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Introduction

Open mapping theorems are a useful tool to derive necessary conditions for minimizers. In the general
case, we have a Banach space X, a function ¢ : X — R to minimize and some constraint of the form
f(z) = g where f : X — R"™ and ¢ € R™ is fixed. We are interested in solving the problem

min{¢(z) : z € X, f(z) = q}- @)

Let M :={z € X : f(x) =q}. If f € C*(X;R™) and 29 € M is regular for f, i.e., dg, f is surjective, the
set M coincides with a C'! graph around xy. We can remove the constraint in (1) by consider the function
¢ along the graph if we are interested in local minimizers. Then, we look for necessary conditions of
minimizers for the unconstrained problem.

The problem rises when x¢ € M is singular for /. We need a different approach to find necessary

optimality conditions. Thus, we consider the extended map
F:X = R™ F(z) = (¢(x), f(2)). (2)

If a point 9 € X is a local minimizer for (1), then the map F' cannot be open at xo. If we can prove
sufficient differential conditions at a point so that F' is open, we gain new necessary conditions on the
possible minimizers of (1).

An important example of (1) is given by the extended end-point map in the context of sub-Riemmanian
geometry. Let M C R™ be a smooth manifold and A C T'M a distribution of rank 2 < k < dim(M).
Then for every point ¢y € M there exists a neighbourhood U C M of ¢y and k linearly independent
smooth vector fields fi, ..., fr € Vec(U) so that A = span{fi,..., fr} on U. If we work locally around
a given point, we may assume U = M.

We fix go € M and X = L2([0, 1]; R¥) the set of controls. The end-point map is the map

E=E&;,: X = M definedby E(u) = (1)

where v € AC([0,1], M),~v(0) = qo, satisfies ¥ € A, a.e. on [0,1]. Then, there exists a unique control
u € X such that

k
y= Z u;jfi(y) ae. on|0,1]. 3)
j=1

We identify v = =, through the corresponding control u. We fix on A the metric that makes f1, ..., fx
orthonormal and thus

length(’yu) = HU’ ‘Ll([071};Rk) S H’U,‘ ’LQ([OJ];Rk) by Holder inequality.
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Moreover, if v, has constant speed, then it is length-minimizing if and only if it is a minimizer for the
energy functional

L2
Finally, the extended end-point map is the map F': X — R™ X R defined by
Fu) = (E(u), L(w))-

The extended end-point map is smooth. A proof of the C*°-regularity of £ : X — M can be found in
[4, Appendix D]. With simple computations, it can be proved that £ : X — R is Fréchet-differentiable at
every u € X with DL(u) = u; namely,

1
DL(u) : L*([0,1];R*) = R, DL(u)[v] = /(u(z),v(w» dzx.
0

Since the map u — DL(u) is just the identity, it is also C*° and thus £ € C*(X; R).

To any curve 7, there corresponds a unique control u, which is either regular or singular for the end-
point map. In the first case, it can be proved that the curve v, is actually smooth. However, if u is singular
for &, the best possible regularity for -, is still an open problem, see [4, Section 10.1]. An ongoing research
topic is the study of the regularity of singular length-minimizing curves and the openness argument is one
of the tools that are used.

Motivated by this example, the topic of our thesis is the study of open mapping theorems of higher
order for smooth maps. To simplify, we consider zg = 0 € X and F' € C*°(X,R™),m € N, F(0) = 0.
Since we assume dg F' not surjective, the idea is to look at higher order differentials to recover the vectors
of R™\Im(dyF’). For this reason, it is useful to define

corank(doF') := dim(coker(dpF’)), coker(doF) :=R™/Im(dyF), (4)

and proj : R™ — coker(dyF’) as the standard projection.
In Chapter 1, we present the theory of regular differentials, a key notion in our thesis. Forn € N,n > 1,
we define a n-th differential D F' : X™ — R by

n o" " sty
DEF(vy,...vp) = asnF<Z o >

, Ul,...,Un € X. (5)
s=0

Then, for n € N, n > 2, we define the so-called intrinsic n-differential D F' : dom(Dg F') — coker(doF')
in the following way:

dom(D3F) = ker(dgF), dom(DiF):={v & dom(Dy'F)x X | D} 'F(v) =0} forn >3,

D{F(v) :==proj(DyF(v,*)), v & dom(DyF),«e€ X foralln > 2.

We discuss properly these definitions later in Section 1.1.
In our opinion, it is worth of interest to recall some results for second and third order open mapping
theorems. We denote the standard Hessian of F" at 0 as
2

HyF : X - R™ HyF(v):= 2

F(tv)
t=0

iv



In [5], Agrachev and Sachkov proved sufficient conditions on HyF' for openness through Morse’s index
theory. For A\ € coker(dyF'), A # 0, they define a \-scalarization of the Hessian as

AHOF :ker(doF) —» R, AHoF(v) := (A, HyF(v)).
They define the negative index of AHyF" as the number
ind_AHoF := max { dim(L) : L subspace of ker(doF), )\HOF‘L\{O} <0} € NU{oo}.
Theorem 20.3 of [5] states that if we have
ind_AHoF >1 VA € coker(doF'),\ # 0, wherel = corank(dyF),

then the map F’ is open at 0.

We refer the reader to [6] for a third order open mapping theorem. This case is harder than the previous
one: the domain of D3 F is no longer a linear space and we need additional assumptions so that it contains
non-trivial elements. The strategy is to compose F' with a suitable function ¢ and look at the Taylor
expansion of F' o ¢ at 0, which is also our approach.

Here, we prove sufficient conditions for openness involving intrinsic n-differential of arbitrary order.
Roughly speaking, an intrinsic n-differential Dj F' : dom (D F') — coker(doF') is regular if there exists a
continuous polynomial function w : R' — dom(D} F) such that the map

f: R — coker(doF), f(t):= DRF(w(t)),

is a homeomorphism, where [ = corank(doF").
The main result of Chapter 1 is the following theorem.

Theorem 1. Let F' € C°(X;R™) be such that F'(0) = 0 and corank(dpF') =1 € {1,...,m}. If there
existsn € N,n > 2, such that D} F' is regular, then I is open at 0.

In general, this result provides only sufficient conditions for openness, as we shall see in Chapter 3.
The theory of regular differentials and the proof of Theorem 1 were developed by Alessandro Socionovo
in his PhD thesis [1] and [7]. We made some improvements to Socionovo’s work, which we are going to
point out and comment later in the thesis.

In Chapter 2 we apply the theory to functions F' € C°°(X; R™) with corank(dpF') = 1. In this case
we have equivalent conditions for the existence of a regular differential, see Proposition 2.1. The first new
result we prove in this chapter is the following:

Theorem 2. Let ' € C*°(R™;R"™), m > 2, be such that F'(0) = 0 and corank(doF') = 1. Then F is open
at 0 if and only if there existsn € N such that D{F' is regular.

One implication is a direct consequence of Theorem 1, while we use an implicit function argument to
prove the other direction. The idea is the following: up to re-ordering rows and columns, we can assume

doF = (* M) , M€ GLp_1(R). 6)

k%
If F' = (F}); is open at 0, then for all € > 0 there exists § > 0 so that the set of equations

Fi(z) =0 V1<j<m-—1, Fy(z)=v, (7)



has a solution 2, € B(0,¢) for all |v| < 6. However, for ¢ > 0 small enough the set of solutions for the
first m — 1 equations in B(0, ¢) coincides with the graph of a C*° function ¢ by the implicit function
theorem. Thus, (7) reads

F(graph(y)(z)) = Fin(z,¢(x)) = v, xinaopeninterval U centred at0, |v| < 4. (8)

In (8), we basically require the map F,,, o graph(yp) € C*°(U;R) to be open at 0.

In Subsection 2.2.1 we state and prove a stronger version of Theorem 2. Through direct computations
and a simple counting argument, we show that, in the hypothesis of Theorem 2, if F' is open at 0 and we
call

n:=min{n : Dy F isregular} (n exists finite by Theorem 2),

then 71 is odd and D F is regular if and only if 7 is a non-zero multiple of 7.
In Section 2.3 we consider functions F' € C*°(X;R™) with F'(0) = 0, corank(dpF') = 1, and prove
equivalent conditions for openness at 0. We consider two cases:

« doF # 0. We adapt the implicit function argument and derive necessary conditions satisfied by
open maps, see Proposition 2.3. We prove that they are also sufficient for openness in Theorem 2.3
and thus we have equivalent conditions, described in Definition 2.2.

« doF = 0. By the definition of corank in (4) we have F' € C*°(X;R). Using this fact, we easily
adapt the proofs of the dgF' # 0 case and obtain the same equivalent conditions for openness of
Definition 2.2.

In the end, we can summarize the entire second chapter into the following statement:

Theorem 3. Let FF € C°(X;R™) be such that F'(0) = 0 and corank(doF') = 1. Then F is open at 0 if
and only if F' satisfies the regularity condition of Definition 2.2.

In the process, we address and partially solve the first Open Problem in [1], concerning a new definition
of regular differential independent of the function w(t). As far as we know, the second chapter contains
new results. We believe that Section 2.3 is the most interesting.

In the third chapter we address the corank(dyF') = 2 case, which is harder. In particular, we investigate
whether openness at 0 is equivalent to the existence of a regular differential for maps F' satisfying

F € C*°(R%;R?), F(0)=0, doF =0.

