
UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI TECNICA E GESTIONE DEI SISTEMI INDUSTRIALI
CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCATRONICA

TESI DI LAUREA MAGISTRALE

GROUND VEHICLE DYNAMICS
ESTIMATION BASED ON MULTI-BODY

MODELS AND NON-LINEAR STATE
OBSERVERS

Relatore: Ch.mo Prof. Alberto Trevisani

Correlatore: Ch.mo Prof. Miguel Ángel Naya Villaverde

Laureando: Edoardo Sinigaglia
1082143-IMC

ANNO ACCADEMICO: 2015-16

A B S T R A C T

In this work the design of a multi-body oriented state observer is
described. The aim is to estimate mechanical system dynamics, in or-
der to correct errors that are present inevitably in the corresponding
multi-body models. This allows using the correct multi-body models
to generate virtual sensors. In fact, a multi-body model can provide
a lot of information about a mechanical system, but it can diverge
from reality due to modelling imperfections. Therefore, the task of
the observer designed in this work is to make model reliable. Addi-
tionally, in order to fully reach the aim, i. e. using multi-body models
as virtual sensors, the observer has been designed to guarantee its
real-time applicability.

The proposed observer, named errorekf, has been firstly applied
to a very simple mechanism: the four-bar linkage one, in order to
provide a clearer understanding of observer design and implementa-
tion. After that, it has been applied to a quite complex mechanical
system, a dune buggy vehicle, available, together with its multi-body
simulation model, at the Mechanical Engineering Laboratory of the
University of A Coruña.

iii

A C K N O W L E D G E M E N T S

If I arrived here, some important people who made it possible have
to be mentioned.
Thank you to prof. Alberto Trevisani and prof. Miguel Á. Naya, for
giving me the opportunity of carrying out this work. I will never for-
get my stay at lim.
Thank you to all the lab staff, especially Amelia and Florian for be-
ing so kind with me and for sharing some very nice moments, both
Frans, Alberto and Urbano for the chats while eating. Actually, I have
to thank Alberto also for the computer support. I am still convinced
that some of the things he does are quite magic.
Thank you to Emilio, for supporting me in my work and giving me a
lot of advice. Thank you to Javier, for welcoming me so warmly.
Thank you prof. Dario Richiedei, thank you to Ilaria for the remote
support from Vicenza.
Thank you to mum and dad, for always loving me, encouraging me,
scolding me when it was needed, and especially for believing in me.
Most of the credit for reaching my targets is due to them.
Thank you to Francesco and Margherita, for their support, love, for a
lot of moments laughing together. I am so glad and proud to be their
older brother.
A special thank to Valentina, who is always by my side uncondition-
ally. If I reached this goal, in part is thanks to her.
Thanks you to all my friends, listing them all would be too long, but
everyone knows he has a special place in my heart. Thank you to my
older friends, the ones who shared with me a lot of moments, expe-
riences and adventures since I was a child. Thank you to the newer
friends, thank you to Ferrol ones, for leaving me with a big desire of
travelling across Italy, Europe and the ocean to meet them.

v

C O N T E N T S

1 introduction 1

1.1 Motivations 1

1.2 Thesis contributions 2

1.3 Outline 3

2 multi-body model 5

2.1 Multi-body dynamics 5

2.1.1 General concepts 5

2.1.2 Modelling using natural coordinates 6

2.1.3 Kinematic analysis 7

2.1.4 Dynamic analysis 9

2.1.5 Integrators 11

2.2 Example model: the four bar linkage mechanism 12

2.2.1 Kinematic model 13

2.2.2 Mass and force evaluation 14

2.2.3 Multi-body simulation 15

2.3 Vehicle model 16

2.3.1 Multi-body modelling 16

2.3.2 Force modelling 18

2.3.3 Dynamic formulation 19

3 the observer 21

3.1 State estimation 21

3.1.1 General concepts 21

3.1.2 Observability 21

3.2 The Kalman filter 22

3.2.1 Linear Kalman filter 22

3.2.2 The Extended Kalman filter 25

3.2.3 The error-state EKF 25

3.3 Error-state EKF for a four-bar linkage mechanism 26

3.3.1 The errorEKF 26

3.3.2 ErrorEKF stability 27

3.3.3 Mechanism observer 28

3.3.4 Simulation 30

3.3.5 Observer stability, another test 32

4 observer design 39

4.1 Vehicle 39

4.1.1 Vehicle simulation 39

4.1.2 Vehicle observability 41

4.2 GPS 46

4.2.1 GPS considerations 46

4.2.2 GPS position model 48

4.2.3 GPS velocity model 50

4.2.4 Yaw angle 51

vii

viii contents

4.3 Inertial Measurement Unit 53

4.3.1 Gyroscopes model 53

4.3.2 Accelerometer model 56

4.4 Hall-effect sensors 58

4.5 Code implementation 59

4.5.1 Observer initialization 60

4.5.2 Plant noise matrix calculation 62

4.5.3 Kalman gain calculation 62

4.5.4 Model correction 64

5 simulation results 67

5.1 Simulated manoeuvres 67

5.1.1 Straight line manoeuvre 68

5.1.2 Circular manoeuvre 76

5.2 A Malata parking manoeuvres 84

5.2.1 Real sensors data manoeuvre 84

5.2.2 Manoeuvre with noise added to GPS position
signal 84

Conclusions 93

Appendix 95

a four-bar linkage mechanism matlab multi-body

simulation source code 97

a.1 Main functions 97

a.1.1 Main function 97

a.1.2 Graphic function 103

a.1.3 Energy calculation function 104

a.2 Kinematic functions 104

a.2.1 Mechanism initialization function 104

a.2.2 Position kinematic problem function 105

a.2.3 Velocity kinematic problem function 105

a.2.4 Acceleration kinematic problem function 106

a.2.5 Trick function 106

a.2.6 Jacobian function 107

a.2.7 Jacobian time derivative function 108

a.3 Dynamic functions 108

a.3.1 Mass and forces calculation function 108

a.3.2 Index-3 augmented Lagrange dynamic formu-
lation function 109

a.3.3 Integration function 111

a.4 Observer functions 112

a.4.1 Observer initialization function 112

a.4.2 Observer function 113

a.4.3 Mechanism state-transition matrix calculation func-
tion 114

a.4.4 Observer poles stability analysis function 119

a.4.5 Periodogram 120

contents ix

bibliography 123

L I S T O F F I G U R E S

Figure 1 Rigid body defined by two points. 6

Figure 2 Rigid body defined by three points and a unit
vector. 7

Figure 3 Prismatic joint in a planar mechanism. 7

Figure 4 Prismatic joint in a spatial mechanism. 8

Figure 5 Physical meaning of Lagrange multipliers. 10

Figure 6 Physical meaning of penalty numbers. 11

Figure 7 The four bar linkage mechanism. 13

Figure 8 Buggy model, highlighting natural coordinates. 16

Figure 9 Front left wheel model, highlighting natural
coordinates. 17

Figure 10 Kalman filter recursive process. 23

Figure 11 ErrorEKF simplified flow diagram. 27

Figure 12 Cumulative periodogram test. 30

Figure 13 Four-bar linkage mechanism simulation in mat-
lab. 32

Figure 14 Estimated position of the first joint in x-direction
(top). Estimation error (bottom). 33

Figure 15 Estimated position of the first joint in y-direction
(top). Estimation error (bottom). 33

Figure 16 Estimated position of the second joint in x-
direction (top). Estimation error (bottom). 34

Figure 17 Estimated position of the second joint in y-
direction (top). Estimation error (bottom). 34

Figure 18 Estimated velocity of the first joint in x-direction
(top). Estimation error (bottom). 35

Figure 19 Estimated velocity of the first joint in y-direction
(top). Estimation error (bottom). 35

Figure 20 Estimated velocity of the second joint in x-direction
(top). Estimation error (bottom). 36

Figure 21 Estimated velocity of the second joint in y-direction
(top). Estimation error (bottom). 36

Figure 22 The vehicle. 40

Figure 23 Simulation working principle, showing observer
role. 41

Figure 24 Estimation covariance of x position, zoomed in
order to see the sawtooth behaviour. 46

Figure 25 ecef and enu reference systems. 48

Figure 26 Effect of antenna position correction, instead
of chassis one. 50

Figure 27 Gyroscope. 54

x

LIST OF FIGURES xi

Figure 28 Coriolis force acting on a mass moving in a
rotating reference frame. 54

Figure 29 mems vibrating gyroscope structure scheme. 54

Figure 30 Seismic mass accelerometer. 57

Figure 31 cad model of a brake disk with Hall effect sen-
sor. 59

Figure 32 Calls hierarchy. External measurements are un-
derlined with dashed line, in order to specify
they are input for the observer. 60

Figure 33 Observer extension through force errors esti-
mation and correction. 65

Figure 34 Vehicle simulation. 68

Figure 35 Estimated position of the vehicle in x-direction
(top). Estimation error (bottom). 69

Figure 36 Estimated position of the vehicle in y-direction
(top). Estimation error (bottom). 70

Figure 37 Estimated velocity of the vehicle in x-direction
(top). Estimation error (bottom). 70

Figure 38 Estimated velocity of the vehicle in y-direction
(top). Estimation error (bottom). 71

Figure 39 Estimated front right wheel angular position
(top). Estimation error (bottom). 71

Figure 40 Estimated front left wheel angular position (top).
Estimation error (bottom). 72

Figure 41 Estimated rear right wheel angular position (top).
Estimation error (bottom). 72

Figure 42 Estimated rear left wheel angular position (top).
Estimation error (bottom). 73

Figure 43 Estimated front right wheel angular velocity
(top). Estimation error (bottom). 73

Figure 44 Estimated front left wheel angular velocity (top).
Estimation error (bottom). 74

Figure 45 Estimated rear right wheel angular velocity (top).
Estimation error (bottom). 74

Figure 46 Estimated rear left wheel angular velocity (top).
Estimation error (bottom). 75

Figure 47 Estimated vehicle yaw angle (top). Estimation
error (bottom). 75

Figure 48 Estimated angular velocity of the vehicle about
z-axis (top). Estimation error (bottom). 75

Figure 49 Estimated position of the vehicle in x-direction
(top). Estimation error (bottom). 77

Figure 50 Estimated position of the vehicle in y-direction
(top). Estimation error (bottom). 77

Figure 51 Estimated velocity of the vehicle in x-direction
(top). Estimation error (bottom). 78

xii LIST OF FIGURES

Figure 52 Estimated velocity of the vehicle in y-direction
(top). Estimation error (bottom). 78

Figure 53 Estimated front right wheel angular position
(top). Estimation error (bottom). 79

Figure 54 Estimated front left wheel angular position (top).
Estimation error (bottom). 79

Figure 55 Estimated rear right wheel angular position (top).
Estimation error (bottom). 80

Figure 56 Estimated rear left wheel angular position (top).
Estimation error (bottom). 80

Figure 57 Estimated front right wheel angular velocity
(top). Estimation error (bottom). 81

Figure 58 Estimated front left wheel angular velocity (top).
Estimation error (bottom). 81

Figure 59 Estimated rear right wheel angular velocity (top).
Estimation error (bottom). 82

Figure 60 Estimated rear left wheel angular velocity (top).
Estimation error (bottom). 82

Figure 61 Estimated yaw angle of the vehicle(top). Esti-
mation error (bottom). 83

Figure 62 Estimated angular velocity of the vehicle about
z-axis (top). Estimation error (bottom) 83

Figure 63 Estimated position of the vehicle in x-direction
(top). Estimation error (bottom). 85

Figure 64 Estimated position of the vehicle in y-direction
(top). Estimation error (bottom). 86

Figure 65 Estimated velocity of the vehicle in x-direction
(top). Estimation error (bottom). 86

Figure 66 Estimated velocity of the vehicle in y-direction
(top). Estimation error (bottom). 87

Figure 67 Estimated front right wheel angular position
(top). Estimation error (bottom). 87

Figure 68 Estimated front left wheel angular position (top).
Estimation error (bottom). 88

Figure 69 Estimated rear right wheel angular position (top).
Estimation error (bottom). 88

Figure 70 Estimated rear left wheel angular position (top).
Estimation error (bottom). 89

Figure 71 Estimated vehicle yaw angle, red and blue, ver-
sus course over ground, black (top). Estimation
error (bottom). 89

Figure 72 Estimated angular velocity of the vehicle about
z-axis (top). Estimation error (bottom). 90

Figure 73 Estimated velocity in x-direction (top) with added
gps noise. Estimation error (bottom). 90

Figure 74 Estimated position in y-direction (top) with added
gps noise. Estimation error (bottom). 91

Figure 75 Estimated velocity in x-direction (top) with added
gps noise. Estimation error (bottom). 92

Figure 76 Estimated velocity in y-direction (top) with added
gps noise. Estimation error (bottom). 92

L I S T O F TA B L E S

Table 1 Four-bar linkage simulation parameters. 31

Table 2 Estimation errors in four-bar linkage simula-
tion, respectively of observer and multi-body
model. 33

Table 3 List of installed sensors. 40

Table 4 Simulation parameters. 67

Table 5 Estimation errors in straight manoeuvre. 69

Table 6 Estimation errors in circular manoeuvre. 76

Table 7 Estimation errors in A Malata manoeuvre. 85

Table 8 Estimation errors in A Malata manoeuvre, with
added gps signal noise. 91

xiii

1
I N T R O D U C T I O N

1.1 motivations

Automotive branch is worldwide one of the main research drivers in
engineering field. In fact, without any effort, everybody can realize
the importance of cars in everyday life. In a modern vehicle there
are several devices of different nature, most of them electronically
controlled: the aim of achieving high performances and low fuel con-
sumption leads to an increment of system complexity.
Another field, not less important than the former, in which automo-
tive investigations work is safety. There are many devices which help
drivers in case of necessity: typically they act in an active way substi-
tuting them in those situations, with the aim of avoiding accidents or
other problems deriving from anomalous driving conditions. In 2015,
1.25 million people died for road traffic injuries, which are the main
cause of death among people aged 15-29 years. About 50 million peo-
ple suffered non-fatal injuries, which in some cases led to disability
[22].
Some estimations [2] show that about 90% of traffic accidents are due
to human errors. This is why the so-called adas

1 are being frequently
introduced in cars. Their introduction reduced traffic accidents: some
investigations [11] affirm that up to 27% of car accidents for vehicle
lose of control are avoided.

So, a good and complete knowledge of vehicle behaviour seems
to be quite necessary. Some information are obtained through di-
rect measurements, however not all we want to know is measurable.
For example, some interesting points of a system could not be eas-
ily reachable, some measurements could require too much expensive
sensors.
All these points are the reason for the growth of the interest in the
research field of state observers. They are algorithms which perform
the estimation of dynamical system physical quantities otherwise un-
measurable.
Modern cars use several reduced-dimension state observers, which
utilize partial models. For example, for the estimation of vehicle ori-
entation – yaw, pitch and roll angles – normally two different models
are employed, and another one is used to observe suspension dy-
namics [10]. Their function is directly related to safety and comfort
devices, such as stability and traction or semi-active suspension con-
trol.

1 Advanced Driver Assistant Systems

1

2 introduction

1.2 thesis contributions

The aim of this work is to test a state observer strategy for multi-body
systems. Multi-body simulations are a common use in the industry, in
order to speed up new product development. Nowadays, low-power
consumption and high calculating capacity computers make them
possible in real-time. In this way, a multi-body model could run on
a device installed on the real mechanical system which it represents,
working as a source of virtual measurements of its physical quantities.
The problem with this approach is that, in general, a multi-body
model can be very accurate in the short term if the forces are accurately
known, but it will diverge over time. In fact, a model is never capable
of fully representing the reality: in the case of multi-body dynamics
the main source of uncertainties are the forces, which are quite never
entirely known. This is why a state observer is required: the estima-
tion of the mechanical system physical quantities allows correcting
errors, drifts and uncertainties in the multi-body models. Doing so,
the model could be a reliable source of additional information about
the mechanical system.
The Kalman filter, due to its suitability as state observer for stochas-
tic systems, seems to be applicable. However, it was originally for-
mulated for first order, linear and unconstrained models, whereas
multi-body ones are, in general, second order, highly non-linear, and
constrained systems. Moreover, the algorithm should be efficient, in
order to run in real-time. This is why, in spite of the previous studies
[8, 33, 27, 24], this is still an open research field. A great contribution
recently came from [25].

In this work a state observer for the multi-body system of a ground
vehicle is presented. It is based on a modified version of the indirect
– also called error-state – Kalman filter, which was thought up to be
used for multi-body dynamics [30]. The goal is to succeed in estimat-
ing position and velocity errors committed by the multi-body model
and in correcting them, making the model reliable.
In this work only the navigation problem will be treated. The basic
idea is that the observer should require only sensors which can be
commonly found in car. However, those sensors are typically few to
estimate the entire state of a ground vehicle. Therefore, the filter pre-
sented in [30] should be extended in order to fully correct the multi-
body model in a successful way.
The presence of a corrected multi-body model leads to an additional
advantage: if, for some reasons, some measurements were not avail-
able the multi-body model could go on providing some information
about mechanical system dynamics, whereas a traditional state ob-
server would malfunction. It could happen, for example, with gps

measurements because of the presence of trees, tunnels or any other

1.3 outline 3

building that can shade satellite signal. Or it could simply be caused
by the fault or damage of one of the sensors.

The method has been tested on a dune buggy2 vehicle simulation
model, programmed by the research staff of the Mechanical Engi-
neering Laboratory, University of A Coruña, where this work was
developed.
It is worth noticing that the choice of using only sensors available on
commercial vehicles leads to the formulation of a method which is
not only new but also feasible. Evidently, if adequate measurements
were available, the estimated variable number could be increased.

1.3 outline

The reminder of the work is organized as follows:
Chapter 2 recalls some fundamentals of the theory of multi-body

dynamics, useful to understand vehicle model. A simple a four bar
linkage mechanism model is introduced for sake of clarity. In fact,
starting from the description of the full buggy model kinematics and
dynamics would be too much heavy, and not easily understandable.
Then vehicle model is briefly illustrated, focusing on the parts which
are observed.

In chapter 3 state estimation is described starting from some basic
concept of linear systems theory. In the same chapter the proposed
error-state observer is throughly described, and it is applied to the
simple mechanism introduced in chapter 2. This lead to some consid-
erations about filter stability and performances.

Chapter 4 addresses the design of vehicle observer, underlining the
trade-offs between algorithm efficiency and estimation accuracy.

In chapter 5, simulation results are presented and commented. In
the end, conclusions and possible future improvements are drawn.

2 From now on it will be called simply buggy.

2
M U LT I - B O D Y M O D E L

2.1 multi-body dynamics

2.1.1 General concepts

Engineers usually refer to multi-body systems as mechanical systems
made of two or more rigid or flexible bodies joined together through
kinematic pairs, which allow relative movement between adjacent
bodies [13].
Multi-body dynamics is commonly thought to be born in Joseph-
Louis Lagrange’s book, Mécanique Analitique. In this essay the equa-
tions of motion for mechanical systems have been formulated for the
first time in a general way [6, 18].
Kinematic and dynamic analyses are combined: the former verifies
the capability of a system to move following a planned trajectory, the
latter identifies internal and external forces acting on the mechanism.
General and systematic algorithm for analysing mechanism are searched,
so that to automate the calculation and to have it solved by a com-
puter is possible. Normally the result is a model which is made of
differential-algebraic equations.

First of all, multi-body models differ in the kind of coordinates
used for their formulation. In particular, independent and dependent
coordinates can be distinguished, the latter can be in turn divided
into relative, reference point and natural coordinates. The choice of ei-
ther type of coordinates can lead to significant differences in terms of
efficiency and ease of implementation of the model.
An independent coordinate model of a mechanical system has a num-
ber of equations equal to the one of degrees of freedom, whereas the
use of dependent coordinates leads to a larger model. Indeed, the use
of dependent coordinates requires to add into the model some con-
straint equations expressing coordinate redundancy. It is apparent
that size difference between the two models is equal to the number
of constraint equations.
It is worth noticing that there is not a unique criterion for choosing
independent or dependent coordinates, some authors however draw
attention to the fact that the choice of independent coordinates does
not allow the unambiguous determination of the position of all the
system bodies [13]. This makes the method not general at all, so de-
pendent coordinates are typically preferred, in spite of the model di-
mension increment.
Such considerations have led to the adoption of dependent coordi-

5

6 multi-body model

Figure 1: Rigid body defined by two points.

nates in buggy model formulation, thoroughly described in the fol-
lowing sections.

2.1.2 Modelling using natural coordinates

As it was told, modelling of a mechanical system using natural coordi-
nates leads to an equation set whose dimension is higher than the one
obtained modelling the system using independent coordinates. The
size difference is equal to the one between the number of natural co-
ordinates and the mechanism degrees of freedom. Added equations
are algebraic and they can be divided into two kinds:

a. Equations which express the rigidity of a solid element, also
called rigid body constraints;

b. Equations which force the relative movement between two joined
elements to follow the one allowed by a kinematic pair, also
called joint constraints.

These equations impose some constraints over the Cartesian coordi-
nates of some points and unit vectors – sometimes the latter ones
appear in spatial mechanisms – defined over the rigid bodies.

For planar mechanisms, considering for example the element of Fig.
1, rigid body constraints express the fact that the distance between the
two points never changes. The corresponding equation is:

(x2 − x2)
2 + (y2 − y2)

2 − L212 = 0 (1)

In spatial mechanism case, considering the same element, equation
(1) is enriched with a term along z axis:

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2 − L212 = 0 (2)

If unit vectors are added, two kinds of equations are considered: the
former one expresses the fact that vector magnitude never changes,
i. e. it is always equal to one. Considering the rigid body of Fig. 2, the
equation is:

u2x + u
2
y + u

2
z − 1 = 0 (3)

The second equation, through a dot product, expresses the fact that
the value of the angle made by unit vector direction and the segment

2.1 multi-body dynamics 7

Figure 2: Rigid body defined by three points and a unit vector.

Figure 3: Prismatic joint in a planar mechanism.

passing through the two points never changes. Such an equation can
be written in the following way:

(x2 − x1)ux + (y2 − y1)uy + (z2 − z1)uz − c = 0 (4)

Joint constraints express, through dot and cross products, the kind
of movement allowed by them. For example, given the prismatic pair
of Fig. 3, constraint equations are:

(x2 − x1)(y3 − y1) + (y2 − y1)(x3 − x1) = 0

(x2 − x1)(x4 − x3) + (y2 − y1)(y4 − y3) − c = 0
(5)

The former expresses, forcing the cross product to be equal to zero,
the fact that points 3, 1 and 2 are always aligned. The latter forces
the dot product to a constant value, with the aim of avoiding relative
rotations between the two elements. In spatial mechanism case – as it
is showed in Fig. 4 – the latter constraint can be expressed including
one or more unit vectors into the dot product:

v1xv2x + v1yv2y + v1zv2z − c = 0 (6)

2.1.3 Kinematic analysis

Kinematic analysis of a mechanical system consist of position, velocity
and acceleration problems.
Position analysis, starting from the knowledge of the position of the
degrees of freedom, aims at determining the position of each ele-
ment of a mechanism. It can be solved, considering natural coordi-
nate multi-body models, using numerical methods, like, for example,
Newton-Raphson iterative one. This because constraint equations are

8 multi-body model

Figure 4: Prismatic joint in a spatial mechanism.

non linear: a closed-form solution which is also general and that can
be found automatically does not exist.
Considering a Cartesian coordinate vector of positions q and a con-
straint equation vector ˘(q), system model can be written as:

Φ(q)Φ(q)Φ(q) = 000 (7)

Using Taylor’s series the model in (7) can be linearised in the neigh-
bourhood of a position q0, leading to:

Φ(q)Φ(q)Φ(q) ∼=Φ(q0)Φ(q0)Φ(q0) +Φq(q0)Φq(q0)Φq(q0)(q − q0) = 000 (8)

Φq(q)Φq(q)Φq(q) is called Jacobian matrix of the system, its entries are the partial
derivatives with respect to coordinate vector q of the constraint equa-
tions. The number of rows of Φq(q)Φq(q)Φq(q) is equal to the one of constraint
equations, while the number of its columns is equal to the number
of coordinates. Basically, the dimensions of the Jacobian matrix are
equal, respectively, to model and q vector dimensions. It is worth
noticing that the values of some of the coordinates collected in q is
known, since they are mechanism degrees of freedom: deleting the
rows and columns related to them a well-posed system of equations
can be obtained, whose dimension is equal to constraint equation
number.
Let k be the current iteration step, the following equation has to be
solved:

ΦqΦqΦq(qk)(qk+1 − qk) = −ΦΦΦ(qk) (9)

So a new solution qk+1 is obtained, probably more similar to the real
one than qk was. The algorithm stops to iterate when the difference
between qk and qk+1 is negligible, so that it can be concluded that
the convergence has been reached.

