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Abstract

In this thesis, we test the ability of a mathematical model of brain activity to capture dynamic func-
tional connectivity. We will initially describe the meaning of dynamic functional connectivity: after
briefly describing the typical data analysed in our work, fMRI time series, we will define functional
connectivity between different regions of the brain and discuss the meaning of the “functional connec-
tivity speed”. We will then introduce a computational model that simulates brain regions’ activity,
discussing the choice of parameters, and how to infer them from empirical data. Finally, we will fit the
model on empirical data to simulate the system for both subjects in good health and patients affected
by stroke. We will compare the results obtained from simulations with those obtained directly from
empirical data, in order to determine whether the model reproduces well the observed behaviour of
dynamic functional connectivity and observes differences between healthy and unhealthy subjects.

Nella seguente tesi viene testata la capacità matematica per un modello computazionale di attività
cerebrale di riprodurre la connettività funzionale dinamica. Inizialmente viene descritto il significato
della dynamic functional connectivity: dopo aver brevemente illustrato il tipo di dato utilizzato per
l’analisi, ovvero serie temporali fMRI, viene definito il concetto di functional connectivity tra differenti
regioni del cervello e il significato della sua velocità. Viene successivamente introdotto un modello
computazionale che simula l’attività cerebrale delle diverse regioni, discutendo i vari parametri di tale
modello e esponendo un metodo di interferenza per trovarli partendo dai dati empirici. Viene infine
fittato tale modello e simulato il sistema sia per soggetti sani, sia per pazienti affetti da ictus. Vengono
confrontati i risultati ottenuti dalle simulazioni con quelli ottenuti direttamente dai dati empirici, cos̀ı
da determinare se il modello utilizzato è in grado di riprodurre fedelmente il comportamento osservato
per la dynamic functional connectivity e di osservare differenze tra soggetti sani e malati.
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Chapter 1

Introduction

In the last decades, studies on brain cognition have progressively expanded as many non-invasive
recording techniques have been developed, first of them functional magnetic resonance imaging (fMRI),
which measures the blood-oxygen-level dependent (BOLD) signal, a proxy of neuronal population ac-
tivity. fMRI is now commonly used to investigate brain activity both during active cognition and in
resting state. A property that has been thoroughly analyzed is functional connectivity (FC), which
is specific of the entire brain system, as it depends on how different regions interact with each other
and can be easily calculated from the correlation between two BOLD signals. The FC matrix, whose
entries contain the correlation between all pairs of regions in the brain, yields a map of the large-scale
network of the brain, showing how and how strongly one region is correlated with the others.
The prominence of FC in brain studies is also due to the fact that this property changes depending
on different neurological and psychiatric conditions, as shown by many authors. In particular, there is
evidence that specific brain diseases are linked to specific alterations in FC. This phenomenon emerges
both in diseases classically regarded as network pathologies such as Alzheimer, epilepsy, schizophrenia
or Autism spectrum disorders, but also in pathologies characterized by focal or multifocal lesions like
stroke, tumors and multiple sclerosis [4].
Actually, disease-related anomalies are much more evident in what is called dynamic functional con-
nectivity (dFC) and in its speed. As a matter of fact, FC was traditionally analyzed as a static
property of the brain, measured as a temporal average over an entire recording session; but in the last
years much more interest has been directed to analyze temporal changes of this observable across short
time windows. Dynamic FC is an index of the temporal fluctuations of FC which reflect the dynamic
changes in the brain network. Visually, we can think of dFC as a random walk between transient
FC states; the mean and the type of distribution of its speed are a first quantitative characterization
of this walk [7]. The most common way to evaluate FC is by taking the so-called “sliding-windows”
approach. Within this approach, we consider a time-ordered sequence of (short) time windows and
calculate a FC matrix for each window. The correlation between successive FC matrices defines the
dFC “speed”, to be considered as the speed of a random walk in FC space. By creating appropriate
surrogates, we can test specific properties of the random walk. Switching the matrices of the sequence,
we can test the null hypothesis of complete randomness (lack of consequential correlation). By looking
at phase-randomized BOLD time series, we can test the null hypothesis of stationarity (order). It has
been shown that the empirical distribution of the dFC speed deviates both from an ordered and a
randomized scenario, meaning that dFC is a complex random walk [1]. The distribution of the dFC
speed can depend on the psychiatric and pathological conditions of the subject; it has been shown
that with aging the speed tends to have slower values, meaning that the random walk tends to be less
complex. There is also a connection between dynamic FC and sleep deprivation, as dFC speed shows
evidence of slowing down after 24 hours of uninterrupted wake [8].
In this thesis we will verify if there are differences in dFC speed between healthy subjects and stroke
patients, comparing the distributions obtained in the two different samples. Following the studies
mentioned before, we expect to notice some dissimilarities between the two; in particular we are going
to test the hypothesis that slower speeds are associated to patients with stroke. Furthermore, we
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CHAPTER 1. INTRODUCTION