In Section 3.1 we prove that the map

2 .9
F:R? 5 R F(J:,y)z(x y)
y

is open at 0, but admits no regular differentials. This counterexample shows also that, in general, Theorem
1 provides sufficient, but not necessary, conditions for openness.
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Chapter 1

Regular differentials

1.1 Definitions and preliminary results

Consider a Banach space (X, |- |x) and F € C*°(X;R™),m € N. For any n € N we define the n-th
differential of /" at 0 € X as the map djF' : X — R™

n o"
dgF(v) := @F(sv)‘s

With the same notation, we also indicate the n-multilinear differential dfj /" : X™ — R"™:

o VEX. (1.1)

o" -
dBLF(’U]_, e 7UTL) = MF(Z Sh’l)h)

h=1 s1="=5,=0

Actually, we could have defined the first differential just as the particular case of the second one when
v1 = - - - = vyp. This new differential is symmetric, i.e., for every ¢ € S,, we have

dgF(Ul, ceey Un) = d(T)LF(UU(l)a cee 7va(n))'

Another differential is the map DjF : X" — R™

n o" " shy
DUF('U17...'Un) = 85”F<Z h‘h>

h=1

, Uly...,Un € X. (1.2)
s=0

We define a set of multi-indices: given h € N, we set
Frni={aeN': o) ... a,>1.

Finally, we let .7-",? be the set of multi-indices o € N* with a1, ...,y > 0.
The differentials dfj F' and D(j I’ are related by Faa di Bruno formula:

Proposition 1.1 (Faa di Bruno).

n

n!

DgF(vr,...,vn) = Y deF(va), Vo = (Vays -+ Vay )- (1.3)
h=1lacFy,|lal=n

Proof. A proof of (1.3) can be found in [3]. O



Finally, we define proj : R — coker(dpF') as the standard projection on
coker(doF') := R™ /Im(doF).

Definition 1.1. Let F' € C*°(X;R™). Wesay that0 € X is a critical point of F' with corankl € {1,...,m}
if dim(coker(doF')) = L.

Now we give the first important definition:

Definition 1.2 (Intrinsic n-differential). Let ' € C*°(X;R™). Forn > 2, we define a map D{F :
dom(DRF) — coker(doF), called the intrinsic n-differential of F' at 0, and its domain dom(D}F) C X1
as follows:

« Whenn = 2, we define
dom(D3F) := {v € X | dyF(v) = 0} = ker(doF),
DAF(v) := proj(DiF (v, %)), v € dom(DiF),* € X.
« By induction, forn > 2 we set
dom(DYF) := {v € dom(Dy ' F) x X | D§"'F(v) = 0},
Dy F(v) := proj(Dg F (v, %)), v € dom(DgF),x* € X.

The functions in Definition 1.2 are well defined. Indeed (v, ) — proj(D{ F (v, *)) is independent of
the last variable:

DIF(v,%) = doF(x) +Z > P 'do (va), by (1.3).

h=2 CMG.F]—L,|C!‘

When we project on coker(dpF'), the term do F'(x) disappears.

In the general case, it is difficult to describe dom(Dg F') for n > 3. However, under mild assumptions,
we have a clear description of its possible elements via an implicit function argument.

We briefly recall the statement of the implicit function theorem:

Theorem 1.1 (Implicit function theorem). Consider F € C*(U x W;Y),k € N, where Y is a Ba-
nach space and U C X1, W C Xgq are open subsets of Banach spaces. Suppose that F'(ug,wy) = 0 and
d(uo,wo)F}XQ € Inv(X2,Y) for someuy € U and wy € X. Then there exist open neighbourhoods Uy, Wy of
ug, wo, respectively, and a function p € C*(Uy, W) such that

1. F(u,p(u)) =0 forallu € Uy;
2. F(u,w) =0 for (u, w) € Uy x Wy implies that w = p(u).

Proof. A complete proof can be found in [2]. O



It is useful to fix coordinates on X and R™ so that

X =ker(dgF) @ R™7!, R™ =Im(doF) ®R' and doF(z) = doF (u,w) = (ZO”) : (1.4)

The element 2 € X in (1.4) can be written as = (u, w) where u € ker(doF) and w € R™~/.,
Using (1.4) with [ # m, we apply Theorem 1.1 to the equation

F(z) = (Fi(z),...,Fp_(z)) =0, ze€X. (1.5)

If we assume F(0) = 0, then F(0) = 0. By (1.4), dOF‘Rm—l = Igm—1 € Inv(R™~! R™~!). We denote by
@ € C the function given by the implicit function theorem applied to (1.5) at 0 € X.

Proposition 1.2. Let F' = (F},..., Fy,) € C®(X;R™) be such that F(0) = 0 and do F" # 0. Assume that
corank(doF') =1 € {1,...,m — 1} and fix coordinates like in (1.4). Then for everyn > 2

dom(DF) C {(u1, ¢, (0)), - - -, (un—1, " 1(0)) : u € ker(doF)" "1}, (1.6)
n—1
whereuw = (u1, ..., un—1) € ker(doF)" ' and p, (t) = (> Wth).
h=1

Proof. We prove (1.6) by showing that for every n > 2
dom(DyF) = {(u1, 9, (0)), -+, (un—1, 0" 1(0)) : u € ker(doF)"~'}. (1.7)

The thesis follows from the fact that dom(D§ F) C dom(DgF).
We prove (1.7) by induction on 7. For n = 2, recall that dom(DZF) := ker(doF'). By hypothesis, the
map ¢ satisfies
F(u, p(u) =0 (1.8)
for every u in an open neighbourhood U of 0 € ker(doF'). Given u; € ker(doF’), there exists t(u1) > 0
so that tu; € U for every |t| < t(u1). Thus

F(tuy, o(tur)) = F(tuy, ou, (t)) =0 V|t| < t(uy). (1.9)

By differentiating once (1.9) and evaluating at ¢ = 0 we obtain

;F(tul, p(tuy)) = doF(uy, @, (0)) =0 = (u1,¢,,(0) € ker(doF). (1.10)

t=0

When we compute the n-th derivative of the composition at 0, it is not restrictive to replace the inner
function with its n-th Taylor polynomial at 0. Thus, we can compute the derivative in (1.10) using (1.1)
and the fact that @y, (t) = @u, (0) + ¢y, (0)t + - = ¢}, (0)t + ... since @y, (0) = ¢(0) = 0.

Using the set of coordinates (1.4) we have

doF (z) = doF (u, w) = (doﬁ (0“’“’)> = (%’) Va = (u,w) € ker(dgF) x R™ = X,

and ker(doF) = ker(doF). This implies ¢4, (0) = 0 for every u; € ker(doF). Thus

ker(doF) = {(u1,0) : uy € ker(doF)} = {(u1,¢,,(0)) : w1 € ker(doF)}. (1.11)



We assume (1.7) to be true for n and we prove it for n + 1. By definition
dom(DJ ™ F) = {v € dom(DJF) x X : DJF(v) = 0}.
An element v € dom (D™ F) has n components each in X and the first n — 1 are of the form

(ula ‘P;(O))v ooy (Un—1, 901(1”_1)(0)%

for a suitable u € ker(dOF )"~ by induction hypothesis. We fix u and call v,, the last component of v.
For u,, € ker(doF), we define @ = (u,u,) € ker(dgF)" ! x ker(doF) and observe that

DYE ((u1, ¢5(0)), . (un 0" (0))) = 0. (112)
We use (1.8) with i %th in place of u, differentiate n times and evaluate at ¢ = 0.
On the other hgr:ui vy, must satisfy
DY F (u1,¢,(0),- . (un—1,0"~V(0)), vn) = 0. (1.13)
We subtract (1.12) and (1.13), and by (1.3) we get
doF (v — (tn, 91" (0))) = 0 <= v — (un, 5" (0)) € ker(do F).
By (1.11) this is equivalent to
Un = (un + X, 0 (0) + 4 (0)), A € ker(doF). (1.14)
Define @ = (u, u,, + ). We claim that

(tn + A, 0(0)) = (un + X, 057 (0) + 94 (0)). (1.15)

U
The proof of (1.15) is simple: we need to verify the equality only for the component in R™~/,

A

(n) " (= un n n
¢y (0) = ngo( —th 4+ ¢ )‘ = Dfp(ut, ... up + )
ot "\ &= hl n ),

= Dgp(u1,...,un) +dop(A) by linearity in the last component,
= 0" (0) + £1(0)
We can conclude because our element v € dom(DS‘HF ) is necessarily of the form
v = (ul, 0h(0)), .oy (un + A, goén)(O)), = (u,u, + ) € ker(doF)".
O

Although Proposition 1.2 does not guarantee that dom(D{ F) contains non-trivial elements, it will be
crucial in Section 2.3 to prove equivalent conditions for openness when the corank is one.

In [1,Proposition 2.8], Alessandro Socionovo proved that, under suitable assumptions, dom (D F')
is diffeomorphic to ker(dpF)" L. In Proposition 1.2 we showed that if doF # 0, then dom(D}F) =~
ker(doF)"~! is actually the best possible case and we have an explicit form for all its possible elements.

Now we prove the existence of a polynomial function whose image belongs to dom(Dy F).



Proposition 1.3. Let ' € C™(X;R™) such that DIF = 0 forall2 < h < n for somen > 2. Then
for any choice of vi,...,v) € ker(doF), | € N, there exist elements vf € X such that the function w €
C>®(RY; X"=1) with components

wit) =yt j=1...n-1 (1.16)
BEFV|BI=3

satisfies w(t) € dom(DAF) for everyt € R'. In particular, v{" = v} for every element of the canonical base
of RL.

To prove Proposition 1.3, we need an auxiliary result:

Lemma 1.1. Consider F' € C*°(X;R™). Forl,n € N define the function

gty:= > tPg@f), teR, g@f))eRrR™, (1.17)
BeF,|Bl=n

where g(vﬁ) = doF(vg) + h? with h® € R™ fixed for every 3 and vh € X. Assume g(t) € Im(doF) for
everyt € RL. Then there exist elements vl e X so that g(t) = 0.

Proof. We work by induction on .
For | = 1 and n arbitrary, the function in (1.17) is g(t) = t"g(v;*!) for all ¢ € R. By hypothesis, the
vector g(v]'!) belongs to Im(do F'). Thus

Im(doF) 3 g(v)) = doF(v)) + b = Im(doF) 2 h"' = dpF(v) Fv € X.

ner —

I —uv, we are done.