Velocity analysis leads to the determination of the speed of each
element of the mechanism. Calculating the time derivative of (7), the
following equation set is obtained:

Φq(q)Φq(q)Φq(q)q̇ = 000 (10)

2.1 multi-body dynamics 9

When velocity problem is being solved, the position of all mechanism
elements is already known. The Jacobian matrix is known too, so
the equation system in (10) is linear. Moving the columns which are
related to the degrees of freedom to the right side of the equation –
their velocities have to be known – a square linear equation system is
obtained.

Acceleration problem in linear too, so it can be solved easily using
automatic calculation methods. Calculating the time derivative of (10),
the following equation set is obtained:

Φq(q)Φq(q)Φq(q)q̈ + Φ̇q(q)Φ̇q(q)Φ̇q(q)q̇ = 000 (11)

The solution method is equal to the one adopted for velocity prob-
lem, since the only terms which are not known make a square linear
equation set whose dimension is equal to the number of constraint
equations.

2.1.4 Dynamic analysis

Dynamic analysis of a mechanical system usually follows kinematic
one. Its aim is to determine the forces which are acting on the mecha-
nism. The most widespread approach to formulate dynamical model,
when natural coordinates are used, is the Lagrange’s one, following
which the motion equations can be written as:

d

dt

∂T
∂q̇

−
∂T
∂q

+ΦqΦqΦq
Tλλλ = Q (12)

In (12) T is the kinetic energy of the system, Q is the vector of the
generalized forces acting on it, the third term of the sum represents
the forces due to the constraints between dependent variables q1.
Let M be the mass matrix of the system, the kinetic energy can be
written as follows:

T =
1

2
q̇TMq̇ (13)

The result is that (12) can be written in a lighter and more intuitive
form. Motion equation number is equal to the one of system indepen-
dent variables, while the number of Lagrange multipliers is equal to
the number of constraint equations. They still have to be calculated.
Substituting (13) in (12), and taking advantage of the constraint equa-
tions defined in (7) the full equation set can be written as:

Mq̈ +ΦqΦqΦq
Tλλλ = Q

ΦΦΦ = 000
(14)

Equation (14) is made up of a set of differential equations and a set
of algebraic equations. Therefore, motion equations in (14) result in

1 The term λ is called Lagrange multiplier.

10 multi-body model

Figure 5: Physical meaning of Lagrange multipliers.

a set of differential-algebraic equations (dae). However, most of the in-
tegration algorithms work with ordinary differential equations (ode): a
way to convert (14) in ode is needed.
Several dynamic formulations for solving a problem like the one in
(14) can be found in literature [13]. The one commonly known as
Augmented Lagrange will be presented as an example. Starting from
the first equation in that set, Lagrange multipliers can be expressed
as:

λλλ = α(Φ̈̈Φ̈Φ+ 2ξωΦ̇̇Φ̇Φ+ω2ΦΦΦ) (15)

where α is a coefficient called penalty number. Taking into account the
physical meaning of the third term of the sum in (12) and having a
glance at Fig. 5, α value has to be proportional to the violation of the
constraint equations. The term in brackets in (15) can be explained
as follows: each rigid body is replaced with a one degree of freedom
spring-mass-damper system, so renouncing to its rigidity. This is re-
placed with a high stiffness: it is worth pointing out the importance of
the right choice of penalty number value. Indeed, a high value leads
to very high stiffness and facilitates constraint equation compliance,
but it can lead to numeric problems. Opposite effects are obtained for
small values of α2.
In order to improve the accuracy of penalty number calculation, their
definition can be slightly modified:

λλλ = λλλ∗ +α(Φ̈̈Φ̈Φ+ 2ξωΦ̇̇Φ̇Φ+ω2ΦΦΦ) (16)

The result is an iterative algorithm in which the first term of the sum
is the penalty number calculated at previous step. Substituting (16)
into the first set of equations in (14) the following equation system is
obtained:

(M +αΦqΦqΦq
TΦqΦqΦq)q̈ = Q −ΦqΦqΦq

T [λλλk +α(Φ̇qΦ̇qΦ̇qq̇ + 2ξωΦ̇̇Φ̇Φ+ω2ΦΦΦ)]

λλλk+1 = λλλk +α(Φ̈̈Φ̈Φ+ 2ξωΦ̇̇Φ̇Φ+ω2ΦΦΦ)
(17)

where k is current iteration step.
Starting from an initial value of Lagrange multipliers, it can be used
for acceleration calculation according to the first equation in (17), ob-
taining more accurate values which can be substituted into the second
set of equations. The algorithm iterates until it converges.

2 Usually, heuristically, a right value for α can be chosen among 106 e 109.

2.1 multi-body dynamics 11

Figure 6: Physical meaning of penalty numbers.

2.1.5 Integrators

In multi-body dynamics, in addition to the formulations above, in-
tegration algorithms are very important too. They are characterized
and classified according to three criteria:

a. Efficiency;

b. Stability;

c. Accuracy.

The first one does not need to be explained, the second one expresses
the capability of the algorithm of converging for any value of the
integration step width. Usually an integrator is said to be convergent
if, at any time-step, it succeeds in calculating a finite solution, even
though it is not the correct one. The third criterion is related to the
correctness of the solution, distinguishing between local and global
error, respectively committed over a single step or over the entire
integration period. Integration algorithms can also be divided in:

a. Single-step integrators;

b. Multiple-step integrators.

The former ones compute the solution at k + 1 step using only the
values determined at k step, the latter ones use also the solutions
calculated in the previous integration steps. Single-step integrators
are used, usually, for complex integrations, with high-frequency so-
lutions or discontinuities, whereas multiple-step integrators are more
efficient in simple problems.
Another division can be made, distinguishing between:

a. Fixed-step integrators;

b. Variable-step integrators.

The former ones do not need any explication, the latter automatically
vary integration step width depending on the complexity of the in-
tegration. When facing a critic point they make the step narrower,
and vice versa.The former ones usually need less calculating capacity,
and it seems to be preferable. Anyway, in presence of critic points

12 multi-body model

in the integrating function, the need for making the integration step
narrower can appear, in order to avoid instability problems.
The last division of integration algorithms can be obtained highlight-
ing the difference between:

a. Explicit integrators;

b. Implicit integrators.

The former ones calculate the solution at k+ 1 step as explicit func-
tion of the values determined at k step and of their derivatives. The
latter ones also require the values of the solution at the current step,
needing to solve a non-linear problem.
To solve the non-linear system which derives from the choice of im-
plicit integrator, fixed-point techniques or Newton-Raphson algorithms
can be used. They both utilize an explicit integrator, called predictor, in
order to obtain an approximate solution. Then they perform the itera-
tive calculation, called corrector, to converge to the solution they were
looking for. The fixed point techniques use the implicit integrator as
corrector, Newton-Raphson algorithms use tangent matrix algorithm
for the same task.

An example of commonly used integrator is the trapezoidal rule. It
is an implicit, single-step integration algorithm which is, moreover,
unconditionally stable, so it works well with complex integrations.
It starts proceeding with the calculation of an approximate solution
performed by the predictor:

qk+1 = qk +∆tq̇k +
∆t2

2
q̈k

q̇k+1 = q̇k +∆tq̈k
(18)

The solution found is the starting point for the iterative process per-
formed by the corrector, which tries to converge to the exact solution:

qk+1 = qk +
∆t2

2
(q̇k + q̇k+1)

q̇k+1 = q̇k +
∆t2

2
(q̈k + q̈k+1)

(19)

2.2 example model : the four bar linkage mechanism

In the following sections a brief description of a simple mechanism
model in natural coordinates will be presented for sake of clarity,
since vehicle one is quite complex to understand without being famil-
iar with this kind of notation.

2.2 example model : the four bar linkage mechanism 13

Figure 7: The four bar linkage mechanism.

2.2.1 Kinematic model

The four bar linkage mechanism, sketched in Fig. 7, consists of one
fixed link and three moving ones. The former is called frame, the mov-
ing links connected to the frame are named cranks and finally the one
between them is named rod. Such a mechanism has one degree of free-
dom, the use is to consider as actuated one of the cranks, for example
by a motor. In this way, the angular position af the crank – denoted
with α – is known.
Modelling using natural coordinates requires to write a set of con-
straint equations. The chosen coordinates are:

a. x1, y1

b. x2, y2

c. α

Since constraint equation set size is equal to the difference between
the number of coordinates and the one of degrees of freedom, four
equations are to be written. Three of them are rigid body constraints:

(x1 − xA)
2 + (y1 − yA)

2 − L21 = 0

(x2 − x1)
2 + (y2 − y1)

2 − L22 = 0

(xB − x2)
2 + (yB − y2)

2 − L23 = 0

(20)

The fourth expresses the relationship between α angle value and the
length of the projection of the actuated crank. This equation can be
written in two ways:

(x1 − xA) − L1cos(α) = 0

(y1 − yA) − L1sin(α) = 0
(21)

It is worth noticing that none of equations in (21) is always valid: the
sine equation is not valid for α values in a neighbourhood of 90°,
analogously cosine equation is not valid for α values around 0°. It
can be explained by differentiating with respect to time the equations
in (21): taking for example the former in (21), a small angle increment
δα should produce small variations of other coordinate values:

(δx1 − xA) + L1δαsin(α) = 0 (22)

14 multi-body model

It can be noted that a small increment of α cannot induce variation in
point 1 x coordinate, so this equation is not valid for α ∼= 0◦. This is
why the fourth equation of the constraint set must be chosen between
the former and the latter of (21), depending on α value.

2.2.2 Mass and force evaluation

In section 2.1.4 the formulation of dynamical models using natural
coordinates has been discussed in a general way. However, the mass
matrix M and the force vector Q were introduced without any kind
of explanation. In this section come clarifications on the formulation
of these terms are provided for the specific case analysed.
Mass matrix is evaluated moving from energetic considerations: given
for example the rod of Fig. 7, the position of point 2 with respect to a
generic reference frame can be expressed as:

r = r1 + Ar̄ (23)

where A is the rotation matrix which expresses crank local axes with
respect to global reference frame. It can be written as follows:

A =
1

L2

[
x2 − x1 y1 − y2

y2 − y1 x2 − x1

]
(24)

Evaluating the time derivative of (23) and the kinetic energy of the
system, the following equation can be obtained:

T =
1

2

∫
ṙT1 ṙ1dm+

1

2

∫
ṙT1 Ȧr̄dm+

1

2

∫
r̄T ȦT ṙ1dm+

1

2

∫
r̄T ȦT Ȧr̄dm (25)

The equation in (25) can be integrated, resulting in:

T =
1

2
mṙT1 ṙ1 +mṙT1 Ȧr̄G +

I2
2L2

[(ẋ2 − ẋ1)
2 + (ẏ2 − ẏ1)

2] (26)

where rG is the local position vector of rod centre of gravity and I2 is
its moment of inertia with respect to point 1, in which the origin of
local reference frame has been placed. Kinetic energy of the system
can be written also as:

T =
1

2
ẋ

m− 2m x̄G

L + I2
L22

0 m x̄G
L − I2

L22
−m ȳG

L

0 m− 2m x̄G
L + I2

L22
m ȳG
L m x̄G

L − I2
L22

m x̄G
L − I2

L22
m ȳG
L

I2
L22

0

−m ȳG
L m x̄G

L − I2
L22

0 I2
L22

 ẋT

(27)

where ẋ is the vector of natural coordinate velocity. It is easy to notice
that the term in the middle is the mass matrix.

2.2 example model : the four bar linkage mechanism 15

It is worth pointing out that this matrix has constant values, so the
force vector Q will not contain inertial components of the forces –
centrifugal and Coriolis one – which depends on velocity.

In order to calculate the generalized force vector Q, the velocity
of a generic point, P, the rod is introduced. Such a velocity can be
expressed, with respect to a generic reference frame, as follows:

ṙP = CPq̇ (28)

where CP is a matrix which conveys point P position in the element
base. In order to determine the force which provokes this velocity, its
virtual power has to be evaluated. Two force systems are said to be
dynamically equivalent if they produce the same virtual power:

Ẇ = FT ṙP = FTCPq̇ = QT q̇ (29)

In this case a plane mechanism is being considered, so that (23) can
be rewritten as:

rP = r1 + au + bv (30)

where u and v are two unit vectors:

u =
1

L2

[
x2 − x1

y2 − y1

]

v =
1

L2

[
y1 − y2

x2 − x1

] (31)

Rewriting the equation in (30) the following relation can be obtained:

rP =
1

L2

[
L2 − a b a −b

−b L2 − a b a

]
x1

y1

x2

y2

 = CPq (32)

from which the value of CP matrix is obvious.
The mass matrix and force vector obtained from this calculation must
be assembled. Every term in these is related to a coordinate: they
simply have to be put in the correct position of the complete matrix,
paying heed to sum the terms which are related to the same variable.

2.2.3 Multi-body simulation

The multi-body simulation starts with a kinematic analysis: position
and velocity initial conditions of the degrees of freedom are known,
so positions and velocities of all the coordinates can be evaluated.

16 multi-body model

Figure 8: Buggy model, highlighting natural coordinates.

At any time-step, a dynamic analysis is performed: firstly position, ve-
locity and acceleration values are pre-calculated, following the equa-
tions in (18). Then the non-linear problem has to be solved: using the
equations in (19) accurate kinematic variable values can be obtained.
Once that the convergence has been reached, the dynamic analysis
ends: all the coordinate values of the mechanism at the current time-
step are known.
This calculation provides the initial conditions for the next integra-
tion step: in this way mechanism dynamics can be determined for
the entire simulation period3.

2.3 vehicle model

2.3.1 Multi-body modelling

As it was told before, the multi-body model of the buggy has been
essentially built using natural coordinates, even though some relative
ones have been added for convenience. The buggy is considered to be
made of eighteen rigid bodies, all defined by points and unit vectors,
so the corresponding leading model has 168 coordinates [26].

The chassis, shown in Fig. 8, has been modelled using twelve basic
points and three unit vectors. For the purpose of this work, p1 point
and the three unit vectors u1, u2, u3 have very great importance. In-
deed, they have been used to observe and control the six degrees of
freedom of buggy chassis, since its position and orientation can be
completely defined by them.
In particular, buggy position in the three-dimensional space can be

determined looking at the three Cartesian coordinates of p1 point.

3 matlab code of four bar linkage multi-body simulation can be found in Appendix
A

2.3 vehicle model 17

Figure 9: Front left wheel model, highlighting natural coordinates.

Regarding to the orientation, taking into account that buggy trans-
formation matrix is made of the three unit vectors u1, u2, u3, the
following components of them can be chosen in order to make the
chassis rotate:

a. y component of u1 vector

b. z component of u1 vector

c. z component of u2 vector

It is worth noticing that it is not a linearisation, even if for small values
of the three angles there is a similarity with Tait-Bryan angles. Natural
coordinate models simply use points and unit vectors to express rigid
body movements, so that the three orientation angles we are used to
think at – yaw, pitch and roll – do not exist: their task is performed
through the modification of Cartesian coordinates.
Since the chassis variables are 45 – 36 coordinates of the points and
9 components of the unit vectors – while its degrees of freedom are
six, 39 constraint equations have to be written. In particular, rigid
body constraints are expressed imposing respectively orthogonality
and unit magnitude of the three vectors:

uiuj = 0

uiui − 1 = 0
(33)

The rest of the constraint equations define the other points as linear
combination of the three unit vectors:

rm − aui − buj − cuk = 000 (34)

where rm is the distance of pm from p1.
Each wheel – in Fig. 9 the front right one is shown – is defined by

one point and three unit vectors. Constraint equations for wheels are
the ones of rigid body, expressed as follows:

uiui − 1 = 0

uiuj − cos(φij) = 0
(35)

Actually, some relative coordinates have been added to natural ones,
in order to easily describe the movement allowed by kinematic joints.

18 multi-body model

For example, the rotation of the wheels is described through the value
of an angle θ: so there are four angular variables. These angles are
defined with respect to:

a. The projection of the two points of the knuckle onto the wheel
plane and a vector contained in the latter, for front wheels;

b. The projection of a vector of the chassis onto the wheel plane
and a vector contained in the latter, for rear wheels;

Constraint equations for front wheels are:

uirk − (uiuj)(rkuj) − L cos(θn) = 0

ui × rk − (uiuj)uj × rk − (rkuj)uj × uj − ujL sin(θn) = 000
(36)

The same equations for rear wheels are:

uiuj − (uiuk)(ujuk) − L cos(θn) = 0

ui × uj − (uiuj)uk × uj − (ujuk)uk × uk − ukL sin(θn) = 000
(37)

The stroke of the dampers has been defined, like the steering mech-
anism rack translation, using relative coordinates. In particular, these
are longitudinal distances s and lead to constraint equation as:

si = |rjk| (38)

where rjk is the distance between pj and pk.

2.3.2 Force modelling

Several kinds of force models are included, which are:

a. Tyre forces;

b. Gravity forces;

c. Suspension forces;

d. Driving and braking torques of rear wheels;

e. Braking torques of front wheels.

The first ones calculate vertical and lateral forces generated by the
interaction between tyres and the road profile, which is supposed to be
known. The vertical behaviour is the same of a one degree of freedom
spring-mass-damper system, the lateral behaviour is a bit more com-
plex and can be represented as proportional to the slip or through
other – more complicated – models.
Gravitational forces act on the centre of gravity of each rigid body,
in the direction of vz vector – showed in Fig. 8 – with a value of the
gravity acceleration of g = 9.81 m

s2
.

2.3 vehicle model 19

2.3.3 Dynamic formulation

The dynamic formulation used in buggy model is an improved ver-
sion of the augmented Lagrangian method in (17), in particular it is
called index-3 augmented Lagrangian formulation with mass-damping-stiffness-
orthogonal projections in velocities and accelerations [7, 9]. It, in turn, is a
modified version of the index-3 augmented Lagrangian formulation with
mass-orthogonal-projections [5], from which the equations of motion are
derived:

Mq̈ +ΦqΦqΦq
TαΦΦΦ+ΦqΦqΦq

Tλ∗λ∗λ∗ = Q

λ∗λ∗λ∗k = λ∗λ∗λ∗k−1 +αΦΦΦk
(39)

The implicit single-step trapezoidal rule has been chosen as integra-
tion algorithm. This leads to:

q̇k+1 =
2

∆t
qk+1 − (

2

∆t
qk + q̇k)

q̈k+1 =
4

∆t2
qk+1 − (

4

∆t2
qk +

4

∆t
q̇k + q̈k)

(40)

Substituting the difference equations in (40) into (39) the non-linear
system can be solved using Newton-Rapshon method:

[
∂f(q)
∂q

]k∆∆∆qk+1 = −[f(q)]k

[f(q)] =
4

∆t2
(Mq̈ +ΦqΦqΦq

TαΦΦΦ+ΦqΦqΦq
Tλ∗λ∗λ∗ − Q)

(41)

The position solution set qk+1 satisfies both the equations of motion
in (39) and the constraint equations in (7). Yet velocity and accelera-
tion solution sets do not satisfy the constraints in (10) and (11), since
it has not been imposed in the solution process. Because of this, veloc-
ity and acceleration projections are performed after Newton-Raphson
algorithm convergence:

[M +
∆t

2
C +

∆t2

4
(ΦqΦqΦq

TαΦΦΦ+ K)]q̇ = [M +
∆t

2
C +

∆t2

4
K]q̇∗ +

∆t2

4
ΦqΦqΦq

TαΦΦΦ

[M +
∆t

2
C +

∆t2

4
(ΦqΦqΦq

TαΦΦΦ+ K)]q̈ = [M +
∆t

2
C +

∆t2

4
K]q̈∗ +

∆t2

4
ΦqΦqΦq

Tα(Φ̇qΦ̇qΦ̇qq̇ + Φ̇̇Φ̇Φ)

(42)

where C, K are the contributions of damping and elastic forces of
the system, respectively, q̇∗ is the solution obtained after Newton-
Raphson convergence – idem for accelerations – and q̇ is the one
after the projection.

3
T H E O B S E RV E R

3.1 state estimation

3.1.1 General concepts

Before explaining state estimation concept, the term state should be
defined. The state of a dynamical system is a set of variables whose
values completely represent system internal conditions at a given in-
stant of time [31]. More formally, the state of a dynamical system is
defined as a set of variables which have the separation property. This
means that they contain all the system history information which are
needed in order to evaluate the evolution both of output variables
and of state ones [12].
The knowledge of the values of system state variables is fundamen-
tal if an advanced control technique has to be implemented: in fact
several optimal control strategies suppose the system state to be fully
available. However, state variables often cannot be measured: some-
times they refer to system parts which are difficult to reach, some-
times a suitable sensor would be too much expensive. This is the
reason for the growth of state estimation importance in several fields
of engineering research.

A state observer is a dynamical system which performs the approxi-
mate calculation of state variables, using disposal data. The most eas-
ily understandable one is Luenberger observer [19]: by using a model of
the real system, and by applying it the same inputs, such an observer
computes the estimates of system variables output. Finally, through
the feedback of the output errors, weighted by a gain matrix, it suc-
ceeds in determining the system model state. The main problem re-
lies in the fact that both the system model and the input variables are
treated in a deterministic way, i. e. uncertainties on model and noise
on measurements are completely neglected, leading to significant lim-
itations [20].
For this reason the Kalman filter is often used for the same task: it
performs state estimation taking into account uncertainties and noise
defining all the variables involved in the estimation like stochastic
ones.

3.1.2 Observability

Regarding to state estimation, a key concept is observability, firstly in-
troduced by R. E. Kalman. In fact, it is strictly related to the possibility

21

22 the observer

of determining system state, moving from the knowledge of its struc-
ture and outputs.
Formally speaking, a state which produces outputs which are undis-
tinguishable from the ones produced by the null state is called unob-
servable. So the subspace containing it is called non-observability sub-
space. If the subspace contains only the null state, the system is said
to be observable [12]. In a more intuitive way, a system with an initial
state x(t0) is said to be observable if such a state can be determined
from its outputs in the time interval [t0, t].
Given a discrete-time linear-time-invariant system in state-space form1,
this property can be proved taking a look to observability matrix:

O =

H

HF

HF2

:

HFn−1

(44)

where F is the system matrix, H is the output matrix, n is state di-
mension. In particular, if rank of the observability matrix is equal to
n, the system is fully observable.
Several criteria for determining the observability of non-linear sys-
tems can be found in literature, in particular underlining the concepts
of local and weak observability [15].

