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Abstract

The rapidly evolving landscape of critical communications infrastructure is char-
acterized by the integration of advanced technologies and the growing demand for
efficient systems. Industrial Internet of Things (IoT) systems in smart grids are at
the forefront of this transformation, promising improved energy distribution and
management. This research focuses on ensuring Service Level Agreement (SLA)
compliance of distributed software systems, which are critical to critical commu-
nication infrastructures. Research objectives include contextualization of critical
communication infrastructure and industrial IoT in smart grids. It evaluates redun-
dancy and software deployment patterns in industrial IoT software development,
including continuous integration and continuous delivery (CI/CD) practices. It also
explores observability data in running systems for predictive maintenance, applying
deep learning and machine learning for automated fault management and autoscal-
ing in computer clusters.

i



Sommario

Il panorama in rapida evoluzione delle infrastrutture critiche di comunicazione è ca-
ratterizzato dall’integrazione di tecnologie avanzate e dalla crescente domanda di
sistemi efficienti.
I sistemi industriali dell’Internet of Things (IoT) nelle reti intelligenti sono in prima
linea in questa trasformazione, promettendo una migliore distribuzione e gestione
dell’energia. Questa ricerca si concentra sulla garanzia di conformità al Service Le-
vel Agreement (SLA) dei sistemi software distribuiti, che sono fondamentali per le
infrastrutture di comunicazione critiche. Gli obiettivi della ricerca includono la con-
testualizzazione delle infrastrutture di comunicazione critiche e dell’IoT industriale
nelle reti intelligenti. Valutare la ridondanza e i modelli di distribuzione del soft-
ware nello sviluppo di software IoT industriale, comprese le pratiche di integrazione
continua e consegna continua (CI/CD). Verranno esplorati inoltre metodi di osser-
vabilità nei sistemi in funzione per la manutenzione predittiva, applicando il deep
learning e il machine learning per la gestione automatizzata dei guasti e l’autoscaling
nei cluster di computer.
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Acronyms

IoT = Internet of Things
IIoT = Industrial Internet of Things SLA = Service Level Agreement
SaaS = Software as a Service
WSN = Wireless Sensor Networks
CI/CD = Continuous Integration/Continuous Delivery
QoS = Quality of Service
LoRaWAN = Long Range Wide Area Network
NB-IoT = Narrowband IoT
WM-Bus = Wireless M-Bus MQTT = Message Queuing Telemetry Transport
CoAP = Constrained Application Protocol
HTTP = Hypertext Transfer Protocol
AMQP = Advanced Message Queuing Protocol
IaaS = Infrastructure as a Service
VM = Virtual machine
sFTP = Secure File Transfer Protocol
SLSQP = Sequential Least Squares Programming
BFGS = Broyden-Fletcher-Goldfarb-Shanno
CG = Conjugate Gradient
OS = Operating System
VPS = Virtual private Server
TCP = Transmission Control Protocol
HTTP = Hypertext Transfer Protocol
DNS = Domain Name System
VIP = Virtual IP
VRRP = Virtual Router Redundancy Protocol
SVM = Support Vector Machine
DT = Decision Tree
RF = Random Forest
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Chapter 1

Introduction

Today’s world of critical communications infrastructures is constantly changing, driven
primarily by the use of advanced technologies and the growing demand for efficient and
intelligent systems. This evolution has occurred through the adoption of Industrial Internet
of Things (IIoT) systems within several system including smart grids, which are needed to
improve energy distribution and management.
The development of IoT has led to a digital revolution in the fields of electronics and com-
puting, with low-cost data storage, mobile computing, artificial intelligence, Software as a
Service (SaaS) and cloud computing. The number of IoT devices is currently at the peak
of inflated expectations, expected to increase by 21% between 2016 and 2023 to around 18
billion. IoT devices with cellular connections are expected to reach 1.8 billion in 2023, or
approximately 70% of a large-scale IoT category, [1]. Indeed, IoT is supported by an alliance
of key resources, including the massive proliferation of intelligent devices, the confluence of
low-cost technologies such as sensors, large amounts of data (Big Data), high-performance
computing capabilities (HPC) and Wireless Sensor Networks (WSN).
This research aims to explore and contribute to the development of industrially viable methods
that ensure Service Level Agreement (SLA) compliance in distributed software systems
underlying critical communications infrastructures.
The importance of reliable and secure communications networks in critical infrastructure is
fundamental and can’t be underestimated. As societies become more interconnected, the
robustness of these networks proves to be critical to the continued functioning of essential
services. In this context, the energy sector plays a fundamental role, with smart grids being a
revolutionary solution for efficient energy distribution. Adopting industrial IoT within these
networks introduces myriad possibilities but also requires an in-depth understanding of the
challenges and opportunities inherent in ensuring high availability and SLA compliance.

1



This research aims to achieve several interconnected objectives. Firstly, it seeks to con-
textualize the importance of critical communication infrastructures and the adoption of
Industrial IoT systems in the specific domain of smart grids. The impact of network topology
on service availability provides a starting point to understand the complexities of these systems.
Secondly, the study aims to evaluate popular redundancy and software-distribution patterns
within the entire chain of industrial IoT software development and deployment. This includes
exploring continuous integration and continuous delivery (CI/CD) practices, as well as the
deployment of software artifacts on both private and public cloud infrastructures.
Furthermore, the research delves into the gathering of observability data in live systems,
considering its role in predictive maintenance of high availability (HA) software services. It
also explores the application of deep learning and machine learning techniques in creating a
decision support tool for automated fault management and auto-scaling in computer clusters.

The thesis is structured as follows:
In Chapter 2, the Service Level Agreement (SLA) is discussed to establish the framework
for assessing the performance and reliability of the critical communication infrastructure. An
analysis of critical communication infrastructure and industrial IoT in smart grids will also be
highlighted, showing the current system implemented in Inkwell Data, the company where I
did my Internship. Some practical problems that can be solved using the tools described in the
next chapter will also be illustrated. Chapter 3 will describe some practical methods to observe
the system and to ensure high service availability. In addition, a description of the software
development and deployment chain in private and public cloud environments will be provided,
with a specific focus on CI/CD and architectures based on virtual machines and software
containers like Docker or Incus. In Chapter 4, the observability system presented earlier will be
put into practice, focusing on its implementation in the local area network. It will then turn to
the collection of data in production environments, emphasizing the importance of such data for
predictive maintenance of high-availability services. Subsequently, some machine learning and
deep learning techniques will be explored to develop a decision support tool in the context of
critical communication infrastructure (Chapter 5). At last, Chapters 6 will discuss and present
the results obtained in the previous Chapters.
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Chapter 2

Critical Infrastructures and SLA Analysis

2.1 Service Level Agreement

Over time, there has been a significant focus on defining and targeting end-users, capturing the
attention of service providers, clients, and network infrastructure providers. The past decade saw
the initiation of liberalization and deregulation in the telecommunications sector. The surge in
competition, driven by evolving client performance expectations, places substantial pressures
on both service providers and networks. In addition, following significant cost reductions in
recent years, suppliers are trying to improve their quality of service (QoS) to distinguish their
products from the competition and meet customer demands. Hence, the duty of each entity that
participate in service provision and their relations need to be explained. [2]
The Service Level Agreement (SLA) is a key part of business relationships in the Software as a
Service (SaaS) industry. It is a contract between a service provider and its internal or external
customers that documents what services the provider must provide. Let’s delve deeper into the
various types of SLAs and their significance. [3]
There are three main types of SLAs:

• Customer-based: contractual agreement between a company and a third-party service
provider, which outlines expectations and guarantees regarding the provision of the ser-
vice;

• Internal: agreement between different units or members within the same company.
Defines responsibilities, performance metrics and expectations between various parties
within the organization;

• Multi-level: single document that incorporates both general and specific SLAs. It covers
a broad range of agreements, ensuring a comprehensive understanding of expectations at
different levels or among different entities involved.
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All SLAs are composed of two main elements: service agreements and service management.
The former defines the features and functionality the customer receives from the provider, while
the latter outlines how the service level is measured and maintained. Over the past few years, a
great deal of research has been conducted to measure the performance of SLAs agreed between
entities, focusing on the development of advanced tools and sophisticated monitoring protocols
in this area. These are utilised for service level measurement such as network delay variation,
latency, as well as frame and packet loss ratio. In addition, they are the key performance indica-
tors used to ensure that the service provider meets the standards and provides the functionality
guaranteed by the SLA.
For greater clarity, some metrics that SLAs can specify include:

• The availability and uptime percentage of services;

• The maximum number of concurrent users that can be served;

• Application response time;

• Usage statistics.

Based on how the network is structured, SLA contracts can be classified into two types:
horizontal and vertical SLAs. A horizontal SLA involves an agreement between two service
providers operating at the same architectural level, such as two Internet Protocol (IP) domains
or two optical transport network domains. Conversely, a vertical SLA is a pact between two
different vendors working at distinct architectural levels, like an agreement between an optical
network and an MPLS core network. Figure 2.1 illustrates a network topology, showcasing
potential SLA agreements across different architectural layers, providing a visual representation
of the interconnected components within the system architecture. The diagram highlights the
potential Service Level Agreement (SLA) agreements across different architectural layers.
These agreements define the quality of service expected between various components and
layers of the network infrastructure.
Let’s consider a web application deployed on a cloud infrastructure consisting of multiple
layers, including the presentation layer, business logic layer, and data storage layer. A vertical
SLA defines the expected response time for requests originating from the presentation layer and
traversing through the business logic layer to access data from the storage layer. On the other
hand, let’s consider now a platform with redundant data centers located in different regions to
ensure high availability. A horizontal SLA governs the performance and reliability of each data
center, ensuring consistent service levels across all locations.
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Figure 2.1: Horizontal and Vertical SLA, adapted from [4].