If we choose v
Assume now the thesis to be true for 1,2,...,l — 1 (and all n) and we prove it for [ (and all n). If we
restrict g(t), as in (1.17), to the hyperplane ¢; = 0, we obtain a function in [ — 1 variables:

g(0,ta,... 1) = > tPg(wl) € Im(doF) Vita, ... 1.
/Be}—ov|ﬁ|:n75120

We can re-index the sum over the multi-indices 3 € .7:1(11, | B\ = n since 1 is fixed. We can use the
induction hypothesis and deduce that g(vﬁ) = Oforall B € F,|B| = n,B1 = 0 for suitable vﬁ. If we
repeat the argument for all subspaces of R! of the form

{th=0Vhe H}, 0#£HC{1,...,1},

we can set g(vﬁ ) = 0 for all § with at least one component equal to zero.
If n — 1 < [, then all the multi-indices /5 in (1.17) have at least one component equal to zero; so
g(t) = 0. Otherwise, the remaining multi-indices have all components > 1. Thus,

g(t) = > t7g(u7) = (1, 1) >

t--- 4

The assumption g(t) € Im(doF) for all t € R! implies §(t) € Im(doF) for all t € R! with t; # 0. By
the continuity of g and the fact that Im(dy F') is closed, latter property extends to the whole space. At this
point, we repeat the procedure on g(t). After a finite number of steps, we are able to set all the coefficients

g(vg) in (1.17) to zero for suitable o, O



Now we prove Proposition 1.3.

Proof. We prove the existence of w(t) as in (1.16) by induction on n.
For n = 2 we just take

l
w(t) =wi(t) = Z thvy", because ker(doF) is a linear subspace.
h=1

We assume now the statement to be true for n — 1 and we prove it for n. By induction hypothesis,
wy(t), ..., w,—2(t) are fixed and they satisfy

Dy 2F(wr(t), . .., wn,Q(t)) =0 VteR.
We are left to find elements vg 1 € Xfor e F,_,|B8] =n—1so that
wn—1(t) = Z tﬁvg_l (1.18)
eFP,|Bl=n—1

satisfies D{ ' F (w1 (t), ..., wn—1(t)) = 0. By Faa Di Bruno formula in Proposition 1.1,

DI F(wi(t), ... wn_1(t)) = doF (w1 (t) +Z > (”M ')dh( «().  (1.19)

h=1 a€Fp,|la|=n—1

We call g(t) the right hand side of (1.19). The hypothesis D' F = 0 implies that g(t) € Tm(doF) for all
t € RL Besides this,

doF(war(D)= Y. PdoF (o)),

ﬂe]-—lOJB‘:n*l
by linearity of do F', and

di F(wa(t)) = di F (wa, (1), .., wa, (t))

_ Z Z tPdbF (v al,...,vg:),

BleR,|B =1 BReR,|BM=an
by multilinearity of d F. In the end, we can rewrite g(t) as
ot)= > Pl
eF?,|Bl=n—1

where

g’ _)) = doF (v” +Z 3 3 (”h‘ ')do Fl, ... ol

h=1 aeFy,|a|=n—1Bl+...8h=p3

All the vEZ are fixed by induction hypothesis. We have to prove that g(¢) = 0 for suitable vn 1> but this is

true by Lemma 1.1. O

For every t € R! with t; # 0 we define sgn(t) := (sgn(t1),...,sgn(#;)) and an orthant as any subset
of R! where sgn(t) is constant. Given 2/ elements v% S ,vll’i € ker(doF’), Proposition 1.2 gives us an
extension w*e"(®)(t) € dom(DJF) of v}’sgn(tl), ey vi’sgn(tl) that in each orthant has coordinates

n(t ,Sgn t y
' 0 (4) = Z tﬁvf el o< j<pn 1. (1.20)
BeF),|Bl=i



Proposition 1.4. Let F € C°°(X;R™) such that DAF = 0 for all2 < h < n. For any 2l elements
i = ,vli € ker(doF), the function w8 (t), as in (1.20) fort; # 0, admits a continuous extension

w € CO(RY; dom (DA F)).

Proof. We work by inductiononj =1,...,n— 1.

For j = 1 we have
l

wign( )(t) — Z th’l)?’sgn(th).

h=1
Given ) # H C {1,...,1},let £ € R such that
fa=0 VYheH and f#0 Vh¢ H. (1.21)
We set
1(D) = limwO) = 3 g, (1.22)
t—t
hAH
h.sgn(th)

Notice that for h ¢ H, the vectors v
To be precise, we should write ¢ — ¢ with ¢; # 0 since the function we want to extend is defined only
inside the orthants. If H = {1,... 1}, we set w1(0) =0 € X.
It is easy to verify that the right hand side in (1.21) is the right value for the limit:

are well defined because tj, # 0.

Z Tyv hsgn th) Zt hsgn(tp) | _ Z (Ehvi%sgn(th) _ thvf’sg“(th)> _ Z thvihsgn(th)
h#£H X h#£H heH X
r hsen(f h.sgn(t h,sgn(t
< Z(Msgn(h)_thvlsgn(h>' T gl
h#H heH
< Z h Sgn(th) (tn — tp) + Z h senlth) | for ¢ close to £
h#tH heH X
h,+ 7
gml?x‘vl |X'<Z‘th—th|+2|th|>—>0'
h#H heH

Since dom(DZF) = ker(doF) is closed, w1 (t) € ker(doF) as limit of a sequence inside ker(doF).

We assume the extension to exist for the first j < n — 2 components and we prove that it can be
defined also for the (j + 1)-th one. Given () # H C {1,...,1}, we consider £ € R as in (1.21) and define
the following set

Fly={B€F : B, =0VheH}

Like in (1.22), the value of the limit would be

wjt1(1) —hmwjinl Z # f:lgn , (1.23)
56F£H

but it is not clear if the vectors v 8*® do exist for XS ]-'ZO -

j+1
B.sen(t)

The vectors v, i1 are solutions of

doF (v} 75" +Z > > (n = )dh (vfrsen® . yfesen®y = (1.24)

hla!
h=2 a€Fp,|a|=n—1pl+...4ph=p



inside each orthant. By induction hypothesis, the limits

wi(t) := lim wzgn(t Z Pv B 0t exist forall 1 < k < j. (1.25)
t—t ser,

In particular, the vectors v,f ’Sgn(ﬂ, B e ]:lo 1> in (1.25) are well defined. Therefore, when we took the limit
ast — tin (1.24), the vg;i’sgn@ exist since 8 € Fp; implies B1,. .., By € FPy. By (1.24) with t =  we

B,sgn(t)
can define 0", it

In the end, the limit in (1.23) do exist and
D F(wi(t), ..., wis(f) = 0.
O

Definition 1.3 (Regular extension). We call w(t) € C°(R!; dom(DyF)), as in Proposition 1.4, the regular
extension of v E, ... vbE € ker(doF) to dom(DRF).

To conclude this introductory paragraph, we give the definition of regular n-differential.
Definition 1.4 (Regular n-differential). Let FF € C*°(X;R™) be such that 0 € X is a critical point of
corankl € {1,...,m} for F. We say that D F' is regular if

« n is even and there exist 21 elements v T, . ..
Definition 1.2, so that the map

,ubE € ker(doF) such that there exists w(t), as in

f:RY = coker(doF) f(t) := DRF(w(o((t))) (1.26)

is a homeomorphism, where
1 1
o(t) == (sgn(t1)|t1]|™, ..., sgn(t) |t ). (1.27)

« n is odd and there exist | elementsv',. .. v' € ker(doF) such that there exists w(t), as in Proposition
1.3, so that the map f(t) defined in (1.26) is a homeomorphism.
Remark 1.1. At the end of the proof of Theorem 1.2, we will implicitly use the fact that
3L >0 : |f~Y7)| < L|7| V7 € coker(doF),

or equivalently
3L >0 : |t| < L|f(t)] VvteR.

The function f(t) defined in (1.26) is 1-homogeneous. Thus, fort # 0,

< 0] = 1 < 2|7 ()| = ¢

< min|f|.

The minimum exists by continuity of f and it is not zero since f is bijective and f(0) = 0. So we are able to
choose the constant L > 0 as we need. In [1, Definition 2.13], the same map f(t) is required to have bounded
inverse at 0, namely, there exists 0 < L < 400 such that

|f~Hm)| < L|7|, V7 € coker(doF).

However, we just showed that such constant L always exists as f(t) is a 1-homogeneous continuous bijection.



1.2 Sufficient conditions for openness

Now we are ready to prove sufficient conditions for a smooth map to be open at 0:

Theorem 1.2. Let ' € C*°(X;R™) be such that F'(0) = 0. Assume there existsn € N,n > 2, so that
Dy F is regular with 0 € X a critical point of corank | € {1,...,m}. Then F is open at 0.

Proof. Assume n to be even, the proof for the other case is identical.
By hypothesis there exist 2 elements v1'*, ... v"* € ker(doF) that admit a regular extension, according
to Definition 1.2,

w(t) = (wi(t),...,w,_1(t)), teR,

so that the function f(t), see Definition 1.4, is a homeomorphism.
We define the map ¢ : R™ — X by

O(r,t) =r+ , (r,t) e R™Ix RL

We first prove the following Taylor expansion at 0 € R™:
F(®(r,t)) = doF(r) + Dy F(w(t),0) + R(r, ), (1.28)

where the remainder satisfies
R(r,t)
im ———— =0. (1.29)
(rt)—0 |r| + [t|™
We consider the Taylor expansion of F' o ® of order n.

The function w;(t) is j-homogeneous by construction, so for any s > 0

n—lw‘(t) '
@(r,st):r+z ],' s’

=1 7

For fixed t € R!, we set ¢(s) := F(®(0, st)), s > 0. This function has the following Taylor expansion at
0 of order n

o(s) = ]Zn; ¢(j;!(0) sl + QZ:J:)S) "t 35 € 0,s]. (1.30)
By hypothesis ¢(0) = F'(0) = 0. By construction we have

¢V (0) = DLF (wi(t), ..., wi(t)) Y1<j<n. (1.31)
Since w(t) € dom(DyF) for all ¢, we have ¢\)(0) = 0 for j € {1,...,n — 1}, while
¢ (0) = Dy F(w(t),0).

