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Abstract 

 

The Vistula is the Poland’s largest River. It flows from the south to the north and has its 

mouth in the Baltic Sea. In coastal areas large amounts of sediments accrue, so, to 

maintain the mouth navigable, it is necessary to remove them from the bottom of the 

river. This operation is called “dredging”. 

Dredged materials consist of different fractions of mineral and organic components. 

They do not have common application, because their utilization is expensive: the not 

contaminated materials are re-used in agriculture, landscape construction and in the 

recultivation of landfills. The use of dredged materials in dike construction is a new 

possibility. 

DredgDikes Project, realized within “South Baltic Cross-border Co-operation 

Program”, deals with implementation of dredged materials in dike construction. 

Part of the project, executed in Poland, focuses on checking the application of dredged 

material as a dike’s core material. 

In this thesis, a model of the test dike in Trzcińsko (Gdańsk) is developed, to simulate 

the behavior of a three-layer embankment, constructed with dredged material and coal 

ashes. Because of the lack of studies dealing with changes in parameters  of dredged 

materials, due to fly ash addition, the creation of the model is connected with hydraulic 

analysis based on laboratory research. 

The results of the analysis have been compared to field test executed on the test dike. 
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Sommario 

 

L’esigenza di mantenere un franco adeguato per la navigazione, comporta la necessità 

di asportare i sedimenti depositati dalle correnti nei porti e allo sbocco dei fiumi. 

L’operazione di scavo per asportare terreno da fondo subacqueo, dragaggio, produce 

materiale di scarto che viene utilizzato per il recupero ambientale di aree agricole o per 

scopi edilizi.  

Nella Polonia settentrionale, nella baia di Danzica, sfocia il fiume Vistola, il più grande 

della nazione. Questo fiume è navigabile e collega molte città importanti, quindi ha una 

rilevante importanza economica e commerciale. Le correnti marine tendono a depositare 

una grande quantità di materiale allo sbocco della Vistola, quindi, per garantire la 

navigabilità, sono necessarie periodiche operazioni di dragaggio.  

Le Università di Rostock e Danzica hanno dato vita al Progetto DredgDike. In questo 

progetto viene studiata la possibilità di utilizzare il materiale dragato come materiale per 

la costruzione di dighe e argini.  

Il progetto prevede che la sabbia prelevata dal letto della Vistola e mescolata con delle 

ceneri venga utilizzata nella costruzione di un argine sperimentale situato a 

Wiślinka/Trzcińsko a circa 20 km da Danzica. Per creare questa nuova miscela vengono 

impiegate le ceneri ottenute dalla combustione del carbone. Scopo della ricerca è 

valutare la loro efficacia nel sostituire l’argilla nella costruzione di rilevati fluviali. 

Infatti, oggigiorno si riscontra una crescente carenza di questo tipo di terreno e la sua 

estrazione, oltre ad essere costosa, causa pesanti effetti negativi sull’ambiente. 

L’argine sperimentale costruito in Polonia presenta un nucleo costituito dal 70% di 

cenere e dal 30% di sabbia dragata (percentuali ottimali stabilite dopo diverse prove in 

laboratorio) e da uno strato esterno costituito da argilla verso il lato campagna e da una 

miscela di tephra e sabbia dragata verso il lato fiume. Lo strato esterno ha una più bassa 

permeabilità rispetto a quella del nucleo: il coefficiente di permeabilità saturo 
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dell’argilla e della miscela di sabbia e tephra (        [m/s]) è minore di quello del 

nucleo di un ordine di grandezza (        [m/s]). 

Per stimare il comportamento idraulico e la stabilità del rilevato sono state condotte 

molteplici analisi agli elementi finiti. 

La prima analisi riguarda la filtrazione in condizioni stazionarie, assumendo la 

soluzione indipendente dal tempo. Se il livello dell’acqua nel serbatoio si mantenesse 

costante per un tempo infinito, l’acqua uscirebbe dal paramento verso lato campagna ad 

un’altezza pari a 1,32 m. Visto l’elevata altezza della linea di saturazione si è valutata la 

possibilità che le pressioni sviluppatesi al piede nello strato di sabbia potessero scalzare 

il sovrastante strato di argilla, ma questo non avviene e la stabilità al piede è garantita. 

Sono state compiute delle modifiche nella geometria del rilevato e nelle caratteristiche 

dei  materiali utilizzati atte a tentare di abbassare il livello di fuoriuscita dell’acqua, ma 

si ottengono risultati significativi solo se si ipotizza di utilizzare materiali più 

impermeabili a formare il nucleo o lo strato esterno verso fiume. In questo caso si riesce 

ad ottenere un abbassamento dell’altezza piezometrica di oltre un metro. 

Per evitare che il flusso d’acqua giunga a toccare il paramento esterno, si può valutare 

l’ipotesi di inserire un dreno al piede verso lato campagna. 

È stata successivamente verificata la stabilità dell’argine (ancora in condizioni 

stazionarie), ed è stata poi eseguita un’analisi di sensibilità per valutare quale parametro 

(e la sua variazione) la influenzasse maggiormente. La variazione dell’angolo di attrito 

comporta una variazione del fattore di sicurezza, ma le differenze maggiori si 

riscontrano nel caso in cui si faccia variare il valore della coesione, che risulta quindi 

essere la proprietà  più influente nella verifica di stabilità. Quest’ultimo punto giustifica 

l’utilizzo della grande quantità di tephra nella miscela costituente il nucleo del rilevato. 

Conclusa l’analisi stazionaria, si è effettuata quella non stazionaria. Si sono anzitutto 

determinate le curve di suzione e di permeabilità di tutti i materiali, e si è poi passati 

all’analisi vera e propria, che considera il riempimento del serbatoio e il suo 

svuotamento. 
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Nel primo caso si è osservato che, se il livello dell’acqua nel serbatoio impiegasse 

24 ore a riempirsi, la linea di saturazione nel rilevato impiegherebbe 14 giorni a 

raggiungere il paramento esterno. Poiché ad un rilevato arginale è richiesto di evitare la 

fuoriuscita dell’acqua per tutto il periodo di piena, e questo è stimato corrispondente a 

circa 14 giorni, si può affermare che l’argine sperimentale così ottenuto soddisfa i 

requisiti richiesti. 

Si sono poi valutati gli effetti conseguenti all’introduzione di un dreno, alla modifica di 

alcuni parametri geometrici (quali lo spessore dello strato verso fiume) e al riempimento 

del serbatoio in modo più o meno veloce di quello considerato. Si è successivamente 

ipotizzato un piano di monitoraggio del livello del serbatoio (sia in fase di riempimento, 

che in fase di svuotamento) per valutare quando si potrebbe avere fuoriuscita d’acqua in 

diverse condizioni.  

Infine è stata inserita nell’analisi l’infiltrazione dell’acqua piovana e si è osservato che 

in questo caso la falda impiega meno tempo a raggiungere il paramento esterno 

dell’argine. La presenza di terreno saturo o con elevati contenuti d’acqua nel rilevato 

comporta cioè un aumento di permeabilità. 

Lo svuotamento del serbatoio è stato analizzato nel caso di svuotamento lento e svaso 

rapido, e per entrambi è stata poi valutata la stabilità del paramento lato fiume.  

Nel primo caso il livello piezometrico nel rilevato verso fiume è considerato coincidente 

con il livello dell’acqua nel serbatoio. In questo caso si perde l’effetto stabilizzante 

dell’acqua sul terreno, quindi il coefficiente di sicurezza diminuisce, ma in modo 

graduale poiché non si creano pressioni eccessive nel rilevato. 

Nel caso di svaso rapido il coefficiente diminuisce bruscamente perché si creano delle 

pressioni eccessive dovute al fatto che l’acqua nel serbatoio diminuisce in poco tempo e 

l’acqua nei pori non riesce a drenare velocemente a causa dello strato di copertura di 

bassa permeabilità. Nonostante la brusca diminuzione del coefficiente di sicurezza, la 

stabilità del rilevato è assicurata anche in questa fase. 

Si sono poi confrontati i risultati delle analisi con i dati piezometrici raccolti durante 

una campagna di indagine.  
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I risultati dell’analisi di filtrazione sono risultati del tutto dissimili dai dati misurati. 

Questo può essere dovuto a molteplici fattori, quali ad esempio il fatto che la 

permeabilità valutata mediante prove in laboratorio può essere diversa da quella 

effettiva, oppure dal fatto che condizioni metereologiche potrebbero aver comportato 

l’alterazione di alcune caratteristiche dei materiali, oppure, ancora, da discrepanze tra 

caso reale e modellazione tramite elementi finiti. 
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Introduction 

 

Nowadays, there is an increasing shortage of clay, which is usually used as a dike’s core 

material. The extraction of clay from natural deposit causes negative effects on the 

environment, and is also very expensive. Considering both economic and ecological 

reasons the DredgDikes project aims to replace these materials with dredged materials.  

Dredged materials are obtained from dredging works on rivers and harbors. They do not 

have common application, because their utilization is expensive.  

DredgDikes Project, realized within “South Baltic Cross-border Co-operation 

Program”, deals with implementation of dredged materials in dike construction. 

The aim of this master thesis is to study the full scale test dike constructed in Gdańsk. 

The dike’s core was built using a mixture of dredged materials and fly ash, so a model 

of the dike was created to check the application of dredged material as a dike’s core 

material.  

The results of the analysis have been compared to field tests executed on the 

embankment, in order to check if the application of dredged materials meets the 

requirements of dike structures. 

There have not been many studies dealing with changes in parameters of dredged 

materials, due to fly ash addition, so the creation of model is connected with advanced 

hydraulic analysis based on external laboratory research. 

 

Gdańsk 

Gdańsk is a Polish city on the Baltic coast, the capital of the Pomeranian Voivodeship, 

Poland's principal seaport, the largest city of Kashubia, and the center of the country's 

fourth-largest metropolitan area.  

http://en.wikipedia.org/wiki/Baltic_Sea
http://en.wikipedia.org/wiki/Pomeranian_Voivodeship
http://en.wikipedia.org/wiki/Port
http://en.wikipedia.org/wiki/Kashubia
http://en.wikipedia.org/wiki/Metropolitan_area
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The city lies on the southern edge of Gdańsk Bay(of the Baltic Sea), and, together with 

the city of Gdynia, Sopot, and suburban communities, forms a metropolitan area called 

the Trójmiasto, with a population near 1.400.000.  

 

Climate 

Gdańsk enjoys a temperate climate, with cold, cloudy, moderate winters and mild 

summers with frequent showers and thunderstorms. Average temperatures range from 

−1.0 to 17.2°C, but in winter they can drop as low as -15°C and in summer they can  

reach as high as 30-35°C. Rainfall varies from 31.0 mm/month to 84.0 mm/month. 

Total annual precipitation averages 499 mm. In general it is a maritime climate and 

therefore damp, variable and mild. 

 

Table 1: Environmental average parameters in Gdansk 

Gdansk Season  Year  

Winter Spring Summer  Autumn  

Average max temperature 

(°C) 

2,1 10,4 20,4 11,6 11,2 

Average min 

temperature (°C) 

-2,7 3,2 12,5 5,7 4,7 

Average 

precipitation (mm) 

76,2 100,8 186,0 144,3 507,3 

Number of wet days 44 36 38 44 162 

 

Figure 1 shows a diagram of climatic parameters, such as precipitation, temperatures 

(max, min and average), wind speed, humidity, sunlight hours and days. 

 

http://en.wikipedia.org/wiki/Gda%C5%84sk_Bay
http://en.wikipedia.org/wiki/Baltic_Sea
http://en.wikipedia.org/wiki/Gdynia
http://en.wikipedia.org/wiki/Sopot
http://en.wikipedia.org/wiki/Temperateness
http://www.gdansk.climatemps.com/precipitation.php
http://en.wikipedia.org/wiki/Oceanic_climate
http://it.wikipedia.org/wiki/Stagione
http://it.wikipedia.org/wiki/Anno
http://it.wikipedia.org/wiki/Inverno
http://it.wikipedia.org/wiki/Primavera
http://it.wikipedia.org/wiki/Estate
http://it.wikipedia.org/wiki/Autunno
http://it.wikipedia.org/wiki/Grado_Celsius
http://it.wikipedia.org/wiki/Temperatura
http://it.wikipedia.org/wiki/Grado_Celsius
http://it.wikipedia.org/wiki/Precipitazione_(meteorologia)
http://it.wikipedia.org/wiki/Millimetro
http://it.wikipedia.org/wiki/Giorno_di_pioggia
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Figure 1: Gdansk, Poland climate graph (altitude 12m) 

 

The Vistula River 

Gdańsk is situated at the mouth of the MotławaRiver, connected to the Leniwka, a 

branch in the delta of the nearby Vistula River (Wojciech Majewski, 2013). The Vistula 

is the largest Polish river. Its sources are in the mountains in the south of Poland and it 

discharges in the north to the Baltic Sea (Bay of Gdańsk).  

The Vistula river basin measures 194 000 km
2
 from which 87% (169 000 km

2
) is within 

Polish boundaries. The catchment of the Vistula occupies 54% of Polish territory and 

encloses important cities and industrial centers. The total length of the Vistula is 

1047 km from its sources in the mountains to its outlet to the sea.  

Hydrographically the Vistula is divided into three distinctly different river sections and 

river basins. These are: the Upper Vistula, the Middle Vistula and the Lower Vistula. 

The division of the Vistula basin into three subcatchments is presented in Figure 2. 

 

http://en.wikipedia.org/wiki/Mot%C5%82awa
http://en.wikipedia.org/wiki/Leniwka
http://en.wikipedia.org/wiki/Vistula
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Figure 2: Division of Vistula basin into 3 subcatchments (source IMGW-PIB) 

 

The Upper Vistula encompasses the section from the source to the right hand San 

tributary. The length of this section is 399 km and the catchment mounts to 45.900 km
2
 

and makes up about 30% of Polish water resources.  

The Middle Vistula encompasses river section from the San tributary to the Narew 

tributary. The length of this section is 256 km and its catchment (within Polish 

boundaries)amounts to 88.800 km
2
. 

The Lower Vistula constitutes the 391 km long river section from the confluence of the 

Narew to its mouth in Gdańsk Bay. The catchment of the Lower Vistula amounts to 

34.300 km
2
. It is presented in Figure 3. 
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Figure 3: The catchment of the Lower Vistula 

 

The Vistula supplies about 7% of fresh water to the Baltic Sea. The discharge of the 

Vistula into the sea is now through an artificially formed (in 1895) direct channel 

(Przekop in Polish), because the previous layout of the final Vistula section resulted in 

frequent and numerous winter floods, such as the ones resulted in 1829 in the city of 

Gdańsk where inundation reached the second floor of buildings, causing significant 

economic and social losses. 

The Lower Vistula has always presented a considerable flood hazard. This has mainly 

been due to the formation of ice jams, formed either of ice floes or large amounts of 

frazil ice. These floods have occurred either at the beginning of winter or at the 

beginning of spring during ice break-up and ice-run.  

 

Floods 

The European Union (EU) Floods Directive defines a flood as “a covering by water of 

land not normally covered by water”. 

http://en.wikipedia.org/wiki/European_Union
http://en.wikipedia.org/wiki/Floods_Directive
http://en.wikipedia.org/wiki/Water
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Heavy rain can cause flooding when the rate of rainfall exceeds the drainage capacity of 

the area, or if water falls on an impermeable surface, such as concrete or frozen ground, 

and cannot rapidly dissipate into the ground. 