2.2 Critical Communication Infrastructures for smart IoT

As Industrial Internet of Things (IIoT) technologies grow and advance, the integration of smart
devices and real-time applications within industrial environments becomes increasingly popu-
lar. However, the successful implementation of IIoT for real-time applications faces notable
challenges, particularly in ensuring high availability and reliability. This section explores the
critical communication infrastructures essential for supporting Smart IoT in industrial environ-
ments.
Industrial real-time systems impose stringent availability requirements, typically ranging from
99.9% to 99.999%. These demands are considerably higher compared to architectures based
on local cloud services, which often do not offer comparable guarantees or service level agree-
ments. The stark differences in Quality of Service and SLA availability between operational
technologies and computing technologies present a significant obstacle in the widespread adop-
tion of IIoT for real-time applications.
The adoption of IIoT in real-time applications is hindered by the inherent challenges posed by
the differences in QoS and SLA availability. The reliance on architectures not specifically de-
signed for high availability in industrial environments raises concerns about the stability and
performance of critical systems. Ensuring that the communication infrastructure can meet the
stringent demands of real-time industrial processes becomes a pivotal aspect of successful IIoT
integration.
Critical communication infrastructures play a central role in addressing the challenges associ-
ated with IIoT adoption. These infrastructures are tailored to meet the specific requirements
of industrial applications, providing robust, reliable, and low-latency communication pathways.
Such dedicated communication networks become indispensable for ensuring that real-time data
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transmission, control signals, and mission-critical information flow seamlessly within the in-
dustrial ecosystem.
Key characteristics of critical communication infrastructures include:

• Reliability: These infrastructures prioritize reliability to ensure consistent and uninter-
rupted communication.

• Low Latency: Minimal communication delays are crucial for real-time applications,
making low-latency communication a fundamental attribute.

• Security: Industrial environments demand secure communication channels to safeguard
sensitive data and prevent unauthorized access.

• Scalability: The ability to scale the infrastructure to accommodate the growing number
of connected devices and evolving industrial needs.

In the next chapters it will be illustrated the system implemented at Inkwell Data, the company
where I interned, highlighting a real Critical Communication for IIoT.

2.3 IoT General Architecture

Before analysing in detail the infrastructure used in the company, it is important to highlight
some key concepts of the IoT world. These include the notions of digital twin, gateway and
smart meters. Knowledge of these concepts is essential for understanding the operation of more
sophisticated concepts that will be explained in the following chapters.
The digital twin is a structure that represents physical objects in the cloud, e.g. sensors or smart
meters. Real devices send data to their counterpart in the cloud and at any time update their
state to be as close to real time as possible. Cloud-based applications and services normally
use the digital twin to access device data, instead of accessing the endpoints directly. The most
important advantage of using digital twins is certainly that they are always available, even when
the physical object is switched off or unavailable. In this way, delay-tolerant applications can
proceed without having to waiting for temporarily inaccessible devices.
In other words the digital twin is a mould that describes the attributes a real object instance must
have. Attributes can be divided into two types:

• General attributes: the general attributes are shared across all instances created with this
digital twin and remain consistent across all instances. One example of this attribute can
be the ”manufacturer”.
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• Instance attributes: this kind of attributes are specific for each instance and they capture
a unique characteristic or property. An example could be the ”Temperature Setpoint”,
which uniquely reflects the desired temperature set by the user for that specific device.

An IoT gateway is a hardware or software device that connects physical devices, such as sensors
or smart meters, and cloud platforms or management systems. This component is responsible for
collecting and sending data generated by the devices to the cloud, as well as sending commands
or instructions to the devices themselves. Gateways can be implemented on dedicated devices
or integrated directly into the devices themselves. The digital twins of physical devices typically
reside in cloud platforms or centralised management systems. When peripheral devices generate
data, it is sent to the nearest IoT gateway. The most commonly used protocols are LoraWan,
NB-IoT and WM-Bus. The gateway, in turn, communicates with its corresponding digital twin
in the cloud platform and transmits the collected data. This communication can take place via
standard communication protocols such as MQTT, CoAP or HTTP. A general representation of
the IoT world is shown in Figure 2.2.

Figure 2.2: General representation of IoT
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2.4 Real-world case study

It will be now described the system currently implemented in Inkwell Data.
The company is involved in the development and management of IoT systems. The main infras-
tructure behind the company is Altior, designed to help the user deploy industrial IoT solutions
without the technology getting in the way. More specifically it is a network technology-agnostic
service design and delivery platform for industrial IoT network operators, a data-oriented ap-
proach to the development of industrial IoT, supporting LPWAN network technologies for op-
erations on license-free spectrum. It is also designed for carrier grade operations and five nines
reliability with a distributed approach. Altior can be rolled out on public or private clouds or on
local premises. [5]
The system is described in Figure 2.3.
We can consider the system divided into two major areas:

• Altior: represents the main core of the IoT infrastructure, where all messages from the
meters and gateways converge. Here, raw data is received, processed, decoded and de-
crypted, while the status of the digital twins, which reside right inside Altior, is constantly
updated.

• Swarm: it represents the application part of the IoT infrastructure. Swarm is responsible
for managing the back-end and front-end of IoT applications. In addition, communication
with the database takes place here, which plays a key role as a central repository for all
meter data and readings from the IoT infrastructure.

Communication between Altior and Swarm is established by RabbitMQ, an open source mes-
saging system based on Advanced Message Queuing Protocol (AMQP). RabbitMQ functions
as a reliable intermediary for the exchange of messages. [6]
The Altior system is itself composed of five main applications:

1. Network Adapter Manager
The aim of this component is to collect information about the running network adapters.
A network adapter is a component that enables IoT devices to communicate over a specific
network, serving as an interface between the specific device and the network it operates
on. It has a registry where the digital twin instance can register to. That registry is neces-
sary for routing the incoming messages to the right digital twin instance.

2. Digital Twin Runtime
The digital twin runtime manages the digital twin instances and it is the process that in-
teracts with external processes (e.g., the network adapters) and forwards the incoming
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messages. Each digital twin instance is built by populating the attributes described in
Chapter 2.3 into a specific digital twin.

3. Codec Manager
This component manages the codecs. A codec is a process that receives a Digital Twin
Instance state and a binary message, takes the binary message and update/upgrade the
Digital Twin Instance state. The component give the following functions:

• Uploading a new codec: the function receives the beam files and the information to
add to the codec.

• Refreshing the codecs folder.

• Stopping a codec.

• Running a function of specific codec: this can be done sending a message to a spe-
cific process.

4. Aegis
This component contains all security information and it interacts with the external process
and forwards the requests to the correct sub-component. It manages the Access Control
and the related resources access, the users, groups of users and user themselves.
It is also responsible for the encryption and decryption of messages from the meters. The
codec manager relies on this application to decrypt the message. Once this step is suc-
cessful, the codec is allowed to proceed with decryption.

5. Altior Application Manager
This component manage the Altior applications. The Altior application is an entity with
the following fields:

• Name

• Code

• Version

• Creator ID

• Security

They all take as input the current state of the digital twin instance with some additional pa-
rameters and return the updated state of the instance. It is responsible to send the messages
to RabbitMQ.

The general overview of the infrastructure is shown in Figure 2.3:
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Figure 2.3: Infrastructure scheme

The physical architecture can change during the Altior system’s working life.
In order to remain compliant with the programming language used by the company for appli-
cation development, all code will be written in Erlang/Elixir and Python. This is not a limiting
factor for the general concepts that will be discussed and analysed in this thesis. Each applica-
tion that runs in the system is a node and the number of nodes can increase if the system load
increase. All of these nodes may be on the same host or on different hosts. The key aspect is that
they maintain shared parameters to ensure system consistency. In Elixir (and the Erlang/OTP
environment), the basic configuration files used are:

• sys.config: where there are application-specific configurations, such as database connec-
tion parameters, authentication settings and network configurations

• vm.args: used to configure the behaviour of the Erlang VM itself, such as the maximum
memory size or log file paths. In addition, the node identifier and the Erlang distribution
cookie are configured here:

1 -name node_name@server_hostname # Node identifier
2 -setcookie cookie_name # Erlang distribution cookie

The node identifier is unique to each, while the cookie is shared and the same with all the
other nodes that make up the system’s infrastructure.

Keeping the same cookie, many replicas of the same node can be hosted in different servers.
This will be discussed in Chapter 3 and it is the first step to increase the reliability of the sys-
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tem. In fact, in the event that a server is unavailable, and thus all nodes associated with it are
unreachable, the service will be interrupted. If, on the other hand, the technique of replicating
nodes on several different hosts is used, the service will remain active, thus guaranteeing greater
reliability of the system.
In Chapter 3 a theoretical analysis will be made to guarantee 99.999% availability of the ser-
vice, i.e. with a maximum of approximately 5 minutes and 15 seconds of interruption per year.
However, it’s essential to note that achieving this level of availability also requires considering
real-world factors such as network latency between servers. Latency between servers can im-
pact the overall performance and availability of the system, and it’s crucial to account for it in
our analysis and implementation strategies.
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Chapter 3

Methods and Tools

3.1 Reliability theoretical model of a computing node

In this Chapter, a mathematical model is highlighted to determine the optimal number of replicas
required to achieve a specific level of reliability. The model is based on Markov chain with the
next state-space and conditions of transitions between states:

• State P (passive): the node is up, but passive, and does not provide computing operations
because of software initialization. From this state, the node can either pass to state A with
rate γN (activation rate), or pass to state F with rate λP (failure rate in the passive state).

• State A (active): the node is up and active, and provides the computing operations. From
this state, the node can pass to state F with rate λA (failure rate in the active state).

• State F (fault): the node is down. From this state, the node can pass to state P with rate
µN (rate of the repair operations).

The state-space and transition conditions, according to the discussed reliability model, is shown
in Figure 3.1.
According to [7], the differential equations of Kolmogorov-Chapman for this Markov chain are

h

Figure 3.1: The base three-state reliability model of the computing node
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described as follows:
⎧
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PP (0) = 1; PA(0) = 0; PF (0) = 0;

P0(t) + P1(t) + P2(t) = 1

dPP (t)

dt
= −(λP + γN)PP (t) + µNPF (t)

dPA(t)

dt
= γNPP (t) − λAPA(t)

dPF (t)

dt
= λP PP (t) + λAPA(t) − µNPF (t)

(3.1)

Where λA is the failure rate of the computing node in the active state, λP is the failure rate of the
computing node in the passive state, µN is the repair rate of the computing node and γN is the
activation rate of the computing node (the rate of passing from the passive state to the activate
state).
Considering t → ∞, when Markov process reaches the steady state and derivatives of proba-
bility functions tending to zero, we obtain the following formulas for stationary probabilities of
the states:
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µNλA

µNγN + λA(µN + γN + λP )
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µNγN

µNγN + λA(µN + γN + λP )

PF (∞) =
λA(γN + λP )

µNγN + λA(µN + γN + λP )

(3.2)

The state A is the only operable state for the computing node, so we can also obtain the formula
for the stationary availability factor K of the computing node:

K = PA(∞) =
µNγN

µNγN + λA(µN + γN + λP )
(3.3)

Moreover, the formula for the mean time to failure of the computing node can be easily obtained
by using the topological method for the reliability models based on the Markov chains. It can be
calculated as a ratio of the availability factor to the weighted sum of probabilities of all operable
states, each of which is multiplied by the sum of all rates of transitions to all inoperable states.
In our case, we have only one operable state, A, with only one transition to state F with rate λA,
thus we obtain the following simple formula for the mean time to failure:

TF =
PA(∞)

λAPA(∞)
=

1

λA

(3.4)

At last, we can easily obtain the formula for the mean time to the recovery of the computing
node, which takes into consideration both repair and activation rates, by using the fundamental
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relation between the availability factor, mean time to failure and mean time to recovery:

TR =
1 − K

K
TF =

µN + γN + λP

µNγN

(3.5)

This model provides a sound theoretical basis for designing reliable systems, taking into account
the reliability of a single node.
Thanks to this, we can now apply these concepts to an interconnected system of interacting
nodes, e.g. all the applications described in Chapter 2.4.