Therefore (1.30) reads for s = 1

¢(1) = F(2(0,1)) = DgF(w(t),0) + Eq(t) (1.32)
with (1) <
|E(t)] < ‘msnﬂ <Cittt 30 >o. (1.33)




When we develop F' o ® in the variable r we have
F(®(r,0)) = doF(r) + E.(r), E.(r)=o(r*). (1.34)
The error appearing in (1.28) can be estimated by

Rt < Y eylrtP, e >0, (1.35)

0<i<2,0<j<n+1

where cg; = 0 for 0 < j < n by (1.32), (1.33) and c19 = 0 by (1.34).
Moreover, we have |R(r,t)| < C(|r|? + |r||t| + [t|**!) for a suitable constant C' > 0. By Young’s
inequality,
n 1
LI

r[lt] <
n—+1 n—+1

n+l N+ 2

|r| ™ +yty”+1>. (1.36)

< 2
Riro) < 02+ e

n—+1

By (1.36) we obtain (1.29).
The second step of the proof is the following

Lemma 1.2. If F' o ® is open at 0 € R™ then F' is open at 0 € X.

Proof. For every € > 0 there exists 0 > 0 such that

B(0,6(2)) € (F o ®)(B(0,2)). (1.57)
In particular,
B(0,5(c)) € F(2(B(0,2))). (1.3
Given (r,t) € B(0,¢),
S wilt) S i)l
B t)]x < Irlx +| 32 ‘ <oty lublx
-1 ) Ix -1
j j
n—1 5]'
<e+4+A Z —  there exists A > 0 because w;(t) are polynomial,
]
7j=1
n—2 E‘j 3
= <1+Azﬂ>5 < 55 for 0 < e < ¢g.
7=0
Therefore for all 0 < € < g
3
ie, Fisopenat( € X. O

Recall the map o(t) defined in (1.27):

1 1
o(t) = (sgn(t)|t1|=,...,sgu(t)|t]7), teR.

10



This map is a homeomorphism whose inverse is
o~ (t) = (sgn(t1)|t1]™ ..., sgn(ty)|t]"), teR.
Thus, F(®(r,t)) is open at 0 € R! if and only if U(r,t) = F(®(r, o(t))) is open at 0 € R’
We prove that W is open at 0 via a fixed point theorem. From (1.28) we have
U(r,t) =doF(r) + Dy F(w(o(t)),0) + R(r, o(t)). (1.39)
Moreover,
Dy F(w(e(t)),0) = (Dg F(w(e(t))), g(t) = (f(t), g(t)). (1.40)

We just stressed out the coker(doF’) and Im(doF') components of D F'(w(o(t))).
By construction the function ¢(¢) in (1.40) is continuous and 1-homogeneous: hence there exists
C1 > 0 such that
lg(t)] < Chlt|, VteR. (1.41)

With respect to the factorization (r,t) € R™ ! x R/, we introduce a family of norms that depend on a
parameter Ao > 0:
(7, t)]|n, := max{|r|, Ao|t|} (1.42)

We will fix the value of \g later. We denote by Bj the closed ball, with respect to the norm || -||,, centred
at 0 and with radius 6 > 0. These sets are both convex and compact.

Since the Euclidean norm and || - ||, are equivalent, the map W is open at 0 if and only if for all e > 0
small enough there exists 6 > 0 such that

Bs C ¥(B:). (1.43)
We fix ¢ > 0. For any (§,7) € Bs we look for (r,t) € B. such that ¥(r,t) = (§, 7).

Using the splitting R™ = Im(doF') @ R', the equation ¥(r,t) = (&, 7) is equivalent to the system

{dgF(r) +9g(t) + Ri(r,0(t)) = ¢ (1.44)

f() + Ra(r,0(t)) = 7.

The remainders Ry (r, o(t)), Ra(r, o(t)) are the Im(dpF') and coker(dyF') components of R(r, o(t)), re-
spectively. By (1.29), for any 0 < o < 1 there exists £ > 0 such that

[R(r, 0()] < o(|r] + [e(@)]")  VI[(r)]]r, <. (1.45)

The limit (r,¢) — 0 in (1.29) is meant with respect to the norm || - ||5,. We will fix a suitable value for
o > 0 later in the proof.
By definition of ¢(¢) in (1.27), for t = (¢1,...,%)

! n
2
lo(t)|" = < E |tk|721> is both continuous and 1-homogeneous.
k=1

Thus we are able to find a constant Co > 0 so that |p(¢)|" < Cy|t| for every ¢. So (1.45) reads
| R (r, o)1 [ Ra(r; o())] < |R(r, o(t))] < o([r| + Colt]) V[, 8)]]x, <& (1.46)

11



We are ready to apply the fixed point theorem argument: the system (1.44) is equivalent to

{7“ = doF (& — g(t) — Ru(r, 0(t))) = hu(r,t) (1.47)

t = f~Y1 — Ra(r, 0(t))) = ha(r,1).

Since DA F is regular, the map f is invertible with f~! continuous.
The final step of the proof is to show that

h:B. CR™ = R™, h(r,t) = (hi(r,t), ha(r,t)), he C'(R™,R™),
maps B into itself for suitable § > 0,0 > 0, A\g > 0. Then we conclude with Brouwer fixed point theorem.
1. We estimate |hi(r,t)]:

|ha(r, )] < [|doF~H|(1€] + lg()| + | Ra(r, 1))
< ||doF M |(|€] + C1|t| + o(|r| + Calt])) by (1.41) and (1.46)

€ Ao+ Co
< =
_Cg<(5+)\0+0' )\0

(1.48)

5) there exists C3 > 0.

By (1.42),if (r,t) € B. then

Ao + Co
Ao

/| <e and \t\g/\i:>\r]+02|t\§ .
0

2. We estimate |ho(r,t)|:

|ho(r,t)| < L(|7| + |Ra(r,t)|) see Remark 1.1

) Ao + Co (1.49)
< | — .
S <)\0 +o o 5)

By (1.48), (1.49) the condition h(r,t) € B: reads

Ao+C
{CS RO (1.50)

(%O + 07)‘0;\%025) < )\io

It is not restrictive to assume 6 = Ae, A > 0, so (1.50) becomes

{Cg(AJFAlOJFUWOCQ) . (1.51)

A+o(N+Cy) <1

We look for A > 0,0 > 0, Ao > 0 so that (1.51) holds.
From the second equation, o(Ag + C2) < 1 — A. Hence

€ Ao+ Co 1 1-A 140 X—0
— < A+ — = A 1.52
C3<5+)\0+U " 6) _03( +>\0+U " ) 03( % + " ) (1.52)

We pick A\g = 2Cj5: this choice is independent of €, A, 0. So (1.52) reads

1 20y — 1 3
;“+ LA s ;0+03A§1+03A§1 (1.53)

12



if we choose 0 < 0 < %andO<A§ ﬁ.
To conclude, we have to check whether o(\g + C2) = 0(2C3 + C3) < 1 — A holds for some o, A. The
inequality can be rewritten as

o< -4 (1.54)
2C5 + Oy
It is not restrictive to assume 0 < A < 1. Thus, the right hand side in (1.54) is strictly positive. Summa-
rizing
A\ =205, O<A<min{1,4103}, 0<a<min{;,M}.
The proof of Theorem 1.2 is finished. O

13



Chapter 2

Corank [ = 1 case

So far, we proved sufficient conditions for a smooth map to be open at 0. However, it is complicated to
prove that a differential is regular according to Definition 1.4. Luckily, when the corank is equal to one,
see Definition 1.1, there are equivalent and simpler conditions for a differential to be regular.

Proposition 2.1. Let X be a Banach space and F' € C°°(X;R™) be such that F'(0) = 0 and0 € X isa
critical point of corank | = 1; letn > 2:

« Ifn is even then DL F is regular if and only if there exist two elements v= € dom (DA F) such that

Dy{F(vt) >0 and DJF(v™) <O0. (2.1)

« Ifn is odd then DY F' is regular if and only if there exists v € dom(D{ F’) such that

DrF(v) # 0. (2.2)

Proof. One implication is simple: since | = 1, the function f(¢) in Definition 1.4 maps the real line into
itself. If D/ F' is regular, then f has to be surjective. Thus, if D ' was either > 0 (< 0) or identically 0, it
would not be surjective.
Now we prove the converse implication. We assume n even and that there exist v* € dom(D}F) as
in (2.1). Let
t=(v],...,v )

and v = (v],...,vU, 1)

We claim that the function

wlt) = (tof, 2o, ..t ), >0,
(—tvy, t2vy .., —t" o ), <0,

is a regular extension that makes D} F' regular. Notice that w(1) = v* and w(—1) = v~. We need to
check that
w(t) € dom(DyF) VteR.

14



For ¢ = 0, this is obviously true. Take ¢ < 0: using Faa di Bruno formula in Proposition 1.1

(n—1)!
hlal

n—1
Dy F(w(t) = doF(wn (1) +Y. Y A F(wa ()

h=2 a€Ty,|a|=n—1

n—1
_ n—1 — (n — 1)‘
=—t"doF(v, )+ Y Y ot ]

h=2 a€Z,|a|=n—1 J

(~1)tvdgF(vg)
1

h

n—1 h
= ¢! ( —doF, )+ D (nh'_a'l)' H(_l)ajdgF(v;)>

h=2 a€Zy,|a|=n—1 J=1
= —t""'Dy T F(vT) = 0.

We just use the fact that, fixed o € Zj, with |a| = n — 1, then

h
[[CD% =1,

because n — 1 is odd, hence |[{j : a; odd}| is an odd number.
Similarly, it can be proved that

DJF(wy (t),...,w; (t)) = (—t/D}F(vy,...,v;) =0 V1<j<n-—1
and, when ¢t > 0,

DJF(wf (t),...,wf(t)) =t/DIF(vf,...,vf) =0 V1<j<n-1.

