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Abstract

L’evoluzione tecnologica dei sistemi embedded ha reso possibile l’esecuzione di applicazioni

sempre piú complesse, rendendo sempre piú preferibile, se non necessario, l’adozione di un sis-

tema operativo a cui demandare la gestione dell’interazione tra task e la loro schedulazione.

Tali compiti sono tanto pi importanti nel caso di sistemi in tempo reale. In questa tesi viene

preso in oggetto FreeRTOS, un sistema operativo real time appositamente sviluppato per pic-

coli sistemi embedded. Dopo una approfondita descrizione dello scheduler a priorit adottato da

FreeRTOS, vengono proposti due nuovi scheduler: il primo basato sul noto algoritmo Erliest

Deadline First (EDF), il secondo basato su un algoritmo recentemente proposto, Largest Local

Remaining Execution time First (LLREF), originariamente sviluppato per sistemi multipro-

cessore. Di ciascuno scheduler proposto ne viene descritta l’implementazione in FreeRTOS, e

quindi ne viene validata la correttezza attraverso una fase di test.
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Abstract

Embedded systems technological evolution has made the execution of increasingly complex ap-

plications possible. Due to this increasing complexity, the adoption of an operating system to

manage the interaction between tasks and their scheduling is becoming preferable and even

necessary, also for little embedded systems. This thesis examines FreeRTOS scheduler. FreeR-

TOS is a real time operating system specially developed for small embedded systems. After an

in-depth description of the priority-based scheduler adopted by FreeRTOS, two new schedulers

are proposed: the first one is based on the well-known Earliest Deadline First algorithm (EDF),

the second one is based on a new algorithm, Largest Local Remaining First Execution time

(LLREF), originally developed for multiprocessor systems. For each proposed scheduler, an

implementation description on FreeRTOS is given. Then, their correctness is verified by a test

phase.
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Chapter 1

Introduction

1.1 Real time Systems

Real-time systems are defined as those systems in which the correctness of the system depends

not only on the logical result of computation, but also on the time at which the results are

produced. If the timing constraints of the system are violated, system failure occurs or a

punishment is incurred for the violation. Hence, it is essential that the timing constraints of

the system are guaranteed to be met. It is also desirable that the system attain a high degree

of utilization while satisfying the timing constraints of the system[1].

Real-time systems span a broad spectrum of complexity from very simple micro controllers to

highly sophisticated, complex and distributed systems. Some examples of real-time systems

include process control systems, flight control systems, manufacturing applications, robotics,

intelligent highway systems, and high speed and multimedia communication systems [2]. For

instance, the objective of a computer controller might be to command the robots to move parts

from machines without colliding with other objects. If the computer controlling a robot does

not command it to stop or turn in time, the robot might collide with another object on the

factory floor.

A real-time system will usually have to meet many demands within a limited time. The

importance of the demands may vary with their nature (e.g. a safety-related demand may be

1



2 Chapter 1. Introduction

more important than a simple data-log) or with the time available for a response. Thus, the

allocation of the system resources needs to be planned so that all demands are met by the

time of their respective deadlines. This is usually done using a scheduler which implements a

scheduling policy that determines how the resources of the system are allocated to the demands.

A real-time application is normally composed of multiple tasks with different levels of criticality.

We can formally define a real-time system as follows[1]: let’s consider a system consisting of a

set of tasks, T = τ1, τ2, ..., τn, where the finishing time of each task τiT is Fi. The system is

said to be real-time if there exists at least one task τiT , which falls into one of the following

categories:

• Task τi is a hardreal − time task - the execution of the task τi must be completed by a

given deadline di;

• Task τi is a softreal − timetask - the later the task τi finishes its computation after a

given deadline di, the more penalty it pays. A penalty function G(τi) is defined for the

task. If Fidi, the penalty function G(τi) is zero. Otherwise G(τi) > 0.

1.2 Real Time Scheduling

Basically, the scheduling problem for a real-time system is to determine a schedule for the

execution of the tasks in order to satisfy their timing constraints. For scheduling a real-time

system, we need to have enough information, such as the deadline, release time and execution

time of each task. Also, it is required to know the importance of the task as compared with

the other tasks and its precedence relation. A majority of systems assume that much of this

information is available a priori.

A Real Time Scheduler Algorithm can be classified according to several properties:

-preemptive/non preemptive behaviour: In some real-time scheduling algorithms, a task

can be preempted if another task of higher priority becomes ready. In contrast, the execution

of a non preemptive task should be completed without interruption once it is started;
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-periodic/sporadic tasks management: Periodic real-time tasks are released regularly at

fixed rates (periods). A majority of sensory processing is periodic in nature. For example, a

a digital thermometer that measures the temperature in an industrial tank produces data at

a fixed rate; sporadic real-time tasks are activated irregularly with some known bounded rate;

-static/dynamic priority scheduling: In priority driven scheduling, a priority is assigned

to each task. Assigning the priorities can be done statically or dynamically while the system is

running.

1.2.1 FreeRTOS

FreeRTOS is a Real Time Operating System (RTOS) that is designed to be small enough to run

on a microcontroller - although its use is not limited to microcontroller applications. FreeRTOS

provides the core real time scheduling functionality, inter-task communication, timing and

synchronisation primitives. Additional functionality, such as a command console interface, or

networking stacks, can be then be included with add-on components[1]. FreeRTOS scheduler

is preemptive and fixed-priority based. At the initialization of a task, a priority is assigned to

it. If multiple tasks have equal priority, it uses round-robin scheduling among them.

1.3 Aims of the project

As we saw, FreeRTOS uses a static scheduler where tasks are given a fixed priority.

The goal of this project is to implement two new dynamic priority scheduler algorithms for

FreeRTOS: the first one is based on the well-known Earliest Deadline First algorithm (EDF)[3],

the second one is based on a new algorithm, Largest Local Remaining First Execution time

(LLREF)[4], originally developed for multiprocessor systems. For each proposed scheduler, an

implementation description on FreeRTOS is given. Then, their correctness is verified by a test

phase.
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1.4 Environment used

In this section we will illustrate the environment used for this project:

• Target Board: ST STM32F429Discovery Board - ARM Cortex M4 180MHz CPU;

- 2 Mbytes of Flash memory;

- 256 Kbytes of RAM;

- 2.4” QVGA TFT LCD;

- USB port;

• Real Time OS: FreeRTOS 8.2.2;

• PC Host: Quad Core Intel i5 With Windows 10 - GCC compiler; - STM32 ST-LINK

USB board driver; - CooCox CoIde ARM Cortex Development tool-chain;

The project folder is structured as follows:

FREERTOSscheduler is the main folder; it contains:

-cmsis, cmsis boot, cmsis lib, stm32f429 folders contain hardware dependent code for the

board management;

-freertos folder contains the FreeRTOS files code; -semihosting folder contains files to enable

semihosting debug mode for CoIde;

-main.c and main.h files, the demo application to test.

1.5 Organisation of the paper

The rest of this thesis is organized as follows. Chapter 2 contains a detailed description of

the FreeRTOS scheduler: the system structures and functions involved are introduced and a

complete schedule example is given.
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In Chapter 3 we will present our EDF scheduler implementation for FreeRTOS: Earliest Dead-

line First algorithm is presented, then design choices are discussed. The final implementation

is described with code samples, and test results are shown to ensure the correctness of the

algorithm. LLREF scheduler implementation for FreerTOS is presented in Chapter 4. Like in

Chapter 3, LLREF algorithm is presented, design choices are discussed and the final implemen-

tation is described. A test phase then shows the correctness of the algorithm implementation.

Chapter 5 summarises the project, taking a view of the work done.



Chapter 2

FreeRTOS Task Scheduling

2.1 Introduction to FreeRTOS

FreeRTOS is an open-source Real Time Operating System designed for embedded systems.

The FreeRTOS project started in 2002 and is under active development. Its official support

to 35 embedded system architectures and different compiler tool-chains, its simple and full

documented API, and its open-source license contributed to diffuse it among the embedded

market, while the user base grows year after year[5].

2.2 Kernel structure

Since FreeRTOS works in embedded environments, it is designed to minimize the memory usage

and is also suitable for low clock frequency microcontrollers: the FreeRTOS minimum kernel

consists of only three source files, for less than 9000 line of code. In order to be compatible with

all the supported architectures and tool-chains, FreeRTOS kernel is composed by a hardware

dependent layer, customized for every supported architectures, and a hardware independent

layer, common to all the ports. Figure 2.1 shows the FreeRTOS layers.

The 3 source files that compose the minimal kernel (alongside a handful of header files)provide

these functions:

6



2.3. The Task 7

Figure 2.1: layers

• task.c : the task function is defined, and its life cycle is managed. Scheduling functions

are also defined here.

• queue.c : In this file the structures used for task communication and synchronisation

are described- tasks and interrupts communicate witch each other using queues to ex-

change messages; semaphores and mutexes are used to synchronize the sharing of critical

resources.