3.2 Interconnection of nodes

Having considered the availability of each individual node, we must now consider the intercon-
nection of all these nodes from a broader point of view.
Before analysing the availability of the system as a whole, it is essential to understand the true
meaning of availability and the difference between the various levels of it. Availability indicates
the percentage of time the infrastructure, system, or solution remains operational under normal
circumstances to fulfil its intended purpose. Despite a seemingly negligible change in availabil-
ity, such as going from 99% to 99.999%, there is a significant change in service downtime, as
highlighted in the Table 3.1, where downtime is highlighted depending on system availability.

Downtime
Availability Per year Per month Per week

90% 36.5 days 72 hours 16.8 hours
99% 3.65 days 7.2 hours 1.68 hours
99.9% 8.76 hours 43.8 minutes 10.01 minutes
99.99% 52.56 minutes 4.32 minutes 1.01 minutes
99.999% 5.26 minutes 25.9 seconds 6.05 seconds

Table 3.1: Downtime for different levels of availability

We can see that increasing the reliability of the system from 99% to 99.999% allows us to sig-
nificantly decrease the downtime, from 3.65 days to 5.26 minutes per year.
Let us now analyze a series of nodes that interact with each other. We can calculate their avail-
ability as shown in Chapter 3.1, but we must understand how to calculate the availability of the
whole system. We can consider the whole system as a series of interacting applications, each of
which has a specific availability. If even one node in the system is inactive, the entire system
suffers from the unavailability and does not function properly. For example, in our case study,
if the codec manager application is inactive, messages from the network adapter - which in turn
has received messages from the meters or gateways - are not decoded and transmitted to the
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runtime for processing. As a result, as long as the codec manager is not operational, the entire
system experiences a drop in availability. Therefore, it is critical to ensure that every node in
the system is up and running at all times to maintain high overall system availability.
Let us consider the individual availability of each node K1, K2, ... , Kn of a system with n
nodes. The relationship linking overall system availability KT to individual node availability is
described as:

KT =
n

∏︂

i=1

Ki ∀i ∈ N
+ (3.6)

However, this is not an optimal solution because upon the unavailability of a single node, the
whole system encounter the problem. In an attempt to enhance overall system reliability, we
could have introduced a concept labelled as replication whereby we create multiple systems
that are copies of the original and operate in parallel. This technique would ensure that the
system would continue operating even with the failure of some or other single nodes such that
the service would remain available. The approach would entail making multiple copies of the
system in two regions, which could be servers, clusters, or virtual machines, two copies of the
similar system, respectively. Considering that total availability is equal to the complementary
availability, it implies that there is a higher probability that at least one of the replicas is opera-
tional. Considering K1, K2, ... , Kn the availability of individual nodes in each region, the total
availability of the parallel system will be:

KT = 1 − ((1 − Region A availability) · (1 − Region B availability)) (3.7)

The availability of each region is given by the availability of the set of nodes in that region.
Therefore we can rewrite (3.7) as follow:

KT = 1 − ((1 − KT 1) · (1 − KT 2)) (3.8)

Where KT 1 is the total availability of the first region and KT 2 is the total availability of the
second region.
We can now generalize this concept by considering n replicas of the same system:

KT = 1 −
n

∏︂

i=1

(1 − KT i) (3.9)

In Chapter 4.2, a practical analysis will be conducted to explore these concepts, focusing on
the number of nodes and the number of replicas in the system. This approach will allow us to
empirically evaluate the impact of different scenarios on the overall system availability.
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3.3 Optimization of node replicas

Deploying numerous copies of each node on different servers can result in significant cost
increases, underscoring several financial considerations. First, the hardware investment is
substantial and involves costs in terms of CPU, memory, and storage space for each additional
server. This amount can become substantial when multiplied by the number of replicas
required to ensure satisfactory system reliability. In addition, software licensing expenses
must be considered, as some solutions require a license for each active instance. In addition
to initial costs, operational expenses also emerge: periodic maintenance, software upgrades,
ongoing monitoring, and life-cycle management, which require human resources and contribute
to overall operational costs. Therefore, while recognizing that increased replication can
potentially increase system reliability, it is imperative to carefully evaluate the costs associated
with this strategy and balance them carefully against the expected benefits. Understanding
whether using multiple replicas distributed over different regions is the optimal choice is
not always obvious. The trade-off between the number of replicas and the overall reliability
of the system needs to be carefully evaluated. In practice, this involves identifying the
minimum number of replicas needed to achieve the desired reliability. This assessment may
involve analysis of data on the reliability of individual nodes and the system as a whole, as
described in Chapters 3.1 and 3.2. The results of these evaluations can help determine the
appropriate balance between the number of replicas and the availability of the system, while
also considering the costs associated with implementing and managing the additional replicas.
It is critical to find an optimal point that ensures a robust and sustainable infrastructure over time.

We can formulate the problem as one of cost optimization, where the goal is to mini-
mize the number of replicas needed subject to the constraint of achieving a specific availability.
Suppose that the availability of each node is represented by K, we need to determine the optimal
number of replicas r∗ so that the total system availability KT is greater or equal to a desired
threshold T.
So, formally, we look for:

r∗ = min¶r ∈ N
+ ♣ KT (r) ≥ T♦ (3.10)

The problem formulation can be expressed as an optimization problem:

⎧

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⨄︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋃︂

min r

1 − ((1 − K)r) ≥ T

T ∈ [0, 1]

r ∈ N
+

(3.11)
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To solve this problem, a Python script has been implemented that can determine the optimal
number of replicas required to achieve a specific system availability. This script considers the
reliability of individual nodes and finds the minimum number of replicas required to meet the
desired overall availability requirements.

1 import time
2 from scipy.optimize import minimize
3

4 def objective_function(r, K, T):
5 return abs(1 - (1 - K) ** r - T)
6

7 K = 0.9
8 T = 0.99999
9 initial_guess = 1
10 start_time = time.time()
11 result = minimize(objective_function , initial_guess , args=(K, T), bounds

=[(0, None)], method='SLSQP')
12 end_time = time.time()
13 execution_time = (end_time - start_time)*1000
14 optimal_r = round(result.x[0])
15

16 print("The optimal value of r is:", optimal_r)
17 print("Execution time:", execution_time , "ms")

The Python code uses the minimize function of the SciPy library to optimise the number of
replicas required to achieve a given system availability. In particular, the method of sequential
least squares programming (SLSQP) is used to minimize the objective function. SLSQP is a
non-linear optimisation algorithm that can handle equality and inequality constraints.
The choice of using SLSQP depends on the nature of the problem and the constraints imposed.
In this case, SLSQP is suitable because it can handle both variable domain constraints (e.g.,
r ≥ 0) and inequality constraints. In addition, it is effective for nonlinear optimization
problems such as the one presented, in which the objective function is not necessarily convex.
In addition, it has been shown that the computational time using this algorithm is lower than
other methods available in the SciPy library.

In the conducted analysis, we considered a configuration in which all nodes have an
availability of 0.9, and the desired availability for the system was set at 0.99999. It is important
to note that, in practice, each node could have a specific level of reliability, different from the
others. However, this doesn’t alter the concepts highlighted in this analysis.

Results are shown below:
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1 The optimal value of r is: 5
2 Execution time: 15.432 ms

To evaluate the effectiveness of the minimization method used in our study, we compared
the results obtained with different approaches offered by the SciPy library. In particular, we
examined Powell, Broyden-Fletcher-Goldfarb-Shanno (BFGS) and Conjugate Gradient (CG)
minimization methods.
The results obtained are as follows:

Powell Algorithm:

1 The optimal value of r is: 5
2 Execution time: 45.843 ms

BFGS Algorithm:

1 The optimal value of r is: 5
2 Execution time: 34.279 ms

CG Algorithm:

1 The optimal value of r is: 5
2 Execution time: 28.528 ms

We can see that the SLSQP algorithm emerges as the fastest among the considered options,
leading to its recognition as the most efficient choice based on execution time.
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3.4 Virtualization and Containerization

Another key solutions to ensure an even higher level of reliability and availability of services
are the concepts of virtualization and the usage of containers. Virtualization is the main tech-
nology powering cloud computing and it allows multiple operating systems and applications
to run simultaneously on the same server. In cloud computing services, IaaS providers pro-
vide customers with a set of virtual machines, each with its own operating system instance,
where customers can install their own applications and dependencies. However, this approach
is onerous in terms of complexity and manual configuration of the virtual machines, as well as
significant overhead due to the presence of an entire operating system on each individual virtual
machine. A newer and more efficient alternative is to use containers to deploy applications and
their dependencies, thus solving the main problems of virtual machines. [8]

Figure 3.2: Comparison between virtual machines and containers, adapted from [9]

As shown in Figure 3.2, the main difference from traditional virtualization techniques is that
there is no need for a hypervisor layer needed to provide the virtualization functionality. In-
stead, the kernel and the OS provide the virtualization features. Containers in the context of a
services architecture are useful to package, deploy and run each single service. A container is
easily mapped to a service. Traditional virtualization allows a processing node to run multiple
isolated operating system images simultaneously. For reliability reasons, it is preferable to in-
stall each service on a different machine. By placing each service on a different machine, if a
service crashes, at least the other ones are not affected. This aspect is good also for what con-
cerns security, if a service has security flaws, these flaws have no effect on the other services.
Instead of installing each service into a different computing node, virtualization can be lever-
aged so that each service is installed inside a different VM. Virtualization helps substantially
by reducing the amount of computing machines needed and consequently it lowers the costs of
supporting a complex computing environment.
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Virtual Machines Containers
Resources used Heavyweight Lightweight

Kernel Emulated Kernel Native Kernel
Operating system Dedicated (each VM has its own) Shared with other containers

Virtualization Hardware Software
Start-up time Minutes Seconds

Memory management Pre-allocated (more RAM needed) Dynamic (less RAM needed)
Isolation Full At the thread/process level

Table 3.2: Main differences between VMs and Containers

As highlighted, containers offer superior performance and reduced cost, making them ideal
for many applications. However, virtual machines offer a higher level of isolation, making them
more suitable in scenarios that require total separation of environments. Therefore, at present,
the optimal solution is a setup that integrates both technologies, leveraging the flexibility and
security of virtual machines along with the economic and performance advantages of containers.