3.2 the kalman filter

3.2.1 Linear Kalman filter

The Kalman filter is an algorithm which performs the estimation of
the instantaneous state of a linear dynamic system, solving what is
called linear-quadratic problem [14]. It is capable of combining the in-
formation deriving from the knowledge of system dynamics with the
ones resulting from the measurements of noise-corrupted system out-
put variables.
Although the Kalman filter is an alternative representation of the
Wiener one, the credit of this formulation is usually given to R. E.
Kalman, for connecting state estimation problem with state-space
models [3, 17].
The Kalman filter works admitting neither the perfect knowledge of
system dynamics, nor the capability of taking noise-free measure-
ments of output variables. In particular, the gain is calculated – while

1 Let the system be expressed as:

xk+1 = Fxk + Guk
yk = Hxk + Duk

(43)

3.2 the kalman filter 23

Figure 10: Kalman filter recursive process.

in Luenberger observer it is fixed and chosen by the designer – by
mean of an algorithm, depending on how much the model and the
measurements are being trusted.

It works recursively and it is relies of two steps:

a. Prediction or propagation step;

b. Correction or updating step.

In the former a prediction of state variable values and of their covari-
ances, based on state-space system model, is performed. The estima-
tion uses all the information until the current time-step, trying to
predict what will happen at the next one. Given the state-space rep-
resentation of a lti discrete-time2 dynamic system:

xk+1 = Fxk + Guk
yk = Hxk + Juk

(46)

The uncertainty over the model is expressed through the plant noise
matrix, denoted here as W, which has the same dimension of the state
vector. Since it contains terms of uncertainty for each state component,
it indicates how much they are distrusted.
The prediction-step Kalman filter equations are:

xk|k−1 = Fxk−1
Pk|k−1 = FPk−1FT + W

(47)

2 Given a lti continuous-time system in state-space form, characterized by the
(F, G, H, J) matrix set, it can always be converted into a discrete-time one. For ex-
ample, the system in (46), could result from the discretisation of a continuous-time
one using the formulas:

F = eAT

G =

∫T
0
eAsBds

H = C

J = D

(45)

where T is time-step value.

24 the observer

It is worth noticing that during this step only the knowledge about sys-
tem model is used, taking into account the uncertainty on it through
the inclusion of W matrix in updating the covariance.
The second step performs the correction of the predicted estimates,
using measurement information. Measurement noise is expressed us-
ing the measurement noise matrix, denoted here as N, which has a num-
ber of rows equal to measurement one, and a number of columns
equal to state dimension one. Matrix N expresses how much each
sensor measurement is distrusted.
A parameter, called Kalman gain, is computed:

Lk = Pk−1HT (HPk−1HT + N)−1 (48)

The estimation error, also called innovation, is computed as follows:

ek = yk − Hxk (49)

So the effective correction can be performed:

xk|k = xk|k−1 + Lkek
Pk|k = (I − LkH)Pk|k−1(I − LkH)T + LkNLTk

(50)

where I is the identity matrix3.
It is worth pointing out that P matrix influences state correction through
the Kalman gain. In fact, gain value is driven by uncertainties on state
variables: this, combined with measurement noise, leads to determine
how much the estimates need to be corrected.

The filter is a recursive algorithm, i. e. at any time-step it performs
prediction and updating moving from the values determined at the
previous one. Moreover, it should be reminded that it is a dynamic
system too: so its poles determine its stability and its time constant.
Regarding to the former, covariance prediction and updating equa-
tions could be combined into discrete Riccati equation:

Pk+1|k = FkPk|kFTk +FkPk|kHTk(HkPk|kHTk +Nk)−1HkPk|kFTk +Wk

(51)

It can be proved that a sufficient condition for covariance matrix pole
stability is the revealability of (F, H) and the stabilisability of (F, Q

1
2).

3 There are three different expressions for the updating equation of the covariance
matrix, the one presented is called Joseph stabilized version and it can be shown to be
more stable and robust than the others, since it guarantees P matrix to be always
symmetric and positive definite [31].

3.2 the kalman filter 25

3.2.2 The Extended Kalman filter

The Extended Kalman filter is the most common and most used at-
tempt to apply the Kalman filter to non-linear systems, described by
the equations:

xk+1 = f(xk, uk)

yk = h(xk)
(52)

The Extended Kalman filter simply linearises all the non-linear trans-
formations and substitutes their Jacobians in order to compute covari-
ance matrices and Kalman gain [16]. Linearisations are performed
about the current mean and covariance:

F =
∂f

∂x
|x=x0

H =
∂h

∂x
|x=x0

(53)

where x0 is the current working point. If the system does not have a
fixed working point and it is time-varying these matrices have to be
calculated at every time-step.
With respect to the linear version, this filter loses the optimality prop-
erty: the main flaw of the ekf is that the distributions of the various
random variables are no longer normal after undergoing their respec-
tive non-linear transformations. It is simply an ad hoc state estimator
which approximates Bayes’ rule of optimality by linearization [35].
The ekf has two implementation forms in terms of state estimation:
the total-state and the error-state ones. In the former the object of the
estimation is the total state of a system, in the latter – which will be
presented in the next paragraph – observer state is made of the errors
committed over system state variables.

3.2.3 The error-state EKF

The error-state ekf, also called indirect ekf, performs the estimation
of the errors committed in the determination of the values of system
state variables. That is, given a dynamical system with a couple of
state variables (x1, x2), this kind of filter aims estimating the value of
(δx1, δx2).
The examples in literature [29, 28, 1, 32] refer to navigation problems,
in particular to orientation estimation. As it can be noticed, dynamic
modelling of the system in the state-transition matrix is not necessary:
it is substituted by kinematic equation integrations. This leads to two
main advantages:

a. The same observer can be used with other systems of the same
kind, making it more general;

26 the observer

b. If not all the state variables are to be estimated, observer size can
be reduced, making it smaller and faster. This is not possible
with the total-state filter, since into the state-transition matrix
there are information about system behaviour.

It will be seen, however, that some drawbacks are present: in particu-
lar the loss of part of system observability is probable.

3.3 error-state ekf for a four-bar linkage mechanism

Before working on the vehicle model, the approach proposed through
this work has been tested on a very simple, one dof mechanism: the
four-bar linkage one. The same one which had been modelled in the
previous chapter was used.

3.3.1 The errorEKF

The error-state ekf used in this work is a slightly modified version
of the one designed in the papers quoted above: in particular, it was
thought up to be suitable for multi-body systems and named errorekf

[30]. It has been chosen, among various filters, because it results the
best trade-off between accuracy and efficiency. In particular, although
the unscented Kalman filter offers the best performances in terms of
accuracy, typically it requires a higher computational cost than the
ekf.
The errorekf works integrating multi-body model variables, in fact its
state-transition matrix is an integrator:

ek+1 =

[
eq

eq̇

]
k+1

=

[
I ∆∆∆t

000 I

][
eq

eq̇

]
k

(54)

This accords to the first of the advantages of the error-state ekf under-
lined in the last paragraph. It is worth noticing that the filter is input-
free: it works in free response integrating the error vector – which
is the object of the estimation – at the previous time-step. These errors
are the difference between the values of real mechanism independent
coordinates and multi-body model ones. Once they have been esti-
mated, the errors in all model natural coordinates can be determined
through kinematic analysis.
After that, since the errors committed on the multi-body systems state
variables are known, a model correction is possible. So, the initial con-
ditions for the next multi-body integration step will be the results of
the previous time-step, corrected by filter estimates. This allows forc-
ing to zero the predicted error vector: in fact, since the multi-body
model has been corrected, the errors at the beginning of the current
time-step are zero, as well as their predicted values, according to (54).

3.3 error-state ekf for a four-bar linkage mechanism 27

Figure 11: ErrorEKF simplified flow diagram.

The output matrix is calculated like in (53): it is, actually, the only
non-linear part of the filter, since the Jacobian of f(xk) function is re-
placed by the integrator. This matrix is made of the partial derivatives
of sensors functions with respect to model variables.

3.3.2 ErrorEKF stability

Usually, before designing an observer, system observability analysis
should be carried out, since observability is a precondition to perform
state estimation. It provides also a criterion for Kalman filter stability:
if the couple (F, H) is observable – and (F, Q

1
2) is reachable – surely

P matrix has stable poles, so Riccati equation will have convergent
solutions.
In this case, however, the F matrix which appears in (51) is not the
Jacobian of f(xk) function. So, simply being an integrator, it contains
less information: this could result in a filter covariance divergence,
even though the system is observable. This is easy to realize, thinking
of the physical problem: in such a matrix there is not the information
about system dynamics, for example how the movement of an ele-
ment influences other, whereas in the total-state Kalman filter it was
contained into the dynamic model.

Anyway, since the Kalman gain is still calculated solving Riccati
equation, the same test of observability can be used for studying the
stability of the filter, taking care of substituting system state-transition
matrix with the integrator. This might result in a loss of observability.
Moreover, it is worth pointing out that in this case revealability and
observability correspond, since the integrator matrix has all its eigen-
values on the unit circle.
Therefore, in order to stabilize the filter, a higher number of mea-
surements are required, if the system has more than one degree of
freedom. This will not happen in the four bar linkage mechanism,
since if the position of one crank is known, the dynamics of the entire
mechanism can be estimated. It will happen, however, in the buggy,
as it will be discussed in the next chapter.

28 the observer

3.3.3 Mechanism observer

Considering the four bar linkage mechanism illustrated in the previ-
ous chapter, the observer was firstly tested on it. The model has one
degree of freedom, so that the errors to be estimated are two: position
and velocity of the independent variables:

x =

[
z

ż

]
=

[
α

α̇

]
(55)

Because of that, the state-transition matrix is the same as in (54).
The mechanism is assumed to have an encoder on the crank: accord-
ing to the state-space formulation, the output matrix results:

H =
∂h

∂x
=

[
1 0

]
(56)

As it was told before, the filter works recursively through predic-
tion and updating steps. In the first step the error vector can be, be-
cause of the multi-body model correction, forced to zero. This leads
to the same equations as in (47), yet the prediction of the error is zero:

ek|k−1 = 000

Pk|k−1 = FPk−1FT + W
(57)

After prediction step, multi-body model integration is performed.
This provides some virtual measurements: the sensors which are present
on the mechanism are modelled too, so producing some outputs. The
Kalman gain is computed as in (48), and then the innovation is eval-
uated as the difference between a set of system measurements m and
the virtual ones mv.
Innovation vector is needed to evaluate the updating step in (50). Af-
ter that, multi-body model correction can be performed. In particular,
starting from the knowledge of the error vector of the updated in-
dependent variables, the errors on all the natural coordinates can be
computed by solving the kinematic velocity problem:

ΦΦΦq(q)eq̇ = 000

ΦΦΦq(q)eq = 000
(58)

Once the errors on all natural coordinates have been determined,
multi-body model correction can be performed by adding to each
coordinate the correspondent error.
It is worth noticing that position error values are calculated in an ap-
proximate way, solving the velocity problem. This because, in the case
of infinitesimal position displacement, the following equation holds:

∂q̇
∂ż

=
∂q
∂z

= R (59)

3.3 error-state ekf for a four-bar linkage mechanism 29

The first term in (59) is the definition of the matrix which relates
independent coordinate velocities to natural coordinate ones and it
is called R matrix. If the hypothesis is satisfied, equation (59) holds
and, as a consequence, velocity problem resolution can provide quite
accurate position values. The main advantage is that the solution of
velocity problem does not require any iterative calculation. Thus, it is
expected to be more rapid, and more suitable to a real-time oriented
problem.

It is worth pointing out that, with the sensor specified, the only one
non-linearity of the filter is no more present: in fact, the first term of
the output matrix means that the first state variable is exactly known.
As a matter of fact, in this case the filter is linear. This means that, if it
is working optimally, a white innovation can be expected: evaluating
it the operating performances of the observer can be discussed and
improved, through parameters tuning.
Among the methods in literature [20] the cumulative periodogram one
has been used. It works evaluating innovation spectral density and
verifying that it is constant in all the frequency domain [4]. It follows
that, called σe the error variance and Se its spectrum, its integral with
respect to the frequency is a straight line:

Se(e
jθ) = σ2e ⇒ Ie(θ) =

θ∫
0

Se(e
jh)dh = θσ2e (60)

The periodogram is defined as the squared absolute value of innova-
tion Fourier transform. That is, it is used in order to estimate error
spectrum:

Ŝe(θk) = |E(θk)|
2

E(θk) =
1√
N

N∑
h=1

e(h)e−jθkh
(61)

If innovation spectrum is white, estimated periodogram integral with
respect to the frequency will be a straight line, too:

Îe(θk̄) =

θk̄∫
0

Ŝe(h)dh ∼=

k̄∑
h=0

Ŝe(θk)
2π

N
(62)

An example of great result, in terms of innovation whiteness, is shown
in Fig. 12.
Another aspect, which is related to measurements, can be underlined:
since α angle is measured directly, the couple (F, H) is observable. In
fact, although state-transition matrix does not contain dynamic infor-
mation, observability one rank is equal to system size:

rank(O) = rank

[
1 0

1 ∆t

]
= 2 (63)

So, the filter is supposed to be stable.

30 the observer

Figure 12: Cumulative periodogram test.

3.3.4 Simulation

The first simulations of the observer has been performed on this sim-
ple mechanism, since the results are easier to understand than vehicle
ones.
Simulation procedure is the following: firstly the multi-body model
has been run as it was the real mechanical system. Basically, it repre-
sents the ground truth. During such simulation all the data have been
recorded in order to compare them with the ones obtained through
the non real mechanism. In particular, some of the recorded data have
been used to generate virtual sensor measurements, i. e. white noise
has been added on them.
After that, a second simulation has been run. This differs from the
first for the introduction of some errors in multi-body model rep-
resenting the non perfect knowledge of actual system. During this
second simulation the observer has also be run. The goal is that the
observer corrects the multi-body model, which would behave differ-
ently with respect to the ground truth, and forces it to follow the
recorded performances.
Several errors are introduced into the multi-body model: firstly, there
is a difference between ground truth gravity acceleration and multi-
body model one, in order to represent a force error due to an un-
known model parameter. Ground truth gravity acceleration value is
9.806

m
s2

, whereas multi-body model one is chosen 9
m
s2

.
Initial condition errors on position and velocity are added too: real
mechanism starts with an initial angular position of 60

◦ and a veloc-
ity of 1

rad
s clockwise, instead multi-body model initial position and

velocity are 90
◦ and 10

rad
s counter-clockwise, respectively. A mass

error on the second link – in order to produce an error in the inertia
– is introduced: such a link in multi-body model weights 5 kg instead

3.3 error-state ekf for a four-bar linkage mechanism 31

Real mechanism MB model

Applied torque [Nm] -10 (100) -10

Initial cond. (q [rad], q̇ [rads]) 1.0472, 1 1.5708, -10

Gravity acceleration [m
s2
] 9.806 9

Link 2 mass [kg] 8 5

Table 1: Four-bar linkage simulation parameters.

of 8. Finally, a torque of 110 Nm acts only on the ground truth just in
the middle of the simulation. This represents an unknown external
force which acts suddenly. Simulation time is set to 10 seconds.
Force errors are particularly interesting, since they are the main cause
of uncertainty in multi-body simulations. In fact, geometric and mass
quantities are usually quite known, on the other hand it is almost
impossible to predict all the forces which will act on a mechanism.
Regarding to the errors introduced into the multi-body model, apart
from initial condition ones, they all produce acceleration errors, lead-
ing to position and velocity differences of model variables, with re-
spect to the real system.
After the kinematic initialization, the simulation evolves – at every
time-step – as follows:

a. Ground truth dynamics integration;

b. Multi-body model dynamics integration;

c. Observer prediction step;

d. Innovation calculation: comparison of ground truth virtual mea-
surement of crank angle with multi-body model one;

e. Observer updating step;

f. Natural coordinate error calculation through kinematic velocity
problem resolution: computation of x1, y1, x2, y2 errors;

g. Multi-body model correction.

Although several tests were performed, each one with an error, then
putting them together, only final results will be shown. Simulation
parameters are summed up in Tab. 1. Taking a look to Fig. 14-17, it
can be noticed that position estimate, in spite of all the errors intro-
duced into the multi-body model, follows the ground truth, so the
observer works correctly. In fact, estimation error of the multi-body
model corrected by the observer is negligible, if compared with the
one committed by the multi-body model only.
As it was told before, in this case, the filter is linear, so the whiteness

32 the observer

Figure 13: Four-bar linkage mechanism simulation in matlab.

test of the estimation error has been used in order to tune up the fil-
ter through model noise coefficient modifications. Estimation errors
are summed up in Tab. 2: their maximum and mean-squared values,
in multi-body model with and without the observer respectively, are
listed. Simulation matlab code is stated in Appendix A.

3.3.5 Observer stability, another test

Another test of observer stability has been performed, in order to
confirm it before proceeding to vehicle one design. It is known that
an observer has no effect on control system closed-loop pole locations
other than to add the poles of the observer itself [19]. A state, which
includes the state variables of ground truth x, of multi-body model
xMB, and of observer e, is defined:

d =

 x

xMB

e

 (64)

The state-transition matrix of the entire system can be determined.
Mechanism evolution, like multi-body model one, in state-space form
derives from the integration of dynamic equations. Observer evolu-
tion is quite different: since the error in prediction step is forced
to zero, its state-transition matrix is zero. So, observer evolution is

3.3 error-state ekf for a four-bar linkage mechanism 33

Coord. maxOBS maxMB rmsOBS rmsMB

x1 [m] 0.1191 18.915 0.0080 3.6509

y1 [m] 0.0987 18.151 0.0081 3.4061

x2 [m] 0.1191 18.915 0.0080 3.6509

y2 [m] 0.0987 18.151 0.0081 3.4061

ẋ1 [ms] 0.8319 9.6530 0.0725 1.6717

ẏ1 [ms] 0.8664 10.348 0.0799 1.6616

ẋ2 [ms] 0.8319 9.6530 0.0725 1.6717

ẏ2 [ms] 0.8664 10.348 0.0799 1.6616

Table 2: Estimation errors in four-bar linkage simulation, respectively of ob-
server and multi-body model.

Figure 14: Estimated position of the first joint in x-direction (top). Estima-
tion error (bottom).

Figure 15: Estimated position of the first joint in y-direction (top). Estima-
tion error (bottom).

34 the observer

Figure 16: Estimated position of the second joint in x-direction (top). Estima-
tion error (bottom).

Figure 17: Estimated position of the second joint in y-direction (top). Esti-
mation error (bottom).

3.3 error-state ekf for a four-bar linkage mechanism 35

Figure 18: Estimated velocity of the first joint in x-direction (top). Estimation
error (bottom).

Figure 19: Estimated velocity of the first joint in y-direction (top). Estimation
error (bottom).

36 the observer

Figure 20: Estimated velocity of the second joint in x-direction (top). Estima-
tion error (bottom).

Figure 21: Estimated velocity of the second joint in y-direction (top). Estima-
tion error (bottom).

3.3 error-state ekf for a four-bar linkage mechanism 37

uniquely determined by mechanism and multi-body model outputs
comparison. The result is:

dk+1 =

 F 000 000

000 FMB 000

FLH −FMBLHMB 000

dk (65)

In particular, mechanism state-transition matrix can be obtained, in
an approximate way, from the linearisation of multi-body model equa-
tions [8]:

F =
∂f(x)
∂x

=

[
000 I

∂(M̄−1Q̄)
∂z

∂(M̄−1Q̄)
∂ż

]
(66)

where z, ż are independent positions and velocities, whereas acceler-
ations are determined through R-matrix:

z̈ = (RTMR)−1[RT (Q − MṘż)] = M̄−1Q̄ (67)

It is well known that, in order to preserve the entire system stabil-
ity, modules of state-transition matrix eigenvalues must be less than
one. So, it has been evaluated during the simulation, verifying that
is always less than one. It can be concluded that, under the same hy-
pothesis of traditional Kalman filter stability, the errorekf maintains
itself stable.

4
O B S E RV E R D E S I G N

The four-bar linkage mechanism observer was shown in the previous
chapter, now the design of vehicle one will be illustrated. The main
changes with respect to the former, apart from the bigger size, are
in output matrix calculation. In particular, there is an aspect which
must be taken into account, related to the fact that now the degrees
of freedom are more than one.

4.1 vehicle

Talking about the vehicle, the three attitude angles yaw, pitch and
roll will be mentioned. In particular, vehicle observability will be dis-
cussed taking into account them, since it results more intuitive. Any-
way, it should be reminded that they are not present in the vehicle
multi-body model.

4.1.1 Vehicle simulation

The vehicle is equipped with a set of sensors which can be divided
in two main categories: the ones which are needed in order to make
the model run and the ones which measure system outputs. There
are, then, other sensors which have an internal function, such as the
potentiometer used to measure steering angle in steer-by-wire mech-
anism. The former ones are two, and measure the two dynamical
inputs of the multi-body model: wheel torque and brake pressure.
The torque sensor is mounted on the shaft of rear right wheel, and
senses the moment which is applied to the wheels1. The brake pres-
sure sensor monitors how the brakes are acting on the vehicle. With
these two measurements, the two main internal inputs are known,
the others are external and they are approximated or neglected, such
as tyre friction and aerodynamic resistance, respectively. The third
input of the multi-body model, which is not actually a force, is the
knowledge of the road profile, from which the force acting on the tyres
can be determined. It is worth noticing that, although this assump-
tion is hardly plausible in a commercial available car, it is equivalent
to have a load cell on each suspension, in order to sense what in the
multi-body model is calculated.

Sensors measuring the system outputs, which will be described
more extensively later, are:

1 The equality of left and right wheel torque is assumed.

39

40 observer design

Measured magnitudes Sensor Accuracy Rate [Hz]

Vehicle accelerations (x,y,z) Accelerometers 0.5 [m
s2
] 500

Vehicle angular rates (x,y,z) Gyroscopes 0.0002 [rads] 500

Wheel rotation angles Hall-effect sensors 0.17 [rad] 500

Position (x,y,z) GPS receiver 0.02 [m] 50

Speed GPS receiver 0.1 [ms] 50

Course over ground GPS receiver n.d. 50

Table 3: List of installed sensors.

Figure 22: The vehicle.

a. An Inertial Measurement Unit2, composed of a triaxial accelerom-
eter and three gyroscopes;

b. A gps receiver;

c. Four Hall effect sensors mounted on the wheels.

The imu is behind driver’s seat, and provides three angular velocity
and acceleration signals, all referred to its axes. gps antenna is behind
driver’s seat, too, but it does not have a reference system, so signals
are referred to three axes which will be described later. Such a sensor
is capable of providing 3d position and 2d velocity of vehicle antenna,
so giving great information about chassis movement in the space. The
Hall effect sensors behave like an encoder in terms of output signals,
so returning wheel angular positions.
The sensors are listed in Tab. 3, where the accuracies are specified.

These are the real ones of the sensors mounted on the vehicle: some
sets of data were taken and processed, in order to simulate, in the
observer code, realistic sensors. A scheme of multi-body simulator
working principle is shown in Fig. 23. Of the 168 natural coordinates,
fifteen are independent, so they are degrees of freedom of the multi-
body model. They are:

2 Usually indicated as imu.

4.1 vehicle 41

Figure 23: Simulation working principle, showing observer role.

a. The three linear position coordinates x, y, z;

b. The three attitude coordinates v1y , v1z , v2z ;

c. The four wheel angles θ1, θ2, θ3, θ4;

d. The four suspension displacements zw1 , zw2 , zw3 , zw4 ;

e. The steering angle α.

Since the steering angle is directly controlled by the driver and it is
measured for making the steer-by-wire system work, this coordinate
is excluded from the observer state vector. All the other fourteen vari-
ables are to be observed, so, together with their velocities, they form
the observer state vector, whose size is 28.