are going to verify if a simple mathematical model of brain activity (the MOU model [3]) is able to
reproduce the empirical distribution of the dFC speed along with the differences between patients and
healthy subjects (if any exist). The hypothesis we are going to test in this case is that a simple linear
model may not exactly reproduce a desired dynamic property like the dFC speed.
In the first section of this work, we describe the methods used for the analysis. Starting from the
type of data we consider, we define the properties we focus on, like the FC matrix and the dFC speed,
giving also an insight on the meaning of “time window” and defining the ranges of window sizes used
for the analysis. Then, we describe the model used for simulations, mentioning the parameters of the
corresponding stochastic differential equation. Finally, we show an inference method to estimate those
parameters from empirical data, called Lyapunov Optimization.
In the second section, we show the results found in our analysis. First we detail the parameters used
for the simulation and the procedure followed for the analysis. Then, we show an example of the static
FC matrix for each considered sample, differentiating healthy subjects from patients with stroke and
empirical data from simulated ones. Lastly, we do the same for the distributions of the dFC speed
and we use the Kolmogorov-Smirnov test to verify if some differences can be detected between the
two clinical groups.
Finally, in Discussion and Conclusions we resume the results and we discuss the validity of our origi-
nal hypothesis. In conclusion we raise some questions for possible additional future work, explaining
which improvements could be made to obtain better and more precise results.
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Chapter 2

Methods

In order to completely understand the work done for this thesis project, first we are going to give a brief
explanation of the data used for the analysis (which are fMRI time series), of the model implemented
for the simulation and the properties that can be derived from these data.

2.1 fMRI time series

The data analyzed in this project are time series representing the neural activity of different brain
regions in the course of time. The method used to detect neural activity is called Functional Magnetic
Resonance Imaging (fMRI) and is based on the fact that neuronal activation is connected to an
increase of blood flow towards the interested region, and consequently an increase in the fraction of
oxygenated blood in the region. A specific technique to detect this phenomenon is the blood-oxygen-
level dependent (BOLD) contrast, which is a brain scan used to map neural activity using magnetic
resonance to measure the presence of oxygen in the blood. An important feature of this type of data
is that it only represents an indirect measure of brain activity and it can be significantly corrupted by
noise, meaning that it is necessary to use statistical methods for the analysis.

2.2 FC matrix

Once the activity of each brain region is known, it is possible to calculate different metrics summarizing
its spatiotemporal behavior and in particular have an estimation of the functional connectivity (FC).
FC emerges when distant cortical areas exhibit a strong correlated neural activity, which typically
occurs even during resting state (rs). The degree of correlation is inherently dynamic, as it changes
in time and it is important to study its fluctuations, which are referred to as dynamic Functional
Connectivity (dFC). Studies show that these fluctuations may have different trends in elderly people
or in people with certain pathological issues, so studying them can improve our understanding of these
diseases too, and possibly assist us in detecting and preventing them.

