

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

CORSO DI LAUREA MAGISTRALE IN

 INGEGNERIA PER LE COMUNICAZIONI MULTIMEDIALI E

INTERNET

<Analysis of EEG signals for the prediction of epileptic seizures=

 Relatore: Prof. / Dott TESTOLIN ALBERTO

Laureanda: MEDVEDEVA NATALYA

ANNO ACCADEMICO 2023 – 2024

Data di laurea 24/04/2024

DIPARTIMENTO

DI INGEGNERIA

DELL’INFORMAZIONE

Abstract

Epilepsy, a chronic neurological disorder characterized by recurrent seizures, poses sig-

nificant challenges to patients’ quality of life and healthcare systems. Automatic seizure

prediction algorithms offer promise in enhancing patient safety and care by providing timely

warnings. Traditional machine learning (ML) models for seizure prediction often rely on man-

ual feature extraction, which is time-consuming and requires expertise due to the complexity

of electroencephalogram (EEG) signals.

Deep learning (DL) models present an alternative, demonstrating effectiveness in auto-

matically extracting features from complex data like EEG signals. This study investigates

the performance of three DL models (EEGNet, DeepConvNet, and ResNet68) for seizure

prediction using a dataset containing epileptic events recorded from 10 patients. The models

were evaluated individually for accuracy, sensitivity, and specificity.

The findings suggest that the DL models did not achieve superior performance compared

to classical ML models. EEGNet demonstrated acceptable accuracy (65.78%) and specificity

(82.94%), but lacked sensitivity in capturing preictal events, potentially due to its insufficient

complexity in capturing subtle patterns within EEG signals. DeepConvNet exhibited high

sensitivity (83.45%), but low specificity, leading to a high false alarm rate. ResNet68, despite

its complexity, requires further optimization and potentially a larger dataset to improve

performance (average accuracy: 63.80%, sensitivity: 69.71%, and specificity: 61.42%).

Limitations in dataset representativeness may have contributed to the observed weak-

nesses across all models. Strategies such as using more diverse datasets and advanced opti-

mization techniques may improve the strength and ability of deep learning models in seizure

prediction.

In conclusion, while DL models hold promise for seizure prediction, their performance

in this study raises questions about their applicability in clinical settings. Further research

exploring techniques such as data augmentation and deeper architectures is needed to refine

DL models for improved seizure prediction and patient care.

3

Contents

1 Introduction 6

1.1 Epilepsy: A Challenging Neurological Disorder 6

1.2 Diagnosis . 7

1.3 EEG signal . 8

1.4 Problem Definition and Necessity of a Timely Prediction 10

2 Artificial Intelligence Applications to Epilepsy 12

2.1 Epileptic Seizure Prediction with Classical Machine Learning 12

2.2 Deep Learning Approach . 16

3 Materials and Methods 24

3.1 EEG Dataset . 24

3.2 Preprocessing . 25

3.3 Tools and Libraries . 26

3.4 Deep Learning Models Architecture . 34

4 Experimental Design 45

4.1 Training Process . 45

4.2 Evaluation Metrics . 49

5 Results 52

5.1 EEGNet Results . 52

5.2 DeepConvNet Results . 55

5.3 ResNet68 Results . 56

6 Conclusions 61

7 List of Acronyms 63

Bibliography 65

5

Chapter 1

Introduction

1.1 Epilepsy: A Challenging Neurological Disorder

Epilepsy is a chronic neurological disorder that affects the lives of approximately 50

million individuals worldwide, disproportionately impacting those in low- and middle-income

countries. It is the fourth most common neurological disorder, affecting about 1% of the

population at all ages [1]. Characterized by recurrent seizures – which are typically sudden

episodes of uncontrolled convulsions or changes in sensations – this condition interferes with

the normal electrical activity in the brain. The severity can vary, from momentary lapses

in awareness to strong, involuntary body movements. The unpredictable nature of these

seizures significantly impacts various aspects of life, posing major challenges and demanding

multifaceted therapeutic approaches.

A diagnosis of epilepsy necessitates the occurrence of at least two unprovoked seizures,

each a storm of electrical activity within specific brain regions [2]. These episodes can have

diverse and far-reaching consequences, affecting not only motor skills and consciousness but

also orientation, sensory perception, emotional state, and cognitive functions. The burden

of epilepsy, however, extends beyond the immediate effects of seizures. Individuals with

epilepsy are more susceptible to physical complications, including fractures, bruises, and

other injuries sustained during seizures [3]. The erratic nature of epilepsy and its potential

impact on daily life can also lead to psychological burdens, with anxiety, depression, and

social stigma being common challenges [1]. In resource-limited settings, where access to

proper healthcare and social support is scarce, increased mortality rates are observed among

individuals with epilepsy [4].

The origins of epilepsy are diverse and encompass a complex interplay of factors. Struc-

tural abnormalities arising from prenatal or perinatal brain damage, congenital malforma-

tions, or tumors can pave the way for seizures. In some cases, genetic mutations play a

role, with specific gene alterations contributing to the disorder’s development. Infections

6

that breach the brain’s defenses can also trigger epilepsy, alongside metabolic imbalances

affecting blood sugar, electrolytes, or other chemicals. In rare cases, despite advancements

in research, the cause of epilepsy remains unelucidated for some individuals.

Managing epilepsy effectively requires a comprehensive approach. Anti-seizure medica-

tions offer a powerful tool, significantly reducing seizure frequency and severity, thereby

improving quality of life and reclaiming a sense of control.

1.2 Diagnosis

Epilepsy, while posing a significant burden on individuals and healthcare systems, also

presents a unique challenge in its diagnosis. Despite advancements, pinpointing its origins

and accurately predicting seizure events remain challenging. This chapter describes the

intrinsic difficulties of diagnosing epilepsy, highlighting the limitations of current methods

and emphasizing the critical role of seizure prediction in managing this complex disorder.

The cornerstone of diagnosis lies in a detailed history, capturing patient experiences and

witness accounts. Neurological examinations provide further insights, while ancillary tests

like neuroimaging and EEG offer glimpses into the brain’s activity. However, the interpre-

tation of electroencephalography (EEG) signals represents a significant obstacle. Manually

reviewing hours or even days of data from ambulatory or continuous EEG recordings is

time-consuming and prone to subjectivity due to varying levels of expertise among readers

[5].

Further complicating matters are interfering artifacts within the EEG signal, obscur-

ing potential abnormalities and hindering accurate identification. Additionally, the inherent

variability of seizures across individuals necessitates a nuanced approach, as no single ”finger-

print” defines all epileptic events. Misdiagnosis and confusion with other episodic conditions

remain significant concerns, highlighting the need for more precise diagnostic tools.

In effective epilepsy management, accurately detecting seizures outside clinical settings

remains a key challenge. While traditional methods like surface electromyography (EMG)

reliably capture the forceful movements of generalized tonic-clonic seizures, they struggle

with other, subtler seizure types. This limitation calls for innovative, practical ”multimodal”

approaches that combine diverse data sources. It is not the topic of this work to go into detail

of possible integration of measurements of physiological changes during seizures, like heart

rate fluctuations, but is interesting to notice that this combined approach holds immense

potential for accurately identifying a wider range of seizures, even beyond the clinic walls.

Therefore, it’s a crucial step towards personalized care and transformative research in epilepsy

management [6].

Diagnosing epilepsy is a complicated journey, filled with personal interpretations and

limitations in current methods. However, the possibility of predicting seizures brings hope,

7

allowing timely interventions and improving the lives of those facing this challenge. By

adopting advanced technology and encouraging research collaboration, it is possible to make

strides in uncovering the mysteries of epilepsy, ultimately helping individuals take control of

their lives.

Considering the aforementioned complications of epileptic diagnosis, a multifaceted ap-

proach is required for effective seizure prediction and improved epilepsy management. This

includes collaborative efforts among neurologists, engineers, and data scientists, leveraging

advancements in machine learning and artificial intelligence to analyze complex EEG data

and identify subtle preictal signatures [7]. This work highlights the importance of in-between-

seizure brainwave recordings for revealing underlying problems and predicting future seizure

risk.

1.3 EEG signal

Accurate acquisition, robust preprocessing, and insightful analysis of the EEG signal are

crucial for achieving optimal and efficient seizure prediction. Therefore, a thorough under-

standing of the inherent characteristics of EEG, its acquisition methods and the challenges

posed by noise from various sources is essential.

The EEG records the synchronized electrical activity of neuronal populations in the brain,

offering a non-invasive glimpse into its inner workings. In the conventional EEG represen-

tation, the x-axis signifies time, capturing the temporal evolution of the electrical signals,

while the y-axis represents different channels or electrodes strategically placed on the scalp,

reflecting the spatial distribution of neural activity. So in simple words, the EEG signal is

essentially a 2D matrix of real values, where each row corresponds to a specific channel, and

each column corresponds to a discrete time point. The amplitude of the recorded electrical

potentials at each channel and time point reflects the magnitude of neuronal activity in the

corresponding region of the brain at that particular moment.

These electrical potentials, often measured in microvolts, originate from the summation

of post-synaptic potentials of large populations of neurons. For the patients with epilepsy

disorder the electrical activity of neurons varies across distinct states relevant to epilepsy:

• Interictal state, which is the period between seizures, characterized by regular rhythms

reflecting wakefulness, sleep, and cognitive function.

• Preictal state, which occurs up to 90 minutes before seizure onset and potentially

exhibits subtle shifts in amplitude, frequency, or specific waveform patterns like spikes

or sharp waves. Identifying these preictal signatures is crucial for seizure prediction.

• Ictal state, which is the seizure itself, marked by high-amplitude, rhythmic discharges

8

often localized to specific brain regions.

• Postictal state, which immediately follows the seizure and lasts for a few minutes,

exhibiting transient changes in EEG patterns.

Figure 1.1: Standard segmentation for the EEG recording of an epileptic patient. (A) The
trace depicts 480 min of recording from the F7 channel during a seizure divided into four main
stages: interictal, preictal, ictal, and postictal. The green areas represent the 30 min from
the preictal and interictal states used for the binary prediction task. Panels (B–E) illustrate
magnifications of 20 s of recordings from 20 channels at the beginning of the interictal,
preictal, ictal, and postictal states, respectively. Figure adapted from [8].

EEG acquisition involves placing electrodes, functioning as sensors, on the scalp, with their

number varying from dozens to hundreds.

These electrodes capture local electrical fields, providing a multichannel representation

of brain activity. However, this method of signal collection faces diverse challenges. Firstly,

the skull acts as a filter, attenuating and blurring underlying neural signals, thereby limiting

spatial resolution. Secondly, various sources can introduce unwanted electrical activity into

the EEG, generating undesirable noise. These sources encompass physiological artifacts or

subject-related artifacts, such as eye blinks, muscle contractions, and cardiac signals, as well

as environmental artifacts like temperature and air humidity. These factors interact with

noise sources such as line noise or other forms of electromagnetic interference [9].

Another critical factor is that EEG recordings inherently contain noise and lack precise

localization to specific brain regions. This is because each scalp electrode captures activity

9

Figure 1.2: The image represents the standard electroencephalogram (EEG) monitoring pro-
cess, with electrodes placed directly on the patient’s head (sometimes the electrodes are
integrated into a wearable cap). This examination is completely painless and requires the
patient’s cooperation, as they must avoid sudden movements and remain relaxed. By placing
electrodes in specific areas of the scalp (along with 2 reference electrodes on the ears), the
EEG can identify any abnormalities and the brain regions involved.

from its surrounding area, resulting in blurred information rather than pinpointing exact

locations (spatial resolution limited to several centimeters). This phenomenon, known as

”channel crosstalk,” poses a significant challenge for accurately interpreting the brain’s elec-

trical activity from scalp EEG recordings [10].

Careful denoising and preprocessing of the raw EEG signal have been the focus of several

studies. Various approaches have been developed to initiate signal cleaning, such as filtering

to directly remove undesired frequencies or artifact removal, which includes manual removal,

automatic removal, or no cleaning. Despite its subjectivity, manual removal remains preva-

lent, and in other cases, automatic methods such as independent component analysis (ICA)

and discrete wavelet transformation (DWT) are employed [11].

1.4 Problem Definition and Necessity of a Timely Prediction

Despite receiving appropriate treatment and adhering to medication, and despite the

introduction of newer antiepileptic drugs, around 20%–30% of individuals diagnosed with

10

epilepsy continue to experience seizures, a condition referred to as drug-resistant epilepsy

[12]. This highlights the crucial need for developing accurate seizure prediction methods,

enabling proactive management strategies that go beyond solely reactive interventions. The

ability to predict seizures before their occurrence represents a transformative shift in epilepsy

management. Early warnings, even a few minutes prior to a seizure, can empower individuals

to take precautions and potentially prevent associated injuries or even the seizure itself.

Current clinical practices often rely on trained neurologists visually interpreting elec-

troencephalography (EEG) recordings to diagnose and classify seizure types. However, this

approach suffers from limitations, including time-consuming analysis, inherent subjectivity,

and susceptibility to errors. Therefore, developing automated, objective, and reliable meth-

ods for interpreting and analyzing EEG signals for seizure prediction is essential.

The distinct signatures of pre-seizure and interictal states in the EEG offer a promising

avenue for developing seizure prediction algorithms. These pre-seizure signatures often man-

ifest as significant changes in amplitude and frequency compared to the baseline interictal

state [13]. These alterations in brain activity preceding a seizure enable the classification of

the preictal state up to 30 minutes before the onset of an actual seizure.

This work focuses on training deep learning models using EEG signals to achieve timely

predictions of epileptic seizures, a critical aspect in epileptic treatment and diagnostic stud-

ies. Automated seizure detection algorithms, which incorporate automated seizure-detection

features, are the subject of numerous studies aiming to enhance their accuracy and specificity

for clinical reliance. Achieving high accuracy is the key for acceptance by clinicians, making

this area one of the most widely explored in the field of epileptic treatment and diagnostic

studies, including the present study.