• list.c : the list data structure and its maintaining functions are defined. Lists are used

both by task functions and queues.

2.3 The Task

2.3.1 Task structure

Tasks are implemented as C functions. Every single task created is a small program on its

own right, at witch a priority is assigned. Each task executes within its own context, without

dependency on other task’s context. At each instant the OS selects the task that will be

executed, according to its priority. At each task, FreeRTOS associates a proper data structure

called Task Control Block (TCB) that contains the following parameters:

120 typedef struct tskTaskControlBlock

121 {
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122 volatile StackType_t *pxTopOfStack; /*< Points to the location of

123 the last item placed on the

124 tasks stack.*/

125 ListItem_t xGenericListItem; /*< The list that the state list item of a task

126 is reference from denotes the state of

127 that task (Ready, Blocked, Suspended ).

*/

128 ListItem_t xEventListItem; /*< Used to reference a task from an event

list. */

129 UBaseType_t uxPriority; /*< The priority of the task.

130 0 is the lowest priority. */

131 StackType_t *pxStack; /*< Points to the start of the stack. */

132 char pcTaskName[ configMAX_TASK_NAME_LEN ];/*< Descriptive name given to

133 the task when created.

134 Facilitates debugging

only. */

135 StackType_t *pxEndOfStack; /*< Points to the end of the stack on

architectures

136 where the stack grows up from low memory.

*/

137 UBaseType_t uxBasePriority; /*< The priority last assigned to the task

138 - used by the priority inheritance

mechanism. */

139 } tskTCB;

The TCB contains general information characterizing the task:

-stack pointers: *pxStack points to the beginning of task stack beginning, *pxTopOfStack

points the current top of the stack, and a third pointer, *pxEndOfStack, used for stack

overflow checking, points to the end of the stack;
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-uxPriority variable contains the task priority, while uxBasePriority contains the latest

assigned priority (used by the priority inheritance mechanism);

-ListIteam objects xGenericListItem and xEventListItem: when a task is inserted in a

list (for example, the Ready List, as we will see), the list contains not a simple pointer to the

Task Control Block, but a pointer to an object ListIteam. The usage of ListIteam elements

guarantees lists to be more intelligent and to compute operations with less computational

complexity;

-pcTaskName is a char vector containing the task name.

2.3.2 Task states

As shown in Figure 2.2, a task can exist in one of the following states:

• Running : the task pointed by ∗pcCurrentTCB system variable is said to be in Running

state. It is currently utilising the processor. Only one task can be executed at one time;

• Ready : tasks that are ready to be executed and are waiting for being scheduled, but

are not executing because another task with equal or higher priority is in Running state.

• Blocked : a task in Blocked state cannot be scheduled, because it is waiting for an

external event or a temporal event. For example a running task calling the method

vTaskDelay() will block itself being placed in the Blocked state, waiting for a delay

period, or another task could block waiting for queue and semaphore events.

• Suspended : a task can reach or leave the Suspended state only by explicitly calling

the vTaskSuspend() and xTaskResume() method respectively. Suspended tasks are not

available for scheduling.

The Task Control Block does not contain a variable that represents the task state: instead,

FreeRTOS manages lists containing tasks for each state -Ready, Blocked and Suspended- so,

task state is tracked implicitly by putting tasks in the proper list.
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Figure 2.2: Task valid states and transitions

• Ready tsks :

195 PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ];/*<

Prioritised ready tasks. */

-pxReadyTasksLists[] is an array of lists, containing as many list as the maximum number

of priority selected. The i-th position of the array contains the list of the tasks having

the i-th priority.

• Blocked tasks :

196 PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks.

*/

197 PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks

(two lists are used - one for delays that have overflowed the current tick

count. */

198 PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to

the delayed task list currently being used. */

199 PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*<

Points to the delayed task list currently being used to hold tasks that

have overflowed the current tick count. */
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Figure 2.3: graphic representation of Ready List and Delayed List

-two lists are used to manage blocked tasks: xDelayedTaskList1 and xDelayedTaskList2.

One list contains tasks which awakeness time has overflowed the current tick count.

At each moment, ∗pxDelayedTaskList points at the Delayed list currently used, while

pxOverflowDelayedTaskList points the other one. When the tick count overflows, then

the pointers switch each other.

• Suspended tasks :

216 PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are

currently suspended. */

-a simple list is used to contain suspended tasks.

2.3.3 Task initialization

A task is created invocating the task.c method xTaskCreate():
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253 BaseType_t xTaskCreate(

254 TaskFunction_t pvTaskCode,

255 const char * const pcName,

256 uint16_t usStackDepth,

257 void *pvParameters,

258 UBaseType_t uxPriority,

259 TaskHandle_t *pvCreatedTask

260 );

xTaskCreate() create a new task with an assigned priority, and add it to the Ready Task set.

In details a task is create in these steps:

538 /* Allocate the memory required by the TCB and stack for the new task,

539 checking if the allocation was successful. */

540 prvAllocateTCBAndStack( usStackDepth, puxStackBuffer );

-memory space is allocated for a new TCB struct and for a new stack (if enough memory is

available);

586 /* Setup the newly allocated TCB with the initial state of the task. */

587 prvInitialiseTCBVariables( pxNewTCB, pcName, uxPriority, xRegions, usStackDepth

);

-TCB variables are initialized;

545 /* Initialize the TCB stack to look as if the task was already running,

546 but had been interrupted by the scheduler. The return address is set

547 to the start of the task function. Once the stack has been initialised

548 the top of stack variable is updated. */

549 pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
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-stack is initialized as well: a new task stack is initialized in a way that it looks like a

stack of a task suspended by the scheduler. In this way, the scheduler does not need spe-

cial case code to manage new tasks, since they look the same as old tasks already switched off.

pxPortInitialiseStack() is a hardware-dependent function implemented in the port.c file. As

we will see, when a task is interrupted, all task context is saved on the task stack. So the new

stack created is modified and looks as though the registers have been pushed, even if the task

has not used them yet;

670 prvAddTaskToReadyList( pxNewTCB );

-the created task is added to the Ready set. As said, pxReadyTasksLists[] array contains one

ready list for each possible priority level (level 0 is the lowest one). A priority p task will be

placed in the corresponding pxReadyTasksLists[p] list. prvAddTaskToReadyList() is defined

in this way:

374 #define prvAddTaskToReadyList( pxTCB ) \

\

375 taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority );

\

376 vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB

)->xGenericListItem ) )

basically, first the system variable UBaseTypetuxTopReadyPriority, representing in every

moment the priority of the running task, is compared with the new task priority, and if the

new priority is higher, uxTopReadyPriority is updated. Then, the task’s xGenericListItem

is inserted at the end of the proper Ready list of the pxReadyTasksLists[] array.

The task is now in the Ready list waiting for be executed by the scheduler.
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2.3.4 Delay a Task

We saw how a task is created and initialized to the Ready state. Now we will see how a

task can reach the Blocked state by calling the vTaskDelayUntil() : function. This function

defines a frequency at which the task is periodically executed, so it can be used to implement

periodic tasks. As we will see, FreeRTOS measures time by periodically increasing the tick

count variable. vTaskDelayUntil() : moves the invoking task to the Waiting list, where it

waits for a chosen time interval before being moved to the Ready list again, periodically.

576 * @param pxPreviousWakeTime: Pointer to a variable that holds the time at which the

577 * task was last unblocked. The variable must be initialised with the current time

578 * prior to its first use (see the example below). Following this the variable is

579 * automatically updated within vTaskDelayUntil ().

580 *

581 * @param xTimeIncrement: The cycle time period. The task will be unblocked at

582 * time *pxPreviousWakeTime + xTimeIncrement. Calling vTaskDelayUntil with the

583 * same xTimeIncrement parameter value will cause the task to execute with

584 * a fixed interface period.

The function works in this way:

1039 uxListRemove( &( pxCurrentTCB->xGenericListItem ) )

- pxCurrentTCB is pointing at the running task that called vTaskDelayUntil() :, so its

xGenericListItem is removed from the Ready list in witch it was stored;

3116 /* The list item will be inserted in wake time order. */

3117 listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xGenericListItem ), xTimeToWake );

- xGenericListItem now contains the value of the tick at witch the task will be unblock;

1 vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xGenericListItem ) );
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- the xGenericListItem is inserted in the DelayedTaskList. DelayedTaskList contains the

xGenericListItem of the other tasks in blocked state, sorted by the unblock time value. So

the top of the list contains the xGenericListItem of the task closer to being unblocked.

vListInsert() function insert the new item in the list maintaining it sorted.