Let us now give a proper definition of the aforementioned properties. The functional connectivity
between the i-th region and the j-th region at a fixed time t is defined as the Pearson correlation
between the neural activity of the two regions, computed over a window of duration of length τ . In
order to calculate the functional connectivity with this type of data we first computed the sample
covariance:

cov(xi, xj) =
1

τ − 1

∑

t

(xi(t))− x̂i)(xj(t))− x̂j)

where in our case xi refers to the neural activity of region i, and x̂i is the averaged activity.
Then we calculated the correlation for the functional connectivity as

FCij =
cov(xi, xj)

√

cov(xi, xi)cov(xj , xj)
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CHAPTER 2. METHODS 2.4. MODEL FOR THE SIMULATION

regions. We estimate then the sample covariance and the correlation as seen before for the FC. We
define the dFC speed as the variation between two FC matrices evaluated at time t and t+ τ , where
τ is the window size. In particular we define VdFC as:

VdFC,τ (t) = 1− dFC(t, t+ τ) = 1− corr[FC(t), FC(t+ τ)]

The distribution of this quantity depends on the window size τ . In order to see this dependency, we
divide the window sizes in three ranges depending on their duration, in particular we have a short
window-size range, where we consider 6s < τ < 15s and a number of 3-8 time points of the time
series, as in the time series each point is taken every two seconds; a medium window-size range with
15s < τ < 60s with 9-30 time points, and a long window-size range with 60s < τ < 210s with 33-105
time points.
Studies show that the distribution of this speed tends to presents a peak on a certain value of typical
VdFC , but deviates from Gaussianity and distances itself both from an ordered and a completely
randomized situation [1]. In particular, Battaglia et al. tested two null hypotheses: the first one
for stationarity, indicating an ordered scenario and the second one for time uncorrelation, which is
related to randomness. The results showed that the dFC speed cannot be considered a stationary
property nor it has a randomized distribution; it lies between these two scenarios, being thus complex.
Furthermore, Battaglia et al. showed an interesting feature of the dFC speed, namely that it decreases
with age, as the peak of its distributions results shifted towards lower values. This means that there
is a (negative) correlation between aging (in this case we talk about healthy aging, as none of the
tested patients were diagnosed with some issues) and the speed of dynamic functional connectivity. In
elderly people the change between two different FC matrices is slower so we can say that speed tends
to be more trivial and less complex.
In this research we estimated VdFC for each tested patient and created a unique final graph with the
information obtained for all subjects, keeping separated the three window-size ranges. In the latter
part of this thesis we are going to test if the speed distributions have a meaningful correlation also
with pathological issues, analyzing if it presents different distributions particularly on patients affected
with stroke.

2.4 Model for the simulation

For this thesis project we are interested in a comparison of VdFC in two different cases: in the first
one we estimate those features directly from the empirical data of time series, in the second analysis
we use a specific model for our system and generate simulated time series. Once we have the time
series from this second method, we can give another estimation of the dFC speed and compare the
two results in order to evaluate the accuracy of the chosen model.

Models for these time series data generally consist in stochastic differential equation models. Such
models can have many forms and represent different stochastic processes, in particular they can be
divided into two different categories: linear and non-linear models. For fMRI time series it has been
demonstrated that the best models are linear ones, although the brain is a typical non-linear system.
This is because the nonlinearities at the level of large-scale brain activity, which is the scope in which
we are interested, are very little, meaning that a linear approximation yields good results.