One possible approach might be to organize the infrastructure in the following way:

• Private Cloud Service, appropriately replicated/redundant, providing one or more hosts
managed by a hypervisor with pre-allocated hardware resources. On these hosts it would
be possible to create a series of virtual machines based on the number and size of services
required by various clients, considering factors such as data volume and computing power
required.

• One or more VMs for each customer, thus ensuring an adequate level of isolation for
processed and stored data.

• A containerization system to be deployed on virtual machines dedicated to deployment,
thus enabling the efficient delivery of services and applications required by each customer.
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3.5 Container orchestration

The primary benefit of this approach to containers is that it makes a substantial contribution
to efficiency and convenience in the software development cycle. It is even more important
for teams that use the above-mentioned agile methodologies and Continuous Integration and
Continuous Delivery (CI/CD) . Thus, in the context of containers, efficiency and consistency
of development and release processes cannot be provided without these practices. There are
two options for introducing them:

Continuous Integration (CI):

• Test automation: containers allow developers to build isolated and predictable test en-
vironments. CI systems execute an automated build and test process for every commit
in the code repository. The test environment is identical and replicable with the use of
containers.

• Automated Builds: containers have all prerequisite software necessary to build and test
an application. It makes the setup for the CI builders easier and eliminates the possibility
to generate different build results from individual team members due to environmental
differences.

Continuous Delivery (CD):

• Automated releases: automate the release pipeline as much as possible, which allows
you to automate the deployment of the application’s test, staging, and production ver-
sions. Containers allow each application and its dependencies to be packed into a separate
portable unit, making it easier to deploy the application to different environments.

• Simplified rollback: containers allow you to store several versions of an application at
once and switch between them in a few simple steps, which allows, in case of problems
with the release, to return immediately to the working state of the previous version of the
application.

Figure 3.3 demonstrates the process of developing and implementing an application in the Altior
system from Chapter 2.4.
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Figure 3.3: Deployment Process

This process goes through several stages, each playing an important role in ensuring that a
new feature or a fix for a bug is reliably and safely delivered to the customers, and end-users.
The process starts at the developing stage, where the new code is written and tested. Afterward,
the code implemented into the embedded is validated. Releases that pass the validation are
stored in a separate repository, where they would be easy to access and track. Finally, the
validated releases are transmitted to the Altior hosts via Secure File Transfer Protocol (sFTP).
Altior hosts are the ones representing the production servers, where the releases are available
to the end-users.

Automatic deployment of new application versions to a cluster of hosts is managed through
container orchestration. The orchestrator manages application scalability, starting new contain-
ers or terminating existing ones based on workload and resource needs. In addition, in case of
problems during deployment, the orchestrator facilitates rollback to the previous version of the
application, ensuring safe and simplified release management. This facilitates the virtualization
of hardware resources, enabling the installation of distinct applications that remain isolated
from each other. Consequently, customers are furnished with a network-connected array of
machines, each capable of running one or more servers or applications.
In the solution we implemented, a server cluster is logically organized into three tiers, as shown
in Figure 3.4:
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Figure 3.4: The general organization of a three-tiered server cluster

The first tier is the first stage in the process. As the system entry point, it mainly involves
various customer requests. More specifically, when the client requests some data or certain
services he or she is referred to the system. These requests are mainly to the application or
compute servers which are reached through the load balancer. The load balancer generally
helps in the effective functionality of the system. It mostly serves as a focal point for routing the
client’s requests concerning the client’s location. The load balancer uses efficient algorithms to
apportion the workload among client’s specified and available application or computing servers
which can be found in the next tier. These external servers help ensure that no individual server
is overburden thus maximizing on the system’s output which helps in a quick and efficient
response to clients.
In the second tier of the architecture, requests are further processed by application or compute
servers. The data processing occurs, and the model presented in Chapter 3.3 determines the
optimal number of replications.
In the third tier of the architecture of the architecture, the distributed File/Database system
plays a crucial role in coordinating and managing the data throughout the system. In this
environment, the data is stored and retrieved, ensuring persistence and availability. More
specifically, the system manages data storage in a distributed nature, which guarantees quick
and efficient access to the stored information. Additionally, the system ensures the data repli-
cation and distribution in a way that guarantees the system resilience and business continuity
even in individual hardware failures or software errors.
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3.6 Load balancing

Load balancing is a process that involves the redistribution of workload among nodes in a sys-
tem to optimize resource utilization and improve job response times. The purpose is to alleviate
situations where some nodes are overloaded while others remain underutilized. Dynamic load
balancing algorithms operate based on the current state of the system, without considering its
previous behavior. When developing such algorithms, several factors must be considered, in-
cluding load estimation, load comparison, system stability, performance, node interaction, na-
ture of the work to be transferred, node selection, and others. The load to be considered may
include CPU load, memory utilization, network delay, or overall network load. [10]
The main goal of load balancing is to redistribute workloads across computing resources to sig-
nificantly improve performance. The currently most widely used technology for sharing or load
balancing is HA Proxy, which is an open source software licensed under GPLv2. HA Proxy is
used to share loads of TCP / HTTP requests or load balancers and proxy solutions that can run
on Linux, Solaris and FreeBSD operating systems. [11]
Figure 3.5 illustrates the architecture adopted in the company to implement an HTTP request
management solution aimed at directing traffic to the most available replication at the time.

Figure 3.5: Architecture for HTTP request management

The reverse proxy is the intermediary between the clients making requests and the back-end
servers providing the content. Unlike a traditional proxy server, which forwards client requests
to the target servers, a reverse proxy forwards client requests to the appropriate servers and re-
turns responses to the clients. More specifically, in Chapter 4.3 we will implement HA Proxy
both as a reverse proxy and as a load balancer.
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Chapter 4

Observability Data Collection and
Analysis

4.1 Implementation of the base three-state reliability model

Before analyzing the whole system, this Chapter will show how to apply in a practical way the
theoretical concepts discussed in Section 3.1. The only parameters needed to be derived are the
rates of three-state reliability model λA, λP , γN , µN .
This study aims to develop a method for calculating the above parameters based on a server with
Linux architecture, but the idea and general approach proposed to derive these parameters can
also be applied to all other operating systems.
The first parameter to consider is λA, the failure rate in the active state. To obtain this empirical
information, we can use the event log (e.g., the registry on Linux) to monitor all the times
the service related to a node is stopped, either voluntarily or due to a failure. We can use the
registry on Linux with journalctl, used to print the log entries stored in the journal and where
all information about events occurring in the system is saved. In this way we can filter out and
count all the times that the application we want to analyze is voluntarily stopped due to an update
of the application, or due to a sudden stop:

1 start="start_date"
2 end="end_date"
3 sudo journalctl --since "$start" --until "$end" | grep "Stopped

name_application | wc -l"

This command shows how many times the string ”Stopped name_application” is present in
the system registry in the last month. To increase the accuracy of the data, this method can be
applied over several months within the year. By periodically recording and analyzing the output
for each month, a set of values representative of service activity over the year can be obtained.
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Subsequently, these values can be averaged to obtain an annual average figure. This approach
makes it possible to mitigate any seasonal variations in service activity and to obtain a more
accurate estimate over the entire period.
Based on the total number of failures and the time period during which the observation was
conducted, we can calculate λA using Equation 3.6:

λA =
Total number of failures
Total observation time

(4.1)

The repair rate of a system µN can be considered as the number of times the system is able to
independently resolve a problem and restore proper operation after an outage. This concept is
related to the system’s transition from failure to passive status, and then to active. For example,
when a system detects an error and initiates automatic recovery procedures that lead to the res-
olution of the problem and return of the system to operation, this process can be considered as
repair. We can find the number of times the system automatically reboots as follows:

1 start="start_date"
2 end="end_date"
3 sudo journalctl --since "$start" --until "$end" | grep "Restarting

name_application | wc -l"

In practice, repair rate can be calculated by counting the number of times the system goes from
the failure state to the passive state and then to the operational state during a specified period of
time as shown in Equation 3.7. This can include situations in which the system independently
detects and resolves a problem without requiring human intervention.

µN =
Total number of restarts
Total observation time

(4.2)

When a node is in the passive state, two distinct scenarios can occur: the first is that the node
becomes active with the rate γN (activation rate), while the second is that it goes directly to the
failure state with rate λP due to a configuration problem, as a result of maintenance of the node
itself. To analyze the first scenario, we can use an approach similar to that used to calculate the
failure rate. In this case, we need to consider howmany times the application under consideration
was successfully started. Basically, we canmonitor the system log to identify application startup
events and record how many times the startup occurred correctly:

1 start="start_date"
2 end="end_date"
3 sudo journalctl --since "$start" --until "$end" | grep "Started

name_application | wc -l"
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We can then calculate the activation rate as shown in Equation 3.7:

γN =
Total number of successful starts

Total observation time
(4.3)

Lastly, but not least, we can calculate the failure rate λP in a similar manner, by determining
the number of times the startup of an application has failed:

1 start="start_date"
2 end="end_date"
3 sudo journalctl --since "$start" --until "$end" | grep "Failed to start

name_application | wc -l"

We can finally calculate the failure rate as described in Equation 3.9:

λP =
Total number of failed starts

Total observation time
(4.4)

In an active production environment with many applications generating a large volume of mes-
sages in a short period of time, a more efficient approach might be to extract the information
useful to us from the journalctl system log and store it in a separate log file. This log file turns
out to be more accessible and manageable for data analysis, allowing easier and more efficient
processing.
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4.2 Analysis of System Reliability and Availability in a Multi-
Node Architecture

Whether the system can be applied effectively depends directly on the number of nodes required
in its architecture. Using more and more nodes results in a less efficient system. This can
be clearly observed from the trend in total availability obtained by analysing the Figure 4.1.
In fact, it can be seen that the overall effectiveness of the system decreases as the number of
applications increases, as evidenced by the decrease in total availability. This phenomenon can
be attributed to the fact that the failure of each of the connected nodes can compromise the
functioning of the entire system, thus reducing its ability to provide services consistently and
reliably.
Let us now examine a system composed of n interconnected nodes. Although each node has
its own availability, for simplicity in our calculations we will assume that all nodes have an
availability of 0.9. Figure 4.1 shows the model described in Equation 3.6, which shows the
availability of the system as the number of connected nodes increases.