3129 /* If the task entering the blocked state was placed at the head of the

3130 list of blocked tasks then xNextTaskUnblockTime needs to be updated

3131 too. */

3132 if( xTimeToWake < xNextTaskUnblockTime )

3133 {

3134 xNextTaskUnblockTime = xTimeToWake;

3135 }

-finally, the system variable xNextTaskUnblockT ime, containing the time at witch the next

task unblock will occur, is updated if needed.

at this point, a context switch is needed. The hardware-dependent function portY IELD WITHIN API()

is called, and the highest priority task in the Ready List is selected to execute. In the next

paragraph we will see how a context switch works in FreeRTOS.

2.4 Context Switch

Context Switch must occur in a transparent way with respect to the tasks involved: in fact a

task does not know when it is going to get suspended or resumed by the system, it might just

continue its execution flow as if no context switch have occurred. The OS is in charge to do

that: when the running task is switched out, the execution context is saved in its stack, ready

to be restored when the task will execute again.

Figure 2.4 shows a representation of a task execution context: the Stack Pointer (SP) regis-

ter points to the running task stack, the Program Counter (PC) register points to the next

instruction in the task’s code, and the CPU registers are used by the task.
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Figure 2.4: Task execution context [from freertos.org]

Figure 2.5: Task stack after saving context [from freertos.org]

portSAV E CONTEXT () is an hardware based function in charge for saving the execution

context: the PC and SP registers, along with the other general purpose registers are pushed on

the task stack. Figure 2.5 shows the task stack after the execution context got saved. A copy

of the Stack Pointer is saved by the kernel: the OS stores the stack pointers of all suspended

tasks in order to retrieve them when tasks are resumed.

A task context is restored by the portRESTORE CONTEXT () function: The kernel retrieves

the task stack pointer that have beeb previously stored, then POP’s the saved execution context

back into the correct processor registers.
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2.5 The Tick System

We saw that when xTaskDelayUntill() function is called, the calling task will specify a time

after which it requires waking. FreeRTOS measures time using a tick count system variable.

The tick interrupt activates an Interrupt Service Routine (ISR) that increments the tick count

with strict temporal accuracy, allowing the real time kernel to measure time to a resolution of

the chosen timer interrupt frequency. Each time the tick count is incremented the OS must

check if it is now time to wake a task. It is possible that a task woken during the tick ISR will

have a priority higher than that of the interrupted task. If this happens, the tick ISR should

return to the newly woken task. A context switch forced by the system in this way is said

preemptive. Below will be descripted the ISR tick function, from the port.c file:

122 void vPortYieldFromTick( void )

123 {

124 portSAVE_CONTEXT();

125

126 if(xTaskIncrementTick() != pdTRUE)

127 {

128 vTaskSwitchContext();

129 }

130

131 portRESTORE_CONTEXT();

132

133 asm volatile ( "ret" );

134 }

the first thing that vPortY ieldFromTick does is saving the execution context with portSAV E CONTEXT ().

then two functions from the hardware independent layer are called:
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- xTaskIncrementTick() increments the tick count variable and check if it is time to wake up

tasks from the blocked state to the ready state: if so, then that tasks are removed from the

BlockedTaskList and are putted in the proper Ready List. The function returns true if same

tasks got awaken, in order to let the IRS to know if a context switch is needed;

-vTaskSwitchContext() sets ∗pxCurrentTCB to the TCB of the highest priority task staying

in Ready List.

-finally portRESTORE CONTEXT () function restores the context from the stack of the task

pointed by ∗pxCurrentTCB.

2.6 Scheduling Example

In this section two scheduling example are shown: the first describes a preemptive context

switch, where the kernel interrupts the execution flow of the running task and assign the CPU

to another task; the second example shows a non-preemptive context switch, where a task calls

xTaskDelayUntill() function and another task in the Ready List is executed. The preemptive

example is shown in Figure ??: When tick=3, tskA is the running task and tskB is waiting to be

awakened; Then, a tick interrupt occurs and vPortY eldFromTick() ISR is called. The inter-

rupt service routine saves the running task context (tskA), and calls thexTaskIncrementTick()

method:

-tickCount variable is incremented (tickCount= 4);

-tskA TCB is removed form xDelayedTaskList;

-tskA GenericListIteam is insered in pxReadyTasksList[2], since tskA priority is 2; because at

least one task has been awakened,vTaskSwitchContext() method is called, so ∗pxCurrentTCB

points to tskA;

portRESTORECONTEXT() restores the context of the task pointed by ∗pxCurrentTCB, so

from now tskA is executing.

For the non-preemptive example let’s consider the Figure ??. At tickCount=26 the situation

is described in Figure ??-a: tskA is running; As shown in Figure ??-b, at tickCount=12 tskA
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Figure 2.6: preemptive context switch - a) )description of the Waiting List and Ready List at
tick=26; b) when tick=27, tskA moves in the Ready List and goes in Running state

Figure 2.7: graphic representation of Ready List and Delayed List

finishes its execution by calling delayTaskUntill() function:

-tskA TCB is removed from xReadyTaskList[1];

-tskA GenericListIteam is set to the next awake time;

-tskA TCB is inserted in xDelayedTaskList;

-portY ELD WITH API() function is called: this method force a context switch, so tskA exe-

cution context is saved (portSAV E CONTEXT ()), vTaskSwitchContext() makes ∗pxCurrentTCB

pointing to the TCB of the highest priority task in Ready List, i.e. IDLE;

then portRESTORE CONTEXT () restores IDLE task context.

[6]



Chapter 3

EDF Scheduler

3.1 Earliest Deadline First Algorithm

The first scheduler we will implement is based on the Earliest Deadline First algorithm (EDF)[3].

EDF adopts a dynamic priority-based preemptive scheduling policy, meaning that the priority

of a task can change during its execution, and the processing of any task is interrupted by a

request for any higher priority task.

The algorithm assigns priorities to tasks in a simple way: the priority of a task is inversely

proportional to its absolute deadline; In other words, the highest priority is the one with the

earliest deadline. In case of two or more tasks with the same absolute deadline, the highest

priority task among them is chosen random.

The algorithm is suited to work in an environment where these assumptions applies[3]:

• (A1) The requests for all tasks for which hard deadlines exist are periodic, with constant

interval between requests.

• (A2) Deadlines consist of run-ability constraints only, i.e. each task must be completed

before the next requests for it occurs.

• (A3) The tasks are independent in that requests for a certain task do not depend on the

initialization or the completion of requests for other tasks.

20
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• (A4) Run-time for each task is constant for that task and does not vary with time.

Run-time refers to the time which is taken by a processor to execute the task without

interruption.

• (A5) Any non-periodic tasks in the system are special; they are initialization or failure-

recovery routines; they displace periodic tasks while they themselves are being run, and

do not themselves have hard, critical deadlines.

Due to these assumption, we can characterize a task using only two parameters: its period

and its run-time. We shall use τ1, τ2, . . . , τm to denote m periodic tasks, with their request

periods being T1, T2, . . . , Tm and their run-times being C1, C2, . . . , Cm, respectively. So, task

τi is released every Ti time units and must be able to consume at most Ci units of CPU time

before reaching its deadline, Ti time units after release (Ci ≤ T i).

The following theorem about the schedulability of a task set with EDF can be proven:

Theorem 3.1 A task set of periodic tasks is schedulable by EDF if and only if:

U =
N∑
i=1

Ci

T i
≤ 1

Let’s consider two tasks, A and B, such described in table 3.1.

U =
2

5
+

2

8
= 0, 65 < 1.

According with theorem 3.1, EDF algorithm can schedule them without missing any deadline.

Diagram in Figure 3.9 shows how A and B are scheduled in a common period. Both tasks

start at t = 0, and task A is scheduled since its next deadline is closer. At time t = 2 task A

completes, so task B executes, and so on. At t = 25 a preemption occurs: task B is executing

at t = 24, when at t = 25 task A starts a new period and requires to be executed. Since task

A new deadline (tA = 30) comes first then task B deadline (tB = 32), Task A becomes the

executing task. At t = 27 task A completes, so task B can execute and finish its remaining
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Figure 3.1: EDF schduling of task A and task B

Figure 3.2: EDF scheduling of task A (T=5, C=3) and task B (T=8, C=3). In this case
U = 3

5
+ 3

8
= 0, 975 < 1, so the tasks are still schedulable

run-time for this period. Figure 3.11 shows how task A and B are scheduled with C = 3 instead

of C = 2.

Table 3.1: Tasks example:
T C

Task A 5 2
Task B 8 2

3.2 Implementation in FreeRTOS

3.2.1 General scheme

As shown previously, FreeRTOS uses a scheduler based on static priority policy. The aim of

this chapter is to describe how to implement an EDF scheduler, using the existing structures

that FreeRTOS offers and creating new ones. The general idea is to create a new Ready List

(Figure 3.3), able to menage a dynamic task priority behaviour: it will contain tasks ordered

by increasing deadline time, where positions in the list represent the tasks priorities, with the
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Figure 3.3: The new Ready List contains tasks ordered by increasing deadline time. The head
of the list contains the task with the closest deadline

head of the list containing the running task. The rest of FreeRTOS architecture and structures,

as the Waiting List and the clock mechanism are maintained with marginal changes.