4.1.2 Vehicle observability

It was told in the previous chapter how the substitution of the Ja-
cobian of f(xk) function with an integrator, into the filter, leads to a
loss of observability. If the classic proof was performed, it would re-
sult that the system is fully observable with the sensors which are on
board and assuming the knowledge of the road profile.
However, because of the observability loss due to the use of this kind
of observer, some modifications have been performed, with respect to
what was believed before. In order to perform the observability proof,
vehicle model has been divided into three subsystems:

a. Chassis, which can move just rigidly along the three axes x, y,
z;

b. Suspensions, characterized by elastic dynamics;

c. Wheels, characterized by angular motions.

42 observer design

The first subsystem leads to the equations:

ṡ1 = Fs1

y = Hs1

s1 :=
[
x y z ẋ ẏ ż

]T (68)

where the matrices are:

F =

1 0 0 ∆t 0 0

0 1 0 0 ∆t 0

0 0 1 0 0 ∆t

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

H =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

(69)

So, building the observability matrix like in (44), it results:

rank(O) = rank

H

HF

HF2

HF3

HF4

HF5

= 6 (70)

This means that, with position measurements, the rigid dynamics of
the vehicle is observable.

Wheel subsystem is very similar: the motion equations are quite
the same, wheels have angular displacements instead of linear ones.
Moreover, subsystem size is now eight instead of six. However, F and
H matrix structure is the same, this allows skipping the mathematical
definition and going directly to the result:

rank(O) = rank

H

HF

HF2

HF3

HF4

HF5

HF6

HF7

= 8 (71)

4.1 vehicle 43

This is the confirmation of what was already expected: having a sys-
tem with the same structure of the one in (68) and measuring all the
four angular positions, it was obvious that the subsystem would be
result observable.

The last subsystem to analyse is the one related to the elastic dy-
namic of the vehicle: four vertical suspension displacements and the
two pitch and roll angle are taken into account, this leads to:

s3 :=
[
zw1 zw2 zw3 zw4 φ ψ żw1 żw2 żw3 żw4 φ̇ ψ̇

]T
(72)

With the available sensors, F and H matrices result:

F =

1 0 0 0 0 0 ∆t 0 0 0 0 0

0 1 0 0 0 0 0 ∆t 0 0 0 0

0 0 1 0 0 0 0 0 ∆t 0 0 0

0 0 0 1 0 0 0 0 0 ∆t 0 0

0 0 0 0 1 0 0 0 0 0 ∆t 0

0 0 0 0 0 1 0 0 0 0 0 ∆t

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

H =

[
0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

]

(73)

Thus the outcome of the observability test is the following:

rank(O) = rank

H

HF

HF2

HF3

HF4

HF5

HF6

HF7

HF8

HF9

HF10

HF11

= 2 (74)

44 observer design

The subsystem is not observable: remembering what was told about
the loss of observability, it is obvious. In fact, since every movement
is – from the observer perspective – completely independent from the
other ones and suspension displacements are not measured, it is im-
possible that their dynamics can be observed.
Fr such a reason suspension dynamics have been eliminated from ob-
server state vector. This means that their behaviour will follow multi-
body model one, and it will not be corrected. This could not be a big
problem: usually suspension model – for automotive manufacturers
– is quite known, so it does not represent one of the main uncertainty
factors.
Only pitch and roll angles have been left into observer state vector.
Since the imu contains a triaxial accelerometer which has not been
used yet, a method for extracting roll and pitch information from it
was thought up, and it will be discussed later.
Of all the vehicle degrees of freedom, only the yaw angle has not been
considered yet. Anyway, a trick for making it observable was found
out, and it will be explained in the following paragraph. Basically, a
yaw measurement3 is provided to the filter, taken from gps signal.
Therefore, subsystem state vector becomes:

s3 :=
[
φ ψ λ φ̇ ψ̇ λ̇

]T
(75)

3 Actually, it will be seen that not the yaw angle measurement is provided to the filter
but something similar.

4.1 vehicle 45

As a consequence, all the three attitude angle measurements are avail-
able, and since the three angular velocities4 are measured, F and H
matrices can be rewritten as:

F =

1 0 0 ∆t 0 0

0 1 0 0 ∆t 0

0 0 1 0 0 ∆t

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

H =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

(78)

No calculation is needed for finding out that the subsystem is fully
observable, since every state component is measured. So, a stable co-
variance matrix is expected.

The full state vector, which contains the variables whose estimation
error will be determined, is:

s :=
[
x y z φ ψ λ θ1 θ2 θ3 θ4 ẋ ẏ ż φ̇ ψ̇ λ̇ θ̇1 θ̇2 θ̇3 θ̇4

]T
(79)

A particular aspect should be underlined: actually, since not all the
measurements required are available at every time step – remember
that gps works at 50 Hz – the filter is not always observable: observ-
ability is lost when not all the sensors are working. So, a covariance
growth can be expected in those instants, then its decrease when all
the measurements are available. In this case, gps provides information

4 Actually, the three sensed angular velocities are not always equal to roll, pitch and yaw
velocities. Generally speaking, in the 3d case, their relationship with them is:

ψ̇ = [ωy sin(ψ) +ωz cos(ψ)] tan(λ) +ωx
λ̇ = ωy cos(ψ) −ωz sin(ψ)

φ̇ =
ωy sin(ψ) +ωz cos(ψ)

cos(λ)

(76)

For small attitude angles:

ψ̇ ≈ ωx
λ̇ ≈ ωy
φ̇ ≈ ωz

(77)

46 observer design

Figure 24: Estimation covariance of x position, zoomed in order to see the
sawtooth behaviour.

every five time-steps, whereas all other sensors work at a frequency
which is double with respect to multi-body model one. So, a sawtooth
behaviour of gps-related covariances is expected, as it can be seen in
Fig. 24.
The last thing which needs to be underlined is that, although a one

was put in the output matrices, the exact measurements will not be
provided. In fact, since some tricks will be performed, the situation
will be slightly different. Anyway, it will be seen that, if the sensors
are trusted enough, no changes in observability are faced.

4.2 gps

4.2.1 GPS considerations

A lot of people in everyday life use gps technology, in smart-phones
just for localization or in car navigation devices to have the route in-
dicated. A gps receiver calculates its antenna position measuring the
distance between it and a constellation of satellites. This distance is
given by determination of the signal time of flight , from satellite emis-
sion instant until antenna reception one.
Normally, positioning errors can be obtained because of, for exam-
ple, clock drifts, satellite position errors, atmospheric effects. If two
receivers are available, and one of them is at a known location, it can
be used in order to improve the accuracy, through the measurement
of positioning errors. This technique, called differential GPS, is used in
buggy device, and it allows reaching 2 centimetres accuracy.

4.2 gps 47

Moreover, a gps receiver can work at a frequency up to 50 Hz and can
provide velocity measurements, based on Doppler effect5.

Satellites are located in the wgs84 reference system, which provides
a mathematical Earth model from a geodetic, geometric and gravita-
tional point of view. gps positioning output consist of three variables,
all expressed in this reference system: longitude, latitude, and ellip-
soidal heigh – see Fig. 25 – respectively expressed as λ, φ, h. Actually,
in this work the corrections suggested by the ign

6 were used, so mov-
ing the reference system from wgs84 to etrs89 one, which moves
with the Eurasian plate. In this, the geodetic parameters of latitude
and heigh are defined in terms of the ellipsoid normal at the user’s
position.
In order to be used along with the multi-body model, a set of co-
ordinates which place gps position with respect to the same axes of
the multi-body simulation is preferred. So, a transformation to enu

7

reference system is carried out in two steps: firstly a transformation
from geodetic to ecef

8 reference system is done:

rECEF =

a cos(λ)√
1+ (1− e2) tan2(φ)

+ h cos(λ) cos(φ)

a sin(λ)√
1+ (1− e2) tan2(φ)

+ h sin(λ) cos(φ)

a(1− e2) sinφ√
1− e2 sin2(φ)

+ h sin(φ)

(80)

being a the semi-major axis of the ETRS89 ellipsoid, b its semi-minor
axis, and e the ellipsoid eccentricity:

a = 6378137.000 m

b = 6356752.314140 m

e =

√
1−

b2

a2

(81)

After that, the transformation from ecef to enu in performed, ac-
cording to the following:

rENU = W(rECEF
P − rECEF

0)

W =

 − sin(λ) cos(λ) 0

cos(λ) sin(−φ) sin(λ) sin(−φ) cos(−φ)

cos(λ) cos(−φ) sin(−φ) cos(−φ) − sin(−φ)

 (82)

5 Modern gps devices, such as gt-11, implement pll receivers which continuously
track satellite signal carriers. The difference between the known satellite carrier fre-
quency and the one determined at the receiver is known as a Doppler shift. This is
directly proportional to receiver velocity along satellite direction, regardless of its
distance.

6 Instituto Geográfico Nacional.
7 East, North, Up.
8 Earth-Centered, Earth-Fixed.

48 observer design

Figure 25: ecef and enu reference systems.

where rECEF
P is the position of the gps receiver and rECEF

0 is the position
of the origin of the enu system.

4.2.2 GPS position model

As it was told, the gps receiver provides antenna position and velocity
measurements. So, these are the measurement functions which are to
be modelled, and from which the output function Jacobian is to be
calculated.
The antenna is located behind driver’s head, and its coordinates ex-
pressed with respect to chassis point 1 are called xGPS, yGPS, zGPS.
So, regarding to position measurements, the model can be formulated
as follows:

rP = rCH + xGPSv1 + yGPSv2 + zGPSv3 (83)

where rP is gps antenna position expressed in the global reference
frame, whereas rCH is chassis point 1 position, in the same reference
frame. v1, v2, v3 are the three unit vectors used to model vehicle chas-
sis. This equation has to be differentiated with respect to the indepen-
dent variables of the system. It can be re-written as:xPyP

zP

 =

xCHyCH

zCH

+ xGPS

v1xv1y
v1z

+ yGPS

v2xv2y
v2z

+ zGPS

v3xv3y
v3z

 (84)

It can be noticed that:

∂rP

∂z
=
∂rP

∂q
∂q
∂z

=
∂rP

∂q
R (85)

where R-matrix, already mentioned in the previous paragraph, con-
tains the relationships between the infinitesimal displacement of each
dependent coordinate and the one of each degree of freedom. Since
these equations only depend on chassis point 1 position and on the

4.2 gps 49

three unit vectors, the partial derivatives with respect to the other
natural coordinates is zero. The differentiation can be limited to:

∂rP

∂q
=

∂xP
∂x

∂xP
∂y

∂xP
∂z ... ∂xP

∂θ4
∂yP
∂x

∂yP
∂y

∂yP
∂z ... ∂yP

∂θ4
∂zP
∂x

∂zP
∂y

∂zP
∂z ... ∂zP

∂θ4

 (86)

Taking a look to the model in (84), it can be seen that gps receiver
antenna position is a linear function of the one of chassis point 1 and
of the three unit vectors. So, apart from these, every other term in (85)
will be zero. Considering the partial derivatives with respect to the
three unit vectors, it results:

∂xP
∂v1x

= xGPS
∂xP
∂v2x

= yGPS
∂xP
∂v3x

= zGPS

∂yP
∂v1y

= xGPS
∂yP
∂v2y

= yGPS
∂yP
∂v3y

= zGPS

∂zP
∂v1z

= xGPS
∂zP
∂v2z

= yGPS
∂zP
∂v3z

= zGPS

∂xP
∂v1y

=
∂xP
∂v1z

= · · · = ∂zP
∂v3x

=
∂zP
∂v3y

= 0

(87)

It is worth noticing, anyway, that the aim of these information is that
the filter can correct vehicle position. So, putting these partial differ-
ences into the output matrix, the observer will know that it has to
collocate the antenna in the right place. However, it would be desir-
able to have the vehicle chassis well-positioned, instead of the antenna.
Correcting antenna position the observer could make the chassis ro-
tate about its three axes.
Metaphorically speaking, the situation is equal to one in which a big
hand could bring the vehicle for displacing it – as it can be seen in Fig.
26 – in order to correct its position. Would it be preferable to have it
grabbed by the chassis or by the antenna? The second solution was
thought to be the most correct. So the partial derivatives of position
model with respect to the three unit vectors were neglected, even
though, mathematically, to consider them would have been more rig-
orous.
Obviously, it is:

∂xP
∂x

= 1

∂yP
∂y

= 1

∂zP
∂z

= 1

∂xP
∂y

=
∂xP
∂z

=
∂yP
∂x

=
∂yP
∂z

=
∂zP
∂x

=
∂zP
∂y

= 0

(88)

50 observer design

Figure 26: Effect of antenna position correction, instead of chassis one.

This leads to:

∂rP

∂q
=

1 0 0 0 0 . . . 0

0 1 0 0 0 . . . 0

0 0 1 0 0 . . . 0

 (89)

which is precisely what it was needed.
Since that this matrix is linear with respect to the state, a behaviour
close to the optimum should be expected here. Anyway, if an un-
known external constant force were applied, innovation spectrum
could not be white unless that external force was included into the
model. If a front wind is imagined, a constant force opposite to the
vehicle motion is acting on the system. So, the error, for example, in
x coordinate would always have the same sign, this does not allows
obtaining white innovation.

4.2.3 GPS velocity model

Regarding to velocity, the model can be obtained by differentiating
equation (84) with respect to the time. Yet the gps does not provide a
velocity signal along z axis, so leading to:[

ẋP

ẏP

]
=

[
ẋCH

ẏCH

]
+ xGPS

[
v̇1x

v̇1y

]
+ yGPS

[
v̇2x

v̇2y

]
+ zGPS

[
v̇3x

v̇3y

]
(90)

It is worth noticing that the velocity information are expressed in
polar coordinates, that is, the module of velocity vector and the course
over ground angle with respect to the local enu north. However, with
a simple transformation to Cartesian coordinates, equation (90) can
be obtained. In this work, it was done off-line using matlab, yet the
introduction into the observer code of this calculation would not be a
burden for the programmer nor a big effort for the processor.
The calculation is very similar to position one:

∂ṙP

∂ż
=
∂ṙP

∂q̇
∂q̇
∂ż

(91)

where, again, the second term in equation right side is R-matrix,
which relates dependent coordinates infinitesimal velocities to inde-

4.2 gps 51

pendent coordinates ones. The partial derivatives with respect to chas-
sis point 1 velocity are quite the same of position ones:

∂ẋP
∂ẋ

= 1

∂ẏP
∂ẏ

= 1

∂ẋP
∂ẏ

=
∂ẋP
∂ż

=
∂ẏP
∂ẋ

=
∂ẏP
∂ż

= 0

(92)

The partial derivatives with respect to the three unit vectors velocity
are analogous too, taking into account that some of them are not
present, since żP measurement is not provided by the gps.

∂ẋP
∂v̇1x

= xGPS
∂ẋP
∂v̇2x

= yGPS
∂ẋP
∂v̇3x

= zGPS

∂ẏP
∂v̇1y

= xGPS
∂ẏP
∂v̇2y

= yGPS
∂ẏP
∂v̇3y

= zGPS

∂ẋP
∂v̇1y

=
∂ẋP
∂v̇2y

= · · · = ∂ẏP
∂v̇2x

=
∂ẏP
∂v̇3x

= 0

(93)

In this case the reason for neglecting these terms would be the same
one used for position problem. Anyway, it would be more correct
to take into account the difference in velocities between chassis and
antenna, so considering them. This because, for example, if the car
passed over a speed bump, antenna tangential velocity would sud-
denly change, although chassis linear one would be the same. Ne-
glecting these terms would mean, in a case like this, correct chassis
linear velocity even though there is nothing to be corrected. So, the
choice was to introduce these terms into the matrix, so leading to:

∂ṙP

∂q̇
=

[
1 0 . . . xGPS 0 0 yGPS 0 0 zGPS 0 . . . 0

0 1 . . . 0 xGPS 0 0 yGPS 0 0 zGPS . . . 0

]
(94)

After the introduction of these terms, this part of the observer is no
more linear with respect to the state, so a behaviour which is farer
from the optimum, with respect to position part, is expected.

4.2.4 Yaw angle

It was told the three Tait-Bryan angles yaw, pitch, roll are not present
in multi-body models in natural coordinates, since this kind of nota-
tion does not use angles. How the rigid body rotations are expressed
was explained, and it was showed in which way this was applied to
vehicle model.
During observer design, however, a problem was faced: imagining
the vehicle running in the direction of global reference frame x axis,

52 observer design

a module variation of v1 unit vector y component makes the vehicle
rotate about its z axis. Yet if the vehicle turns, aligning itself to global
reference frame y axis, that variation does not make the vehicle rotate,
since it is parallel to its running direction.
This is the reason why the yaw angular variable φ was introduced:
with this modification the just explained problem is no more present.
Remembering natural coordinate notation, a restriction has to be in-
troduced in order to add the variable. It was modelled as follows:

φ = atan2(v1y , v1x) (95)

In order to correct vehicle yaw angle, a measurement of φ must be
provided to the observer. Actually, no sensor which is capable of mea-
suring it is present on board, so the course over ground gps information
was used as it was the yaw angle. It is worth pointing out that the two
angles can be very different: the more the vehicle is turning, the more
the cog is different from the yaw. Anyway, it is the best thing it was
possible to do.
Since cog measurement is provided to the filter as it was yaw measure-
ment, the output matrix will simply have a one at the correct position.
This leads to:

∂φ

∂z
=

[
0 0 0 1 0 . . . 0

]
(96)

It is worth noticing, moreover, that although this output matrix part
is linear, actually the observer is cheated accepting information believ-
ing it was something else. So, it was already known an optimum
behaviour of the filter was not to be expected, yet this part behaviour
will be farer from the optimum than position part was.
Another thing must be taken into account: the cog signal depends
on velocity, so it is not reliable when the vehicle is not moving. So,
a velocity check was introduced into the code, in order to discern if
this measurement was to be trusted or not. In pseudo-code:

% Check if the vehicle is moving or not

if atan2(y velocity,x velocity) > minimum velocity

% If the vehicle is moving, so COG measurement is

reliable

COG is available

else

COG is NOT available

end

Thank to the scalar gain calculation, which will be shown later, it is
sufficient to change the cog availability flag in order to indicate if it is
reliable or not, so if the filter will receive this measurement or not.

4.3 inertial measurement unit 53

4.3 inertial measurement unit

An imu
9 is mounted on board, like in every commercial available

vehicle. Three mems gyroscopes and a triaxial mems accelerometer
are inside, from which information about chassis dynamics have been
taken out.

4.3.1 Gyroscopes model

A gyroscope is a rotating device which, according to angular momen-
tum conservation law, attempts to maintain its axis aligned to a con-
stant direction. Due to this, it is suitable for maintaining or measuring
a rotation. A vibrating gyroscope10 is a sensor which measures an an-
gular rate through its rotating structure. As the name suggests, its
working principle is based on Coriolis effect.
Considering two proof masses m vibrating in a plane at a frequency
ωr, Coriolis acceleration induced on the two masses is:

aC = 2(v×ΩΩΩ) (97)

where v is a linear velocity and ˙ is the angular rate. The in-plane
vibrating displacement is:

xip = Xip sin(ωrt) (98)

So the in-plane velocity is:

ẋip = Xipωr cos(ωrt) (99)

So, named yop the out-of-plane displacement induced by rotations
and FC the Coriolis-effect force, it follows:

yop =
FC
kop

=
2mΩXipωr cos(ωrt)

kop
(100)

where kop is a spring constant in the out-of-plane direction andΩ is
the magnitude of a rotation vector in the plane of and perpendicular
to the driven proof mass motion. So, by measuring the displacement
yop, the angular rate Ω can be determined.

A gyroscope can be modelled, given a local orthonormal triad of
axes i, j, k, as a function returning an angular velocity:

ωlocωlocωloc =

ωxωy
ωz

 =

kT j̇

iT ż

jT i̇

 (101)

9 Inertial Measurement Unit
10 The name was standardized by ieee as Coriolis Vibratory Giroscope.

54 observer design

Figure 27: Gyroscope.

Figure 28: Coriolis force acting on a mass moving in a rotating reference
frame.

Figure 29: mems vibrating gyroscope structure scheme.

4.3 inertial measurement unit 55

Regarding to this application, the model can be applied substituting:

i = v1

j = v2

k = v3

(102)

And then taking care, in order to obtain the angular velocities ex-
pressed with respect to imu reference frame, of multiplying by the
rotation T matrix transposed:

ΩΩΩ = TTωlocωlocωloc (103)

In fact, T matrix expresses imu axes with respect to chassis ones. So,
in order to perform the inverse transformation, this matrix can be
simply transposed11. Everything can be re-written as:

ΩΩΩ = TTωlocωlocωloc = TT

v3
T v̇2

v1
T v̇3

v2
T v̇1

 = TT

[
v3x v3y v3z

] ˙v2x
˙v2y
˙v2z

[
v1x v1y v1z

] ˙v3x
˙v3y
˙v3z

[
v2x v2y v2z

] ˙v1x
˙v1y
˙v1z

(104)

When computing the partial derivatives, it is worth noticing that the
rotation matrix T is constant, so it can be excluded from the calcula-
tion. It results:

∂ωx
∂v3x

= v̇2x
∂ωx
∂v3y

= v̇2y
∂ωx
∂v3z

= v̇2z
∂ωx
∂v̇2x

= v3x
∂ωx
∂v̇2y

= v3y
∂ωx
∂v̇2z

= v3z
∂ωy
∂v1x

= v̇3x
∂ωy
∂v1y

= v̇3y
∂ωy
∂v1z

= v̇3z
∂ωy
∂v̇3x

= v1x
∂ωy
∂v̇3y

= v1y
∂ωy
∂v̇3z

= v1z
∂ωz
∂v2x

= v̇1x
∂ωz
∂v2y

= v̇1y
∂ωz
∂v2z

= v̇1z
∂ωz
∂v̇1x

= v2x
∂ωz
∂v̇1y

= v2y
∂ωz
∂v̇1z

= v2z

(105)

This leads to output matrix determination:

Hgyro =
[
∂ΩΩΩ
∂q
∂q
∂z + ∂ΩΩΩ

∂q̇
∂q̇
∂z

∂ΩΩΩ
∂q
∂q
∂ż + ∂ΩΩΩ

∂q̇
∂q̇
∂ż

]
(106)

11 Since the axes triad is orthonormal, the inverted matrix is equal to the transposed
one.

56 observer design

where ∂q
∂ż is zero. Since it is:

∂q̇
∂z

= RqRż = Rqq̇ = Ṙ (107)

where Rq is R-matrix Jacobian and Ṙ is its time derivative, this leads
to:

Hgyro =
[
∂ΩΩΩ
∂q R + ∂ΩΩΩ

∂q̇ Ṙ ∂ΩΩΩ
∂q̇ R

]
(108)

The matrices in (108) can be calculated as:

∂ΩΩΩ

∂q
= TT

0 . . . 0 0 0 0 v̇2x v̇2y v̇2z 0 0 0 0 . . . 0

0 . . . 0 0 0 0 0 0 0 v̇3x v̇3y v̇3z 0 . . . 0

0 . . . 0 v̇1x v̇1y v̇1z 0 0 0 0 0 0 0 . . . 0

∂ΩΩΩ

∂q̇
= TT

0 . . . 0 0 0 0 0 0 0 v3x v3y v3z 0 . . . 0

0 . . . 0 v1x v1y v1z 0 0 0 0 0 0 0 . . . 0

0 . . . 0 0 0 0 v2x v2y v2z 0 0 0 0 . . . 0

(109)

Here, a highly sub-optimal behaviour of the observer is expected,
since output matrix is non-linear with respect to the state.