2.5 Multivariate Ornstein-Uhlenbeck process

The simulation for our system follows a Multivariate Ornstein-Uhlenbeck (MOU) process, which is a
stationary (as its distribution does not change in time) stochastic Gaussian process that corresponds
to a network with linear feedback. This linear feedback is given by a weight for each interaction
between two brain regions. The stochastic component of the system follows a normal distribution,
so it has a specific mean and variance. In particular the model is defined by the following stochastic
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2.5. MULTIVARIATE ORNSTEIN-UHLENBECK PROCESS CHAPTER 2. METHODS

linear differential equation:

dxi =



−
xi
τx

+
∑

j ̸=i

Cijxj



 dt+ dBi

This evolution represents an exponential decay for the activity of each i-th region with a time constant
equal to τx

1. This activity is excited by the activity of the other areas each of them multiplied by
their respective recurrent weight Cij that represents the effective connectivity of the network; dBi is
a Gaussian noise with variance σ2

i that adds fluctuations to the system. The effective connectivity
represents interconnections between different brain regions, so that each region receives inputs from
other regions to which it is connected.
This process is commonly used in neuroscience to model fluctuating activity and results very efficient
in representing the main features of neural activity. In particular this model reproduces a whole-brain
system, which is necessary in order to estimate the functional connectivity, that is a property that
blends all together all the regions of the brain. Furthermore this model captures both spatial and
temporal changes, as the differential equation is valid for each region. In addition to that, the C
matrix of the recurrent weights reproduces the causality given by the interactions between different
regions, meaning that strong C weights correspond to strong causal relationships [3].
To use this model to produce simulated time series, we need to know the parameters. In particular it
is very important to have an estimation of the effective connectivity Cij , as it represents how and how
strong different areas are connected to one another, giving the possibility for example to differentiate
receptors if the area exhibits strong incoming connections or feeders if the outgoing connections are
more significant. In Ref. [2], Gilson et al. focus on testing an inference method for the estimation of
the Cij weights and the variances of each region gathered together in a unique matrix Σ, defined as

Σdt = E[dBidBj ]

Starting from the time series of the brain activity for each region, they compute the (shifted) covari-
ances, which are a sufficient statistic for the model, as they conatain all the information needed to
estimate the parameters. The covariances are calculated as

Q̂τ̂
ij =

1

T

∑

0≤t≤T

(

xti − x̂i
)

(

xt+τ̂
j − x̂j

)

where T is the duration of the simulation (in this case T = 1000 s); x̂ni is the averaged activity of i-th
region. This definition of covariance matrices considers a time shift of a duration of τ̂ . In the article
it is showed that the best estimation is obtained by using simultaneously the non-shifted covariance
matrix Q̂0

ij and the shifted Q̂τ̂
ij with a time shift τ̂ ≈ 2s.

2.5.1 Lyapunov Optimization

Gilson et al. manage to estimate Cij and dBi by implementing a method called Lyapunov Optimiza-
tion, where Cij is tuned iteratively in order to reproduce theoretical covariances as more similar as
possible to the empirical ones. They use a gradient descent approach and start by considering the
following Lyapunov function

L(Q0(Σ, C), Qτ (Σ, C)) =
∑

m,n

(Q0
m,n − Q̂0

m,n)
2 +

∑

m,n

(Qτ
m,n − Q̂τ

m,n)
2

where the hatted covariances are the empirical ones. The aim of this method is to reduce this function
(which is positive and has a minimum when the covariances of the model are equal to the empirical
ones) in order to find the best estimation for C.

Firstly one defines the Jacobian matrix

Jij = −
δij
τx

+ Cij (2.1)

1The time constant of the process τx has a different meaning than the aforementioned window-size τ
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where δij is a Kronecker delta, meaning that the decay affects only diagonal elements. Then by
deriving the covariances with respect to t and using the so-called Ito’s formula [5], it is possible to
derive an equation (called Lyapunov equation):

JQ0 +Q0JT +Σ = 0 (2.2)

where JT indicates the transposed matrix of J . Next one derives the covariances with respect to τ in
order to find a relation between Qτ and Q0:

Qτ = Q0expm[J†τ ] (2.3)

where expm is the matrix exponential.