11

Chapter 2

Artificial Intelligence Applications to

Epilepsy

2.1 Epileptic Seizure Prediction with Classical Machine Learn-

ing

From the analysis of numerous scientific papers it can be observed that Artificial Intelli-

gence (AI), driven by Machine Learning (ML) techniques and Deep Learning (DL) models,

has offered an alternative and promising approach in the field of healthcare, including the pre-

diction of epileptic seizures. However, while these techniques represent significant progress,

challenges remain in achieving consistently high levels of accuracy and reliability in real-world

applications.

The effectiveness of machine learning lies in its capability to discern patterns within ex-

tensive datasets using statistical methods. The growing availability of large-scale biomedical

data presents new avenues for healthcare researchers to harness Machine Learning, enhancing

the diagnosis and treatment processes.

The basic two steps involved for seizure detection in the various classical ML methods

proposed in the literature are feature extraction and classification [14]. The first step involves

extracting relevant features from the raw EEG signal. These features encapsulate essential

characteristics of the brain activity and serve as the foundation for subsequent seizure pre-

diction. The process can be likened to characterizing a complex language by analyzing its

individual components (words). Similarly, for EEG signals, feature extraction aims to iden-

tify informative components that can differentiate seizure-related activity from normal brain

function. Following feature extraction, the ML model enters a classification phase. Here,

the model undergoes a supervised learning process, utilizing a pre-labeled dataset of EEG

recordings where seizures have been meticulously identified by experts. Through this process,

the model learns to distinguish between EEG patterns associated with upcoming seizures and

12

those representing normal brain activity.

Feature extraction techniques essentially analyze the EEG signal from various perspec-

tives, extracting features that hold potential for seizure prediction. The commonly used

methods are: Fast Fourier Transform (FFT), Wavelet Transformations (WT) or Indepen-

dent Component Analysis (ICA). FFT decomposes the signal into its constituent frequencies,

enabling the identification of characteristic frequency patterns associated with seizure. WT

offers a more nuanced approach by allowing the analysis window to adapt to the frequency

content of the signal. This flexibility makes WT particularly well-suited for capturing tran-

sient changes in EEG signals, which are often indicative of seizure activity. ICA separates

the EEG signal into independent sources, potentially revealing hidden patterns or underlying

processes masked by the raw EEG recording [15].

By effectively combining signal preprocessing and feature extraction techniques, classical

ML algorithms can be trained to identify robust patterns within EEG signals. Classical ML

approaches for epileptic seizure prediction rely on various classification techniques, which

offer several advantages compared to more complex models that will be discussed in the next

chapter. For instance, traditional classifiers require less computational power and time for

implementation compared to deep learning models. This allows for faster model development

and deployment in clinical settings. Also, classical ML techniques are generally less prone

to overfitting, which occurs when a model becomes overly tuned to the training data and

performs poorly on unseen data. It leads to potentially more generalizable models for seizure

prediction.

Here’s an overview of some commonly employed classification techniques and their specific

applications in seizure prediction:

• Support Vector Machines (SVMs): SVMs aim to construct a hyperplane that maxi-

mizes the separation between seizure and non-seizure data points in the feature space.

This approach focuses on identifying the most robust decision boundary for seizure

classification. While achieving good accuracy, SVMs can be less interpretable due to

their complex decision boundaries. Additionally, tuning their hyperparameters requires

expertise, and they can be sensitive to outliers in the EEG data [16].

• Näıve Bayes: Näıve Bayes is particularly well-suited for scenarios where features are

conditionally independent. In seizure prediction, it can be used to classify EEG fea-

tures based on their likelihood of belonging to either seizure or non-seizure classes [17].

However, the assumption of feature independence may not always hold true for complex

EEG data.

• k-Nearest Neighbors (k-NN): This non-parametric classification method classifies a new

data point based on the majority class of its k nearest neighbors in the feature space.

13

In seizure prediction, k-NN can be used to classify new EEG recordings by comparing

them to previously labeled seizure and non-seizure examples in the feature space [18].

However, k-NN can be less robust to noisy data and may struggle with high-dimensional

feature spaces.

• Random Forest (RF): This ensemble method combines multiple decision trees, where

each tree votes on the class of a new data point. The final prediction is made based on

the majority vote of these trees. This approach helps to reduce overfitting and improve

the generalization of the model. In seizure prediction, Random Forests can leverage

the combined power of multiple decision trees to classify EEG features and identify

patterns indicative of seizures [18].

• XGBoost: Another ensemble method, XGBoost employs gradient boosting to sequen-

tially add decision trees, focusing on improving the model’s performance for previously

misclassified instances. This strategy leads to a more robust model capable of handling

complex seizure prediction tasks [19]. However, XGBoost, like Random Forest, can be

less interpretable due to the ensemble nature and may require careful hyperparameter

tuning for optimal performance.

There are other classifiers like Linear Discriminant Analysis (LDA), Hidden Markov Mod-

els (HMMs) etc., but the listed ones have been the most efficient over past years. Evaluating

the effectiveness of seizure prediction models relies on a trio of key metrics: accuracy, sensi-

tivity, and specificity. Accuracy reflects the overall correctness of the model’s predictions. A

high accuracy indicates the model’s ability to accurately classify both seizure and non-seizure

EEG segments. Sensitivity assesses the model’s ability to correctly identify preictal/seizure

EEG segments. High sensitivity translates to a model’s effectiveness in capturing and predict-

ing upcoming seizures. Specificity evaluates the model’s ability to correctly classify interictal

(non-seizure) EEG segments. High specificity indicates the model’s proficiency in accurately

identifying normal brain activity. Mathematically, they are calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

where TP, TN, FP, and FN stand for true positive (correctly identified seizure signals), true

negative (correctly identified non-seizure signals), false positive (incorrectly marked as seizure

signals), and false negative (incorrectly marked as non-seizure signals), respectively.

Many recent Machine Learning (ML) techniques have reportedly achieved impressive

14

results, with accuracy, sensitivity, and specificity often exceeding 90%, and in some cases,

even reaching near-perfect performance (close to 100%) on well-preprocessed datasets [18,

19, 20].

The point of departure for this project is the study ”Methodological Issues in Evaluating

Machine Learning Models for EEG Seizure Prediction: Good Cross-Validation Accuracy Does

Not Guarantee Generalization to New Patients” by Shafiezadeh et al [8] . Even though the

present thesis is based on deep learning approaches, the final results are compared to the

results presented in this paper in order to observe the improvements or weak point of the

modern DL models respect to the classical ML methods.

The paper mentioned above aims to evaluate seizure prediction models based on stan-

dard machine learning algorithms by comparing two cross-validation methods. The study

utilizes two EEG datasets: the CHB-MIT benchmark and a new dataset collected by the

Eugenio Medea IRCCS Hospital. The primary machine learning models considered include

support vector machines, decision trees, k-nearest neighbors, logistic regression, naive Bayes,

random forests, and gradient boosting. The best-performing model, XGBoost, achieves an

average precision of 79% on the CHB-MIT dataset and 82% on the new dataset. However,

when evaluated using a leave-one-patient-out validation scheme, the model’s performance

drops to around 50%, indicating the challenge of generalization. The EEG datasets contain

multichannel recordings processed with notch and high-pass filters. Feature extraction yields

53 features, including time and frequency domain features. The study highlights the im-

portance of robust validation methodologies, favoring leave-one-patient-out over randomized

cross-validation. While randomized cross-validation may lead to overly optimistic results,

leave-one-patient-out validation provides a more realistic assessment of model performance.

The paper concludes by emphasizing the need for stringent evaluation criteria in seizure

prediction and suggests exploring advanced machine learning techniques like deep neural

networks in future research.

In the later chapters the dataset provided by the Eugenio Medea IRCCS Hospital will

be discussed more in details since in this project the same dataset is used. The model

demonstrates overall good performance, as indicated by the average accuracy of 81.6%. This

suggests that the model can effectively differentiate between preictal (seizure) and interictal

(non-seizure) states in EEG recordings. The variation in accuracy across different patients

(ranging from 73.24% to 86.23%) suggests that the model’s performance may be influenced

by individual patient characteristics or the underlying EEG patterns associated with seizures.

The variance in sensitivity between patients is even more noticeable, ranging from 49.8% to

83.4%. Factors such as the frequency and severity of seizures or unique EEG signatures may

contribute to this variability. However, the consistently high specificity across most patients

(ranging from 88.82% to 100%) suggests that the model is adept at correctly identifying

non-seizure states, which is crucial for minimizing false alarms and ensuring patient safety.

15

The average sensitivity (63.47%) being lower than specificity (95.92%) implies that the model

may be more proficient at correctly identifying non-seizure states than seizure states. This

could be attributed to the inherent challenge of detecting seizures, which may manifest in

diverse EEG patterns and vary in severity among patients.

Even if a lot of traditional ML techniques have demonstrated high accuracy, incorporating

advanced machine learning techniques, such as deep neural networks, may offer opportuni-

ties to improve the model’s performance and robustness, particularly in capturing complex

patterns within EEG data.

2.2 Deep Learning Approach

The field of epileptic seizure prediction is witnessing a growing preference for Deep Learn-

ing (DL) models. This shift stems from the desire to reduce human intervention in the model

development process.

The success of Deep Learning extends far beyond epileptic seizure prediction. DL architec-

tures have made significant contributions in various medical domains, including: (1) Clinical

Imaging, to analyze medical images like X-rays, MRIs, and CT scans for disease detection

and diagnosis [21]; (2) Genomics and Proteomics, to identify patterns in genetic and protein

data to understand disease mechanisms and develop personalized medicine approaches [22];

(3) Computational Biology, to extract insights from complex biological data to advance our

understanding of health and disease [23]; (4) Disease Prediction: to predict the risk of devel-

oping various diseases, including neurological conditions [24]. These successes highlight the

remarkable ability of DL algorithms to detect intricate patterns in high-dimensional data,

making them particularly well-suited for analyzing EEG signals.

Deep Learning builds upon the foundation of Machine Learning (ML) but takes it a

step further. It utilizes complex neural networks with multiple interconnected layers [25].

These layers work together to progressively process and analyze raw data, ultimately leading

to a desired outcome. Unlike traditional ML approaches, which often rely on handcrafted

features, Deep Learning has the remarkable ability to automatically extract relevant features

from the data itself. Deep Learning eliminates this step by automatically learning informative

features directly from the raw EEG data. This not only reduces human intervention but also

potentially allows the model to discover subtle patterns that might be missed by human

experts. Furthermore, the ability to learn features directly from data leads to more robust

and generalizable models. This is particularly important for seizure prediction, where a

model needs to perform well on unseen EEG recordings beyond the training data [26].

In the world of Deep Learning (DL), several neural network architectures have emerged

as powerful tools for various tasks. Here, four most frequently used architectures will be

discussed: Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs),

16

Long Short Term Memory (LSTM) and Residual Neural Network (ResNet). All these DL

architectures share a common training process. The models are ”fed” with labeled EEG data

(normal/interictal vs. pre-seizure or seizure) and progressively learn to identify features and

patterns that distinguish these states. The success of this training process hinges on finding

the right balance between model complexity and the amount of available training data. The

following sections will delve deeper into the specifics of each architecture, exploring their

strengths and limitations in the context of epileptic seizure prediction from EEG signals.

Convolutional Neural Networks

CNN structure resembles the interconnected neurons in the human brain. CNNs excel at

extracting features from multi-dimensional data like EEG signals. They achieve this through

a process called convolution, which acts like a filter that slides across the data, identifying and

extracting informative patterns. The essential building blocks of CNN are: Convolutional

Layer (Conv Layer), Activation Functions and Pooling Layers.

Convolutional Layer utilizes filters, also known as kernels, which are essentially small

matrices that slide across the input EEG signal. The size of the kernel determines the extent

of the EEG signal analyzed at once. Stride, on the other hand, controls the movement of

the kernel. A stride of 1 indicates the kernel moves one step at a time, while a stride of 2

signifies a jump of two steps between consecutive analyses. The success of training a DNN

depends on the balance between the number of parameters to be trained and the number of

examples in the training dataset [27].

By performing convolution across the entire EEG signal with various kernels, the network

captures diverse features embedded within the data. Mathematically, it involves calculating

the weighted sum of the element-wise product between the kernel and a specific portion of

the EEG signal. In simpler terms, the kernel’s values are multiplied with corresponding

data points in the signal, and the products are summed. This process is repeated as the

kernel slides across the entire signal. By employing various kernels of different sizes and

orientations, the Conv Layer can capture diverse spatiotemporal patterns embedded within

the data. These patterns might include subtle changes in frequency, amplitude, or other

characteristics that could indicate an impending seizure. The convolution operation is:

y[n] =
N−1∑

k=0

x[k] · h[n − k]

where x is signal, h is filter, and N is the number of elements in x. The output vector is

y.

After the convolution operation, activation functions introduce non-linearity into the

network. This is crucial because without them, CNN would simply learn linear relationships,

17

limiting its ability to model complex patterns in EEG signals. Activation function is an

operation which maps an output to a set of inputs. An activation function is an operation

that maps an output to a set of inputs, and in CNNs, the ReLU (Rectified Linear Unit) is a

popular choice due to its reduced likelihood of the gradient vanishing problem.

The gradient vanishing problem occurs when the gradient of the loss function becomes

too small during backpropagation, preventing effective learning in the network. The ReLU

activation function helps address this by maintaining a constant gradient, allowing only

positive values to pass through and setting negative values to 0:

f(x) = max(0, x)

Another commonly used activation function is Tanh, which is similar to the sigmoid

function but ranges from -1 to 1. Tanh maps negative inputs strongly to negative values,

positive inputs strongly to positive values, and zero inputs to values near zero.

The choice of activation functions depends on the specific layer’s role in the network. For

instance, the output layer often uses a sigmoid activation function in binary classification

problems:

f(x) =
1

1 + e−x

paired with binary cross-entropy as the loss metric. In cases with more than two classes,

a softmax activation function is employed at the output layer. This function calculates the

probability distribution of the k output classes, ensuring that the output values (’p’) fall

between 0 and 1 and collectively sum to 1:

pi =
ezi

∑k
j=1 ezj

where x is the net input. The corresponding loss metric for multi-class scenarios is cate-

gorical cross-entropy.