Flat or low-lying areas can be inundated when the ground is saturated and water cannot 

run off quickly enough to stop accumulating. In this case, water can move away from 

the plain and cover the lands nearby. If homes and businesses are in the natural flood 

plains of rivers, damages will occur. 

The flood can also occurs in estuarine and coastal areas. Flooding in estuaries is mostly 

caused by a combination of sea tidal surges caused by winds and low barometric 

pressure. Coastal areas may be inundated by storm events at sea, resulting in waves 

over-topping defenses.  

Figure 4 shows a table with the principal natural causes of floods. 

 

 

Figure 4: Natural causes of floods 

http://en.wikipedia.org/wiki/Concrete
http://en.wikipedia.org/wiki/Wind
http://en.wikipedia.org/wiki/Barometric_pressure
http://en.wikipedia.org/wiki/Barometric_pressure
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Some floods develop slowly, while others can develop by localized heavy rain from a 

series of storms moving over the same area in just a few minutes (flash flooding). 

Floods can also be local, impacting a neighborhood or community, or very large, 

affecting entire river basins, destroying everything on its way. Catastrophic inundation 

is usually associated with major infrastructure failures such as the collapse of a levee. 

 

Levee 

A levee is an embankment raised to preserve the water filtration for the time of flood 

(typically about 14 days), to regulate water levels or to prevent a river from 

overflowing: the stability of the dike is endangered during fast changes in water level 

(as well as during dike’s overflowing). 

 

 

Figure 5: Typical embankment 

 

The levee is commonly grass-covered, but may need additional protection against 

erosion by swiftly flowing water, waves or overtopping, so geogrids and geotextiles can 

be used to reinforce grass on flood embankments. Trees should not be planted on flood 

embankments as they accelerate drying out and cracking, and a breach of the bank may 

result if they are blown down in a storm. 

If the foundation is highly permeable it may be necessary to take steps to cut off the 

seepage path through the foundation. 

http://en.wikipedia.org/wiki/Storm_train
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The width of the crest is normally from 2 m to 5 m. The embankment side slopes are 

between 1:2 (vertical to horizontal) and 1:3. 

The levee can be constructed from a variety of earth materials. Wherever possible, 

locally won material should be used, to reduce costs and lessen the environmental 

impact. The required strength is achieved by constructing the embankment in layers and 

compacting each layer using mechanical plant appropriate to the type of soil.  

Soils with high plastic clay content are best avoided because these crack when they dry 

out, and such cracks can extend into the bank. Cracks in embankments can create 

seepage paths, compromising its function as a flood defense.  

Soils with a high sand or gravel content can be used, but may have to incorporate some 

form of cutoff to reduce seepage in flood conditions. Granular soils are less resistant to 

erosion than cohesive soils once the topsoil layer has been eroded. 

There are different kind of flood embankments, as it is shown in Figure 5, and different 

materials can be used. 
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Figure 6: Different kinds of embankment 

 

In Poland, in Pomerania, a region extremely endangered due to close vicinity to Vistula  

river and its outlet to the Baltic sea, a total length of 650 km of dikes protect over 

140.000 ha of coast and lowland areas. Most of the embankment in this region requires 

immediate repair or reconstruction. In the next two decades, an investment of 160 

million euro is planned for improving the protection against flooding, with the 

construction, improvement and reconstruction of dikes. 
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Dredged material and Project DredgDikes 

 

Dredging is the removal of sediments from the bottom of lakes, rivers, harbors and 

other water bodies. Most dredging is done to maintain or deepen navigation channels, 

anchorages or berthing areas for the safe passage of boats and ships. Particularly in 

coastal areas large amounts of these dredged materials accrue. Sediments also often 

need to be removed due to construction works or in ecological revitalization projects. 

The dredged materials consist of different fractions of mineral and organic components. 

The characteristics of dredged materials are widely different.  

In the majority of dredging works the relocation of dredged materials is chosen. 

However, if the material characteristics do not allow relocation (e.g. due to a high 

content of fines) the dredged materials need to be removed from the water body. 

 

 

Figure 7: Dredged material pumped onto a spoil field 
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A large portion of the uncontaminated materials is dredged directly into containment 

areas on shore (as shown in the figure below). These materials may be used as soil or 

construction material after sedimentation, dewatering and ripening.  

 

 

Figure 8: Rostock deposition side 

 

If the sediments contain contaminations that exceed the precaution values of soil and 

water protection jurisdiction so that the re-use is excepted, they may only be deposited. 

The not contaminated materials are re-used in agriculture, landscape construction and in 

the recultivation of landfills. The use of dredged materials in dike construction is a new 

and promising possibility. 

The project DredgDikes was initiated to 

investigate the application of dredged 

materials, geosynthetics and different ash-

composites in dike construction.  

The international cooperation project is part-financed by the EU South Baltic Cross-

border Co-operation Program 2007-2013.  

Coordinated by the chair of Geotechnics and Coastal Engineering at the University of 

Rostock, Germany, it incorporates five eligible partners from Germany and Poland, 

Figure 9: DredgDikes Project logo 



 
 
 
 

“Groundwater flow through the test dike constructed with dredged materials” 
 

 

  

23 
Università degli Studi di Padova 

Department of Civil, Construction 
and Environmental Engineering 

 

namely the Technical University of Gdansk, the water and soil association “Untere 

Warnow – Küste”, the Hanseatic City of Rostock and the Steinbeis Innovation gGmbH, 

as well as 15 associated organizations from Poland, Lithuania, Germany and Latvia.  

Besides the overall project coordination, the University of Rostock is responsible for the 

Rostock lab and field tests and the scientific evaluation of the pilot dike. That was built 

under the authority of the water and soil association „Untere Warnow - Küste“. The 

Civil Engineering and Harbor Construction Office of the Hanseatic City of Rostock is 

responsible for the construction of the German test dike. The chair of Geotechnics, 

Geology and Coastal Engineering at the Gdansk Polytechnica is the main research 

partner and responsible for the Polish lab and field tests.  

The Department of Applied Landscape Planning (Steinbeis Innovation gGmbH) is 

dealing with quality control, ecological and vegetation issues. 

A high quantity of dredged materials was obtained by clearing the entrance to the port 

in Germany (mostly silts and clayey silts), and by clearing the outflow of Vistula river 

in Poland (sands): the DredgDike project born from the need to dispose of the 

overabundance of these materials. 

In order to investigate the different dredged materials and material combinations, both 

in Rostock and Gdansk two full scale test dikes have been built.  

In Gdansk, sand-ash composites are investigated with respect to their applicability in 

embankment construction. Sandy dredged material is improved with particular ashes, so 

it can be used as dike’s cover material. Ash-sand mixtures can also be used to build 

stable dike’s cores.  
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Figure 10: Test dike localization 

 

Test dike description 

Geometry 

The three meters high test dike located in Wiślinka/Trzcińsko on the bank of Vistula 

River ca. 20 km away from the City of Gdańsk was completed in Summer 2012. 

The 4-meter wide test segment of the 24-meter long dike has been separated by sheet 

pile walls to obtain 2D plane conditions for seepage and overtopping with a controlled 

water level.  
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Figure 11: Test dikes and sheet-pile wall 

 

Both slopes  have inclination of 1:2 and the dike is 3.0 m high with a 3.0 m wide crest.  

The ground under the test dike was extensively explored with the use of CPTU 

penetrometer. Under a shallow sandy crust, some fine grained soft deposits interbedded 

by sandy layers are probed. Due to good drainage conditions the consolidation of the 

soft deposits under additional loading is quite fast and it occurs almost entirely during 

the earth works. 
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Figure 12: Geometry 
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To focus the attention on the seepage within the dike its bottom has been isolated from 

the permeable ground by 0,5 m thick impermeable liner. A high-water level of 2.5 m is 

planned to be maintained until the steady flow within the dike body is achieved. The 

greening was realized with rolled sod and now the sods need to connect by root 

penetration before overflowing experiments can be performed.  

In the dike core 24 soil moisture probes have been installed to measure the seepage line. 

The dense sensor raster allows the comparison with numerical simulations. Four 

piezometers are used to verify the sensor data.  

 

 

Figure 13: Positions of moisture probes and piezometers 

 

Additionally, sampling and laboratory testing of the physical and mechanical 

parameters of the applied sand-ash mixture were carried out during the test. 

 

Materials 

The levee is composed from three different materials: 

∙ the dike’s core is made of a mixture of ash and sand; 

∙ the top layer is divided in two material: 

- a mixture of Tephra, which is a special fluid ash mixture, and dredged 

sand in 50 cm layer thickness in upstream side; 

-  clay in 30 cm layer thickness in the downstream side; 
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Figure 14: Geometry and thickness of materials 

 shows the geometry and the position of the different materials. 
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Figure 14: Geometry and thickness of materials 

 

 

Tephra and Sand
Total Unit Weight              19 kN/m3

Cohesion                           50 kPa

Friction angle                     32°
Ash and Sand
Total Unit Weight              13 kN/m3

Cohesion                           10 kPa

Friction angle                     37°

Clay
Total Unit Weight              19 kN/m3

Cohesion                           30 kPa

Friction angle                     25°

Loam
Total Unit Weight              19 kN/m3

Cohesion                           20 kPa

Friction angle                     27°

 

Figure 15: Materials 
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The bottom layer is made of hard compacted loam in order to provide cut-off layer for 

test conditions.  

 

Tephra  

Tephra is a collective term for fragments of volcanic rock and lava regardless of size 

that are blasted into the air by explosions or carried upward by hot gases in eruption 

columns or lava fountains. Tephra includes large dense blocks and bombs, and small 

light rock debris such as scoria, pumice, reticulite, and ash. Volcanic ash is a part of 

tephra and ranges in size between 6 and 4 mm. Cindar is a general term to define a 

partly vesiculated lava fragment ejected during an explosive eruption, equivalent to 

scoria; it typically consist of basaltic or andesitic composition. In geotechnical 

engineering, volcanic ash and Cindar are frequently used in construction: their principal 

uses are for secondary road surfaces, foundation materials, or protection of embankment 

slopes. 

In this case, tephra (in form of ash) has been mixed with dredged sand and this mixture 

has been used on the surface layer.  

 

Coal ashes 

The core of the dike is made of mixture containing dredged materials and ashes. 

Coal ashes are the by-products obtained from coal-fired thermal power plants, and are 

produced in large quantities all over the world (over 700 million tons a year): that calls 

for their utilization in bulk, without endangering the ecosystem. Geotechnical 

engineering practice provides such an opportunity for the bulk utilization of coal ashes, 

for the construction of embankments, mine filling, backfilling, road construction and 

foundation base materials. 

Coal ashes can be of three types:  
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1. the very fine, very light noncombustible portion of the coal collected in the dry 

form through electrostatic precipitators and/or mechanical dust collectors is 

known as fly ash;  

2. the coarser, unburned granular material collected at the bottom of the boiler 

furnace is called bottom ash.  

3. If the thermal power plants have a wet disposal system, then the fly ash and the 

bottom ash are mixed with water to form a slurry, which is then pumped to 

nearby storage ponds known as ash ponds. The ash deposited in these ponds is 

known as pond ash.  

 

Coal ashes and fine-grained soils have essentially similar chemical composition 

(Errore. L'origine riferimento non è stata trovata.): fly ashes consist primarily of 

silt-size particles of uniform gradation; bottom ashes and pond ashes are predominantly 

sand-size particles, well graded or poorly graded. 

 

Table 2: Chemical composition of coal ashes and soils 

 

 

From the viewpoint of bulk utilization in various geotechnical applications, the coal 

ashes have favorable properties: 

- coal ashes are free-draining materials. Their permeability is in the same range as 

that of silts and sands. 

- the compressibility of coal ashes is less than that of fine-grained soils. 

- coal ashes exhibit very good frictional shear strength under almost all drainage 

conditions. 

- coal ashes are relatively water-insensitive during compaction.  



 
 
 
 

“Groundwater flow through the test dike constructed with dredged materials” 
 

 

 

30 
Università degli Studi di Padova 

Department of Civil, Construction 
and Environmental Engineering 

 

  

 

In addition to these advantageous properties, the ashes derived from lignite coal, 

bituminous and sub-bituminous coals have pozzolanic properties (i.e. lime reactivity), 

which soils do not possess. However, the lime reactivity of pond ashes and bottom 

ashes is relatively low compared with that of fly ashes. With the use of self-cementing 

and pozzolanic fly ashes in various geotechnical applications, the engineering properties 

of such systems will improve with time. Improvements achieved include, for example: 

- decreased permeability with time, 

- less pore pressure build-up on addition of load, 

- reduced compressibility, 

- increased shear strength. 

 

Core of the test dike 

Bottom ashes were used in the core of the test dike in Gdansk. Figure 16 shows the 

ashes grading curve from the  particle size analysis. 

 

 

Figure 16: Grading curve of bottom ash 
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To classify the material, the “Geotechnical classification system for coal ashes” 

(Prakash K. and Sridharan A., 2006), was utilized.  
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Figure 17: Flowchart for classifying coal ashes 
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Table 3: Coal ash classification system 

 

 

Table 4 shows the beneficial engineering properties of coal ashes, as described before. 

 



 
 
 
 

“Groundwater flow through the test dike constructed with dredged materials” 
 

 

 

34 
Università degli Studi di Padova 

Department of Civil, Construction 
and Environmental Engineering 

 

  

Table 4: Beneficial engineering properties of coal ashes 

 

 

The bottom ash was mixed with the dredged material from the mouth of Vistula. The 

grading curve of the sand is shown in Figure 18.  

 

 

Figure 18: Grading curve of dredged material (sand) 
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The proportion of components in the test dike was chosen based on initial tests on the 

dredged materials: it was examined, how the properties of the mixture are influenced by 

the variation of  the percentage of ash. 

 

Bottom ash – dredged sand mixture 

Percentage 0/100 40/60 50/50 60/40 70/30 80/20 90/10 100/0 

 

The graphs in Figure 19 and Figure 20 show as the maximum dry density decreases, and 

the optimum water content increases with ash content. 

 

 

Figure 19: Proctor compaction test: maximum dry density 



 
 
 
 

“Groundwater flow through the test dike constructed with dredged materials” 
 

 

 

36 
Università degli Studi di Padova 

Department of Civil, Construction 
and Environmental Engineering 

 

  

 

Figure 20: Proctor compaction test: optimum water content 
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The void ratio was obtained as result of the oedometric test. It grows with the increase 

of the ash percentage in the mixture.  

 

 

Figure 21: Oedometric test 

 

The direct shear test allowed to determine the angle of internal friction and cohesion. 

The first one generally decrease with ash content; the cohesion found is small, 

especially for higher percentage of ash in the mixture. 
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Figure 22: Direct shear test: angle of internal friction 

 

 

Figure 23: Direct shear test: cohesion 
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At the end of the tests, an optimum mixture 70/30 (ash/sand) has been chosen for test 

dike construction. The figures below show the direct shear test and the oedometric test 

for this mixture. 

 

 

Figure 24: Shear test for 70/30 mixture 
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Figure 25: oedometric tests for 70/30 mixture 

 

The mixture has a relatively high permeability coefficient (            ), but it 

will probably decrease with time, because of the cementation due to pozzolanic 

properties of the coal ashes. As the permeability coefficient decreases, the strength of 

the mixture increases. 