The example in Figure 3.4 shows how the new Ready List works, and its interaction whit the

Waiting List.

3.2.2 Implementation

This section contains implementation details of the proposed EDF scheduler. Example code

will be shown, and same architectural project choice will be explained. Every time FreeRTOS

code is reported, it refers to 8.2.2 version. According to what said in Cap. 3.1, these assumption

still works:

• Periodic tasks only;

• task deadline equal to task period;



24 Chapter 3. EDF Scheduler

Figure 3.4: a) tskA is the running task, its deadline is at tick = 6; b) tick mechanism wakes
tskZ removing it from Waiting List and adding it to Ready List, in the right position according
to its new deadline: Zdeadline = tick + Zperiod = 9; c) tskA ends its execution and is moved to
the Waiting List. tskB now is on the head of the Ready List.

• only schedulable tasks set;

• independent tasks only (no shared resources and no sync issues).

All changes that will be illustrated refer to tasks.c file, since scheduler structures and meth-

ods are contained there. According with the FreeRTOS style guideline, a configuration vari-

able, configUSE EDF SCHEDULER, is added to the FreeRTOS.h config file. When

configUSE EDF SCHEDULER is set to 1, EDF scheduler is used, elsewhere the OS uses

the original scheduler.

First of all, the new Ready List is declared: xReadyTasksListEDF is a simple list structure.

201 /* E.C. : the new RedyList */

202 #if ( configUSE_EDF_SCHEDULER == 1 )

203 PRIVILEGED_DATA static List_t xReadyTasksListEDF; /*< Ready tasks ordered

by their deadline. */

204 #endif

Then, the prvInitialiseTaskLists() method, that initialize all the task lists at the creation of

the first task, is modified adding the initialization of xReadyTasksListEDF :
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3034 static void prvInitialiseTaskLists( void )

3035 {

3036 ...

3037

3038 /* E.C. */

3039 #if ( configUSE_EDF_SCHEDULER == 1 )

3040 {

3041 vListInitialise( &xReadyTasksListEDF );

3042 }

3043 #endif

3044

3045 ...

3046

3047 }

prvAddTaskToReadyList() method that adds a task to the Ready List is then modified as

follows:

371 /*

372 * Place the task represented by pxTCB into the appropriate ready list for

373 * the task. It is inserted at the end of the list.

374 */

375 #if configUSE_EDF_SCHEDULER == 0 /* E.C. : */

376 #define prvAddTaskToReadyList( pxTCB ) \

\

377 vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB

)->xGenericListItem ) )

378 #else

379 #define prvAddTaskToReadyList( pxTCB ) /*xGenericListIteam must contain the

deadline value */ \

380 vListInsert( &(xReadyTasksListEDF), &( ( pxTCB )->xGenericListItem ) )
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381 #endif

vListInsert() method is called to insert in xReadyTasksListEDF the task TCB pointer. The

item will be inserted into the list in a position determined by its item value xGenericListItem

(descending item value order). So it is assumed that xGenericListItem contains the next task

deadline.

The second change introduced refers to the task structure. As shown in the example of Figure

3.4, when a task moves to the Ready List, the knowledge of its next deadline is needed in

order to insert it in the correct position. The deadline is calculated as: TASKdeadline =

tickcur + TASKperiod, so every task needs to store its period value. A new variable is added in

the tskTaskControlBlock structure (TCB):

134 /* E.C. : the period of a task */

135 #if ( configUSE_EDF_SCHEDULER == 1 )

136 TickType_t xTaskPeriod; /*< Stores the period in tick of the task. > */

137 #endif

Accordingly, a new initialization task method is created. xTaskPeriodicCreate() is a modified

version of the standard method xTaskGenericCreate() shown in Cap.2, that receives the task

period as additional input parameter and set the xTaskPeriod variable in the task TCB struc-

ture. Before adding the new task to the Ready List by calling prvAddTaskToReadyList(), the

task’s xGenericListItem is initialized to the value of the next task deadline.

709 /*E.C. : */

710 BaseType_t xTaskPeriodicCreate( < param > , TickType_t period )

711 {

712 ...

713

714 /*E.C. : initialize the period */

715 pxNewTCB->xTaskPeriod = period;

716
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717 ...

718

719 /*E.C. : insert the period value in the generic list iteam before to add the

task in RL: */

720 listSET_LIST_ITEM_VALUE( &( ( pxNewTCB )->xGenericListItem ), ( pxNewTCB

)->xTaskPeriod + currentTick);

721

722 prvAddTaskToReadyList( pxNewTCB );

723

724 ...

725

726 }

The IDLE task management is modified as well. The initialization of the IDLE task happens

in the vTaskStartScheduler() method, that starts the real time kernel tick processing and

initialize all the scheduler structures. Since FreeRTOS specifications want a task in execution

at every instant, a correct management of the IDLE task is fundamental. With the standard

FreeRTOS scheduler, the IDLE task is a simple task initialized at the lowest priority. In this

way it would be scheduled only when no other tasks are in the ready state. With the EDF

scheduler, the lowest priority behaviour can be simulated by a task having the farest deadline.

vTaskStartScheduler() method initializes the IDLE task and inserts it into the Ready List.

The method is modified as follow:

1667 /*E.C. : */

1668 #if (configUSE_EDF_SCHEDULER == 1)

1669 {

1670 tickType initIDLEPeriod = 100;

1671 xReturn = xTaskCreatePeriodic( prvIdleTask, "IDLE", tskIDLE_STACK_SIZE, (

void * ) NULL, ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), NULL,

initIDLEPeriod );

1672 }
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Figure 3.5: a) tskA, tskB and tskC are created before the sceduler is started; b)
vTaskStartScheduler() method is called, the real time kernel tick processing starts and the
IDLE task is added at the last position of the Rady List. It will execute only when no other
tasks are in ready state.

1673 #else

1674 /* Create the idle task without storing its handle. */

1675 xReturn = xTaskCreate( prvIdleTask, "IDLE", tskIDLE_STACK_SIZE, ( void * )

NULL, ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), NULL );

1676 // #endif

The IDLE task is initialized with a period of initIDLEPeriod = 100. We assume that no

task can have a period greater than initIDLEPeriod: in this way, when the IDLE task is

added to the Ready List, it will be at the last position of the list, since its deadline will be

greater than any other task ( TASKdeadline = tickcur + TASKperiod, with tickcur = 0 and

IDLEperiod = initIDLEPeriod greater than any other task period). Every time IDLE task

executes (i.e. no other tasks are in the Ready List), it calls a method that increments its

deadline in order to guarantee that IDLE task will remain in the last position of the Ready

List.

Last change needed involves the switch context mechanism. Every time the running task is

suspended, or a suspended task with an higher priority than the running task awakes, a switch

context occurs. vTaskSwitchContext() method is in charge to update the ∗pxCurrentTCB
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pointer to the new running task:

2330 void vTaskSwitchContext( void ){

2331 ...

2332

2333 /* E.C. : */

2334 #if (configUSE_EDF_SCHEDULER == 0)

2335 {

2336 taskSELECT_HIGHEST_PRIORITY_TASK();

2337 }

2338 #else

2339 {

2340 pxCurrentTCB = (TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( &(

xReadyTasksListEDF ) );

2341 }

2342 #endif

2343 ...

2344 }

taskSELECT HIGHEST PRIORITY TASK() method is replaced in order to assign to

pxCurrentTCB the task at the first place of the new Ready List.

Now we have all the pieces to get the new EDF scheduler work. In the next section will be

analyzed a scheduling example in order to show how these changes work all together.

3.2.3 Scheduling Example

Two scheduling example are shown: the first refers to a preemptive behaviour where the OS

interrupts the execution flow of the running task and assign the CPU to another task; the second

example instead shows a cooperative situation where the running task finishes its execution and

leaves the running state.
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Figure 3.6: a) tskA will be awaken at the next tick. tskB has the nearest deadline among the
tasks in ReadyList, so it’s in the head position. IDLE is the task with the farest deadline. b)
After the tick interrupt happened, tskA moves to the Ready List: tskAdeadline = currentT ick+
tskAperiod = 25 + 5 = 30

For the preemptive example, let tskA and tskB be tasks of capacity 2 and period 5 and 8

respectively. Let’s consider the situation described in Figure 3.6-a: tickCount = 24, tskB

is executing and tskA is waiting tick 25 to wake up. When the tick interrupt occurs, the

ISR vPortY eldFromTick() is called. As shown in Cap.1, this interrupt service routine saves

the running task context, calls the xTaskIncrementT ick() method, and if same tasks are

wake up from the Waiting List, performs a context switch and restores the context of the

new running task. In Figure 3.7-b the tick interrupt has occurred. tskB context is saved

(portSAV E CONTEXT ()), then XTaskIncrementT ick() method is called:

-tickCount variable is incremented (tickCount = 25);

-tskA TCB is removed form xDelayedTaskList;

-tskA’s GenericListIteam is set to tskA’s new deadline (currentTick + tskA period);

-tskA is insered in xReadyTasksListEDF by callyng the addTaskToReadyList() method

(since tskA sdeadline is closer than tskB deadline, tskA is added at the head of the Ready

List);

because at least one task has been awakened, vTaskSwitchContext() method is called, so the

∗pxCurrentTCB pointer points to tskA; portRESTORE CONTEXT () restores the context
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Figure 3.7: Collaborative example- a)description of the Waiting List and Ready List at tick=26
b) when tick=27, tskA moves in the Waiting List and tskB became the executing task

of the task pointed by ∗pxCurrentTCB, so from now tskA is executing.