There are always Pooling Layers in between convolutional layers, which serve a dual

purpose: dimensionality reduction and overfitting prevention. Pooling layers downsample

the output from the convolutional layer, typically by selecting the maximum value (max

pooling) or average value (average pooling) within a specific window. This reduces the

number of parameters in the network, making it computationally efficient and less prone

to overfitting, where the model memorizes the training data too well and performs poorly

on unseen data. To address the challenge of overfitting, additional strategies involve the

application of regularization techniques such as l2 regularization, batch normalization or

the integration of dropout layers. These techniques act to constrain the model’s freedom,

encouraging the optimization process to seek simpler solutions.

L2 regularization, also known as Ridge Regression or Tikhonov regularization, imposes

18

constraints on the model’s flexibility by incorporating a regularization term into the cost

function. This compels the model, while fitting the data, to maintain weights at minimal

values. The regularization term, expressed as the squared 2-norm (Euclidean distance), is

influenced by the parameter ¼, regulating the extent of model regularization. Here is the

mathematical representation of L2:

R(w) =
¼

2
∥w∥2

error = L2 regularization + loss function (2.1)

where m is the length of the weights vector W of the model. If ¼ equals 0, there is no

regularization, as the added regularization term in the loss function becomes zero. Conversely,

if ¼ is too substantial, the weights tend to approach zero, causing the model to underfit the

data and impeding effective learning.

Dropout emerges as a widely favored regularization technique in deep learning [28]. Its

fundamental principle is straightforward: during the training process, neurons in certain

layers are randomly ”dropped out,” effectively set to zero and disregarded. The selection of

neurons to deactivate in each layer is based on a probability parameter, denoted as p. This

implies that, at each training step, each neuron has a probability p of being deactivated, with

p representing the dropout rate or the fraction of nodes to be ignored. The implementation

of dropout introduces a form of randomness during training, preventing the network from

becoming overly reliant on specific neurons and enhancing its generalization ability to new

data.

Batch normalization reduces internal covariate shift by maintaining consistent input dis-

tributions across layers, which facilitates more stable and efficient training [29]. It also acts

as a regularizer by introducing slight noise during training, similar to the dropout technique,

contributing to improved model generalization. Lastly, batch normalization can have a pos-

itive impact on the optimization process, allowing for the use of higher learning rates and

accelerating convergence during training.

Returning to the conventional CNN architecture employed for seizure prediction, it typ-

ically comprises multiple convolutional layers stacked together. Each successive layer serves

to extract increasingly intricate features from the EEG signal, facilitating the network’s

ability to discern relevant patterns. Following these convolutional layers, pooling layers are

frequently introduced to reduce dimensionality, while dropout layers are incorporated to

mitigate the overfitting problem. Finally, fully connected layers take over, integrating the

extracted features and making the final prediction about the presence or absence of a seizure.

The process of training in CNN is based on backpropagation (BP). BP represents the core

of the learning process of a neural network, since the model’s learnable parameters undergo

19

iterative updates. Initially, predictions are generated through a forward pass, following which

the gradient of the loss function relative to the weights is computed. The loss quantify the

discrepancy between a model’s predictions and the true labels (ground truth) for a given set of

data. By minimizing this loss function during training, the model iteratively refines its inter-

nal parameters (weights and biases) to produce increasingly accurate predictions. The most

popular loss functions in AI are MNE (Mean Squared Error), used for regression tasks and

Cross-Entropy loss, which is used for classification tasks and measures the difference between

the probability distribution generated by the model and the true probability distribution of

the target class. It penalizes deviations between the predicted and actual distributions, with

higher penalties for larger deviations. Here is the equation for cross-entropy calculation:

1

N

N∑

i=1

K∑

k=1

yik log(pik)

where p(ik) is the predicted probability distribution and y(ik) is the actual distribution for

N data points across K classes.

Subsequently, the weights are adjusted in the opposite direction of the gradient. Math-

ematically, backpropagation entails the modification of weights and biases, influenced by

factors such as momentum, learning rate, cost function, layer number, and regularization

parameter:

W
(t+1)
l = W

(t)
l − ¸

∂C

∂Wl

− ¼W
(t)
l

B
(t+1)
l = B

(t)
l − ¸

∂C

∂Bl

where W, B, l,¼, x, n, m, t, and C represent the weight, bias, layer number, regularization

parameter, learning rate, total number of training samples, momentum, updating step, and

cost function respectively. The regularization parameter, denoted by ¼, plays an important

role in preventing data overfitting, whereas the learning rate governs the pace at which

the network assimilates knowledge during training. Momentum aids in converging the data

efficiently. While a typical learning rate may be initially set to

1 × 10−2 − 1 × 10−5,

but its optimal value is often determined through trial and error. The adjustment of param-

eters like momentum, regularization, and learning rate is facilitated by modern optimization

algorithms such as Stochastic Gradient Descent (SGD) with Momentum, Adam, or RMSprop.

An optimization algorithm assumes responsibility for dictating how the model’s parameters

(weights) evolve throughout the training process. Its overarching objective is to minimize

20

an objective function, namely the cost function, which is contingent on the model’s weights.

Given that the cost function is computed based on the model’s predictions, determined by

the weights and input features, the significance of weights in minimizing the cost function

becomes apparent. Hence, as the values of weights are dictated by Gradient Descent, the

optimizer’s role is to refine the Gradient Descent process, ensuring its efficiency and efficacy

in model optimization.

In the context of epileptic seizure prediction, CNNs have emerged as powerful tools due

to their ability to identify spatiotemporal patterns within EEG signals [30]. These patterns,

often subtle variations in frequency, amplitude, or other characteristics, can hold crucial

information about the potential onset of a seizure. By learning these intricate patterns

from labeled EEG recordings (normal, preictal or ictal), CNNs can effectively classify new,

unseen data, potentially aiding in early intervention and improved patient outcomes. The

training time of CNNs can vary depending on the dataset size and model complexity. While

simpler models might train in hours, achieving accuracies exceeding 90% for seizure detection

tasks. However, it’s important to acknowledge that this remarkable accuracy might not be

universally achievable and may depend on various factors, including specific datasets and

model configurations. A study employing a relatively simple CNN architecture with two

convolutional layers, a pooling layer, and three fully connected layers reported an average

accuracy of approximately 99% for seizure detection [31]. Conversely, deeper models, such as

a 13-layer deep CNN designed for automated classification of normal, preictal, and ictal EEG

signals without prior feature extraction, achieved an average accuracy of 88.67%, a specificity

of 90.00%, and a sensitivity of 95.00%. [5] These findings highlight the potential of CNNs

for seizure prediction, with promising accuracy levels being reported in various studies.

Recurrent Neural Networks and LSTM

RNNs (Recurrent Neural Networks) differ from CNNs (Convolutional Neural Networks)

in their ability to consider both current and past information, making them suitable for

analyzing sequential data like EEG signals. They employ an internal memory, known as a

hidden state, which updates with each new data point, capturing relevant information from

past observations. However, RNNs suffer from the vanishing gradient problem, limiting their

ability to learn long-term dependencies [32]. LSTM (Long Short-Term Memory) networks,

which are evolution of RNN, address this issue by incorporating gates to control the flow

of information. These gates, including the forget gate, input gate, cell state, and output

gate, enable LSTMs to retain information over longer periods. While LSTMs offer improved

performance in learning long-term dependencies, they come with increased computational

costs and require careful optimization of hyperparameters for optimal results. LSTM is an

evolution on the RNNs that include gates to deal with the vanishing gradient problem. Lately,

21

LSTM is getting used more and more often in the field of epileptic seizure prediction.

LSTMs are noteworthy in the field of seizure prediction, given their demonstrated efficacy

and suitability for this application [33]. They are capable of capturing temporal dependencies

in the data. This is important for EEG analysis because patterns in EEG data often depend

on the previous data points in time. For different preictal window sizes and the complex-

ity of the LSTM architectures, the sensitivity and specificity values consistently go beyond

99%. The experiments conducted on the same dataset and with the same conditions, but

with classical ML models show that the LSTM network significantly improves classification

performance. What’s more, the key success of the LSTM classifier is maintaining sensitivity

and specificity above 99%, resulting in a very low False Positive Rate (FPR) and successful

prediction of every seizure. The LSTM classifier outperforms previous methods, including

CNN, on the same EEG dataset with similar preictal window durations [34]. In many stud-

ies, it’s common to combine CNN with LSTM, achieving accuracy, specificity, and sensitivity

higher than 99%. This combination eliminates the need for certain feature extraction and

selection steps [35].

Residual Neural Networks

ResNets also address the challenge of training very deep neural networks, which can be-

come prone to vanishing gradients. ResNets introduce ”shortcut connections” that allow

information to flow directly between layers, facilitating better training and potentially im-

proving model performance [36]. These skip connections allow the network to skip one or

more layers.

The main characteristic of ResNet lies in its use of residual blocks. A residual block

consists of two main paths: the identity path and the shortcut path. The identity path

is a straightforward pass-through of the input to the next layer, while the shortcut path

introduces a series of operations. Mathematically, the output of the residual block is given

by:

output = F (x) + x

where F(x) represents the operations within the block, and x is the input. The essence of

ResNet’s innovation is the introduction of shortcut connections, which enable the network to

skip one or more layers during forward and backward passes. This alleviates the vanishing

gradient problem encountered in training deep networks. The skip connections facilitate

the flow of gradients, allowing for the successful training of exceedingly deep networks by

preserving information from earlier layers.

To balance computational efficiency and expressiveness, ResNet often adopts a bottleneck

architecture within each residual block. This involves a sequence of three operations: 1x1

22

convolution (dimension reduction), 3x3 convolution, and another 1x1 convolution (dimen-

sion restoration). This configuration reduces the computational load while maintaining the

expressive power of the network. ResNet achieves its depth by stacking residual blocks on

top of each other. The architecture often follows a pattern of increasing depth while de-

creasing spatial resolution, typically using pooling layers or strides in convolutional layers to

downsample the spatial dimensions.

Following the stacking of residual blocks, ResNet typically concludes with a global aver-

age pooling layer and a fully connected layer for the final prediction. The combination of

identity and shortcut paths in residual blocks enables the network to simultaneously focus

on capturing low-level and high-level features, crucial for discerning subtle patterns in EEG

signals indicative of seizures. Using ResNet for seizure classification allows to achieve state-

of-the-art results with minimal data preprocessing and without extracting any hand-crafted

features [37]. In the latest studies, the use of network architecture combining convolutional,

batch-normalization, residual connections, and drop-out layers provides good convergence

and has demonstrated the highest performance among numerous network structures that we

used in previous years.

However, the introduction of skip connections results in an increased computational cost

compared to shallower networks. Also, like LSTMs, ResNets introduce additional hyper-

parameters associated with the residual blocks, requiring careful tuning for optimal perfor-

mance.

As a result, all the described deep learning models show impressive accuracy levels, which

translates to the potential for highly reliable seizure prediction. Unlike traditional ML meth-

ods, DL models can learn features directly from raw EEG data, eliminating the need for

extensive manual feature engineering. However, the high complexity of the models burdens

the computational requirements. Also, all deep learning networks are very time-consuming

in the training process, and usually, a GPU is required. DL models tend to require more

training data and careful task-dependent hyper-parameter search, to avoid overfitting.

23

Chapter 3

Materials and Methods

The following chapters will delineate the experimental framework employed for the pre-

diction of epileptic seizures using deep learning models and the results that were achieved.

3.1 EEG Dataset

This study utilizes an electroencephalogram (EEG) dataset curated by the Epilepsy and

Clinical Neurophysiology Unit at Eugenio Medea IRCCS Hospital, Conegliano, Italy. In par-

ticular, the dataset includes recordings from 10 patients suffering from epilepsy (4 male and 6

female), capturing a total of 40 seizure events. EEG recordings were acquired using a standard

20-channel montage, as illustrated in Figure 3.1. This comprehensive electrode placement

provides rich spatial information about brain activity. The EEG signal is segmented into

Figure 3.1: Scalp positioning of the 20 common EEG channels used in our data set. Figure
adapted from [8].

24

four distinct states, described in detail within the ”EEG Signal” chapter: interictal, preictal,

ictal, and postictal. Seizure onset (ictal state) was meticulously marked by clinicians based

on electroclinical and video-EEG data. This study focuses on a binary classification task:

differentiating between the preictal state (immediately preceding a seizure) and the interictal

state, characterized by normal brain activity. Figure 2 visually depicts this classification

objective. To achieve this, two classes were defined based on the temporal proximity to a

seizure: 1) class 0, which contains EEG signals randomly selected from interictal periods,

serving as the baseline (normal) class; 2) class 1: which contains the EEG signals sampled

within a 0-30 minute window before seizure onset [8].

3.2 Preprocessing

The first step is the dataset cleaning and preprocessing in order to shape it to the right

form to be the input of machine learning and deep learning models for the different prediction

tasks.

The whole project is done with Python. The following libraries are used for the prepro-

cessing of the dataset in the initial stage of the project: NumPy, pandas, and MNE-Python.

NumPy is a fundamental Python library that provides powerful tools for numerical com-

puting. In fact, it introduces efficient multidimensional arrays (ndarrays) that are ideal for

storing and manipulating large datasets of EEG signals. It forms the foundation for many

scientific Python libraries, including MNE-Python [38].

Pandas complements NumPy by providing high-level data structures like Series (one-

dimensional labeled arrays) and DataFrames (two-dimensional labeled data structures) [39].

MNE (Minimum Norm Estimation) serves as a cornerstone for various tasks crucial to

preparing EEG data for deep learning models. It was specifically designed for the analysis

of magnetoencephalography (MEG) and electroencephalography (EEG) data. MNE pro-

vides numerous functions for loading EEG data from various file formats commonly used in

neuroimaging research, including those generated by different EEG acquisition systems. It

allows for the application of various filtering techniques to remove unwanted noise from the

EEG signal. This includes band-pass filtering to focus on the frequency range of interest for

seizure prediction and eliminating power line interference. MNE also offers functionalities for

identifying and removing artifacts from the EEG signal that were mentioned several times

in previous chapters [40].

