
Università degli Studi di Padova
Dipartimento di Ingegneria dell’Informazione

Corso di Laurea Magistrale in Ingegneria
Informatica

Tesi di Laurea

Design and development of a framework
based on OGC web services for the
visualization of three dimensional

large-scale geospatial data

Laureando:

Antonio Nozzi

Relatore:

Ch.mo Prof. Massimo Rumor

Padova, 23 Ottobre 2012

Anno Accademico 2011-2012

http://www.unipd.it
http://www.dei.unipd.it)

Abstract

Most of the current 2D GIS representations are tied to the limits of traditional GIS soft-

ware and are, more properly, simplified abstractions of the real aspects of the territory.

3D GIS tools try to describe reality, and the phenomena that take place in it, in the

proper dimensions, making it possible to solve spatial problems not addressable in 2D.

3D representations are also more intuitive and can be used to communicate territorial

information to non-experts in a immediate and realistic way.

3D GIS visualization models have a variety of applications in geography, urban studies

and other scopes. Such models often require to render significant amounts of three

dimensional geospatial data, so being very demanding in terms of computing capability

and memory usage. In order to efficiently manage large scale data rendering and reach

a reasonable compromise between quality and performances, some optimizations are

needed.

The aim of this project is to design a streaming framework for the visualization of three

dimensional large-scale geospatial data. A simple idea is implemented: just the bare

necessities have to be loaded and rendered. The 3D scene is so incrementally built and

dynamically updated run-time, taking into account the movements of the camera and

its field of view. To effectively and efficiently achieve this behavior, proper mechanisms

of tiling and caching have been implemented.

The framework implementation focuses on textured terrain streaming. Despite the scope

limitation, the defined streaming paradigm has general validity and can be applied to

more complex 3D environments. The addition of other features on top of the terrain is

straightforward and does not imply substantial modifications to the framework.

In order to make the framework standard compliant and platform independent, it has

been designed to work with OGC web services and the widely adopted web-based ap-

proach has been chosen. As a result, any WebGL compliant browser can run web

applications built on top of this framework without the use of plug-ins or additional

software.

Contents

Abstract i

List of Figures iv

List of Tables v

Acronyms vi

1 Introduction to 3D GIS 1

1.1 Geographic Information System . 1

1.2 Adding the third dimension: 3D GIS . 2

2 Project requirements analysis 3

2.1 Problem definition . 3

2.2 Basic project requirements . 3

3 Development platform 5

3.1 Overview . 5

3.2 HTML5 . 6

3.2.1 History . 6

3.2.2 Features overview . 6

3.2.3 The canvas element . 9

3.3 WebGL . 11

3.3.1 History . 11

3.3.2 OpenGL ES . 12

3.3.3 OpenGL ES 2.0 Graphics pipeline 13

3.4 Frameworks selection . 16

3.4.1 JavaScript framework selection . 16

3.4.2 WebGL framework selection . 19

4 Geospatial data formats and services 25

4.1 Overview . 25

4.2 OGC 3D-capable formats . 25

4.2.1 KML . 26

4.2.2 CityGML . 27

4.3 OGC web services . 29

4.3.1 Web Feature Service . 30

4.3.2 Web Map Service . 31

ii

Contents iii

4.3.3 Web Coverage Service . 32

4.3.4 GeoServer . 35

4.4 Terrain data management . 35

4.4.1 Digital Elevation Models . 36

4.4.2 Heightmaps . 38

5 Software design and development 40

5.1 Introduction . 40

5.2 Software development process . 41

5.3 Requirements analysis . 42

5.3.1 Functional requirements use cases 44

5.3.2 Non-functional requirements use cases 47

5.4 Software design . 50

5.4.1 Three.js architecture . 50

5.4.2 Streaming logic . 54

5.4.3 System architecture . 61

5.5 Development work-flow . 62

5.5.1 Documentation . 63

6 Results and future developments 64

6.1 Development results . 64

6.1.1 Testing data . 64

6.1.2 Testing platform . 64

6.1.3 Screenshots . 65

6.2 Future developments . 68

Bibliography 69

Acknowledgements 71

List of Figures

3.1 HTML5 related APIs: specification process status. 8

3.2 OpenGL ES 2.0 programmable graphics pipeline. 13

4.1 Textured COLLADA model georeferenced by KML (from Google Earth). 26

4.2 CityGML house model. 28

4.3 Different coverage encodings. 34

4.4 3D rendering of a DEM of Tithonium Chasma on Mars. 37

4.5 DSM vs DTM. 37

4.6 Some examples about how a DEM could be used. 38

4.7 3D rendering of a heightmap. 39

5.1 Iterative/incremental software development process. 41

5.2 Use case diagram for the Software Requirements Specification. 49

5.3 Object Diagram representing a sample scene-graph. 51

5.4 Simplified Class Diagram representing Three.js objects. 52

5.5 View frustum representation. 53

5.6 View frustum culling and clipping: 1) view frustum, 2) clipped objects,
3) culled objects, 4) completely visible objects. 54

5.7 State Diagram describing how the system behaves. 55

5.8 The size of a cluster is defined by the cluster multiplier (which can be set
according to the needs). 56

5.9 The loading process (pivot and cluster in red, loaded tiles in green). . . . 56

5.10 Relative positions with respect to the pivot. 57

5.11 Tiles indexing. 57

5.12 An heightmap and the corresponding texture. 59

5.13 A trick to match tiles (loaded heightmaps in green, considered data in red). 59

5.14 Tiles to be placed into the scene-graph (light green) according to the
current view frustum (green) . 60

6.1 Screenshot - 1. 65

6.2 Screenshot - 2. 65

6.3 Screenshot - 3. 66

6.4 Screenshot - 4. 66

6.5 Screenshot - 5. 67

6.6 Screenshot - 6. 67

iv

List of Tables

5.1 USE CASE: run on multi-platform . 44

5.2 USE CASE: view the scene . 44

5.3 USE CASE: update the scene content . 44

5.4 USE CASE: load terrain . 45

5.5 USE CASE: load features . 45

5.6 USE CASE: navigate through the scene 45

5.7 USE CASE: pick a scene element . 46

5.8 USE CASE: get element information . 46

5.9 USE CASE: get scene information . 46

5.10 USE CASE: run inside a web browser . 47

5.11 USE CASE: use hardware acceleration . 47

5.12 USE CASE: load terrain via WMS . 47

5.13 USE CASE: load features via WFS . 48

5.14 USE CASE: load material textures . 48

5.15 USE CASE: generate default materials . 48

v

Acronyms

AFL Academic Free License

AJAX Asynchronous JavaScript And XML

AMD Asynchronous Module Definition

API Application Programming Interface

BSD Berkeley Software Distribution

C3DL Canvas 3D Library

CAD Computer-Aided Design/Drafting

CNR Italian National Council of Research

COLLADA COLLAborative Design Activity

CPU Central Processing Unit

CSS Cascading Syle Sheets

DEM Digital Elevation Model

DOM Document Object Model

DSM Digital Surface Model

DTM Digital Terrain Model

EPL Eclipse Public License

FMC Fundamental Modeling Concepts

FOV Field Of View

fps frames per second

GIF Graphics Interchange Format

GIS Geographic Information System

GLSL OpenGL Shading Language

GML Geography Markup Language

GNU recursive acronym, GNU is Not Unix

GPL GNU General Public License

vi

Acronyms vii

GPU Graphical Processing Unit

GeoDBMS Geographic DataBase Management System

GeoTIFF Geographic Tagged Image File Format

HDF Hierarchical Data Format

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

ISTI Institute of Information Science and Technology

JPEG Joint Photographic Experts Group

JSON JavaScript Object Notation

KML Keyhole Markup Language

LOD Level Of Detail

MIME Multipurpose Internet Mail Extensions

MIT Massachussets Institute of Technology

NetCDF Network Common Data Form

NITF News Industry Text Format

OBJ OBJect

OGC Open Geospatial Consortium

OpenGL ES OpenGL for Embedded Systems

OpenGL Open Graphics Library

OS Operative System

PNG Portable Network Graphics

SGML Standard Generalized Markup Language

SRS Software Requirements Specification

SVG Scalable Vector Graphics

UML Unified Modeling Language

W3C World Wide Web Consortium

WCS Web Coverage Service

WFS Web Feature Service

WHATWG Web Hypertext Application Technology Working Group

WMS Web Map Service

XHTML Extensible HyperText Markup Language

XML Extensible Markup Language

Chapter 1

Introduction to 3D GIS

1.1 Geographic Information System

A Geographic Information System (GIS) is an organized collection of hardware, software

and data designed to efficiently store, manage, share, analyze, manipulate, and display

geographical information for informing decision making. In a more practical sense, GIS

applications are tools that allow users to create interactive queries, analyze the spatial

information, edit data in maps, and present the result of all these operations.

Spatial features are stored in a coordinate system (latitude/longitude, state plane, uni-

versal transverse mercator, etc), which references a particular place on earth. Descriptive

attributes in a tabular form are associated with spatial features. Spatial data and associ-

ated attributes in the same coordinate system can then be layered together for mapping

and analysis. GIS can be used for scientific investigations, resource management and

development planning.

GIS differs from Computer-Aided Design/Drafting (CAD) and other graphical computer

applications in that all spatial data are geographically referenced to a map projection in

a earth coordinate system. For the most part, spatial data can be re-projected from one

coordinate system into another, thus data from various sources can be brought together

into a common database and integrated using GIS software.

Another property of a GIS database is that it has a topology, which defines the spatial

relationships between features. The fundamental components of spatial data in a GIS

1

Chapter 1. Introduction to 3D GIS 2

are points, lines (arcs) and polygons. When topological relationships exist between

features, it is possible to perform analysis on spatial data, such as modeling the flow

through connecting lines in a network, combining adjacent polygons that have similar

characteristics and overlaying geographic features.

1.2 Adding the third dimension: 3D GIS

Most of currently available GISes provide tools for managing two dimensional data. For

an increasing number of applications 2D representation is not sufficient. This especially

holds for geology, for architectural design or for large-scale urban planning where the

complexity of the objects results from their rich 3D spatial structure. For example, city

models may contain buildings, roads including bridges or tunnels, subways, sewer, gas

pipe networks or just the vegetation. All this information can be stored in 2D layers

which might be sufficient for some applications, however this representation appears to

be inadequate in the long run.

3D GIS visualization models have a variety of applications in geography, urban studies

and other scopes: site location analysis, emergency facilities planning, design review,

geography education, tourism, marketing, etc. While they are generally used to simply

visualize the built environment, there are early signs of them being used as 3D interfaces

to more sophisticated simulation models.

3D GIS tools often have to render significant amounts of three dimensional geospatial

data. A hypothetical complex 3D urban model, which may include features such as

buildings, transportation objects, water bodies, vegetation objects and city furniture,

could require to render a huge number of 3D objects, maybe quite detailed and textured.

Doubtless, this task could be quite hard for graphics hardware and very expensive in

terms of computing capability and memory usage. Wishing to make 3D GIS software

accessible to a wide range of hardware, not just high-end hardware, some optimizations

and tricks have to be considered while developing applications.

Chapter 2

Project requirements analysis

2.1 Problem definition

The aim of this project is to design a lightweight streaming framework able to efficiently

visualize three dimensional large-scale geospatial data. When dealing with a complex

3D environment, an incremental approach may be used to lighten the rendering process.

In practice, the framework should be able to dynamically build and update the 3D scene

as needed, for example taking into account the movements of the camera and its field

of view. This simple idea permits to load and render just a limited amount of data at a

time, thus significantly reducing the GPU load and improving performances.

In order to test the planned strategy in a specific context, the framework implemen-

tation focuses on textured terrain streaming. Despite the scope limitation, the defined

streaming paradigm has general validity and can be applied to more complex 3D en-

vironments. The terrain is just a base, above which other spatial features (buildings,

vegetation, city furniture, etc) can be placed. The addition is straightforward and does

not implies substantial modifications to the fundamental principles of the framework.