4.3.2 Accelerometer model

An accelerometer is a sensor which is capable of providing information
about the acceleration of an object it is installed on. Several kinds of
accelerometers are commercially available, yet they all share the same
operating principle: a proof mass lying on an elastic element is mov-
ing because of acceleration and a position transducer measures its
displacement. So, knowing mass inertia, it is possible to determine
acceleration.
Since gravity is always acting on the mass, even though it is not mov-
ing, device response is an acceleration equal to g upwards in quiet
conditions. So, in order to obtain the correct acceleration of the object,
that quantity must be subtracted. Moreover, gravity influence can be
useful to find out object orientation: when it is inclined of an angle β,
gravity contribution will be a product of g vector multiplied by some
angle trigonometric function. This is the reason why the accelerom-
eters are used as orientation sensors [21]. In particular, in this case
roll and pitch angle must be measured in order to maintain the filter
stable, even if the measurements were bad. So, extracting this orien-
tation information from accelerometers, the aim was reached.
Accelerometer model can be formulated as follows:

aglob = aCH + xIMUv̈1 + yIMUv̈2 + zIMUv̈3 − g (110)

4.3 inertial measurement unit 57

Figure 30: Seismic mass accelerometer.

where aCH is chassis point 1 acceleration and xIMU, yIMU, zIMU
are imu coordinates with respect to that point. In order to obtain
acceleration value expressed in the local reference frame, aglob vector
must be multiplied by chassis rotation matrix C transposed. In fact,
this is the rotation matrix which expresses chassis orientation in the
global reference frame:

C =

v1x v2x v3x

v1y v2y v3y

v1z v2z v3z

 (111)

In order to model accelerometer response the transformation has to
be inverted. Moreover, imu axes have to be aligned to that point ones,
through the multiplication by the rotation matrix T transposed, al-
ready mentioned in the previous paragraph. In fact, these two rota-
tions must be composed in order to obtain accelerometer model, so
that composition must be inverted:

aIMU = (CT)Taglob = TTCTaglob (112)

As told in the previous paragraph, since the axis triads are orthonor-
mal, it is sufficient to transpose the matrices in order to invert the
transformation. This leads to:

aglob = TT

v1x v1y v1z

v2x v2y v2z

v3x v3y v3z

 aloc (113)

Once accelerometer response has been modelled, information about
orientation can be extracted from it, according to the following:

HACC =
[
∂aIMU
∂q

∂q
∂z + ∂aIMU

∂q̇
∂q̇
∂z

∂aIMU
∂q

∂q
∂ż + ∂aIMU

∂q̇
∂q̇
∂ż

]
(114)

58 observer design

where, again, ∂q
∂ż is zero. Moreover, again T matrix is constant, so

it can be excluded from the differentiation. Evaluating the partial
derivatives with respect to position, the result is:

∂alocx
∂v1x

= ẍ+ xIMUv̈1x + yIMUv̈2x + zIMUv̈3x

∂alocx
∂v1y

= ÿ+ xIMUv̈1y + yIMUv̈2y + zIMUv̈3y

∂alocx
∂v1z

= z̈+ xIMUv̈1z + yIMUv̈2z + zIMUv̈3z + g

∂alocy
∂v2x

=
∂alocx
∂v1x

=
∂alocz
∂v3x

∂alocy
∂v2y

=
∂alocx
∂v1y

=
∂alocz
∂v3y

∂alocy
∂v2z

=
∂alocx
∂v1z

=
∂alocz
∂v3z

(115)

This leads to:

HACC =
[
∂aIMU
∂q

∂q
∂z 0

]
=

[
∂aIMU
∂q R 0

]
(116)

Naming, for notation shortness, the three terms in (115):

r̈ := ẍ+ xIMUv̈1x + yIMUv̈2x + zIMUv̈3x

s̈ := ÿ+ xIMUv̈1y + yIMUv̈2y + zIMUv̈3y

ẗ := z̈+ xIMUv̈1z + yIMUv̈2z + zIMUv̈3z + g

(117)

It results:

∂aloc

∂q
=

0 . . . 0 r̈ s̈ ẗ 0 0 0 0 0 0 0 . . . 0

0 . . . 0 0 0 0 r̈ s̈ ẗ 0 0 0 0 . . . 0

0 . . . 0 0 0 0 0 0 0 r̈ s̈ ẗ 0 . . . 0

 (118)

4.4 hall-effect sensors

Every vehicle wheel is equipped with a Hall effect sensor which
works in a similar way to an encoder: given the brake disc with holes
– see Fig. 31 – it counts the number of holes which have passed in
front of itself during wheel rotation. Every metallic disc is mounted
on the wheel shaft and has forty holes, so giving the resolution of 9°.
Therefore, a direct – even though it is not so accurate – measurement

of every wheel angle can be obtained. The consequence is that the ob-
server output matrix has four one terms at the correct position. Given
the wheel angle vector:

θθθ =

θ1

θ2

θ3

θ4

 (119)

4.5 code implementation 59

Figure 31: cad model of a brake disk with Hall effect sensor.

This leads to:

∂θθθ

∂z
=

0 . . . 0 1 0 0 0 0 . . . 0

0 . . . 0 0 1 0 0 0 . . . 0

0 . . . 0 0 0 1 0 0 . . . 0

0 . . . 0 0 0 0 1 0 . . . 0

 (120)

It is worth noticing that this part is linear, so a behaviour close to the
optimum – like in position part – is expected.

4.5 code implementation

Observer source was implemented in fortran, into the simbuggy
project12. It was divided into some modules, everyone of them con-
taining a subroutine:

a. observer init is the initialization module, containing all the vari-
ables and vectors to be used later. In addition, all the operations
which can be done before running the simulation – or which do
not require recalculating some values at every time step – can
be done off-line in the corresponding subroutine.

b. compute gain is a subroutine which performs gain calculation in
scalar form, as it will be seen later.

c. H calc is the module containing the output matrix calculation
and building. In this function the partial derivatives of gyro-
scopes and accelerometers are computed, since they are the
ones which need to be calculated at every time-step.

d. virtual meas is the function which computes sensor models and
provides virtual measurements to the observer.

12 This is the name of vehicle simulation software implemented by University of A
Coruña lim staff.

60 observer design

Figure 32: Calls hierarchy. External measurements are underlined with
dashed line, in order to specify they are input for the observer.

e. plant noise is the function which calculates plant noise matrix,
following Van Loan’s method, as it will be seen later.

f. observer is the key function, the observer itself. It receives both
the real and the virtual measurements, it has the gain calculated
by the compute gain function and then performs the multi-body
model correction.

The call hierarchy is represented in Fig. 32. In that scheme the fact that
the measurements come from outside the function and are inputs for
the observer is underlined with the use of the dashed line.

4.5.1 Observer initialization

In this module – observer init – the vectors used for making the calcu-
lation is allocated, in particular, in pseudo-code:

% Variables declaration

Declare:

% State dimension

state_dimension = 20

% Mesurements number

measurement_number = 16

% State vector

errors = empty vector of dimension: state_dimension

%Kalman gain vector

L = empty vector of dimension: state_dimension

% Innovation vector

innovation = empty vector of dimension:

measurement_number

4.5 code implementation 61

.

.

.

% da/dq accelerometers matrix

dhdq_accelerometers = empty matrix of dimension: (3,

state_dimension)

% dOmega/dq gyroscopes matrix

dhdq_gyroscopes = empty matrix of dimension: (3,

state_dimension)

% dOmega/dqp gyroscopes matrix

dhdqp_gyroscopes = empty matrix of dimension: (3,

state_dimension)

.

.

.

These are the vectors, matrices and variables to be used in other func-
tions. There are some which are declared and initialized too, which
are the ones that will not be modified after:

% Variables declaration

Declare:

% F matrix

F = already filled matrix of dimension: (state_dimension,

state_dimension)

% GPS drp/dq matrix

dhdq_GPS= already filled matrix of dimension: (3,

state_dimension)

.

.

.

% Measurement noise

W = = already filled vector of dimension: state_dimension

% Plant noise

N = already filled vector of dimension:

measurement_number .

.

.

As showed in call hierarchy scheme of Fig. 32, the plant noise matrix
is built by a specific function:

% Have plant noise matrix built

Q = plant_noise(N);

It is worth noticing that this function is executed once and before the
simulation, so real-time efficiency is not required.

62 observer design

4.5.2 Plant noise matrix calculation

The plant noise matrix calculation is performed into the subroutine
of the same name, and it uses Van Loan’s method for having it com-
puted in discrete-time [14, 34]. The procedure proposed in the cited
text models the continuous time stochastic system – so formulating
plant noise matrix W(t) – and then discretizes it in order to obtain
Wk, following the method of the matrix exponential formulated by
Charles Van Loan.
Given the lti continuous-time system:

ẋ(t) = Fx(t) + Gw(t), w(t) ∈ N(0,Wc) (121)

where Wc is the plant noise covariance, plant noise is introduced in
accelerations, since they are the main cause of uncertainties in multi-
body models. So, G will be the identity matrix, w(t) is a vector of
zeros in its first half, and of noise coefficients in its second half. Ac-
celeration noise will be, when discretised, a velocity difference noise.
M matrix can now be defined:

M :=

[
−F GWcGT

000 FT

]
(122)

So, computing matrix exponential, it results:

exp(M) =

[
ΨΨΨ ΦkΦkΦk

−1Wk

000 ΦΦΦTk

]
(123)

where Wk is the object of the calculation, and it can be determined
through the following procedure, in matlab code:

% Build M matrix

M = DeltaT*[-F,G*Wc*G’;zeros(n),F’];

% Compute matrix exponential

N = expm(M);

% Extract Phik

Phik = N(n+1:2*n,n+1:2*n)’;

% Wk calculation

Wk = Phik*N(1:n,n+1:2*n);

This operation is not necessary for measurement noise since, using
the scalar gain calculation algorithm, only scalar values are used. This
will be seen in the following paragraph

4.5.3 Kalman gain calculation

Kalman gain calculation and error vector updating operation are per-
formed by the compute gain subroutine. The Kalman gain is computed

4.5 code implementation 63

in a scalar way [14]: since in most of the cases measurement noise ma-
trix is diagonal, it is convenient to treat each element as scalar. This
essentially for:

a. Computational efficiency;

b. Numerical accuracy.

The former is an advantage in terms of computation time: it can
be demonstrated that, given n measurements, this method compu-
tational charge is O(n), whereas following the classical vectorial ap-
proach it grows to O(n3). The latter is directly related to matrix in-
version: by avoiding this operation in the covariance updating, the
algorithm becomes more robust against round-off errors.
It proceeds taking the single rows and columns of H matrix: so, build-
ing it from the various parts – acceleration, angular velocity, gps... –
is no more required. Naming H[i]

k the i-th row of H matrix at k time-
step, and L[i]

k, zik andNik the i-th gain vector, measurement and noise
coefficient respectively, it follows:

L[i]
k =

1

H[i]
kPk|k−1H[i]T

k +N
i
k

Pk|k−1H[i]
k

Pk|k = Pk|k−1 − L[i]
kH[i]

kPk|k−1
xk|k = xk|k−1 + L[i]

k(z
i
k − H[i]

kxk|k−1)

(124)

It can be noticed that in the first operation the denominator is scalar:
so, matrix inversion has been effectively avoided. The Kalman gain,
at every loop iteration, is a column, so the state estimate is updated
by the quantity which is related to the i-th state variable. At the end
of the loop, not only the calculation of Kalman gain has been carried
out, but also the updating step has been completed.
It is worth noticing that, in this application, this way of calculating the
Kalman gain is particularly convenient: in fact, since the filter faces a
multi-rate sensors updating working condition, this procedure is suit-
able for calculating more or less gains, depending on measurement
availability. If the classic algorithm was used, three – remember: the
gps can be available or not, and when it is, cog signal can be reliable
or not – different measurement noise matrices were to be allocated,
and a check over which one is to be used should be done at every
time-step.
Moreover, this procedure allows adding or removing a sensor with-
out changing matrix dimension and loop indices: this operation can
be done simply adding a flag to each sensor, indicating its availability.
This can be very useful for debugging operations: removing a single
sensor without deleting the parts of the matrices which are related to
it means to work without state updating but with covariance one: so, the
state will not be updated, but filter divergence will be avoided.

64 observer design

4.5.4 Model correction

Observer function, in addition to calling all the other functions, per-
forms model correction: starting from the updated state vector which
is returned by compute gain function, the estimation error on all the
natural coordinates can be computed. That is, all the errors in posi-
tions and velocities can be determined, so the model can be corrected
simply operating on vectors q and q̇, adding or subtracting the errors.
In order to correct position vector, although the errorekf formulated
in [30] solves kinematic velocity problem for doing it, the position
algorithm has been used. In fact, using velocity one, the iterative
Newton-Raphson calculation would have been avoided, but less ac-
curate corrections would have been done. So, integrator convergence
– which works iteratively, too – would have taken much more time.
This, together with the low accuracy of corrections, is a disadvantage
which makes preferable the resolution of kinematic position problem.
So, the correction is performed adding the errors over the indepen-
dent coordinates to vectors q and q̇ at the correct positions, then solv-
ing the kinematic problems of position and velocity, since the added
quantities are degrees of freedom of the mechanism. Doing this, ev-
ery natural coordinate is incremented of the correspondent error, so
correcting the model. In pseudo-code:

%Adding position DOF errors to q

q = q + position errors

% Position correction

q = solve position kinematic problem

% Adding velocities DOF to qp

qp = qp + velocity errors

% Velocity correction

qp = solve velocity kinematic problem

It is worth noticing, however, that this is not a good correction for
a multi-body model: in fact, to correct velocity in this way provokes
a discontinuity, which would require an acceleration – and so force –
impulse. Position correction is even more absurd: it is equivalent to
teleport.
These are ways of correcting which are badly physically acceptable:
even though it is a simulation model, the multi-body formulation
could not be capable of converging in real-time if big errors were
present, since integrator iteration number would become higher.
For this reason, an observer modification was thought: if acceleration
errors were added to filter state, after their estimation, through in-
verse dynamics problem solution, force errors could be estimated too.
This would lead to force correction, which are the main unknown in-

4.5 code implementation 65

Figure 33: Observer extension through force errors estimation and correc-
tion.

puts to the system. Moving from the main dynamic formulation in
(14) the problem to be solved is the following:

RTMRz̈ = RT (Q − MSc)

c = −Φ̇qq̇Φ̇qq̇Φ̇qq̇
(125)

After some calculation, it results:

RTMRz̈ + RTMṘż = RTQ (126)

this leading to Q determination. Once it has been find out, it has to
be added to multi-body system generalized force vector, so correcting
that model non-knowledge.
If the entire model correction was to be performed in this way, pos-
sibly a slower filter would be obtained in terms of bandwidth. Imag-
ining that the force correction at k time-step could make the model
entirely corrected at k+ 3, at k+ 1 a new set of corrected forces would
be calculated, but this calculation would be quite bad, since the veloci-
ties are have not been corrected yet. Because of this, the improvement
in multi-body dynamics rapidity and robustness would be possibly
overshadowed.
If it was performed putting together force, velocity and position cor-
rection, the problem of the non-physically acceptability explained
upon would be, however, less heavy. So, a trade-off between phys-
ical correctness and estimation performances has to be searched. A
scheme of this is shown in Fig. 33.
Anyway, to correct the forces would solve the constant force error
problem discussed in gps paragraph: even if there was front wind,
so producing a constant error in x direction, by correcting the force
vector this problem would be eliminated. So, a filter behaviour which
is nearer the optimum one would be expected.
However, this part is still to be added, and it could a possible future
improvement to the project.

5
S I M U L AT I O N R E S U LT S

5.1 simulated manoeuvres

Observer performances have been tested firstly performing two kinds
of manoeuvres in a virtual plane ground: a straight one and a circu-
lar one. The model has two drivers to be adjusted in order to make it
run: the steering angle and the torque applied to the wheels. In both
of them the former has been set through the assignment of a linear
displacement value of the mechanism rack. The latter works as me-
chanical power input to the system.
Simulation procedure is the same used in the four-bar linkage mech-
anism simulation: firstly the multi-body model runs as it was the real
mechanical system. It is utilized as the ground truth, without running
the observer, recording natural coordinates and virtual sensor values.
Then they are processed in matlab, adding a white noise with the
variances specified in the previous chapter.
After that, a second simulation is run, introducing an error in the
multi-body model – in order to represent its imperfection – and run-
ning the observer in parallel. This is expected to correct the multi-
body model, which would behave differently with respect to the ground
truth, and force it to follow the recorded performances.
The error introduced into the multi-body model is a difference in the
tyre friction coefficient: in fact this is, generally, an unknown parameter,
since it depends on several factors which are impossible to accurately
predict when modelling the system, such as tyre wear or road con-
ditions. Moreover, a friction coefficient error becomes, in performing
dynamical calculations, a force error. It is a reasonable choice, since
forces are the main cause of uncertainties in multi-body simulations.
A test list, with simulation parameters, is shown in Tab. 4.

Manoeuvre Frict. error Time [s] Torque [Nm] Steer displ. [m]

Straight 0.015 20 100 -0.004

Circular 0.015 20 100 0.01

Table 4: Simulation parameters.

67

68 simulation results

Figure 34: Vehicle simulation.

5.1.1 Straight line manoeuvre

Due to mechanical misalignments, especially of wheel hubs, steering
rack displacement has to be set to a value different from zero, in or-
der to move straight. After some attempts, a good value was found
in 0.004 mm rightwards. The torque applied to each wheel was set
to 100 Nm, in order to produce a quite relevant acceleration before
reaching the velocity limit allowed by the tyre friction. Simulation
time was set to 20 seconds.
No initial condition errors were taken into account, since it had been
noticed that in the four bar linkage test they were corrected almost in-
stantaneously. A difference of 0.015, between the ground truth and
the multi-body model, in the tyre friction coefficient has been in-
troduced. This value, resulted from some experimental tests, can be
found also in literature [23].

It can be noticed that the multi-body model tends to diverge from
ground truth behaviour, whereas the observer is capable of correcting
the errors. In particular, plane Cartesian coordinates of positions and
velocities – see Fig. 35-38 – are well estimated, and the errors remain
in the neighbourhood of zero, whereas multi-body model errors di-
verge. In fact, observer presence makes maximum and mean squared
error values decrease at least of one order of magnitude. The same
thing happens to wheel angles and angular velocities, as it can be
seen in Fig. 39-46.
In this case, although yaw error value is very small, observer makes
performances worse. This is due to the fact that, since it performs a
straight manoeuvre, multi-body model does not diverge in the yaw
angle from the ground truth. On the other hand, observer works with-
out a significant error to correct and preserves an offset, due to the
misalignment between chassis and wheels and to the difference be-
tween course over ground and yaw angle. A similar thing happens to
ωz estimate: since the manoeuvre is straight, the multi-body model
and the ground truth behave in a very similar way, making in both
cases the angular velocity be almost zero. The results are shown in
Fig. 47-48, whereas estimation error values are sum up in Tab. 5.

5.1 simulated manoeuvres 69

Coord. maxobs maxmb rmsobs rmsmb

x [m] 0.0338 30.210 0.0089 13.515

y [m] 0.0352 1.8367 0.0121 0.7488

ẋ [ms] 0.1547 3.0190 0.0451 1.7441

ẏ [ms] 0.1345 0.2297 0.0386 0.1147

θ1 [rad] 0.0743 107.18 0.0224 47.937

θ2 [rad] 0.1050 107.13 0.0223 47.913

θ3 [rad] 0.0950 116.77 0.0263 52.222

θ4 [rad] 0.1022 116.54 0.0258 52.119

θ̇1 [rads] 1.1468 10.721 0.3103 6.1894

θ̇2 [rads] 1.1907 10.716 0.3098 6.1863

θ̇3 [rads] 1.6514 11.680 0.4266 6.7427

θ̇4 [rads] 1.6200 11.656 0.4200 6.7293

yaw [rad] 0.0078 0.0011 0.0048 0.0004

ωz [
rad
s] 0.0140 0.0004 0.0051 0.0002

Table 5: Estimation errors in straight manoeuvre, committed by mb model
with and without the observer respectively.

Figure 35: Estimated position of the vehicle in x-direction (top). Estimation
error (bottom).

70 simulation results

Figure 36: Estimated position of the vehicle in y-direction (top). Estimation
error (bottom).

Figure 37: Estimated velocity of the vehicle in x-direction (top). Estimation
error (bottom).

5.1 simulated manoeuvres 71

Figure 38: Estimated velocity of the vehicle in y-direction (top). Estimation
error (bottom).

Figure 39: Estimated front right wheel angular position (top). Estimation
error (bottom).

72 simulation results

Figure 40: Estimated front left wheel angular position (top). Estimation error
(bottom).

Figure 41: Estimated rear right wheel angular position (top). Estimation er-
ror (bottom).

5.1 simulated manoeuvres 73

Figure 42: Estimated rear left wheel angular position (top). Estimation error
(bottom).

Figure 43: Estimated front right wheel angular velocity (top). Estimation er-
ror (bottom).

74 simulation results

Figure 44: Estimated front left wheel angular velocity (top). Estimation error
(bottom).

Figure 45: Estimated rear right wheel angular velocity (top). Estimation er-
ror (bottom).

5.1 simulated manoeuvres 75

Figure 46: Estimated rear left wheel angular velocity (top). Estimation error
(bottom).

Figure 47: Estimated vehicle yaw angle (top). Estimation error (bottom).

Figure 48: Estimated angular velocity of the vehicle about z-axis (top). Esti-
mation error (bottom).

76 simulation results

Coord. maxobs maxmb rmsobs rmsmb

x [m] 0.0398 11.752 0.0120 5.4598

y [m] 0.0374 10.106 0.0133 4.7388

ẋ [ms] 0.1624 4.9196 0.0448 2.2120

ẏ [ms] 0.1356 5.8118 0.0401 2.5558

θ1 [rad] 0.0815 61.736 0.0221 33.238

θ2 [rad] 0.0937 55.434 0.0236 29.868

θ3 [rad] 0.0973 68.934 0.0254 36.929

θ4 [rad] 0.0972 64.253 0.0250 34.196

θ̇1 [rads] 1.0428 4.1167 0.2858 3.2786

θ̇2 [rads] 0.9776 3.6802 0.2712 2.9411

θ̇3 [rads] 2.8088 4.5946 0.4317 3.6657

θ̇4 [rads] 3.8207 4.2657 0.4018 3.4207

yaw [rad] 0.0159 0.5889 0.0072 0.3608

ωz [
rad
s] 0.0143 0.0454 0.0042 0.0316

Table 6: Estimation errors in circular manoeuvre, committed by mb model
with and without the observer respectively.

5.1.2 Circular manoeuvre

In order to move circularly, a steering rack displacement of 0.01 m
leftwards was set configuring the simulation: the result is a counter-
clockwise turn. The torque applied to the wheels and the simulation
time remained the same ones as in the previous test. In particular,
this wheel torque value does not make them slip, yet it is sufficient
to provoke a roll rotation of vehicle chassis. The error between the
ground truth and the multi-body model is the same as in the previous
test.

Also in this case, observer effectiveness can be noticed. In all the
estimated variables it succeeds in correcting the multi-body model,
making it follow the ground truth whereas the former diverges. In
particular, also in this test observer presence makes the estimation
error decrease several orders of magnitude in plane Cartesian coordi-
nates and wheel angular ones, as it can be seen in Fig. 49-60. In this
case, observer succeeds in correcting yaw angle error, although the
small, already mentioned, offset remains. The angular velocity ωz is
corrected too, even though the error in multi-body model is small,
so the correction effect is minor. Anyway, a one order of magnitude
reduction in the rms error value can be noticed: results are shown in
Fig. 61-62. Estimation error values are sum up in Tab. 5.

5.1 simulated manoeuvres 77

Figure 49: Estimated position of the vehicle in x-direction (top). Estimation
error (bottom).

Figure 50: Estimated position of the vehicle in y-direction (top). Estimation
error (bottom).