The properties of the materials are collected in the Table 5. 
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Table 5: Properties of the materials 

Material - CLAY TEPHRA - 

SAND 

ASH - 

SAND 
LOAM 

Strength Type - Mohr-

Coulomb 

Mohr-

Coulomb 

Mohr-

Coulomb 

Mohr-

Coulomb 

Total Unit Weight   [  
  ⁄ ] 19 19 13 19 

Satured Unit 

Weight 
      [

  
  ⁄ ] 21 20 16,3 20 

Hydraulic 

Conductivity at 

saturation 

    [
 

 ⁄ ] 1 e -7 1 e -7 1 e -6 1 e -9 

Void Ratio  [ ] 0,79 0,64 0,69 0,67 

Porosity  [ ] 0,44 0,39 0,41 0,40 

Cohesion   [  
  ⁄ ] 30 50 10 20 

Phi   [ ] 25 32 37 27 

Phi B   [ ] 0 0 0 0 

Young’s Modulus  [  
  ⁄ ] 15 000 30 000 22 500 15 000 

Poisson’s Ratio  [ ] 0,35 0,30 0,25 0,35 

 

Mechanical parameters: Mohr-Coulomb soil model 

For every soil layers the Mohr-Coulomb failure criterion was assumed. The Mohr-

Coulomb criterion is the most common way in modeling the soil shear strength, and can 

be used to analyze the stability of the dams and slopes. It is also applicable to evaluate if 

the shallow foundations are resistant or not. 

The Mohr-Coulomb soil model describes a linear relationship between normal and shear 

stresses (or maximum and minimum principal stresses) at failure. 
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Figure 26: Mohr's circle of stress used to derive equations for Mohr-Coulomb diagram 

 

The direct shear formulation of the criterion is given by the next equation: 

     (   )                 

The parameters defining failure criteria are: 

- effective frictional angle    

- effective cohesion    

This model can also be used for total stress conditions: in this case water pressure is not  

considered (     ) and the equations is transformed into: 

             

Concerning the embankment analyzed, the Mohr-Coulomb strength function for Sand-

Ash mix of the dike’s core is shown in the figure below. 
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Figure 27: Mohr-Coulomb strength function for Ash -Sand mix 
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Steady-State Analysis 

 

A system in a steady state has numerous properties that are unchanging in time: the 

recently observed behavior of the system will continue into the future.  

The test dike in this study was modeled in two-dimensional space using Slide® software 

version 5.0. Within this program, Slide® has the capability to carry out a finite element 

based groundwater seepage analysis for saturated/unsaturated, steady-state flow 

conditions.  

Finite element numerical methods are based on the concept of subdividing a continuum 

into small pieces, describing the behavior or actions of the individual pieces and then 

reconnecting all the pieces to represent the behavior of the continuum as a whole. This 

process of subdividing the continuum into smaller pieces is known as discretization or 

meshing. The pieces are known as finite elements. 

Discretization or meshing involves defining geometry, distance, area, and volume. It is 

one of the three fundamental aspects of finite element modeling: the other two are 

defining material properties and boundary conditions. 

The groundwater analysis in Slide® is a finite element analysis, and therefore a finite 

element mesh is required in order to solve the problem.  

A three-noded triangles mesh is used to analyze the flow in the embankment, as shown 

in Figure 29. 

For maximum precision in estimating the water flow, the mesh is dense: the mesh has 

got 4624 elements connected together by 2424 nodes. The calculations are executed for 

maximum 500 iterations for each stage or for time needed to reach maximum tolerance 

equal     . 

http://en.wikipedia.org/wiki/System
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After the finite element mesh has been generated, it is necessary to define the boundary 

conditions which describe the groundwater problem.  

The boundary condition used in the model is Total Head. 

The total hydraulic head is made up of pressure head and elevation. The elevation 

represents the gravitational component. In equation form the total head is defined as: 

  
 

  
   

Where:  

   the total head (m); 

   the pore-water pressure (Pa); 

    the unit weight of water (    ⁄ ); 

   the elevation (m). 

The term 
 

  
 is referred to as the pressure head, represented in units of length. 

The Total Head hydraulic boundary condition defines the conditions that exist along the 

bottom of a reservoir, that is the elevation head at the top of the reservoir (ponded 

water).  

For the test dike the fully supply level of the reservoir is 2,5 m. 

 

 

Figure 30: Boundary conditions 
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The slope surface on the right is given an Unknown boundary condition: this type of 

boundary is suitable for calculations if the groundwater flow is unconfined.  

The Zero Pressure (P=0) boundary condition is set to model the ground on the opposite 

side respect the river (ground side). The bottom of the external boundary, is given the 

Zero Nodal Flow (Q=0) boundary conditions, which indicates that no additional flux is 

going to be added or removed at these nodes. The nodal flow equal to zero condition 

does not allow the water to exit. 

The hydraulic properties (permeability characteristics) previously specified for the 

materials were put in the program, and the groundwater analysis was performed. The 

Figure 31 show the results. 
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Figure 31: Groundwater analysis: pressure head (a) and total head (b) results. Slope 1:2 
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A pink line is displayed on the model: this line highlights the location of the Pressure 

Head=0 contour boundary. For a slope model, this line represents the position of the 

Water Table (phreatic surface) determined from the finite element analysis. 

The Water Table touches the external facing 1,32 m above the toe of the levee: due to 

the high permeability of the material in the most central part of the embankment, the 

hydraulic load is not dissipated.  

To verify if the program leads to acceptable results, the Shaffernak schema is utilized: 

 

 

Figure 32: Dike's section, Shaffernak schema 

 

Because the angles at downstream side is      , it is possible to use either the equation 

proposed by Shaffernak-Van Iterson, or the one proposed by Casagrande (Casagrande, 

1937).. 

The length off the segment between the exit of water and the end of the slope is given 

by: 

   
 

    
 √
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     √  
  

  

     
                     √                                 

Using both the previous equations, the following results are obtained. The value of the 

exit water height from the analysis is similar to the analytic results, so it is acceptable. 

GeoStudio™ 2007 1.32 

Shaffernak-Van Iterson 1.226 

Casagrande 1.359 

 

The toe of the embankment is under a high pressure, and if this one is not dissipated, it 

will probably cause the removal of the external layer. 

Correctly, the flux goes towards the dike external toe. There, the water comes out. 

The seepage coming through the levee above the ground surface (through seepage) are 

very detrimental: when seepage velocity is sufficient to move materials, the resulting 

internal erosion is called piping (movement of soil material). 

Three types of piping can occur as a result of seepage through a levee: 

∙ cracks or void in the dike due to hydraulic fracturing, decay of vegetation, 

animal activity, low density adjacent to conduits, or any similar location where 

there may be a preferential path of seepage. For piping to occur, the tractive 

shear stress exerted by the flowing water must exceed the critical shear stress of 

the soil. 

∙ high exit gradients on the downstream face of the levee may cause piping and 

possible progressive backward erosion. 

∙ internal erosion or removal of fine grains by excessive seepage forces may 

occur; this type of piping occurs when the seepage gradient exceeds a critical 

value. 
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The dike’s core is made of an ash and sand mixture, i.e. fine particles in granular soil. 

The seepage flow can displace the fine grains, and create preferential pathways, with 

instability risk for the dam. To evaluate if there is the possibility of particles movement, 

it is necessary to estimate the hydraulic exit gradient and compare it with the critical 

one. 

The hydraulic gradient is the rate of change of total head along the direction of flow :  

 

 

 

 

 

The rate of flow of water q (volume/time) through cross-sectional area A is found to be 

proportional to hydraulic gradient in according to Darcy's law: 

  
 

 
       

  

  
 

where v is flow velocity and k is coefficient of permeability with dimensions of velocity 

(length/time). 

The hydraulic critical gradient is given by: 

   
  

  
 

To avoid particles displacement, it should be: 

   
  
 

        

In the previous analysis, considering the dike’s core, the exit gradient results as      

(Figure 33), the critical gradient is          and the safety factor results as    

     , so movement of particles will occur. 

javascript:popup('darcy.htm')


 
 
 
 

“Groundwater flow through the test dike constructed with dredged materials” 
 

 

  

53 
Università degli Studi di Padova 

Department of Civil, Construction 
and Environmental Engineering 

 

 

 

Figure 33: Gradient at downstream side's toe 

 

The external clay layer prevents the spillage of the fine particles from the dike’s core, so 

in this embankment we do not have to fear internal erosion, at least until the clay layer 

is undamaged and cracks do not occur. 

Because of the impervious external layer, at dam’s downstream side toe high pore-water 

pressures occur, and it is necessary to verify that the weight of the clay layer can resist 

to these pressures, i.e.         . At interface between the core and the top layer the 

pore-water pressure is          , as indicated in Figure 34, so the upward buoyant 

force is given by:               . 
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Figure 34: Pore-water pressure at core-external layer interface 

 

The weight of the clay layer is                              , so the 

stability of the clay in external toe is verify. 

The analysis was performed again, to evaluate which is the best solution to increase the 

stability of the levee. 

 

Different slopes 

First of all, the slope of the downstream side was changed: from 1:2, to 1:2,5 and 1:3. 

 

 

Figure 35: Change of slopes 

 

The different height of water escape are collected in Table 6. As it is shown in the graph 

below, this modification did not lead to acceptable results. The pore-water pressures are 
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not so different respect to the case described before, so problems in the dike’s toe do not 

occur. 

 

Table 6: Water exit heights for different slopes 

Slope 
Water exit height 

[m] 

1:2 1,32 

1:2.5 1,35 

1:3 1,36 

 

 

Figure 36: Change of water exit height for different slopes 

  

Different thickness 

The second parameter changed was the thickness of the impermeable layer at 

downstream side (tephra and sand layer). 
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Figure 37: Different thickness 

 

This solution is much better respect the previous one, because a decrease of the water 

exit height occurs as the thickness of the first layer increase. The Table 7 and graph in 

Figure 38 show as change the results in this case.  

 

Table 7: Water exit heights for different thicknesses 

Thickness 

[m] 

Water exit height 

[m] 

0,5 1,32 

0,7 1,29 

1,0 1,21 
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Figure 38: Change of water exit height for different thicknesses 

 

Different conductivity coefficient at saturation 

As last step, I supposed to change the mixture of the layer on the river side, using two 

different materials with lower conductivity coefficient at saturation:      and     , 

respectively. 

This solution leads to values of exit heights of the water that are lower of the previous 

ones:  

 

Table 8: Water levels for different riverside material 

   

Interface 

layer-core 

[m] 

Water exit 

height 

[m] 

1,00E-07 2,1 1,32 

1,00E-08 1,43 0,80 

1,00E-09 0,61 0,37 

 

The level of the phreatic surface at the interface between the tephra and sand layer and 

the core of the dike decreases as the hydraulic conductivity decreases, because the 

dissipation of the hydraulic load occurred mostly in the first impervious layer. 
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The graph in Figure 39 shows the different water heights after changing the material of 

the layer on the riverside.  

 

 

Figure 39: Different water heights for different hydraulic conductivity 

 

The last step of this analysis was the change of the material in dike’s core. The 

conductivity function changed from      to           (as the dike was made of only 

one material, i.e. clay) and            (as the core was more impervious than the 

external layers). 

 

Table 9: Water levels for different core's material 

   

Wter exit 

height 

[m] 

1,00E-06 1,29 

1,00E-07 0,95 

1,00E-08 0,29 
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The condition of dam’s core more impermeable of the externals layers is the best 

solution, because the water exit height of almost 30 cm is the smallest in comparison of 

all the previous analyses.  

 

 

Figure 40: Comparison of different hydraulic conductivity 

 

Toe-drain 

A toe drain in the embankment is now introduced Figure 41. 

 

 

Figure 41: Toe drain in the embankment 
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The drain is so permeable relative to the other embankment materials that it does not 

contribute to the dissipation of the head (potential energy) loss through the structure. 

We assume that the drain will be capable of removing all the seepage that arrives at the 

drain, this means that the drain will not be under positive pressures at any time (water 

pressure in the drain will be zero). Physically, the drain needs to exist in the 

embankment, but it does not need to be present in a numerical model. If the drain 

becomes clogged with fines so that it begins to impede the seepage flow, just then the 

drain would need to be included in the numerical model.  

 

 

Figure 42: Modeling of the drain. Meshing and boundary conditions 

 

The boundary conditions used in this model are Total Head on riverside. 

Again, the slope surface on the right and the drain are given an Unknown boundary 

condition; the bottom of the external boundary, is given the Zero Nodal Flow boundary 

conditions. 

Using the same permeability characteristics of the materials, the following results as 

total head pressures are obtained (Figure 43). 
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Figure 43: Groundwater analysis with toe-drain 

 

Obviously, this time the water table does not cross the external facing, but there is an 

important spill of water through the drain.  

The maximum period of full supply level of the reservoir, that the dike can withstand 

without seepage problems, will be analyze later, in the transient analysis. 
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Slope Stability analysis 

 

The “slope stability” may be defined as the resistance of inclined surface to failure by 

sliding or collapsing. Slope stability analysis is performed to assess the safe design of a 

slopes (both natural and human-made) and the equilibrium conditions.  

Most of the slope stability analysis computer programs are based on the limit 

equilibrium concept. The conventional limit equilibrium methods investigate the 

equilibrium of the soil mass tending to slide down under the influence of gravity with a 

transitional or rotational movement. This movement describes the ”slip surface”. 

All the different methods to study the slope stability are based on comparison of forces 

(moments or stresses) resisting instability of the soil mass and those that causing 

instability. 

The most common limit equilibrium techniques are methods of slices where soil mass is 

discretized into vertical slices, as shown in Figure 44. 

 

 

Figure 44: Method of slices 

 

Where: 

http://en.wikipedia.org/wiki/Slope_stability
http://en.wikipedia.org/wiki/Failure
http://en.wikipedia.org/wiki/Landslide
http://en.wikipedia.org/wiki/Slope
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Gravity
http://en.wikipedia.org/wiki/Force
http://en.wikipedia.org/wiki/Torque
http://en.wikipedia.org/wiki/Stress_(mechanics)
http://en.wikipedia.org/wiki/Instability
http://en.wikipedia.org/wiki/Instability
http://en.wikipedia.org/wiki/Slope_stability#Method_of_slices
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 W = weight of slice, 

R = radius of slip circle,  

EL and ER = left and right side slice normal forces,  

X L & X R = left side and right side slice shear forces,  

N = base normal force (        ),  

α  = slice base inclination,  

β  = base length,  

Sm  = mobilized shear strength,  

AR  = water pressure, 

 x = horizontal distance of weight of slice from center of rotation O, 

u = pore water pressure above base of slice,  

e = vertical distance of center of slice, 

aR  = vertical distance of water pressure line from the center of rotation O. 

 

The software Slide® 5.0 has been used to develop the slope stability analysis. Below, it 

is possible to find the explanation of all the calculation models used. 

 

Methods of Slices 

Ordinary method (1927) 

The Ordinary, or Fellenius method (Fellenius W., 1936) was the first method developed. 

The method ignored all interslice forces and satisfied only moment equilibrium.  
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The slice weight is resolved into forces parallel and perpendicular to the slice base: the 

perpendicular one is the base normal force, which is used to compute the available shear 

strength; the parallel weight component is the gravitational driving force.  