2.2 Basic project requirements

Current GIS requirements are moving towards a comprehensive set of multi-platform

tools. WebGIS is currently one of the most deployed approach, thanks to its intrinsic

3

Chapter 2. Project requirements analysis 4

multi-platform support and the absence of dedicated software installed client-side (just

a modern web browser is usually needed).

Standards compliance is also an important requirement. The use of well defined stan-

dards simplifies the development and increments interoperability and software quality.

The Open Geospatial Consortium (OGC) maintains a variety of open geospatial stan-

dards. Many geospatial servers (GeoServer, MapServer, etc) and GeoDBMSes (PostGIS,

Oracle Spatial, etc) well support these standards and provide a solid base on top of which

scalable and reliable WebGIS applications can be developed.

The computing power needed for 3D GIS visualization and processing is more and more

onerous than in the 2D case, so most of the products currently available work installing a

software client that directly access the graphical card using OpenGL or DirectX standard

libraries. Reliable multi-platform software is yet to come and commercial software is

often only available on Microsoft Windows.

Basing the analysis on these simple observations, the project should try to resolve the

defined problem in accordance with the following requirements:

• The developed framework has to provide multi-platform support through the em-

ployment of a web-based approach.

• A full support for 3D hardware acceleration must be provided.

• OGC standards compliance must be ensured.

Chapter 3

Development platform

3.1 Overview

The requirements defined in Chapter 2 are essential to choose the right development

platform to accomplish the project.

As previously established, the developed framework should serve as a basis for multi-

platform web-based applications. With the introduction of HTML5 (cf. Section 3.2)

and derived technologies, like WebGL, web applications are dramatically incrementing

their potential, so operations before unimaginable are now possible. WebGL (cf. Section

3.3) allows 3D graphics rendering inside a web browser with full hardware acceleration

support. Moreover, being based on an open cross-platform 3D library (OpenGL), it is

well supported by most of the existing operative systems. Since GIS are in continuous

evolution and, as said before, are moving toward a web-based approach, the enormous

potential of these new technologies is exploited.

In order to deal with WebGL, a proper programming language has to be chosen. The

most natural choice is JavaScript. JavaScript is a prototype-based scripting language

that is dynamic, weakly typed and has first-class functions. It is a multi-paradigm

language, supporting object-oriented, imperative, and functional programming styles. In

order to ease the development, a JavaScript framework should be used (cf. Section 3.4.1).

Considering the low-level nature of WebGL, using an higher-level WebGL framework is

also strongly recommended (cf. Section 3.4.2).

5

Chapter 3. Development platform 6

3.2 HTML5

HTML5 is a markup language for structuring and presenting content for the World

Wide Web. It is the fifth revision of the HTML standard and, on October 2012, is

still under development. Following its immediate predecessors HTML 4.01 and XHTML

1.1, HTML5 extends and improves the markup available for documents and introduces

markup and Application Programming Interfaces (APIs) for complex web applications

developing and multimedia handling.

3.2.1 History

The Web Hypertext Application Technology Working Group (WHATWG) began its

work on the new standard in 2004. At that time, the World Wide Web Consortium

(W3C) was focusing on the XHTML 2.0 draft and HTML 4.01 had not been updated

since 2000. In 2007, the HTML5 specification developed by WHATWG was adopted

by the new W3C HTML working group, while the XHTML 2.0 draft was definitively

abandoned in 2009. W3C and WHATWG are currently working together on the devel-

opment of HTML5, but with some degree of separation (agreed on July 2012). W3C

will continue the HTML5 specification work, focusing on a single definitive standard

which is considered as a “snapshot” by WHATWG. The WHATWG will continue its

work with HTML as a “living standard”, that is, a standard that is never complete and

is always being updated and improved.

Although HTML5 has been well known among web developers for years, it became the

topic of mainstream media around April 2010 after Apple’s then-CEO Steve Jobs issued

a public letter titled “Thoughts on Flash” where he concludes that “[Adobe] Flash is

no longer necessary to watch video or consume any kind of web content” and that “new

open standards created in the mobile era, such as HTML5, will win on mobile devices

(and PCs too)”.

3.2.2 Features overview

The HTML5 is no longer based on Standard Generalized Markup Language (SGML)

despite the similarity of its markup. It has, however, been designed to be backward

Chapter 3. Development platform 7

compatible with common parsing of older versions of HTML. HTML5 also defines in

some detail the required processing for invalid documents so that syntax errors will be

treated uniformly by all conforming browsers and user agents.

HTML5 introduces a number of new elements and attributes that reflect typical usage on

modern websites. In particular, it introduces the new video, audio and canvas elements,

as well as the integration of Scalable Vector Graphics (SVG) content and MathML

for mathematical formulas. These features are designed to make it easy to include and

handle multimedia and graphical content on the web without having to resort to external

proprietary plug-ins and APIs. Other new elements, such as section, article, header, nav

and footer, are designed to semantically enrich the document structure, replacing, in

some specific cases, more generic elements, such as div. Some deprecated elements from

HTML 4.01 have been dropped, including purely presentational elements such as font

and center, whose effects have long been superseded by Cascading Style Sheets (CSS).

Moreover, other elements from HTML 4.01 have been changed, redefined or oficially

standardized.

In addition to specifying markup, HTML5 specifies JavaScript APIs that can be used

to develop complex web applications or to provide animation within web pages. Exist-

ing Document Object Model (DOM) interfaces are extended and de facto features are

documented. Some new APIs are also defined:

• Canvas 2D context, for immediate mode 2D rendering inside a canvas element.

• Drag-and-drop, which integrates this common pointing device gesture into web

pages.

• Cross-document messaging, which allows a document to communicate with

one another across different origins or source domains.

• Microdata, which nest semantics within existing content on web pages. Search

engines, web crawlers and browsers can extract and process Microdata from a web

page and use it to provide a richer browsing experience.

• Web Storage, a key-value pair storage framework that provides behavior similar

to cookies but with larger storage capacity and improved API.

Chapter 3. Development platform 8

Figure 3.1: HTML5 related APIs: specification process status.

Not all of the above technologies are included in the W3C HTML5 specification, though

they are in the WHATWG HTML specification. Some related technologies, which are

not part of either the W3C HTML5 or the WHATWG HTML specification, are main-

tained by W3C separately. Here we have some examples:

• Geolocation, an interface to retrieve geographical location information for a

client-side device.

• Web SQL Database, a local SQL database (no longer maintained).

• Indexed Database, a web browser standard interface for a local database of

records holding simple values and hierarchical objects.

• File, which handles file uploads and file manipulations.

• File Writer, an API for writing files from web applications.

• Web Audio, a high-level API for processing and synthesizing audio in web ap-

plications.

Chapter 3. Development platform 9

Other related technologies are also maintained outside the W3C and the WHATWG. A

suitable example is WebGL, a 3D context for the HTML5 canvas element maintained

by the Khronos Group.

3.2.3 The canvas element

Canvas was initially introduced by Apple for use inside their own Mac OS X WebKit com-

ponent in 2004, powering applications like Dashboard widgets and the Safari browser.

In 2006, it was adopted by Opera web browser and standardized by the WHATWG on

the new proposed HTML5 specification.

The canvas element allows for dynamic scriptable rendering of 2D shapes, bitmap images

and 3D graphics. It implements a low-level raster-based procedural model that directly

updates a bitmap and does not have a built-in scene-graph. The drawing approach

defined by canvas is therefore quite different from the one defined by SVG, probably

the main alternative to canvas for in-browser graphics manipulation. SVG is built on a

higher-level vector-based approach, in which every drawn element is recorded as a DOM

object that is subsequently rendered to a bitmap. As a result, while SVG objects can

be modified through their attributes, canvas objects must instead be redrawn.

A canvas element consists of a drawable region defined in HTML code with height and

width attributes. JavaScript code may access the area through the proper APIs, called

“contexts”. Two contexts are currently available: canvas 2D context, maintained by

W3C and WHATWG, and WebGL rendering context, maintained by Khronos Group.

Canvas 2D rendering context

The 2D context represents a flat Cartesian surface whose origin is at the top left corner,

with the coordinate space (expressed in pixels) having x values increasing when going

right and y values increasing when going down. Each context maintains a stack of

drawing states. A state records the drawing style (fill and stroke colors, line width,

dash patterns, font, text alignment, etc) and the transformations (translation, rotation,

scaling) applied when an object, text or shape, is placed onto the canvas. The current

state can be easily saved and restored, allowing to pass from a state to another with

only few lines of code.

Chapter 3. Development platform 10

Only one basic shape is supported: filled or stroked rectangle. In order to draw more

complex shapes, paths have to be used. We can think of a path as a collection of

pixels going from a starting point to an ending point, possibly composed by sub-paths.

Drawing a shape using paths consists of four basic steps:

1. begin the path,

2. add points to the current path using lines, arcs or more complex primitives (rect-

angles, circumferences, ellipses, quadratic curves) as connections,

3. close path,

4. fill or stroke path.

Simple text can also be drawn. The 2D context allows to set up text alignment, both

horizontal and vertical, and to define font rules using CSS syntax. As for shapes, text

can be filled or stroked.

The drawImage method can be used to draw images onto the canvas. This method

can be invoked with three different set of arguments, specifying if the image has to be

scaled, clipped or both. A source rectangle and a destination rectangle are defined.

When the drawImage method is invoked, the region of the image specified by the source

rectangle is painted on the region of the canvas specified by the destination rectangle,

possibly filtering the original image data (the actual employed filter is selected by the

web browser) if scaling is needed. DrawImage can take either an img element, a video

element or another canvas element as source. If the source is a video or an animated

image, only one frame (the one at the current playback position in the first case, the

poster frame in the second case) is used as the source image.

The 2D context allows to retrieve pixels data from canvas using the getImageData

method. This method returns an ImageData object representing the canvas bitmap

for the region specified by a source rectangle. Width and height properties of an Image-

Data object represent respectively the number of pixels per row and the number of rows

in the image data, while image data is stored as a canvas pixel ArrayBuffer referenced

by the data property. In a Canvas pixel ArrayBuffer, data is represented in left-to-right

order, row by row top to bottom, starting with the top left, with each pixel’s red, green,

blue, and alpha components being given in that order for each pixel. Each component

Chapter 3. Development platform 11

of each pixel represented in this array must be in the range 0..255, representing the 8

bit value for that component. Image data can be drawn back onto canvas using the

putImageData method. Therefore, image data can be taken from the canvas, elaborated

and put back to the canvas.

3.3 WebGL

WebGL is a cross-platform, cross-browser and plug-in free API for immediate mode 3D

rendering inside web pages. WebGL is derived from OpenGL ES 2.0 and provides similar

rendering functionality, but in an HTML environment. It is designed as a rendering

context for the HTML5 canvas element, so a full integration with all DOM interfaces is

provided and any DOM-compatible language can interact with this API (JavaScript is

the most natural choice). Everyone familiar with OpenGL ES 2.0 will recognize WebGL

as a shader-based API using OpenGL Shading Language (GLSL), with constructs that

are semantically similar to those of the underlying OpenGL ES 2.0 API (the WebGL

specification stays very close to the OpenGL ES 2.0 specification, with some minor

concessions). WebGL is a very low-level 3D API with flexible primitives that can be

applied to any use case. Third party libraries can provide an API on top of WebGL

that is more tailored to specific areas, thus adding a convenience layer to WebGL that

can accelerate and simplify development.

3.3.1 History

WebGL grew out of the Canvas 3D experiments started by Vladimir Vukicevic at Mozilla.

Vukicevic first demonstrated a Canvas 3D prototype in 2006. By the end of 2007, both

Mozilla and Opera had made their own separate implementations. In early 2009 the

non-profit technology consortium Khronos Group started the WebGL Working Group,

with initial participation from Apple, Google, Mozilla, Opera and others. Version 1.0

of the WebGL specification, based on version 2.0 of the OpenGL ES specification, was

released on March 2011.

Chapter 3. Development platform 12

3.3.2 OpenGL ES

OpenGL ES is an API for advanced 3D graphics targeted at hand-held and embedded

devices. In the desktop world there are two standard 3D APIs, DirectX and OpenGL.