In this work, the EEG signal is segmented into non-overlapping time windows of 5 seconds

each. The data is converted from microvolts to volts (V) by multiplying it with a factor of 1e-

6. This scaling ensures compatibility with the units expected by MNE. Then a notch filter is

applied to specifically remove line noise at frequencies of 50 Hz and 100 Hz, which are common

electrical interferences. These frequencies are irrelevant to brain activity and can potentially

25

mask seizure-related patterns. After that, a band-pass filter allows only frequencies within

a specific range to pass through, effectively removing unwanted low-frequency noise (below

1 Hz) and high-frequency components (above 125 Hz) from the signal. The chosen band-

pass range (1 Hz to 125 Hz) encompasses the relevant frequency bands associated with brain

activity of interest in seizure prediction tasks.

The sampling frequency of the EEG signal is reduced with the process, called downsam-

pling, which aims to achieve a balance between retaining essential information and reducing

computational cost. The new sampling frequency is set to 250 Hz. The automatic zero-

padding during downsampling is set, ensuring signal integrity.

Following data preprocessing, two distinct labels are assigned to each sample for super-

vised learning purposes. Samples belonging to the preictal state (between 0 and 30 minutes

before a seizure) are designated with a label of ”0,” while interictal state samples receive a

label of ”1.” Subsequently, all samples undergo reshaping into a uniform matrix format for

compatibility with DL models. The resulting matrix dimensions are (20, 1280), where ”20”

represents the number of EEG channels included in the analysis. Each channel within this

matrix holds 1280 data points, corresponding to the temporal resolution of the EEG record-

ing. In the end, the two classes are balanced to have equal number of samples. Following the

completion of the initial data preprocessing steps, the resulting dataset, approximately 5 GB

in size, is prepared for further analysis. The preparation of the dataset involve additional

steps like data normalization, but before that the preprocessed dataset is uploaded to the

virtual machine (VM) where the core training of the deep learning models will take place.

3.3 Tools and Libraries

Prior to delving into the specific architectures and training processes of the employed deep

learning models, it’s crucial to discuss the software and hardware environment that defines

this research.

Processing Units

Deep neural networks require significant computational resources to effectively handle

the complexity of seizure prediction tasks. The size and dimensionality of the EEG dataset,

coupled with the intricate structures of the models themselves (including numerous layers

and a vast array of parameters), necessitate processing power beyond that offered by tradi-

tional CPUs. This limitation translates to significantly longer training times, hindering the

exploration of various model configurations and hyperparameter tuning strategies. To accel-

erate the training process and facilitate efficient experimentation, leveraging the processing

power of Graphics Processing Units (GPUs) is absolutely necessary in projects involving deep

26

learning. GPUs are specifically designed for parallel processing tasks, making them ideal for

handling the computationally intensive operations involved in training DL models.

This project utilizes a Virtual Machine (VM) environment for enhanced flexibility and

resource management. Setting up the VM involves installing compatible drivers, configur-

ing the CUDA environment, and ensuring compatibility with the available GPU. Here’s a

breakdown of the specific software and hardware employed:

• CUDA Version: 12.2

• NVIDIA Driver Version: 535.104.12

• GPU: Tesla V100-SXM2-16GB

The availability and utilization of the GPU are constantly monitored throughout the project.

All models, datasets, and computations are moved to the available device, ensuring efficient

utilization of GPU resources.

Libraries

The seizure prediction task necessitates the utilization of powerful software libraries. One

of the most used deep learning frameworks is PyTorch. It adopts a dynamic computational

graph, allowing for the creation and modification of the graph during runtime. This flexibility

empowers researchers to experiment with different network architectures and loss functions

on the fly. Compared to certain other deep learning frameworks, PyTorch boasts a relatively

simpler and more intuitive syntax, making it easier to learn and understand for developers.

This clarity in code structure enhances debugging and model interpretation. Also, PyTorch

integrates with NVIDIA’s CUDA framework, enabling efficient training on GPUs [41].

The core library torch provides fundamental building blocks for constructing deep learning

models. It includes functionalities for defining tensors (multidimensional arrays), perform-

ing mathematical operations on them, and implementing various neural network layers (e.g.,

convolutional layers, recurrent layers). This submodule torch.nn houses pre-built neural

network modules like nn.Conv2d (convolutional layer), nn.LSTM (Long Short-Term Mem-

ory layer), and nn.Linear (fully-connected layer). This torch.optim offers a collection of

optimization algorithms, essential for training deep learning models. Algorithms like op-

tim.Adam and optim.SGD (Stochastic Gradient Descent) update the model’s weights and

biases based on the calculated loss function, progressively improving the model’s perfor-

mance during training. torch.nn.functional: This torch.nn.functional provides various ac-

tivation functions (e.g., ReLU, Sigmoid) and loss functions (e.g., CrossEntropyLoss). The

torch.utils.data facilitates data management for deep learning tasks. Classes like Dataset

and DataLoader streamline data loading, shuffling, and batching processes, ensuring efficient

27

training. The torch.cuda.amp enables Automatic Mixed Precision (AMP) training. AMP

leverages a mixed-precision approach to accelerate training without compromising accuracy,

particularly beneficial for resource-intensive tasks like seizure prediction with large datasets.

While PyTorch provides the core functionalities for deep learning, Torchvision, a com-

panion library, offers specific tools and functionalities particularly useful for computer vision

tasks. However, the concept of ”vision” can encompass tasks beyond traditional image recog-

nition. In the context of seizure prediction, EEG data can be visualized as a 2D matrix, where

rows represent channels and columns represent time points. Therefore, certain functionalities

within Torchvision can be leveraged even for seizure prediction tasks involving EEG data.

For instance, torchvision.transforms can be used for data augmentation techniques, which

artificially create variations of existing data samples. This can help the model generalize

better and prevent overfitting, a common challenge in deep learning. Even though, PyTorch

is a popular choice, the deep learning community is diverse, and it is possible to achieve sim-

ilar results with other frameworks. In fact there can be many other alternatives: Tensorflow,

Keras, Google Colab etc. The choice of framework often depends on your specific project

requirements and personal preferences.

Another powerful Python library utilized in this project is Scikit-learn, which offers a

wide array of tools for machine learning tasks. For instance, the StandardScaler module

removes the mean and scales the data to unit variance, ensuring uniform contribution of all

features during model training. This is crucial for algorithms sensitive to feature scales. The

LabelBinarizer is employed when seizure labels are categorical (e.g., ”seizure,” ”non-seizure”),

requiring conversion into binary vectors for classification algorithms. One-hot encoding is

commonly utilized for this purpose.

KFold Cross-Validation is a robust method employed to mitigate overfitting by parti-

tioning the data into folds (training and validation sets) for multiple training iterations. It

furnishes a more dependable estimate of model performance on unseen data. Another widely

used data splitting method provided by Scikit-learn is train-test split, which randomly divides

the dataset into test and training sets based on the specified splitting percentage.

Additionally, Scikit-learn offers numerous metrics essential for accurate evaluation of

model training. These metrics include confusion matrix, roc auc score, and the general

classification report. The confusion matrix provides a visual representation of the model’s

performance in terms of true positives, true negatives, false positives, and false negatives. The

ROC AUC score quantifies the model’s ability to differentiate between seizure and non-seizure

classes, independent of class distribution, making it preferable over accuracy, particularly for

imbalanced datasets. The classification report furnishes detailed precision, recall, F1-score,

and support for each class, offering a comprehensive insight into the model’s performance

[42].

For visualization in project the library Matplotlib is used. Matplotlib is a comprehensive

28

library for creating static, animated, and interactive visualizations in Python. The pyplot

module provides a MATLAB-like interface for creating plots and graphs. It’s useful for

visualizing data, trends, and patterns, making it essential for exploratory data analysis and

communicating results [43].

To maintain control over GPU usage and availability, both Gpustat and GPUtil prove to

be highly effective. These tools offer real-time monitoring of GPU resources, encompassing

usage, memory allocation, and temperature.

For efficient hyperparameter optimization, the Optuna library is employed.

Data splitting

The management of data is facilitated by the MyDataset class, which is tailored for the

loading and preprocessing of data for training machine learning models. This class inher-

its from the Dataset class provided by the PyTorch library, enabling seamless integration

with PyTorch’s data loading utilities. It comprises various methods that process all samples,

converting them into a suitable format (numpy array), and returns them alongside their cor-

responding labels. Optionally, data transformations specified by the transform parameter

are applied to the samples. In this project, all samples are transformed into tensors. The

crucial step of the project is data splitting. Imagine training a model on a single set of EEG

recordings. The model might memorize specific patterns within that data, leading to high

accuracy. However, when presented with a new recording with slightly different character-

istics, the model might struggle because it hasn’t truly learned the underlying patterns of

seizures. Splitting the dataset into training and testing sets offers a solution. This is where

cross-validation (CV) techniques come into play. CV includes various techniques that involve

splitting the dataset into multiple subsets, known as folds, where each fold is used as a val-

idation set while the remaining folds are used for training. Some of the most popular CV

methods are:

• K-Fold Cross-Validation: The dataset is divided into k equal-sized folds. The model

is trained k times, each time using k − 1 folds for training and the remaining fold for

validation. This process is repeated k times, with each fold used exactly once as the

validation set. The performance metrics are averaged over all k iterations. The optimal

value for k depends on the size and complexity of your dataset. Common choices include

k = 5 or k = 10. Higher k provides a more stable estimate of performance but uses less

data for training in each fold. This might be less suitable for smaller datasets. Lower

k uses more data for training but leads to a less stable performance estimate.

• Stratified K-Fold Cross-Validation: Similar to k-fold cross-validation, but it ensures

that each fold preserves the proportion of samples from each class. This is particularly

useful for imbalanced datasets where certain classes are underrepresented.

29

• Leave-One-Out Cross-Validation (LOOCV): Each data point in the dataset is sequen-

tially held out as the validation set, while the remaining data points are used for

training. This process is repeated for each data point, resulting in n iterations for a

dataset with n samples. LOOCV maximizes the use of available data for training and

validation but can be computationally expensive for large datasets.

Figure 3.2: 5-fold Cross Validation data splitting

A variant of traditional cross-validation methods is Random cross-validation (RCV), which

randomly selects data points for the training and validation sets without any predefined

structure. One common RCV technique is random train-test split, where the dataset is

randomly partitioned into a training set and a validation set based on a specified ratio. For

example, researchers may choose to allocate 80% of the data to the training set and the

remaining 20% to the validation set. This approach is straightforward to implement and

computationally efficient, making it suitable for large datasets.

Even though, LOO offers a seemingly ideal approach for model evaluation, its computa-

tional burden often makes it impractical for large and complex datasets. That is why, for this

project the 5-fold splitting is chosen. F-fold CV maximizes the usage of the valuable EEG

dataset. All data points are used for both training and testing, providing a more comprehen-

sive evaluation of the model’s performance. It perfectly balances efficiency with a reasonable

estimate of generalizability.

However, it is important to keep in mind that K-Fold CV might introduce a slight bias

towards overfitting. The model, during each fold, encounters a subset of the entire dataset.

This might lead the model to potentially learn idiosyncrasies of the training data within that

fold, which might not generalize well to unseen data. Studies have shown that models trained

with K-Fold CV can exhibit higher accuracy metrics compared to LOO CV, but this might

not always translate to superior performance on truly unseen data.

30

The overfitting problem of k-fold cross validation method is strictly linked to the nature

of EEG signals themselves, which are inherently time-series data. EEG signals collected from

patients may exhibit temporal correlations, especially within the same class (e.g., preictal or

interictal). For instance, preictal signals may show certain patterns or trends leading up to a

seizure event, while interictal signals represent normal brain activity. When using k-fold CV

to evaluate seizure prediction algorithms, the temporal correlation within EEG signals can

violate the assumption of independence between samples in different folds. It happens when

samples within classes are collected in close proximity in time without randomization with

other classes. f the data is not randomized across folds, each fold may contain samples from

the same patient or time period, leading to biased model evaluation. This temporal corre-

lation can impact the performance estimates of seizure prediction models obtained through

k-fold CV. The classifier may learn to exploit these temporal correlations to make predic-

tions, leading to overly optimistic performance estimates during cross-validation. To address

this issue, alternative cross-validation strategies such as block-wise or trial-wise CV can be

considered. These methods ensure that samples from the same patient or time period remain

together in either the training or test set, reducing the impact of temporal correlation on

model evaluation [44].

By acknowledging the potential overfitting bias and employing strategies like regulariza-

tion techniques or different variations of k-fold CV, it is possible to find equilibrium between

efficiency and time optimization.

Normalization

Normalization ensures all features are on a common scale, allowing machine learning

models to focus on the underlying patterns relevant to seizure detection rather than being

swayed by differences in signal amplitude. Z-score normalization, also known as standard-

ization, is a widely used technique for this purpose. Z-score normalization transforms each

data point in an EEG signal by subtracting the mean (average) and then dividing by the

standard deviation of the entire training set. This results in a new set of values with a mean

of 0 and a standard deviation of 1. Here is the z-score equation:

z =
x − µ

Ã

In the above formula, z stands for z-score; x is the random variable, µ stands for mean and

Ã represents standard deviation.

Unlike methods like min-max normalization that simply scale data to a specific range, Z-

score normalization considers both the mean and standard deviation. This is crucial because

EEG signals can exhibit variations in both baseline activity and overall magnitude across

different subjects or recording sessions. Z-score normalization effectively addresses these

31

variations by transforming the data into a standard distribution.

EEG signals are often characterized by the relative differences between brain regions

rather than absolute power values. Z-score normalization highlights these relative changes

by removing the influence of individual subject or session-specific biases [45]. This allows the

model to better identify patterns in the relationships between different EEG channels, which

might be key for seizure prediction.

It’s important to note that for robust Z-score normalization, the mean and standard

deviation used for transformation should be calculated exclusively on the training set. This

ensures the test set remains completely unseen by the model. Using the training set’s statistics

prevents the model from adapting to the test data’s specific characteristics, ultimately leading

to a more reliable evaluation of its generalizability to unseen EEG recordings.