For the collaborative example let’s consider the same tasks upon. At tickCount = 26 the

situation is as described in Figure 3.7-a: tskA is running and tskB is in ready state. As shown

in Figure 3.7-b, at tickCount = 27 tskA finishes its execution and goes in waiting state till its

next periodic awakening by calling delayTaskUntill() method, as shown in Cap.2:

-tskA TCB is removed from xReadyTaskListEDF ;

-tskA GenericListIteam is set to the next awake time;

-tskA TCB is inserted in xDelayedTaskList;

-portY ELD WITH API() method is called: this method force a context switch, so tskA

context is saved (portSAV E CONTEXT ()), vTaskSwitchContext() makes ∗pxCurrentTCB

pointing the task TCB on the head of xReadyTaskListEDF , i.e. tskB, then portRESTORE CONTEXT ()

restore tskB context.

Figure 3.6 and Figure 3.7
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3.3 Demo application description

In this section we will describe the demo application used to test the EDF scheduler. The

application creates two tasks, task A (Aperiod, Acapacity), and task B (Bperiod, Bcapacity). The job

of the two tasks is to keep the CPU utilization for Acapacity and Bcapacity system tick every A

and B period respectively.

15

16 /* Standard includes. */

17 #include "stdio.h"

18 #include "main.h"

19

20 //-------------------------------------------------

21 // Tasks Protopies

22 //-------------------------------------------------

23

24 void TSK_A (void *pvParameters);

25 void TSK_B (void *pvParameters);

26

27 //-------------------------------------------------

28 // Global Variables

29 //-------------------------------------------------

30

31 #define CAPACITY 3 //cpu time in tick

32 #define A_PERIOD 5 //task A period

33 #define B_PERIOD 8 //task B period

First, task prototypes are declared, and CAPACITY, A PERIOD, and B PERIOD variables

are defined.

34

35 //---------------------------------------------
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36 // Start point

37 //-------------------------------------------------

38

39 int main(void)

40 {

41

42 SystemInit();

43

44 xTaskPeriodicCreate( TSK_A, ( const char * ) "A",

45 configMINIMAL_STACK_SIZE, NULL,

46 1, NULL, A_PERIOD );

47 xTaskPeriodicCreate( TSK_B, ( const char * ) "B",

48 configMINIMAL_STACK_SIZE, NULL,

49 1, NULL, B_PERIOD );

50

51 // FreeRTOS Scheduler starten

52 vTaskStartScheduler();

53

54 // wird nie erreicht!!

55 while(1)

56 {

57

58 }

59 }

SystemInit() is a method from the native layer of FreeRTOS, and is needed to initialize the

board. Then, task A and B are created calling xTaskPeriodicCreate(), and A PERIOD and

B PERIOD are set as task A and B periods. vTaskStartScheduler() activates the EDF sched-

uler: from now the Ready List contains three tasks ready to be skeduled: A, B and IDLE.

60
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61 //--------------------------------------------------------------

62 // Task A:

63 //--------------------------------------------------------------

64

65 void TSK_A (void *pvParameters)

66 {

67 TickType_t xLastWakeTimeA;

68 const TickType_t xFrequency = A_PERIOD; //tsk A frequency

69 volatile int count = CAPACITY; //tsk A capacity

70

71 // Initialise the xLastWakeTime variable with the current time.

72 xLastWakeTimeA = 0;

73

74 while(1)

75 {

76 TickType_t xTime = xTaskGetTickCount ();

77

78 TickType_t x;

79 while(count != 0)

80 {

81 if(( x = xTaskGetTickCount () ) > xTime)

82 {

83 xTime = x;

84 }

85 }

86

87 count = CAPACITY;

88

89

90 // Wait for the next cycle.

91 vTaskDelayUntil( &xLastWakeTimeA, xFrequency );
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92

93

94 }

95

96 }

Task A code is shown upon: it simulates the utilization of the CPU for t=CAPACITY system

ticks (it enters in a while loop until count variable, initialized at CAPACITY value, reaches

zero) then calls the vTaskDelayUntil() method and goes in xDelayedTaskList, where waits

A PERIOD system ticks before be awakened. Task B works in the same way.

In the next section the test method will be described.

3.4 Tests and Results

3.4.1 Trace macros

To test the correctness of the implemented EDF scheduler, we execute two tasks whose EDF

scheduling sequence is known, and match the run-time scheduling sequence with the expected

one. To obtain correct EDF scheduling sequences to match, we used Cheddar[7]: it is a free

real-time scheduling tool developed by University of Brest that performs scheduler simulation.

To monitor the run-time scheduling sequence, FreeRTOS offers special trace functions. As

reported in the official guide:

”Trace macros are a very powerful feature that permit you to collect data on how your embedded

application is behaving. Key points of interest within the FreeRTOS source code contain empty

macros that an application can re-define for the purpose of providing application specific trace

facilities. The application need only implement those macros of particular interest - with unused

macros remaining empty and therefore not impacting the application timing.”

We implemented three trace macros:
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-traceTASK SWITCHED OUT () is called every time a task switch out;

-in the same way, traceTASK SWITCHED IN() is called every time a task switches in;

-traceTASK DELAY UNTIL() is called when the running task suspends itself by calling

delayTaskUntill();

monitoring context switch events, we know which task is running at every time, and we see if a

context switch occurred because a task suspended itself or because the system suspended it in

a preemptive way. Below the implementation of these trace macros is shown (they are defined

in the FreeRTOSConfig.h file):

174

175 //E.C. : MACROS

176 #define traceTASK_SWITCHED_OUT() { char name[20];

177 getTaskName(name);

178 printf("Task Out: %s\n", name );

179 }

180 #define traceTASK_SWITCHED_IN() { char name[20];

181 getTaskName(name);

182 printf("Task IN: %s\n", name );

183 }

184 #define traceTASK_DELAY_UNTIL() { char name[20]; getTaskName(name);

185 printf("Task Delay: %s, ", name );

186 }

The implemented trace methods print a string containing the event occurred in the output

buffer (we will see how configure it in the ext section).

Another information we need is the tick time at witch these events occur. like trace macros,

FreeRTOS makes available a callback function called every time the tick interrupt executes.

vApplicationT ickHook() function is defined in the Defaults IDLE.c file:

41

42 //--------------------------------------------------------------
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43 // TICK

44 //--------------------------------------------------------------

45 void vApplicationTickHook( void )

46 {

47 /* vApplicationTickHook() will only be called if configUSE_TICK_HOOK is set

48 to 1 in FreeRTOSConfig.h. It is a hook function that will get called during

49 each FreeRTOS tick interrupt. Note that vApplicationTickHook() is called

50 from an interrupt context. */

51 printf("TICK : %d\n",(int)xTaskGetTickCount());

52 }

It prints the tick number just occurred to the output buffer.

3.4.2 Semiosting

In order to let the board print debug messages to the IDE console we use Semihost technique.

As described in the ARM Software Development Tools Guide[8]:

”Semihosting is a mechanism for ARM targets to communicate input/output requests from

application code to a host computer running a debugger. This mechanism could be used, for

example, to enable functions in the C library, such as printf() and scanf(), to use the screen and

keyboard of the host rather than having a screen and keyboard on the target system. This is

useful because development hardware often does not have all the input and output facilities of

the final system. Semihosting enables the host computer to provide these facilities. Semihosting

is implemented by a set of defined software instructions (SVCs) that generate exceptions from

program control. The application invokes the appropriate semihosting call and the debug agent

then handles the exception. The debug agent provides the required communication with the

host.” (Figure 3.8)

CooCox IDE implements Semiosting[9]: the main project folder contains two sub-folders,

semihosting and stdio that contains all files needed. file printf.c contained in stdio folder
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Figure 3.8: Semihosting structure

gives a custom implementation of printf() method that reduces the memory footprint of the

binary, compared to the libc implementation. semihosting.h file contained in semihost folder

must be included in the FreeRTOS.h configuration file.

Now we are ready to start the test: the test application executes a couple of tasks, and the

IDE console shows the run-time Log information we set.