DirectX is the de facto standard 3D API for any system running the Microsoft Windows

operating system and is used by the majority of 3D games on that platform. OpenGL

is a cross-platform standard 3D API for desktop systems running Linux, various im-

plementations of UNIX, Mac OS X, and Microsoft Windows. It is a widely accepted

standard 3D API that has seen significant real-world usage. Due to the widespread

adoption of OpenGL as a 3D API, it made sense to start with the desktop OpenGL

API in developing an open standard 3D API for hand-held and embedded devices and

modifying it to meet the needs and constraints of this kind of devices (limited process-

ing capabilities and memory availability, low memory bandwidth, sensitivity to power

consumption, etc). The following criteria have been adopted in the definition of the

OpenGL ES specification:

• In order to create an API suitable for constrained devices, any redundancy from

the OpenGL API was removed. In any case where there was more than one way

of performing the same operation, the most useful method was taken and the

redundant techniques were removed.

• Despite the simplifications, OpenGL ES was designed to maintain some degree of

compatibility with OpenGL. Any application written to the embedded subset of

functionality in OpenGL should also run on OpenGL ES.

• New features were introduced to address specific constraints of hand-held and

embedded devices. For example, to increase performance while keeping power

consumption reasonable.

• Any OpenGL ES implementation should meet certain acceptable and agreed-on

standards for image quality, correctness and robustness. In order to achieve this

goal, every OpenGL ES implementation must pass some conformance tests to be

considered compliant.

Three versions of the OpenGL ES specification have been released by Khronos Group

so far. The OpenGL ES 1.0 and 1.1 specifications implement a fixed function pipeline

Chapter 3. Development platform 13

and are derived from the OpenGL 1.3 and 1.5 specifications, respectively. The OpenGL

ES 2.0 specification implements a programmable graphics pipeline and is derived from

the OpenGL 2.0 specification. Being derived from a revision of the OpenGL specifica-

tion means that the corresponding OpenGL specification was used as the baseline for

determining the feature set in the particular revision of OpenGL ES.

3.3.3 OpenGL ES 2.0 Graphics pipeline

OpenGL ES 2.0 implements a graphics pipeline with programmable shading. The di-

agram in Figure 3.2 describes its structure highlighting the two programmable stages

(shaded boxes).

Figure 3.2: OpenGL ES 2.0 programmable graphics pipeline.

Vertex shader

The vertex shader implements a general purpose programmable method for operating

on vertices. Vertex shaders can be used for traditional vertex-based operations such as

transforming the position by a matrix, computing the lighting equation to generate a

per-vertex color, and generating or transforming texture coordinates. Alternately, more

Chapter 3. Development platform 14

complex operations can be specified. The inputs to the vertex shader consist of the

following:

• Attributes, per-vertex data supplied using vertex arrays.

• Uniforms, constant data used by the vertex shader.

• Shader program, vertex shader program source code or executable that describes

the operations that will be performed on the vertex.

The outputs of the vertex shader are called varying variables.

Primitive assembly

In the primitive assembly stage, the shaded vertices are assembled into individual ge-

ometric primitives (triangles, lines, point-sprites, etc). For each primitive, it must be

determined whether the primitive lies within the view frustum (the region of 3D space

that is visible on the screen). If the primitive is not completely inside the view frustum,

the primitive might need to be clipped to the view frustum. If the primitive is com-

pletely outside, it is discarded. A culling operation can also be performed that discards

primitives based on whether they face forward or backward. After clipping and culling

processes, the position of each vertex is converted into screen coordinates.

Rasterization

Rasterization is the process that converts primitives into a set of two-dimensional frag-

ments, which are then processed by the fragment shader. The varying values assigned to

each vertex of a primitive are interpolated in order to generate varying values for each

fragment. The two dimensional fragments produced by the rasterization stage represent

pixels that can be drawn on the screen.

Fragment shader

The fragment shader implements a general-purpose programmable method for operating

on fragments. The fragment shader is executed for each generated fragment by the

rasterization stage and takes the following inputs:

Chapter 3. Development platform 15

• Varying variables, outputs of the vertex shader that are generated by the ras-

terization unit for each fragment using interpolation.

• Uniforms, constant data used by the fragment shader.

• Shader program, fragment shader program source code or executable that de-

scribes the operations that will be performed on the fragment.

The fragment shader can either discard the fragment or generate a color value for it.

Per-fragment operations

The per-fragment operations stage performs the following functions and tests on each

fragment:

• Pixel ownership test. Determines if a pixel is currently owned by the OpenGL

ES context.

• Scissor test. If enabled, fragments lying outside a specified rectangular region

are discarded.

• Stencil and depth tests. If enabled, determine if a fragment has to be rejected

or not based on its stencil and depth values (implementing stenciling and hidden

surface removal).

• Blending. If enabled, pixels output by the fragment shader may be blended with

pixel values already present in the framebuffer.

• Dithering. If enabled, it can be used to minimize the artifacts that can occur

from using limited precision to store color values in the framebuffer.

At the end of the per-fragment stage, either the fragment is rejected or a fragment color,

depth, or stencil value is written to the framebuffer at location.

Chapter 3. Development platform 16

3.4 Frameworks selection

A development framework is a universal, reusable software platform (usually an inte-

grated set of libraries) used to develop applications. Software frameworks are designed

to facilitate and speed up the development process providing a ready-to-use set of com-

mon functionality and high-level abstractions. Some frameworks also provide a basic

architectural structure for a particular class of applications. Developers can use this

structure (properly edited and extended) as a basis to build specific applications.

When choosing the best framework for a given project, the provided functionality is not

the only aspect to evaluate. Other aspects, such as performances, security, flexibility

and learning curve, are likewise important. The purpose of this section is to identify

both a JavaScript framework and a WebGL framework that fit this project. In order to

accomplish this goal, some well-known frameworks will be analyzed and compared.

3.4.1 JavaScript framework selection

The fundamental purpose of a JavaScript framework is to extend and improve native

JavaScript functionality. Most of JavaScript frameworks are also designed to hide the

differences between browser-specific implementations, thus providing a cross-browser

programming environment.

In order to meet project’s needs, a JavaScript framework must be:

• browser independent;

• modular;

• easy to use and quickly adoptable;

• well supported and documented;

It must also provide support for:

• basic DOM manipulation;

• events handling;

Chapter 3. Development platform 17

• asynchronous programming (deferred, promises, etc);

• class-based programming (for better code organization).

The following analysis will consider the two most widely used and valued JavaScript

frameworks: jQuery and Dojo Toolkit.

jQuery

jQuery is an open source project released under MIT (Massachussetts Institute of Tech-

nology) License. It was first released in August 2006 at BarCamp NYC by John Resig

and is probably the most popular JavaScript framework in use today.

jQuery is a cross-browser JavaScript framework designed to simplify the client-side

scripting of HTML. Its syntax is designed to make it easier to navigate a document, se-

lect DOM elements, create animations, handle events, and develop AJAX (Asynchronous

JavaScript and XML) applications. jQuery also provides capabilities for developers to

create plug-ins on top of the basic JavaScript framework. This enables developers to cre-

ate abstractions for low-level interaction and animation, advanced effects and high-level,

theme-able widgets.

Dojo Toolkit

Dojo Toolkit is an open source project dual-licensed under the Modified BSD (Berkeley

Software Distribution) License or the Academic Free License (AFL). It was started by

Alex Russell, Dylan Schiemann, David Schontzler, and others in 2004. The first stable

release dates back to November 2007.

Dojo Toolkit is a modular JavaScript framework designed to ease the rapid development

of cross-platform, JavaScript/AJAX-based applications and web sites. A full distribution

of the toolkit consists of three main packages:

• Dojo: sometimes referred to as the “core”, this is the main part of Dojo and the

most generally applicable packages and modules are contained in here. The core

Chapter 3. Development platform 18

covers a wide range of functionality like AJAX, DOM manipulation, class-type pro-

gramming, events, promises, data stores, drag-and-drop and internationalization

libraries.

• Dijit: contains an extensive set of widgets (user interface components) and the

underlying system to support them. It is built fully on-top of the Dojo core.

• DojoX: this is a package dedicated to the development of additional Dojo func-

tionality. It contains a collection of packages and modules that provide a vast

array of additional functionality that are built upon both the Dojo core and Dijit.

Packages and modules contained in DojoX have varying degrees of maturity: some

of the modules are extremely mature and some are highly experimental.

Modularity is one of the most representative characteristics of Dojo. Starting from 1.7

version, a full support for Asynchronous Module Definition (AMD) has been introduced.

AMD allows to selectively load modules at startup, thus eliminating the need to load

the entire toolkit. Moreover, it is possible to define and load custom modules, and any

third-party AMD-compliant module.

Chosen framework

Both jQuery and Dojo are cross-browser, and provide the required functionality about

DOM manipulation, event handling and asynchronous programming. However, Dojo

provides an higher level of modularity (further improved by the AMD system) and a

good support for class-based programming than jQuery.

Unlike jQuery, Dojo Toolkit is developed and supported according to an enterprise

approach. For this reason, it is more reliable and better fits long-term, large-scale

projects. In practice, Dojo Toolkit offers better solutions for the development of complex

web applications, while jQuery better fits the development of dynamic web sites.

Because of its enterprise-level approach (and its not so fine documentation), Dojo may

have a bit steeper learning curve than jQuery. Nevertheless, it remains the best choice

for this project.

Chapter 3. Development platform 19

3.4.2 WebGL framework selection

As previously mentioned, WebGL is a very low-level API, so even the most trivial task

requires a considerable amount of lines of code to be accomplished. For this reason,

native WebGL is not the best choice to develop complex 3D applications.

A WebGL framework/engine is designed to hide most of low-level details, and to provide

ready-to-use high-level primitives for both basic and advanced functionality. A good

engine has to achieve a reasonable level of abstraction, allowing the developer to direct

access lower-level capabilities if needed.

In order to meet project’s needs, a WebGL framework must be:

• browser independent;

• based on a scene-graph (to efficiently manage complex 3D scenes);

• easy to use and quickly adoptable;

• well supported and documented.

It must also provide support for:

• cameras (ready-to-use perspective and orthographic views);

• materials, lights and textures;

• geometry utilities (to easily reproduce basic shapes such as, planes, cubes, etc);

• math utilities (to easily handle 3D transformations);

• basic ready-to-use control systems;

• direct loading of 3D models in different formats.

Nice to have features (for future developments):

• full access to shaders;

• integrated Level Of Detail (LOD) system;

Chapter 3. Development platform 20

• basic support for physics and animations.

The following analysis will consider some popular WebGL frameworks: C3DL, SpiderGL

and Three.js.

C3DL

The Canvas 3D JS Library (C3DL) is an open source project released under MIT Li-

cense. It was first developed as part of the CATGames Research Network at Seneca

College (Toronto, Canada), which was working on a middle layer API for Canvas 3D

(the precursor of WebGL). The development seems currently stuck: the last release (2.2)

dates back to March 2011, and no development news has been published since June 2011.

C3DL is an easy to use WebGL framework thought for the development of simple 3D

web applications. It provides basic support for scene organization, cameras, materials,

textures, lights, shaders customization and COLLADA 3D models loading.

The framework has a good API reference and offers some useful introductory tutorials,

but lacks meaningful code examples and community support.

SpiderGL

SpiderGL is an open source project released under Modified BSD License. It was de-

signed by Marco Di Benedetto, Federico Ponchio, Fabio Ganovelli and Roberto Scopigno

from The Visual Computing Lab of ISTI-CNR (Institute of Information Science and

Technology - Italian National Council of Research). This framework has been aban-

doned for a very long time. The community resumed the support to the library very

recently (Summer 2012).

SpiderGL is a JavaScript framework designed to develop web applications using WebGL.

It provides data structures and algorithms to ease the use of WebGL, to define and

manipulate shapes, to import 3D models in various formats (JSON and OBJ currently

supported) and to handle asynchronous data loading.