To compute the factor of safety, the summation of moments about a point used to 

describe the trial slip surface is used. The FS is the available shear strength along the 

slip surface divided by the summation of the gravitational driving forces, that is the 

mobilized shear. In the absence of any pore-water pressures for a circular slip surface is: 

   
∑[        ]

∑     
 

∑           

∑          
 

 

Figure 45 shows an example of the force polygon for the Ordinary Methods. Due to the 

poor force polygon closure, the Ordinary method can give unrealistic factors of safety 

and consequently should not be used in practice. 

 

 

Figure 45: Free body diagram and force polygon for the Ordinary Method 

 

Bishop simplified (1955) 

Bishop devised a method which included interslice normal forces, but ignored the 

interslice shear forces (Bishop A.W., 1955). 

Again, this method satisfies only moment equilibrium, not overall horizontal force 

equilibrium. Bishop developed an equation for the normal at the slice base by summing 

slice forces in the vertical direction, so the base normal becomes a function of the factor 

of safety. The FS appears on both sides of the equation, so the factor of safety equation 
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becomes nonlinear and an iterative procedure is consequently required to compute the 

factor of safety. Bishop’s Simplified factor of safety equation in the absence of any 

pore-water pressure is: 

   
 

∑     
∑[

         
  

  
         

     
         

  

] 

 

The Figure 46 shows the slice free body diagrams and forces polygons for the same 

slices as for the Ordinary method. The force polygon closure is now fairly good with the 

addition of the interslice normal forces.  

 

 

Figure 46: Free body diagram and force polygon for Bishop's Simplified Method 

 

Janbu’s simplified method (1954, 1973) 

The Janbu’s Simplified method (Janbu N. et al., 1956) is similar to the Bishop’s 

Simplified method: it included interslice normal forces, but ignored the interslice shear 

forces. In contrast, the Janbu’s Simplified method satisfies only overall horizontal force 

equilibrium, not overall moment equilibrium. 

Figure 47 shows the free body diagrams and force polygons of the Janbu’s Simplified 

method. The slice force polygon closure is actually better than that for the Bishop’s 

Simplified method. However, the factor of safety calculated for circular slip surfaces, 

compared to the one of other methods, results too low (underestimation of 20-30%), 

even though the slices are in force equilibrium. 
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Figure 47: Free body diagram and force polygon for Janbu's Simplified Method 

 

Spencer method (1967,1973) 

This method (Spercer E., 1967) considers both shear and normal interslice forces. 

Spencer developed two factor of safety equations; one with respect to moment 

equilibrium and another with respect to horizontal force equilibrium. He adopted a 

constant interslice force function between the interslice shear and normal forces, and 

through an iterative process altered the interslice shear to normal ratio until the two 

factors of safety became the same. 

Finding the shear-normal ratio that makes the two factors of safety equal, means that 

both moment and force equilibrium are satisfied. 

Figure 48 shows the free body diagram and force polygon for this method: when both 

interslice shear and normal forces are included, the force polygon closure is very good. 

 

 
Figure 48: Free body diagram and force polygon for Spencer's Method 

 

Morgenstern-Price method (1965) 

Morgenstern and Price developed a method similar to the Spencer method, but they 

allowed for various user-specified interslice force functions (constant, half-sine, data-

point specified,…).  
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Figure 49: Free body diagram and force 

polygon for Morgenstern and Price’s Method 

The Morgenstern-Price method (Morgerstern N.R., Price V.E., 1965) considers both 

shear and normal interslice forces, satisfies both moment and force equilibrium, and 

allows for a variety of user-selected interslice force function. 

The figure below (Figure 49) shows the free body diagram and force polygon for this 

method, obtained by using a half-sine force function. 

 

Figure 50: Half-sine function 

 

General limit equilibrium method (GLE) (1981) 

This method was developed by Fredlund et al. (1981). Like Spencer’s method, the GLE 

formulation is based on two factor of safety equations: one equation gives the factor of 

safety with respect to moment equilibrium (Fm), while the other one gives the factor of 

safety with respect to horizontal force equilibrium (Ff ). The interslice shear forces in the 

GLE method are handled with an equation proposed by Morgenstern and Price: 

         ( ) 

where: 

f(x) is a function, 

  is the percentage of the function used, 

E is the interslice normal force, 

X is the interslice shear force.  
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The GLE factor of safety equation with respect to moment equilibrium is: 

   
∑(     (    )      )

∑   ∑   ∑  
 

 

The factor of safety equation with respect to horizontal force equilibrium is: 

   
∑(        (    )         )

∑      ∑     
 

with: 

c' = effective cohesion 

φ' = effective angle of friction 

D = concentrated point load 

N = the normal at the base of each slice, its equation is obtained by the summation of 

vertical forces.  

The GLE method satisfies both moment and force equilibrium by finding the cross- 

over point of the Fm  and Ff curves.  

It provides a framework for discussing, describing and understanding all the other 

methods. 

 

The Table 10 indicates what equations of statics are satisfied for each of the methods. 

The Table 11 gives a summary of the interslice forces included and the assumed 

relationships between the interslice shear and normal forces. 
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Table 10: Satisfied equation of static 

 

 

Table 11: Interslice force characteristics and relationships 

 

 

Results 

In the slope stability analysis for the test dike in Gdansk, all the methods described 

above have been used.  

The same model used for the seepage analysis has been used, in order to consider also a 

part of the soil under the dam, because it could be involved in the instability. Again, the 

model considered the dike itself, and a 0,5 m thick layer of loam under it, as shown in 

Figure 51: 
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Figure 51: Model for slope-stability analysis (Slide 5.0) 

 

The resulting solutions are summarized for each methods used in the analysis in the 

following table (Table 12): 

 
Table 12: FS from different methods (Slope 1:2) 

Slope Ordinary 
Bishop 

simplified 

Jambu 

Simplified 
Spencer 

Morgenstern-

Price 

1:2 3.346 3.516 3.453 3.515 3.519 

 

The result obtained with Bishop’s method is almost equal to the one obtained with 

Morgenstern and Price method.  

This means that a simpler method like Bishop’s simplified, that ignores interslice shear 

forces, does not always err on the save side. This method has been used to discuss the 

next analysis. 

The results obtained by using the Bishop’s simplified method are shown in Figure 53. 
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Figure 52: Slope stability analysis (Slope 1:2) 
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With Slide 5.0 is also possible to focus on each slice, to see the forces considered in the 

model and all the data about the slice. The next image (Figure 53) shows an example of 

this.  

 

 

Figure 53: Query slice data 

 

Concerning the slope stability, the Figure 54 shows the minimum surfaces referring to 

each point of the grid (different centrums and radius). 

 

 

Figure 54: Minimum surfaces (Slope 1:2) 

 

Different slopes 

The results obtained changing the slope in downstream side were also examined. 
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The Table 13 summarizes the FS obtained with the different methods after changing 

slopes: it is evident as, a decrease of the slope of the downstream side causes the 

increase of the FS (of 10-15%). 

 

Table 13: FS from different methods and slopes 

Slope Ordinary 
Bishop 

simplified 

Jambu 

Simplified 
Spencer 

Morgenstern-

Price 

1:2 3,346 3,516 3,453 3,515 3,519 

1:2,5 3,762 3,961 3,836 3,949 3,96 

1:3 4,188 4,433 4,258 4,427 4,434 

 

Different materials 

Again, was change the material of the riverside layer, and the one of the dike’s core. 

The new materials chosen presented a lower permeability: the tephra-and-sand mixture 

had a hydraulic conductivity equal to           ⁄ , and now it is assumed    

       ⁄  and           ⁄ ; the core presented           ⁄ , and now it 

changes in           ⁄  and           ⁄ . 

The different situation leads to the results below (Table 14): 

 

Table 14: FS for different materials 

    

External layer 
FS (Bishop) 

    

Core 
FS (Bishop) 

1,00E-07 3,516 1,00E-06 3,516 

1,00E-08 3,889 1,00E-07 3,627 

1,00E-09 4,287 1,00E-08 3,784 
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Figure 55: Comparison between FS 

 

With a very impervious external layer, less water arrives to downstream side, so less 

stability problems occur. 

 

Different cohesion 

In this section, Bishop’s safety factor is evaluated changing the cohesion of the 

embankment core. 

It is assumed to modify the percentage of ash in the mixture: the cohesion decreases if 

the percentage of fly ashes in the mixture is reduced; increases in the opposite situation. 

The initial cohesion was 10 kPa, and for this analysis it is assumed first equal to 5 kPa 

and then equal to 15 kPa.  

The results show that there is a great change in FS, as the cohesion is modified, and that 

a low cohesion penalizes the stability of the embankment. For this reason, the use in the 

core of materials with a high percentage of clayey or silty ground increases the internal 

cohesion. 
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Table 15: FS for different cohesion 

Choesion 

[kPa] 
FS (Bishop) 

5 2,679 

10 3,516 

15 4,15 

 

 

Figure 56: FS for different cohesion values 

 

Different friction angle 

The last parameter changed has been the friction angle of the ash-sand mixture. In this 

situation, the percentage of sand in the mixture is supposed to change; as a consequence 

the friction angles decreases or increases, respectively with the reduction or the addition 

of granular material in the mixture. 

 

Table 16: FS for different friction angle 

Friction angle 

[°] 
FS (Bishop) 

34 3,404 

37 3,516 

40 3,637 
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Figure 57: FS for different angles of friction 

 

The FS obtained changes, but in a minor way if compared with the FS determined after 

changing the cohesion (in previous analysis). 

The results point out the correct choice of the ash-sand mixture as dike’s core material: 

this mixture combines the advantages of having a high friction angle (sand), and a high 

cohesion. The high cohesion derives from the high percentage of fly ashes (70%), that 

have mechanical characteristics similar to those of silt.  

The use of a large amount of tephra is justified since the cohesion of the materials 

mostly influences the stability of an embankment. 
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Transient analysis 

 

In a steady-state analysis the pore-water pressures in the ground are at equilibrium with 

the defined boundary conditions and are not changing with time. On the contrary, in a 

transient analysis the pore-water pressures in the ground are changing with time.  

In general, flow is considered to be transient if changes in water level in wells and 

piezometers are measurable. Freeze and Cherry (1979) state that transient flow 

(unsteady flow) occurs when at any point in a flow field the magnitude or direction of 

flow velocity changes with time. In addition, Lambe and Whitman (1969) define 

transient flow as the condition during fluid flow where pore-water pressure, and thus 

total head, changes with time.  

Transient seepage analyses are applicable to dams because the boundary conditions 

acting on them change with time, which induces pore-water pressure changes with time 

in the embankment and foundation strata. These boundary conditions are rapid such that 

steady state conditions may not have time to develop. 

In a steady-state analysis, the amount of flow into the system is equal to the flow rate 

out of the system. In contrast, in a transient seepage analysis the amount of flow into the 

system may differ from the flow out of the system because the system stores or releases 

water: it therefore becomes necessary to consider how much water is flowing and how 

fast the water is flowing. As a result, a function of the change in storage and the amount 

of water in the system and a function of the hydraulic conductivity must be defined. 

A transient analysis requires: 

 Initial Conditions: a point from which to start moving ahead in time. It is 

possible to establish the initial condition from a certain step in the transient 

analysis, or by running a steady state analysis. 
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 Volumetric Water Content Function (VWC) and Conductivity Function: the first 

function describes how water is stored or released in the soil due to changes in 

pore-water pressure and the second function describes how easily the water will 

flow through the soil at a given pore-water pressure 

 Time Steps: an incremental time sequence is required for this kind of analyses. 

Each time step is equivalent to a mini steady-state analysis.  

Both the material property functions will be described in detail below. 

 

Volumetric Water Content (VWC) Function  

Soil consists of a collection of solid particles and interstitial voids. The pore voids can 

be filled either with water or air.  

The Volumetric Water Content (VWC) is defined as: 

    
  
 

    

where: 

   = volumetric water content, 

   = volume of water, 

  = total volume, 

n = porosity of the soil,  

S = degree of saturation. 

 

In a saturated soil, all the voids are filled with water, the degree of saturation is 100% 

and the volumetric water content of the soil is equivalent to soil porosity, which is 

defined as the volume of voids divided by the total volume.  
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In an unsaturated soil, the volume of water stored within the voids will vary depending 

on the matric suction within the pore-water (GeoStudio™, 2007), where matric suction 

is defined as the difference between the air (  ) and the pressure (  ) as:      . 

A function is required to describe how the water contents change with different 

pressures in the soil, since there is no fixed water content in time and space. 

The VWC function describes the capability of the soil to store water under changes in 

matric pressures, therefore it describes what portion or volume of the voids remains 

water-filled as the soil drains (negative pore-water pressures). 

The three main features that characterize the volumetric water content function are: 

- the air-entry value, (   ), which corresponds to the value of negative pore-

water pressure that can be applied to the pore-water before the largest pores 

begin to drain freely; 

- the slope of the soil-water characteristic curve for both the positive and negative 

pore-water pressure ranges (  ), which represents the rate of change in the 

amount of water retained by the soil in response to a change in pore-water 

pressure; 

- the residual water content, (  ), which represents the volumetric water content 

of a soil where a further increase in negative pore-water pressure does not 

produce significant changes in water content. 

 

The three main features of the volumetric water content function as described above are 

most strongly influenced by the size of the individual soil particles and the distribution 

of particle sizes in the soil. 

Water can be released from the soil in two ways: by draining the water-filled voids, thus 

desaturating the soil profile by gravitation forces (negative pore-water pressure); or by 

compressing the soil skeleton and reducing the size of the voids, effectively squeezing 

water out of a saturated system (positive pore-water pressure).  
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Consider a completely saturated soil where the pore-water pressure is near zero, and the 

total external load of the soil remains constant. As the pore-water pressure becomes 

more positive, the effective stress will decrease. This cause the soil to swell and results 

in an increase in its water content. As the pore-water pressure becomes negative, the soil 

begins to desaturate and the water content decreases. When the soil becomes completely 

desaturated, the water content is no longer changes with a further decrease in pore-water 

pressure. 

In the positive pore-water pressure region,    becomes equivalent to   , the 

coefficient of compressibility for one-dimensional consolidation; in the negative pore-

water pressure region the volume of water stored within the soil changes over a range of 

values from the     (a function of the maximum pore size), to the pressure at the 

residual water content (a function of the smallest pore size) (Figure 58). 

 

 

Figure 58: Volumetric Water Content function 
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Material property function: VWC function 

The first material studied was the sand-ash mixture, thus the dike’s core. 

Six independents samples, taken from the test dike in Trzcinsko, were examined in an 

external laboratory in Germany. The measured values of volumetric water content at 

different suction heads are collected in the Table 17and Figure 59, as shown below: 

 

Table 17: Volumetric water content for different water pressure 

Pore-Water 

Pressure 
  [   ] 0,3 2 6 13 30 60 

Pressure Head    
 

  

 [ ] 0,03 0,2 0,61 1,33 3,06 6,12 

Volumetric 

water content 
 [ ] 0,4120 0,4014 0,3502 0,2697 0,2298 0,2182 

 

 

Figure 59: VWC function 

 

By insert these data in GeoStudio™ 2007 software, the following functions (Figure 60) 

were obtained. 
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Figure 60: VWC for sand-ash mixture 

 

The image shows the same VWC function, but the function on the right is represented 

in the more common way, thus with Ylog axe. 