3.4.3 Test and Results

In the first test we consider task A and task B reported in the next table:

T C

Task A 5 2

Task B 8 2

U = 2
5

+ 2
8

= 0, 65 < 1. According with theorem 3.1, EDF algorithm can schedule them

without missing any deadline. both tasks starts from tick=0. Figure 3.9 is obtained with

Cheddar software and describes the correct EDF schedule of task A and B for a single processor

preemptive system.
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Figure 3.9: EDF schduling of task A and task B

Figure 3.10: EDF Log of task A and task B

Figure 3.10 shows the Log file obtained by the execution of the demo application, where

A PERIOD = 5, B PERIOD = 8, and CAPACITY = 2; The schedule sequence of task

A, task B and IDLE reflects correctly the EDF schedule sequence of Figure 3.9. Only one

preemptive context switch occurs (tick=25), and the algorithm is able to handle it properly.
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In the second test we consider task A and B described in the table:

T C

Task A 5 3

Task B 8 3

U = 3
5

+ 3
8

= 0, 975 < 1, the CPU load is higher than first example, but still under the

schedulable limit, so no deadline should be missed. Both tasks starts from tick = 0. As the first

example, Figure 3.11 is obtained with Cheddar software and describes the correct EDF schedule

for task A and B. The demo application is set whith the followinf params: A PERIOD = 5,

B PERIOD = 8, and CAPACITY = 3; Respect to the previous example test, the new task

configuration needs more preemptive context switch, but the scheduler works as expected.
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Figure 3.11: EDF scheduling of task A (T=5, C=3) and task B (T=8, C=3).

Figure 3.12: EDF Log of task A and task B



Chapter 4

LLREF Scheduler

4.1 LLREF Algorithm

LLREF (Largest Local Remaining Execution First)[4] is an algorithm which is used to schedule

periodic task sets in multiprocessor preemptive systems. Full migration across processors is

required: jobs are allowed to arbitrarily migrate across processors during their execution, as

long as the same task is not executed parallelly on more than one processor[10].

We consider a set of periodic tasks, denoted τ = (T1, T2, ..., TN), and a set of m symmetric

processors available in the system. Tasks are assumed to arrive periodically at their release

times ri. Each task Ti has an execution time ci, and a deadline di which is the same as its

period pi. The utilization ui of a task Ti is dened as ci/di and is assumed to be less than 1.

We assume that tasks may be preempted at any time, and are independent, i.e., they do not

share resources or have any precedences. We consider a non-work conserving scheduling policy:

thus processors may be idle even when tasks are present in the ready queue.

LLREF can be prooven to be an optimal schedule algorithm. All tasks meet their deadlines

when the total utilization demand is smaller or equal with the utilization capacity of the

platform:

U =
N∑
i=1

ui ≤ m.

42
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Figure 4.1: Task fluid diagram

LLREF algorithm is based on an abstraction which is known as Time and Local Plane (T-

L Plane). This abstraction determines when a task must be scheduled in order to meet its

deadline.

4.1.1 T-L Plane

Figure 4.1 illustrates the fundamental idea behind the T-L plane. For a task Ti the figure shows

a plane: the x-axis represents the time, and the y-axis represents the tasks remaining execution

time. When Ti runs like in Figure 4.1, for example, its execution can be represented as a broken

line between (0,ci) and (di,0). In the plane, task execution is represented as a line whose slope

is -1, since x and y axes are in the same scale, while the non-execution is represented as a zero

slope line.

Figure 4.2 shows how to construct fluid schedules for N tasks. For each task let’s consider the

right isosceles triangle found between every two scheduling events; then, let’s overlap the N

triangles between every two consecutive scheduling events (one for each task). We call this as

the T-L Plane TLk, where k is simply increasing over time. Figure 4.3 analyzes in detail the

generic TLk plane. The bottom side of the triangle represents time. The vertical side represents
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Figure 4.2: T-L plane

the axis of the tasks remaining execution time, which is called local remaining execution time

li, which is supposed to be consumed before each TLk plane ends. The status of each task is

represented as a token in the TL plane. the x coordinate of the token describes the current

time, while the y coordinate describes the tasks local remaining execution time li (it is the

execution time the task must consume until the time tk
f , and not the tasks deadline).

Each tasks token moves in the T-L plane. Tokens are only allowed to move in two directions:

when the task is executing, the respective token moves diagonally down, as TN moves in Figure

4.3; otherwise, it moves horizontally, as T1 moves. In a m processors system, no more than m

tokens can move diagonally down together. The scheduling objective in the kth T-L plane is

to make all tokens arrive at the rightmost vertex of the T-L plane, with all tasks having li = 0

before tk
f . If all tokens are made locally feasible at each T-L plane, they are possible to be

scheduled throughout every consecutive T-L planes over time. An important parameter for the

tasks in the T-L plane is their local laxity, defined for the generic task Ti as: tf
k − tcurr − li.

The oblique syde of the T-L plane has an important meaning: when a token hits that side, it
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Figure 4.3: Multiple T-L plane

implies that the task does not have any local laxity: thus, if it is not executed immediately, it

will not be able to satisfy the scheduling objective of local feasibility.

4.1.2 Scheduling in T-L planes

LLREF is based on two types of scheduling events:

-bottom-hitting event B - if a token hits the horizontal line, it means that the task is already

executed as long as necessary for this T-L plane, so it is turn of another task to select instead;

-celling hitting event C - when a task has zero remaining local laxity, the token hits the

diagonal line which means that the task needs to be selected immediately to meet the local

deadline.

LLREF pseudo-code function algorithm is shown in Figure 4.4, and it is called every time a

schedule event occurs (B, C events and when a task is added to the Ready list).li of each task is

assumed to be updated before the algorithm starts. When it is invoked, sortByLLREF sorts

tokens in the order of largest local remaining execution time and selects m tasks to dispatch to

processors.
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Figure 4.4: LLREF pseudo-code algorithm

4.2 Implementation in FreeRTOS

4.2.1 General Idea

As for the EDF algorithm, our LLREF implementation in FreeRTOS uses the existing structures

that the OS already offers and brand new structures specially created. In this section we

describe the algorithm implementation, from the design till the code.

Since we work on a single processor CPU, our LLREF implementation concerns the special

case where m = 1.

The general idea is to implement a new Ready List, where tasks are ordered by their local

remaining execution time li = ui ∗ ∆k. The task in the head of the list is the running task.

When a task finishes its execution, moves to the Waiting List where remain until its next awake

time.

Two new functions control the T-L planes management:

• funcNewTLPlane() - every time a task moves to Ready List, a new T-L plane starts:

for ach ready task the local remain execution time is updated, and the Ready List is

sorted;

funcNewTLPlane(){

-calc next time arrival;

-initialize tasks local remain execution time;

-Ready List sorting;



4.2. Implementation in FreeRTOS 47

Figure 4.5: T-L plane: m = 1

-calc next B/C event time;

-context switch;

}

• funcEventHandle() - every time a schedule B or C event occurs, li is updated and the

Ready List sorted;

funcEventHandle(){

-update tasks local remain execution time;

-Ready List sorting;

-calc next B/C event time;

-context switch;

}

Since m = 1, in the T-L plane only one token per time will move diagonally down. All the

other token will move horizontally. Let’s consider the situation in Figure 4.5:
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at the beginning of the T-L plane X is the token with the highest local remaining execution

time, and Y is the token having the second highest one; B events can only be generated by the

running task (X in the example) hitting the bottom line, otherwise C events can only occurs

because of the second highest local remaining execution token (Y in the example) hitting the

diagonal line. But for m = 1 happens as stated in the theorem below:

Theorem 4.1 If m = 1, C events can not occur in a feasible task set.

Indeed, when a C event occurs, the task executing get suspended, and the task whose token

hit the diagonal line obtains the CPU usage till the T-L plane end- that is, the suspended task

will never be able to finish its local execution in the T-L plane.

So, every time a new T-L plane starts, the Ready List is sorted and the task in the head of the

list is executed, and the next B event time tB is calculated: the running task will execute until

tB, then, a context switch will occur. But how to calculate tB?

tB = li = µX ∗ ∆K ,

with X being the running task and ∆K = ki+1 − ki; it means that when a T-L plane starts at

time ki, we have already to know the time the next T-L plane will start- that is- we have to

know the next time a task will be inserted to the Ready List from the Waiting List. The awake

time of the task in the head of the Waiting List is not sufficient, as the example in Figure 4.6

shows: task B period is two times task A period, so when B is inserted in the Ready List, the

next insertion in the Ready List will be still a task B insertion; so, we have to consider both

the next wake time wtime from the Waiting list and the running task A next release time:

ki+1 = minwtime, ki +Xperiod.