SpiderGL was designed keeping in mind three fundamental qualities:

Chapter 3. Development platform 21

• Efficiency: working with JavaScript and WebGL, efficiency is not only a matter

of asymptotic bounds, but finding the most efficient mechanism to do an operation

is also crucial.

• Simplicity/Short learning time: users should be able to reuse as much as

possible of their former knowledge on the subject and take advantage of the library

quickly. For this reason SpiderGL carefully avoids over-abstractions: almost all of

the function names in the library have a one to one correspondence with OpenGL

commands or with geometric/mathematic entities.

• Flexibility: SpiderGL does not try to hide native WebGL functions. Conversely,

WebGL and SpiderGL calls can be used almost seamlessly.

SpiderGL is composed of five modules:

• GL: gives access to WebGL functionalities.

• MESH: manages 3D model definition and rendering.

• ASYNC: for asynchronous loading.

• UI: provides user interface utilities.

• Space: provides math and geometry utilities.

Three.js

Three.js is an open source project released under MIT License and supported by a large

community of active developers. It was first released on GitHub by Ricardo Cabello

in April 2010 and it is currently under heavy development (51th revision released in

September 2012). The lack of an exhaustive traditional documentation (still under

construction) is well compensated by a large repository of code examples and an excellent

community support (support for developers committing to the library is provided via

the Issues forum on GitHub, while support for developers building applications and web

pages is provided via StackOverflow; real-time on-line support is also provided using

IRC via Freenode).

Chapter 3. Development platform 22

Three.js aims to create a lightweight JavaScript 3D engine with a very low level of

complexity. The engine can render 3D graphics using WebGL, the canvas 2D context

or SVG and provides an interface that completely abstracts the underlying rendering

mechanisms, so that the same code can be ported on multiple renderers.

Three.js is a scene-graph based engine built on three basic elements:

• A Scene, containing a set of 3D objects (that can be added, removed or updated

run-time).

• A Camera, used by the renderer to set the viewable area.

• A Renderer that, receiving a scene and a camera as input, renders the scene

using the canvas 2D context, SVG or WebGL.

Features overview:

• Cameras: perspective and orthographic.

• Controllers: first person, trackball, fly, path and roll.

• Animations: morph and keyframe.

• Lights: ambient, direction, point and spot.

• Materials: basic, Lambert, Phong and more.

• Shaders: access to full WebGL capabilities; lens flare, depth pass and extensive

post-processing library.

• Objects: meshes, particles, sprites, lines, ribbons and bones, all with level of

detail (LOD).

• Geometry: plane, cube, sphere, torus, 3D text and more.

• Loaders: support for direct loading of 3D models in different formats (binary,

COLLADA, JSON and more).

• Utilities: full set of time and 3D math functions including frustum, Quaternion,

matrix, UVs and more.

• Export/Import: utilities to create Three.js-compatible JSON files from within:

Blender, CTM, FBX, 3D Max, and OBJ.

Chapter 3. Development platform 23

Chosen framework

C3DL provide too much limited functionality to fit a complex project. The scene is

just a list of models, so no hierarchical organization is provided (in other words, no

scene-graph). Just basic geometric primitives are provided, so the use of 3D models

is quite obliged. Nevertheless, only COLLADA models are supported. The camera

implementation supports FOV (Field of View), near plane and far plane, but lacks

methods to automatically compute a perspective or orthographic projection. Moreover,

lights and materials management are very limited and no integrated control systems are

provided. Considering its functional limitations and the poor support (the development

is stuck for more than one year), C3DL has been discarded.

SpiderGL offers good basic features, however it does not provide a scene-graph, and a

good materials system is also missing. Nevertheless, the most important defect with

SpiderGL is the lack of support. The development has just been resumed after a long

period of inactivity and no assurance about the future has been given. Moreover, there

is no documentation apart the source code and there are no official communication

channels to support developers or to submit bugs and bug-fixes. Considering the lack

of support, the steep learning curve (due to an excessive low-level approach) and the

functional limitations, SpiderGL has been discarded.

Three.js is currently the most popular WebGL framework. It is in continuous devel-

opment and is supported by an active community of developers. The auto-explicative

source code and the large repository of meaningful examples allow to quickly take full ad-

vantage of the provided features. Three.js is based on a scene-graph approach, provides

a complete light system (ambient, directional, point and spot light provided) and im-

plements a good materials system (with the possibility to directly access shaders for full

customization). It provides geometry utilities that allow the in-line construction of both

basic (cubes, planes, etc) and complex (spheres, cylinders, tetrahedrons, octahedrons,

toruses, etc) shapes, and a full set of math utilities (vectors, matrices, quaternions, etc)

to handle 3D transformations. The camera can be perspective, orthographic or com-

bined (allowing to automatically switch from one type of view to the other). Many

different 3D model formats are supported, and a specific JSON format (compatible with

3D editors such as Blender) is provided. Three.js also defines many different built-in

Chapter 3. Development platform 24

control systems and provides basic support for animations and LOD. Physics is not

directly supported, but can be integrated using an extension named Phisijs.

Three.js is currently the most complete WebGL framework and well fits the project’s

needs, so it is definitely the best choice.

Chapter 4

Geospatial data formats and

services

4.1 Overview

The Open Geospatial Consortium (OGC) maintains many standards for geospatial data

encoding and handling . This Chapter analyses the most relevant standards for this

project’s purposes. Both the encoding formats (Section 4.2) and the web services (Sec-

tion 4.3) will be considered.

4.2 OGC 3D-capable formats

The OGC provides two suitable standards for representing 3D geospatial features: KML

and CityGML. KML (Keyhole Markup Language) mainly focuses on geographic annota-

tions (place marks, textual descriptions, tagging, etc), but can also be used to define the

location and orientation of textured 3D objects encoded as COLLADA models. On the

other hand, CityGML is a GML (Geography Markup Language) extension specifically

thought for the representation of 3D urban objects, so it natively embeds the encod-

ing of 3D information, without requiring external models. Considering the project’s

scope, CityGML is definitely more complete and suitable for our needs. Sections 4.2.1

and 4.2.2 provide a brief description of KML and CityGML respectively, outlining their

main features and characteristics.

25

Chapter 4. Geospatial data formats and services 26

4.2.1 KML

Keyhole Markup Language (KML) is an XML grammar used to encode and transport

representations of geographic data for display in an earth browser, such as a 3D virtual

globe, 2D web browser application, or 2D mobile application. Put simply: KML encodes

what to show in an earth browser, and how to show it. Each geographic reference always

has a longitude and a latitude. Other data, such as tilt, heading and altitude, can make

the view more specific. KML uses a tag-based structure with nested elements and

attributes and is based on the XML standard.

KML was developed for use with Google Earth, which was originally named Keyhole

Earth Viewer. It was created by Keyhole, Inc, which was acquired by Google in 2004.

KML became an international standard of the Open Geospatial Consortium in 2008.

KML is complementary to most of the key existing OGC standards including Geography

Markup Language (GML), Web Feature Service (WFS) and Web Map Service (WMS).

Currently, KML 2.2 utilizes certain geometry elements derived from GML 2.1.2. These

elements include point, line string, linear ring, and polygon.

Figure 4.1: Textured COLLADA model georeferenced by KML (from Google Earth).

KML can be used to:

• Annotate the Earth.

• Specify icons and labels to identify locations on the surface of the planet.

• Create different camera positions to define unique views for KML features.

• Define image overlays to attach to the ground or screen.

Chapter 4. Geospatial data formats and services 27

• Define styles to specify KML feature appearance.

• Write HTML descriptions of KML features, including hyperlinks and embedded

images.

• Organize KML features into hierarchies.

• Locate and update retrieved KML documents from local or remote network loca-

tions.

• Define the location and orientation of textured 3D objects.

KML files are very often distributed in KMZ files, which are zipped files with a “.kmz”

extension. The contents of a KMZ file are a single root KML document and optionally

any overlays, images, icons, and COLLADA 3D models referenced in the KML.

The KML community is wide and varied. Casual users create KML Placemarks to iden-

tify their homes, describe journeys, and plan cross-country hikes and cycling ventures.

Scientists use KML to provide detailed mappings of resources, models, and trends such

as volcanic eruptions, weather patterns, earthquake activity, and mineral deposits. Real

estate professionals, architects, and city development agencies use KML to propose con-

struction and visualize plans. Students and teachers use KML to explore people, places,

and events, both historic and current. Organizations such as National Geographic, UN-

ESCO, and the Smithsonian have all used KML to display their rich sets of global data.

4.2.2 CityGML

CityGML is an open data model and an XML-based format for the storage and exchange

virtual 3D city models. It is implemented as an application schema for the Geography

Markup Language 3 (GML3), the extendible international standard for spatial data ex-

change issued by the Open Geospatial Consortium (OGC). It defines the classes and

relations for the most relevant topographic objects in cities and regional models with re-

spect to their geometrical, topological, semantical and appearance properties. Included

are generalization hierarchies between thematic classes, aggregations, relations between

objects, and spatial properties. This thematic information goes beyond graphic ex-

change formats and makes it possible to employ virtual 3D city models for sophisticated

Chapter 4. Geospatial data formats and services 28

analysis tasks in different application domains like simulations, urban data mining, fa-

cility management, and thematic inquiries. The OGC Members adopted version 1.0.0

of CityGML as an official OGC Standard in August 2008. In Spring 2012, the OGC

Members approved version CityGML 2.0.0. CityGML is intended to become an open

standard and therefore can be used free of charge.

(a) LOD1. (b) LOD2. (c) LOD3. (d) LOD4.

Figure 4.2: CityGML house model.

Features of CityGML:

• Geospatial information model (ontology) for urban landscapes based on the ISO

191xx family.

• GML3 representation of 3D geometries, based on the ISO 19107 model.

• Representation of object surface characteristics (e.g. textures, materials).

• Taxonomies and aggregations.

– Digital Terrain Models as a combination of (including nested) triangulated

irregular networks (TINs), regular rasters, break and skeleton lines, mass

points.

– Sites (currently buildings; bridges and tunnels in the future).

– Vegetation (areas, volumes and solitary objects with vegetation classifica-

tion).

– Water bodies (volumes, surfaces).

– Transportation facilities (both graph structures and 3D surface data).

– Land use (representation of areas of the earth’s surface dedicated to a specific

land use).

– City furniture.

– Generic city objects and attributes.

Chapter 4. Geospatial data formats and services 29

– User-definable (recursive) grouping.

• Multiscale model with 5 well-defined consecutive Levels of Detail (LOD):

– LOD0 – regional, landscape.

– LOD1 – city, region.

– LOD2 – city districts, projects.

– LOD3 – architectural models (outside), landmarks.

– LOD4 – architectural models (interior).

• Multiple representations in different LODs simultaneously; generalization relations

between objects in different LODs.

• Optional topological connections between feature (sub)geometries.

• Application domain extensions: Specific hooks in the CityGML schema allow to

define application specific extensions, for example for noise pollution simulation.

4.3 OGC web services

As mentioned, CityGML is an application schema of GML. CityGML features can then

be efficiently handled through a Web Feature Service (WFS), an OGC standard designed

to manipulate and retrieve GML-encoded geospatial features. The OGC provides other

two powerful standards for handling geospatial data in different forms and with different

purposes: WMS and WCS. WMS (Web Map Service) dynamically produces spatially

referenced maps from geographic information. WMS yields just a pictorial rendering of

maps in a graphical format, so no detailed information about the underlying data is pro-

vided. WCS (Web Coverage Service) handles geographic data in the form of “coverages”.

A coverage is the digital representation of some spatio-temporal phenomenon defined by

a range of different values for each location/time. Sections 4.3.1, 4.3.2 and 4.3.3 provide a

brief description of WFS, WMS and WCS respectively, outlining their main features and

characteristics. Section 4.3.4 provides some information about GeoServer, the chosen

geospatial server implementing the described standards.

Chapter 4. Geospatial data formats and services 30

4.3.1 Web Feature Service

Web Feature Service (WFS) is an OGC open standard which defines interfaces for data

access and manipulation operations on geographic features using HTTP. Via these in-

terfaces, a client can retrieve, combine, and manage geospatial data encoded in GML

from different sources.