The slope of the VWC function is very steep, it means that the change in volumetric 

water content for increasingly negative pore-water pressures would be more than for a 

soil with a flatter function.  

 

There were no sample available for the others material used to construct the dike, so the 

values of storage were find out in literature. The water content at saturation (equal to the 

porosity) became the input to estimate the VWC function. 

The parameters referring to the clay layer were inserted in the GeoStudio™ software 

and, after specifying the kind of material, it provided the following function (Figure 61): 
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Figure 61: VWC for clay 

 

There are not many studies concerning the properties of a Tephra-Sand material, so it 

was necessary make a reasonable hypothesis about the characteristics of this mixture. A 

study on coal ashes showed that the behavior and the dimensions of the fly ashes (used 

in this layer in the test dike), are similar of the ones of silt (Prakash K. PhD and 

Sridharan A. PhD, 2006), so the tephra-sand mixture was assumed to have the same 

characteristics of a silty-sand material. The VWC function for this layer is showed in 

the following image (Figure 62). 
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Figure 62: VWC for sand-tephra mixture 

 

To run, the analysis needed also the definition of the hydraulic functions of the 

foundations ground (loam). Figure 63 shows the obtained function.  

 

 

Figure 63: VWC for loam 
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Hydraulic conductivity 

The ability of a soil to transport or conduct water under both saturated and unsaturated 

conditions is reflected by the hydraulic conductivity function (GeoStudio™ Manual, 

2007).  

Water can be considered to flow along a web of interconnected and continuous 

conduits: when the soil is saturated, all of the available conduits are utilized, and the 

water hydraulic conductivity capacity is at the maximum; when the water content 

decreases, at a certain point the air enters the largest pores (i.e. the AEV is exceeded) 

and the air-filled pores become non-conductive conduits to flow and increase the 

tortuosity of the flow path. As a result, the capacity to conduct water through the soil 

(the hydraulic conductivity) decreases. Ultimately, when the soil is dry, the capacity to 

conduce water along continuous water-filled conduits disappears.  

This means, that the ability of water to flow through a soil profile depends on how much 

water is present in the soil, which is represented by the volumetric water content 

function. Since the VWC is a function of pore-water pressure and the hydraulic 

conductivity is a function of water content, it follows that hydraulic conductivity is also 

a function of pore-water pressure. 

The following figure (Figure 64) presents a curve showing a typical hydraulic 

conductivity function and the relationship between hydraulic conductivity and pore-

water pressure. Defining the hydraulic conductivity for negative pore-water pressure 

regions makes it possible to analyze problems involving unsaturated flow as well as 

saturated flow. 
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Figure 64: Hydraulic Conductivity function 

 

Material property function: Hydraulic Conductivity function 

A hydraulic conductivity function shall be specified for all materials in a problem that 

has an unsaturated zone. Adopting a perfectly flat hydraulic conductivity function for an 

unsaturated soil, as assumed in steady state analysis, can lead to unrealistic results: this 

occurs because with a horizontal conductivity function, water can flow through the 

unsaturated zone with the same ease as through the saturated zone.  

For the test dike in Trzcinisko, there were no measure of the hydraulic conductivity 

function, so it was necessary develop the function using a predictive method that 

utilized the parameters of the measured volumetric water content function and the 

saturated hydraulic conductivity. 

To performed the transient analysis, the Van Genuchten’s closed-form solution (Van 

Genuchten, 1980) for predicting the volumetric water content function. The governing 

equation is as follows: 

  
    

     
 [

 

  ( | |) 
]
 

 

where: 

    the effective degree of saturation, i.e. the volumetric water content, 
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     the saturated volumetric water content, 

    the residual volumetric water content 

| |  | 
 

  
| = pressure head, 

        curve fitting parameters. 

 

The fitting parameters for the VWC curve would become the input data to calculate the 

hydraulic conductivity function. 

An appropriate software was used to predict  the unknown parameters and coefficients.  

The code uses the parametric models of Brooks-Corey and Van Genuchten (Brooks 

R.H. and Corey A.T., 1964).to represent the soil water retention curve, and the 

theoretical pore-size distribution models of Mualem and Burdine (Burdine N.T., 1953; 

Mualem Y., 1976) to predict the unsaturated hydraulic conductivity function from 

observed soil water retention data (Van Genuchten M.Th., Leij F.J., Yates S.R., 1991). 

For the sand-ash mixture, the Van Genuchten’s and the Mualem’s models were used: it 

means that the parameter     
 

 
. 

The program may be used to predict the hydraulic conductivity from observed soil 

water retention data assuming that one observed conductivity value (not necessarily at 

saturation) is available. 

The unknown coefficients are estimated using non-linear least squares models. Least 

square methods consist of finding parameters or given function to best fit data set. The 

fitted parameters are optimal when the squared difference between two following 

iterations reaches the minimum.  

The number of iterations and the final results are shown in Table 18. 
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Table 18: Fitted parameters 

 

 

The permeability  ( ) is related to the saturation (          ⁄ ) via effective water 

content   (Van Genuchten, 1980): 

 ( )    [√ (  (   
 

 )
 

)
 

] 

The results and the relationship between the permeability and the pore-water pressure 

for the sand-ash mixture and the curve inserted in GeoStudio™ 2007 software for the 

FEM analysis are shown below (Table 19, Figure 65 and Figure 66). 
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Table 19: Calculated relative permeability of the soil 

Pore-Water 

Pressure 
  [   ] 0,3 2 6 13 30 60 

Pressure 

Head  
   

 

  
[ ] 0,03 0,2 0,61 1,33 3,06 6,12 

Volumetric 

water content 
 [ ] 0,4120 0,4014 0,3502 0,2697 0,2298 0,2182 

Hydraulic 

Conductivity 
  [  ⁄ ] 

2,22 

E-07 

3,90 

E-08 

5,56 

E-09 

9,72 

E-10 

1,25 

E-10 

2,10 

E-11 

Hydraulic 

Conductivity 
  [    ⁄ ] 

1,92 

E-02 

3,37 

E-03 

4,80 

E-04 

8,40 

E-05 

1,08 

E-05 

1,81 

E-06 

 

 

Figure 65: Conductivity function for ash-sand mixture 
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Figure 66: Hydraulic Conductivity curve for sand-ash mixture 

 

Again, to estimate the function for the other materials, Van Genuchten equation was 

used. The water content at saturation (equal to porosity) and the residual water content 

were used as data input in GeoStudio™ software. The Hydraulic Conductivity functions 

related to the VWC curves for clay (Figure 67), tephra-sand mixture (Figure 68) and 

loam (Figure 69) have the following trend: 

 

 

Figure 67: Hydraulic conductivity curve for clay 
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Figure 68: Hydraulic conductivity curve for tephra-sand mixture 

 

 

Figure 69: Hydraulic conductivity curve for loam 

 

Figure 70 compares the conductivity functions for all the materials involved in the 

analysis: the material on riverside is the most impervious, while the core is the most 
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permeable. The clay present a low conductivity at saturation, but it does not decrease 

very much as the suction decreases. 

 

Figure 70: Comparison between hydraulic conductivity of different materials 

 

Transient seepage problem. Fill of the reservoir 

 

The first transient analysis performed, was the one concerning the flow thorough the 

dike during the filling stage of the reservoir. 

For this kind of analysis, the software GeoStudio™ 2007 (SEEP/W DEFINE) has been 

used.  
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Initial conditions 

For a transient analysis, it is essential to define the initial soil pressure conditions (Total 

Head) at all node. In this case the initial conditions are established by running a steady-

state analysis, as in the reservoir the height of ponded water was 0,1 m. 

Obviously, the same geometry and the materials of the steady-state analysis performed 

before have been used, and also the same type of boundary conditions: Total Head in 

the upstream side equal to 0,1 m, and Total Flux (Q=0) on the downstream side. In 

simple soil groundwater analysis, soil’s permeability function may be treated constant. 

The initial condition that has been assumed was the level in the reservoir equal to 10 

cm. The following figure (Figure 71) shows the results of the steady-state. 

 

 

Figure 71: Results of steady-state analysis (10 cm) 

 

Boundary conditions 

In a steady state analysis, all of the boundary conditions are fixed values. In a transient 

analysis, the conditions on the boundaries may change with time, thus, boundary 

conditions can be functions. 

The level in the reservoir takes a finite time period to change, therefore, to simulate the 

fill of the reservoir, the following Head-versus-Time boundary function has been 

applied to the upstream face (Figure 72): 
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Figure 72: Hydraulic boundary function. Fill of the reservoir 

 

It means that, starting from the steady-state analysis described before, every hour there 

is a 0,1 m water level rise, so 24 hours (i.e. 86.400 sec) are necessary to completely fill 

the reservoir. 

 

Time steps 

The time steps are the last things that need to be specified before running the transient 

analysis. 

To run the groundwater transient analysis for the dike in Trzcinisko, a 50 days-long 

period was analyzed. It was divided in 20 steps, and it was chosen an exponential time 

increase sequence, with initial increment size equal to an hour. 

 

Results  

The figures in this sections (from Figure 73, to Figure 76) shows the results of the 

transient analysis, under the non-reasonable hypothesis that the level in the reservoir, 

after 24 hours rising, remains the same until the system reach the steady-state condition. 
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The time period of 50 days chosen results adequate to describe the several steps of the 

groundwater analysis. 

 

 

Figure 73: Water table after 24 hours (filled reservoir) 

 

When the reservoir reaches the maximum height of water (equal to 2.5 m), the 

impermeable layer at riverside dissipates a big part of the hydraulic load: in fact, the 

level of the phreatic surface at the boundary between tephra and sand and the core of the 

dike is 0,58 m (Figure 73).  

The phreatic surface arrives at the downstream side after 14 days (Figure 74). The levee 

must preserve the water filtration for the time of flood, that is typically considered 14 

days long. That means that the test dike constructed fulfills its function and the 

materials can be used in building embankments. 

 

 

Figure 74: Water table after 14 days (filled reservoir) 
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Figure 75: Water table after 20 days: phreatic surface at downstream side 

 

After 20 days (Figure 75) the seepage through the levee flows out at the downstream 

face of the dike at 36 cm height. The toe of the dike begins to be under pressure, also in 

this case, an evaluation of the pore-water pressure is required. It is necessary to verify 

that the weight of the clay layer can resist to th pressures, i.e.          , at the 

interface between the core and the top layer. Here, the pore-water pressure is     

     , so the upward buoyant force is given by:                 

            . The stability of the toe in the external layer is ensured. 

Finally, after 50 days (Figure 76) the water exit height is 1 m, this means that the dike 

need more than 50 days to arrive at steady state conditions. 

 

 

Figure 76: Water height after 50 days 

 

Different speed of the reservoir filling 

A similar analysis was conducted, to evaluate which differences occur if the reservoir 

fills with a double speed (0,2 m/hour) or half speed (0,05 m/hour) respect the previous 

study. In both this case the level in the reservoir remains the maximum after filling. 
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The phreatic surface arrives at downstream side after 11 days, thus faster as the previous 

situation. If rapid filling (0,20 m/hour) occurs, after 20 days the water exit level is 

0,41 m, and it is possible to have problems of particles displacement. 

If the reservoir fills with a rapidity of 0,05 m/hour, the water line reaches the slope of 

the levee after 14 days, but is a little minor than the other situation, because after 

20 days the water exit height is 0,32 m. 

The different speed in filling the reservoir does not lead to very different result, so to 

extend the moment in which the water arrive at downstream side, a change in other 

parameters is necessary.  

 

Different thickness of the tephra and sand layer 

The analysis has been run again after changing the thickness of the riverside layer: from 

0,5 m to 0,7 m and 1 m. The level in the reservoir is assumed constant, after 24 hours of 

filling, and equal to 2,5 m.  

For 0,7 m thick layer, the water needs one more day to reach the downstream side, and 

after 20 days the level of the phreatic surface is 0,22 m high, so there is no problem of 

particle’s displacement in 20 days of maximum level in the reservoir. Problems occur 

after 22 days, as the height of the water line is 0,30 m. 

With a 1 m thick riverside layer, the water needs 17 days to arrive at downstream side, 

and the problems of breaking in the toe of the dam start to happen after 25 days, with 

the water exit height equal to 0,29 m. 

Changing the thickness of the tephra-sand mixture layer, allows to increase the number 

of days necessary to the water to arrive to downstream side, and so the period of flood 

without problems in the toe of the levee is extended. 
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Different riverside layer 

In this section, the different results obtained changing the material of the more 

impervious layer are evaluated. 

First, it was assumed to build the external layer only with clay (Figure 77).  

 

 

Figure 77: External layer made up with clay 

 

The water in the reservoir increases its level 0,1 m/hour speedy, and the water exits 

from the dike after 10 days, so the dike’s toe starts to be under pressure before respect 

the previous analysis. 

Then, it was assumed to use a material with very low permeability at saturation: 

           . The material has been considered as a silty sand and the new 

conductivity function is the following (Figure 78). 
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Figure 78: Different impervious material's conductivity function 

 

In this condition, the phreatic surface arrives at downstream side after 38 days. 

Changing the riverside layer confirms to be the best way to prevent the flow through the 

embankment. 

 

Insertion of a drain 

The transient analysis was performed also for a dike after the introduction of a 2,5 m 

long drain in the downstream toe. 

The material property functions remains the same, as the time steps and the initial 

conditions. To model the drain in GeoStudio™ 2007 it was decided to use the Pressure 

Head boundary condition: the pressure is assumed equal to 0, such as the pressure in the 

drain is the atmospheric one. 

After 24 hours the level in the reservoir stops to rise and remain constant in time. By 

inserting a horizontal toe-drain in the downstream of the dike, the system takes only 27 

days to arrive at steady-state condition. 
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Figure 79: Transient analysis with a drain 

 

The insertion of a drain in the dike’s basement is a good way to prevent damage in the 

toe of the levee, because the water will not arrive at downstream side. 

 

Monitoring 

A different way to prevent the exit of the water at downstream side is to provide the 

monitoring of the level in the reservoir: after filling, the level in the reservoir was 

assumed constant as maximum for 7 days (a reasonable time for flood condition). After 

this period it was considered decreasing in a linear way: 0,05 m/ hour, so it needed 48 

hours to go back to initial conditions, as shown in Figure 80. The empting must be slow, 

in order to avoid instability for excessive pressure that cannot be dissipated on upstream 

side (as analyzed in next transient seepage problem) (Figure 80). 
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Figure 80: Hydraulic boundary function. Drawdown after 7  days 

 

After 10 days the level in the reservoir remains the minimum (0,1 m) until the end of 

the analysis. The period of time chosen for this analysis was a 60-days long period. 

After 7 days, the phreatic surface does not arrive to downstream side; the level in the 

reservoir start to decrease and it takes 48 hours to completely empty. The water flows 

now through upstream side, and it is necessary to check that instability will not occur 

(as examined in the next chapter). The water line start to decrease on riverside, while it 

increases on the opposite site because of the seepage through the embankment.  

On the 14
th

 day from the beginning of the analysis, the water arrives to downstream 

side. From this moment there is flow through both side of the embankment and it is 

necessary to verify that problems for particles displacement do not happen. 

After 60 days of observation, the water table on upstream side is still 0,5 m high, and 

the water exit happens mostly from this side. 