In the end, we have
(1) = DyF(vh)|t], t>0,
Dy F(v7)|t], t<O.

The function f : R — R is bijective due to (2.1). The case n odd is pretty much the same:
w(t) = (tvy, t2vg, ..., t" v, 1) and f(t) = DRF(v)t.

By (2.2), the function f(t) is clearly a bijection.

O

A weaker version of Proposition 2.1 for the corank one case can be found in [1, Proposition 2.14].

Socionovo assumed DA F = 0 for all 2 < h < n— 1 so that for any choice of v or v* inside ker(do F') it was
possible to define the polynomial extension w : R! — dom(D§ F) and so that dom(DJF') =~ ker(doF)" 1.
In Proposition 2.1 we characterized the notion of regular differential when corank(dpF') = 1 in terms

of suitable elements of dom(D{ F'). Therefore, it is independent of the function w(¢) and so the hypothesis

DhF = 0forall2 < h < n — 1 is not needed. Moreover, in Section 2.3 we are going to prove that if a

smooth map of corank one is open at 0, then some of its domains contain non-trivial elements.
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2.1 Implicit function argument

Up to this point, we considered F' € C'°°(X;R™) where X was a generic Banach space. In Section 2.1
and 2.2, we will work with X = R" for m > 2.

Let ' € C*°(R™;R™) be such that F'(0) = 0 and corank(dpF') = 1,i.e,rk(dpF') = m—1. This means
that doF" has a minor M € GL,,_1(R). We may assume that the Jacobian of F" at 0 has the following

form:
doF = (* M).
* %

If F' were open at 0, then for all € > 0 the system

Fi(z)=0
Fos(2) =0 (2.3)
Fn(z)=v

would have a solution z, € B(0,e) C R™ for every v € (—d(¢),d(g)), where d(g) > 0 has to be found.
To start, we focus on the first m — 1 equations. We know that

1 2z F(2) = (Fi1(2),..., Fn_1(2)) isa C>°(R™; R™!) function;
2. F(0)=0and doF = (* M)

We are in the hypothesis of Dini theorem: there exist real numbers A, x > 0 and a function p € C*°(B(0, A); B(0, 1))
such that

{(z,y) € B(0,A) x B0, ) : F(z,y) =0} = {(z,(x)) : € B(0,\)}.
The last equation of (2.3) reads
Fo(z,0(z)) =v, x € B(0,\).
So, we are left to check whether the map
B(0,)\) 3z — Fy(x) == Fp(x,p(x)) €R

is open at 0. Since it is a C"°° function from the real line into itself, F, is open at 0 if and only if the order
of its first non-zero derivative at x = 0 is odd. We will prove this fact in the next paragraph.

Before moving on, we point out that Dini theorem can be applied to functions F' € C°°(R%; R™) with
d > m aslong as F/(0) = 0 and doF' # 0. We consider the particular case d = m because we can prove a
sharp result connecting openness and regular differentials.

2.2 Existence of a regular differential in a particular case

In this paragraph, we are going to prove the following

Theorem 2.1. Let ' € C*°(R™;R™), m > 2, be such that F'(0) = 0 and corank(doF') = 1. Then F is
open at 0 if and only if there exists n € N such that D F' is regular.
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We start to prove the theorem with the easy implication. If D F' is regular, for some n € N, then F is
open at 0 thanks to Theorem 1.2.
Now we prove the converse implication. Suppose that F' is open at 0. We can assume

M

doF = (* ) , M€ GLy1(R),
* *

up to switching the order of columns and rows. We fix some notation:

« welet ¢ € C*(B(0,\); B(0, n)), for suitable A, 1 > 0, be the implicit function of Dini theorem
applied to (FY,. .., Fj—1), where F' = (Fy,..., Fy);

« we define F(2) := (Fy(2),..., Fpn_1(2)) for z € R™;
o fort = (t1,...,t,) € R, we define fy(z) := > %2’ and ¢y(2) := (¢ o fi)(z) forz € R;
h=1

« finally, we let F,(x) := Fp,(z, ¢(2)).
Now we prove the fact anticipated at the end of the previous paragraph:

Lemma 2.1. Consider A > 0 and g € C*°((—\, \); R) with g(0) = 0. Then g is open at 0 if and only if the
order of the first non-zero derivative of g(x) at x = 0 is odd.

Proof. Consider the Taylor expansion at 0 of g(z):

9"(0)

n
o) = LDy 1 o(am) = (9 ©

n!

.y + a(:c)):v", n>1, (2.4)

where g(™)(0) is the first derivative different from 0 and o () continuous at = 0 with ¢(0) = 0. For |z|
small enough, we have

9™ (0)
n!

+o(z) #0.

So, g(x) ~ z™ in a small neighbourhood of 0. If n is even, then ¢g(z) will have constant sign around the
origin. Thus, n has to be odd if g(x) is open at 0.

Conversely, assume g(z) to have the Taylor expansion at 0 given by (2.4) with n odd. For alle > 0
small enough, we look for §(¢) > 0 so that (—d(¢),d(¢)) C g((—¢,€)). It is not restrictive to assume that

% + o(z) > 0 for all |z| < ¢; the other case is identical. Then
g(z) >0 Vre(0,e) and g(z) <0 Vze (—¢,0).
This implies that g(—¢, €) contains an open neighbourhood of 0. O

Since dpF' # 0 because m > 2 and corank(dpF') = 1, we can use the implicit function argument.
Therefore, F, € C((—A,A);R), F,(0) = 01is open at 0 as F' is open at 0. We apply Lemma 2.1 to
g(z) = F () and define

n:=min{n € N : F{V(0) # 0}, 7 is odd. (2.5)

17



Remark 2.1. It is important to notice that n # 1. Since corank(doF') = 1, doF}, is a linear combination of
the doFj for j € {1,...,m — 1} and by construction

Flap@) =0 Vil <A= (Fp@)| = dbP0,¢0)=0

=0

Thus, doF(1,¢'(0)) = 0. On the other hand, if . = 1 the natural notion of regular differential of the first
order would imply the surjectivity of do F'.

The next step is to prove the following
Claim 2.1. Forn as in (2.5), the differential DJF is regular.
We need another lemma.

Lemma 2.2. Foranyn € {1,...,n} andt € R™ we have

0, forl<n<n-1,

Dy Fo((t1,£4(0)), - -, (£, 0™ (0))) = {t?ﬂ&")(o) ——

Proof. Recall the definition of Dy F;, given in (1.2):

0 : (n) o s
Dy Fo((t1,2100)), - (s el 0)) = 5 Fn [ D0 2ttn e O)) )|
h=1"" 5=0
This derivative can be rewritten as follows:
on n Sh ) on n Sh
S (X)) = o (S 5n)| =) 26

h=1 h=1

We are differentiating n times two different functions:
nL st (h) 2L st nL st
EnZg%%@»amEnzﬁ%¢ng-
h=1 h=1 h=1

However, we notice that the inner function on the left is just the n-th Taylor polynomial at 0 of the one
on the right. Thus, identity (2.6) holds.
We apply Faa di Bruno formula, Proposition 1.1, to the right hand of side of (2.6) and we obtain

n = n!
(*):DOFQO(tla---atn):Z Z mFggh)(O)(tal"'tah)‘
h=1aeFy,|al=n

We can easily conclude since Fé;h)(O) =0forall1 < h < n — 1 by the definition of n. For n < n, all the

terms are equal to 0. When n = 7, the non-zero terms are obtained for A = n and the only multi-index
a € Fp with o] =nis (1,...,1) € R™. O

At this point, we can prove Claim 2.1 namely that F’ being open at 0 implies the existence of n € N
so that D F is regular:
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1. Since f; € C” and £;(0) = 0, there exists A(t) > 0 such that | f;(z)| < X for all |x| < A(2):

F(z,p(x) =0 V] < A = F(fu(x), o(fi(x)) =0 Vx| < A(t). (2.7)
We deduce that
0= P )| = DYP GO (b)) VmEN,  2)

by Faa di Bruno formula for the n-th derivative of the composition in Proposition 1.1. If we look
back at Definition 1.2, using induction and (2.8) we obtain

((t1,94(0)), ... (ta, 2 (0))) € dom(DyT1F) vt € R™ (2.9)
2. Once more by induction, we deduce that for every t € R?~!
(11, £4(0), - (b1, 91" (0))) € dom(DGF),
by combining (2.9) for n = i — 1, Lemma 2.2 and the fact that
dom(DJF) = dom(DJF) N dom (DL F,y,).
3. Since corank(dpF') = 1, there exists 0 # w € R™ such that
Im(doF') = {z € R™ : (w,z) = 0}.

So, coker(dpF') = (w) and proj(z) = (w, z)w. It is easy to see that Im(doF’) can be generated by
m — 1 vectors of the form

1 0 0

0 1 0
eR™, ay,...,am-1 €R,
1

al a9 Am—1

obtained by suitable linear combinations of the last m — 1 columns of dy F'. Taking this basis, it is
clear that w,, # 0. The vector w is the solution of the system:

w1 + ajwy, =0

wy + agw,, = 0

Wp_1 + Am_1Wym = 0.
If w,, = 0, then all the other coordinates of w would be zero. Impossible.
4. Let vy := ((t1,94(0)), ..., (ta—1, g@t ( ))) for an arbitrary t € R"~! with ¢; # 0. Then
DS‘F(U ) = proj(DJ F (v, %)), Vx € R™,
= pro;;w F (v, (F, sot ), = ¢ fn) € R xR,
Fn(

(tlv ‘Pt tm ) )
= wmt’ng‘ (0)#£0 by construction.

5. We use Proposition 2.1 to conclude that D{/ F' is regular in the odd case. Remember that 7 is odd
due to Lemma 2.1.
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2.2.1 Uniqueness

Theorem 2.1 ensures the existence of a regular differential, according to Definition 1.4, under suitable
assumptions. We wonder whether, in the same setup, there exist n # 7, see (2.5), such that D{ F is
regular. In this paragraph, we are going to prove a more precise version of Theorem 2.1.