The standard specification defines the following operations:

• GetCapabilities (mandatory). A web feature service must be able to describe

its capabilities. Specifically, it must indicate which feature types it can service and

what operations are supported on each feature type.

• DescribeFeatureType (mandatory). A web feature service must be able, upon

request, to describe the structure of any feature type it can service.

• GetFeature (mandatory). A web feature service must be able to service a request

to retrieve feature instances. In addition, the client should be able to specify which

feature properties to fetch and should be able to constrain the query spatially and

non-spatially.

• GetGmlObject (optional). A web feature service may be able to service a request

to retrieve element instances by traversing XLinks that refer to their XML IDs.

In addition, the client should be able to specify whether nested XLinks embedded

in returned element data should also be retrieved.

• Transaction (optional). A web feature service may be able to service transaction

requests. A transaction request is composed of operations that modify features;

that is create, update, and delete operations on geographic features.

• LockFeature (optional). A web feature service may be able to process a lock

request on one or more instances of a feature type for the duration of a transaction.

This ensures that serializable transactions are supported.

Chapter 4. Geospatial data formats and services 31

Based on the operation descriptions above, three classes of web feature services can be

defined:

• Basic WFS. A basic WFS would implement the GetCapabilities, DescribeFea-

tureType and GetFeature operations. This would be considered a READ-ONLY

web feature service.

• XLink WFS. An XLink WFS would support all the operations of a basic web

feature service and in addition it would implement the GetGmlObject operation for

local and/or remote XLinks, and offer the option for the GetGmlObject operation

to be performed during GetFeature operations.

• Transaction WFS. A transaction web feature service would support all the op-

erations of a basic web feature service and in addition it would implement the

Transaction operation. Optionally, a transaction WFS could implement the Get-

GmlObject and/or LockFeature operations.

4.3.2 Web Map Service

Web Map Service is an OGC open standard for serving georeferenced maps over the

Internet. The Open Geospatial Consortium became involved in developing standards

for web mapping after a paper was published in 1997 by Allan Doyle, outlining a “WWW

Mapping Framework”. The OGC established a task force to come up with a strategy, and

organized the “Web Mapping Testbed” initiative, inviting pilot web mapping projects

that built upon ideas by Doyle and the OGC task force. Results of the pilot projects

were demonstrated in September 1999, and a second phase of pilot projects ended in

April 2000. The Open Geospatial Consortium released WMS version 1.0.0 in April 2000,

followed by version 1.1.0 in June 2001, and version 1.1.1 in January 2002. WMS version

1.3.0, which is currently the last published, has been released in January 2004.

The standard specifies the behavior of a service that dynamically produces spatially

referenced maps from geographic information. WMS can use one or more distributed

geospatial databases as source of geographic information and returns maps in a variety

of formats (JPEG, PNG, GIF, GeoTIFF, SVG, etc) that can be displayed in a browser

application. Note that this standard is only applicable to pictorial renderings of maps

Chapter 4. Geospatial data formats and services 32

in a graphical format, it is not applicable to retrieval of actual feature data or coverage

data values.

WMS is based on a simple HTTP interface which specifies the following operations:

• GetCapabilities (mandatory), returns service metadata, which is a machine-

readable (and human-readable) description of the server’s information content

and acceptable request parameter values. The response to a GetCapabilities re-

quest shall be an XML document formatted according to a standard defined XML

Schema.

• GetMap (mandatory), returns a map. The response to a valid GetMap request

shall be a map of the spatially referenced information layer requested in the desired

style, and having the specified coordinate reference system, bounding box, size,

format and transparency. An invalid GetMap request shall yield an error output in

the requested Exceptions format (or a network protocol error response in extreme

cases).

• GetFeatureInfo (optional), provides more information about features in the pic-

tures of maps that were returned by previous GetMap requests. The canonical

use case for GetFeatureInfo is that a user sees the response of a GetMap request

and chooses a point (I,J) on that map for which to obtain more information. The

server shall return a response according to the requested format if the request is

valid, or issue a service exception otherwise. The nature of the response is at the

discretion of the service provider, but it shall pertain to the feature(s) nearest to

(I,J). This operation is only supported for those Layers for which the attribute

queryable=1 (true) has been defined or inherited.

4.3.3 Web Coverage Service

The Web Coverage Service (WCS) supports electronic retrieval of geospatial data as

“coverages” – that is, digital geospatial information representing space-varying phenom-

ena. A WCS provides access to potentially detailed and rich sets of geospatial infor-

mation, in forms that are useful for client-side rendering, multi-valued coverages, and

input into scientific models and other clients. The WCS may be compared to the OGC

Chapter 4. Geospatial data formats and services 33

Web Map Service (WMS) and the Web Feature Service (WFS). Like them it allows

clients to choose portions of a server’s information holdings based on spatial constraints

and other criteria. Unlike the WMS, which portrays spatial data to return static maps

(rendered as pictures by the server), the Web Coverage Service provides available data

together with their detailed descriptions, defines a rich syntax for requests against these

data, and returns data with its original semantics (instead of pictures) which may be

interpreted, extrapolated, etc. – and not just portrayed. Unlike WFS, which returns

discrete geospatial features, the Web Coverage Service returns coverages representing

space-varying phenomena that relate a spatio-temporal domain to a (possibly multidi-

mensional) range of properties.

Coverages have a domain comprised of regularly (sometimes irregularly) spaced loca-

tions along 0, 1, 2, or 3 axes of a spatial coordinate reference system. Their domain may

also have a time dimension, which may be regularly or irregularly spaced. A coverage

defines, at each location in the domain, a set of fields that may be scalar-valued (such

as elevation), or vector-valued (such as brightness values in different parts of the elec-

tromagnetic spectrum). These fields (and their values) are known as the range of the

coverage.

The coverage model is defined by the OGC standard GML 3.2.1 Application Schema

- Coverages (often referred to as GMLCOV) which in turn is based on the Geography

Markup Language (GML) 3.2. This standard defines an abstract type for coverages

which consists of the following components:

• Coverage domain. The extent where valid values are available.

• Range set. The set of values the coverage consists of, together with their loca-

tions.

• Range type. A type definition of the range set values.

• Metadata. A slot where any kind of metadata can be added.

This abstract coverage is refined into several concrete coverage types, which can be

instantiated.

As coverages are conceptually concisely defined through GML, a natural representation

is GML itself. However, this is not mandatory: any of a series of data formats can be

Chapter 4. Geospatial data formats and services 34

used to encode a coverage, such as GeoTIFF, NetCDF, HDF-EOS, or NITF. As some

of these encoding formats are not capable of incorporating all metadata making up a

coverage, GMLCOV foresees a multi-part MIME encoding (see Figure 4.3) where the

first component encodes the coverage description (domain extent, range type, metadata,

etc) and the second part consists of the range set payload using some encoding format.

Figure 4.3: Different coverage encodings.

The WCS interface specifies three operations that may be requested by a WCS client

and performed by a WCS server:

• GetCapabilities (mandatory). This operation allows a client to request the ser-

vice metadata (or Capabilities) document. This XML document describes the

abilities of the specific server implementation, usually including brief descriptions

of the coverages available on the server. This operation also supports negotia-

tion of the specification version being used for client-server interactions. Clients

would generally request the GetCapabilities operation and cache its result for use

throughout a session, or reuse it for multiple sessions. When the GetCapabilities

operation does not return descriptions of its available coverages, that information

must be available from a separate source, such as an image catalog.

• DescribeCoverage (mandatory). This operation allows a client to request full

descriptions of one or more coverages served by a particular WCS server. The

server responds with an XML document that fully describes the identified cover-

ages.

• GetCoverage (mandatory). This operation allows a client to request a coverage

comprised of selected range properties at a selected set of geographic locations.

The server extracts the response data from the selected coverage, and encodes

Chapter 4. Geospatial data formats and services 35

it in a known coverage format. The GetCoverage operation is normally run af-

ter GetCapabilities and DescribeCoverage operation responses have shown what

requests are allowed and what data are available.

4.3.4 GeoServer

WMS, WFS and WCS are implemented by many geospatial servers. For this project,

GeoServer has been chosen.

GeoServer is an open source software licensed under the GNU General Public License

(GPL). It was started in 2001 and is currently under constant development (the last

stable version, 2.2, has been released in September 2012). Being a community-driven

project, GeoServer is developed, tested, and supported by a diverse group of individuals

and organizations from around the world.

GeoServer is a geospatial server written in Java that allows users to share and edit

geographic data. Designed for interoperability, it publishes data from any major spatial

data source (both vectorial and raster data formats are supported) using the OGC

open standards. GeoServer is the reference implementation of the Web Feature Service

(WFS) and Web Coverage Service (WCS) standards, as well as a high performance

certified compliant Web Map Service (WMS).

4.4 Terrain data management

As introduced in Section 2.1, the implementation of the designed streaming framework

focuses on textured terrain. This Section describes the simple strategy adopted to store

and retrieve terrain data and textures via WMS. Sections 4.4.1 and 4.4.2 provides a

brief description for the basic concepts involved: Digital Elevation Model (DEM) and

heightmap.

The information needed to represent terrain is usually expressed as elevation data stored

in a Digital Elevation Model. A DEM is a collection of values representing the different

elevation of the points composing a surface, so it is in fact a coverage.

Chapter 4. Geospatial data formats and services 36

WCS could seem the right solution to manage and retrieve terrain data, but:

• WCS is the least popular among the OGC web services. Just few efficient imple-

mentations of WCS are available and not so many GISes fully support it, while

WMS and WFS are preferred.

• A graphical representation of a DEM, called heightmap, is enough for a 3D en-

gine to generate the 3D representation of the corresponding piece of terrain. The

additional information provided by a WCS is not needed.

A georeferenced heightmap (usually a gray-scale raster image) can be easily generated

(e.g. with tools like GDAL) from the data contained in a DEM. Such a heightmap,

representing a specific portion of the Earth’s surface, can be easily handled and retrieved

through a Web Map Service. This service allow to retrieve a specific area of a heightmap

(in a light raster format like PNG) by simply defining its geographic bounding box. The

retrieved heightmap chunk can be then directly converted into a 3D mesh representing

the corresponding terrain tile.

The same approach can be used to retrieve textures. Any available WMS layer (or

combination of layers) can be used as texture. Just two WMS calls are so sufficient for

retrieving both the needed data to build a 3D terrain tile and the corresponding texture

to map on it.

The described process is simple, efficient and, very important, is based on a widely

adopted and implemented OGC standard. For these reasons, it is the right choice for

this project.

4.4.1 Digital Elevation Models

Digital Elevation Models (DEMs) are collections of data used to represent the different

elevations of surface area. In their most intuitive form they come as a two-dimensional

matrix, where the rows represent latitudes and the columns longitudes (according to

the coordinate system, different notations may be used). The individual cells are then

filled with the elevation (usually given in meters above or below sea level) for the given

latitude/longitude combination. The resolution at which the equally-spaced elevation

Chapter 4. Geospatial data formats and services 37

samples are captured defines the quality of the model. Most common resolutions go

from 1/6 arc-second to 1 arc-second (about 5 meters and 30 meters respectively in

linear notation).

Figure 4.4: 3D rendering of a DEM of Tithonium Chasma on Mars.

Often the term “Digital Elevation Model” is confused with either the term “Digital Sur-

face Model” (DSM) or the term “Digital Terrain Model” (DTM). In specific literature,

the usage of this terms is not well defined. In most cases a DSM represents the earth’s

surface and includes all objects on it. In contrast to a DSM, a DTM represents the bare

ground surface without any objects like plants and buildings (see Figure 4.5). The term

DEM is often used as a generic term for DSMs and DTMs, only representing height

information without any further definition about the surface. As this project deals with

bare ground surface, henceforth the term DTM will be used.

Figure 4.5: DSM vs DTM.