On downstream side, the level of phreatic surface remains low (around 0,1 m): due to 

the impervious core of the dike, the hydraulic load is dissipated in the dam, so only a 

little part of the water exits from this side of the dike and the toe is not under a high 

pressure.  
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Summarizing, the seepage through the dike does not leads to damage in downstream 

side toe using this kind of monitoring plan of the level in the reservoir. 

 

 

Figure 81: Wetting up and down. First monitoring plan 

 

The analysis is repeated, imaging an exceptional flood: the level of the water in the 

reservoir rises in 24 hours, it remains constant for 12 days and finally it decreases in 2 

days. In next pictures the blue line correspond to the function of  first monitoring plan; 

the red one concerns the current analysis.  

Again, after emptying, the level in the reservoir remains constant and equal to 0,1 m. 
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Figure 82: Comparison between function of first  and second monitoring plan 

 

After 13 days from the beginning of the filling of the reservoir, the phreatic surface 

arrives to downstream side, so it is necessary to verify that problems of filtration and 

excessive pressure will not occur in the toe of the dike also before emptying the 

reservoir. As it is shown in the figure below (Figure 83), after 60 days the piezometric 

line’s height in downstream side is 0,22 m. Because of the long period of evaluation, we 

can assume that this will be the maximum water exit height from this side of the dam, 

so we can say that the toe at downstream side will not present any damage during a 

flood, not even for outstanding events. 
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Figure 83: Wetting up and down. Second monitoring plan 

 

Transient seepage problem. Rainfall 

 

In this chapter a transient FEM analysis during rainfall is performed.  

The same model described in previous analyses is use, but this time is also necessary to 

consider the amount of rainwater infiltrated. 

Referring on the graph in Figure 84, the average rainfall is determined, considering the 

rainfall and the wet days in June: the amount of rain per hour is estimate equal to 

                . 

 



 
 
 
 

“Groundwater flow through the test dike constructed with dredged materials” 
 

 

  

107 
Università degli Studi di Padova 

Department of Civil, Construction 
and Environmental Engineering 

 

 

Figure 84: Gdansk, Poland climate graph (altitude 12m) 

 

This datum is inserted as a Unit Flux (q) boundary condition, to simulate the rain 

entering the soil. 

The transient analysis is subdivide in 2 steps: firstly I considered 24 hours of rainfall 

with the water level in the reservoir remaining equal to 0,0 m, after this time the 

reservoir starts to fill, and it takes 24 hours to arrive at maximum level. This is the same 

boundary condition assumed in the first transient analysis performed during the filling 

of the reservoir: the aim of the analysis in this chapter is making a comparison between 

the behavior of the soil with or without initial saturation of a part of the embankment. 

Figure 85 shows the boundary conditions assumed and the results obtained from the 

analysis after 24 hour of rainfall. The rainfall infiltrates mostly in downstream side, 

since the clay’s permeability is higher than the one of upstream side layer. The soil 

within the embankment starts to saturate close to both the upstream and downstream 

side toe. 
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Figure 85: Water level in the embankment after 24 hours of rainfall 

 

The second stage of the analysis begins when the rainfall stops: the water level in the 

reservoir starts to raise up 0,1 m every hour, so the reservoir takes 24 hours to fills. 

Afterwards the water level in the reservoir remains constant and the behavior of the 

piezometric line within the dike is evaluated during the next days. 
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Figure 86: Piezometric level after filling the reservoir 

 

After one day of rainfall, the phreatic line takes 10 days to reach the downstream side 

slope, while it took 14 days considering the soil within the embankment not saturated. 

This means that an increasing in the permeability of the materials occurs, comparing to 

previous situation, due to the presence of saturated soil in the embankment: the 

permeability function is derived from the suction curve, which depends on the initial 
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water content, as a consequence, the water flow is strongly dependent on the initial soil 

water content. If the soil is saturated, the water flows more easily, and the permeability 

increases. 

 

The first rainfall analysis has been performed again considering 48 hours of rainfall; the 

water level in the reservoir remains equal to 0,0 m for 24 hours, after this time the 

reservoir starts to fill, and it takes 24 hours to arrive at maximum level.  

Figure 87 shows the boundary conditions assumed and the results obtained from the 

analysis after 24 hour of rainfall.  

Since it is not possible to assign two different boundary conditions to the same node, 

this stage of the analysis was subdivide in four steps, making the water level in the 

reservoir increasing for 0,6 m each step, and considering water infiltration on the 

remaining boundaries. The reservoir takes 24 hours to fill, and in Figure 87 the 

increasing height of phreatic surface is shown. 
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Figure 87: Piezometric level during both rainfall and filling of the reservoir 

 

The maximum water level in the reservoir is assumed to remain constant for 10 days, in 

order to evaluate the time required for the piezometric line reaches the downstream side 

slope, that is only 7 days. 
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Figure 88: Water level after 7 days 

 

This analysis shows the importance in considering the infiltration of rainwater to 

evaluate correctly the groundwater seepage.  

In reality, the water content in the structure is unknown. The permeability and 

consequently the water flow are strongly dependent on the initial soil water content, 

therefore, it is necessary to consider in the analyses different soil humidity conditions. 

 

Drawdown 

 

Failure of an embankment dam can result from instability of either the upstream or 

downstream slopes. The critical stages for the downstream slope are at the end of 

construction and during steady seepage when the reservoir is full (as seen before). The 

critical stages in an upstream slope are at the end of construction and during rapid 

drawdown.  

Embankments may become saturated by seepage flow during a long term high reservoir 

stage. If the reservoir is drawn down quickly, can happen that the pore-water cannot 

spillage, so high level of pore-water pressures and consequently reduced stability will 

result. This is called drawdown.  

The case in which the water has to be quickly lowered in presence of impermeable 

material in the dam slope, so that the phreatic line falls very slowly, is a common 

problem (Tho X. Tran, 2004).  
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The stability of slopes under drawdown conditions are usually analyzed considering two 

limiting conditions, namely slow and rapid drawdown. In the slow drawdown situation 

the water level within the slope is assumed to equalize the reservoir level at any time. In 

case of rapid drawdown, it is assumed that the pore-water pressure within the 

embankment continues to reflect the original water level. The lag of the phreatic line 

depends on factors such as: permeability of soils, drawdown rate, drawdown ratio and 

slope gradient. 

The drawdown is known as one of the most dangerous conditions for the upstream 

slope. When the water level adjacent to a slope drops rapidly, the total stresses in the 

slope are reduced, and the soil is in a state of undrained unloading. At the same time, 

the stabilizing effect of the water at the slope surface is removed, and shear stresses 

increase. 

The rapid drawdown problem is shown schematically in Figure 89. Soils inside the dam 

body remain saturated and seepage commences from it towards the upstream slope. 

Unloading from drawdown will cause a decrease in pore pressures within the 

embankment. At the same time, the increase in shear stress may either raise or lower 

pore pressures. These pore pressure responses are stress dependent and are difficult to 

accurately predict. Since the soil shear strength is directly related to the pore pressure, 

the appropriate strengths for rapid drawdown are hard to evaluate. 

 

 

Figure 89: Stress conditions resulting from rapid drawdown 
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Many different total stress and effective stress stability methods have been developed to 

analyze the rapid drawdown condition (VandenBerge, 2012). The total stress methods 

follow the traditional geotechnical approach to rapid loading problems by including the 

effects of pore pressure change (Δu) implicitly in the strength model; effective stress 

solutions attempt to predict Δu explicitly and calculate strength using drained shear 

strength parameters. Any case, rapid drawdown analysis remains one of the most 

misunderstood cases in slope stability, but the need to study the slope stability of earth 

fill dams during drawdown is necessary. 

 

Slow drawdown 

In this situation the water level within the slope is assumed to equalize the reservoir 

level at any time. The reservoir is drawn down as fast as the pore water can escape, so 

no excess pore water pressures results. 

To model this kind of drawdown a GeoStudio™ analysis was performed, using the same 

model described before. 

As in the previous analysis, also in this case the initial conditions are established by 

running a steady-state analysis. The initial boundary conditions for this analysis are the 

last ones respect the case of the filling reservoir: Total Head equal to the maximum 

level in the reservoir (2,5 m). The Figure 90 shows the results of the steady-state 

analysis. 

 

 

Figure 90: Initial conditions derived from steady state analysis 
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The water level is considered decreasing in a linear way: it decreases 0,25 m each day 

(about 0,01 m/hour), so the reservoir takes 10 days to completely empty. This 

assumption is unlikely, because it is a long period to emptying the reservoir, but in this 

way the dissipation of excess of pore water pressure is ensured. 

A Head versus Time function with the Q=0 if H < 0 elevation option has been specified 

on the upstream of the dam. The new function used is shown in Figure 91: 

 

 

Figure 91: Hydraulic boundary function for slow drawdown 

 

To run this analysis, a 40 days-long period was analyzed, divided in 10 steps: after 

10 days of drawdown, the level in the reservoir was assumed to remain constant and 

equal to 0,0 m for the following month. The behavior of the seepage through the 

embankment was then examined. 

To define the time steps it was chosen an exponential time increase sequence. 

Figure 92 shows the result of the seepage analysis. 
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Initially, the phreatic surface level in the reservoir decreases as the water level in the 

reservoir, and there is seepage flow only toward the downstream side’s toe. When the 

water passes the level of   ⁄  (H=2,5 m), as happens the fifth day, the water starts to 

flow toward the upstream side. After this moment, the water will flow toward both 

dam’s toe until empty the embankment.  

In Figure 93, it is evident how, also after 40 days (i.e. 30 days with water level equal to 

0,0  in the reservoir), a big portion of the dam is still saturated: the water drains slowly 

because of the high impermeability of the external and inferior layers. 
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Figure 92: Slow drawdown during emptying of the reservoir 
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Figure 93: Phreatic surface after 40 days (30 days of empty reservoir) 

 

The slope stability during the slow drawdown has been evaluated. To run the FEM 

analysis, the previous seepage results have been used as input data. 

The limit equilibrium method according to Morgerstern and Price (Morgerstern N.R., 

and Price V. E., 1965) is applied to define the potential slip surface and calculate the 

factor of safety of the dam slopes. The failure area is assumed and divided into a 

number of sections.  

The equilibrium of each section is considered and finally a factor of safety for the 

assumed slip surface is determined, considering the equilibrium of the whole mass. The 

potential slip surface and factor of safety are iteratively determined until a critical slip 

surface and minimum factor of safety have been found.  

In this analysis, each type of failure surface would be taken into account, and not only 

the circular ones, as happened with Bishop’s simplified method (Bishop A.W., 1955). 

First of all the slope stability of steady state analysis has been studied. As shown in 

Figure 95 the safety factor obtained is equal to 7,264, so the stability is largely verified. 

This is due to the stabilizing effect of the water pressure on the upstream side slope. 

When the water in the reservoir is at the maximum level, the potential failure surface 

dominantly takes place in the downstream slope: the more probable failure mechanism 

is the breaking of the downstream side toe due to high pore-water pressures developed 

and to the internal erosion, and the fact that soils in the dam tend to displace to the 

downstream slope.  
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Figure 94: FS=7,264 at steady state conditions 
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Since the water level commences to lower, soils change to move from the upstream to 

the upstream slope. The potential slip surface or failure mechanism changes to occur in 

the upstream slope. When the water just passes the level of   ⁄ , the upstream slope is 

dominant to be destabilized to the downstream one. The potential mechanism of 

collapse occurs in the upstream and moves from the dam crest to ground level. 

From Figure 95 to Figure 104, the factors of safety obtained from the FEM slope 

stability analysis are shown. 
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In Table 20 are collected the safety factor obtained at each step of the analysis. Is it 

possible to see how, during the emptying of the reservoir, the safety factor decreases 

with the water level in the reservoir. It reaches the minimum value after 8 hours from 

the beginning of the analysis: at this time the countervailing effect of the water on 

upstream slope has disappeared, the phreatic surface in the embankment is still high, so 

big water pressures occur and the water level in the reservoir already passed the level of 

  ⁄ , so there is filtration also toward the upstream toe. This is the most critical stage in 

the analysis. 

After this time, the water in the dam, had time to spillage, so the water pressure at the 

upstream toe decreases also if the reservoir is empty, with consequent increase of the 

factor of safety, which settles around a value        . 

 

Table 20: Trend of FS in slow drawdown analysis 

Time 

Water 

height in 

the 

reservoir 

FS 

(Morgerstern-

Price) 

[days] [m] [-] 

0 2,5 7,264 

0,4 2,38 6,781 

1 2,25 6,341 

2 1,75 5,735 

3 1,5 4,862 

5 1 4,676 

8 0,5 4,194 

10 0 4,267 

20 0 4,441 

30 0 4,441 

40 0 4,448 
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Figure 105: Trend of FS during the emptying of the reservoir in slow drawdown 

 

Rapid drawdown 

In case of rapid drawdown, it is assumed that the pore water pressure within the 

embankment continues to reflect the original water level. There are different kind of 

analysis to conduced to evaluate the safety factor during rapid drawdown. The first 

method is to pretend that the water in the reservoir draws down instantaneously; the 

second one is to use the seepage results from SEEP/W analysis. This more accurate and 

advanced approach uses the exact pore-water pressures that were in the soil during the 

drawdown process.  

A SEEP/W analysis with GeoStudio™ 2007 software has been run assuming the 

reservoir emptying in 4 hours, i.e. about 0,62 m/hour. This period of time is too short to 

allow the water within the embankment to escape, so the pore water pressure within the 

embankment remains high. 

The model described in the previous analysis has been used, the only difference is in the 

boundary function, shown in Figure 106: 
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Figure 106: Hydraulic boundary function for rapid drawdown 

 

The same initial conditions are assumed, and also the same 40 days-long period of 

examination was analyzed, divided in 14 steps: one to each hour of emptying of the 

reservoir, and one for each time step evaluated in the previous analysis. 

After 4 hours of drawdown, the level in the reservoir was assumed to remain constant 

and equal to 0,0 m for the following days. The behavior of the seepage through the 

embankment was then examined. 

The Figure 107 shows the groundwater seepage during the emptying of the reservoir. It 

is evident, how the water has no time to exit to the dam. The pore water pressures are 

high enough to force the water to escape not only from the upstream toe, but also from 

the slope itself.  
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Figure 107: Rapid drawdown during emptying of the reservoir 

 

After 4 hours, the level in the reservoir is equal to 0,0 m, the phreatic surface in the dam 

starts to decrease gradually in height, as in the previous analysis. 

 

 

Figure 108: Piezometric line after 40 days 
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The slope stability during the rapid drawdown has then been evaluated using the  

previous seepage results as input data. Again, the factor of safety has been determined 

using the Morgerstern and Price’s method, and considering also the composite slip 

surface. 

The Figure 109-Figure 112 show the slope stability during the emptying of the 

reservoir. 
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In Table 21 are collected the factors of safety corresponding at each step of the analysis. 

As the water level draws down quickly, the safety factor lower, because the stabilizing 

effect of the water on upstream side disappeared, the phreatic line in the embankment 

continues to reflect the original water level, and the pore water pressure in the dike are 

high, so the instability risk occurs. 

After 4 hours the water level in the dam starts to decrease slowly, the pore water 

pressure starts to dissipate and the stability of the slope increase. The safety factor 

finally settles on a value similar to the previous analysis. 