Theorem 2.2. Let F € C°(R™;R™),m > 2, be such that F'(0) = 0 and corank(dpF') = 1. Then the
following statements are true:

1. F is open at 0 if and only if there exists n € N such that D[ F' is regular.
2. If F is open at 0 and we define nu as in (2.5), then
n=min{n € N : DyF isregular}
and Dy F' is regular if and only if n is a multiple of n different from zero.

As in Theorem 2.1, it is not restrictive to assume

dOF:<* M), M € GLy_1(R).

%
We recall the notation used in the proof of Theorem 2.1:

« we let ¢ € C°°(B(0,\); B(0, u)), for suitable A\, u > 0, be the implicit function of Dini theorem
applied to (F1,..., Fp_1), where F = (F1,..., Fy);

. we define F(2) := (F1(2),..., Fm_1(2)) for z € R™;
. fort = (t1,...,t,) € R", we define fy(z) := Y. %a" and ¢(z) := (o fi)(z) forz € R;
h=1

« finally, we let Fi,(x) := Fp,(x, ¢(2)).

The first statement of Theorem 2.2 is just Theorem 2.1. We begin the proof of the second part with the
following result:

Proposition 2.2. Forn € {1,...,n} we have
dom(DyF) = {((t1,£,(0)), - .., (bn_1, 0"~ (0))) : t € R*1}. (2.10)

Proof. We prove (2.10) by induction on n.
If n = 2, then dom(DZF) := ker(doF). By differentiating once the identity in (2.7) and evaluating it at
x = 0, we have

doF (b1, 24(0)) = 0 = (t2,}(0)) = t1(1,¢/(0)) € ker(doF) V1 € R,

but ker(doF') coincides with ker(dyF) because the corank(doF) = 1. Since dim(ker(doF)) = 1, it is
actually

ker(doF) = {(1,4'(0))). (2.11)
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We assume the statement to be true for 2 < n < n — 1 and we prove it for n + 1. By definition,
dom(Dy ™ F) = {v € dom(DyF) x R™ : DjF(v) = 0}.
An element v € dom(D} " F) has n components each in R™ and the first n — 1 are of the form

((t1, 24(0)), -+, (a1, 2D (0))),

for a suitable ¢ € R"~!, by induction. We fix the vector ¢.
We are left to find the last component of v, let it be v,,. The condition D F'(v) = 0 is equivalent to the
following system:

{Dgﬁ(<t1, PH0)). - (e, 0" (0),00) = 0 1)

DEFon((t1,24(0)), -, (a1, 8" (0)), v) = 0.
By (2.8) we know that i
DEE((t1,£4(0)), - - s (ts 7(0))) = 0, (2.13)

where t = (¢,t,) € R*! x R for any t,,. We choose an arbitrary .
Recall that
- - n n! -
DyF(w) = doF(wn) + Y Y wdgF(wa), w=(wi,...,wp).
h=1acFp,la|=n

So by subtracting the first equation of (2.12) with (2.13) we obtain

doF (vn — (tn, @7(0))) = 0, e, vp — (tn, 9\"(0)) € ker(doF).

t t
By (2.11), it is equivalent to

Un = (bn + X, 07 (0) + AP(0)), AER.

Define £ = (t,t, + ). We claim that
2" (0) +28'(0) = 9" (0). (214)

First, notice that f;(x) = fr(z) + 22" Besides this, we have

n!

Mgy 0" (St A
i (O)asn‘p<hzlh!3 +n!$)

= Dlo(t, .ty + A).

s=0
By Faa di Bruno formula, Proposition 1.1,
n
Dip(tr, .t +A) = dop(ta + N+ D D> dip(ta) = dop(N) + Dip(ts, ., tn).
h=1 a€Fp,|al=n

The identity (2.14) is proved since dop = ¢'(0).
At this point, if our element v belongs to dom(Dj ! F), it is of the form

v=((t1, 80), o, (tn A X0 D(0), = (b, b+ ) €RY

but then it satisfies the second equation of system (2.12) by Lemma 2.2 for 1 < n < i — 1. Thus, identity
(2.10) is proved. O
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A simple consequence of Proposition 2.2 is the following:

Corollary 2.1. D] F is the regular differential of smallest order. Equivalently,
n:=min{n € N : F;")(O) # 0} =min{n € N : DyF is regular}.

Proof. We have already proved that D F' is regular in Theorem 2.1.
By Proposition 2.2, an element v € dom(Dj F), for 2 < n < n — 1, is of the form

v= ((tlv (:0:‘/(0))7 SR (tn—ly @gn_l)(O))), t e R L

As a consequence,

DSLF(U) = megFm((tl, 30%(0))7 SERE) (tna @gn) (O)) fort = (t, tn) c Rn_l % R.
However, the right hand side is always equal to zero by Lemma 2.2 for 2 <n <#n — 1. ]

Now we look at D F' for n > n. Let’s consider Dg“F. By Definition 1.2,
dom(Di F) = {v € dom(DJF) x R™ : D{F(v) = 0}.
Given any v € dom(Dj " F), then

v = ((tr, 940), - (b1, 2" (0)), vn)

for some ¢t € R"~! and suitable v; € R™. As we did in the proof of Proposition 2.2, the last component is
of the form .
va = (ta + A, wgn)(O) +2'(0)), ta,AER.

Therefore,

v = ((t g0)),- . (b + A 0(0)), = (b1, ot + A).

We use Lemma 2.2 for n = 7 and obtain
Dy FEp(v) =t} - Féﬁ)(()) =0<=1t; =0 by definition of 7.

— dom (DI F) = {((0,£,(0)), - - -, (ta, o (0))) : £ = (0,ta,...,ta) €R™}.  (2.15)

Remark 2.2. Since ©}(0) = t1¢'(0), all the elements of dom(Dg ' ) have the origin as their first compo-
nent. The same holds for all the successive domains.

For v € dom(Dj ! F) we have
) i n+1 (7 +1)!
DI F(v) = wp DT F(v) = wyy, ( >y Wﬂgﬁ) (0)(tay -+ tah)>, (2.16)
h=1 a€Fyp,|la|=n+1

for some t = (t1,...,t,) € R™"! The second equality, up to the non-zero constant wy,, has been already

proved in Lemma 2.2.
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We want to compute the last term in (2.16). Recall that Fg(,h) (0) =0forall1 < h < n—1 by definition
of 71, see (2.5). So (2.16) can be simplified:
A1 A1) ()1 ntl o m
DITLF(v) = wyy, (F; Do) 4 . |Z T FM(0)(ta, - -tah)>, (2.17)
acfp,|o|=n+

the only relevant terms are for h = n,n + 1.

The multi-indices « in the sum have length n and weight 7 + 1; so at least one of the components is
equal to one. Besides this, (2.15) implies that t; = 0 and so the right hand side of (2.17) is actually equal
to zero. In the end, DSLHF cannot be regular because it is identically zero on its domain.

Now we study the regularity of Dj F' for n > n + 1:

1. First, we compute dom(D{ F'). By definition,
dom(D§F) = {v € dom(Dj~'F) x R™ : Dy 'F(v) = 0}.

Repeating the proof of Proposition 2.2 and using Remark 2.2, if v € dom(D{ F), then it is of the
form

2 n—1 n—
0= (0,(t2. 02(0)), . (b1, 0" (0))), € {0} x R™2.
However, we still have to verify if
Dy F(v) = 0. (2.18)

By explicit computations, the left hand side of (2.18) is

i
L

e n—1)!
Dy E,(v) = Z (h'oz')F‘éh)(O) (tay -+ tay)
a€Fp,|lal=n—1 o

Z (nh!_a:!l)!Fcf(ah) (0) (tal o 'tah)'

i aEFp,|a|=n—1

(2.19)

SRS
_

h

The non-zero terms are given by the multi-indices o with all components > 2 because t; = 0. So,
in (2.19) we only look at the o € F},, h > 7, such that

a; >2 VYj=1,...,h and |of=n—-1 (2.20)

The fact that o has h > 7 components > 2 implies that |«| > 2h > 2n. This condition and (2.20)
are compatible only if n — 1 > 20, i.e,n > 2n + 1. Thus, foralln € {n + 2,...,2n},

dom(DFF) = {(0, (t2, 0 (0), ..., (b1, 0" (0))) : t€ {0} xR"2},  (221)
because all the multi-indices « in (2.19) have at least one component equal to one.
2. We study the regularity of D' F for n € {n +2,...,2n}. Given v € dom(Dg F), it is of the form
v=(0,(t2, 07 (0)), ..., (tn_1," D (0))), te{0} xR 2 by (2.21),
Therefore

DEF(v) = wn D§Fn (0, (t2, 07 (0)), - .., (tn1, 0"V (0)))

n ! 2.22
:wm<z 3 IZZOAF&)(O)(%...%)). (222)

h=n a€Fyp,|al=n
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Using (2.20) with n in place of n — 1, we realize that the non-zero terms in (2.22) occur only if
n > 2n. Thus, for n € {n +2,...,27 — 1} the differential D{ F' is identically zero on its domain.
This is not the case when n = 2n. Indeed, the only "relevant” multi-index « has length 7 and weight
2n:itis (2,...,2). So

DE'F(v) = Wi DA Fp(v) = winth ;n) (0) # 0 aslongas 0 # t2 € R. (2.23)

Although 27 is now even, 5 is elevated to the power # that is odd by Lemma 2.1, and so we have
regularity by Proposition 2.1 in the even case.