78 simulation results

Figure 51: Estimated velocity of the vehicle in x-direction (top). Estimation
error (bottom).

Figure 52: Estimated velocity of the vehicle in y-direction (top). Estimation
error (bottom).

5.1 simulated manoeuvres 79

Figure 53: Estimated front right wheel angular position (top). Estimation
error (bottom).

Figure 54: Estimated front left wheel angular position (top). Estimation error
(bottom).

80 simulation results

Figure 55: Estimated rear right wheel angular position (top). Estimation er-
ror (bottom).

Figure 56: Estimated rear left wheel angular position (top). Estimation error
(bottom).

5.1 simulated manoeuvres 81

Figure 57: Estimated front right wheel angular velocity (top). Estimation er-
ror (bottom).

Figure 58: Estimated front left wheel angular velocity (top). Estimation error
(bottom).

82 simulation results

Figure 59: Estimated rear right wheel angular velocity (top). Estimation er-
ror (bottom).

Figure 60: Estimated rear left wheel angular velocity (top). Estimation error
(bottom).

5.1 simulated manoeuvres 83

Figure 61: Estimated yaw angle of the vehicle(top). Estimation error (bot-
tom).

Figure 62: Estimated angular velocity of the vehicle about z-axis (top). Esti-
mation error (bottom)

84 simulation results

5.2 a malata parking manoeuvres

In addition to the previous tests, a more realistic one has been carried
out. Instead of using the multi-body model as the ground truth, a set
of real sensor data has been used. It is the set of buggy sensor data
which was recorded during some manoeuvres done in Pabellón de A
Malata1 parking, when the model was validated. Wheel torque and
steering rack displacement data are used as inputs to the multi-body
model, other sensors are used to correct it through Kalman filtering.
The manoeuvre is circular, performing three clockwise turns. Parking
ground had been modelled importing surveying data in a graphic
software, so reproducing a real soil.

5.2.1 Real sensors data manoeuvre

In a first simulation, sensor data are used without any kind of pre-
processing, since the signals are already affected by noise.
In spite of several factors that, working with real data, could make
the results worse, it can be seen in Fig. 63-66 that Cartesian positions
and velocities of the chassis are well estimated, whereas multi-body
model behaviour is divergent. In particular, in this case too, observer
makes estimation error decrease at least one order of magnitude. The
same thing happens to wheel angular positions, as it is shown in Fig.
67-70. It can be noticed that the error in rear wheel estimates is bigger
than the one in front wheels: this is due to the fact that the accuracy
of Hall sensor measurements conveys engine vibrations, which affects
holes count2.
Yaw angle appears to be well estimated too, even though the available
signal is a course over ground one: the plot it used only to give an idea
of vehicle attitude correct estimation. The presence of the cog signal
is the reason why the estimation is sensible only when the vehicle is
moving, as it can be noticed looking at Fig. 71. Angular velocity ωz
– see Fig. 72 – estimate is quite good, too: the error is reduced about
50% in maximum value and about 60% in rms one. Estimation error
values are shown in Tab. 7.

5.2.2 Manoeuvre with noise added to GPS position signal

Buggy gps is very accurate, since it has differential corrections in po-
sition: it can reach 2 centimetres accuracy. This is not reasonable for a
commercial available car: due to this, another simulation was made,
in order to reproduce more realistic conditions.

1 Estrada Malata, s/n, 15405 Ferrol, A Coruña. Latitude - Longitude 43.493992-8.24706.
2 It happens that, even if the vehicle is not moving, it appears like a wheel were

rotating. This is due to the fact that, if a hole is near the zero notch, engine vibrations
make it move about that notch, so that counted holes number increases.

https://www.google.it/maps/place/Pabell%C3%B3n+de+la+Malata/@43.4937779,-8.247467,88m/data=!3m1!1e3!4m2!3m1!1s0x0000000000000000:0xbcb515ebb3cb133c

5.2 a malata parking manoeuvres 85

Coord. maxobs maxmb rmsobs rmsmb

x [m] 0.1191 18.915 0.0080 3.6509

y [m] 0.0987 18.151 0.0081 3.4061

ẋ [ms] 0.8319 9.6530 0.0725 1.6717

ẏ [ms] 0.8664 10.348 0.0799 1.6616

θ1 [rad] 0.2840 63.665 0.0814 32.420

θ2 [rad] 0.2561 150.87 0.0621 108.50

θ3 [rad] 0.9354 49.293 0.2061 26.295

θ4 [rad] 0.7815 190.63 0.1827 135.50

yaw [rad] 0.2482 1.9863 0.0469 0.5954

ωz [
rad
s] 0.1212 0.2041 0.0253 0.0663

Table 7: Estimation errors in A Malata manoeuvre, committed by mb model
with and without the observer respectively.

Figure 63: Estimated position of the vehicle in x-direction (top). Estimation
error (bottom).

86 simulation results

Figure 64: Estimated position of the vehicle in y-direction (top). Estimation
error (bottom).

Figure 65: Estimated velocity of the vehicle in x-direction (top). Estimation
error (bottom).

5.2 a malata parking manoeuvres 87

Figure 66: Estimated velocity of the vehicle in y-direction (top). Estimation
error (bottom).

Figure 67: Estimated front right wheel angular position (top). Estimation
error (bottom).

88 simulation results

Figure 68: Estimated front left wheel angular position (top). Estimation error
(bottom).

Figure 69: Estimated rear right wheel angular position (top). Estimation er-
ror (bottom).

5.2 a malata parking manoeuvres 89

Figure 70: Estimated rear left wheel angular position (top). Estimation error
(bottom).

Figure 71: Estimated vehicle yaw angle, red and blue, versus course over
ground, black (top). Estimation error (bottom).

90 simulation results

Figure 72: Estimated angular velocity of the vehicle about z-axis (top). Esti-
mation error (bottom).

Figure 73: Estimated velocity in x-direction (top) with added gps noise. Es-
timation error (bottom).

Position signal of gps was processed before starting the simulation,
adding a white noise of 1 metre variance: it should be more similar to
one which can be bought with a normal car. Velocity – and so course
over ground – signals were not modified, since differential corrections
are related to position only.
As it can be seen in Fig.73-76, the observer goes on correcting the
multibody model and avoiding its divergence, even though estima-
tion accuracy is obviously worse. It is worth pointing out that the
added noise affects only plane Cartesian coordinate estimates: wheel
part is not affected by gps signal corruption. This is the reason why
only the plots related to these are shown. A small difference in yaw
angle estimate can be seen with respect to the previous test, but it is
quite negligible. Estimation error values are shown in Tab. 8.

5.2 a malata parking manoeuvres 91

Coord. maxobs maxmb rmsobs rmsmb

x [m] 0.4301 18.915 0.0706 3.6509

y [m] 0.4364 18.151 0.0759 3.4177

ẋ [ms] 1.1579 9.6530 0.1142 1.6717

ẏ [ms] 1.1850 10.348 0.1247 1.6616

θ1 [rad] 0.2814 63.665 0.0780 32.420

θ2 [rad] 0.2671 150.87 0.0632 108.50

θ3 [rad] 0.9863 49.293 0.1922 26.295

θ4 [rad] 0.7102 190.63 0.1930 135.50

yaw [rad] 0.2729 1.9863 0.0332 0.5954

ωz [
rad
s] 0.1177 0.2041 0.0236 0.0663

Table 8: Estimation errors in A Malata manoeuvre, committed by mb model
with and without the observer respectively, with added gps signal
noise.

Figure 74: Estimated position in y-direction (top) with added gps noise. Es-
timation error (bottom).

92 simulation results

Figure 75: Estimated velocity in x-direction (top) with added gps noise. Es-
timation error (bottom).

Figure 76: Estimated velocity in y-direction (top) with added gps noise. Es-
timation error (bottom).

C O N C L U S I O N S

State observers are very useful tools, which allow estimating physical
quantities of real systems otherwise unmeasurable. The aim of this
work is to design observers capable to run in real-time and to perform
the correction of multi-body models, in order to use such corrected
models as virtual sensors. To this end a multi-body oriented state ob-
server has been designed and its realization for a dune buggy ground
vehicle has been thoroughly discussed.
The proposed observer is based on a modified version of the indirect
– also called error-state – Kalman filter. Basically, it estimates position
and velocity errors committed by multi-body models, exploiting mea-
surements from sensors commonly available on cars. The estimated
errors are then used to fully correct the multi-body models, making
them reliable.

Experimental results confirm that the aim was well reached. It
was found out that a trade-off between estimation performances, in
terms of filter bandwidth, and multi-body model integration has to be
searched. In fact, if filter response was very fast, this could lead to dy-
namics solving problems. On the other hand, if the multi-body model
good integration was preferred, estimation performances could de-
crease considerably.
The kind of filter used allowed implementing an observer which
runs in real-time, performing satisfying results. It is worth noticing,
however, that a force-error estimation and correction stage should be
added, in order to correct the multi-body model in a more proper way.
In fact, if motion equations were respected, the integration would be
surely easier and faster. This is, however, a possible future develop-
ment and further improvement.
The most evident drawback of this filter adoption is the necessity of
more measurements than in the classical Kalman filter for making
the system observable. In fact, a loss of observability was underlined.
However, a higher speed than the one possible with other filters is
obtained, this giving the possibility of a real-time running.
An advantage, with respect to a classical Kalman filter, is its easy of
design: a multi-body model state-space formulation is not needed.
This allows a more general design operation, since it does not depend
on dynamic equations, but only on sensor ones. These are all conse-
quences of the state-transition matrix substitution with an integrator
one, which allows coupling with the external multi-body model and
makes the errorekf a filter suitable to be used with multi-body mod-
els.

93

A P P E N D I X

95

A
F O U R - B A R L I N K A G E M E C H A N I S M M AT L A B
M U LT I - B O D Y S I M U L AT I O N S O U R C E C O D E

a.1 main functions

a.1.1 Main function

%

% Four bar linkage mechanism in natural coordinates

% with errorEKF-based state observer

%

% Author: Edoardo

clear all

close all

clc

addpath(’ functions ’)

%% Kinematic analysis

% 1 DOF => 4 constraint equations. Putting basic points on the

rotoidal

% couplings and on a,b points, we have:

%

% (x1-xa)^2 + (y1-ya)^2 = L1^2

% (x2-x1)^2 + (y2-y1)^2 = L2^2

% (xb-x2)^2 + (yb-y2)^2 = L3^2

% (x1-xa) = L1*cos(phi) OR (y1-ya) = L1*sin(phi)

% (it depends on the value of angle phi)

% Setting constant values

[l, m, m_f, x] = kinematic_init();

% DOF

phi = degtorad(60); % position [rad]

phi_dot = 1; % velocity [rad/s]

phi_2dot = 0.0001; % acceleration [rad/s^2]

% DOF fake model

phi_f = degtorad(90);

phi_dot_f = -10;

phi_2dot_f = 0.0001;

% First iteration values

97

98 four-bar linkage mechanism matlab multi-body simulation source code

x1 = 0;

y1 = 4;

x2 = 8;

y2 = 3;

% First iteration values (fake model)

x1_f = 0;

y1_f = 2;

x2_f = 8;

y2_f = 3;

% Free coordinates vector

q = [x1; y1; x2; y2; phi];

% Free coordinates vector (fake model)

q_f = [x1_f; y1_f; x2_f; y2_f; phi_f];

% Position analysis with Newton-Raphson method

[q, J, PHI] = position(q, x, l);

[q_f, J_f, PHI_f] = position(q_f, x, l); % fake model

% Velocity problem

q_dot = velocity(q, phi_dot, x, l);

q_dot_f = velocity(q_f, phi_dot_f, x, l); % fake model

% Acceleration problem

[q_2dot, B] = acceleration(q, q_dot, phi_2dot, x, l);

[q_2dot_f, B_f] = acceleration(q_f, q_dot_f, phi_2dot_f, x, l);

%fake model

%% Mass and force matrices

% Gravity constant

g = 9.806;

g_f = 9;%8; % fake model (gravity is the wrong parameter)

% Calculate mass and force matrices

[M,Q] = mass_forces(m, l, g);

[M_f,Q_f] = mass_forces(m_f, l, g_f); % fake model

% Adding torque on the crank (DOF) ONLY IN THE REL SYSTEM, NOT IN

THE MB

% MODEL!!!

Q(5,1) = -10; % [Nm]

%% Dynamic simulation

% Simulation time parameters

sim_time = 10;

Ts = 5e-3; % sampling

frame = 5e-2; % plot frame

t = 0:Ts:sim_time-Ts;

A.1 main functions 99

% Kalman filter initializing

[S, R, P, F, H, inn] = observer_init(sim_time, Ts);

% Constraint vectors initializing

PHI = norm(PHI);

PHI_DOT = norm(zeros(4,1));

PHI_2DOT = norm(PHI_DOT);

%Initial values of energy

[ep,ek] = energy(q, q_dot, m, g, x, M);

% Initial values of position and velocity

pos = q;

pos_KF = q_f;

pos_f = q_f;

vel = q_dot;

vel_KF = q_dot_f;

vel_f = q_dot_f;

% Put into KF the same conditions of fake model

q_KF = q_f;

q_dot_KF = q_dot_f;

q_2dot_KF = q_2dot_f;

% Initialize full model matrix eigenvalues vector

eigen = [];

eigen_abs = [];

for k=0.005:Ts:sim_time-Ts

% Adding torque pulse on DOF

if k>4 && k<5

Q(5,1) = 100;

else

Q(5,1) = -10;

end

% Model dynamics calculation

[q, q_dot, q_2dot, constr, constr_p, constr_pp] = augm_lagr3(q,

q_dot, q_2dot, Ts, M, Q, x, l);

[q_f, q_dot_f, q_2dot_f, ~, ~, ~] = augm_lagr3(q_f, q_dot_f,

q_2dot_f, Ts, M_f, Q_f, x, l); % fake model

% Constraint vector updating (to check correctness)

PHI = [PHI norm(constr)]; % pos

PHI_DOT = [PHI_DOT norm(constr_p)]; % vel

PHI_2DOT = [PHI_2DOT norm(constr_pp)]; % acc

% Run the observer

100 four-bar linkage mechanism matlab multi-body simulation source code

[q_KF, q_dot_KF, q_2dot_KF, inn_upd, P, L] = observer(q, q_KF,

q_dot_KF, q_2dot_KF, Ts, F, P, S, R, H, x, l, Q_f, M_f);

% State space state transition matrix calculation

A = statespace(M, q, q_dot, q_2dot, x, l, Ts);

A_f = statespace(M_f, q_KF, q_dot_KF, q_2dot_KF, x, l, Ts);

% Check filter poles stability

[eigen_new, eigen_abs_new] = eigenvalues(A, A_f, L, H, H, F);

% Eigenvalues vector updating

eigen = [eigen eigen_new];

eigen_abs = [eigen_abs eigen_abs_new];

%Innovation vector updating

inn(end+1)=inn_upd;

% Evaluating energies and updating vectors

[Ep,Ek] = energy(q, q_dot, m, g, x, M);

ep = [ep Ep]; % potential

ek = [ek Ek]; % kinetic

% % Graphic part

% if mod(k,frame) == 0 % plots every 0.1 s

% graphics(q, q_f, q_KF, x, l, ’b’, ’r’, ’g’)

% end

% Updating vectors

pos = [pos q];

pos_KF = [pos_KF q_KF];

pos_f = [pos_f q_f];

vel = [vel q_dot];

vel_KF = [vel_KF q_dot_KF];

vel_f = [vel_f q_dot_f];

end

%Checking if innovation is white noise

fs = 1/Ts; % sampling freq.

periodogramma(inn(1,:), fs, 5, 20)%, ’position innovation’)

% Plotting energies, if there’s conservation the model is well

defined

figure()

plot(ep)

hold on

plot(ek, ’ r ’)
plot(ep+ek, ’g ’)
legend(’ potential ’, ’ kinetic ’, ’ tot mech. ’)
title(’Mechanical energies of the system ’)

% Plotting constraint vector norm, if the dynamic formulation is

good its

A.1 main functions 101

% value should be ~= 0

figure()

plot(PHI)

hold on

plot(PHI_DOT, ’ r ’)
plot(PHI_2DOT, ’g ’)
title(’Constraint vectors ’)
legend(’ position ’, ’ velocity ’, ’ acceleration ’)

%%

% Defining estimation errors

e_x1 = pos(1,:) - pos_KF(1,:); % pos

e_y1 = pos(2,:) - pos_KF(2,:);

e_x2 = pos(3,:) - pos_KF(3,:);

e_y2 = pos(4,:) - pos_KF(4,:);

e_x1_f = pos(1,:) - pos_f(1,:); % pos

e_y1_f = pos(2,:) - pos_f(2,:);

e_x2_f = pos(3,:) - pos_f(3,:);

e_y2_f = pos(4,:) - pos_f(4,:);

e_x1_dot = vel(1,:) - vel_KF(1,:); % vel

e_y1_dot = vel(2,:) - vel_KF(2,:);

e_x2_dot = vel(3,:) - vel_KF(3,:);

e_y2_dot = vel(4,:) - vel_KF(4,:);

e_x1_dot_f = vel(1,:) - vel_f(1,:); % vel

e_y1_dot_f = vel(2,:) - vel_f(2,:);

e_x2_dot_f = vel(3,:) - vel_f(3,:);

e_y2_dot_f = vel(4,:) - vel_f(4,:);

%%

% Plotting estimation performance: x1

figure()

subplot(2,1,1)

g = plot(t, pos(1,:), ’k ’)
hold on

h = plot(t, pos_KF(1,:), ’ r−−’)
l = plot(t, pos_f(1,:), ’b ’)
title(’Simulation results ’)
legend(’ real mechanism’, ’observer ’, ’MB model ’, ’Location ’, ’

NorthEast ’, ’Orientation ’, ’Horizontal ’)
ylabel(’x_1 coordinate [m] ’, ’ interpreter ’, ’ latex ’)
xlabel(’Time [s] ’, ’ interpreter ’, ’ latex ’)
set(0, ’ defaultaxesfontsize ’,18)
set(g(1), ’ linewidth ’,3)
set(h(1), ’ linewidth ’,3)
set(l(1), ’ linewidth ’,3)
set(gca, ’box ’, ’ off ’)
legend(’boxoff ’)
subplot(2,1,2)

g = plot(t,e_x1(1,:), ’ r ’)
hold on

102 four-bar linkage mechanism matlab multi-body simulation source code

h = plot(t,e_x1_f(1,:), ’b ’)
legend(’ real model ’, ’observer ’, ’Location ’, ’SouthWest ’, ’

Orientation ’, ’Horizontal ’)
ylabel(’x_1 coordinate error [m] ’, ’ interpreter ’, ’ latex ’)
xlabel(’Time [s] ’, ’ interpreter ’, ’ latex ’)
set(0, ’ defaultaxesfontsize ’,18)
set(g(1), ’ linewidth ’,3)
set(h(1), ’ linewidth ’,3)
set(gca, ’box ’, ’ off ’)
legend(’boxoff ’)

x1max = max(abs(e_x1(20:end)))

x1max2 = max(abs(e_x1_f(20:end)))

x1rms = rms(e_x1(20:end))

x1rms2 = rms(e_x1_f(20:end))

%%

% Plotting estimation performance: y1

figure()

subplot(2,1,1)

g = plot(t, pos(2,:), ’k ’)
hold on

h = plot(t, pos_KF(2,:), ’ r−−’)
l = plot(t, pos_f(2,:), ’b ’)
title(’Simulation results ’)
legend(’ real mechanism’, ’observer ’, ’MB model ’, ’Location ’, ’

NorthEast ’, ’Orientation ’, ’Horizontal ’)
ylabel(’y_1 coordinate [m] ’, ’ interpreter ’, ’ latex ’)
xlabel(’Time [s] ’, ’ interpreter ’, ’ latex ’)
set(0, ’ defaultaxesfontsize ’,18)
set(g(1), ’ linewidth ’,3)
set(h(1), ’ linewidth ’,3)
set(l(1), ’ linewidth ’,3)
set(gca, ’box ’, ’ off ’)
legend(’boxoff ’)
subplot(2,1,2)

g = plot(t,e_y1, ’ r ’)
hold on

h = plot(t,e_y1_f, ’b ’)
legend(’ real model ’, ’observer ’, ’Location ’, ’SouthWest ’, ’

Orientation ’, ’Horizontal ’)
ylabel(’y_1 coordinate error [m] ’, ’ interpreter ’, ’ latex ’)
xlabel(’Time [s] ’, ’ interpreter ’, ’ latex ’)
set(0, ’ defaultaxesfontsize ’,18)
set(g(1), ’ linewidth ’,3)
set(h(1), ’ linewidth ’,3)
set(gca, ’box ’, ’ off ’)
legend(’boxoff ’)

y1max = max(abs(e_y1(20:end)))

y1max2 = max(abs(e_y1_f(20:end)))

y1rms = rms(e_y1(20:end))

A.1 main functions 103

y1rms2 = rms(e_y1_f(20:end))

a.1.2 Graphic function

function [] = graphics(q, q_f, q_KF, x, l, color1, color2,

color3)

% Plots a four bar linkage mechanism

% Natural coordinates

x1 = q(1,1);

y1 = q(2,1);

x2 = q(3,1);

y2 = q(4,1);

% Natural coordinates (fake model)

x1_f = q_f(1,1);

y1_f = q_f(2,1);

x2_f = q_f(3,1);

y2_f = q_f(4,1);

% Natural coordinates (observer)

x1_KF = q_KF(1,1);

y1_KF = q_KF(2,1);

x2_KF = q_KF(3,1);

y2_KF = q_KF(4,1);

% Fixed points

xa = x(1,1);

ya = x(2,1);

xb = x(3,1);

yb = x(4,1);

% Bar length

L1 = l(1,1);

% Plot

figure(10)

clf;

hold on

plot ([xa, x1, x2, xb],[ya, y1, y2, yb], color1 , ’
markeredgecolor ’, ’k ’, ’markerfacecolor ’, ’g ’, ’ linewidth ’, 3)

plot ([xa, x1_f, x2_f, xb],[ya, y1_f, y2_f, yb], color2 , ’
markeredgecolor ’, ’k ’, ’markerfacecolor ’, ’g ’, ’ linewidth ’, 3)

plot ([xa, x1_KF, x2_KF, xb],[ya, y1_KF, y2_KF, yb], color3 , ’
markeredgecolor ’, ’k ’, ’markerfacecolor ’, ’g ’, ’ linewidth ’, 3)

axis equal

xlim ([xa-1.2*L1, xb+0.1*xb])

ylim ([-0.2*xb+xa-1.2*L1, -0.2*xb+xb+0.1*xb])

title(’Four−bar linkage mechanism’)
xlabel(’x coordinate [m] ’, ’ interpreter ’, ’ latex ’)
ylabel(’y coordinate [m] ’, ’ interpreter ’, ’ latex ’)

104 four-bar linkage mechanism matlab multi-body simulation source code

legend(’ real model ’, ’ fake model ’, ’observer ’)
legend(’boxoff ’);
set(0, ’ defaultaxesfontsize ’,18)
set(gca, ’box ’, ’ off ’)
drawnow;

end

a.1.3 Energy calculation function

function [Ep,Ek] = energy(q, q_dot, m, g, x, M)

% Evaluates potential and kinetic energy of the whole system

% Fixed point coordinates

ya = x(2,1);

yb = x(4,1);

% q coordinates

y1 = q(2,1);

y2 = q(4,1);

% Bar masses

m1 = m(1,1);

m2 = m(2,1);

m3 = m(3,1);

% Potential energy

Ep = 0.5*g*(m1*(y1+ ya)+m2*(y1+y2)+m3*(y2+yb));

% Kinetic energy

Ek = 0.5*q_dot’*M*q_dot;

end

a.2 kinematic functions

a.2.1 Mechanism initialization function

function [l, m, m_f, x] = kinematic_init()

% Provide phisical information about the mechanism

% Fixed points coordinates

xa = 0;

ya = 0;

xb = 10;

yb = 0;

% Bar lengths

L1 = 2;

L2 = 8;

A.2 kinematic functions 105

L3 = 5;

% Bar masses

m1 = 2;

m2 = 8;

m3 = 5;

% Fake bar mass

m2_f = 5;

% Build full vectors

x = [xa; ya; xb; yb];

m = [m1; m2; m3];

m_f = [m1; m2_f; m3];

l = [L1; L2; L3];

end

a.2.2 Position kinematic problem function

function [q, J, PHI] = position(q, x, l)

% Solve position problem with Newton-Raphson method

% Defining NR method constant

Nmax = 1000; % max iteration n.

tol = 1e-15; % tolerance

e = 1; % first iteration error

k = 1; % iteration n.