 

Table 21: Trend of FS in rapid drawdown analysis 

Time 

Water 

height in 

the 

reservoir 

FS 

(Morgerstern-

Price) 

[days] [m] [-] 

0 2,5 5,051 

0,04 1,9 4,511 

0,08 1,2 4,050 

0,125 0,6 4,630 

0,167 0 4,555 

0,4 0 4,564 

1 0 4,543 

2 0 4,560 

3 0 4,511 

5 0 4,505 

8 0 4,477 

10 0 4,455 

20 0 4,443 

30 0 4,450 

40 0 4,451 
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Figure 113: Trend of FS during rapid drawdown 

 

Instantaneous drawdown analysis 

A different kind of analysis can be conducted pretending the instantaneous draw down 

of the water in the reservoir. This situation can be modelled in two different kind: it is 

possible to draw the piezometric line before and after the drawdown, or it is possible to 

run a transient analysis with immediate drop down of the water changing the boundary 

conditions. 

Using the first method it is possible to define the initial and the final condition by 

drawing the piezometric surfaces of the embankment, without conducing a seepage 

analysis, but only using SLOPE/W. The initial condition is determined by running a 

steady state analysis when the reservoir is at fully supply level. To model the rapid 

drawdown conditions in SLOPE/W, we need to remove the ponded water and place the 

piezometric line along the ground surface. The piezometric line is assumed to follow the 

upstream ground surface, but remains unchanged inside the embankment (Figure 114). 
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Figure 114: Profile used and assumed piezometric line after instantaneous drawdown 

 

 

Figure 115: Critical slip surface and FS=2,048 after instantaneous drawdown 

 

The factor of safety obtained is very small in comparison with the ones obtained before, 

so this approach should be considered conservative, because it bases on the 

unreasonable hypothesis that the draw down is instantaneous and the decreasing of the 

water in the reservoir does not lead to change in the phreatic line within the 

embankment. Besides, the process is treated as an instant of time, so it does not let to 

obtain acceptable results.  

 

Using the second method, the safety factor for each step of the analysis is determined 

using the SEEP/W analysis as input data. The model utilized is the same of the rapid 

drawdown condition, but here the Total Head boundary conditions pass instantaneously 

from 2,5 m to 0,0.  

The results of seepage flow are collected in the figures below (Figure 116-Figure 118). 
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Figure 116: Seepage flow 1 hour after rapid drawdown 

 

 

Figure 117: Seepage flow after one day 

 

 

Figure 118: Seepage flow after 20 days 

 

The pore-water pressure within the dam are so high that the water flows toward the 

upstream slope at the beginning of the analysis, in this condition there is flow toward 

both the dike’s slope. 

The slope stability analysis has been conducted, and the results are collected in Table 

22: 
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Table 22: Trend of FS in instantaneous drawdown analysis 

Time 

Water 

height in 

the 

reservoir 

FS 

(Morgerstern-

Price) 

[days] [m] [-] 

0 2,5 5,051 

0,04 0 2,987 

1 0 3,858 

2 0 3,938 

3 0 4,017 

5 0 4,087 

8 0 4,15 

10  4,206 

20  4,258 

30  4,311 

40  4,363 

 

 

Figure 119: Trend of FS during instantaneous drawdown 
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The trend of the safety factor in Figure 119 shows as the safety factor drops to low 

values in the early stage of the drawdown process. After the initial abrupt decrease, it 

increases above 4.3 when the pore-water pressure in the embankment dissipate with 

time. This proves that the rapid drawdown is a very critical condition for the upstream 

slope stability. 

In this case the safety factors result smaller than in the rapid drawdown analysis, 

because of the different modelling of the situation. To work on safe side, is better to use 

the last analysis described. 

The advantage of the approach  using the SEEP/W is that the hydraulic properties of the 

material can be considered and time can be included in the analysis: with this approach 

rapid drawdown is not just an instance in time, but is a process. 

In this analyses, the stability of the dike’s toe have not been considered, because it 

concerned only the slope instability due drawdown conditions. Any case, it would be 

necessary to conduce this kind of study, as high pore-water pressures occur during the 

seepage flow. The critical and the exit gradient should be calculated, and the stability 

must be verified. 

 

Transient flow through the dike: comparison between FEM software 

In this paragraph I would like to make a comparison between the results that I obtained 

by conducing the analysis with GeoStudio™ 2007 software, the results obtained by Mr. 

Tomczak using Slide® software, and the results obtained by Ph.D. Marcin Cudny using 

Plaxis® software.  

This last model was presented during “DredgDikes Workshop and Steering Group 

Meeting” in Gdańsk on 27
th

 November 2012. 

In this analysis, the level in the reservoir reaches its maximum in 5 days. The 

development of phreatic line is evaluated after keeping the water at 2,5 m for a 7-days 

long period. After this time, the reservoir is empty and the water level drops from 2,5 m 

to 0,0 m in 1 day.  
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Figure 120: Height in the reservoir for both the simulations 

 

The geometry of the model is similar in each analysis, the differences lie in the external 

layer. In Slide® model, the top layer is made of the same materials as in my analysis, 

but the tephra and sand layer continues over the top of the dike and ends up in the 

middle of the slope; Plaxis® model presents also two top layers (tephra and clay) but 

both of this layer have equal hydraulic conductivity, so they are modelled in the same 

way. 

Figure 121 shows a similar development of the piezometric line in all the cases, during 

the rising up of the level in the reservoir. 

After 7 days of keeping the water in the reservoir equal to its maximum value, the 

results obtained from Plaxis® and GeoStudio™ are very similar, while the phreatic 

surface at the interface between the external layer and the dike’s core are lower in 

Slide®, respect to the height in the other software (Figure 122). 

After drawdown the piezometric line in GeoStudio™ arrives to overlap the upstream 

side slope, while the piezometric line in the other analysis are far from it. 

From this comparison, we can conclude that GeoStudio™ can be used to run 

groundwater seepage analysis, because it leads any case to acceptable results.  
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Figure 121: Comparison between Plaxis® (a), Slide® (b), GeoStudio™ (c) models after 5 days of filling of the 

reservoir 
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Figure 122: Comparison between Plaxis® (a), Slide® (b), GeoStudio™ (c) models after 7 days of full reservoir 
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Figure 123: Comparison between Plaxis® (a), Slide® (b), GeoStudio™ (c) models after drawdown 

 



 
 
 
 

“Groundwater flow through the test dike constructed with dredged materials” 
 

 

  

143 
Università degli Studi di Padova 

Department of Civil, Construction 
and Environmental Engineering 

 

 

Field tests 

 

The dike was subjected to many experiments to evaluate many parameters of the dike’s 

materials. The parameter studied in the following experiment is the permeability. 

The permeability test is performed by keeping water level raised up on the seepage side 

for a certain number of days. Afterwards, to verify the stability of the dike, the water is 

drawn down rapidly. After pumping out, the water content and its distribution inside the 

dike are observed for following days. 

Measurements 

Four electronic piezometers had been installed in the dike’s core. Two piezometers are 

placed on the edges of the dike’s crown, while the other two are located in the middle of 

the dike’s slope, and the edge of the slope intersects the piezometer at 1,5 meter of 

height. 

The devices measure water pressure in each cross-section, once every hour. Non-

linearity of the sensors, as well as temperature dependencies, are mathematically 

compensated.  

The data from piezometers are sent by GSM signal to the monitoring station, localized 

near the dike. The computer, using special software, processes the measurement data 

and sends it to the receiver. Complete results are sent every 12 hours in a form of a text 

file.  

In this thesis, only the one set of data for each day of the experiment are presented. 

Collecting all data, the actual height of the water table in piezometers can be calculated 

from Pascal’s law, which states that, when there is an increase in pressure at any point 

in a confined fluid, there is an equal increase at every other point in the container. 
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Figure 124: Pascal's law schema 

 

This law can also be written as: 

        (     ) 

where: 

   [  
  ⁄ ]   water pressure in the piezometer ; 

   [  
  ⁄ ]         atmospheric pressure; 

  [  
  ⁄ ]   water unit weight; 

   [ ]   researched water height; 

  [ ]   water height at atmospheric pressure. 

At height of +/- 0,00 m the pressure is equal to atmospheric pressure, so the Pascal’s 

principle can be transform into following form: 
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Seepage experiments 

The first seepage experiment was started on 3
rd

 July 2013, at 8.00 a.m. 

Initially, the reservoir was filled in 24 hours; when the water reached the maximum 

level (2,5 m), it stopped to be pumped in. After flooding the seepage side of the dike, 

the water was not refilled throughout the experiment, so the water table was slowly 

falling down through the passing time. On the fifth day the water was pumped out 

during few hours. Water conditions, inside the dike’s core, were finally observed for 

following 7 days. 

Figure 125 shows how changed the water level in the reservoir during the experiment. 

 

 

Figure 125: Head vs time function 

 

The level of the water initially increases in 24 hours, then it slowly decreases 0,2 m 

every day for 5 days, and finally it drops quickly in 4 hours. After emptying the 

reservoir, the level of the water remains equal to 0.0 m throughout the 7 days long 

period of observation. 

Table 23 shows the water level in each piezometer for the first experiment. These data 

have been collected by the polish student Mr. Tomczak. 
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Table 23: Measured water heights in piezometers for the first experiment 

Time from 

experiment 

start 

Date 

Water 

height in 

piezometer 

1 

Water 

height in 

piezometer 

2 

Water 

height in 

piezometer 

3 

Water 

height in 

piezometer 

4 

[h] [-] [m] [m] [m] [m] 

-16 2,07,13 0,088 0,116 0,138 0,062 

8 3,07,13 2,265 0,837 0,338 0,16 

32 4,07,13 2,08 1,641 1,017 0,159 

56 5,07,13 1,858 1,577 1,109 0,377 

80 6,07,13 1,644 1,424 1,078 0,52 

104 7,07,13 1,456 1,28 1,003 0,537 

128 8,07,13 0,681 0,895 0,77 0,466 

152 9,07,13 0,397 0,553 0,532 0,357 

176 10,07,13 0,225 0,336 0,364 0,278 

200 11,07,13 0,155 0,177 0,22 0,205 

224 12,07,13 0,152 0,114 0,131 0,183 

248 13,07,13 0,153 0,114 0,101 0,183 

272 14,07,13 0,152 0,117 0,104 0,186 

296 15,07,13 0,151 0,115 0,102 0,186 

 

 

Figure 126: Trend of the saturation level of the piezometers for first experiment  
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The previous field test was repeated few days later: it was started again on 24
th

 July 

2013, at 9 a.m., 9 days after the end of the first one. 

At the beginning of this experiment, there were some little differences in the water 

heights in the piezometer compared to the ones of the previous experiment, as it is 

possible to see in Table 24. 

 

Table 24: Measured water heights in piezometers for the second experiment 

Time from 

experiment 

start 

Date 

Water 

height in 

piezometer 

1 

Water 

height in 

piezometer 

2 

Water 

height in 

piezometer 

3 

Water 

height in 

piezometer 

4 

[h] [-] [m] [m] [m] [m] 

-16 2,07,13 0,146 0,107 0,09 0,164 

8 3,07,13 2,44 0,953 0,446 0,164 

32 4,07,13 2,285 1,875 1,243 0,277 

56 5,07,13 2,094 1,834 1,395 0,604 

80 6,07,13 1,911 1,71 1,372 0,69 

104 7,07,13 1,734 1,57 1,276 0,659 

128 8,07,13 1,571 1,427 1,167 0,608 

152 9,07,13 0,721 0,97 0,885 0,503 

176 10,07,13 0,42 0,597 0,586 0,378 

200 11,07,13 0,242 0,352 0,377 0,282 

224 12,07,13 0,156 0,124 0,132 0,188 

248 13,07,13 0,156 0,124 0,132 0,188 

272 14,07,13 0,154 0,121 0,103 0,185 

296 15,07,13 0,155 0,122 0,105 0,186 
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Figure 127: Trend of the saturation level of the piezometers for second experiment  

 

Both figures show similar piezometric heights. The main difference between the two 

experiments is the maximum water level observed in all piezometers (higher in the 

second test).  

The piezometers p1, p2, p3 begin to saturate after couple of hours from the start of 

experiment. The piezometer p4 is reached by water after 27 hours, while it needed 

39 hours to saturate in the first experiment. The different conditions of saturation of this 

piezometer are shown in the graph below (Figure 128). These differences show changes 

in water filtration coefficient in the dike induced by the first test. 
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Figure 128: Different saturation conditions for piezometer p4 

 

In the second test, the dredged material shows bigger saturation capacity, as the 

piezometers show higher water table level compared to the one in first analysis. This 

means that the water flow through the dike in the two experiments is relatively different.  

 

FEM analysis 

Groundwater analysis 

The first field measure is reproduced using GeoStudio™ 2007
 
 software. A transient 

analysis is performed to simulate the seepage through the dike and evaluate the water 

height in the piezometers, comparing it to the values got from the field test. 

In finite element model, the soil is assumed to be in dry state, before the beginning of 

the test. The data measured by Mr. Tomczak have to be modified to be compared with 

the ones obtained from the FEM analysis: the initial value at empty reservoir should be 

0,0 m, so it is necessary to compensate the piezometric heights for this effect. The 

corrected data are gathered in Table 25. 
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Table 25: Collected measured water heights in piezometers for the first experiment 

Time from 

experiment 

start 

Date 

Water 

height in 

piezometer 

1 

Water 

height in 

piezometer 

2 

Water 

height in 

piezometer 

3 

Water 

height in 

piezometer 

4 

[h] [-] [m] [m] [m] [m] 

-16 2,07,13 0 0 0 0 

8 3,07,13 2,177 0,721 0,200 0,098 

32 4,07,13 1,992 1,525 0,879 0,097 

56 5,07,13 1,770 1,461 0,971 0,315 

80 6,07,13 1,556 1,308 0,940 0,458 

104 7,07,13 1,368 1,164 0,865 0,475 

128 8,07,13 0,593 0,779 0,632 0,404 

152 9,07,13 0,309 0,437 0,394 0,295 

176 10,07,13 0,137 0,22 0,226 0,216 

200 11,07,13 0,067 0,061 0,082 0,143 

224 12,07,13 0,064 0 0 0,121 

248 13,07,13 0,065 0 0 0,121 

272 14,07,13 0,064 0 0 0,124 

296 15,07,13 0,063 0 0 0,124 

 

 

Figure 129: Trend of the corrected water level in the piezometers 
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The model is the same as the one used in the previous analysis, but in this case the mesh 

is modified so that where there is a piezometer, there are the nodes of the mesh, too. The 

piezometers are modelled as a vertical line, as it is shown in Figure 130. 

 

 

Figure 130: Model for piezometric analysis 

 

The boundary conditions utilized are Total Head in riverside slope to simulate the trend 

of the ponded water in the reservoir, Total Flux (Q=0) in downstream side and Pressure 

Head (P=0). 