Digital elevation models may be produced in a number of ways. Currently, remote sens-

ing techniques, such as interferometry, are preferred to direct surveys. DEM are widely

used in many scientific, engineering and technical scopes. Common uses includes: 3D

Chapter 4. Geospatial data formats and services 38

rendering, GIS, surface analysis, creation of relief maps and physical models (for ex-

ample raised-relief maps), terrain analyses in geomorphology and physical geography,

modelling water flow or mass movement (such as avalanches and landslides), infrastruc-

ture design and precision farming and forestry, flight simulation and 3D flight planning,

archeology.

(a) A 3D rendered DTS of an air-
field.

(b) A relief map based on a DTM.

(c) A 3D rendered DTS of a construc-
tion site.

(d) A topographic map combining
DTM, textures and vectorial graph-
ics.

Figure 4.6: Some examples about how a DEM could be used.

4.4.2 Heightmaps

In computer graphics, a heightmap is a raster image used to store elevation data for

3D rendering. A heightmap can be used as pattern for bump mapping or displacement

mapping, or it can be converted into a 3D mesh to reproduce terrain.

A heightmap contains one channel interpreted as a distance of displacement or “height”

from the “floor” of a surface, and sometimes visualized as a gray-scale image, with black

representing minimum height and white representing maximum height. When the map

is rendered, the designer can specify the amount of displacement for each unit of the

height channel, which corresponds to the “contrast” of the image. Heightmaps can be

Chapter 4. Geospatial data formats and services 39

stored in existing gray-scale image formats, with or without specialized metadata, or in

specialized file formats such as Daylon Leveller, GenesisIV and Terragen documents.

(a) Sample heightmap. (b) The same heightmap converted to a 3D
mesh.

Figure 4.7: 3D rendering of a heightmap.

It is also possible to exploit the use of individual color channels to increase detail. For

example, a standard RGB 8-bit image can only show 256 values of gray and hence only

256 heights. By using colors, a greater number of heights can be stored (for an 8-bit

image, 2563 = 16,777,216 heights can be represented (2564 = 4,294,967,296 if the alpha

channel is also used)). This technique is especially useful where height varies slightly over

a large area. In this case, using only gray values, because the heights must be mapped

to only 256 values, the rendered terrain may appear flat, with “steps” in certain places.

Heightmaps are an ideal way to store digital terrain elevations and are widely used in

terrain rendering software and modern video games. They can be generated using real

world elevation data as source (e.g. a DEM). Alternatively, they can be created by

hand with a classical paint program or a special terrain editor. These editors visualize

the terrain in 3D and allow the user to modify its surface. Normally there are tools to

raise, lower, smooth or erode the terrain. Another way to create a heightmap is to use

a random generation algorithm, such as a 2D Perlin noise function.

Chapter 5

Software design and development

5.1 Introduction

Software design is a process of problem-solving and planning for a software solution.

Once the software purpose is identified and the specifications are determined, a plan

for the solution has to be developed. It includes low-level components and algorithm

implementation issues as well as the architectural view.

There are many aspects to consider in the design of a piece of software. The importance

of each should reflect the goals the software is trying to achieve. Some of these aspects

are:

• Extensibility: new capabilities can be added to the software without major

changes to the underlying architecture.

• Robustness: the software is able to operate under stress or tolerate unpredictable

or invalid input.

• Reliability: the software is able to perform a required function under stated

conditions for a specified period of time.

• Fault-tolerance: the software is resistant to and able to recover from failures.

• Security: the software is able to withstand hostile acts and influences.

• Maintainability: the software can be easily maintained in order to isolate/correct

defects, meet new requirements, cope with a changed environment.

40

Chapter 5. Software design and development 41

• Interoperability: the software is able to operate with other products designed

for interoperability.

• Modularity: the resulting software comprises well defined, independent compo-

nents. Each component could be implemented and tested in isolation before being

integrated to form the desired software. This allows division of work and leads to

better maintainability.

• Reusability: the modular components designed should capture the essence of the

functionality expected out of them, nothing more. This single-minded purpose

make the components reusable whenever there are similar needs in other projects.

5.2 Software development process

The software development process defines the sequence of different activities that take

place during software development. The software engineering defines many different

software development models, each one with its own characteristics. The use of a well

defined development model helps to improve the software quality.

Considering the experimental nature of this project, an agile model, based on the itera-

tive/incremental approach, has been chosen.

Figure 5.1: Iterative/incremental software development process.

The basic idea behind this model is to develop a software through repeated cycles (it-

erative) and in smaller portions at a time (incremental), allowing software developers

to take advantage of what was learned during development of earlier parts or versions

Chapter 5. Software design and development 42

of the software. Iterative development starts with an initial planning followed by many

iterations of requirement, analysis, design, testing and implementation steps and ends

with deployment. After each iteration, analysis is done to make sure that the required

functionality is implemented and additional functionalities that need to be implemented

are identified. Such iterations make modification and implementation easy. Iterative

development prescribes the construction of initially small but ever larger portions of

a software project to help all those involved to uncover important issues early before

problems or faulty assumptions can lead to disaster.

In an experimental project, requirements may evolve over time and unexpected issues

may arise. Thanks to its reactivity and flexibility, the agile approach is particularly suit-

able to handle this kind of projects. Agile processes use feedback, rather than rigorous

planning, as their primary control mechanism. The feedback is driven by regular tests

and releases of the evolving software.

5.3 Requirements analysis

Requirements analysis encompasses those tasks that go into determining the needs or

conditions to meet for a new or altered product. Systematic requirements analysis is

also known as requirements engineering and is critical to the success of a development

project.

Requirements must be actionable, measurable, testable, related to identified business

need or opportunities, and defined to a level of detail sufficient for system design. It is

helpful to use some categorization scheme as a checklist for requirements coverage, to

reduce the risk of not considering some important aspects of the system. For example,

requirements may be categorized according to the FURPS+ model, a useful mnemonic

which stands for:

• Functional (features, capabilities, security, etc).

• Usability (ease of use, human factors, documentation, etc).

• Reliability (availability, frequency of failure, recoverability, predictability, etc).

• Performance (response times, throughput, accuracy, resource usage, etc).

Chapter 5. Software design and development 43

• Supportability (adaptability, maintainability, reconfigurability, etc).

The “+” in the acronym indicates auxiliary factors, such as implementation, interface,

operations, packaging and legal. Some of these requirements are collectively called the

quality attributes or quality requirements. These include usability, reliability, perfor-

mance and supportability.

In common usage, requirements are simply categorized as functional or non-functional.

The former defines the desired behavior of a system, specifying the required functions to

be implemented. The latter impose constraints on the design or implementation, rather

than specific behaviors.

A Software Requirements Specification (SRS) includes both functional and non-func-

tional requirements, thus providing a complete description of the behavior of the system

to be developed. Writing use cases is an excellent technique to understand, describe and

document both functional and non-functional requirements, and many developers prefer

them to large, monolithic documents. A use case informally defines the interactions

between external actors and the system under consideration. An actor specifies a role

played by a person or thing when interacting with the system. Use cases treat the system

as a black box, and every interaction with it, including system responses, are perceived

as from an external point of view. This is a deliberate policy, because it forces the

developer to focus on what the system must do, not how it has to be done, and avoids

the trap of making assumptions about how the functionality will be accomplished. A

use case should:

• Describe what the system shall do for the actor to achieve a particular goal.

• Include no implementation-specific language.

• Be at the appropriate level of detail.

• Not include detail regarding user interfaces and screens.

Following is the SRS of the system in analysis. Both functional and non-functional

requirements are documented as use case templates and diagram. Besides the core

functionality of the streaming framework some basic features usually provided by a

standard 3D viewer are considered. These features are completely independent from the

framework logic and have been included just to better contextualize the analysis.

Chapter 5. Software design and development 44

5.3.1 Functional requirements use cases

USE CASE: run on multi-platform

Summary The system should be able to run on multiple platforms and
environments

Priority Desired

Use frequency Always

Actors User

Stakeholders

Prerequisites Different target platforms available

Main scenario Run on multi-platform

Scenario extensions

Notes

Table 5.1: USE CASE: run on multi-platform

USE CASE: view the scene

Summary The system should be able to display a 3D scene incremen-
tally built and dynamically updated at run-time

Priority Essential

Use frequency Always

Actors User

Stakeholders Scene, scene elements

Prerequisites Data loaded and processed

Main scenario Display a 3D scene incrementally built and dynamically up-
dated at run-time

Scenario extensions

Notes

Table 5.2: USE CASE: view the scene

USE CASE: update the scene content

Summary The system should be able to update the content of the scene
according to the current Field Of View (FOV)

Priority Essential

Use frequency Very Often

Actors User

Stakeholders Scene, scene elements

Prerequisites The FOV has changed

Main scenario Update the content of the scene according to the current
FOV

Scenario extensions

Notes

Table 5.3: USE CASE: update the scene content

Chapter 5. Software design and development 45

USE CASE: load terrain

Summary The system should be able to load the proper chunk of a
Digita Terrain Model (DTM) when required

Priority Essential

Use frequency Often

Actors User

Stakeholders DTM, data source

Prerequisites Missing DTM chunk required; required DTM chunk avail-
able

Main scenario Load the proper chunk of DTM when required

Scenario extensions

Notes The loading process is triggered by the observer’s move-
ments: when a “void” region (not yet loaded) is approached,
the corresponding missing data are loaded

Table 5.4: USE CASE: load terrain

USE CASE: load features

Summary The system should be able to load the proper features when
required

Priority Essential

Use frequency Often

Actors User

Stakeholders Features, data source

Prerequisites Missing features required; required features available

Main scenario Load the proper features when required

Scenario extensions

Notes The loading process is triggered by the observer’s move-
ments: when a “void” region (not yet loaded) is approached,
the corresponding missing data are loaded; features may in-
clude buildings, vegetation objects, city furniture, etc

Table 5.5: USE CASE: load features

USE CASE: navigate through the scene

Summary The user should be able to move through the scene

Priority Essential

Use frequency Very Often

Actors User

Stakeholders Camera, scene

Prerequisites Scene rendered

Main scenario The user moves through the scene

Scenario extensions

Notes Basic movements such as pan, zoom and rotate should be
allowed

Table 5.6: USE CASE: navigate through the scene

Chapter 5. Software design and development 46

USE CASE: pick a scene element

Summary The user should be able to pick a scene element by clicking
on it

Priority Optional

Use frequency Sometimes

Actors User

Stakeholders Scene element

Prerequisites Scene rendered

Main scenario The user pick a scene element by clicking on it

Scenario extensions Pick by search

Notes

Table 5.7: USE CASE: pick a scene element

USE CASE: get element information

Summary The system should be able to show information about the
picked element

Priority Optional

Use frequency Sometimes

Actors User

Stakeholders Picked element

Prerequisites Scene rendered and picked element

Main scenario Display information about the picked element

Scenario extensions

Notes

Table 5.8: USE CASE: get element information

USE CASE: get scene information

Summary The system should be able to show information about the
scene

Priority Optional

Use frequency Sometimes

Actors User

Stakeholders Scene

Prerequisites Scene rendered

Main scenario Display scene information

Scenario extensions

Notes

Table 5.9: USE CASE: get scene information

Chapter 5. Software design and development 47

5.3.2 Non-functional requirements use cases

USE CASE: run inside a web browser

Summary The system should be able to run inside a web browser with-
out installing any specific client software

Priority Desired

Use frequency Always

Actors User

Stakeholders

Prerequisites WebGL-compliant web browser

Main scenario The system runs inside a web browser

Scenario extensions

Notes

Table 5.10: USE CASE: run inside a web browser

USE CASE: use hardware acceleration

Summary The system should be able to use hardware acceleration

Priority Essential

Use frequency Always

Actors User

Stakeholders Graphics hardware

Prerequisites Hardware acceleration available

Main scenario Use hardware acceleration

Scenario extensions

Notes

Table 5.11: USE CASE: use hardware acceleration

USE CASE: load terrain via WMS

Summary The system should be able to load chunks of a DTM via
Web Map Service (WMS)

Priority Essential

Use frequency Often

Actors User

Stakeholders DTM, geospatial server

Prerequisites DTM available via WMS

Main scenario Load chunks of DTM via WMS

Scenario extensions

Notes

Table 5.12: USE CASE: load terrain via WMS

Chapter 5. Software design and development 48

USE CASE: load features via WFS

Summary The system should be able to load features via Web Feature
Service (WFS)

Priority Essential

Use frequency Often

Actors User

Stakeholders Features, geospatial server

Prerequisites Features available via WFS

Main scenario Load features via WFS

Scenario extensions

Notes

Table 5.13: USE CASE: load features via WFS

USE CASE: load material textures

Summary The system should be able to load and map textures on
terrain and features

Priority Desired

Use frequency Often

Actors User

Stakeholders Terrain, features

Prerequisites Textures available, 3D models loaded

Main scenario Load and map textures on terrain and features

Scenario extensions

Notes

Table 5.14: USE CASE: load material textures

USE CASE: generate default materials

Summary The system should be able to generate default materials, for
both terrain and features, in case of missing textures/mate-
rial informations

Priority Desired

Use frequency Often

Actors User

Stakeholders Terrain, features

Prerequisites Missing textures

Main scenario Create and apply default materials

Scenario extensions

Notes

Table 5.15: USE CASE: generate default materials

Chapter 5. Software design and development 49

SoftwareRequirements UC Diagram

run on multi-platform

view the scene

load terrain

load features

navigate through the scene

pick a scene element

pick by search
extension points

get element info

get scene info

pan

zoom

rotate

pick by search

inside a web browser

use HW acceleration

via WMS

via WFS

load material textures

generate defaults materials

update the scene content

Geospatial server

User

<<Include>>

<<Extend>>

<<Include>>

<<Include>>

supply

<<Include>>

<<Include>>

<<Include>>

Figure 5.2: Use case diagram for the Software Requirements Specification.