% Initial position problem (NR)

while e>tol && k<Nmax

%Calculate jacobian and constraint equations matrices

[J, PHI] = jac_constr(q, x, l);

diff = J(:,1:4)\PHI; % increment

q(1:4,1) = q(1:4,1) - diff; % new free coordinates value

e = norm(PHI); % error

k = k+1; % iteration counter updating

end

end

a.2.3 Velocity kinematic problem function

function [q_dot] = velocity(q, phi_dot, x, l)

% Solve velocity problem

% Check phi: the known terms column varies depending on its value

[~, truccoA, ~] = trick(q, x, l);

106 four-bar linkage mechanism matlab multi-body simulation source code

% Jacobian calculation

[J, ~] = jac_constr(q, x, l);

% Velocity analysis: known factors matrix

A = -phi_dot*[0; 0; 0; truccoA(end)];

% Calculate velocities vector

q_dot = J(:,1:4)\A;

% Full velocities vector

q_dot = [q_dot; phi_dot];

end

a.2.4 Acceleration kinematic problem function

function [q_2dot, B] = acceleration(q, q_dot, phi_2dot, x, l)

% Performs acceleration analysis

% Check value of phi

[~, truccoA, ~] = trick(q, x, l);

% Jacobian calculation

[J, ~] = jac_constr(q, x, l);

% Known factors matrix

A = [0; 0; 0; truccoA(end)];

% Calculate jacobian time derivative matrix

B = jac_derivative(q, q_dot, x, l);

% Calculate acceleration vector

q_2dot = J(:,1:4)\(-B*q_dot -phi_2dot*A);

% Build full acceleration vector

q_2dot = [q_2dot; phi_2dot];

end

a.2.5 Trick function

function[trucco, truccoA, truccoB] = trick(q, x, l)

% Checks crank angle (phi) value: if 45<phi<135 deg

% or 225<phi<315 deg use cosine equation , if not use

% sine one

% Fixed point coordinates

xa = x(1,1);

ya = x(2,1);

A.2 kinematic functions 107

% Bar length

L1 = l(1,1);

% DOF value

phi = q(5,1);

% Position of first joint

x1 = q(1,1);

y1 = q(2,1);

% Check phi value

if abs(sin(phi)) > 0.7071

trucco = (x1-xa)-L1*cos(phi); % Fourth

constraint equation (must be equal to zero)

truccoA = [1 0 0 0 L1*sin(phi)]; % Jacobian last

row (= J(4,:))

truccoB = L1*cos(phi); % Jacobian time

derivative term (= B(4,5))

else

trucco = (y1-ya)-L1*sin(phi);

truccoA = [0 1 0 0 -L1*cos(phi)];

truccoB = L1*sin(phi);

end

end

a.2.6 Jacobian function

function[J, PHI] = jac_constr(q, x, l)

% Compute Jacobian and constraint equations matrices

% Natural coordinates

x1 = q(1,1);

y1 = q(2,1);

x2 = q(3,1);

y2 = q(4,1);

% Fixed point coordinates

xa = x(1,1);

ya = x(2,1);

xb = x(3,1);

yb = x(4,1);

% Bar lengths

L1 = l(1,1);

L2 = l(2,1);

L3 = l(3,1);

% calculate trucco

[trucco, truccoA, ~] = trick(q, x, l);

108 four-bar linkage mechanism matlab multi-body simulation source code

% Jacobian matrix

J = [2*(x1-xa) 2*(y1-ya) 0 0 0;...

-2*(x2-x1) -2*(y2-y1) 2*(x2-x1) 2*(y2-y1) 0;...

0 0 -2*(xb-x2) -2*(yb-y2) 0;...

truccoA];

% Constraint equations

a = (x1-xa)^2+(y1-ya)^2-L1^2;

b = (x2-x1)^2+(y2-y1)^2-L2^2;

c = (xb-x2)^2+(yb-y2)^2-L3^2;

d = trucco;

% Constraints vector

PHI = [a; b; c; d];

end

a.2.7 Jacobian time derivative function

function[B] = jac_derivative(q, q_dot, x, l)

% Calculate time derivative of jacobian matrix

% Velocities

x1_dot = q_dot(1,1);

y1_dot = q_dot(2,1);

x2_dot = q_dot(3,1);

y2_dot = q_dot(4,1);

phi_dot = q_dot(5,1);

% calculate trucco (depending on phi value)

[~, ~, truccoB] = trick(q, x, l);

% Calculate jacobian matrix time derivative (named B)

B = [2*x1_dot 2*y1_dot 0 0 0;...

-2*(x2_dot-x1_dot) -2*(y2_dot-y1_dot) 2*(x2_dot-x1_dot) 2*(y2_dot

-y1_dot) 0;...

0 0 2*x2_dot 2*y2_dot 0;...

0 0 0 0 truccoB*phi_dot];

end

a.3 dynamic functions

a.3.1 Mass and forces calculation function

function [M,Q] = mass_forces(m, l, g)

% Compute mass and generalized force matrices for the mechanism

% Bar mass

m1 = m(1,1);

A.3 dynamic functions 109

m2 = m(2,1);

m3 = m(3,1);

% Bar lengths

L1 = l(1,1);

L2 = l(2,1);

L3 = l(3,1);

% Mass matrices of the three bars

M1 = [m1/3 0 m1/6 0; 0 m1/3 0 m1/6; m1/6 0 m1/3 0; 0 m1/6 0 m1

/3];

M2 = [m2/3 0 m2/6 0; 0 m2/3 0 m2/6; m2/6 0 m2/3 0; 0 m2/6 0 m2

/3];

M3 = [m3/3 0 m3/6 0; 0 m3/3 0 m3/6; m3/6 0 m3/3 0; 0 m3/6 0 m3

/3];

% Build mass matrix of the entire mechanism

M = zeros(5,5);

M(1:2,1:2) = M1 (3:4,3:4);

M(3:4,3:4) = M3 (1:2,1:2);

M(1:4,1:4) = M(1:4,1:4) + M2;

% Force matrices of the three bars (gravity)

Q1 = 1/L1*[L1/2 0; 0 L1/2; L1/2 0; 0 L1/2]*[0;-m1*g];

Q2 = 1/L2*[L2/2 0; 0 L2/2; L2/2 0; 0 L2/2]*[0;-m2*g];

Q3 = 1/L3*[L3/2 0; 0 L3/2; L3/2 0; 0 L3/2]*[0;-m3*g];

% Build force vector for the entire mechanism

Q = zeros(5,1);

Q(1:2,1) = Q1(3:4,1);

Q(3:4,1) = Q3(1:2,1);

Q(1:4,1) = Q(1:4,1) + Q2;

end

a.3.2 Index-3 augmented Lagrange dynamic formulation function

function [q, q_dot, q_2dot, PHI, PHI_DOT, PHI_2DOT] = augm_lagr3(

q, q_dot, q_dot_dot, Ts, M, Q, x, l)

% Dynamic formulation which uses index-3 augmented Lagrangian

approach,

% with projections in velocity and accelerations in order to

fully

% satisfy the constraints.

alpha = 1e9; % penalty term

tol = 1e-7; % tolerance

err = 1; % initial value for the error

Nmax = 1e3; % iteration max no.

k = 0; % initialize counter

lambda = 0; % initialize Lagrange multiplier

110 four-bar linkage mechanism matlab multi-body simulation source code

% Precalculating pos, vel, acc: "hat" terms

q_dot_hat = -(2/Ts*q + q_dot); % vel

q_2dot_hat = -(4/(Ts^2)*q + 4/Ts*q_dot + q_dot_dot); % acc

% Precalculating pos, vel, acc: full calculation

q = q + Ts*q_dot + 0.5*Ts^2*q_dot_dot; % pos

q_dot = (2/Ts)*q + q_dot_hat; % vel

q_dot_dot = (4/Ts^2)*q + q_2dot_hat; % acc

% Solving the nonlinear problem using Newton-Raphson method

while err > tol && k < Nmax

% Jacobian and constraint equation matrices updating

[J, PHI] = jac_constr(q, x, l);

% Updating Lagrange multiplier value

lambda = lambda + alpha*PHI;

% Calculation of dynamic equilibrium equation

f = Ts^2/4*(M*q_dot_dot + J’*alpha*PHI + J’*lambda - Q);

% Dynamic equilibrium tangent

f_q = M +0.25*Ts^2*(J’*alpha*J);

% Delta calculation

deltaq = f_q\-f;

% Updating calculation of position, velocity, acceleration

q = q + deltaq; % pos

q_dot = 2/Ts*q + q_dot_hat; % vel

q_dot_dot = 4/(Ts^2)*q + q_2dot_hat; % acc

% Error calculation

err = norm(deltaq);

% Counter updating

k = k+1;

end

% Final matrices updating

[J, PHI] = jac_constr(q, x, l);

% Velocity projection

q_dot = f_q\(M*q_dot);

% Update velocity constraint

PHI_DOT = J*q_dot;

% Update Jacobian time derivative

B = jac_derivative(q, q_dot, x, l);

A.3 dynamic functions 111

% Acceleration projection

q_2dot = f_q\(M*q_dot_dot - Ts^2/4*J’*alpha*B*q_dot);

% Acceleration constraints calculation

PHI_2DOT = J*q_2dot + B*q_dot;

end

a.3.3 Integration function

function[q_new, q_dot_new, q_2dot_new, PHI, PHI_DOT, PHI_2DOT] =

integrate(q, q_dot, q_2dot, Ts, x, l, Q ,M)

% Perform calculation of new positions and velocities through

acceleration

% integration, using trapezoidal rule

% Error tolerance into the numerical integration

tol = 1e-5;

% First estimations at step k+1 (forward Euler)

v = q_dot + q_2dot*Ts; % velocity prediction

p = q + q_dot*Ts +Ts^2/4*q_2dot; % position prediction

% Initial error values

err_v = 1;

err_p = 1;

% Initial value for Lagrange multiplier

lambda = 0;

% Trapezoidal integration loop

while err_p > tol || err_v > tol

% Matrices updating (with position and velocities at step k)

[J, PHI] = jac_constr(p, x, l);

B = jac_derivative(p, v, x, l);

% Calculate accelerations step k+1 with penalty formulation

[q_dot_dot, lambda, alpha, PHI_DOT] = augm_lagr3(J, p, v, lambda,

B, M, Q, PHI);

% Velocity calculation with trapezoidal rule (k+1)

v_new = q_dot + Ts/2*(q_2dot + q_dot_dot);

% Position calculation with trapezoidal rule (k+1)

p_new = q + Ts*q_dot + Ts^2/4*(q_2dot + q_dot_dot);

% Check the errors through the norm of the vectors

err_v = norm(v - v_new); % velocity

err_p = norm(p - p_new); % position

112 four-bar linkage mechanism matlab multi-body simulation source code

%Update vectors

v = v_new;

p = p_new;

end

% Final matrices updating

[J, PHI] = jac_constr(p, x, l);

B = jac_derivative(p, v, x, l);

% Output vectors

q_new = p;

q_dot_new = v;

q_2dot_new = q_dot_dot;

PHI_DOT = J*q_dot_new;

PHI_2DOT = J*q_2dot_new + B*q_dot_new;

end

a.4 observer functions

a.4.1 Observer initialization function

function [S, R, P, F, H, inn] = observer_init(sim_time, Ts)

% Initialization of the observer

% Filter initialization: model noise

n_pos = 1; % position [deg]

n_vel = 1; % velocity [deg/s]

% Model noise matrix -> TO BE TUNED IN ORDER TO OBTAIN WHITE

INNOVATION

S11 = degtorad(n_pos)*Ts; % Multiplication of position

model noise by Ts, like in F matrix

S22 = degtorad(n_vel)*Ts/5e-3;

S = 1e-1*diag([S11 S22]);

% Measurement noise (encoder uncertainty)

n_meas = 1;

% Measurement noise matrix

R = degtorad(n_meas)^2;

% Setting initial values

P = eye(2); % covariance

F = [1 Ts; 0 1]; % state transition

H = [1 0]; % output matrix (assuming we have an encoder on

the crank)

inn = []; % innovation

A.4 observer functions 113

end

a.4.2 Observer function

function[q_KF, q_dot_KF, q_2dot_KF, inn, P_upd, L] = observer(q,

q_f, q_dot_f, q_2dot_f, Ts, F, P, S, R, H, x, l, Q, M_f)

% Designing an errorEKF state observer, defining the state as the

vector

% containing the errors in position and velocity:

%

% s := [e_p e_v]’

%

% s(k+1) = F*s(k)

%

% F = [I DT*I]

% [0 I]

%

% Predicting step

e_pred = zeros(2,1); % state

P_pred = F*P*F’+S; % covariance

% One timestep integration: q_KF are positions of the observer at

% k-step, q_f are the same but at k-1 step

[q_KF, q_dot_KF, q_2dot_KF, ~,~,~] = augm_lagr3(q_f, q_dot_f,

q_2dot_f, Ts, M_f, Q, x, l);

% Updating step: Kalman gain

L = P_pred*H’/(H*P_pred*H’+ R);

% Measurements

noise = sqrt(R)*randn(1); % Adding noise to the "measurement"

from the real model, in order to simulate a real sensor

meas = q(5,1) + noise; % phi from real model, simulated with

noise

meas_f = q_KF(5,1); % phi from observer

% Innovation calculation

inn = meas - meas_f; % innovation at step k

% Updating step

e_upd = e_pred + L*inn; % state

P_upd = (eye(2) - L*H)*P_pred*(eye(2) - L*H)’ + L*R*L’; %

covariance

% Computing errors through velocity problem

e_pos = velocity(q_KF, e_upd(1,1), x, l); % position QUI C’E’

IL TRUCCO (*)

e_vel = velocity(q_KF, e_upd(2,1), x, l); % velocity

% Model correction

114 four-bar linkage mechanism matlab multi-body simulation source code

q_KF = q_KF + e_pos; % position

q_dot_KF = q_dot_KF + e_vel; % velocity

end

%(*) Gli errori di posizione vengono di fatto calcolati

utilizzando la

% formulazione per il problema di velocità. q_KF son le posizioni

stimate

% dall’osservatore al passo corrente, e_upd è l’errore di

posizione

% (utilizzato al posto della coordinata libera di velocità). x e

l sono i

% parametri fisici del quadrilatero

a.4.3 Mechanism state-transition matrix calculation function

function [A] = statespace(M, q, q_dot, q_2dot, x, l, Ts)

% Computes the state space formulation - state transition matrix

- of

% the mechanism through R matrix method (see "Real-time state

observers

% based on multibody models and the extended Kalman filter",

Cuadrado

% et al., Journal of Mechanical Science and Technology 23 (2009)

% 894~900).

% Defining variables

% Natural coordinates

x1 = q(1,1);

y1 = q(2,1);

x2 = q(3,1);

y2 = q(4,1);

phi = q(5,1);

phi_2dot = q_2dot(5,1);

% Fixed points

xa = x(1,1);

ya = x(2,1);

xb = x(3,1);

yb = x(4,1);

% R matrix calculation: solving velocity problem with DOF

velocity = 1

R = velocity(q, 1, x, l);

% Calculate different Rq depending on phi value (another "trucco

"). Rq

% is an hypermatrix containing R matrix partial derivatives wrt

natural

A.4 observer functions 115

% coordinates. Rq has been calculated using Matlab script "R.m",

in symbolic mode.

if abs(sin(phi)) > 0.7071

Rq = [

0,

0,

0,

0,

- sin(phi) - phi*cos(phi);...

(phi*sin(phi))/(y1 - ya),

-(phi*x1*sin(phi) - phi*xa*sin(phi))/(y1 - ya)^2,

0,

0,

(x1*sin(phi) - xa*sin(phi) + phi*x1*cos(phi) - phi*xa*cos(phi

))/(y1 - ya);...

(phi*sin(phi)*(y2 - ya)*(y2 - yb))/(x2*y1^2 - xb*y1^2 - x1*y1*y2

+ x1*y2*ya - x2*y1*ya + x1*y1*yb - x2*y1*yb + xb*y1*y2 - x1*
ya*yb + xb*y1*ya + x2*ya*yb - xb*y2*ya) + (phi*sin(phi)*(y2 -

yb)*(y1*y2 - y2*ya - y1*yb + ya*yb)*(x1*y2 - x2*y1 - x1*ya +

xa*y1 + x2*ya - xa*y2))/(x2*y1^2 - xb*y1^2 - x1*y1*y2 + x1*
y2*ya - x2*y1*ya + x1*y1*yb - x2*y1*yb + xb*y1*y2 - x1*ya*yb

+ xb*y1*ya + x2*ya*yb - xb*y2*ya)^2, (phi*sin(phi)*(y2 - yb)

*(x1*y2 - x2*y1 - x1*ya + xa*y1 + x2*ya - xa*y2)*(x1*y2 - 2*
x2*y1 + x2*ya - x1*yb + 2*xb*y1 + x2*yb - xb*y2 - xb*ya))/(x2

*y1^2 - xb*y1^2 - x1*y1*y2 + x1*y2*ya - x2*y1*ya + x1*y1*yb -

x2*y1*yb + xb*y1*y2 - x1*ya*yb + xb*y1*ya + x2*ya*yb - xb*y2

*ya)^2 - (phi*sin(phi)*(x2 - xa)*(y2 - yb))/(x2*y1^2 - xb*y1

^2 - x1*y1*y2 + x1*y2*ya - x2*y1*ya + x1*y1*yb - x2*y1*yb +

xb*y1*y2 - x1*ya*yb + xb*y1*ya + x2*ya*yb - xb*y2*ya),

(phi*sin(phi)*(y2 - yb)*(y1*ya + y1*yb - ya*yb - y1^2)*(x1*y2

- x2*y1 - x1*ya + xa*y1 + x2*ya - xa*y2))/(x2*y1^2 - xb*y1^2

- x1*y1*y2 + x1*y2*ya - x2*y1*ya + x1*y1*yb - x2*y1*yb + xb*
y1*y2 - x1*ya*yb + xb*y1*ya + x2*ya*yb - xb*y2*ya)^2 - (phi*
sin(phi)*(y1 - ya)*(y2 - yb))/(x2*y1^2 - xb*y1^2 - x1*y1*y2 +

x1*y2*ya - x2*y1*ya + x1*y1*yb - x2*y1*yb + xb*y1*y2 - x1*ya

*yb + xb*y1*ya + x2*ya*yb - xb*y2*ya), (phi*sin(phi)*(x1*y2 -

x2*y1 - x1*ya + xa*y1 + x2*ya - xa*y2))/(x2*y1^2 - xb*y1^2 -

x1*y1*y2 + x1*y2*ya - x2*y1*ya + x1*y1*yb - x2*y1*yb + xb*y1

*y2 - x1*ya*yb + xb*y1*ya + x2*ya*yb - xb*y2*ya) + (phi*sin(

phi)*(x1 - xa)*(y2 - yb))/(x2*y1^2 - xb*y1^2 - x1*y1*y2 + x1*
y2*ya - x2*y1*ya + x1*y1*yb - x2*y1*yb + xb*y1*y2 - x1*ya*yb

+ xb*y1*ya + x2*ya*yb - xb*y2*ya) + (phi*sin(phi)*(y2 - yb)*(

116 four-bar linkage mechanism matlab multi-body simulation source code

x1*y1 - x1*ya - xb*y1 + xb*ya)*(x1*y2 - x2*y1 - x1*ya + xa*y1

+ x2*ya - xa*y2))/(x2*y1^2 - xb*y1^2 - x1*y1*y2 + x1*y2*ya -

x2*y1*ya + x1*y1*yb - x2*y1*yb + xb*y1*y2 - x1*ya*yb + xb*y1

*ya + x2*ya*yb - xb*y2*ya)^2, (sin(phi)*(y2 - yb)*(x1*y2 -

x2*y1 - x1*ya + xa*y1 + x2*ya - xa*y2))/(x2*y1^2 - xb*y1^2 -

x1*y1*y2 + x1*y2*ya - x2*y1*ya + x1*y1*yb - x2*y1*yb + xb*y1*
y2 - x1*ya*yb + xb*y1*ya + x2*ya*yb - xb*y2*ya) + (phi*cos(

phi)*(y2 - yb)*(x1*y2 - x2*y1 - x1*ya + xa*y1 + x2*ya - xa*y2

))/(x2*y1^2 - xb*y1^2 - x1*y1*y2 + x1*y2*ya - x2*y1*ya + x1*
y1*yb - x2*y1*yb + xb*y1*y2 - x1*ya*yb + xb*y1*ya + x2*ya*yb

- xb*y2*ya);...