3. At this point, we consider DgﬁHF . Using the same argument of point 1, we study the domain. An
arbitrary element v € dom(D3" " F) will be of the form

(0, (t2, 22(0)), . .., (tan, 9°(0))), ¢ € {0} x R¥*1,

and it will solve
D" F(v) = t3F$(0) = 0. (2.24)

Since . (0) # 0 by the definition of 7, (2.24) holds if and only if £, = 0. Therefore

dom (DL F) = {(0,0, (t3, 22(0)), ..., (tam, 02 (0))) = t € {0} x R**"2}. (2.25)

4. We repeat the procedure of point 2, but now we are interested only in the multi-indices a with all
components > 3. We deduce that

dom(DyF) = {(0,0, (3, 2(0)), . .., (tn, £ (0))) : t € {0} x R*3}
foralln € {2n + 2,...,3n}, and also that

0, forne{2n+1,...,3n— 1},
wmtgFéﬁ) (0), n=3n,

Dy F(v) = {
for v € dom(DJ F). Thus, only D" F is regular by Proposition 2.1.

5. Reiterating this algorithm, it is not difficult to realize that D I is regular if and only if n is a non-zero
multiple of 7. In the end, we have uniqueness modulus 7.

2.3 New definition of regularity

We would like to give a definition of regular differential that does not depend on the existence of the
polynomial extension, see Proposition 1.3, and that provides equivalent conditions for openness, at least
for the corank one case.

Proposition 2.1 suggests the following new definition of regular differential:

Definition 2.1 (Regular n-differential). Let ' € C°°(X;R™) be such that 0 € X is a critical point of
corank one for F'. We say that Dij F',n > 2, is regular if
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« n is even and there exist 2 elements vt € dom(D}F') such that
DYF(vt) >0 and DJF(v7) <O0.

« n is odd and there exist an element v € dom(Dy F') such that

DYF(v) 0.

In the particular case of Theorem 2.1, we proved that the openness at 0 of the map was equivalent to
the existence of a regular n-differential according to Definition 2.1.

We wonder whether the statement of Theorem 2.1 can be generalized, keeping the corank one: namely,
ifamap F' € C*(X;R"™) with F'(0) = 0,doF # 0 and corank one is open at 0 € X if and only if there
exists a regular n-differential as in Definition 2.1.

We start from the following result. As for Proposition 1.2, we fix coordinates on both X and R™ so
that

X =ker(doF) @R™ 1, R™ =Im(doF) ®R and doF(z) = doF (u,w) = (76)) (2.26)

for every X 3>z = (u,w) € ker(doF) x R™~L,

Proposition 2.3. Let X be a Banach space and F' € C*°(X;R™) be such that F'(0) = 0, doF' # 0 and
corank(doF') = 1. Fix coordinates like in (2.26) and assume F' to be open at 0 € X. Then at least one of the
following situations must occur:

1. There existn > 2 odd and v € dom(D F') such that

D F(v) # 0. (2.27)
2. There exist n™ > 2 even and elements v* € dom(Dgi F') such that
D F(ut)>0 and Dy F(v™)<O0. (2.28)
Proof. Using the notation of Theorem 2.1, F' being open at 0 implies that
F, e C®(U;R), Fy(u):= Fp(u,p(u)) € R

is also open at 0 € ker(dyF’), where U is an open neighbourhood of 0 € ker(dyF'). The map ¢ is given by
the implicit function theorem applied to F' = (Fy, ..., Fy,_1) = 0.
For fixed o > 0, consider the curves satisfying

v € C®((—o,0);U) with ~(0)=0 (2.29)
and define
Fypr(8) == Fup((5)) = Fn(v(5), o(7(8))), s € (—0,0). (2.30)
For ~ like in (2.29), we let

N := min {n : @Epﬁ(s)

#* 0} >2, ny=+oo ifF,,=0. (2.31)
=0

s=
The coordinates in (2.26) imply doF},, = 0 and so doF,, = 0 by the chain rule.
Since F, is open at 0, then at least one of the following situations must occur:
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1. There exists  like in (2.29) such that n is odd.
2. There exist curves v+ such that n.+ are both even,

'
W FSO»'Y+ (S)

a X g
— >0 an agT o~ (3) o < 0.

If neither of the previous conditions occurs, for every v we have n., even and

o™
0s™

Fsom/(s)

> 0. (2.32)
s=0

It is not restrictive to assume the derivative in (2.32) to be non-zero. Otherwise, F;, , = 0 by the definition
of n., in (2.31). The condition (2.32) holds for every 7: F, is locally concave around 0 so it cannot be
open at 0. The case < 0 is identical.

Now, assume there exists y like in (2.29) such that n is odd. By the definition of n, we have:

oh
@Fm(’y(s)a e(v(s))) o =0 V2<h< ny —1, (2.33)
o
Hany Im(1(s),0(7(5)))| ~ #0. (234)
5=0

We can easily reformulate (2.33) and (2.34) in terms of the differentials of F},:

DG En ((7(0),45(0)), ..., (v"(0), {P(0)) =0 V2<h<n,—1, (2.35)
Dy Fon (4'(0),4,(0)), ... (1™(0), 57 (0))) # 0, (2.36)

&, 40
where ¢, (s) = ¢( %sh). In (2.33), (2.34), it is not restrictive to replace the inner function with

its Taylor polynomiaT at 0 when computing the derivative of the composition.
We claim that the conditions (2.35) imply

v = ((4(0),,(0)),.. (" D(0), 6§ (0))) € dom(DG ). (237)
In the proof of Proposition 1.2, we showed that
dom(Dy" F) = {(u1,¢,(0)), ..., (un, -1, gp&n“’_l)(O)) cu € ker(dgF)™ 1} (2.38)

The element v in (2.37) is like the ones in (2.38) for u = (7/(0),...,7™~1(0)) € ker(doF)™ ~'. The
conditions (2.35) imply that v € dom(Dy” F,,) so (2.37) holds since F' = (F, Fy,).

Moreover, (2.36) implies (2.27) since, by (2.26), the map proj is just the projection on the last compo-
nent of R and

Dy F(v) := proj(Dy" F(v,*)) for any choice of * € X, we choose * = (v")(0), gogn”)(())).

We obtain (2.27) by taking n = n and v like in (2.37).
Using a similar argument for the even case, we obtain (2.28). Ul
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If (2.27) holds, then there exists a regular differential of odd order as in Definition 2.1. The problem
rises when D F = 0 for all n > 2 odd. In (2.28) it is not guaranteed that n* = n~ and so there may not
exist a regular differential of even order.

By Proposition 2.3, we conclude that Definition 2.1 has to be weakened in order to obtain candidate
equivalent conditions for openness. Thus, a possible definition of regularity for the corank one case may
be following:

Definition 2.2. Let F' € C*™(X;R™) be such that F(0) = 0, doF # 0 and corank(doF) = 1. Fix
coordinates like in (2.26). We say that F' is regular at 0 if at least one of the following conditions is satisfied:

1. There existn > 2 odd and v € dom(D F') such that

DrF(v) # 0. (2.39)

+
2. There exist n® > 2 even and elements v= € dom (D2 F) such that

DI F(ut)>0 and Dy F(v™)<0. (2.40)

2.3.1 Equivalent conditions for openness

Now we show that Definition 2.2 actually gives equivalent conditions for openness. We fix coordinates on
both X and R™ so that

X =ker(doF) @R™ !, R™ =Im(doF) @R and doF(z) = doF (u,w) = (E’) (2.41)

forall X > x = (u,w) € ker(doF) x R™~ 1,

Theorem 2.3. Let F' € C*°(X;R™) be such that F(0) = 0. Assume that doF' # 0 and 0 € X is a critical
point of corank | = 1. Fix coordinates as in (2.41). Then F' is open at 0 if and only if F is regular at 0
according to Definition 2.2.

Proof. If F'is open at 0, we just use Proposition 2.3. We prove the other implication.

Assume F' to be regular at 0. If (2.39) occurs, we just repeat the proof of Theorem 1.2 for the n odd
case. So without loss of generality we can suppose (2.40) to hold. We can also assume nt > n~. We
basically repeat the argument of Theorem 1.2 with minor adjustments.

Let
vt = (vf, ... ,v:+_1) and v~ = (vy,...,v,_ ). (2.42)
Define
+ 2+ -1, +
WiR o XT1 () = T ) 120, (2.43)
(—tvy, 205, ..., —t" “lu,-1,0,...,0) t<O.
It is important to notice that w € CO(R; X ”+_1), like the regular extension of Definition 1.3.
Define
nt—1 w (t)
ORI xR X B(rt)=r+ Y }‘ . w(t) = (wi(t),. .., wyr_1(1)). (2.44)
=1
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At this point, we compute the Taylor expansion at 0 of ' o ®.

We fix t € R and define ¢(s) := F(®(0, st)) for s > 0. Forall 1 < j <n™ — 1, w,(¢) is homogeneous

of degree j. The function ¢(s) has a Taylor expansion at 0 of the form

sy . st (g
B(s) =Y s Jj,(o)sﬂ L6 ; (S)§"++1, 35 € [0, 5.
Jj=1 ’ ’

(2.45)

By construction, 1) (0) = D%F(wl (t),...,w;(t)) for all j. The value of ¢{9)(0) depends on both j and t:

1. For1 <j <n~ —1,¢Y(0) = 0 for every t.

2. Forj=n",

_ 0 t>0
7)) = =
¢ 0 {Dg‘F(v,o)(—t)"‘ t<0.

3. Forn +1<j<n" -1,

, 0 t>0,
¢<ﬂ><0>—{ = .
D{F(v=,0,...,0)(=t)/ t<0.

4. Finally, for j = n™

) Dyt F(ut, 00" ¢ >0,
" (0) = N N
DEYF(w=,0,...,0)(=t)"" t<0
Thus
nt + gt +
F(®(0,t)) = _ n— nt . ;
(2(0.2)) Dy P, 055+ 2 1Dg)F(v—,o...,())(‘Tt,)’+E—(t) t<0,
j=n—+
where

IEY@)| < Ct"™t and |[E-@)| < C "t 3ct,C” > 0.
We can rewrite (2.46), (2.47) as

nt
Dyt F(vt, )+ ET(6) >0,

0
Dy P, 0) G5 + E-(1) <0,

F(®(0,1)) =

where
EY@)| < CHt*™! and |E-(0)| < Cjr Tt 3cT,C” > 0.