Chapter 5. Software design and development 50

5.4 Software design

The purpose of the design phase is to define the structure of the software. The model

constructed in the software requirements phase is transformed into the architectural

design by allocating functions to software components and defining the control and data

flow between them. This phase may involve several iterations of the design. Technically

difficult or critical parts of the design have to be identified. Prototyping of these parts

of the software may be necessary to confirm the basic design assumptions.

As introduced in Section 2.1, the framework implementation focuses on textured terrain,

while streaming of other geospatial features (buildings, vegetation, city furniture, etc)

is left to future developments (cf. Section 6.2). Sometimes, dealing with just a limited

part of the problem helps to better understand the design steps needed to solve it, and

this is the case. Despite the scope limitation, the designed streaming paradigm has

general validity, and can be applied to more complex environments without substantial

modifications to its logic.

Following is a complete description of the system design. In order to better understand

it, Section 5.4.1 provides a brief introduction to the Three.js architecture and to some

basic 3D rendering concepts. The designed streaming logic is described in Section 5.4.2,

while Section 5.4.3 describes how this logic has been traduced into software components.

5.4.1 Three.js architecture

Three.js is an open source, cross-browser WebGL framework released under MIT License.

It aims to create a lightweight JavaScript 3D engine with a very low level of complexity.

The engine can render 3D graphics using WebGL, the canvas 2D context or SVG and

provides an interface that completely abstracts the underlying rendering mechanisms,

so that the same code can be ported on multiple renderers.

Three.js is a scene-graph based engine built on three basic elements:

• A Scene, containing a hierarchical organized set of 3D objects (that can be added,

removed or updated run-time).

• A Camera, used by the renderer to set the viewable area.

Chapter 5. Software design and development 51

• A Renderer that, receiving a scene and a camera as input, renders the scene

using WebGL (or canvas 2D context, or SVG; henceforth just WebGL will be

considered).

Scene-graph

The scene-graph is a hierarchical data structure used to group 3D objects. It is specif-

ically a tree consisting of parent nodes containing any number of child nodes and child

nodes containing one parent node. The root node, that is the scene object, has no parent

(see Figure 5.3). Each non-root node could be a generic 3D object, a mesh, a line, a

LOD object, a particle, a particle system, a camera, a light, etc (see Figure 5.4).

Using a scene-graph in a 3D engine has multiple benefits:

• Allows to efficiently handle complex 3D scenes.

• Allows to group objects (e.g. group semantically or spatially related objects).

• Simplifies global attributes management (e.g. setting the position of an entire

subtree, instead of setting the position of each object in it).

• Aids in persisting the state of the scene, or part of it (e.g. an entire subtree can

be backed up by saving a reference to its root node).

Sample scene-graph

sampleScene: Scene

cam: PerspectiveCamera ambient: AmbientLight directional: DirectionalLight cubeCluster: Object3D

redCube: Mesh greenCube: MeshblueCube: Mesh

floor: Mesh

Figure 5.3: Object Diagram representing a sample scene-graph.

Chapter 5. Software design and development 52

Three.js Class Diagram - Objects

Scene

Object3D

Camera

Light

Mesh

LOD

Line

Particle

ParticleSystem

Sprite

Bone

PerspectiveCamera

OrthogonalCamera

AmbientLight

DirectionalLight

PointLight

SpotLight

Figure 5.4: Simplified Class Diagram representing Three.js objects.

Chapter 5. Software design and development 53

Camera

A camera model is used by the renderer to project the 3D scene to the screen. The

placement, orientation and settings (FOV, near and far distance, aspect ratio) of the

camera define a view frustum. In 3D computer graphics, the view frustum is the region

of space in the modeled world that may appear on the screen (it is the field of view

of the notional camera). The exact shape of this region varies depending on what

kind of camera lens is being simulated, but typically it is a frustum of a rectangular

pyramid (hence the name). The planes that cut the frustum perpendicular to the viewing

direction are called the near plane and the far plane. Objects closer to the camera than

the near plane or beyond the far plane are not drawn. Sometimes, the far plane is

placed infinitely far away from the camera so all objects within the frustum are drawn

regardless of their distance from the camera.

Figure 5.5: View frustum representation.

The view frustum is used by the renderer to perform two essential processes: culling

and clipping. View frustum culling is the process of removing objects that lie completely

outside the viewing frustum from the rendering process. View frustum clipping is the

process of clipping to the view frustum objects that lie partially outside the viewing

frustum. Rendering these objects, or parts of objects would be a waste of time since

they are not directly visible. To make culling fast, it is done using bounding volumes

surrounding the objects rather than the objects themselves.

Chapter 5. Software design and development 54

1

2

3

4

Figure 5.6: View frustum culling and clipping: 1) view frustum, 2) clipped objects,
3) culled objects, 4) completely visible objects.

WebGL Renderer

The WebGL renderer is the component that actually accesses the WebGL capabilities

and renders the given scene-graph through the given camera. Its main responsibilities

include:

• Transforming scene data from world space to screen space.

• Performing view frustum culling and clipping processes.

• Drawing the transformed scene to the screen.

5.4.2 Streaming logic

The system has to load and render a large-scale DTM stored as a georeferenced gray-scale

heightmap and accessible via WMS (cf. Section 4.4). In order to efficiently accomplish

this task, an incremental approach is applied. Instead of loading the entire DTM at once,

the system load it chunk by chunk following the observer’s movements. The system also

dynamically update the scene so that it contains, at each time, only the terrain chunks

lying inside the field of view or near it. Both the loading and the updating processes

are executed run-time without interfering with the rendering process. This behavior,

Chapter 5. Software design and development 55

graphically summarized by the diagram in Figure 5.7, is mainly based on tiling and

caching.

System behavior

do / Initialize system

do / render

entry / Update scene content
do / Wait for FOV changes

entry / Load the required data
do / Wait for movements

UpdateState

LoadState

RenderingState

InitializationState

Quit

Movement[new data required]

FOV change

Figure 5.7: State Diagram describing how the system behaves.

Chapter 5. Software design and development 56

Tiling

What has been roughly called “chunks” are regularly displaced square tiles of fixed size.

Following is the description of how the tiling process works.

Let S be the starting camera position. At startup, the engine loads a cluster of tiles

consisting of the tile centered on S, which we call pivot, plus a fixed number (at least

one) of bounding rings (see Figure 5.8).

Pivot

First bounding ring

(a) Cluster multiplier set to 1
(default): one bounding ring.

Pivot

First bounding ring

Second bounding ring

(b) Cluster multiplier set to 2: two bounding
rings.

Figure 5.8: The size of a cluster is defined by the cluster multiplier (which can be set
according to the needs).

As soon as the camera crosses the pivot’s boundary, the just reached tile become the

new pivot and the cluster centered on it is considered. Once the new tiles have been

loaded, the process start over (see Figure 5.9).

Cluster

(a) Startup.

Cluster

(b) First move.

Cluster

(c) Second move.

Figure 5.9: The loading process (pivot and cluster in red, loaded tiles in green).

Considering the regular shape of the tiles and their regular distribution, checking the

position of the camera with respect to the pivot and placing the new tiles in the correct

Chapter 5. Software design and development 57

position are quite simple tasks. Let l be the tile’s edge (in 3D units), P = (X,Z) the

pivot position and p = (x, z) the camera position. The camera is inside the pivot if and

only if:

(X − l

2
≤ x ≤ X +

l

2
) ∧ (Z − l

2
≤ z ≤ Z +

l

2
) (5.1)

The other possible cases define the relative position of the camera with respect to the

pivot. The positions of the tiles are computed by simply adding the proper positive or

negative offset (±n · l) to the pivot’s position (see Figure 5.10).

(X,Z)

x<X-l/2 X-l/2≤x≤X+l/2 x>X+l/2

z<Z-l/2

z<Z+l/2

Z-l/2≤z≤Z+l/2
(X-l,Z)

(X-l,Z-l)

(X-l,Z+l) (X+l,Z+l)

(X+l,Z)

(X+l,Z-l)

(X,Z+l)

(X,Z-l)

Figure 5.10: Relative positions with respect to the pivot.

For each tile a two-values index is assigned: (I,J). This index denotes the tile’s position

inside an ideal grid. The first loaded tile has index (0,0), other indices are assigned

accordingly (see Figure 5.11). The index is used as key in the caching process and to

compute the geographic bounding box (bbox) of the tile.

(0,0) (1,0)(-1,0)

(0,1) (1,1)(-1,1)

(0,-1) (1,-1)(-1,-1)

I

J

Figure 5.11: Tiles indexing.

Chapter 5. Software design and development 58

Georeferencing

In order to keep a perfect one to one correspondence between the 3D environment and

the real world, the geographic bbox of each tile is computed with an analogous method.

Given the geographic starting point chosen by the user O=(X,Y) and the tile’s edge l

the bbox of the tile centered on it is computed according to:

minX = X − l

2
,

maxX = X +
l

2
,

minY = Y − l

2
,

maxY = Y +
l

2

(5.2)

This bbox is used as reference: other bboxes are obtained by simply adding the proper

offsets. For example, a tile with index (I,J) has bbox:

minX = O.minX + lI,

maxX = O.maxX + lI,

minY = O.minY + lJ,

maxY = O.maxY + lJ

(5.3)

Note that, in this case, l represents the real-world dimension of the tile, so it is expressed

in meters (or angular units, according to the geographical coordinate systems). This

value is fixed and is obtained by multiplying the tile dimension expressed in pixels for

the heightmap resolution. For example, if we consider 256x256 px tiles of a heightmap

with resolution 2.5 m, the edge of each tile is 640 m long.

Tiles creation

When a tile is loaded, its geographic bbox is used to get, via WMS, the corresponding

heightmap chunk. The obtained raster image is drawn on a canvas element using the

drawImage method. In order to limit the number of vertices composing each mesh, the

image is scaled to a fixed size (default: 256x256px to 32x32px). The elevation data stored

in the heightmap are retrieved using the getImageData method (both getImageData and

Chapter 5. Software design and development 59

drawImage are provided by the 2D context, cf. Sections 3.2.3, 4.4.2). The retrieved data,

properly adjusted to respect the proportions, are used to set the right altitude of each

point composing the 3D mesh which represents the tile. Another WMS call is needed

to retrieve the texture to map on the 3D mesh (any available layer, or combination of

layer can be used). Once the texture is applied, the tile can be rendered.

