistic:
at the beginning of May it was clear that it was running faster than expected and
most of the risks associated with the development of the core set of operations
weren't going to happen anymore. At the same time, a deeper understanding of
the concept of polar mesh and a clearer vision of the entire thesis pushed the focus
of the project towards animations and procedurally generated content and more
intentional investigations have been planned in these directions.
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These considerations caused an important rede�nition of the original project plan
and they are the reason of the current thesis structure, based on three distinct
sections.

Week From To Original Plan Actual Plan

7 11-Feb 15-Feb Study plan, Template,

Problem de�nition

Study plan, Template,

Problem de�nition

8 18-Feb 22-Feb Basic prototype: mesh

viewer

Basic prototype: mesh

viewer

9 25-Feb 1-Mar Operation list and data

structures

Operation list and data

structures

10 4-Mar 8-Mar Holiday Holiday

11 11-Mar 15-Mar Loop based Operations Risk analysis and thesis

motivations

12 18-Mar 22-Mar Operation: Add Feature Loop operations and

iterators

13 25-Mar 29-Mar Operation: Add Feature Core Operations

14 1-Apr 5-Apr Expressiveness test Report: Introduction

15 8-Apr 12-Apr Operation: merging VBO implementation, GUI,

improved AddFeature

16 15-Apr 19-Apr Operation: merging Strictly and extended polar

meshes

17 22-Apr 26-Apr GUI Design Expressiveness tests

18 29-Apr 3-May Expressiveness test New Project plan

19 6-May 10-May GUI Implementation Report reorganization

20 13-May 17-May Data structure optimization 2 Level modeling

21 20-May 24-May Tests and report New introduction and

topology considerations

22 27-May 31-May Tests and report Shader and VBO

optimization

23 3-Jun 7-Jun Results Revised concept of polar

mesh

24 10-Jun 14-Jun Text polishing Algorithm for skeleton

recognition

25 17-Jun 21-Jun Text polishing Animations

26 24-Jun 28-Jun Internal deadline Procedural generated

content

27 1-Jul 5-Jul Documentation and Report

28 8-Jul 12-Jul Text revision and appendices

Table A.1: Project plan
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A.2 Risk analysis

At the beginning of this project an initial set of risks have been identi�ed and
evaluated with the standard �risk exposure� technique. A speci�c mitigation strategy
have been consequently developed for the most critical ones (exposure > 1):

Risk Prob Impact E�ect Mitigation strategy

The 3D modeling system

seems useless

50% 5 2.50 Detailed description on short

and long term bene�ts of the

system

Under estimation of

workload. Feasible work <

80%

80% 2 1.60 Close project management,

per week goals

The 3D modeling system is

ine�ective

30% 4 1.20 Early feedbacks on the

prototype

Under estimation of

workload. Feasible work <

50%

20% 5 1.00 Close project management,

per week goals

Unable to design 1 operation 40% 2 0.80

Unable to implement 1

operation

60% 1 0.60

Unable to design 2-3

operations

10% 5 0.50

Unable to implement 2-3

operations

10% 3 0.30

Unable to design more than

3 operations

5% 5 0.25

Unsolvable technical problem

on basic mesh editor

5% 5 0.25

Unable to implement more

than 3 operations

5% 4 0.20

Table A.2: Project risks
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Appendix B

Prototype

B.1 The shader

The shader is one of the most complex components of the current prototype and
although it isn't part of core of this project, it is interesting from both a technical
and a design prospective. The shader has been developed for two speci�c purposes:

Feedback: in order to understand and to feel comfortable with the modeling tool it
is important that the user has real time feedback on the mesh structure, such
as information regarding surface curvature, wireframe view, a clear distinction
between loops and backbones, feedback on feature distribution along the
model and of course a selection tool to highlight which part of the mesh will
be a�ected in the current operation.