Figure 4.1: Variation of total availability with the number of nodes
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We start by considering a system with a single node. Here, the entire system will be
available only if that single node is functioning. Therefore, at first, with a single node, the
availability will be at its maximum, assuming a value of 90%. However, as the number of nodes
in the system increases, the overall availability will decrease. This is because with more nodes
in the system, it becomes increasingly difficult for all of them to be functioning at the same
time. For example, with two nodes, both must be functioning to ensure that the system is up and
running, which means that the probability of this happening is the product of the availability
probabilities of each node. This trend continues as the number of nodes in the system increases.
With three, four, or more nodes, the probability of all of them being functioning at the same
time decreases further, leading to a reduction in overall system availability.

We will now focus on analyzing how the introduction of two replicas in parallel can af-
fect the overall reliability of the system. We will examine how system reliability varies with
the number of nodes while holding the number of replicas constant. This will allow us to assess
the impact such a configuration has on the reliability and availability of the services offered.
Results are highlighted in Figure 4.2.

Figure 4.2: Variation of total availability with two replicas

We note that with a small number of nodes, the reliability of the system remains relatively
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high, hovering around 90%. However, as the number of nodes increases, we observe a gradual
decline in overall reliability. This decline is due to the increased complexity of the system and
the increasing probability of failures distributed over multiple nodes.

Let us now consider n replicas. In this way, we can get a more complete view of the
system as a whole and assess the best trade-off between resource cost and availability. As the
number of replicas increases, the overall availability of the system will be higher. However, the
resource costs associated with maintaining a large number of replicas must also be considered.
The aim is therefore to find an optimal balance between increasing availability and the
additional costs we have to bear as the number of replicas increases. Let us now look at the heat
map of system availability as the number of nodes and the number of replicas change. Figure
4.3 shows the trend of overall system availability with different configurations of nodes and
replicas.

Figure 4.3: Total system availability with varying number of nodes and replicas

Each cell in the heatmap represents the reliability of the system with a certain number of nodes
and replicas. Lighter colors indicate higher availabilities, while darker colors indicate lower
availabilities.
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4.3 HA Proxy load balancing

In this chapter, we will explore the practical implementation of HA Proxy as a solution for load
balancing in our distributed system. We will begin by discussing the steps for the installation
and configuration of HA Proxy and then present the results obtained through practical testing
and evaluation. [12]
The configuration was implemented on a Linux server running Ubuntu 22.02.
After installing the HA Proxy service in the system, it is necessary to edit the HA Proxy config-
uration file:

1 sudo vim /etc/haproxy/haproxy.cfg

To set our HTTP load balancing, the configuration is provided below:

1 global
2 log /dev/log local0
3 log /dev/log local1 notice
4 chroot /var/lib/haproxy
5 stats socket /run/haproxy/admin.sock mode 660 level admin
6 stats timeout 30s
7 user haproxy
8 group haproxy
9 daemon
10 # Default SSL material locations
11 ca-base /etc/ssl/certs
12 crt-base /etc/ssl/private
13 defaults
14 log global
15 option dontlognull
16 timeout connect 5000
17 timeout client 50000
18 timeout server 50000
19 stats enable
20 stats hide-version
21 stats realm Haproxy Statistics
22 stats uri /haproxy_stats
23 stats auth admin:admin
24

25 frontend http_frontend
26 bind *:80
27 default_backend http_back
28

29 backend http_back
30 mode http
31 option httplog
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32 balance roundrobin
33 server server1 127.0.0.1:4002 check
34 server server2 127.0.0.1:4003 check

Here we define a front-end called http_front that listens on the default HTTP port 80 and a
back-end called http_back with two servers hosted in the same machine on ports 4002 and
4003. The statistics uri provides a simple web interface to monitor the status of HA Proxy.
At this point we can start the service and enable it so that it runs at system startup.

1 sudo systemctl start haproxy
2 sudo systemctl enable haproxy

This means that the service will be started whenever the operating system boots without the need
for manual intervention, ensuring that HA Proxy is always available to handle load balancing.
This helps ensure higher service availability and a lower likelihood of interruptions due to hu-
man error or configuration problems. In Figure 4.4 we can see the status of the service after
configuring it.

Figure 4.4: HA Proxy service

When an HTTP request is made from the front-end, the load balancer receives the request and
routes it to one of the two available back-end servers. This process occurs according to the
configured load balancing algorithm. In this case we used the Round-Robin algorithm, which
is a load-balancing method that distributes requests equally among a group of servers using the
DNS. Each time a client makes a DNS request for a given domain, the authoritative DNS server
returns a different A record with each subsequent request, ensuring that the load is distributed
evenly among the available servers.
The experiment is conducted in our local network and the front-end interface is configured to
listen on the standard HTTP port 80 at the private IP address 192.168.1.68. As for the back-
ends, we created two virtual nodes on the same machine thanks to Docker. They were created
through Pyhton and listen on ports 4002 and 4003 respectively staying running while waiting
for requests. The code is provided below:
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1 from http.server import BaseHTTPRequestHandler , HTTPServer
2 import json
3

4 class Server1(BaseHTTPRequestHandler):
5 def do_GET(self):
6 self.send_response(200)
7 self.send_header('Content-type', 'text/html')
8 self.end_headers()
9

10 def run(server_class=HTTPServer , handler_class=Server1, address='
192.168.1.68', port=4003):

11 # Define the server's address and port
12 server_address = (address, port)
13 # Create an instance with the specified address and port
14 httpd = server_class(server_address , handler_class)
15 print(f'Server started on {address}:{port}...')
16 # Start the server and keep listening for requests
17 httpd.serve_forever()

At this point, we have created a Docker image to containerize our server application. We begin
by writing a Dockerfile, which is a text file that contains instructions for building a Docker
image. [13] In this file, we select a base image that provides the basic environment for our
application. We copy the application code into the Docker image to make sure it contains all the
necessary files. If there are dependencies, such as Python libraries, we install them inside the
image. Finally, we define the configuration settings needed to run our application as a Docker
container, such as environment variables, exposed ports, or startup commands.

1 # Use a base image, such as Ubuntu
2 FROM ubuntu:latest
3

4 # Update the system and install the backend server, for example Python
5 RUN apt-get update && apt-get install -y python3
6

7 # Copy the backend server files into the container directory
8 COPY server.py /app/server.py
9

10 # Expose port 4003 to allow access to the server
11 EXPOSE 4003
12

13 # Mount a volume to persist data
14 VOLUME /app/data
15

16 # Start the backend server when the container starts
17 CMD ["python3", "/app/server.py"]
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Once the Dockerfile is ready, we use the ’docker build’ command to build the Docker image.
This command reads the Dockerfile and executes each instruction, creating a new Docker
image based on the specified configuration. Finally, we use the ’docker run’ command to
run a Docker container based on the image created. This command starts a new instance of
the container using the specified image, making our server application accessible within the
containerized environment.
Figure 4.5 shows the logs of the two virtual backe-end nodes within the Docker containers. We
can see how HTTP requests are handled equally between the two available backend servers
thanks to the Round-Robin algorithm. Each request is identified by the backend to which it
was sent, allowing the workload distribution to be monitored. This approach ensures an even
distribution of requests among the backend servers, helping to optimize resources and improve
overall system efficiency.

Figure 4.5: Server logs

To monitor the balancing system even more efficiently, HA Proxy provides an interface for
monitoring the performance and status of the load balancer server. This web interface provides
a detailed overview of server utilization statistics, including data such as the amount of inbound
and outbound traffic, number of active connections, and load distribution among back-end
servers. One can then monitor the performance of the load balancer server in real time and
identify any issues or congestion in workload distribution. The interface is available at the
following URL http://server_ip/haproxy_stats where server_ip represents the IP
address of the server on which HA Proxy is installed, as shown in Figure 4.6.

HA Proxy Stats provides a detailed overview of the performance of the server load bal-
ancer and associated back-end servers. The following are some of the key insights that can be
obtained through HA Proxy Stats:

• Sessions and Connections: HA Proxy Stats provides information on the number of active
sessions and incoming and outgoing connections. This helps monitor server activity and
assess current workload.
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• Request Statistics: Users can view the total number of HTTP requests handled by the
server’s load balancer, along with pending requests and average response time. This al-
lows users to monitor the efficiency of request handling.

• Load Distribution: HA Proxy Stats displays the load distribution among the back-end
servers, including details on requests sent to each server and responses received. This
allows the workload balance to be assessed.

• Back-end Server Details: Detailed information about each back-end server is available,
such as operational status, latency, availability, and active connections. This makes it
easier to identify any problems or congestion on individual servers.

Figure 4.6: HA Proxy statistics
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4.4 Implementation in a real scenario

This test was performed using three preconfigured virtual web servers, with the load distributed
equally across each server using HA Proxy. The following results represent the average of ten
data observations collected using Round-Robin algorithm.
In order to assess the server’s ability to handle the workload, the first test conducted concerns
the number of incoming HTTP requests and observing how the system responds increasing the
number of back-end replicas. By measuring the server’s ability to process a large amount of
requests, we can gain crucial information about its capabilities and areas where resources may
need to be optimized.
The experiment involves simulating a workload in a production environment. System perfor-
mance, such as response time and server stability, was measured as the volume of requests
increased. To assess the impact of system scalability on performance, tests were performed
by increasing the number of replicas from one to three back-end servers. This allowed us to
examine how increasing the number of servers affects the overall performance of the system.
From Figure 4.7, it is clear that as the number of replicas of the back-end servers is increased,
the system can adequately handle the requests per second. This observation indicates that, by
distributing requests over independent processing back-end servers, the system can effectively
handle heavier workloads.