Once we have all the needed elements and equations we can start the iterative process to find the
model parameters. In this treatment we consider Σ to be known, but in his article Gilson demonstrates
that with a minor modification the method can be used to find the noise covariance Σ along with the
effective connectivity C. The process begins with zero weights (Cij = 0), then it calculates the
Jacobian J using (2.1) and finally Q0 and Qτ through equations (2.2) and (2.3). The purpose is to
update C so as to obtain the following desired changes for the covariances:

∆Q0
mn = ϵ

(

Q̂0
mn −Q0

mn

)

∆Qτ
mn = ϵ

(

Q̂τ
mn −Qτ

mn

)

where ϵ is a small chosen parameter. In order to calculate the variation of J , ∆J , that causes ∆Q0

and ∆Qτ first one finds a relation between ∆J and ∆Q0, ∆Qτ . By inverting (2.3) we have:

J =
1

τ

{

logm
[

(

Q̂0
)−1

Q̂τ
]

}†

(2.4)

One differentiates (2.4) with respect to X = (Q0)−1Qτ and finds

∆J =
1

τ
(∆XX−1)†

=
1

τ

{

[

(Q0)−1∆Q0(Q0)−1Qτ + (Q0)−1∆Qτ
][

(Q0)−1Qτ
]−1

}†

=
1

τ

[

(

Q0
)−1(

∆Q0 +∆Qτexpm(−J†τ)
)

]†

(2.5)

The connectivity update is then

∆Cij =

{

∆Jij if i ̸= j

0 if i = j

To have an estimation of Σ as well, we can tune it iteratively in parallel with C. This is possible if we
consider Σ as a diagonal matrix, meaning that each entry on the diagonal of the matrix correspond
to the variance of the respective brain region: Σii = (σi)

2.
For this optimization we have considered the time constant of the system (τ) known and equal to
τ = − 1

C00
.

The parameters used for the simulations in this thesis are derived using the Lyapunov Optimization
just described.
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Chapter 3

Implementation and Results

The data used come from two different sessions for healthy participants and one unique session for
unhealthy ones. In particular we have 31 recordings for the first session of healthy subjects, 26 for
the second session and 127 for subjects with illness. Actually, for the last collection of samples from
people with stroke, 10 samples out of 127 turn out to be corrupted, as they contain NaN data or time
series identically equal to 0, which cannot be considered realistic. As a consequence, these corrupted
files are omitted from the analysis. For each patient we have three different files: the first one with
the corresponding time series, needed for the direct estimation of the measures of interest; the second
and the third containing the C and the Σ matrices needed to generate simulated time series (both are
calculated using the aforementioned Lyapunov Optimization, with Σ being diagonal).

The simulation is implemented using the Euler method to solve the differential equation. This method
consists in dividing the total duration of the simulation into N small timesteps of duration dt; one
starts from a given initial value and then updates the system to the value of x(t + dt), which is
calculated by using the equation evaluated in x(t) and multiplied by the duration of the timestep dt.
In our analysis the initial values for the simulation are chosen to be equal to 0 for each brain region
and for each sample. The other parameters are collected in the following table:

Number of brain regions n=119

Simulation duration T=1000 s
Simulation timestep dt=τ × 0.005

Steps of the simulation N = T/dt
Time constant τ = −1/C0,0

Table 3.1: Parameters for the simulation

For the simulation, as the differential equation is a stochastic one, we use an algorithm to generate
random numbers that follow a Gaussian distribution with mean equal to 0 and variance taken from
the Σ matrix. With the simulation we obtain the time series of the system, that we use to estimate
the Functional Connectivity matrix first and the Functional Connectivity Speed later. These two
estimations depend on the chosen window size. After the integration of the differential equation, we
calculate the FC matrices for any window size, starting from 3 time points and reaching 105 time
points. We divide the results into three categories in order to gather together estimations from similar
window sizes.

3.1 FC matrices

We present now the results we obtained from the analysis, starting from the FC matrices. As represen-
tatives, we show a matrix from a simulated time series of a healthy subject, one from the simulation
of an unhealthy patient, and the other two corresponding to estimations from the direct time series.
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3.1. FC MATRICES CHAPTER 3. IMPLEMENTATION AND RESULTS

Every matrix that we show as an example is evaluated with a window size of 20 time points, which is
from the medium window-size range.