The results of the water height in piezometers obtained from the simulation are 

collected in the Table 26. 
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Table 26: Water heights in piezometers from GeoStudio™ analysis for the first experiment 

Time from 

experiment 

start 

Date 

Water 

height in 

piezometer 

1 

Water 

height in 

piezometer 

2 

Water 

height in 

piezometer 

3 

Water 

height in 

piezometer 

4 

[h] [-] [m] [m] [m] [m] 

-16 2,07,13 0 0 0 0 

8 3,07,13 0,717 0,019 0 0 

32 4,07,13 0,934 0,134 0 0 

56 5,07,13 0,999 0,242 0,001 0 

80 6,07,13 0,998 0,316 0,007 0 

104 7,07,13 0,956 0,363 0,026 0 

128 8,07,13 0,787 0,367 0,043 0 

152 9,07,13 0,688 0,356 0,06 0 

176 10,07,13 0,637 0,348 0,075 0 

200 11,07,13 0,604 0,342 0,085 0,001 

224 12,07,13 0,577 0,337 0,093 0,001 

248 13,07,13 0,556 0,332 0,101 0,002 

272 14,07,13 0,584 0,328 0,107 0,003 

296 15,07,13 0,523 0,324 0,112 0,004 

 

 

Figure 131: Trend of water in piezometers  from analysis with GeoStudio™ 2007 
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Analyzing the data in the previous paragraphs it is clear that the dam’s finite element 

modeling is not relevant: the piezometric behavior appears substantially different.  

This can be due to the fact that the permeability in close area of standpipes can be much 

higher than the one determined in laboratory’s tests, because of drilling procedure and 

filling the space between borehole and standpipe with some coarser material. So I tried 

to increase the permeability coefficient of the external impervious layer and the core of 

the dike to see the effect of it. 

The values of conductivity coefficients that allow to achieve similar results to those 

measured in field tests are:          [  ⁄ ] for both tephra-sand mixture and clay; 

         [  ⁄ ] for the core. In this condition the external layer becomes more 

permeable than the core, and this is not consistent with the initial assumption.  

In my opinion, the differences between the FEM analysis results and the field test 

results can be caused by: 

- damaging of the piezometer during the installation; 

- relevant alteration of the external layer during installation of piezometers; 

- the fact that the FEM software considers the external layers more impervious 

that the real one: in the real test dike the shell layer is not delaying the water 

penetration.  

The results of the modified analysis are collected in Table 27. 
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Table 27: Results of the analysis with modified Ks 

Time from 

experiment 

start 

Date 

Water 

height in 

piezometer 

1 

Water 

height in 

piezometer 

2 

Water 

height in 

piezometer 

3 

Water 

height in 

piezometer 

4 

[h] [-] [m] [m] [m] [m] 

-16 2,07,13 0 0 0 0 

8 3,07,13 2,146 1,379 0,821 0,413 

32 4,07,13 2,010 1,509 0,986 0,523 

56 5,07,13 1,857 1,439 0,985 0,546 

80 6,07,13 1,652 1,345 0,964 0,551 

104 7,07,13 1,469 1,237 0,908 0,544 

128 8,07,13 0,968 0,870 0,672 0,434 

152 9,07,13 0,749 0,677 0,549 0,370 

176 10,07,13 0,612 0,559 0,466 0,320 

200 11,07,13 0,520 0,480 0,404 0,281 

224 12,07,13 0,454 0,421 0,358 0,249 

248 13,07,13 0,405 0,380 0,324 0,226 

272 14,07,13 0,367 0,347 0,299 0,210 

296 15,07,13 0,336 0,321 0,278 0,195 

 

 

Figure 132: Trend of water in piezometers  from modified analysis with GeoStudio™ 2007 
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The Figure 132 shows how the results are similar to the one measured, regarding the 

maximum value, but, again, there is an insufficient correspondence between FEM 

model and data collected: in the analysis the pressure in piezometers p1, p2 and p3 takes 

more time to dissipate, so after 7 days there are 0,3 m of water in the piezometers, even 

if the measured values are around 0,0 m.  

The effects of the involved variables are evaluated and I have concluded that only the 

presence of a drain at the upstream side’s toe can ensure the measured water head.  

 

 

Figure 133: Insertion of drain 

 

The FEM analysis was repeated after introduce a horizontal drain in the dike’s toe on 

riverside. The presence of the drain is simulated with the Pressure Zero boundary 

conditions. In this way the results become similar to the measured values. This confirms 

the hypothesis that a non-mentioned drain was installed in the embankment’s toe. 

The Table 28 shows the results: 
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Table 28:  Results of the analysis with modified Ks and drain 

Time from 

experiment 

start 

Date 

Water 

height in 

piezometer 

1 

Water 

height in 

piezometer 

2 

Water 

height in 

piezometer 

3 

Water 

height in 

piezometer 

4 

[h] [-] [m] [m] [m] [m] 

-16 2,07,13 0 0 0 0 

8 3,07,13 2,146 1,392 0,824 0,410 

32 4,07,13 1,957 1,446 0,927 0,493 

56 5,07,13 1,790 1,408 0,967 0,538 

80 6,07,13 1,614 1,328 0,951 0,547 

104 7,07,13 1,431 1,209 0,886 0,533 

128 8,07,13 0,618 0,644 0,526 0,358 

152 9,07,13 0,297 0,330 0,308 0,263 

176 10,07,13 0,179 0,200 0,203 0,194 

200 11,07,13 0,139 0,147 0,151 0,156 

224 12,07,13 0,124 0,126 0,130 0,139 

248 13,07,13 0,118 0,116 0,120 0,130 

272 14,07,13 0,112 0,108 0,111 0,123 

296 15,07,13 0,336 0,321 0,278 0,195 

 

 

Figure 134: Trend of water in piezometers from modified analysis with drain with GeoStudio™ 2007 
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The Figure 135-Figure 138 show the trend of measured water height and results from 

FEM analysis, with or without drain, for each piezometer. The figures confirm that the 

presence of a drain leads to results similar to the ones obtained by fields test. 

 

 

Figure 135: Comparison between measured data and results from FEM  analysis for piezometer 1 

 

 

Figure 136: Comparison between measured data and results from FEM  analysis for piezometer 2 
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Figure 137: Comparison between measured data and results from FEM  analysis for piezometer 3 

 

 

Figure 138: Comparison between measured data and results from FEM  analysis for piezometer 4 

 

The results from FEM software are finally similar to the ones got in the field test, but 

the model is now completely inconsistent if compared to the initial one. It is possible to 

conclude that the seepage tests, executed on the test dike in Trzcinisko are not 

convergent with the finite element models created using the mechanical properties of 

the samples taken from the test dike. 
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Slope Stability 

The results of the first field test are used as input parameters to run the slope stability 

analysis.  

This study is conducted by steps: first the stability of the embankment at empty 

reservoir is examined, than the stability at fully supplied level. The emptying of the 

reservoir is analyze as a slow and rapid drawdown in dependence of the speedy of the 

emptying itself. The aim of this study is to evaluate the change of the safety factor (FS) 

as the piezometric level in the embankment changes. Since pore water pressures have a 

dominant influence on the factor of safety of slopes, remedial action should be taken if 

the factor of safety, based on the measured values, is considered to be too low. 

Because of the first piezometer is installed in the dike’s upstream slope, it can be used 

as a watermark on the seepage side: the pore water pressure measured in this piezometer 

during the first experiment is assumed to represent the level of the water in the 

reservoir. This simplification is not precisely correct, but the difference in the two water 

levels is relatively small, so this assumption does not lead to big mistakes in FEM 

analysis. 

The first slope stability analysis conducted in the upstream slope, concerns the critical 

stage of the embankment at the end of construction, with empty reservoir. For FEM 

analysis the same model and the same discretization and mesh described previously are 

employed. The boundary conditions are Total Head equal to 0 to simulate the empty 

reservoir at upstream side, Pressure Head on the ground on the opposite side and finally 

Total Flux in downstream side slope. 

To find the critical surface with GeoStudio™ 2007, I allow every kind of slip surface, in 

order to establish the critical one also if it was a composite surface. The method used to 

determine the safety factor is the one proposed by Morgestern and Price (Morgerstern 

N. R. and Price V. E., 1965). 

After running the analysis, a safety factor equal of 4,609 is obtained, which is much 

major of FS establishes for limit equilibrium, so the slope stability at this stage is 

ensured. 
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Figure 139: FS= 4.609 for water conditions at 02/07/2013 

 

The second day of the experiment the water level in the reservoir reaches the maximum 

value (2,265 m), and the analysis at fully supplied water level was conducted. The 

safety factor obtained is 6,592. It is so big because of the stabilizing effect of the water 

at the slope surface. With full reservoir, the failure of the embankment does not occur in 

upstream side: if a failure happens, this is due to internal erosion and breakage of 

downstream toe caused by pore-water pressures. 

 

 

Figure 140: FS= 6.592 for water conditions at 03/07/2013 

 

After reaching the maximum water height in the reservoir, the water table, is slowly 

falling down through the passing time because water wasn’t refilled, and I assume that 

the water level decreases 0,2 m every day for 5 days. 

This is a situation of slow drawdown, in which the reservoir pool is drawn down as fast 

as the pore water can spillage, so no excessive pore water pressures result. In the slow 

drawdown situation the water level within the slope is assumed to equalize the reservoir 

level at any time. 
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The same model is used to run the FEM analysis, and the safety factor is evaluated 

using again the Morgerstern and Price method for each day.  

The results are shown from Figure 141 to Figure 144 The safety factor decreases as the 

water level decreases, because of the lack of stabilizing effect of the water on upstream 

side, and the increase of shear stresses. 

Any case, the factor of safety is high enough not to fear slope instability. 

 

 

Figure 141: FS= 5.698 for water conditions at 04/07/2013 

 

 

Figure 142: FS= 5.196 for water conditions at 05/07/2013 

 

 

Figure 143: FS= 4.890 for water conditions at 06/07/2013 
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Figure 144: FS=5.169 for water conditions at 07/07/2013 

 

After 5 days from the beginning of the experiment the water is pumped out in few hours 

(I assumed a 4-hours long pumping out period). The water level adjacent to the slope 

drops rapidly relative to the time required for water pressures to dissipate in the slope, 

so excessive pore water pressure has been generated. The total stresses in the slope were 

reduced, while the shear stresses increased. 

Since the rapid drawdown is one of the most dangerous conditions for the upstream 

slope, it is necessary to study the slope stability of earth fill dams during drawdown. 

The FEM analysis with GeoStudio™  2007 software was carried out using the same 

model described before. The level of the water in the reservoir is assumed to pass 

instantaneously from 1,456 m to 0 m; afterward the trend of the piezometric line is 

evaluated.  

In this case the slope stability was still ensured, but the safety factor reached its 

minimum value in the analysis (Figure 145). 

 

 

Figure 145: FS=2.243 for water conditions at 08/07/2013 at drawdown 
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Figure 146: FS=4.247 for water conditions at 08/07/2013 after drawdown 

 

After the rapid drawdown, the level of the water in the embankment decreases slowly, 

because of the low permeability of the external layer, so another slow drawdown 

analysis is carried out. 

 In this condition the safety factors increased again, because this situation did not 

determine failure in the dike’s slope. 

 

 

Figure 147: FS= 4.420 for water conditions at 09/07/2013 

 

 

Figure 148: FS= 4.554 for water conditions at 10/07/2013 

 

The Table 29 and the graph below (Figure 149) show factors of safety obtained for each 

day of the experiment. It increases during filling the reservoir, it decreases during the 
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emptying of the reservoir, and reaches its minimum during rapid drawdown afterward it 

increases again once that the pore-water pressures in the embankment is dissipated, 

reaching a value almost constant after 10 days; therefore, I stopped the analysis at 10
th

 

July. 

 

Table 29: FS obtained in the first experiment 

Time from 

experiment 

start 

Date 

Water 

height in 

the 

reservoir 

FS 

(Morgerstern-

Price) 

[h] [-] [m] [-] 

-16 2,07,13 0 4,609 

8 3,07,13 2,5 6,592 

32 4,07,13 2,3 5,698 

56 5,07,13 2,1 5,196 

80 6,07,13 1,9 4,890 

104 7,07,13 1,7 4,850 

128 8,07,13 1,5 4,247 

128 8,07,13 0 2,243 

152 9,07,13 0 4,420 

176 10,07,13 0 4,554 
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Figure 149: Trend of the safety factor during the first experiment 

 

By using the piezometric line obtained from the first experiment as input data in the 

slope stability analysis, we obtained FS>2. Although the seepage analysis is not 

convergent with the results from field test, nevertheless the slope stability is verify. 
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Conclusion 

 

The material removed from the bottom of lakes, rivers and harbors is called dredged 

material. Most dredging is done to maintain or deepen navigation channels for the safe 

passage of boats and ships.  

The mouth of Vistula River, is located near Gdansk, in Poland. This river is navigable 

and the sediments need to be removed, in order to preserve the depth of the estuary for 

navigation.  

Due to the increasing shortage of clay and mild and the negative effect that their 

extraction from natural deposits causes on the environment, these materials are replaced 

with coal ashes. 

The dredged material excavated from the mouth of Vistula, mixed with bottom ashes, 

has been reused to build the dike’s core in Trzcinisko. 

This Master Thesis aim is to model the test dike and to conduce a FEM analysis, in 

order to evaluate the seepage through the embankment and its global stability. In this 

way, the possibility of employing the sand-ash mixture in dike’s construction is 

evaluated, comparing the results of the analysis with the values measured during a field 

test.  

The piezometric heights, determined with numerical analyses using the data collected 

from laboratory tests on soil samples taken from the dike, are different from the 

measured values. There exist many possible reasons for the divergence between finite 

element method results and field test values. The principal are collected below. 

 The samples can be not representative of the real situation of the humidity 

conditions in the embankment. The test dike was built in summer 2012, during 

severe rainfall, so probably the water content in the dike at that moment was 

higher respect the one found during the experiments (Summer 2013). 
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 The FEM software assumes a dry soil before the beginning of the test. But, as 

seen before, it is possible to find different humidity and water content conditions 

in the levee, depending on meteorology conditions. Since the seepage is strictly 

influenced from the initial soil water content, the results can be as much 

different from the expected ones.  

 

 In FEM models, the tephra and sand mixture layer is considered very 

impervious, so the hydraulic load is dissipated mostly in this layer. In the real 

situation this effect is not so evident and this material allows the entrance of the 

water. 

 

 The laboratory data, determined in an external laboratory in Germany, were 

prepared for 6 suction pressures: (0,3 kPa, 2 kPa, 6 kPa, 13 kPa, 30 kPa, 60 kPa). 

The number of samples is not enough to describe precisely the retention curve 

shape at low pressure heads. This fact can lead to imprecise results. 

 

 In winter in the north of Poland, temperature reaches very low vales (-15°C). 

Due to temperatures below 0 degrees, ice lens may form. This phenomenon can 

lead to formation of cracks inside the soil’s structure and may change the 

moisture content inside the dike. Unpredicted water flow may be induced by 

changes in soil structure during winter. 

 

By adopting the results obtained from the first field test, a slope stability analysis is 

conducted. The FS obtained are major than 2, so the embankment stability is verified. 

The research conducted within this thesis indicated that the application of totally new 

material into common use needs to be done with proper care and sensitivity, because it 

could show in the reality, a very different behavior compared to the one hypothesized 

by processing laboratory tests. 

Further studies will be necessary to evaluate the changes in the mechanical properties in 

time, due to the presence of a material with pozzolanic properties. 
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The number of samples in these analyses must be adequate to describe the water content 

in different water content conditions, in order to be able to define the water retention a 

curve and the conductivity function correctly. 

If the further analysis will lead to positive results, the employment of dredged materials 

and fly ashes in the construction of dikes can catch on, with economic and 

environmental benefits.  
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