Performances: the traditional OpenGL approach to combine di�erent information
on the same image uses di�erent rendering passes on top of each other.
This approach intrinsically leads to a general degradation of the rendering
performances and for mid size meshes it can already represent a problem for
the visualization. On the other hand a customized shader can move to the
GPU some of the complexity related to feedback visualization and it can keep
a single rendering pass regardless the number of feedback involved.
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The shader itself is therefore a combination of di�erent features:

� Basic di�use shader

� Quad based geometry shader and wireframe

� Color coded information

B.1.1 Basic di�use shader

The light model that has been used is a basic per-fragment di�use shader:

diffuse = fragColor ∗max(0, lightDirection · normal) (B.1)

gl_FragColor = diffuse+ ambient (B.2)

B.1.2 Geometry shader and wireframe

It is well know that the geometry shader can be used to place a wireframe view
on top of a solid shaded mesh but the method described in the OpenGL shading
language cookbook [Wol11], based on the distance between the current fragment
and the nearest edge, is typically applied to triangle based meshes and it becomes
very tricky on quads.

The main reason of this increment of complexity is due to the triangulation per-
formed in the geometry shader, that doesn't accept quads neither in input nor in
output [geo]. The standard workaround uses �strip with adjacency� (so the mesh is
rendered as a line strip) to produce a �triangle strip� of two elements for each quad
in output, but in this way the fragment shader needs to draw the wireframe only
near the edges that are on the external side of the original quad.

Although this method is still applicable, a more direct technique has been used
in the prototype, where the wireframe has been rendered as a collection of long
and thin additional quads, produced on the �y in the geometry shader. This is a
variant of the silhouette method described in a famous blog post of Philip Rideout
(http://prideout.net/blog/?p=54) and it provides a more direct control over the
�nal result.

http://prideout.net/blog/?p=54
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B.1.3 Color coded information

The �nal mesh color is completely procedurally generated and it is independent from
the input values passed in the color bu�er, which has been used to transfer a set
of di�erent information. An �rst interesting aspect is that although the color array
contains per-vertex data, it has also been used to transfer per-halfedge and per-face
information:

� The data regarding a speci�c halfedge is stored in correspondence of the vertex
pointed by the halfedge itself.

� The data regarding a speci�c face is replicated and stored in correspondence
of all the 4 vertices that de�ne the face itself.

At this point packing a di�erent number of feedback on the 3 color channels is a
trivial task:

Red: in the R �eld it has been stored a numeric ID of the feature that the current
face is part of.

Green: this �eld contains a boolean value to de�ne whether the current edge has
to be marked as a loop edge

Blue: in the blue channel a bit-mask has been used to specify if the current vertex,
halfedge and/or face has been selected. As the value is a �oat the �bits� have
been stored as peak values in correspondence of 0.1, 10 and 100.

The feature IDs have been used to procedurally generate the �nal mesh color, in a
process designed to optimize readability and to emphasize the di�erences between
connected features. To achieve this, the ids have been mapped to a limited set
of di�erent colors, equally spaced in hue spectrum, that is limited enough to make
each color clearly distinguishable, but that is big enough to reduce the probability
to use the same color for connected features.
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Appendix C

Animation techniques

As brie�y described in the dedicated chapter, animations can be de�ned in several
di�erent languages, each of them at di�erent level of details. The most common
methods [ana] to describe complex deformations are:

1. Keyframes

2. Animation scripting languages

3. Goal oriented motion

4. Motion capture

C.1 Keyframes

Keyframes is one of the oldest techniques in the history of computer graphics,
originally developed in the Walt Disney studios [BW, Las87]. It is a fairly simple
method where the designer de�nes the poses (vertices positions) in correspondence
of speci�c time stamps, called keyframes, that the system linearly interpolates in
order to approximate the pose in all the in-between frames.
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Despite the obvious limitations of this technique, that requires a considerable amount
of work in order to de�ne complex animations, this method is still widely used for a
large set of inorganic animations, especially in its improved form where the strictly
linear interpolation has been replaced by more complex interpolation system, typi-
cally controlled by a Bèzier curve.