(a) Heightmap. (b) Texture (orthophoto).

Figure 5.12: An heightmap and the corresponding texture.

The described approach based on tiling has a drawback. Very often, adjacent tiles do

not match perfectly. The reason is simple: the corresponding points on the shared edge

have different elevation values. To (partially) solve this problem, the following strategy

has been employed.

For each tile we load not only its heightmap (core), but also the heightmaps corre-

sponding to the adjacent tiles (support). In order to build the 3D mesh we consider the

interior points of the core heightmap and the proper sides of the support heightmaps

(see Figure 5.13). Exploiting this trick, it is possible to match adjacent tiles in exchange

for a negligible loss of information. This strategy may seem quite onerous. However the

additional heightmaps are cached by the browser, so they are preserved for future uses.

Figure 5.13: A trick to match tiles (loaded heightmaps in green, considered data in
red).

Chapter 5. Software design and development 60

Some (rare) mismatches may still arise between corners, so this strategy needs to be

improved (cf.Section 6.2).

Scene updating and caching

As mentioned, the scene is constantly updated so that it contains, at each time, only

a limited number of tiles (those lying inside the view frustum or near it). The logic

underlying this process is following described.

Whenever the camera changes its target, the view frustum is computed and projected

on the horizontal plane. The projection of each vertex falls on a specific tile with index

(Ik, Jk), where k identifies the vertex. The set of tiles to be placed into the scene-graph

includes all the those with index (I, J) such that:

mink{(Ik, Jk)} ≤ (I, J) ≤ maxk{(Ik, Jk)}

Figure 5.14 graphically describes this behavior.

Frustum

Visible Tiles

Figure 5.14: Tiles to be placed into the scene-graph (light green) according to the
current view frustum (green)

Once such a set is defined, the included tiles not yet in scene are added to it, while the

not included tiles still in scene are removed.

Chapter 5. Software design and development 61

When a tile is removed, it is not destroyed but stored into a cache (using its index as

key). Therefore, the updating process simply moves a reference to the tile between the

scene-graph and the cache.

The cache can contain just a limited number of tiles. Once the limit is reached, the

cache is purged according to a policy based on creation time and proximity to the

current camera position.

5.4.3 System architecture

The system architecture is quite simple. The described logic is implemented by a lim-

ited number of well defined software components. Each component is responsible for a

particular step of the streaming process previously described.

The source code is organized in modules, according to the structure proposed by Dojo

Toolkit (cf. Section 3.4.1). Following are the defined modules accompanied by a brief

description of their roles:

• view.Main. Responsible for the system initialization, it sets up the rendering

context (builds the renderer and attach it to a canvas element) and the 3D en-

vironment (initializes scene, camera, controls, lights, sky-box, etc), starts and

handles the rendering loop and interacts with the underlying streaming engine.

• view.shared. Stores some basic configuration values (tile edge, FOV, near and

far distance, etc) which are shared by each module.

• stream.Engine. This is the core component, responsible for the tiling and the

caching processes described in the previous section. It checks the camera position

and its field of view, triggering a new load or update process when needed.

• stream.TileManager. Handles the tiles creation process and manage the cache.

• model.Tile. Defines the Tile object and the interface needed to handle it (geo-

referencing, 3D model building, texturing).

• utils.Frustum. Provides utility functions used by the Engine to compute the

current view frustum and define which tiles to place into the scene-graph.

Chapter 5. Software design and development 62

• utils.wms. Provides utility functions for building WMS request URLs.

• utils.Cache. Defines the Cache object (implemented as an associative array) and

the interface needed to manage it.

5.5 Development work-flow

The development process has been engineered to keep track of code changes and bugs.

This allows a better control of the project life cycle and permits easy backup and recovery

in case of data loss or bad code. The aim of this strategy is to be proactive and not

reactive while concentrating on code quality to minimize rework.

Development tools are an essential part of this process, following are the ones used in

this project:

• Integrated Development Environment (IDE): Eclipse. Eclipse is an open

source IDE maintained by the Eclipse Foundation and released under the Eclipse

Public License (EPL). It is written primarily in Java and in its default form it is

meant for Java developers. Users can extend its capabilities by installing plug-ins

written for the Eclipse software framework, such as development toolkits for other

programming languages, and can write and contribute their own plug-in modules.

• Version Control System (VCS): Git. Git is a distributed VCS with an emphasis

on speed. Git was initially designed and developed by Linus Torvalds for Linux

kernel development. Every Git working directory is a full-fledged repository with

complete history and full revision tracking capabilities, not dependent on network

access or a central server. Git’s current software maintenance is overseen by Junio

Hamano. Git is a free software distributed under the terms of the GNU General

Public License (GPL) version 2.

The main goals of the defined work-flow are the following:

• Maintain a local copy of the project up to date with the latest version in the

repository.

• Keep the repository up to date with latest code changes.

Chapter 5. Software design and development 63

In order to achieve these goals, the following tasks have been followed on regular basis:

• Update local copy with the latest version in the repository.

• Make changes to the local copy.

• Publish changes.

5.5.1 Documentation

As previously mentioned, this is an experimental project designed to be further devel-

oped, possibly by different people. For this reason, comprehensibility is a crucial aspect.

In order to support further development and code analysis, a simple, but exhaustive

documentation has been produced. Moreover, the code has been organized according

to widely understandable patterns and many comments have been provided to improve

the comprehensibility.

Chapter 6

Results and future developments

6.1 Development results

The result of the development process is a fully functional 3D viewer with basic navi-

gation features. This viewer implements the designed streaming strategy with excellent

results in terms of performances (50-60 fps during navigation with occasional drops to

30-40 fps while loading) and memory usage (20-30 MB).

6.1.1 Testing data

The viewer streams a DTM (resolution: 2.5 m) covering an area of about 72 Km2

around Caldaro Sulla Strada del Vino (Bz, Italy). The native ArcINFO Ascii Grid files

has been converted to a GeoTIFF grey-scale heightmap to be stored on GeoServer and

retrieved via WMS. The 3D model has been textured using different available WMS

layers (default: orthophoto).

6.1.2 Testing platform

• CPU: Intel Core 2 Quad Q9450 2.66 GHz.

• GPU: Amd Radeon HD5870.

• System memory: 8 GB DDR2 800 MHz.

• Video memory: 1 GB GDDR5 4800 MHz

64

Chapter 6. Results and future developments 65

• OS: Microsoft Windows (8), Apple Mas OS X (Snow Lion), GNU Linux (Ubuntu

12.04).

• Web Browser: Mozilla Firefox (16.0.1), Google Chrome (22.0.1229.94).

6.1.3 Screenshots

Figure 6.1: Screenshot - 1.

Figure 6.2: Screenshot - 2.

Chapter 6. Results and future developments 66

Figure 6.3: Screenshot - 3.

Figure 6.4: Screenshot - 4.

Chapter 6. Results and future developments 67

Figure 6.5: Screenshot - 5.

Figure 6.6: Screenshot - 6.

Chapter 6. Results and future developments 68

6.2 Future developments

The developed software is a fully functional base on which develop a complete streaming

system for three dimensional geospatial data. Future developments include:

• Improvements:

– Tiles matching system refinement.

– Heightmaps processing through shaders.

– Navigation system refinement.

– Improved lights and shadows.

• New features:

– Level Of Detail (LOD) system.

– Streaming of CityGML-encoded geospatial features retrieved via WFS (Web

Feature Service).

Bibliography

[1] Web Hypertext Application Technology Working Group (WHATWG). HTML liv-

ing standard, September 2012. URL http://whatwg.org/html.

[2] World Wide Web Consortium (W3C). HTML5 working draft, March 2012. URL

http://www.w3.org/html5.

[3] Khronos Group. WebGL 1.0 specification, February 2011. URL https://www.

khronos.org/registry/webgl/specs/1.0/.

[4] Aaftab Munshi, Dan Ginsburg, and Dave Shreiner. OpenGL ES 2.0 Programming

Guide. Addison-Wesley, 2008. ISBN 978-0321502797.

[5] jQuery website. URL http://jquery.com.

[6] Dojo Toolkit website. URL http://dojotoolkit.org.

[7] C3DL website. URL http://www.c3dl.org.

[8] SpiderGL website. URL http://spidergl.org.

[9] Three.js website. URL http://threejs.org.

[10] Open Geospatial Consortium (OGC) website. URL http://threejs.org.

[11] Open Geospatial Consortium (OGC). KML Standard Specification, April 2008.

URL http://portal.opengeospatial.org/files/?artifact_id=27810.

[12] Open Geospatial Consortium (OGC). CityGML Standard Specification, April 2012.

URL https://portal.opengeospatial.org/files/?artifact_id=47842.

[13] Open Geospatial Consortium (OGC). WFS Standard Specification, May 2005. URL

http://portal.opengeospatial.org/files/?artifact_id=8339.

69

http://whatwg.org/html
http://www.w3.org/html5
https://www.khronos.org/registry/webgl/specs/1.0/
https://www.khronos.org/registry/webgl/specs/1.0/
http://jquery.com
http://dojotoolkit.org
http://www.c3dl.org
http://spidergl.org
http://threejs.org
http://threejs.org
http://portal.opengeospatial.org/files/?artifact_id=27810
https://portal.opengeospatial.org/files/?artifact_id=47842
http://portal.opengeospatial.org/files/?artifact_id=8339

Bibliography 70

[14] Open Geospatial Consortium (OGC). WMS Standard Specification, March 2006.

URL http://portal.opengeospatial.org/files/?artifact_id=14416.

[15] Open Geospatial Consortium (OGC). WCS Standard Specification, March 2008.

URL http://portal.opengeospatial.org/files/?artifact_id=27297.

[16] Open Geospatial Consortium (OGC). GML 3.2.1 Application Schema - Cover-

ages (GMLCOV), May 2012. URL https://portal.opengeospatial.org/files/

?artifact_id=48553.

http://portal.opengeospatial.org/files/?artifact_id=14416
http://portal.opengeospatial.org/files/?artifact_id=27297
https://portal.opengeospatial.org/files/?artifact_id=48553
https://portal.opengeospatial.org/files/?artifact_id=48553

Acknowledgements

I would like to thank everyone assisted (and beared) me during my research, especially

my family and my friends in 3DGIS.

71

	Abstract
	List of Figures
	List of Tables
	Acronyms
	1 Introduction to 3D GIS
	1.1 Geographic Information System
	1.2 Adding the third dimension: 3D GIS

	2 Project requirements analysis
	2.1 Problem definition
	2.2 Basic project requirements

	3 Development platform
	3.1 Overview
	3.2 HTML5
	3.2.1 History
	3.2.2 Features overview
	3.2.3 The canvas element

	3.3 WebGL
	3.3.1 History
	3.3.2 OpenGL ES
	3.3.3 OpenGL ES 2.0 Graphics pipeline

	3.4 Frameworks selection
	3.4.1 JavaScript framework selection
	3.4.2 WebGL framework selection

	4 Geospatial data formats and services
	4.1 Overview
	4.2 OGC 3D-capable formats
	4.2.1 KML
	4.2.2 CityGML

	4.3 OGC web services
	4.3.1 Web Feature Service
	4.3.2 Web Map Service
	4.3.3 Web Coverage Service
	4.3.4 GeoServer

	4.4 Terrain data management
	4.4.1 Digital Elevation Models
	4.4.2 Heightmaps

	5 Software design and development
	5.1 Introduction
	5.2 Software development process
	5.3 Requirements analysis
	5.3.1 Functional requirements use cases
	5.3.2 Non-functional requirements use cases

	5.4 Software design
	5.4.1 Three.js architecture
	5.4.2 Streaming logic
	5.4.3 System architecture

	5.5 Development work-flow
	5.5.1 Documentation

	6 Results and future developments
	6.1 Development results
	6.1.1 Testing data
	6.1.2 Testing platform
	6.1.3 Screenshots

	6.2 Future developments

	Bibliography
	Acknowledgements