Figure 4.7: Number of Requests/s based on number of server replicas

To get a more precise metric, we can now calculate the system’s throughput, which is the
amount of data sent from the client to the back-end server via HA Proxy in a given time interval,
as described in (4.5).
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Throughput (KB/s) =
R · Psize

T
(4.5)

Where:

• R is the number of HTTP requests

• Psize is the payload size of the HTTP requests in KB

• T is the time interval taken into account in seconds

When looking at HTTP requests for a service in the IoT wolrd, the size of the payload can
vary based on the type of request being received. For instance in a GET request the payload is
typically small or empty since it involves the client just requesting data from the server. In the
other hand, in a POST request the payload might include information sent from the client to the
server like when creating gateways meters or digital twins.
To understand of how large these payloads are, we observed and recorded a large number of
requests over time, using HA Proxy logs. By having an amount of requests and assuming they
are independent and identically distributed (i.i.d) we canmake use of the Central Limit Theorem.
This theorem states that the distribution of the samplemean of a large number of independent and
identically distributed random variables will be approximately normally distributed, regardless
of the original distribution of the variables themselves. [14] In practice, this means that we can
approximate the payload size distribution to a Gaussian distribution. This approximation allows
us to calculate the mean value of the average payload size, which can be used to analyze and
optimize the performance of the system.

Figure 4.8: Distribution of payload size of HTTP requests
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Figure 4.8 presents the distribution of HTTP requests, which, with a large number of
requests, shows a tendency to resemble a Gaussian distribution. This observation allows us to
calculate the expected value, identifying the point at which the curve reaches a maximum. In
addition, the presence of POST-type HTTP requests is evident for higher payload size values,
confirming the hypotheses made earlier.

In addition, CPU utilization can be monitored in relation to the number of replicas. By
using only one replica of the back-end server, the entire load is handled by a single node.
Therefore, the CPU utilization of this server is very high causing congestion or delays,
especially at peak transmission times. By increasing the number of replicas of the back-end
servers, the workload is divided equally between the nodes. The round-robin algorithm makes
sure that requests are sent cyclically to the different servers, allowing them to share the load
equally. As a result, CPU utilization on each replica will be lower than in the case of a single
replica. Although the total number of requests may increase with multiple replicas, the effect
of load distribution will result in more efficient utilization of CPU resources and better ability
to handle traffic during load peaks.
The overall results of the analysis are presented in Table 3. The data are illustrated in a high
load context, in which the HA Proxy server is subjected to more requests than its maximum
processing capacity per second. This scenario allows us to assess the maximum capacity of the
system and the throughput in the face of extreme workload.

N° of replicas Requests/s Throughput (MB/s) CPU Utilization (%)
Node 1 Node 2 Node 3

1 7.43 14.88 35.47
2 13.85 27.74 21.09 22.09
3 20.22 40.49 8.72 7.97 8.60

Table 4.1: Downtime for different levels of availability
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4.5 Keepalived implementation

In the analysis conducted so far, we have implemented HA Proxy as a load balancer and web
server to distribute traffic across multiple back-end servers. This approach allows more requests
per second to be handledmore efficiently. However, if the server on which HAProxy is installed
experiences problems, the service may be interrupted. To mitigate this risk, a backup server can
be used that, in the event of failure of the ”master” server, becomes the new master while keep-
ing the connection active. This transition should occur automatically the moment the master
server goes offline.
One solution to ensure this high availability is to use Keepalived, an open-source software de-
signed to keep critical services up and running even in the event of hardware failure or system
malfunction. Keepalived implements the Virtual Router Redundancy Protocol (VRRP), allow-
ing multiple servers to share a single virtual IP address. [15]
We designed a high-availability load balancing system using HA Proxy and Keepalived within
Docker containers in the same network. This approach provides service availability and redun-
dancy in case one of the nodes fails. Now, to better understand how this system works, Figure
4.9 shows the general topology.

Figure 4.9: Topology of the system

There are two web server instances, named WebServer1 and WebServer2, based on Nginx web
server. At the entrance of the web servers, we find two instances of load balancers: the mas-
ter node LoadBalancer1 and the backup node LoadBalancer2. Both nodes use HA Proxy and
Keepalived and share the same virtual IP address, which is accessible to clients. In addition,
health checks are implemented both on the Keepalived side, to monitor the health of the load
balancers, and on the HA Proxy side, to monitor the health of the web servers. This configura-
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tion ensures business continuity and redundancy of the system, improving its overall reliability.
To begin, we need to create the Docker containers to host the web servers and load balancers.
To enable communication between the containers, we will create a Docker network so that the
containers are isolated and can communicate securely. Once the containers are created, we will
configure HA Proxy as described in the previous Chapter, setting the two web servers as back-
end servers, and then start the service. Now the web servers will be accessible via the load
balancer and will be able to handle incoming requests in a distributed and secure manner.
Now we need to configure Keepalived so that the LoadBalancer1 node becomes the master,
while LoadBalancer2 becomes the backup node, used in case the master fails. To ensure this,
some changes must be made to the service configuration file on both nodes:

1 vim /etc/keepalived/keepalived -master.conf # In the master node
2 vim /etc/keepalived/keepalived -backup.conf # In the backup node

This file contains crucial details related to VRRP configuration, such as node status (master or
backup), virtual router identifier (VRID), priority, and shared virtual IP (VIP) address. The use
of a single VIP is critical to ensure continuity of service in the event of failure or maintenance
on one of the nodes. The Virtual IP is dynamically assigned to the active node, known as the
master, within a VRRP group. Although there are multiple nodes in the group, only the master
actually holds and uses the VIP to route incoming network traffic. In case the master node fails,
Keepalived automatically steps in to transfer the Virtual IP to the backup node. This transition
occurs without interruption to end users, ensuring continuity of services even if one of the nodes
fails. The the configuration file for the master node is provided below:

1 vrrp_script chk_haproxy {
2 script "pgrep haproxy"
3 interval 2
4 weight 2
5 }
6 vrrp_instance VI_1 {
7 state MASTER
8 interface eth0
9 virtual_router_id 51
10 priority 101
11 advert_int 1
12 virtual_ipaddress {
13 172.18.0.6
14 }
15 track_script {
16 chk_haproxy
17 }
18 }
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It is divided into two main sections:

• vrrp_script chk_haproxy allows to check the status of the HA Proxy process. It
means that the VRRP instance monitors the state of the HA Proxy process using the de-
fined script, which is executed every 2 seconds to check whether the HA Proxy process
is running. If the process is active, the script is considered successful and is assigned a
weight of 2. The weight is used to determine the relative importance of the script within
the overall monitoring of the VRRP instance. A higher weight indicates greater impor-
tance in the overall health of the VRRP instance.

• vrrp_instance VI_1 defines the details of the VRRP instance. The current node is con-
figured as MASTER (state MASTER) and uses the eth0 interface for VRRP communica-
tion. The virtual router identifier must be unique for each instance (virtual_router_id
51). Node priority (priority 101) indicates that this node has the highest priority and should
be selected as master. Backup nodes should have a lower priority. The VIP address as-
signed to this node is 172.18.0.6 (virtual_ipaddress 172.18.0.6) and should also be
the same for the backup nodes to ensure continuity of service during failover. Finally, the
script check chk_haproxy is tracked (track_script chk_haproxy), which means that
if the script fails, the node’s priority will decrease, allowing the higher priority backup
node to assume the role of master.

During the configuration of the Keepalived node, it was necessary to select a virtual IP address
that would be assigned to the active node within the VRRP group. To locate an available IP
address that has not already been assigned to other running containers, it is necessary to examine
the IP addresses of the Docker containers in the specific network. To do this, we can use the
command:

1 docker inspect -f '{{.Name}} - {{range .NetworkSettings.Networks}}{{.
IPAddress}}{{end}}' $(docker ps -q)

This command allows us to view the IP addresses assigned to the various containers in the
Docker network, including their names and associated IP addresses, as shown in Figure 4.10.

Figure 4.10: List of Docker containers and their IP addresses within the network

We can now start the Keepalived service and verify that the Virtual IP address has been
successfully assigned checking the network interface information and see which node the
virtual IP has been bound to.
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Figure 4.11: Ethernet interface

On the master node we can see that this is exactly the VIP address we set just now, while on
the backup node there is no such information, which means that this node is still in the backup
state. When the master node is unavailable, the virtual IP will be bound to the backup node.

To test our architecture we may stop one of the web servers to see how the load balancer
manages the requests, e.g.:

1 docker stop WebServer1

Figure 4.12 shows the HA Proxy interface already discussed in Chapter 4.4. As expected, if
one of the back-end servers (e.g., WebServer1) is down, all incoming requests will be routed
to the running WebServer2. This is accomplished by load balancing configured through HA
Proxy, which automatically detects the status of the server and routes traffic to the working
instance. In this way, despite service interruption on a node, communication remains active
thanks to load distribution and duplication of back-end servers.

Figure 4.12: HA Proxy statistics with WebServer1 in down state

Now we can proceed by testing the case in which the load balancer in master mode is idle,
which is the main reason behind this analysis and implementation of Keepalived. To simulate
this situation, we interrupt the service on the LoadBalancer1, causing an interruption in the
flow of traffic handled by this node. This test will allow us to evaluate the effectiveness of
the failover system implemented with Keepalived in ensuring service accessibility even in the
event of a failure of the main load balancer.
Once the service on the LoadBalancer1 is interrupted, we can proceed by analyzing the logs of
the container in which the LoadBalancer2 is installed, as shown in Figure 4.13.
From the logs, we can see that at the time of the interruption of the master load balancer, the
backup load balancer took over the role of master, thus ensuring the continuity of the load
balancing service.
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Figure 4.13: Server logs for LoadBalancer2

Thus, we can say that the implementation of Keepalived in combination with HA Proxy
has proven to provide increased reliability and availability of load balancing services in the
context of the Docker infrastructure. Through the use of Keepalived, we are able to effectively
manage any outages or failures of the main nodes, allowing the system to continue to operate
without significant disruption. The configuration of the master and backup nodes, along
with service state monitoring, ensures a smooth transition of the master role in the event of
unexpected failures.
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Chapter 5

Application of Machine Learning
Techniques

5.1 Intelligent Load-Balancing Techniques in Cloud
Environments

In this Chapter, we explore intelligent load-balancing techniques that are useful for optimising
server resource utilization in cloud environments. These techniques are classified according
to various factors that play a significant role in improving overall efficiency. These factors
include the availability of server CPU and memory resources, adherence to Service Level
Agreements, network congestion prediction, QoS assurance, service response time estimation,
and management of storage requests within the cloud [16].
Machine learning is a subset of artificial intelligence and it involves training systems to
perform tasks without explicit programming. This is achieved by combining historical data and
statistical techniques through a process called training, which enables the creation of models
that can predict new, unseen values [17]. Deep learning, a specialised branch of machine
learning, uses complex neural network architectures with deeper layers and large data sets. By
integrating feature extraction and prediction within deep networks that possess hidden layers,
deep learning outperforms traditional approaches to machine learning, achieving superior
performance. [18]
In the field of cloud computing, task scheduling and load balancing are very important aspects to
consider within data centers. In cloud computing systems, service providers allocate available
resources in a way that improves Quality of Service.
We will provide an overview of load balancing using machine learning techniques such as
Naive Bayes, Random Forest, Decision Tree and Support Vector Machine (SVM). The latter
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will be the one used for our analysis, in order to reduce the processing time (makespan) of
requests arriving at the load balancer.