Now we have all the information initialize a T-L plane. The funcEventHandle() function is

in charge to update tasks local remain execution time. How to do that? First, we observe that
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Figure 4.6: Task A period is two times task B period.

only the running task will decrease its local remain execution time. So, it suffices to update

only the local remain execution time of the running task A. How to do that?

lA = lA − ∆,

where ∆ is the time spent since the previous event time tpreviousEvent: ∆ = currentT ime −

tpreviousEvent.

So, we have to calculate the time the next event will occur, and we have to memorize the time

the last event occurred.

4.2.2 IDLE Task management

4.3 Code implementation

This section contains implementation details of the proposed EDF scheduler. Example code

will be shown, and same architectural project choice will be explained. Every time FreeRTOS

code is reported, it refers to 8.2.2 version.

All changes that will be illustrated refer to tasks.c file, since scheduler structures and meth-

ods are contained there. According with the FreeRTOS style guideline, a configuration vari-
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able, configUSE LLREF SCHEDULER, is added to the FreeRTOS.h config file. When

configUSE LLREF SCHEDULER is set to 1, EDF scheduler is used, elsewhere the OS uses

the original scheduler.

First, a new set of system variables are introduced:

226 /* Other file private variables. --------------------------------*/

227 PRIVILEGED_DATA static volatile TickType_t xTLPlaneStart = ( TickType_t ) 0U;

228 PRIVILEGED_DATA static volatile TickType_t xTLPlaneEnd = ( TickType_t ) 0U;

229 PRIVILEGED_DATA static volatile TickType_t nextEvetnTick = ( TickType_t ) 0U;

230 PRIVILEGED_DATA static volatile TickType_t lastEvetnTick = ( TickType_t ) 0U;

-xTLPlaneStart saves the tick time at which a new T-L plane starts;

-xTLPlaneEnd saves the tick time at which a T-L plane ends;

-nextEventTick stores the tick time at which the next B event will occurs; -lastEventTick

stores the tick time at which the last schedule event occurred;

As we described in the previous section, in the Ready List tasks are sorted by their local

remaining execution time li; at the beginning of the generic K h T-L plane, it is initialized as:

li = µi ∗ ∆k for all the ready tasks. So, each task must memorize its period p and its capacity

c, so c/p = µ can be calculated. xTaskPeriod and xTaskCapacity variables are added to the

Task Control Block structure:

134 /* E.C. : the period of a task */

135 #if ( configUSE_LLREF_SCHEDULER == 1 )

136 TickType_t xTaskPeriod; /*< Stores the period in tick of the task. > */

137 TickType_t xTaskCapacity; /*< Stores the capacity in tick of the task. > */

138 #endif

In order to initialize xTaskPeriod and xTaskCapacity, a new task initialization function is

created as well:

709 /*E.C. : */



4.3. Code implementation 51

Figure 4.7: The new Ready List implementation.

710 BaseType_t xTaskLLREFCreate( < param > ,TickType_t period, TickType_t capacity )

711 { ...

712 /*E.C. : initialize the period */

713 pxNewTCB->xTaskPeriod = period;

714 /*E.C. : initialize the capacity */

715 pxNewTCB->xTascCapacity = capacity;

716 ...

717 /*E.C. : generic list iteam is initializated as 0: */

718 listSET_LIST_ITEM_VALUE( &( ( pxNewTCB )->xGenericListItem ), ( pxNewTCB )->0);

719 prvAddTaskToReadyList( pxNewTCB );

720 ...

721 }

The new Ready List is implemented as a simple list ordered by tasks local remain execution

time.Figure 4.7 shows the new Ready List implementation. For implementation reasons, as we

will see, two lists are used: when a new T-L plane starts, the tasks inserted in the Ready List in

use are removed from it, their local remain execution time is initialized and then are added to

the second Ready List, sorted by their local remain execution time. ∗pxReadyTaskListLLREF

pointer refers o the Ready list in use, ∗pxReadyTaskListLLREF2 refers to the Ready List
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that will be used in the next T-L plane:

201 /* E.C. : the new RedyList */

202 #if ( configUSE_LLREF_SCHEDULER == 1 )

203 PRIVILEGED_DATA static List_t xReadyTasksListLLREF1;

204 PRIVILEGED_DATA static List_t xReadyTasksListLLREF2;

205 PRIVILEGED_DATA static List_t * volatile pxReadyTaskListLLREF;

206 PRIVILEGED_DATA static List_t * volatile pxReadyTaskListLLREF2;

207 #endif

Then, the prvInitialiseTaskLists() function, that initialize all task lists at the creation of the

first task, is modified adding the initialization of xReadyTasksListLLREF :

3034 static void prvInitialiseTaskLists( void )

3035 { ...

3036 /* E.C. */

3037 #if ( configUSE_LLREF_SCHEDULER == 1 )

3038 {

3039 vListInitialise( &xReadyTasksListLLREF1 );

3040 vListInitialise( &xReadyTasksListLLREF2 );

3041

3042 /* Start with pxReadyTaskListLLREF using list1 and the pxReadyTaskList2 using

list2. */

3043 pxReadyTaskListLLREF = &xReadyTasksListLLREF1;

3044 pxReadyTaskListLLREF2 = &xReadyTasksListLLREF2;

3045 }

3046 #endif

3047 ...

3048 }

prvAddTaskToReadyList() method that adds a task to the Ready List is then modified as

follows (it is assumed that xGenericListItem contains the local remain execution time):
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371 /*

372 * Place the task represented by pxTCB into the appropriate ready list for

373 * the task. It is inserted at the end of the list.

374 */

375 #if configUSE_EDF_SCHEDULER == 0 /* E.C. : */

376 #define prvAddTaskToReadyList( pxTCB ) \

\

377 vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB

)->xGenericListItem ) )

378 #else

379 #define prvAddTaskToReadyList( pxTCB ) /*xGenericListIteam must contain the

local remain execution time */ \

380 vListInsert( &(pxReadyTaskListLLREF), &( ( pxTCB )->xGenericListItem ) )

381 #endif

two new function are created: functNewTLPlane() and funcEventHandle(), as described in

the previus section; functNewTLPlane() implementation is here described:

2341 /*

2342 * Called at every xTLPlaneStart tick

2343 */

2344 void functNewTLPlane()

2345 {

2346 /*calc the T-L plane end:*/

2347 xTLPlaneEnd = min( xTLPlaneStart + ( pxCurrentTCB )->xTaskPeriod, /*the next

arrival time of the running task*/

2348 xNextTaskUnblockTime );

2349

2350 /*initialize local execution time left for the tasks in Ready List and sort

it:*/

2351 initializeAndSortLLREF();
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2352

2353 /*update last event time:*/

2354 lastEventTick = nextEventTime;

2355

2356 /*calc next event B time:*/

2357 TCB_t pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( xReadyTasksListLLREF );

2358 TickType_t u = (TickType_t )listGET_LIST_ITEM_VALUE( &( pxTCB->xGenericListItem

) );

2359 nextEvetnTick = xTLPlaneStart + ( u * (xTLPlaneEnd-xTLPlaneStart) );

2360

2361 /*force context switch:*/

2362 portYELD_WITH_CONTEXT();

2363 }

initializeAndSortLLREF () function used above initializes local remaining execution time for

the tasks in the actual Ready list, and remove the from it and then add them in the other

Ready List: insertTasktoReadyList() function preserves the sorted order of the list in which

task are inserted:

3162 void initializeAndSortLLREF()

3163 {

3164 List_t *pxTemp;

3165

3166 /* The delayed tasks list should be empty when the lists are switched. */

3167 configASSERT( ( listLIST_IS_EMPTY( pxReadyTaskListLLREF2 ) ) );

3168 while( listLIST_IS_EMPTY( pxReadyTaskListLLREF )

3169 {

3170 TCB_t *pxTCB;

3171 uxListRemove( &( pxTCB->xGenericListItem );

3172

3173 /*update the task local remaining execution time:*/
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3174 int tmp = ( ( pxtTCB )->xTaskPeriod / ( pxtTCB )->xTaskCapacity ) * (

lastEventTick - getCurrTick() );

3175 listSET_LIST_ITEM_VALUE( &( ( pxCurrentTCB )->xGenericListItem ), tmp);

3176

3177 /*add task to the other ready list (sort order):*/

3178 vListInsert( &pxReadyTaskListLLREF2, &( pxTCB->xGenericListItem ) );

3179

3180 }

3181

3182 /*invert the pointers to the two ready lists:*/

3183 pxTemp = pxReadyTaskListLLREF;

3184 pxReadyTaskListLLREF = pxReadyTaskListLLREF2;

3185 pxReadyTaskListLLREF = pxTemp;

3186

3187 }

and here is funcEventHandle() function implementation:

2376 /*

2377 * Called at every nextEventTick tick

2378 *

2379 void funcEventHandle()

2380 {

2381 /*update the running task local remaining execution time:*/

2382 int tmp = ( pxCurrentTCB )->xGenericListItem - ( lastEventTick - getCurrTick()

);

2383 listSET_LIST_ITEM_VALUE( &( ( pxCurrentTCB )->xGenericListItem ), tmp);

2384

2385 /*sort Ready list bu POP and PUSH the running task: */

2386 uxListRemove( &( pxCurrentTCB->xGenericListItem );

2387 prvAddTaskToReadyList( pxCurrentTCB );

2388
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2389 /*update last event time:*/

2390 lastEventTick = nextEventTime;

2391

2392 /*calc next event B time:*/

2393 TCB_t pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( xReadyTasksListLLREF );

2394 TickType_t u = (TickType_t )listGET_LIST_ITEM_VALUE( &( pxTCB->xGenericListItem

) );

2395 nextEventTick = xTLPlaneStart + ( u * (xTLPlaneEnd-xTLPlaneStart) );

2396

2397 /*force context switch:*/

2398 portYELD_WITH_CONTEXT();

2399 }

xTaskIncrementT ick() function is modified as well, in order to execute funcEventHandle()

and functNewTLPlane() functions at hte right time, at each xTLPlaneStart and nextEventT ick

tick respectively:

2056 BaseType_t xTaskIncrementTick( void )

2057 {

2058 ...