In simpler terms, imagine the training set as a ”practice test” for the model. The model

learns the ”average” and ”spread” (mean and standard deviation) of EEG signals from the

training data. Then, when encountering a new, unseen EEG recording (the test set), it

can analyze the relative changes within that recording based on the learned ”average” and

”spread” from the training set, allowing for more accurate seizure prediction.

This is how it is done in this project as well: inside of the training loop of each out of 5

folds data loaders are created for the training, validation, and testing sets and the mean and

standard deviation of the training data are calculated using a loop over the batches in the

training data loader. The mean and standard deviation are computed separately for each

feature dimension (channel) of the input data. The mean and std tensors are accumulated

by summing up the mean and standard deviation of each batch across all feature dimensions.

After iterating over all batches, the accumulated mean and standard deviation values are

divided by the total number of batches to obtain the average mean and standard deviation

across the entire training dataset. After computing the mean and standard deviation, the

training data is normalized by subtracting the mean and dividing by the standard deviation.

This normalization process is performed batch-wise within the training loop. Before feeding

the data into the model for training, each batch is normalized using the mean and standard

deviation computed from the training dataset. Similarly, the validation and test data are

also normalized using the mean and standard deviation calculated from the training dataset.

However, the mean and standard deviation are applied without dividing by the number of

batches since normalization is done at once for the entire test set.

DataLoader

As was mentioned before, samples are loaded in small batches before being normalized

and given to the model as input for training. This process is possible with Dataloader, which

is a fundamental component in many DL frameworks, including PyTorch, and it allows to

32

manage efficiently large quantities of data. DataLoader also randomly shuffles the data,

to prevent the model from learning spurious patterns based on the data order and it can

apply preprocessing and transformation functions to the data before creating batches. This

functionality is essential for tasks like normalization, scaling, feature extraction, and data

type conversion.

Loading data in batches allows efficient use of memory resources, especially when dealing

with large datasets such as EEG recordings. Instead of loading the entire dataset into mem-

ory at once, which may not be feasible due to memory constraints, batches enable processing

smaller chunks of data sequentially. This memory-efficient approach enables the training

process to handle datasets that exceed the available memory capacity of the hardware, pre-

venting potential memory overflow issues and improving overall system stability.

Batch processing can significantly speed up the computation during training. By process-

ing data in parallel across multiple batches, modern hardware, such as GPUs, can leverage

parallel computing capabilities to perform computations faster compared to processing data

sequentially.

Loading data in batches introduces variability and randomness into the training process.

Each batch contains a different subset of data samples, allowing the model to encounter

diverse examples during training. This variability helps prevent the model from memorizing

specific patterns or sequences in the data, encouraging the model to learn robust features

and patterns that are more likely to generalize well to new EEG recordings, including those

with different patient characteristics or recording conditions.

Batching data also facilitates dynamic learning during the training process [46]. As the

model updates its parameters based on each batch’s loss and gradients, it can adapt and

adjust its learning strategy iteratively. This dynamic learning approach allows the model

to fine-tune its parameters gradually, improving its ability to capture complex patterns and

relationships in the EEG data over successive batches.

Additionally, batch processing aligns well with other optimization techniques such as

mini-batch gradient descent, which further enhances the training process by efficiently up-

dating model parameters based on mini-batch gradients. The choice of the correct batch size

is influenced by numerous factors such as model complexity, available time, computational

power, and the characteristics of the dataset. The GPUs are able to handle larger batch

sizes, which can be beneficial especially in DL models with complex architecture, while if

computational resources are limited or if training needs to be performed on a CPU, smaller

batch sizes are preferable to avoid memory constraints and ensure smooth processing without

excessive resource consumption. Batch size also impacts training time. Smaller batch sizes

may require more iterations to process the entire dataset, leading to longer training times.

Conversely, larger batch sizes can accelerate training by processing more data in each iter-

ation and can lead to smoother optimization trajectories and faster convergence, but they

33

may require more memory and risk overfitting if not properly regularized. So, the common

approach to correctly choose the batch size is to perform empirical testing and validation

with different batch sizes. As a general guideline, starting with a batch size of 32 to 128

is common for many deep learning tasks. This range balances computational efficiency and

model generalization. In this project, the optimal choice for all models is a batch size of

32, which avoids memory issues and requires a reasonable amount of time with the use of a

GPU.

3.4 Deep Learning Models Architecture

This chapter focuses on the core components of our seizure prediction system: the deep

learning architectures used to analyze EEG signals. We will explore three distinct models,

each offering strengths in feature extraction and classification for seizure prediction task.

The first two models, DeepConvNet and EEGNet, represent established choices for seizure

prediction from EEG data. Their convolutional neural network (CNN) architectures have

proven successful in learning relevant spatial and temporal features from these signals. The

third model, ResNet68, employs a different approach. Traditionally used for image classifica-

tion, its residual learning architecture holds potential for adaptation to EEG signal analysis.

ResNet blocks, a key component, enable the network to learn from the cumulative residuals of

its inputs, facilitating the understanding of complex relationships within the data. However,

adapting ResNet68 for EEG data presented a challenge, as it was originally designed for 2D

image inputs.

The following sections will provide a more detailed analysis of each model’s architecture.

The specific configurations of DeepConvNet and EEGNet, the functionalities of ResNet68’s

residual learning blocks and the rationale behind the modifications made for EEG data

processing will be explored. By comparatively analyzing these three architectures, it will

be possible to gain valuable insights into their suitability for seizure prediction from EEG

signals.

EEGNet

In the realm of seizure prediction from EEG signals, the emergence of EEGNet marked

a significant advancement. Unlike generic Deep Convolutional Neural Networks (CNNs)

commonly used for image analysis, EEGNet boasts a unique architecture specifically designed

to excel at processing the inherent characteristics of EEG data. Let’s delve into its origins,

strengths, and how it optimizes seizure prediction tasks.

34

Original EEGNet

The EEGNet architecture development is linked to the use of CNNs in EEG-based Brain-

Computer Interfaces (BCIs). BCIs allow direct communication with computers by utilizing

neural activity as the control signal, commonly measured through EEG signals. Traditional

BCI paradigms require specific feature extractors and classifiers, limiting their application to

particular EEG control signals. CNNs, known for automatic feature extraction in computer

vision and speech recognition, have been applied to EEG-based BCIs with success, but their

generalization across different paradigms remains unclear. Furthermore, traditional CNNs

with numerous convolutional layers can be computationally expensive to train, especially for

real-time applications where faster processing is crucial.

EEGNet addresses this challenge by introducing depthwise and separable convolutions

to construct a compact CNN model tailored for EEG signals. These convolutions encap-

sulate well-known EEG feature extraction concepts, such as spatial filtering and filterbank

construction, while reducing the number of trainable parameters compared to existing ap-

proaches [47].

A standard convolution operation involves applying a filter (kernel) that slides across the

input data, extracting features based on element-wise multiplication and summation. While

effective, this approach can become computationally expensive, especially for processing high-

dimensional data like images. Depthwise separable convolutions address this challenge by

decomposing the standard convolution into two separate steps: Depthwise Convolution and

Pointwise Convolution.

In depthwise convolution step a separate filter is applied to each input channel indepen-

dently, extracting features specific to that region’s activity. There is a depth parameter D,

which determines how many spatial filters are learned for each feature map. Unlike regular

convolutions, depthwise convolutions are not connected to all previous feature maps, this

way they reduce the number of parameters needed to be learned.

In pointwise convolution (1x1 convolution) step a 1x1 convolution is applied across the

feature maps generated by the depthwise convolution. This 1x1 kernel acts as a linear

combination, reducing the number of feature maps and introducing non-linearities (through

activation functions) if desired. To gain a clearer understanding of this intricate process, one

can refer to Figure 3.4. In the original EEGNet model architecture there are several blocks

designed for feature extraction and classification (Figure 3.5). Block 1 involves two consec-

utive convolutional steps, including depthwise convolution for spatial filtering and capturing

frequency-specific spatial filters. Two sequential 2D convolutional steps are performed. First,

F1 2D convolutional filters of size (1, 64) are applied to capture the EEG signal’s band-pass

frequencies. The length of the filter is chosen to be half the sampling rate, allowing capturing

frequency information above 2 Hz. This step helps in initial feature extraction. A depthwise

35

Figure 3.3: Depthwise and pointwise convolution processes.

convolution of size (C, 1) is applied to learn spatial filters specific to each temporal filter.

Batch normalization is applied along the feature map dimension, followed by the Exponential

Linear Unit (ELU) activation function, aiding in regularization and non-linearity. Dropout

regularization technique is applied to prevent overfitting. A dropout probability of 0.5 is set

for within-subject classification and 0.25 for cross-subject classification. An average pooling

layer of size (1, 4) is used to reduce the sampling rate of the signal to 32 Hz, aiding in

dimensionality reduction. In the second block a separable convolution is applied, consisting

of a depthwise convolution followed by F2 pointwise convolutions (1, 1). This operation

helps in further feature extraction and dimensionality reduction, decoupling the relationship

within and across feature maps. Another average pooling layer of size (1, 8) is applied for

additional dimensionality reduction. In the classification block, the features extracted are

36

directly passed to a softmax classification layer with N units, where N represents the number

of classes in the data. No dense layer for feature aggregation is used prior to the softmax

layer, reducing the number of free parameters in the model.

Figure 3.4: Original EEGNet architecture. The lines represent connections between the input
and output feature maps formed by convolutional kernels. Initially, the network applies a
temporal convolution to grasp frequency patterns. Then, it employs a depthwise convolution,
linked to each feature map independently, to capture frequency-specific spatial patterns.
Finally, the separable convolution combines a depthwise convolution for learning individual
feature map summaries temporally, followed by a pointwise convolution to effectively blend
the feature maps. Figure adapted from [47].

EEGNet Architecture Adapted for This Project

The EEGNet architecture, adapted for this project, presents some subtle differences re-

spect to the original model, but they share the same design principles and architectural

choices are characteristical for EEGNet-like models (Figure 3.6). The first convolutional

layer initiates the feature extraction process by convolving input EEG data with 32 filters.

It accepts 20 input channels, corresponding to EEG electrode channels, and employs a kernel

size of (1, 51) with a stride of (1, 1) and padding of (0, 25). Batch normalization is applied

to enhance convergence, and the layer is devoid of biases. Notably, modifications in padding

are made to accommodate the input signal dimensions.

Following the first convolutional layer, the depthwise convolutional layer captures spatial

relationships within EEG feature maps without increasing model complexity. It takes the

37

Figure 3.5: EEGNet architecture developed for this project.

output of the previous layer, consisting of 32 channels, and generates 64 output channels. The

layer utilizes a kernel size of (1, 10) with a stride of (1, 1) and padding of (0, 5). Activation is

introduced through ReLU, and batch normalization is applied for stable training dynamics.

Additionally, dropout is incorporated to mitigate overfitting, a departure from the original

EEGNet.

Subsequently, an average pooling layer downsamples the spatial dimensions of feature

maps with a kernel size of (1, 4) and a stride of (1, 4), enhancing computational efficiency.

A dropout layer with a dropout probability (p) of 30% follows the AvgPool.

Convolutional Layer 3 further abstracts and refines features extracted from previous lay-

ers. With an input of 64 channels, it produces 128 output channels using a kernel size of

(1, 5) and padding of (0, 2). Activation, batch normalization, and dropout are employed to

enhance feature representation and prevent overfitting.

A max-pooling layer downsamples feature maps, retaining only the maximum values,

aiding in hierarchical feature extraction with a kernel size of (1, 2) and a stride of (1, 2). It is

followed by a dropout layer with p = 50%. Convolutional layers 4 and 5 deepen the network’s

representation capabilities. Convolutional layer 4 accepts 128 input channels and produces

256 output channels with a kernel size of (1, 3) and padding of (0, 1). Convolutional layer

5 further expands the depth with 256 input channels and 512 output channels, utilizing the

same kernel size and padding as Convolutional layer 4.

The second average pooling layer further reduces feature map dimensions with a kernel

size of (1, 8) and a stride of (1, 8), focusing on essential information. Also each of the last

two convolutional layers is followed by a dropout layer with p = 60%.

A global average pooling (GAP) layer aggregates spatial information across feature maps,

facilitating global context understanding, resulting in an output size of (1, 1). Global Average

Pooling produces a fixed-size representation regardless of the input size. This is particularly

useful in scenarios where the input size can vary, as it ensures that the network’s output

38

has a consistent dimensionality. This fixed-size representation simplifies the subsequent fully

connected layers’ architecture and makes the model more robust to input size variations. GAP

reduces the spatial dimensions of each feature map to a single value by computing the average.

This reduction helps in focusing on the most essential information within each feature map

while discarding less relevant spatial details. This can be especially beneficial in capturing

the global context of the input, making the model more invariant to spatial translations. By

taking the average across the entire feature map, GAP introduces a degree of translation

invariance. This means that the model becomes less sensitive to the precise location of a

feature within the spatial dimensions. Each value in the output of the GAP corresponds

to the average activation of a feature map, providing a form of attention to different parts

of the input. This can be valuable for understanding which features contribute most to

the final decision. Finally, a fully connected layer performs classification based on learned

features. With 512 input features, it produces 2 output features using softmax activation for

probability distribution generation.

Besides the differences in kernel size, such as (1, 51) instead of (1, 64) for the first

convolutional layer, which align with the requirement of spatial convolution to be (1xN), there

are additional changes incorporated into the model. These changes include the introduction

of dropout layers after each convolution, as opposed to having only one initial dropout layer,

and adjustments in padding. These modifications were made based on experimental trials,

particularly with Optuna, resulting in improved model performance.

With this updated architecture and the previously discussed input shape of (20, 1280),

the total number of parameters for the model amounts to 568,770. Full details about the

network architecture and the number of parameters can be found in Figure 3.7.

DeepConvNet

DeepConvNet (Deep Convolutional Network) is a variation of CNN specifically designed

for processing sequential data and which has emerged as a popular choice for seizure predic-

tion tasks due to its effectiveness in extracting relevant features from EEG signals. The exact

origin of DeepConvNet is difficult to pinpoint as it’s not a single, specific architecture. It’s

a general term encompassing various CNN configurations with multiple convolutional layers

stacked on top of each other. DeepConvNets emerged as a natural progression, allowing for

deeper architectures to learn even more complex patterns in data.