- (phi*sin(phi)*(x2 - xb)*(y2 - ya))/(x2*y1^2 - xb*y1^2 - x1*y1*
y2 + x1*y2*ya - x2*y1*ya + x1*y1*yb - x2*y1*yb + xb*y1*y2 -

x1*ya*yb + xb*y1*ya + x2*ya*yb - xb*y2*ya) - (phi*sin(phi)*(

x2 - xb)*(y1*y2 - y2*ya - y1*yb + ya*yb)*(x1*y2 - x2*y1 - x1*
ya + xa*y1 + x2*ya - xa*y2))/(x2*y1^2 - xb*y1^2 - x1*y1*y2 +

x1*y2*ya - x2*y1*ya + x1*y1*yb - x2*y1*yb + xb*y1*y2 - x1*ya*
yb + xb*y1*ya + x2*ya*yb - xb*y2*ya)^2, (phi*sin(phi)*(x2 -

xa)*(x2 - xb))/(x2*y1^2 - xb*y1^2 - x1*y1*y2 + x1*y2*ya - x2*
y1*ya + x1*y1*yb - x2*y1*yb + xb*y1*y2 - x1*ya*yb + xb*y1*ya

+ x2*ya*yb - xb*y2*ya) - (phi*sin(phi)*(x2 - xb)*(x1*y2 - x2*
y1 - x1*ya + xa*y1 + x2*ya - xa*y2)*(x1*y2 - 2*x2*y1 + x2*ya

- x1*yb + 2*xb*y1 + x2*yb - xb*y2 - xb*ya))/(x2*y1^2 - xb*y1

^2 - x1*y1*y2 + x1*y2*ya - x2*y1*ya + x1*y1*yb - x2*y1*yb +

xb*y1*y2 - x1*ya*yb + xb*y1*ya + x2*ya*yb - xb*y2*ya)^2, (phi

sin(phi)(x2 - xb)*(y1 - ya))/(x2*y1^2 - xb*y1^2 - x1*y1*y2

+ x1*y2*ya - x2*y1*ya + x1*y1*yb - x2*y1*yb + xb*y1*y2 - x1*
ya*yb + xb*y1*ya + x2*ya*yb - xb*y2*ya) - (phi*sin(phi)*(x1*
y2 - x2*y1 - x1*ya + xa*y1 + x2*ya - xa*y2))/(x2*y1^2 - xb*y1

^2 - x1*y1*y2 + x1*y2*ya - x2*y1*ya + x1*y1*yb - x2*y1*yb +

xb*y1*y2 - x1*ya*yb + xb*y1*ya + x2*ya*yb - xb*y2*ya) - (phi*
sin(phi)*(x2 - xb)*(y1*ya + y1*yb - ya*yb - y1^2)*(x1*y2 - x2

*y1 - x1*ya + xa*y1 + x2*ya - xa*y2))/(x2*y1^2 - xb*y1^2 - x1

*y1*y2 + x1*y2*ya - x2*y1*ya + x1*y1*yb - x2*y1*yb + xb*y1*y2

- x1*ya*yb + xb*y1*ya + x2*ya*yb - xb*y2*ya)^2,

- (phi*sin(phi)*(x1 - xa)*(x2 - xb))/(x2*y1^2 - xb*y1^2 - x1*
y1*y2 + x1*y2*ya - x2*y1*ya + x1*y1*yb - x2*y1*yb + xb*y1*y2

- x1*ya*yb + xb*y1*ya + x2*ya*yb - xb*y2*ya) - (phi*sin(phi)

(x2 - xb)(x1*y1 - x1*ya - xb*y1 + xb*ya)*(x1*y2 - x2*y1 -

x1*ya + xa*y1 + x2*ya - xa*y2))/(x2*y1^2 - xb*y1^2 - x1*y1*y2

+ x1*y2*ya - x2*y1*ya + x1*y1*yb - x2*y1*yb + xb*y1*y2 - x1*
ya*yb + xb*y1*ya + x2*ya*yb - xb*y2*ya)^2, - (sin(phi)*(x2 -

xb)*(x1*y2 - x2*y1 - x1*ya + xa*y1 + x2*ya - xa*y2))/(x2*y1^2

- xb*y1^2 - x1*y1*y2 + x1*y2*ya - x2*y1*ya + x1*y1*yb - x2*
y1*yb + xb*y1*y2 - x1*ya*yb + xb*y1*ya + x2*ya*yb - xb*y2*ya)

- (phi*cos(phi)*(x2 - xb)*(x1*y2 - x2*y1 - x1*ya + xa*y1 +

x2*ya - xa*y2))/(x2*y1^2 - xb*y1^2 - x1*y1*y2 + x1*y2*ya - x2

*y1*ya + x1*y1*yb - x2*y1*yb + xb*y1*y2 - x1*ya*yb + xb*y1*ya

+ x2*ya*yb - xb*y2*ya);...

0,

A.4 observer functions 117

0,

0,

0,

0];

else

Rq = [

(phi*cos(phi)*(y1 - ya))/(x1 - xa)^2,

-(phi*cos(phi))/(x1 - xa),

0,

0,

(phi*sin(phi)*(y1 - ya))/(x1 - xa) - (cos(phi)*(y1 - ya))/(x1

- xa);...

0,

0,

0,

0,

cos(phi) - phi*sin(phi);...

(phi*cos(phi)*(y2 - yb)*(x1*y2 - x2*y1 - x1*ya + xa*y1 + x2*ya -

xa*y2))/((x1 - xa)^2*(x1*y2 - x2*y1 - x1*yb + xb*y1 + x2*yb -

xb*y2)) + (phi*cos(phi)*(y2 - yb)^2*(x1*y2 - x2*y1 - x1*ya +

xa*y1 + x2*ya - xa*y2))/((x1 - xa)*(x1*y2 - x2*y1 - x1*yb +

xb*y1 + x2*yb - xb*y2)^2) - (phi*cos(phi)*(y2 - ya)*(y2 - yb)

)/((x1 - xa)*(x1*y2 - x2*y1 - x1*yb + xb*y1 + x2*yb - xb*y2))

, (phi*cos(phi)*(x2 - xa)*(y2 - yb))/((x1 - xa)*(x1*y2 - x2*
y1 - x1*yb + xb*y1 + x2*yb - xb*y2)) - (phi*cos(phi)*(x2 - xb

)*(y2 - yb)*(x1*y2 - x2*y1 - x1*ya + xa*y1 + x2*ya - xa*y2))

/((x1 - xa)*(x1*y2 - x2*y1 - x1*yb + xb*y1 + x2*yb - xb*y2)

^2),

(phi*cos(phi)*(y1 - ya)*(y2 - yb))/((x1 - xa)*(x1*y2 - x2*y1

- x1*yb + xb*y1 + x2*yb - xb*y2)) - (phi*cos(phi)*(y1 - yb)*(

y2 - yb)*(x1*y2 - x2*y1 - x1*ya + xa*y1 + x2*ya - xa*y2))/((

x1 - xa)*(x1*y2 - x2*y1 - x1*yb + xb*y1 + x2*yb - xb*y2)^2),

(phi*cos(phi)*(x1 - xb)*(y2 - yb)*(x1*y2 - x2*y1 - x1*ya + xa

*y1 + x2*ya - xa*y2))/((x1 - xa)*(x1*y2 - x2*y1 - x1*yb + xb*
y1 + x2*yb - xb*y2)^2) - (phi*cos(phi)*(x1*y2 - x2*y1 - x1*ya

+ xa*y1 + x2*ya - xa*y2))/((x1 - xa)*(x1*y2 - x2*y1 - x1*yb

118 four-bar linkage mechanism matlab multi-body simulation source code

+ xb*y1 + x2*yb - xb*y2)) - (phi*cos(phi)*(y2 - yb))/(x1*y2 -

x2*y1 - x1*yb + xb*y1 + x2*yb - xb*y2), (phi*sin(phi)*(y2 -

yb)*(x1*y2 - x2*y1 - x1*ya + xa*y1 + x2*ya - xa*y2))/((x1 -

xa)*(x1*y2 - x2*y1 - x1*yb + xb*y1 + x2*yb - xb*y2)) - (cos(

phi)*(y2 - yb)*(x1*y2 - x2*y1 - x1*ya + xa*y1 + x2*ya - xa*y2

))/((x1 - xa)*(x1*y2 - x2*y1 - x1*yb + xb*y1 + x2*yb - xb*y2)

);...

(phi*cos(phi)*(x2 - xb)*(y2 - ya))/((x1 - xa)*(x1*y2 - x2*y1 - x1

*yb + xb*y1 + x2*yb - xb*y2)) - (phi*cos(phi)*(x2 - xb)*(x1*
y2 - x2*y1 - x1*ya + xa*y1 + x2*ya - xa*y2))/((x1 - xa)^2*(x1

*y2 - x2*y1 - x1*yb + xb*y1 + x2*yb - xb*y2)) - (phi*cos(phi)

(x2 - xb)(y2 - yb)*(x1*y2 - x2*y1 - x1*ya + xa*y1 + x2*ya -

xa*y2))/((x1 - xa)*(x1*y2 - x2*y1 - x1*yb + xb*y1 + x2*yb -

xb*y2)^2), (phi*cos(phi)*(x2 - xb)^2*(x1*y2 - x2*y1 -

x1*ya + xa*y1 + x2*ya - xa*y2))/((x1 - xa)*(x1*y2 - x2*y1 -

x1*yb + xb*y1 + x2*yb - xb*y2)^2) - (phi*cos(phi)*(x2 - xa)*(

x2 - xb))/((x1 - xa)*(x1*y2 - x2*y1 - x1*yb + xb*y1 + x2*yb -

xb*y2)), (phi*cos(phi)*(x1*y2 - x2*y1 - x1*ya + xa*y1 + x2*
ya - xa*y2))/((x1 - xa)*(x1*y2 - x2*y1 - x1*yb + xb*y1 + x2*
yb - xb*y2)) - (phi*cos(phi)*(x2 - xb)*(y1 - ya))/((x1 - xa)

*(x1*y2 - x2*y1 - x1*yb + xb*y1 + x2*yb - xb*y2)) + (phi*cos(

phi)*(x2 - xb)*(y1 - yb)*(x1*y2 - x2*y1 - x1*ya + xa*y1 + x2*
ya - xa*y2))/((x1 - xa)*(x1*y2 - x2*y1 - x1*yb + xb*y1 + x2*
yb - xb*y2)^2),

(phi*cos(phi)*(x2 - xb))/(x1*y2 - x2*y1 - x1*yb + xb*y1 + x2*
yb - xb*y2) - (phi*cos(phi)*(x1 - xb)*(x2 - xb)*(x1*y2 - x2*
y1 - x1*ya + xa*y1 + x2*ya - xa*y2))/((x1 - xa)*(x1*y2 - x2*
y1 - x1*yb + xb*y1 + x2*yb - xb*y2)^2), (cos(phi)*(x2 - xb)*(

x1*y2 - x2*y1 - x1*ya + xa*y1 + x2*ya - xa*y2))/((x1 - xa)*(

x1*y2 - x2*y1 - x1*yb + xb*y1 + x2*yb - xb*y2)) - (phi*sin(

phi)*(x2 - xb)*(x1*y2 - x2*y1 - x1*ya + xa*y1 + x2*ya - xa*y2

))/((x1 - xa)*(x1*y2 - x2*y1 - x1*yb + xb*y1 + x2*yb - xb*y2)

);...

0,

0,

0,

0,

0];

end

% R matrix time derivative calculation

R_dot = Rq*q_dot;

%Mass matrix projection

Mr = R’*M*R;

A.4 observer functions 119

% State transition matrix

A21 = -Mr\(R’*2*M*Rq*R*phi_2dot);

A22 = -Mr\(R’*M*R_dot);

A = [0 1; A21 A22];

% A matrix discretization

A = expm(A*Ts);

end

a.4.4 Observer poles stability analysis function

function [eigen, eigen_abs] = eigenvalues(A, A_f, L, H, H_f, F)

% Perform a pole analysis of the full state transition matrix of

the

% system, including MB model and oserver. The entire state has

been

% defined as:

%

% s := [x x_MB e]’, where:

%

% x = [phi phi_dot];

% x_MB = [phi_f phi_dot_f]’

% e = [e_phi e_phi_dot]’

% Define model size

s = 2;

% Define eigenvalues vector

eigen = zeros(3*s,1);

eigen_abs = zeros(3*s,1);

% Full model state transition matrix

% Total gain

K = F*L;

KSTAR = [K(1,1) 0; 0 K(2,1)];

% Build full state-transition matrix

G = [A zeros(s) zeros(s);...

zeros(s) A_f 0;... %F*KSTAR %F*L(:,1)*H

F*L(:,1)*H -F*L(:,1)*H_f zeros(s)];

% Eigenvalues calculation

eigen(:,1) = eig(G);

for k = 1:3*s

% Compute magnitude of every eigenvalue

eigen_abs(k,1) = abs(eigen(k,1));

120 four-bar linkage mechanism matlab multi-body simulation source code

% Check stability

if eigen_abs(k,1) >= 1

disp(’Unstable ’)
end

end

end

a.4.5 Periodogram

function periodogramma(x, Fs, tol, j) %ogg)

% Performs cumulative periodogram calculation of x

%

% x : data

% Fs: sampling freq.

% tol: tolerance (%)

% j: figure number (just for sake of clarity)

% ogg: peridogram of...? (string)

% Data number (even number)

N = max(size(x));

if ceil(N/2)*2 ~= N

N = N-1;

x = x(1:N);

end

% sequnce DFT

X = fft(x,N);

% periodogram

Sx = ((abs(X)).^2)/N;

% cumulative periodogram

Px = zeros(N/2,1);

Px(1)=Sx(1);

for k = 2:N/2

Px(k) = Px(k-1) + 2*Sx(k);

end

Px = Px/N;

% variance estimation

mx = sum(x)/N;

var2x = sum((x-mx).^2)/N;

% ideal cumulative periodogram

I = zeros(N/2,1);

I(1)=1;

A.4 observer functions 121

for k = 2:N/2

I(k) = 2*k;

end

Ix = (I*var2x)./N;

Itolp = ((I*var2x))./N + var2x*(tol/100);

Itoln = ((I*var2x))./N - var2x*(tol/100);

% periodogram plot

figure(j);

subplot(2,1,1)

hold on

f = (1:N/2)*(Fs/(N/2));

g = plot(f,Ix, ’b ’);
l = plot(f,Px, ’ r−−’);
h = plot(f,Itolp, ’k : ’);
k = plot(f,Itoln, ’k : ’);
hold off

title([’Cumulative Periodogram ’]);%, ogg]);

xlabel(’Frequency [Hz] ’, ’ interpreter ’, ’ latex ’);
legend(’ ideal periodogram ’, ’ real periodogram ’, ’ tolerance ’ ,2, ’

Location ’, ’SouthEast ’);
set(0, ’ defaultaxesfontsize ’,18)
set(g(1), ’ linewidth ’,3)
set(l(1), ’ linewidth ’,3)
set(h(1), ’ linewidth ’,3)
set(k(1), ’ linewidth ’,3)
set(gca, ’box ’, ’ off ’)
legend(’boxoff ’)

subplot(2,1,2)

hold on

l = plot(f,Sx(1:N/2), ’ r−−’)
g = plot(f,ones(size(f))*var2x);

hold off

set(0, ’ defaultaxesfontsize ’,18)
set(g(1), ’ linewidth ’,3)
set(l(1), ’ linewidth ’,3)
set(gca, ’box ’, ’ off ’)
xlabel(’Frequency [Hz] ’, ’ interpreter ’, ’ latex ’);

return

B I B L I O G R A P H Y

[1] M. Ahmadi, A. Khayatian, and P. Karimaghaee. Orientation Es-
timation by Error-State Extended Kalman Filter in Quaternion
Vector Space. In Proceedings of SICE Annual Conference, Kagawa,
Japan, September 2007.

[2] F. Aparicio, J. Paez, F. Moreno, F. Jiménez, and A. López. Discus-
sion of a new adaptive control system incorporating the geomet-
ric characteristic of the roadway. International Journal of Vehicle
Autonomus Systems, 3(1):47–64, January 2005.

[3] M. Athans. The Control Handbook, chapter Kalman Filtering, pp.
589–594. CRC Press LLC, 1996.

[4] F. Battaglia. Metodi di Previsione Statistica. Springer-Verlag, Mi-
lano, 2007.

[5] E. Bayo and R. Ledesma. Augmented Lagrangian and Mass-
Orthogonal Projection Methods for Constrained Multibody Dy-
namics. Nonlinear Dynamics, 9:113–130, February 1996.

[6] F. Cheli and E. Pennestrì. Cinematica e Dinamica dei Sistemi Multi-
body. Casa Editrice Ambrosiana, Milano, 2006.

[7] J. Cuadrado, R. Gutiérrez, M. A. Naya, and P. Morer. A compari-
son in terms of accuracy and efficiency between a MBS dynamic
formulation with stress analysis and a non-linear FEA code. In-
ternational Journal for Numerical Methods in Engineering, 51:1033–
1052, April 2001.

[8] J. Cuadrado, D. Dopico, A. Barreiro, and E. Delgado. Real-time
state observers based on multibody models and the extended
Kalman filter. Journal of Mechanical Science and Technology, 23:
894–900, April 2009.

[9] D. Dopico, J. Cuadrado, F. González, and J. Kövecses. Determi-
nation of Holonomic and Nonholonomic Constraint Reactions in
an Index-3 Augmented Lagrangian Formulation With Velocity
and Acceleration Projections. Journal of Computational and Nonlin-
ear Dynamics, 9:041006.1–041006.9, October 2014.

[10] M. Doumiati, A. Charara, A. Victorino, and D. Lechner. Vehicle
Dynamics Estimation using Kalman Filter. Iste Ltd., London, 2013.

[11] C. M. Farmer. Effects of Electronic Stability Control on Fatal
Crash Risk. Technical report, Insurance Institute for Highway
Safety, 2010.

123

124 bibliography

[12] E. Fornasini and G. Marchesini. Appunti di Teoria dei Sistemi. Ed.
Libreria Progetto, Padua, 2003.

[13] J. García de Jalón and E. Bayo. Kinematic and Dynamic Simulation
of Multibody Systems. Springer-Verlag, New York, 1994.

[14] M. S. Grewal and A. P. Andrews. Kalman Filtering, Theory and
Practice using Matlab. John Wiley & Sons, Inc, Hoboken, NJ, 2008.

[15] R. Hermann and A. J. Krener. Nonlinear Controllability and
Observability. IEEE Transactions on Automatic Control, 22(5):728–
740, October 1977.

[16] S. J. Julier and J. K. Uhlmann. Unscented Filtering and Nonlinear
Estimation. Proceedings of the IEEE, 92(3):401–422, March 2004.

[17] R. E. Kalman. A New Approach to Linear Filtering and Predic-
tion Problems. Journal of Basic Engineering, pages 35–45, March
1960.

[18] J. L. Lagrange. Mécanique Analytique. M.me V.e Courcier,
Imprimeur-Libraire pour les Mathématiques, Paris, 1815.

[19] D. G. Luenberger. Observing the State of a Linear System. IEEE
Transactions on Military Electronics, 8:74–80, April 1964.

[20] P. Matisko. Estimation of the stochastic properties of controlled sys-
tems. PhD thesis, Department of Control Engineering, Faculty
of Electrical Engineering, Czech Technical University in Prague,
May 2013.

[21] D. Mizell. Using Gravity to Estimate Accelerometer Orientation.
In Proceedings of the Seventh IEEE International Symposium on Wear-
able Computers, Zurich, Switzerland, September 2013.

[22] World Health Organization. Global Status Report on Road Safety
2015. WHO Press, Geneve, 2015. URL http://www.who.int/

violence_injury_prevention/road_safety_status/2015/en/.

[23] H. B. Pacejka. Tyre and Vehicle Dynamics. Butterworth-
Heinemann, Oxford, 2002.

[24] I. Palomba, D. Richiedei, and A. Trevisani. Nonlinear kinematic
state estimation in rigid-link multibody systems by spherical
simplex sigma point unscented kalman filters. In Proceedings of
the 26th International Conference on Noise and Vibration Engineering,
Leuven, Belgium, September 2014.

[25] I. Palomba, D. Richiedei, and A. Trevisani. Simultaneous estima-
tion of kinematic state and unknown input forces in rigid-link
multibody systems. In Proceedings of ECCOMAS Thematic Confer-
ence on Multibody Dynamics, Barcelona, Catalonia, ES, June 2015.

http://www.who.int/violence_injury_prevention/road_safety_status/2015/en/
http://www.who.int/violence_injury_prevention/road_safety_status/2015/en/

bibliography 125

[26] R. Pastorino. Experimental Validation of a Multibody Model for a
Vehicle Prototype and its Application to Automotive State Observers.
PhD thesis, Departamento de Ingeniería Industrial II, Escuela
Politécnica Superior, Universidad de A Coruña, June 2012.

[27] R. Pastorino, D. Richiedei, J. Cuadrado, and A. Trevisani. State
estimation using multibody models and non-linear Kalman fil-
ters. International Journal of Non-Linear Mechanics, 53:83–90, July
2013.

[28] S. I. Roumeliotis, G. S. Sukhatme, and G. A. Bekey. Smoother
based 3D Attitude Estimation for Mobile Robot Localization.
Technical report, Institute for Robotics and Intelligent Systems,
University of Southern California, 1998.

[29] S. I. Roumeliotis, G. S. Sukhatme, and G. A. Bekey. Circumvent-
ing Dynamic Modeling: Evaluation of the Error-State Kalman
Filter applied to Mobile Robot Localization. In Proceedings of
IEEE International Conference on Robotics & Automation, Detroit,
MI, May 1999.

[30] E. Sanjurjo, J. L. Blanco, J. L. Torres, and M. A. Naya. Testing
the efficiency and accuracy of multibody-based state observers.
In Proceedings of ECCOMAS Thematic Conference on Multibody Dy-
namics, Barcelona, Catalonia, ES, June 2015.

[31] D. Simon. Optimal State Estimation. John Wiley & Sons, Inc, Hobo-
ken, NJ, 2006.

[32] Y. S. Suh. Orientation Estimation Using a Quaternion-Based In-
direct Kalman Filter With Adaptive Estimation of External Ac-
celeration. IEEE Transactions on Instrumentation and Measurement,
59(12):3296–3305, December 2010.

[33] J. L. Torres, J. L. Blanco, E. Sanjurjo, M. Á. Naya, and A. Giménez.
Towards Benchmarking of State Estimators for Multibody Dy-
namics. In Proceedings of the 3rd International Conference on Multi-
body System Dynamics, BEXCO, Busan, Korea, July 2014.

[34] C. F. Van Loan. Computing Integrals Involving the Matrix Ex-
ponential. IEEE Transactions on Automatic Control, 23(3):395–404,
June 1978.

[35] G. Welch and G. Bishop. An Introduction to the Kalman Filter.
Technical report, Department of Computer Science, University
of North Carolina at Chapel Hill, 2006.

	Sommario
	Ringraziamenti
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivations
	1.2 Thesis contributions
	1.3 Outline

	2 Multi-body model
	2.1 Multi-body dynamics
	2.1.1 General concepts
	2.1.2 Modelling using natural coordinates
	2.1.3 Kinematic analysis
	2.1.4 Dynamic analysis
	2.1.5 Integrators

	2.2 Example model: the four bar linkage mechanism
	2.2.1 Kinematic model
	2.2.2 Mass and force evaluation
	2.2.3 Multi-body simulation

	2.3 Vehicle model
	2.3.1 Multi-body modelling
	2.3.2 Force modelling
	2.3.3 Dynamic formulation

	3 The observer
	3.1 State estimation
	3.1.1 General concepts
	3.1.2 Observability

	3.2 The Kalman filter
	3.2.1 Linear Kalman filter
	3.2.2 The Extended Kalman filter
	3.2.3 The error-state EKF

	3.3 Error-state EKF for a four-bar linkage mechanism
	3.3.1 The errorEKF
	3.3.2 ErrorEKF stability
	3.3.3 Mechanism observer
	3.3.4 Simulation
	3.3.5 Observer stability, another test

	4 Observer design
	4.1 Vehicle
	4.1.1 Vehicle simulation
	4.1.2 Vehicle observability

	4.2 GPS
	4.2.1 GPS considerations
	4.2.2 GPS position model
	4.2.3 GPS velocity model
	4.2.4 Yaw angle

	4.3 Inertial Measurement Unit
	4.3.1 Gyroscopes model
	4.3.2 Accelerometer model

	4.4 Hall-effect sensors
	4.5 Code implementation
	4.5.1 Observer initialization
	4.5.2 Plant noise matrix calculation
	4.5.3 Kalman gain calculation
	4.5.4 Model correction

	5 Simulation results
	5.1 Simulated manoeuvres
	5.1.1 Straight line manoeuvre
	5.1.2 Circular manoeuvre

	5.2 A Malata parking manoeuvres
	5.2.1 Real sensors data manoeuvre
	5.2.2 Manoeuvre with noise added to GPS position signal

	Conclusions
	Appendix
	A Four-bar linkage mechanism matlab multi-body simulation source code
	A.1 Main functions
	A.1.1 Main function
	A.1.2 Graphic function
	A.1.3 Energy calculation function

	A.2 Kinematic functions
	A.2.1 Mechanism initialization function
	A.2.2 Position kinematic problem function
	A.2.3 Velocity kinematic problem function
	A.2.4 Acceleration kinematic problem function
	A.2.5 Trick function
	A.2.6 Jacobian function
	A.2.7 Jacobian time derivative function

	A.3 Dynamic functions
	A.3.1 Mass and forces calculation function
	A.3.2 Index-3 augmented Lagrange dynamic formulation function
	A.3.3 Integration function

	A.4 Observer functions
	A.4.1 Observer initialization function
	A.4.2 Observer function
	A.4.3 Mechanism state-transition matrix calculation function
	A.4.4 Observer poles stability analysis function
	A.4.5 Periodogram

	Bibliography