In �gure C.1 for example, it is shown a simple animation where a cube has been
translated and rotated in 3DS Max using the keyframes technique. Please note how
the interpolation of the in-between frames can be controlled with the curves on the
left side of the screenshot.

Figure C.1: Keyframe animation in Autodesk 3DS max 2012

C.2 Animation scripting languages

A complete di�erent approach is o�ered by script engines, where the deformation
is de�ned using descriptive languages. A typical example of animation scripting
is the Improv System [PG96], developed by Ken Perlin and Athomas Goldberg at
the Media Research Laboratory (New York University), where it is possible to de�ne
�real=time behavior=based animated actors� [PG96] using a English-like descriptive
language. As shown in �gure C.2, in the Improv system the descriptive code is �rst
processed by the behavior engine to correctly instruct the internal animation engine
to �nally produce the right mesh deformation. An example of this method can be
see in �gure C.3, where the neutral face (left) has been deformed with a positive
smile (center) and a negative smile (right).



C.3 Goal oriented motion 121

Although the direct application of animation scripting languages has been funda-
mentally dismissed, replaced by more graphical inputs and techniques, the concept
of a text/script representation of the animation is still widely used under the hood
for several pug-in oriented animation systems.

Figure C.2: Improv system: structure

Figure C.3: Improv system: example

C.3 Goal oriented motion

A method that works at an higher level of abstraction is Goal Oriented motion,
where the animator specify the desired �nal behavior and the animation system
compute the motion to reach or perform that behavior.

The most common example of goal oriented motion is Inverse Kinematic [ik-b], a
technique that uses chains of connected joints. In this case the animator de�nes the
position of the end-e�ectors at the end of the chains, while the system computes
the position of each internal joints, congruently with the constrains.

Inverse kinematic is suitable to model rigid bodies and skeleton based characters,
it is often combined with key-framing and with a dynamic description of the forces
that act on the animated body.
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Figure C.4: Unity3D: example of inverse kinematic [ik-a].

C.4 Motion capture

One of the most used animation techniques nowadays is motion capture, where a
physical movement is tracked, recorded and coded into a virtual animation. In this
case the deformation isn't designed in a virtual space but it is initially performed
by an actor, a person or an object, who physically moves in the real world, while a
speci�c system keeps track of the movements with dedicated hardware and software.

Motion capture is typically faster than traditional methods and it typically produces
high quality animations: in many situations in facts the animation itself is complex,
but it is naturally performed in the real world. A typical example is a walking cycle,
that is extremely tricky to be de�ned in a virtual environment, but it is absolutely
trivial to act.

The main disadvantage of motion capture is the cost of the tracking system, al-
though several di�erent solutions have been developed [ana]:

Optical systems: re�ective markers are added on the actor and they are tracked
by a set of �xed cameras (�gure C.5). This system leaves the actor free to
move as no cabling is required, but on the other hand the same actor can
accidentally occlude some of the tracking point, creating gaps in the data-
�ow. This problem can be partially reduced with additional cameras, at the
price of a considerable increment in the computational complexity.

Acoustic systems: a set of audio transmitters are attached to the actor's body,
tracked by a set of audio receivers. This method doesn't su�er by occlusion
problems but, on the other hand, the transmitters need to be wired and
this can be a limitation for some animations. Additional limitations are also
related to the maximum number of transmitters that it is possible to use and
the accuracy of high speed moments tracking.
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Magnetic systems: a third approach uses magnetic sensors, strapped on the actor,
those are able to calculate �their spatial relationship to a centrally located
transmitter� [ana]. Like with acoustic systems, this method requires wires
that limits the freedom of movement of the actor, and it is a�ected by spacial
limitations, but it doesn't su�er from occlusion problems.

Figure C.5: EUCROMA: example of optical motion capture system
(http://eucroma.dk/)

http://eucroma.dk/
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