Why DeepConvNet?

EEG signals are inherently complex, containing both spatial (across different brain re-

gions) and temporal (over time) information. DeepConvNets excel at capturing these in-

tricacies through their convolutional layers. By stacking multiple convolutional layers with

39

Figure 3.6: EEGNet Model Architecture Summary.

varying filter sizes and strides, DeepConvNet can learn patterns at different scales, from

localized activity to broader trends across multiple brain regions. DeepConvNet has shown

competitive performance compared to traditional machine learning models and other deep

learning architectures for seizure prediction. Studies have reported seizure prediction accu-

racy ranging from 75% to 90% depending on the specific DeepConvNet architecture, dataset

characteristics, and evaluation metrics used [48].

DeepConvNet Architecture

There isn’t a single, universally accepted DeepConvNet architecture, but it typically

involves multiple convolutional layers stacked on top of each other, but the exact configuration

(number of layers, kernel sizes, stride lengths, etc.) can vary depending on the specific

application and dataset. As a reference to build a DeepConvNet it is possible to take the

model proposed by Schirrmeister et al. in 2017 [49] and its general architecture, which is

also applied in this project, is represented at Figure 3.8. The model begins with a series of

convolutional layers. The initial convolutional layer processes input data with 20 channels

using 25 filters, each with a kernel size of (1, 5). Subsequent layers progressively increase

the number of output channels, reaching 50, 100, and finally 200 output channels. All

convolutional layers share a common configuration, employing a kernel size of (1, 5), a stride

40

Figure 3.7: DeepConvNet architecture developed for this project.

of (1, 1), and padding of (0, 0). Following each convolutional operation, the Rectified Linear

Unit (ReLU) activation function is applied to introduce non-linearity.

After each convolutional layer, batch normalization is utilized to standardize and stabilize

the activations. Additionally, a max-pooling layer is employed with a kernel size of (1, 2) and

a stride of (1, 2) to downsample the feature maps. Dropout layers with a dropout probability

of 50% are inserted following each max-pooling layer. This strategy helps prevent overfitting

by randomly deactivating a fraction of input units during training.

At the end of the architecture, a global average pooling layer aggregates spatial infor-

mation across the entire feature map, generating a single feature vector for each channel.

Subsequently, a fully connected (linear) layer processes the extracted features to predict the

output classes. With 200 input features, this layer produces 2 output features using softmax

activation to generate a probability distribution over the output classes.

Compared to EEGNet, this architecture is less complex, with a total of 134,902 trainable

parameters. Consequently, it is expected that this model will require less time to train. Full

details about the network architecture and the number of parameters can be found in Figure

3.9.

ResNet

Residual Networks (ResNets) have garnered significant attention in seizure predicting field

due to their ability to tackle challenging tasks involving complex data patterns. However, the

application of ResNets to raw EEG signals for seizure prediction presents a unique challenge.

According to results from the study by He et al. [50] ResNets revolutionized the field of

deep learning. Traditional CNNs often suffer from the vanishing gradient problem, where gra-

dients become too small during backpropagation, hindering the training of deeper networks.

ResNets elegantly address this issue by introducing residual connections. These connections

allow the network to learn from the sum of its inputs and the outputs of previous layers,

41

Figure 3.8: DeepConvNet Model Architecture Summary.

facilitating better gradient flow and enabling the training of significantly deeper architectures.

However, the main issue of the ResNet application on EEG signal is that ResNet is typ-

ically designed for image analysis. Several studies [51, 52] have utilized ResNets for seizure

prediction, but they often transform EEG signals into image-like representations (e.g., spec-

trograms) to leverage pre-trained ResNet models. While effective, this approach introduces

an additional processing step, which is also computationally and memory demanding.

A promising alternative approach, as demonstrated by Diyuan Lu et al. [53], involves

applying ResNets directly to raw EEG signals. This study achieved an impressive accuracy

of 91.8% in seizure prediction, highlighting the potential of ResNets when tailored for this

specific application.

ResNet68 architecture

ResNets achieve their impressive depth by stacking multiple residual blocks one after an-

other. The specific configuration of these blocks defines the overall architecture. The most

common variation is bottleneck block, that utilizes 1x1 convolutional layers to reduce the di-

mensionality of feature maps before and after the main 3x3 convolutions. This reduces com-

putational cost while maintaining feature representation. The fundamental building block of

a ResNet is the residual block. This ingenious design allows the network to learn from the

42

sum of its inputs (X) and the outputs (F(X)) of a processing pathway within the block. A

residual block includes: batch normalization, applied before and after the processing path-

way to stabilize the learning process, ReLU, multiple convolutional layers stacked together to

extract features at different scales and shortcut connections, which directly adds the original

input (X) to the output (F(X)) of the processing pathway. Figure 3.10 allows to understand

better the complex ResNet architecture. ResNet variants are primarily distinguished by two

Figure 3.9: General ResNet architecture.

factors: depth and width. Depth is characterized by the total number of stacked residual

blocks. Deeper networks can potentially learn more complex patterns but require more train-

ing data and computational resources. ResNet variants are often denoted as ”ResNet-X,”

where X represents the total number of layers after the first convolutional layer and the final

fully connected layer. For instance, ResNet-68 has 66 residual blocks (excluding the initial

and final layers). Another distinguishing feature id width, which represents the number of

channels (feature maps) within each residual block. Wider networks can potentially cap-

ture more intricate features but always come at the cost of increased memory usage and

computational demands.

For the project a balanced variant between computational demands and feature learning

capability is chosen, which is ResNet68. The input to ResNet68 is a multi-channel EEG

signal, in this case with 20 channels. The initial convolutional layer, processes this input,

employing a kernel size of (1, 4) to extract features along the time axis and padding of (0,

1) to preserve spatial dimensions. This layer outputs feature maps with 64 channels.

Following the first convolutional layer, batch normalization is applied, followed by a ReLU

activation function (relu). A max-pooling layer (maxpool) with a kernel size of (1, 2) and

stride of (1, 2) is then utilized to down-sample the feature maps along the time axis, facili-

tating spatial abstraction and increasing the receptive field.

The subsequent layers (layer1, layer2, layer3, layer4) consist of multiple residual blocks

43

stacked together. These layers progressively increase the number of channels and down-

sample the feature maps to capture hierarchical features. Specifically, layer1 consists of

3 blocks, layer2 consists of 4 blocks, layer3 consists of 12 blocks, and layer4 consists of 3

blocks. The number of blocks in each layer is defined by the layers argument passed to

the ResNet constructor. Each residual block within a layer consists of three convolutional

layers with kernel sizes of (1, 1), (3, 3), and (1, 1), respectively. These layers are followed by

batch normalization and ReLU activation functions (relu). The first convolutional layer may

incorporate a down-sampling operation if the stride is not equal to 1 or the number of input

channels is not equal to the number of output channels multiplied by the expansion factor.

This operation uses a 1x1 convolutional layer and batch normalization.

The expansion factor, is set to 4, indicating that the output channels of the last convolu-

tional layer are four times the number of output channels specified for the block. The output

of each residual block is obtained by adding the input to the output of the last convolutional

layer after applying the appropriate down-sampling operation, if necessary. This residual

connection facilitates gradient flow and aids in training deeper networks.

Finally, the global average pooling layer aggregates spatial information across the entire

feature map, resulting in a single feature vector for each channel. This vector is then passed

through a fully connected layer to produce the final output logits, which are subsequently

used for classification.

In this project, all model parameters were trained from scratch, without utilizing any pre-

trained models. As a result, the total number of trainable parameters amounts to 30,246,722.

44

Chapter 4

Experimental Design

This chapter focuses on how the deep learning models are trained to predict seizures.

There will be an explanation of what is used to guide the model’s learning and how its

performance is measured on the seizure prediction task.

4.1 Training Process

Weights initialization

The first step in the training process is weights initialization. Each connection between

neurons, in a deep learning model imagined as a complex network of neurons, has a weight

that determines the strength of its influence. These weights are essentially the ”knobs” the

model adjusts during training to learn patterns in the data. However, starting with all

weights set to zero, the network might get stuck in a bad spot where neurons never fire or

always fire together. This is because the initial gradients might be very small or all the same,

hindering the learning process.

To address this issue, weight initialization techniques, that assign initial values to these

weights in a strategic manner, are employed. One popular technique is Xavier initialization,

implemented in the code using nn.init.xavier-uniform, which is a function from the PyTorch

library. Xavier initialization aims to set the initial weights in a range that allows gradients

to flow effectively through the network during training. This helps avoid the vanishing

gradient problem or the exploding gradient problem (gradients becoming too large). Xavier

initialization ensures that the activation variances (how spread out the activations are) are

roughly the same across different layers in the network. This promotes faster and more stable

learning.

After that, as it was described before, the dataset is divided into 5 folds for cross-

validation. The training loop is then repeated 5 times, once for each fold. During each

iteration, the data is loaded using a DataLoader in batches. Additionally, Z-score normal-

45

ization is calculated on the training set and applied to the data before training begins. The

training process starts by feeding the training set to the model, followed by the validation

set. The model’s performance is evaluated using the accuracy metric on the test set after

each fold.

Adam optimizer

The model is trained using gradient descent optimization techniques, specifically the

Adam optimizer, with a specified learning rate schedule. The Adam optimizer (Adaptive

Moment Estimation) is a widely used and powerful algorithm for optimizing the weights of

deep learning models. It addresses some of the shortcomings of its predecessors, particularly

Stochastic Gradient Descent (SGD), by incorporating adaptive learning rates for each pa-

rameter. Unlike SGD’s fixed learning rate, Adam estimates an individual learning rate for

each parameter based on historical gradients. This allows the optimizer to adjust the learn-

ing rate dynamically for different parameters, accelerating convergence in some directions

while preventing oscillations in others. Also, the optimizer incorporates momentum, similar

to SGD with momentum, to accumulate past gradients and provide a smoother update di-

rection. However, Adam utilizes decaying momentum terms to prevent vanishing gradients

in situations with long chains of dependencies. Adam is less sensitive to the initial learning

rate compared to SGD. It can often find good solutions even with a wider range of learning

rate choices. The main hyperparameters of the Adam optimizer are:

• Learning Rate (³): The learning rate determines the step size used to update the model

parameters during optimization. It is a crucial hyperparameter that controls the speed

and stability of the training process. In this project, the initial learning rate value is

set to 0.0001, a choice made after careful consideration of empirical observations and

subsequent Optuna optimization.

• Beta1 (´1): This hyperparameter controls the exponential decay rate for the first mo-

ment estimate (mean) of the gradients. It is typically set to 0.9 by default.

• Beta2 (´2): Beta2 controls the exponential decay rate for the second moment estimate

(uncentered variance) of the gradients. It is typically set to 0.999 by default.

• Epsilon (ϵ): Epsilon is a small constant added to the denominator to prevent division

by zero and stabilize the optimization process. It is typically set to a small value such

as 1e−8 by default.

Loss Function

For this project the loss function is established using criterion = nn.BCEWithLogitsLoss().

This choice aligns perfectly with the binary classification task at hand. Unlike the standard

46

binary cross-entropy loss which operates on class probabilities, BCEWithLogitsLoss inte-

grates the sigmoid function directly into the loss calculation. It takes model outputs (logits)

and true labels (0 or 1) as input, applies the sigmoid function to the logits, transforming them

into probabilities between 0 and 1 and calculates the binary cross-entropy loss between the

transformed probabilities and the true labels. This proves particularly advantageous because

the model outputs logits (raw scores) before applying an activation function. By merging

these steps, BCEWithLogitsLoss offers several benefits: improved numerical stability, en-

hanced computational efficiency, and the ability to directly optimize the logits, ultimately

leading to better classification performance.

Gradient Accumulation

Another technique, called gradient accumulation is implemented in this project, which

is a way to train deep learning models more efficiently [54]. Traditional training utilizes a

fixed batch size, where the model processes a subset of the entire dataset at each iteration.

Gradient accumulation tackles this by accumulating gradients across multiple smaller batches

before performing a single weight update. In the beginning, during a forward pass, a mini-

batch of data is passed through the model, resulting in predictions. A chosen loss function

calculates the difference between these predictions and the true labels, yielding a single scalar

loss value. The loss value is accumulated over a specified number of steps (accumulation

steps, that are defined before training loop). This loop gathers gradient information from

multiple forward passes without immediately updating the model weights after each pass.

Once gradients are accumulated, the optimizer executes backpropagation using the combined

gradient information. This single backpropagation step incorporates the aggregated gradients

from all accumulated mini-batches, leading to an update of the model weights based on a

larger virtual batch size.

This way, gradient accumulation can reduce the total number of optimizer steps required

per epoch, leading to faster training, especially for larger models. By averaging gradients

across multiple batches, accumulation can mitigate the effects of noisy gradients, potentially

leading to more stable training behavior.

The optimal number of accumulation steps depends on various factors like GPU memory

limitations, batch size, and model sensitivity. Large accumulation steps offer several ad-

vantages. They allow for more efficient memory usage by reducing the frequency of weight

updates, which can be beneficial for models with limited GPU memory. Additionally, large

accumulation steps can lead to faster training times as fewer optimization steps are per-

formed per epoch. However, using large accumulation steps may result in less frequent

weight updates, which can slow down the convergence of the training process and may lead

to suboptimal performance, especially if the model encounters noisy or rapidly changing gra-

47

dients. On the other hand, small accumulation steps offer the advantage of more frequent

weight updates, which can help the model converge faster and potentially achieve better per-

formance. With smaller accumulation steps, the model can adapt more quickly to changes in

the training data and gradients. However, using small accumulation steps may require more

memory resources, as each optimization step results in an immediate update of the model

weights.

For this project the accumulation steps = 2 is chosen, it means that gradients are accu-

mulated over two mini-batches before performing a single optimization step.

Validation

Validation serves as the cornerstone of robust deep learning models. It ensures the model

generalizes well beyond the data it’s explicitly trained on. By evaluating performance on

unseen examples, validation safeguards against overfitting.