At this point, we obtain the following expansion:
doF(r) 4+ D" F(vt,0) Ay

+R
F(®(r,t)) = _ ("nf)'
doF(r)+ Dy F(v™,0)t=; + R~ (r,t) t<0
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where

Rt (r,t R~ (r,t
im Ll = and L)f = (2.51)
(r,t)=0 |?“| + |t|" (r,t)—0 ‘7‘| + |t|”
We “normalize” using the following function, which is a generalization of o(¢) in Definition 1.4:
o(t) = § 5" AR (2.52)
o) = _ .
sgn(t) "/|t| t<O.

Therefore

) doF(r) + Dy F(v*,0) ity + R (r, () ¢ 20,
F(®(r,0(t)) = Lo (2.53)
doF'(r) + D§ F(v ’O)W + R (r,0(t)) t<O.
Now we stress out the Im(dop F') and coker(do F') components of F'(®(r, o(t))). Using the set of coordinates
(2.41)

i

(%F(r) +g* () + R (r, @<t>>>

o L*|t] + R (r, o(t))
F(®(r,0(t))) = (dOF(T) +g(t) + Ry (r, g(t))) ¢ <o0.
L™ |t] + Ry (r, o(t))

(2.54)

D F(ut)

We simplified the expression by calling L™ = e > Oand L™ = D F(7)

= < 0.
(n7)!
We repeat the fixed point argument on (2.54) and the proof is finished. The function g*(t) is the
Im(dyF') component of DgiF (v, O)% and it is both continuous and 1-homogeneous.

In our case, the function f(¢) that appears in the proof of Theorem 1.2 is
Lt ¢>0,
fity=49__ (2.55)
L™t t<O.

Since LTL™ < 0, f(t) in (2.55) is a homeomorphism and we are able to find the constant L > 0 as in
Remark 1.1. O

In conclusion, we provided a complete description of maps F' € C*°(X,R™),m € N, F(0) = 0, with
corank one that are open at 0:

1. If corank(doF') = 1 and doF' # 0, Theorem 2.3 gives us equivalent condition for openness.

2. Otherwise, corank(dopF') = 1 and dgF' = 0: m = 1 by Definition 1.1. Despite doF’ = 0, we can
repeat the argument of Proposition 2.3 with the curves +: the map F has only one component. Thus,
if F' is open at 0, then it is regular at 0 as in Definition 2.2. To prove the opposite implication, we
just repeat the proof of Theorem 2.3: the only difference is that ®(r,t) = ®(t) asm = 1, see (2.44).
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Chapter 3

Corank [ = 2 case

The next step is to study the case of corank [ = 2. We consider functions satisfying
F € C*(R%R?), F(0)=0, doF =0. (3.1)

We wonder whether openness and regular differentials, as in Definition 1.4, are equivalent for functions
asin (3.1). By Theorem 1.2, we know that the existence of a regular differential always implies openness.
However, in the general case the converse implication does not hold. In Section 3.1, we will provide a map
satisfying (3.1) that is open at 0, but has no regular differentials.

3.1 A counterexample in the plane

In this section, we prove the following result.

Theorem 3.1. The map F : R? — R? defined as F(x,y) = (2% — y?, xy) is open at 0, but there exists no
n € N such that DEF : R?> — coker(doF') = R? is regular according to Definition 1.4.

We need a different criterion to identify open maps, in particular the homogeneous ones.

Proposition 3.1. Let F' : R? — R™ be homogeneous of degree k € N, k # 0, and continuous. Assume that
F(z) =0 ifand only if = = 0. Then F is open at the origin if and only if F' is surjective.

Proof. F'is open at 0 if and only if for all € > 0 there exists > 0 such that
B(0,0) C F(B(0,¢)). (3.2)

Suppose F' to be open at 0. Since F'(B(0,¢)) contains a ball and thus all directions, F' is surjective. By
(3.2), for any v € B(0,0/2) there is z € B(0, ¢) such that F(z) = v. Then

F( Jﬁ) = ﬁ cS™ ! —= {\v : A>0} C F({z)) by F being homogeneous.
v 14
The image of F' contains every half line starting from the origin and so the whole R™.

Now, assume F' to be surjective and fix ¢ > 0. We need to find § > 0 as in (3.2). By surjectivity, for
every v € S™! there exists 0 # 2, € R such that F(z,) = v. Thus

k k
()= G PGl (). oo o

30



The map F' is homogeneous so

{)\y L0< A< <|Zi’)k} C F(B(0,¢)).

Since F'(z) = 0 if and only if z = 0, for every € > 0

min |F(z)| > 0.
0B(0,¢)

The minimum exists and it is finite because I’ is continuous. Therefore

k
inf{(,i) : yeSml}Z min |F(z)| > 0.
cv

0B(0,¢)
We choose 6 = min |F(z)].
0B(0,¢)

We begin the proof of Theorem 3.2. We notice that:
+ F'is polynomial and 2-homogeneous;
« F(z,y) =0ifand only if x = y = 0;
« F'is surjective.
By Proposition 3.1, F' is open at 0.

Remark 3.1. In our setup, we have

1
F(v) = §d%F(v), v € R?,

and the map proj : R? — coker(doF) = R? is just the identity map on R?.

formula (Proposition 1.1):

Now we prove the second statement of Theorem 3.1. For n > 2 and v € R??, we apply Faa di Bruno

DiFw = Y

5 ol d3F(v,) because only d3F is not trivial
aEFa,|al=n )
53] (n
> d3F (v, vp—t), modd,
k=1 \k

2t (n 2 1" 2
dgF (v, vp—k) + 35 dgF'(vn/2,Vns2), meven.
k=1 \k n/2

As a consequence, we are able to compute explicitly the domains of all the differentials:

Proposition 3.2. Letn € N,n > 1. Then

dom(D2" M F) = {(0,...,0, 041, .. .,v2,) € R

D Upgly..., V2 € R2}7
dom(D(%”F) ={(0,...,0,v,,

C ,U2n71) € R2(2n_1) D Upye..,U2p—1 € R2}
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Proof. The proof consists of three steps:
1. The base case: dom(D3F') = ker(doF') = R? satisfies (3.7) for n = 1;
2. Assume, for some n > 1, that
dom(D2"F) = {(0,...,0,vp,...,v9n_1) € RZZ"™D g w9, 1 € R}
An element v € R*" belongs to dom(D3" ™ F) if
v E dom(Dg”F) XxR?=v=(0,...,0,v,,...,v)
and

n—1
2n 1 [2n
D"F(v) = Z ( . ) B3F (vg, von_k) + 3 (n) B3 F (v, v)

k=1

1(2
=3 ( n) dgF(vn,vn) =0<«= v, =0 byRemark3.1.
n
Thus, dom(D]" ™ F) satisfies (3.6).
3. To conclude, it is enough to prove that (3.6) implies (3.7). Assume now that
dom(Dg"HF) ={(0,...,0,0n41,...,02,) ERY : v, 11,..., 02, € R?}
for some n € N. An element v € R*?"+1) belongs to dom(Dg(nH)F ) if

vE dom(Dé”HF) xR2=v=(0,...,0,Un41,...,V2nt1)

and

N “(2n+1
o rto =32 (7)) om0 =0
k=1

but the first n components of v are zero and so does the sum. There are no additional constraints for
v so we proved (3.7).

O

Now, we evaluate each differential at a generic element of its domain. By (3.5) and Remark 3.1, we
can explicitly compute any differential.

Corollary 3.1. Foreveryn > 1, DS"HF =0.
Proof. Every v € dom(D3" 1 F) is of the form

v=1(0,...,0,0011,...,02,), vp €R* VYn+1<k<2n by (3.6).
Then for any * € R? we have

n
Dy F(v) = D" F (v, %) = Y
k=

2n +1
( i ) A3 F (Vg vans1)—k) = 0
1

since vy, = 0 forevery 1 < k <mn. OJ



Corollary 3.2. For everyn > 1 andv € dom(D3"F),

n 1 (2n
D(2) F(v) = 9 <n> d(Q)F(Umvn)a

where vy, is the n-th component of v.
Proof. An element v € dom(D3"F) is of the form

v=1(0,...,0,0n,...,00n-1), U ER?Vn<Ek<2n—1 by (3.7).
So for any * € R? we have

n—1
1(2
D2 F(v) = DA"F (v, %) Z ( ) (Vk, Vop—k) + = 5 (:) d3F (v, vp,)

k=1

with vy, = 0 for every 1 < k < n — 1. The sum is equal to zero and only the last term remains. O

Therefore, if there existed a regular differential, its order would be even. So assume that there exists a
regular extension w(t) : R? — dom(D3"F), see Definition 1.3, such that D3"F : R? — R? is regular, for
some n. We require the function

R? >t f(t) = D§"F(w(e(t))) = <2n> F(wn(e(t))) (3.8)

to be a homeomorphism.
The map ¢ — w, (o(t)) has to be a bijection from R? onto a subset of the plane where F is both injective
and surjective. For instance, we can take

A={0y) : y=20}tU{(z,y) : 2> 0,y cR}.
The map wy,(o(t)) is a bijective if and only if w,,(¢) is. Indeed,
t i ot) = (sgn(tr) ¥/ |ta], sgn(t2) %/ [t2])

is a bijection from R? onto itself.
However, w, (t) is a n-homogeneous polynomial:

« If n is even, then w, (t) is an even function. So w,, cannot be injective.

« If n is odd, then w,, () is an odd function. Since A = Im(wy,,) contains the half line

{(0,y) = y >0},

Im(wy,) will actually contain the entire y-axis. We lose the injectivity of F' o wy,:
{(,0) : <0} =F({(0,y) : y<0}) =F{(0,9) : y =0}).

In the end, f(t) in (3.8) cannot be a bijection: there is no regular differential of even order. The proof of
Theorem 3.1 is finished.
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