Figure 3.1: FC for dh Figure 3.2: FC for dp

Figure 3.3: FC for sh Figure 3.4: FC for sp

The initials used in the captions of the just showed figures stand for:

dh estimations corresponding to direct data of healthy patients
dp estimations corresponding to direct data of unhealthy patients
sh estimations corresponding to simulated data of healthy patients
sp estimations corresponding to simulated data of unhealthy patients

Table 3.2: Meaning of the initials used in the analysis

From the obtained figures one can see immediately that the simulated matrices do not reproduce the
typical “checkerboard” scheme that is easy to see in the direct matrices, both for healthy and unhealthy
patients. Furthermore, visually one can notice that the correlation values of simulated matrices have a
general shift toward lower values, as the colours of the matrices tend to the blue instead of the yellow.
These results will be discussed in the last part of this thesis.
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CHAPTER 3. IMPLEMENTATION AND RESULTS 3.2. DFC SPEED

3.2 dFC Speed

Once we have calculated the Functional Connectivity for each patient and for each session, we focus
on the speed of the dynamic Functional Connectivity. We collect in three different groups all the
speed values of all patients and divide them with respect to the window-size range. We can then plot
in a unique graph the distributions for the three ranges, in order to see the differences given by the
different considered window-sizes. We repeat this procedure for the 4 different kind of samples, as done
for the FC matrices. In the following results we see that the graphs corresponding to the unhealthy
subjects have a much bigger number of counts, as we have more availability of files corresponding to
this type of patients; also for the estimations from the simulated time series, the number of counts
is much bigger with respect to the estimations from direct data, that is because the duration of the
implemented simulation is longer than the available direct time series.
We report here the four final graphs, two of them corresponding to the estimations from direct time
series, and the other two to the simulated data.

Figure 3.5: VdFC for dh Figure 3.6: VdFC for dp

Figure 3.7: VdFC for sh Figure 3.8: VdFC for sp

One immediately notices that the distributions of the VdFC from the direct time series are much
smoother with respect to the simulated ones, that result in being very fragmented, both for the pa-
tients and the healthy subjects. The tendency for the simulated estimations seems to be shifted
towards higher values of the speed, in particular for the long and medium window-size ranges. In
addition to that, we can observe that there are no values bigger than 1 for the short window-size of
simulated time series, causing a distribution with no peak, at least for the sample corresponding to
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3.2. DFC SPEED CHAPTER 3. IMPLEMENTATION AND RESULTS

healthy subjects.
Another characteristic that one can see from the graphs is that there is no immediate evidence of a dif-
ference between the distributions of healthy subjects and of patients affected with stroke, particularly
for the distributions from direct time series.

3.2.1 Kolmogorov-Smirnov Test

In order to understand whether there is no actual difference in the distributions for the dFC Speed
or if the dissimilarities are too little to be noticed visually, we used the Kolmogorov-Smirnov test
to compare the distributions of the two different samples. This test allows verifying if two different
samples come from the same distribution. The null hypothesis H0 states that both samples come from
the same distribution1. The procedure starts by calculating the cumulative function for both samples,
which we call F(x) and G(x) and the difference between the two. We consider then the maximum of
this difference:

Dm,n = max
x

|F (x)−G(x)| (3.1)

where m and n are the dimensions of the two samples. We then compare the value of (3.1) with

Dm,n,α = c(α)

√

m+ n

m× n
(3.2)

where c(α) is the inverse of Kolmogorov distribution and can be found in statistical tables, depending
on the value of the significance level α [6]. If Dm,n > Dm,n,α the null hypothesis is rejected with a
significance level equal to α. We summarize on the table below the parameters and the results obtained
from this test for each group of two samples, separating them with respect to the window-size range.
The significance level we consider is α = 0.001.

window-size range Dm,n Dm,n,α H0

Direct data
long 0.012 0.010 False

medium 0.016 0.009 False
short 0.016 0.010 False

Simulated time series
long 0.12 0.01 False

medium 0.071 0.009 False
short 0.184 0.009 False

Table 3.3: Kolmogorov-Smirnov Test

From the results of the test we can say that the distributions for each window-size range and for both
direct estimations and estimations from simulated time series belong to different distributions and do
not represent the same observable. As a matter of fact, this means that healthy subjects and patients
affected with stroke can be distinguished by analyzing their dynamic Functional Connectivity Speed.