One potent tool within the validation arsenal is the learning rate scheduler. This mech-

anism controls the magnitude by which the model’s weights are adjusted during training. A

high learning rate allows for rapid progress, but it can also lead the model to overshoot the

optimal solution. Conversely, a very low learning rate can cause sluggish training and poten-

tially hinder convergence. In this project, the scheduler is implemented like this: scheduler =

ReduceLROnPlateau(optimizer, mode=’min’, patience=2, factor=0.1, verbose=True). Let’s

see more in details the meaning of each parameter:

• mode: Determines whether the scheduler should minimize or maximize the monitored

metric. For instance, when monitoring the validation loss, setting mode=’min’ instructs

the scheduler to decrease the learning rate when the validation loss stops decreasing.

• patience: Represents the number of epochs with no improvement in the monitored met-

ric before the scheduler reduces the learning rate. It helps prevent premature learning

rate reductions and allows the model to explore the parameter space more thoroughly.

• factor: Specifies the factor by which the learning rate will be reduced. For example,

setting factor=0.1 reduces the learning rate by a factor of 10 when triggered by the

scheduler.

• verbose: Controls whether the scheduler prints updates about learning rate adjustments

during training, providing insights into its behavior.

Selecting appropriate values for these parameters involves a balance between responsive-

ness to changes in the validation metric and stability during training. A higher patience

value may allow the model to explore the parameter space more thoroughly but could de-

lay convergence if set too high. Conversely, a lower patience value may lead to premature

learning rate reductions, hindering the model’s ability to find the optimal solution.

48

In addition to scheduling the learning rate, early stopping is another powerful technique

for preventing overfitting and improving model generalization. The process involves monitor-

ing the validation loss or metric during training and terminating the training process when

the performance stops improving. In this work, the early stopping parameters are set to these

values: best validation loss = float(’inf’), patience = 5, current patience = 0. Variable “best

validation loss” keeps track of the best validation loss observed during training. Similar to the

parameter in the scheduler, “patience” specifies the number of epochs with no improvement

in the validation loss before terminating training. “Current patience” tracks the number of

consecutive epochs with no improvement in the validation loss.

When the model enters the evaluation mode, like in validation case (model.eval()), the

dropout layers and batch normalization are disabled as they are not necessary during evalu-

ation. If in the validation loop, the validation loss does not improve for a certain number of

epochs (patience), early stopping is triggered, and training terminates. Finally, the scheduler

adjusts the learning rate based on the validation loss to facilitate further optimization.

4.2 Evaluation Metrics

The evaluation of the model’s performance is conducted using various metrics throughout

the training process. During training, both training and validation losses are continuously

monitored to gauge the model’s performance. The training loss reflects the discrepancy be-

tween the model’s predictions and the actual labels within the training dataset. Similarly, the

validation loss measures the model’s performance on a separate validation dataset, providing

insights into its generalization ability.

Moreover, accuracy metrics are computed for both training and validation datasets, in-

dicating the proportion of correct predictions made by the model. These accuracy values

offer a clear assessment of the model’s performance in terms of classification accuracy. An

illustration of the training and validation performances regarding losses and accuracies can

be seen in Figures 4.1 and 4.2. After training, the test accuracy is computed using the test

set, providing a final evaluation of the model’s performance. This evaluation ensures that the

model’s performance is assessed on unseen data, offering insights into its real-world applica-

bility. The confusion matrix is generated to visualize the model’s classification performance

across different classes. It provides a detailed breakdown of true positive, true negative, false

positive, and false negative predictions, offering insights into the model’s classification errors.

The confusion matrices and AUC scores are produced for each of the 10 patients separately

after training the model. This approach allows us to observe not just the overall averaged

performance but also the variations of accuracies, specificities, and sensitivities for each

patient. Since the model’s performance is closely linked to the unique nature of the EEG

signals from each patient, analyzing individual patient data is essential to understand the

49

Figure 4.1: The training and validation losses of ResNet68 before early stopping are depicted.
It’s evident that the validation loss ceases to change and exhibit any further improvement.
Continuing to train the model beyond this point would likely result in overfitting.

challenges specific to this task and to tailor interventions accordingly.

Another evaluation representation produced for each patient after training is a classifi-

cation report. It provides a detailed summary of the model’s performance across different

classes, including precision, recall, F1-score, and support for each class. Precision and recall

provide complementary perspectives on the model’s performance. Precision measures the

proportion of positive predictions that are truly correct (positive predictive value), while

recall measures the proportion of actual positive cases that the model correctly identifies

(sensitivity). Analyzing both can reveal potential imbalances in the model’s predictions.

F1-Score combines precision and recall into a single measure, offering a balanced view of

the model’s performance, especially when dealing with imbalanced class distributions. Ad-

ditionally, it includes overall metrics such as accuracy, specificity, sensitivity, and the AUC

score.

The Receiver Operating Characteristic (ROC) curve is plotted, along with the Area Under

the Curve (AUC) score, to evaluate the model’s performance across various thresholds. The

50

Figure 4.2: The training and validation accuracies of ResNet68 before early stopping are
depicted. The trend of validation accuracy consistently remains slightly higher than the
training accuracy trend, with approximately a 10% difference, and both values show minimal
change over time, it suggests that the model is likely not overfitting to the training data.
The lack of significant changes over time may also suggest that the model has reached a
plateau in terms of learning and may not be able to further improve its performance without
modifications to the architecture, hyperparameters, or the dataset itself.

ROC curve illustrates the trade-off between true positive rate and false positive rate, allowing

for a comprehensive assessment of the model’s discriminatory power.

51

Chapter 5

Results

This chapter presents the final results of the performance of three deep learning models.

Their performance will be assessed using accuracy, sensitivity, and specificity metrics. The

analysis will compare these metrics across different patient to understand variations in model

efficacy. Additionally, a benchmark comparison will be conducted between the deep learning

models and the machine learning results presented in the reference paper by Shafiezadeh et

al.[8].

5.1 EEGNet Results

The training of the EEGNet model on a dataset comprising 10 patients, divided into 5

folds, utilizing GPU acceleration, required approximately 3 hours to complete. This training

exhibited the best performance metrics in terms of an average accuracy of 65.78% and an

average specificity of 82.94%. Among all patients, Patient 5 displayed the highest accuracy

at 71.08%, accompanied by a notable specificity of 86.62% and a commendable sensitivity

of 68.52%, which stands as the highest sensitivity achieved by any patient in this model.

Patient 6 also showcased a noteworthy accuracy of 70.40%, while Patient 8 achieved an

accuracy of 68.09%. Notably, all patients demonstrated high specificity, with a slight variation

ranging from 71.99% for Patient 9 to 89.34% for Patient 6, highlighting the EEGNet model’s

proficiency in accurately classifying interictal samples. However, only for p7 the specificity of

EEGNet is higher than that of ML model for Patient 7. Moreover, the variations in accuracy

(the lowest accuracy is 61.81% for patient 7), sensitivity, and specificity between patients

were relatively low, indicating a consistent performance of the model across different patient

datasets. This uniformity suggests that the model’s predictive capabilities remain robust

regardless of individual patient characteristics. For simplicity, the results of the ML model,

which are taken as a reference, are illustrated again in Table 5.1. All the results of EEGNet

model are available for reference in Table 5.2. High accuracy and specificity of EEGNet

52

Table 5.1: RCV results with XGBoost for the Eugenio Medea IRCCS Hospital data set.
Table adapted from [8].

Table 5.2: Results of EEGNet model.

53

signify the model’s adeptness in correctly identifying non-seizure samples, which is crucial for

minimizing false alarms. However, the model’s sensitivity, currently at 55%, suggests that

it may not capture every preictal (seizure) event, potentially leading to missed detections.

Only for patients p5 and p9 the sensitivity of EEGNet is higher than that of ML for the

same patients. Achieving a satisfactory balance between sensitivity and specificity is crucial

in mitigating the risk of missed seizures while minimizing false alarms.

The training and validation loss trends after training the EEGNet model can be observed

in Figures 5.1.

Figure 5.1: The plot of the training and validation loss for the EEGNet model. Both the
training and validation losses decrease sharply within the first 5 epochs. This rapid decline
indicates that the model is effectively learning from the training data and improving its
performance. However, after these initial epochs, the decrease in both losses becomes less
pronounced, and their values stabilize around 0.63 for the training loss and 0.66 for the
validation loss. This suggests that the model has reached a point where it is no longer
making significant improvements in performance on either the training or validation data.
Throughout the training process, the validation loss consistently remains slightly higher than
the training loss. This indicates that the model is experiencing some level of overfitting, as
it performs slightly worse on unseen validation data compared to the data it was trained on.

54

Table 5.3: Results of DeepConvNet model.

5.2 DeepConvNet Results

The training of the DeepConvNet model required the least time compared to the other

models, completing in less than two hours. DeepConvNet exhibits the best sensitivity values

among all the models, with an average sensitivity of 83.45%. Remarkably, for 3 out of 10

patients, it achieves a sensitivity higher than 90% (p10=95.60%, p7=94.57%, p8=91.69%),

while the lowest sensitivity recorded is 67.69%. Thus, there is a notable variance in sensitivity

between patients, although it remains lower than that observed in the ML model. For patients

p2, p3, p4, p5, p6, p7, p8, p9, and p10 (9 out of 10 patients), the sensitivity of DeepConvNet

is higher than that of ML for the same patients, indicating a noticeable improvement. A high

sensitivity indicates the model’s ability to effectively predict seizures and generate alarms.

However, the specificity of the DeepConvNet model is not satisfactory, being the lowest

among all other networks at only 41.39%. This suggests that the model may produce false

alarms at a rate higher than chance. Only two out of ten patients exhibit a specificity higher

than 50% (p1 = 63.69% and p5 = 53.60%). Despite this, the accuracy of DeepConvNet

remains satisfactory, indicating overall good performance, albeit not excellent. Patient 4

demonstrates the highest accuracy of 68.31%, with a very good sensitivity of 86.03% but a

low specificity of 47.91%. The results are detailed in Table 5.3.

The training and validation loss trends after training the DeepConvNet model can be

observed in Figure 5.2.

55

Figure 5.2: The plot of the training and validation loss for the DeepConvNet model. The
training loss remains relatively stable across epochs, hovering around 0.665, suggesting that
the model maintains consistent performance on the training data. However, the validation
loss exhibits erratic fluctuations without showing a clear trend towards convergence. This
inconsistency indicates potential overfitting to the training data, where the model performs
well on the training set but struggles to generalize to unseen data, resulting in elevated valida-
tion loss.The training was stopped after a few epochs (5) due to the absence of improvement
in validation loss. In fact, the validation loss begins to increase without showing any signs
of improvement, as depicted on the plot.

5.3 ResNet68 Results

ResNet68, the most complex deep neural network in this study, comprises a total of 68

layers and over thirty million trainable parameters. Consequently, its training necessitated

approximately 10 hours, even with GPU acceleration and the relatively small dataset of

10 patients. However, the results proved to be promising, offering potential for significant

advancements in the field. The average values of accuracy, sensitivity, and specificity for

ResNet68 are 63.80%, 69.71%, and 61.42%, respectively. Notably, no single metric falls

below 50% for any patient, indicating the model’s robust generalization ability across various

EEG signals. ResNet68 demonstrates balanced performance metrics, positioning it between

the EEGNet and DeepConvNet models.

The highest accuracy of 70.88% is achieved for patient 6, who also exhibits a high sensi-

tivity of 77.55%. Patient 5 boasts the highest sensitivity (81.40%) among all patients, while

56

Table 5.4: Results of ResNet68.

patient 4 showcases the highest specificity (70.14%). Notably, patients 2 and 3 achieve very

satisfactory sensitivity values of 72.22% and 73.00%, respectively. For patients p2, p3, p5,

p6, p8, p9, p10 (7 out of 10 patients) the sensitivity of ResNet66 is higher than that of ML

for the same patients.

In terms of stability, ResNet68 shows lower variance between patients compared to the

ML model, even concerning the average values. This indicates that ResNet68 is the most

consistent model across patients, offering reliable performance regardless of individual EEG

signal characteristics. Refer to Table 5.4 for a detailed breakdown of the results obtained

from ResNet68.

The training and validation loss trends after training the ResNet68 model can be observed

in Figure 5.3.

All the accuracies achieved with DL models, both individual for each patient and the

average ones, are lower than the accuracies of the ML model. However, the average sensi-

tivity of DeepConvNet and ResNet68 is higher than that of the ML model, suggesting their

effectiveness in identifying seizure events. On the contrary, the average specificity of the

three DL models is lower than that of the ML model, indicating a higher tendency for false

alarms. Figure 5.4 displays the average metrics of three DL models and an ML model.

In Figure 5.5 it is possible to observe the comparison between the ROC curves of three

deep learning models.

57

Figure 5.3: The plot of the training and validation loss for the ResNet68 model. Throughout
the training process, the training loss remains relatively constant at around 0.45, indicat-
ing stable performance on the training dataset. However, the validation loss exhibits a
tumultuous trend, characterized by oscillations that gradually decrease over epochs. After
approximately 11 epochs, the validation loss begins to consistently fall below the training
loss, maintaining this pattern without significant improvement until the early cessation of
training after 14 epochs.

58

Figure 5.4: The bar chart illustrates the average performance metrics of DeepConvNet,
EEGNet, ResNet68, and XGBoost, along with the standard error of the mean calculated
from data obtained from 10 patients.

59

Figure 5.5: The ROC curves of three deep learning models are depicted: in green for the
DeepConvNet model with an average AUC score of 0.66, sensitivity of 83.45%, and specificity
of 41.39%; in magenta for the EEGNet model with an average AUC score of 0.75, sensitivity
of 55.00%, and specificity of 82.94%; and in blue for the ResNet68 model with an average
AUC score of 0.79, sensitivity of 69.71%, and specificity of 61.42%.

60

Chapter 6

Conclusions

In conclusion, the utilization of machine learning (ML) models for seizure prediction

has yielded impressive results in numerous studies, as it was outlined in previous chapters.