We will now introduce a new dynamic load balancing algorithm adapted to cloud envi-
ronments. Leveraging various machine learning algorithms, the proposed scheme optimizes
the allocation of requests among machines to reduce the overall processing time, also known as
makespan.
The main objectives of this study are the following:

• Usage of SVM technology for efficient application scheduling effort to minimize both
time and resource utilization.

• Classification with the help of machine learning techniques for the fair and equal distri-
bution of incoming requests along the existing resources.

• Comparison with the existing and valid algorithms.

Figure 5.1 presents the flowchart of the proposed architecture.

Figure 5.1: Scheme of the proposed architecture

Initially, the collected data undergoes a preprocessing phase to eliminate unrelated information
and to obtain a well-defined data structure. Next, a machine learning model is applied to classify
the data into three classes, depending on different performance levels:
The dynamic scheduling algorithm, based on the machine learning model, is used to classify the
data according to different VMconditions to provide an equal distribution of load among servers.
The task scheduling system and servers are all executed in real-time based on the VM’s current
and previous state. The Virtual Machine Manager is responsible for the complete management
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of operations within the virtual environment and provides detailed information on the status,
availability and performance of virtual machines.
Until now we have dealt with load balancing with HA Proxy using the Round Robin algorithm,
without considering the memory or CPU usage of individual servers. However, we now want
to design an algorithm in which the load distribution decision is made at runtime, using current
process information and system state. To do this, several aspects of load balancing need to be
considered:

• Identification of user task requirements: it is the first step in load balancing. It involves
understandingwhat tasks are coming to the system and their needs in terms of the resource.

• VM resource identification information: it involves collecting information about the
present state of resources related to VMs in terms of usage and availability.

• Task scheduling: itplays an important role in cloud computing, and several scheduling
policies are used to distribute tasks to computing nodes. This methodology helps in proper
utilization of resource and also improves performance in mission-critical environments.

• Resource allocation: enabling a clear resource allocation strategy is vital because it en-
sures that the most effective approaches to resource management are used, thus also en-
hancing general resource use.

• Migration: it is specifically fundamental in cloud load balancing as it is vital in ensuring
resource optimization. Two cloud solutions could be put properly, with VM migration
and task migration being instances. Cloud load balancing utilizes the flexibility of cloud
solutions to surf the changing nature of work and also general applicability. Moreover,
it also offers efficient cloud app availability monitoring through proper load and traffic
allocation in the cloud infrastructure offering efficient health checks.

A viable solution can be to implement the classification of virtual machines performance ac-
cording to the use of the RAM memory. Since the hosts have different RAM memory, we can
analysing the ratio of the used RAM memory to the total RAM capacity. The current state of
use of the virtual machines can be classified into three classes based on this data:

• Class 1 - Low Performance: Virtual machines that are characterized by long-time pro-
cessing of requests. In this regard, the VMs require more time to process the tasks . This
may be due to the lack of resources or inefficiency in their allocation.

• Class 2 - Medium Performance: Virtual machines with moderate processing times for
requests could be considered medium performance. These VMs handle tasks within a
reasonable amount of time, indicating efficient resource usage without excessive delays.
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• Class 3 - High Performance: VMs responds quickly since the time for a request is short.
Thus, this class is distinguished in that the processing time is so quick that it can be con-
sidered very effective.

5.2 Machine learning algorithms for classification

In this Section, we introduce machine learning techniques for classifying tasks under different
load conditions, utilizing various classifiers to analyze VM performance.

1. Decision Tree (DT)
Decision Tree is a supervised learning algorithm for classification task. As the name
implies, it builds a tree to represent possible decisions based on a set of decision rules. To
this end, the dataset is consecutively divided by subsets until it reaches the decision nodes.
Similarly, information on leaf nodes combines different outcomes into classes . In turn,
split decision nodes can present features or attributes that can later be used for prediction
tasks. In general, the goal is to maximize the entropy and reach the maximum information
gain . However, making too many splits can lead to model overfitting. Indeed, decision
trees are easy to understand and interpret . Yet, the model may be unstable for certain
instances due to impurity within leaf nodes.

2. Random Forest (RF)
RandomForest is a collective learningmethod consisting ofmany small decision trees. By
aggregating tree decisions, it corrects weaknesses that individual trees may have. How-
ever, in the case of complex data distributions, random forests can include poorly per-
forming tree classifiers and thus produce incorrect classification results. The crux of op-
timising the performance of random forests is to identify and filter out faulty trees that
would otherwise have a negative impact on the overall classification accuracy.

3. Naïve Bayesian
Naïve Bayesian is a statistical classification tool known for its simplicity and efficiency. It
assumes that features are conditionally independent of the class label, simplifying the clas-
sification process. Despite the naïve assumption, research suggests that Naïve Bayesian
classifiers often achieve comparable or higher accuracy and speed than other classification
methods such as decision trees or neural networks. In this approach, each tuple is assigned
to the class with the highest posterior probability, based on its characteristics. Suppose
we have m classes, labelled as {y

1
, y

2
, ..., y

m
}, and a dataset represented by tuple-X. The

Naïve Bayes classifier predicts that X belongs to the class with the highest backward prob-
ability, i.e. class Yi. In our case, we have several virtual machines {VM1,VM2, ...,VMm}
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available to execute a set of tasks {T1,T2, ...,Tn}. We can use the Naïve Bayes classifier
to determine on which virtual machine to execute each task, taking into account the char-
acteristics of the virtual machines and the task requirements. The classifier analyses this
information and estimates the probability that a task belongs to each of the available vir-
tual machines. It then assigns the task to the virtual machine with the highest probability,
thus enabling optimised workload balancing between the available virtual machines.

4. Support Vector Machine
The SVM algorithm is widely used in machine learning for classification and regression.
It is known for its robustness and ability to handle both binary andmulticlass classification
problems. In order to design efficient multiclass classifiers of low complexity, sophisti-
cated techniques are often employed, such as decomposing the multiclass problem into a
set of efficiently solvable binary classification problems.
In practice, the SVM finds an optimal hyperplane that separates the training data so as
to maximize the margin between different classes. Hyperplanes are represented as lines
in high-dimensional spaces, and the classification of a new data point is done by deter-
mining on which side of the hyperplane the point is located. In the case of a multiclass
classification problem, the SVM uses a formulation that optimizes the separation between
multiple classes, often by training several binary classifiers and combining their predic-
tions to achieve multiclass classification. Support vectors are the data points closest to
the hyperplane and play a key role in defining the optimal hyperplane. Maximizing the
margin between support vectors is important to ensure accurate classification of future
data points.
Figure 5.2 shows the classification of three classes. The objective is to find a plan that
maximises the margin, i.e. the maximum distance between the data points of the three
classes. This increase provides greater confidence in the classification of future data points
between virtual machines.
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Figure 5.2: SVM Algorithm with three classes

5.3 SVM Algorithm applied to load balancing

In this section, we will explore the application of the SVM algorithm to load balancing, focusing
on how this approach can be implemented and the benefits it can offer. Using historical data on
server performance and request characteristics, the SVM algorithm can predict which virtual
server is best suited to handle a given request in real time. [19]
The SVM model identifies historical processing times on the basis of requests. It also performs
clustering techniques so that the virtual machines (hosts) are divided into high-performance,
medium-performance and low-performance groups of instances. The process is executed
in K-means. Finally, it assigns the requests with the highest processing load to the virtual
machines with the lowest activity level
The classification of incoming requests according to the algorithm is mainly based on process-
ing time and uses the SVM algorithm. In this way, we can determine to which group of virtual
machines a request will be assigned. For virtual machines, we divided them into clusters with
K-Means to obtain: three closest clusters (k=3). The VMs in cluster 3, which is the cluster with
the most available resources, are prioritised for handling complex requests with longer pro-
cessing times. This algorithm will reduce the communication load between the virtual machine
and existing resources, increasing throughput and, consequently, service requirements for users.

For better organisation and clarity, we have divided the algorithm into three distinct modules,
each of which is described in a dedicated subsection as follows.
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5.3.1 Request classification using SVM algorithm

The SVM algorithm, in this module, uses the attributes of the request to compute the processing
time of the request and then classifies the requests. These parameters, such as the size of the
request, length of response, maximum length, etc., help to determine the processing time group.
The formulation for classifying the processing time of a request is as follows:

Processing Time Group = SVM(X1, X2, ..., Xn) (5.1)

Where each Xi is an attribute of the request sent to the cloud.
The groups for the processing time classification can differ. They usually range from 4 to 8-10
or even more, depending on the variability of the requests. The SVM obtains information about
the last requests. This information is gathered over a period from 1 to 10 minutes. It enables
training dataset to always be updated and real-time.

Suppose we have m service requests with n attributes each.
The training data set is represented as an X -matrix of size m × n, where each row represents a
request and each column represents an attribute of the request.

X =
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(5.2)

Suppose we also have a vector y of size m × 1 that contains the class labels corresponding to
each request in the training dataset.

y =
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(5.3)

Where yi represents the processing time class of i-th request.
The SVM algorithm builds a model on the training dataset X and class labels y, looking for an
optimal hyperplane to separate the classes of processing time. This model is used to classify
new requests into the appropriate groups of processing time.
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5.3.2 Clustering of virtual machines and resources

In this module, we will use the k-Means clustering algorithm (with k = 3) to divide virtual
machines into groups based on activity level, using virtual machine resources including high,
medium and low activity clusters. The clustering analysis Considered varies for each parameter,
such as CPU utilization, RAM memory and different comparison to evaluate the precise state
of VM. As a result of the k-Means algorithm, a valuable virtual machine is assigned to one of
the following grouping:

• Cluster 1: represents the classes with low performances

• Cluster 2: represents the classes with medium performances

• Cluster 3: represents the classes with high performances

The choice of k = 3 is based on the division of virtual machines into three distinct activity levels.
However, it is possible to extend the value of k to 4, 5 or even more, depending on the specific
needs of the environment. The optimal number of clusters to be used remains the subject of
further study.
To obtain more accurate results, we use the same data used to train the SVMmodel, i.e. the most
recent information on virtual machines, to form the training dataset for the clustering algorithm.
This allows us to keep the model up-to-date with the latest virtual machine activity information
and dynamically adapt it to changes in the cloud environment.
In our practical implementation, we have decided on a classification of the performance of virtual
machines based on the utilization of RAM memory. Considering that the hosts have different
memory capacities, we analyse the percentage of RAM memory used in relation to the total
capacity. Based on this data, we can divide the current state of virtual machines into the three
previously defined clusters:

• Low Performance: Virtual machines with a high utilization of RAM compared to the
total capacity can be grouped as low-performance machines. Since they make full use of
the resources available on the host, these virtual machines have almost no room to perform
additional workloads, thus limiting overall performance.