2059 if( currentTick == xTLPlaneStart )

2060 {

2061 functNewTLPlane();

2062 }

2063 ...

2064 if( currentTick == xTLPlaneStart )

2065 {

2066 funcEventHandle();

2067 }

2068 ...

2069 }
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4.3.1 IDLE task management

The IDLE task management is also modified. As we saw for the EDF algorithm,

vTaskStartScheduler() function initializes the IDLE task. The IDLE task management is

foundamental, since FreeRTOS requires one task in running state at each rime, and IDLE task

should run only when no other tasks are in Ready List. In the LLREF scheduler, this IDLE

behaviour can be performed by a task that occupy the last position in the Ready List every

time. This behaviour can be implemented as a task which local remain execution time is always

zero: lIDLE = µIDLE ∗ ∆ - that is, µIDLE = c/p = 0; so, if we set IDLE task period to zero,

IDLE task will occupy the last position of Ready List and will be scheduled only if no other

tasks are ready.

When a B event occurs, the running task finishes its local remain execution time goes to zero.

Then the funcEventHandle() function is called and the running task local remain execution

time is updated to zero, and the task is putted at the bottom of the Ready List, behind the

IDLE task. If no other tasks are in the Ready List, then IDLE task will be executed till the

end of the current T-L plane. vTaskStartScheduler() is modified as follow:

1667 /*E.C. : */

1668 #if (configUSE_LLREF_SCHEDULER == 1)

1669 {

1670 tickType initIDLEPeriod = 0;

1671 tickType initIDLECapacity = 1;

1672 xReturn = xTaskLLREFCreate( prvIdleTask, "IDLE", tskIDLE_STACK_SIZE, ( void

* ) NULL, ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), NULL,

initIDLEPeriod, initIDLECapacity );

1673 }

1674 #else

1675 /* Create the idle task without storing its handle. */

1676 xReturn = xTaskCreate( prvIdleTask, "IDLE", tskIDLE_STACK_SIZE, ( void * )

NULL, ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), NULL );

1677 // #endif
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Figure 4.8: Ready List management during a B event

4.3.2 Scheduling example

4.7

Two scheduling example are illustrated: the first shows what happens to the Ready list when a

new T-L plane starts and funcNewTLPlane() function is called; the second example shows the

Ready List behaviour after the execution of funcEventHandle(), following a B event execution.

The first example is shown in Figure 4.8. When tick count is 5, the Ready List situation is

illustrated in Figure 4.8-a: the current T-L plane will finish at tick=6 when tskZ will awaken,

and IDLE task is running since all tasks have already finished their local remaining execution

time. In Figure 4.8-b the tick interrupt occurred and the ISR vPortY eldFromTick() is called:

-running task context is saved (portSave CONTEXT ());

-xTAskIncrementT ick() function is called, so tick is incremented to 6, and tskZ is removed

from the Waiting List, its genericListIteam is set to zero, and is added to the list pointed by
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∗pxReadyTaskListLLREF (tskZ is added at the last position of the list since all the other

ready tasks have their local remaining execution time equal to zero);

-since xTLPlaneStart = 6, funcNewTLPlane() is called: local remaining execution time is

initialized for all the task in Ready List, then one by one are removed from the Ready List

and added to the List pointed by ∗pxReadyTaskListLLREF2, where now are sorted; then

∗pxReadyTaskListLLREF2 and ∗pxReadyTaskListLLREF are switched;

-tskZ is now on the top of the Ready List and is pointed by ∗pxCurrentTCB:

portRESTORE CONTEXT () function will restore tskZ context, and will be executed.

The second example is shown in Figure 4.9. In a) is shown the Ready List at the begin-

ning of the current T-L plane: tskB is running, and nextEventT ick = 8. In b) tick=8, and

funcEventHandle() function is called:

-tskB local execution remain time is updated to zero, then the task is removed and putted at

the last position of the Ready List, behind the IDLE task. Now tskC is the task with the higher

local remain execution time, and is pointed by ∗pxCurrentTCB; then a context switch is forced

and portRESTORE CONTEXT () function restores tskZ context, which will be executed.
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Figure 4.9: Ready List during a T-L plane initialization

4.4 Tests and Results

To test the correctness of the implemented LLREF scheduler, we execute two tasks whose

LLREF scheduling sequence is known, and match the run-time scheduling sequence with the

expected one. To monitor the run-time scheduling sequence we used the same trace macros

unctions introducted for the EDF scheduler. The two tasks chosen are: A(p=5, c=2), B(P=8,

c=2), as the test example

First, some changes to the demo application are needed:

-since B scheduling events can occur not only in integer number of tick time, we have to choose

carefully the period and capacity parameters of the tasks: the two tasks chosen are: A(p=50,

c=20), B(P=80, c=20); - the new xTaskLLREFCreate() function is called to initialize the

tasks;

27 //-------------------------------------------------

28 // Global Variables

29 //-------------------------------------------------
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30

31 #define CAPACITY 20 //cpu time in tick

32 #define A_PERIOD 50 //task A period

33 #define B_PERIOD 80 //task B period

34

35 //---------------------------------------------

36 // Start point

37 //-------------------------------------------------

38

39 int main(void)

40 {

41

42 SystemInit();

43

44 xTaskLLREFCreate( TSK_A, ( const char * ) "A",

45 configMINIMAL_STACK_SIZE, NULL,

46 1, NULL, A_PERIOD, CAPACITY );

47 xTaskLLREFCreate( TSK_B, ( const char * ) "B",

48 configMINIMAL_STACK_SIZE, NULL,

49 1, NULL, B_PERIOD, CAPACITY );

50

51 // FreeRTOS Scheduler starten

52 vTaskStartScheduler();

53

54 // wird nie erreicht!!

55 while(1)

56 {

57

58 }

59 }



62 Chapter 4. LLREF Scheduler

Figure 4.10: T.L plane construction for task A (p=5, c=2) and task B (p=8, c=2); For T-L
plane 1: LA = 2, LB = 1.2; For T-L plane 2: LA = 1.2, LB = 0.7; For T-L plane 3: LA = 0.8,
LB = 0.5; For T-L plane 4: LA = 2, LB = 1.2;

Then, a correct LLREF scheduling sequence is calculated. Figure 4.10 shows how T-L planes

are obtained, then Figure 4.11 shows the final scheduling sequence from the T-L plane sequence.

Figure 4.12 shows the printed console output for tick=1 to 400 (the greatest common period):

the obtained schedule sequence is correct, matching it with the scheduling sequence previously

calculated. [11]
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Figure 4.11: LLREF scheduling for tskA and tskB: t=0 to t=120
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Figure 4.12: LLREF scheduling for tskA and tskB: Log output



Chapter 5

Conclusion

The main quality of FreeRTOS fixed-priority scheduler is its simplicity. It guarantees a very

low overhead and easy system analysis. This work presented two alternative schedulers, that

implement dynamic priority scheduler algorithms. EDF scheduler implementation requires an

overhead comparable to the original scheduler. Tests shows how the implemented algorithm

performs correctly the expected task sequence.

LLREF scheduler implementation requires more complexity: capacity estimation of each task in

the system is required along with the task period. The T-L plane management also contributes

to increase the scheduler overhead. The test phase validates the schedule correctness.

The two proposed solutions works well according with the given specification. It must be clear,

however, that the presented algorithms are intended for academic use only, since a sufficient

high level of reliability for commercial use can not be guarantied at this phase of development.

For instance, schedulers correctness is tested for low system tick count only, since tick variable

overflow is not managed. Future implementations of these algorithms should work on this

aspect. Another important aspect to implement in future works could be the sporadic tasks

support, since in the proposed algorithms only periodic tasks were considered.
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