1It is important to underline that this test does not give any information on which is the distribution of the samples.
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Chapter 4

Discussion and Conclusions

In this thesis we explored functional connectivity in large-scale brain activity, with a specific focus
on its temporal fluctuations represented by dFC speed. We considered two different samples of fMRI
time series corresponding to a group of healthy subjects and a group of patients affected by stroke.
For these two kinds of clinical conditions we calculated the respective functional connectivity and
speed for each subject. We gathered together the values found for the speed and created some graphs
showing the distributions corresponding to each sample and to each considered range of window-size.
We followed the same procedure for two other samples corresponding to time series which have been
simulated following the MOU model of stochastic differential equation (both for healthy subjects
and for patients with illness). In the end we exposed the results we found showing one graph for
each sample in order to compare them and detect any difference, which we verified also using the
Kolmogorov-Smirnov test.
In the introduction we set out two main purposes for this work, each of them followed by a hypothesis
we aimed to test. Firstly, we wanted to see if we could detect some differences in the dFC speed
distributions of healthy subjects with respect to the ones belonging to patients affected by stroke,
supposing to find slower speed values corresponding to unhealthy subjects. The results we found show
that at a first sight there is no evidence of any difference between the two different clinical conditions.
Using a statistical test to confront them, we found very weak evidence that the two types of tested
data correspond to different distributions.
The other purpose we had for this thesis was to test the effectiveness of the MOU model of stochastic
differential equations in describing and simulating the regarded system, the brain at a large scale.
Starting from the FC matrices exposed in section 3.1, we can already notice some important differences
between the matrices corresponding to empirical time series with respect to the ones corresponding to
simulated time series: the first type of matrices reproduces a “checkerboard” scheme which is typical of
functional connectivity. On the contrary, for the simulated matrices this type of scheme is completely
obscured and in addition to that, the correlation entries tend to have slower values. In section 3.2 we
found other strong differences between the distributions of speed obtained by empirical time series and
the ones from simulated fMRI data. The first type of sample has “smooth” distributions that at least
for the long and medium window-size ranges resemble Gaussian distributions. On the contrary, the
simulated dFC speeds result in being completely fragmented and without a clear peak. Moreover, all
three distributions corresponding to each window-size range are biased towards higher values of speed.
Despite all these dissimilarities, the order of the distributions of the different window-size ranges is
maintained, meaning that for both samples the long range corresponds to slower values of speed, the
medium range has the middle values and the short range is connected to the highest speed values.
The great differences in the results obtained from simulated data with respect to the ones found from
empirical time series can be attributed to the fact that a linear model, as the one we used in this
work, may not represent in an efficient way the properties we wanted to test. A model like this one
can still give some reliable information, for example regarding the speeds of the different ranges of
window-sizes, but cannot be considered a good and complete simulation for the system. If we want a
more accurate description of both functional connectivity and its fluctuations, a more complex model
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is needed, probably non linear and with more parameters.
Giving some examples on how the results we found could be extended to additional future work, first
of all a possibility is to investigate also patients with specific lesions and not just to compare patients
and healthy subjects. One could differentiate many types of diseases and list for each of them the
respective characteristics in functional connectivity and speed distributions, trying to correlate FC
speed with distinct markers of structural lesions. Another possible path, as we said in the previous
paragraph, is trying to use more advanced models to simulate large-scale brain activity, in order to
test if the results are more accurate in reproducing FC speed distributions.
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