• Medium Performance: VMs with moderate RAM usage for total capacity can be rec-
ognized as medium performance. These VMs take a fair amount of resources that are
not running at their peak capacity, which enables them to continue their operations at a
reasonable performance level.

• High Performance: VMswith lowRAMusages for total capacity could also be classified
according to high performance. Since these VMs use few resources for executing new
workloads, they continue to maintain high system performance.
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5.3.3 Service allocation

This module manages the allocation of requests to VMs. When a request arrives at the system,
Module 1 classifies the request according to its characteristics, e.g. type of request or the
size. Module 2 groups VMs according to their current performance. This can be done by
considering RAM utilization or other performance metrics, thus dividing the VMs into clusters
with different capacities and load levels. Using the results of the request classification from
module 1 and the clustering of VMs from module 2, the algorithm determines which VM is
best suited to process the current request. This process considers the characteristics of the
request and the performance of the VMs to find the optimal match. If the request processing
time has already been calculated, the request is routed to the most appropriate VM based on
performance and available capacity.
For example, requests with a longer processing time could be routed to VMs with high capacity,
while smaller requests could be allocated to VMs with lower workloads.

Figure 5.3: Algorithm process flow

5.4 SVM Algorithm Implementation and Simulation

In this Section, we will explore the implementation and simulation of load balancing algorithm
based on SVM. The use of SVM to classify incoming requests according to their characteris-
tics will be illustrated, enabling optimal distribution of available virtual resources. For training
the SVM algorithm, we used a training set that included a number of request examples, each
characterized by three key attributes: the size of the request, the length of the response and the
maximum length. These features are used to calculate the processing time of requests. The
algorithm is shown below:
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1 from sklearn.svm import SVC
2 import numpy as np
3

4 training_data = np.array([
5 [1500, 500, 10000], # [size, response length, max length]
6 [2000, 1000, 20000],
7 [4000, 1500, 35000],
8 ])
9 labels = np.array(["low", "medium", "high"])
10 svm_model = SVC()
11 svm_model.fit(training_data , labels)
12 def classify_request(new_request):
13 predicted_class = svm_model.predict([new_request])
14 return predicted_class[0]

The ’training_data’ array contains the request data used for training the SVM model. Each
row represents a request instance and the values in each row represent the characteristics of the
request (size , response length , maximum length). The ’labels’ array contains the class labels
associated with each request, which indicate the expected processing time (processing time) for
that request. We use the SVC class of scikit-learn to initialize an SVM model anf then we train
the model using the fit method. To perform the classification we use the ’predict’ method of
the SVM model, taking as input the characteristics of a new request and returning the predicted
class for the request from the trained SVM model.
We can now simulate the classification of a request and observing the prediction of the expected
processing time by the SVMmodel: Let us consider an HTTP POST request as an example. This
type of request typically involves a large amount of data transferred through HTTP communi-
cation, so we can expect to be classified with ”high” processing time label.
The Figure 5.4 demonstrated our expectations.

Figure 5.4: Classification of HTTP request

We can now focus on the k-means algorithm, which allows us to group VMs based on their
percentage RAM utilization, dividing them into clusters with similar resource utilization char-
acteristics. This allows groups of VMs with similar performance to be identified, facilitating
the appropriate allocation of requests based on performance needs.
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1 from sklearn.cluster import KMeans
2 import numpy as np
3

4 free_ram_usage_data = np.array([65, 20, 85, 35, 55, 90, 40, 45, 80, 95]) #
RAM usage data for each virtual machine (in percentage)

5 free_ram_usage_data = ram_usage_data.reshape(-1, 1)
6 kmeans_model = KMeans(n_clusters=3)
7 kmeans_model.fit(ram_usage_data)
8 cluster_labels = kmeans_model.labels_
9 low_performance_vms = [idx for idx, label in enumerate(cluster_labels) if

label == 0]
10 medium_performance_vms = [idx for idx, label in enumerate(cluster_labels)

if label == 1]
11 high_performance_vms = [idx for idx, label in enumerate(cluster_labels) if

label == 2]

In the example, we considered a set of data representing RAM usage by different VMs within
a cloud environment. This data could be collected by monitoring tools or by software agents
deployed on the VMs themselves, which periodically send RAM usage data. To get an objective
value, we considered the percentage of RAM memory used in each VM. This real-time data
is then used as input for the K-Means algorithm, which analyzes RAM utilization patterns
and groups VMs based on similarities in their memory utilization behavior. This makes it
possible to identify groups of VMs with similar resource utilization characteristics, facilitating
the optimal allocation of requests.

Now, we are ready to combine the SVC and K-Means models in order to efficiently al-
locate our HTTP requests to VMs. When a new HTTP request arrives, it is first classified
using an SVM to understand the workload it produces. It is then assigned to the most suitable
virtual machine. The selection is based on both its complexity, determined by the SVM
label, and the desired optimal performance, obtained from the K-Means cluster labels. To
implement this algorithm, we use the 'allocate_requests' function. The latter creates an
empty dictionary called 'allocated_requests', which will be used to organize incoming
requests according to desired performance. The keys are “low”, “medium” and “high”, which
denote the performance level of VM: the function proceeds to iterate through all incoming
requests stored in the requests list. For each request, it retrieves the 'processing_time'.
If the processing time is ”low,” the request should be routed to a cluster with VMs of lower
performance. Similarly, if the processing time is ”medium”, the current request is added to the
requests list, containing those for VMs with medium performance. If the processing time is
”high,” the request is is managed by the high-performance virtual machine.
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1 def allocate_requests(requests, low_perf_vms , medium_perf_vms ,
high_perf_vms):

2 allocated_requests = {"low": [], "medium": [], "high": []}
3 for request in requests:
4 processing_time = request["processing_time"]
5 if processing_time == "low":
6 allocated_requests["low"].append(request)
7 elif processing_time == "medium":
8 allocated_requests["medium"].append(request)
9 elif processing_time == "high":
10 allocated_requests["high"].append(request)
11 return allocated_requests

At this point we can simulate the arrival of a POST request and see in which virtual machine it
is handled.
Consider a request with a size of 3KB, a response length from server to client of 1.5KB, and a
maximum allowed length of 30KB. In Figure 5.5, we can see that the request has been ranked
with a high processing time, and consequently it has been sent to the cluster with the highest
amount of RAMmemory available. In addition, the algorithmwill select the best virtualmachine
at that time in terms of memory utilization.

Figure 5.5: Results of the algorithm

5.5 Comparison between traditional and SVM-based Load
Balancing

In this section, we will compare the execution time of the traditional Round Robin algorithm
and the SVM-based model. As mentioned in Chapter 4, the Round Robin algorithm distributes
incoming requests sequentially over the available virtual machines, so that all requests are
processed evenly and fairly. In contrast, the SVM-based model applies an SVM classification
model to classify the processing time of incoming requests. This model is trained with historical
data of request parameters and virtual machine performance. New requests are classified using
the SVM model and assigned to virtual machines where they can be executed efficiently.
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The performance of the two load-balancing methods is compared by analysing the change in
execution time as requests to the load balancer increase, using an increasing queue of requests.
The average time to process an increasing queue of requests is measured with the round-robin
and the SVM-based balancing algorithms.
In the experiment setting, we have used five virtual machines. The performed requests are
generated with the lengths and sizes randomly there varies from 5 to 1000. Our analysis results
of the two balancing algorithms, Round-Robin and SVM, can be shown in the table below:

Requests Round Robin SVM
5 140.35 141.06
10 286.73 285.28
20 571.46 566.45
50 1430.93 1416.14
100 2860.37 2782.03
200 5714.19 5425.65
500 14286.63 13343.63
800 22857.85 18391.09
1000 28571.82 22526.67

Table 5.1: Execution time (in ms)

For better understanding, Figure 5.6 shows the trend of execution time as the number of
requests increases:

Figure 5.6: Execution time as the number of requests increases
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From the graph, we can see that when the number of requests is low, load balancing al-
gorithms such as Round Robin and SVM turn out to behave similarly in terms of execution
time. However, when the number of requests increases, SVM tends to become more efficient
than Round Robin. SVM uses a classification model to assign requests to virtual machines,
based on the characteristics of those requests. This approach can be more efficient in terms
of resource utilization than Round Robin, which does not consider differences in requests. In
addition, the algorithm dynamically adapts to changes in workload and request characteristics,
enabling better distribution of requests to virtual machines. Last but not least, with a of training
data, the SVM algorithm has more information on which its classification decisions can be
based. This means it can learn more complex and accurate patterns to distinguish between
different types of requests and assign them to the most appropriate virtual machines.
We can therefore say that use of the SVM algorithm for load balancing can lead to faster
response times, better resource utilization, and greater system scalability in response to varying
workloads.

60



Chapter 6

Conclusions

The research conducted explored a range of issues concerning critical infrastructure and SLA
analysis in the context of communications and the Internet of Things. The general archetype
of the IoT was studied, along with a real-world case study, in order to better understand the
architecture and operational challenges in this area.
Next, methods and tools used to ensure reliability, optimization and infrastructure management
were examined, including theoretical models of reliability, node interconnection, container vir-
tualization and orchestration, node replication and load balancing.
A particular focus was placed on observability data analysis and data collection, with the imple-
mentation of reliability and system availability models in a multi-node architecture. Specific ap-
proaches for load balancing were also explored, including the use of HA Proxy and Keepalived.
Finally, the application of machine learning techniques was examined, with a focus on the use of
the SVM algorithm for load balancing. The steps of classifying requests, clustering virtual ma-
chines and resources, and allocating services were explored. Comparisons between traditional
and SVM-based load balancing methods were also conducted, with the SVM algorithm being
implemented and simulated in a test environment.
In conclusion, this research contributed to a better understanding of the challenges and solutions
in the area of critical infrastructure and SLAs, with a special focus on load balancing using SVM
machine learning algorithm.
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