Also, deep learning (DL) models have garnered increasing interest, particularly in the field of

seizure prediction. In this study, we explore this interest by applying three popular DL mod-

els to a novel dataset previously unutilized for seizure prediction. The DL models—EEGNet,

DeepConvNet, and ResNet68—were trained on a dataset comprising 10 patients, with per-

formances evaluated separately for each patient. Despite extensive training using GPU accel-

eration, the DL models did not demonstrate superior performance compared to the classical

ML model, raising questions about their applicability in clinical settings.

Starting with EEGNet, it demonstrated acceptable average accuracy and specificity, yet

its low sensitivity suggested potential limitations in capturing the preictal events. This

highlights the importance of striking a delicate balance between sensitivity and specificity

to minimize false alarms. One possible explanation for its subpar performance could be its

inadequate complexity in capturing subtle patterns within EEG signals, which are indicative

of seizure activity. Seizure events often exhibit specific patterns in EEG signals, such as

rapid spikes or rhythmic activity in certain frequency bands. Ensuring good sensitivity in

seizure prediction requires the model’s proficiency in capturing these intricate patterns and

distinguishing them from background noise or non-seizure activity. It’s conceivable that

the EEGNet model used in this study lacks the necessary complexity to effectively discern

these subtle variations, potentially leading to inaccurate preictal event detection. Therefore,

enhancing the model’s complexity through architectural improvements, such as adding more

layers or utilizing more sophisticated network structures, could potentially enhance its ability

to capture these patterns and improve sensitivity.

Moving on to DeepConvNet, despite exhibiting the best sensitivity values among the

models, its specificity fell short, indicating a high false alarm rate, indicating a need for

better optimization to achieve a balance between sensitivity and specificity. Moreover, its

61

performance varied significantly across different patients, indicating inconsistencies in seizure

prediction accuracy. Simply put, while the model performed well for some patients, it per-

formed poorly for others.

Regarding ResNet68, despite being the most complex model and requiring extensive train-

ing time, it still requires further optimization of hyperparameters and potentially a larger

dataset. Additionally, a common issue among all three models could be attributed to limi-

tations in the representativeness of the dataset. A representative dataset should encompass

a diverse range of patients, seizure types, and physiological conditions to ensure that the

model learns from a comprehensive set of scenarios. If the dataset lacks diversity, such as

predominantly containing similar patient profiles, the model may struggle to generalize well

to unseen data or different patient populations. This lack of representativeness can impede

the model’s ability to learn robust features and may result in suboptimal performance in

real-world scenarios.

Given that feature extraction was manual for traditional machine learning (ML) models

and automated for deep learning (DL) models, it’s worth noting that handcrafted features

may be more interpretable compared to features learned automatically by DL models. How-

ever, DL models can directly learn hierarchical representations from raw data, which can be

advantageous for capturing complex patterns but may necessitate a larger and more diverse

dataset for effective generalization. DL models are expected to learn more intricate represen-

tations but are also more prone to overfitting, especially when trained on limited datasets.

Therefore, the dataset that yielded positive results for ML models may not be sufficient for

training DL networks.

To improve performance, several strategies can be considered. Firstly, leveraging more

data could enhance model performance, which was not done in this work due to time con-

straints. Additionally, utilizing pre-trained EEGNet and DeepConvNet models can save time

and resources. Furthermore, augmenting pre-trained models by adding more layers and in-

creasing depth, could enhance their generalization ability and performance.

Overall, the observed weaknesses highlight the need for more sophisticated approaches in

feature extraction and model architecture design. Additionally, leveraging larger and more

diverse datasets, along with advanced optimization techniques, could enhance the robustness

and generalization capabilities of these models, ultimately advancing their applicability in

clinical settings.

62

Chapter 7

List of Acronyms

• Adam adaptive moment estimation

• AF adaptive filtering

• AI artificial intelligence

• AMP automatic mixed precision

• AUC area under the (ROC) curve

• BP backpropagation

• CAR common average referencing

• CNN convolutional neural network

• CPU central processing unit

• CV cross validation

• DL deep learning

• DWT discrete wavelet transformation

• EEG electroencephalogram

• FCNN fully-connected neural network

• FPR false positive rate

• GAP global average pooling

• GCN graph convolutional network

63

• GNN graph neural network

• GPU graphics processing unit

• HMM hidden Markov models

• ICA independent component analysis

• k-NN k-nearest neighbors

• LDA linear discriminant analysis

• LOO leave one out

• LSTM long short-term memory

• ML machine learning

• MNE minimum norm estimation

• MSE mean squared error

• NN neural network

• PCA principal component analysis

• RCV random cross validation

• ReLU rectified linear unit

• RF random forest

• RNN recurrent neural network

• ROC receiver operating characteristic

• SGD stochastic gradient descent

• SVM support vector machine

• VM virtual machine

• Tanh hyperbolic tangent

64

Bibliography

[1] Epilepsy Fact Sheet. url: https://www.who.int/news-room/fact-sheets/detail/

epilepsy (visited on 03/18/2024).

[2] Mark Manford. “Recent advances in epilepsy”. In: Springerlink (2017).

[3] H B Valman. “Epilepsy”. In: British Medical Journal (1982).

[4] Terence J O’Brien Roland D Thijs Rainer Surges and Josemir W Sander. “Epilepsy in

adults”. In: The Lancet (2019).

[5] U. Rajendra Acharya et al. “Deep convolutional neural network for the automated

detection and diagnosis of seizure using EEG signals”. In: Computers in Biology and

Medicine (2018).

[6] Christian E Elger and Christian Hoppe. “Diagnostic challenges in epilepsy: seizure

under-reporting and seizure detection”. In: The Lancet Neurology (2018).

[7] K. Malmgren et al. “Diagnosing epileptic seizures and epilepsy”. In: Läkartidningen

(2018).

[8] Sina Shafiezadeh et al. “Methodological Issues in Evaluating Machine Learning Models

for EEG Seizure Prediction: Good Cross-Validation Accuracy Does Not Guarantee

Generalization to New Patients”. In: Applied Sciences (2023).

[9] Andreas Pedroni, Amirreza Bahreini, and Nicolas Langer. “Automagic: Standardized

preprocessing of big EEG data”. In: NeuroImage (2019).

[10] Alexander Craik, Yongtian He, and Jose L Contreras-Vidal. “Deep learning for elec-

troencephalogram (EEG) classification tasks: a review”. In: Journal of Neural Engi-

neering (2019).

[11] Yongcheng Wu Wenqiang Yan. “A time-frequency denoising method for single-channel

event-related EEG”. In: Frontiers in Neuroscience (2022).

[12] Mark J Cook Linda Dalic. “Managing drug-resistant epilepsy: challenges and solutions”.

In: Dovepress (2016).

65

[13] Syed Muhammad Usman, Shehzad Khalid, and Muhammad Haseeb Aslam. “Epileptic

Seizures Prediction Using Deep Learning Techniques”. In: IEEE Access, vol. 8, pp.

39998-40007, 2020 (2019).

[14] Yan Li Siuly Siuly. “Designing a robust feature extraction method based on optimum

allocation and principal component analysis for epileptic EEG signal classification”. In:

Elsevier (2015).

[15] M. Iftikhar, S. A. Khan, and A. Hassan. “A Survey of Deep Learning and Traditional

Approaches for EEG Signal Processing and Classification”. In: 2018 IEEE 9th Annual

Information Technology, Electronics and Mobile Communication (2018).

[16] Jaiswal Abeg Kumar and Haider Banka. “Epileptic seizure detection in EEG signal

using machine learning techniques”. In: Australas Phys Eng Sci Med 41, 81–94 (2019).

[17] Villamar MF Al-Bakri AF et al. “Noninvasive seizure prediction using autonomic mea-

surements in patients with refractory epilepsy”. In: Annu Int Conf IEEE Eng Med Biol

Soc. (2018).

[18] Rekha Sahu et al. “Epileptic seizure detection: a comparative study between deep and

traditional machine learning techniques”. In: J. Integr. Neurosci. (2020).

[19] El Tahry Riëm Vanabelle Paul De Handschutter Pierre, Benjelloun Mohammed, and

Boukhebouze Mohamed. “Epileptic seizure detection using EEG signals and extreme

gradient boosting”. In: The Journal of Biomedical Research (2020).

[20] Shilpa Gite Milind Natu Mrinal Bachute, Ketan Kotecha, and Ankit Vidyarthi. “Review

on Epileptic Seizure Prediction: Machine Learning and Deep Learning Approaches”. In:

Hindawi Computational and Mathematical Methods in Medicine (2018).

[21] Dhahri H Awassa L Jdey I et al. “Study of Different Deep Learning Methods for Coro-

navirus (COVID-19) Pandemic: Taxonomy, Survey and Insights”. In: Sensors (Basel).

(2022).

[22] Abubakar Abid James Zou Mikael Huss et al. “A primer on deep learning in genomics”.

In: Nat Genet. (2019).

[23] Fishman D Jones W Alasoo K and Parts L. “Computational biology: deep learning”.

In: Emerg Top Life Sci. (2017).

[24] Caliva F Kijowski R Liu F and Pedoia V. “Deep Learning for Lesion Detection, Progres-

sion, and Prediction of Musculoskeletal Disease”. In: J Magn Reson Imaging. (2020).

[25] Kheradpisheh SR Tavanaei A Ghodrati M, Masquelier T, and Maida A. “Deep learning

in spiking neural networks”. In: Neural Netw (2019).

66

[26] Khansa Rasheed et al. “Machine Learning for Predicting Epileptic Seizures Using EEG

Signals: A Review”. In: IEEE Reviews in Biomedical Engineering, vol. 14, pp. 139-155

(2021).

[27] Rubén San-Segundo et al. “Classification of epileptic EEG recordings using signal trans-

forms and convolutional neural networks”. In: Computers in Biology and Medicine

(2019).

[28] A. Krizhevsky G. E. Hinton N. Srivastava, I. Sutskever, and R. R. Salakhutdinov. “Im-

proving neural networks by preventing co-adaptation of feature detectors”. In: (2012).

[29] Bart Selman Johan Bjorck Carla Gomes and Kilian Q. Weinberger. “Understanding

Batch Normalization”. In: Cornell University (2018).

[30] Navid Ghassemi Afshin Shoeibi Marjane Khodatars et al. “Epileptic Seizures Detection

Using Deep Learning Techniques: A Review”. In: International Journal of Environmen-

tal Research and Public Health (2021).

[31] Mustafa Sameer and Bharat Gupta. “CNN based framework for detection of epileptic

seizures”. In: Multimed Tools Appl 81, 17057–17070 (2022).

[32] Gupta M. Majumdar A. “Recurrent transform learning”. In: Neural Netw. (2019).

[33] Zhang Z Wei X Zhou L, Chen Z, and Zhou Y. “Early prediction of epileptic seizures

using a long-term recurrent convolutional network”. In: J Neurosci Methods (2019).

[34] Kostas M. Tsiouris et al. “A Long Short-Term Memory deep learning network for

the prediction of epileptic seizures using EEG signals”. In: Computers in Biology and

Medicine (2018).

[35] Saroj Kumar Pandey et al. “Automated epilepsy seizure detection from EEG signal

based on hybrid CNN and LSTM model”. In: SIViP 17, 1113–1122 (2023).

[36] Shah M. Zaeemzadeh A Rahnavard N. “Norm-Preservation: Why Residual Networks

Can Become Extremely Deep?” In: IEEE Trans Pattern Anal Mach Intell. (2021).

[37] Diyuan Lu and Jochen Triesch. “Residual Deep Convolutional Neural Network for EEG

Signal Classification in Epilepsy”. In: arXiv:1903.08100 (2019).

[38] NumPy. url: https://numpy.org/ (visited on 03/18/2024).

[39] Pandas. url: https://pandas.pydata.org/ (visited on 03/18/2024).

[40] MNE. url: https://mne.tools/stable/documentation/index.html (visited on

03/18/2024).

[41] PyTorch. url: https://pytorch.org/ (visited on 03/18/2024).

[42] scikit-learn. url: https://scikit-learn.org/stable/ (visited on 03/18/2024).

67

[43] Matplotlib. url: https://matplotlib.org/ (visited on 03/18/2024).

[44] Jacob White and Sarah D. Power. “k-Fold Cross-Validation Can Significantly Over-

Estimate True Classification Accuracy in Common EEG-Based Passive BCI Experi-

mental Designs: An Empirical Investigation”. In: Sensors (2023).

[45] Rosanne O Albuquerque I Monteiro J and Falk TH. “Estimating distribution shifts for

predicting cross-subject generalization in electroencephalography-based mental work-

load assessment”. In: Front Artif Intell. (2022).

[46] Ao Chen Feng Yu Hao Zhang et al. “Characterizing and understanding deep neural

network batching systems on GPUs”. In: BenchCouncil Transactions on Benchmarks,

Standards and Evaluations (2023).

[47] Vernon J Lawhern and et al. “EEGNet: a compact convolutional neural network for

EEG-based brain–computer interfaces”. In: Journal of Neural Engineering (2018).

[48] Xinbin Liang et al. “Convolutional Neural Network with a Topographic Representation

Module for EEG-Based Brain—Computer Interfaces”. In: Brain Sciences (2023).

[49] Robin Tibor Schirrmeister et al. “Deep Learning With Convolutional Neural Networks

for EEG Decoding and Visualization”. In: Journal of Neural Engineering (2017).

[50] Fengxiang He, Tongliang Liu, and Dacheng Tao. “Why ResNet Works? Residuals Gen-

eralize”. In: IEEE Transactions on Neural Networks and Learning Systems (2020).

[51] Dohyun Lee et al. “A ResNet LSTM hybrid model for predicting epileptic seizures using

a pretrained model with supervised contrastive learning”. In: Sci Rep 14, 1319 (2024).

[52] Yating Jiang, Yao Lu, and Lingling Yang. “An epileptic seizure prediction model based

on a time-wise attention simulation module and a pretrained ResNet”. In: Journal of

Medical Systems (2020).

[53] Diyuan Lu and Jochen Triesch. “Residual Deep Convolutional Neural Network for EEG

Signal Classification in Epilepsy”. In: IEEE Transactions on Biomedical Engineering

(2021).

[54] Gradient Accumulation. url: https://www.hopsworks.ai/dictionary/gradient-

accumulation (visited on 03/26/2024).

68

