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Chapter 1

Introduction

Yang-Mills theories underlie contemporary particle physics and in
particular they are signi�cant for the description of fundamental
forces of nature, excluding gravitation. The key idea behind them
is that each interaction force can be interpreted as the curvature
of a connection form over some principal bundle. The choice of the
structure group for the bundle is dictated by the internal symmetries
of the speci�c fundamental interaction we are considering, while the
base manifold usually coincides with the Minkowsky space of special
relativity. In the standard model of particle physics the gauge group
is U(1)×SU(2)×SU(3), where U(1)×SU(2) expresses the electro-
weak interaction, while SU(3) models the strong force. Chapter 2
will be devoted to the study of the geometrical framework of these
physical theories.

In the �rst section we de�ne the concept of Lie group G and the
associated Lie Algebra g. In particular, we also analyse the action
of Lie groups on manifolds which underlies the theory of connec-
tions. In the second section instead we develop the theory of bun-
dles, focusing on vector bundles and principal �bre bundles over
some manifold M . We characterize principal bundles proving that
given a Lie group G, a covering U = {Ui}i∈I of the base manifold
M , and a family of maps gij ∈ C∞(Ui ∩ Uj, G) satisfying the cocy-
cle conditions, then there exists a unique G-principal bundle (up to
isomorphism) π : P → M , whose transition functions are exactly
the family {gij}. This characterization for bundles will be useful in
the attempt of de�ning Sobolev bundles.

We de�ne connections both on vector bundles and principal �bre
bundles. The �rst one are not essential to this work, but they are
studied here because in Chapter 5 the Levi-Civita connection, which
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is a special connection on Riemannian manifolds (completely deter-
mined by the metric itself), will emerge naturally in the study of the
Euler-Lagrange equations of weakly harmonic maps. For the same
reason, we will also recall the concept of Shape operator.

Given a principal �bre bundle π : P → M with structure group
G, we present two equivalent de�nitions of connection. Indeed, one
may see a connection as a right equivariant horizontal distribution
Γ. To such a distribution Γ we can uniquely associate a g-valued
di�erential 1-form ω on P , called connection form, that is a pseu-
dotensorial form of type Ad, and whose values on a fundamental
vector �eld A] associated to an A ∈ g are identically A. We show
that also the inverse is true, namely that given a g-valued di�eren-
tial 1-form ω on P satisfying the two aforementioned properties, we
can build a unique equivariant horizontal distribution Γ associated
to ω. Therefore, the two de�nitions are actually equivalent.

The physical �elds Yang-Mills theories deal with, that in physics lit-
erature are called gauge potentials, are representations on the base
manifold of these connection forms. Namely, given a G-principal
bundle π : P → M and A = {(Ui, χi)}i∈I an atlas for it, then the
gauge potentials of a connection ω are the local g-valued di�erential
1-forms Ai := s∗i (ω), where si : Ui → π−1(Ui) are the local trivial
cross sections associated to the atlas A. In Proposition 2.3.25, we
show that the family {Ai}i∈I satis�es the fundamental relation

Aj = g−1
ij dgij + g−1

ij Aigij in Ui ∩ Uj (1.1)

called compatibility condition, where G is a matrix Lie group, and
gij are the transition functions associated to A. It is also shown that
conversely if a family {Ai}i∈I of g-valued 1-forms on the covering U
satis�es (1.1), then there exists a unique connection ω on P such
that s∗i (ω) = Ai for each i ∈ I. We will use this characterization to
de�ne Sobolev connections.

Once the theory of connections is established we de�ne the most
important geometrical object, the one that from a physical point of
view should express the forces determined by the interacting par-
ticles: the curvature form Ω. It is de�ned as the di�erential of a
connection form ω computed along the horizontal directions.
Just as a connection admits a local representation so does its cur-
vature Ω , whose pull-back s∗Ω via some cross section s is called
local �eld strength, and it is denoted as FA, where A := s∗ω. Un-
der a local change of gauge g, as the local gauge potential trans-
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forms from A to Ag via the compatibility condition (1.1), the �eld
strength FA transforms to FAg , which turns out to be the adjoint
through g−1 of FA. Using Cartan structure equation, one proves that
FA = dA+ [A,A], where the g-valued two form [A,A] is de�ned by
[A,A](X, Y ) = A(X)A(Y ) − A(Y )A(X) for each vector �eld X, Y .
Once we endow the Lie algebra g with an Ad-invariant scalar prod-
uct, and the base manifoldM with a metric, we can norm pointwise
the local �eld strength in M . The square of such a norm will be our
Lagrangian, and the part of Analysis will be entirely devoted to the
study of the properties of the corresponding functional, which will
be then de�ned on the space of local gauge potentials.

In the �rst chapter devoted to the analytic part, called Hodge the-
ory, we start by de�ning di�erential forms over some domain in Rn.
In particular we generalize these de�nitions in order to get Sobolev
di�erential forms, and we state some technical results that will be
useful in order to develop properly the concepts of Sobolev bundles
and Sobolev connections.

Indeed, the study of the minimization problem requires more generic
structures, and we need to relax the regularity of both the bun-
dle and the connection. We consider for an open bounded smooth
domain Ω ⊂ Rn a covering U = {Ui}i∈I , and de�ne a W 2,p G-
principal Sobolev bundle P , for 1 < p < ∞, as a family of maps
gij ∈ W 2,p(Ui ∩ Uj, G) satisfying the cocycle conditions. As already
observed by T.Isobe in [19], W 2,p(Uij, G) is a topological group, and
so the cocycle conditions on the family {gij} still make sense. We
conclude the introduction of Sobolev bundles by generalizing the
geometrical concept of equivalent bundles, to the case of Sobolev
bundles.
Once a W 2,p-principal Sobolev bundle P = {(Uij, gij)} is given, we
de�ne a Sobolev connection on it as a family of maps
Ai ∈ (W 1,p∩L2p)(Ui, T

∗Ui⊗g) such that the compatibility condition
holds in the overlaps Uij. The request for the connection to be also
in L2p is fundamental for the compatibility condition to hold. How-
ever, when 2p = n, the Sobolev embedding W 2,p(Ui, T

∗Ui ⊗ g) ↪→
L2p(Ui, T

∗Ui ⊗ g) holds, and therefore it is su�cient to ask W 1,p-
regularity for the family {Ai}i∈I . For this reason we call the dimen-
sion n = 2p critical dimension. In this work we focus on the case
n = 4, p = 2 and we will therefore work in the critical setting.

In critical dimension, we consider a Sobolev bundle P = {(Uij, gij)}
in which is de�ned a Coulomb connection {Ai}i∈I , namely a con-
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nection satisfying d?Ai = 0, for each i ∈ I. These bundles are of
particular interest because the Coulomb condition on the connec-
tion, leads to a PDE solved by the transition functions gij, namely

∆gij = dgij · Aj − Ai · dgij in Uij (1.2)

which increases the regularity of gij. In particular we will show that
eachW 2,2-Coulomb bundle is locally aW 2,(2,1)-bundle (see [33]) and
by the Sobolev embeddingW 2,(2,1) ↪→ C0 in dimension four, it holds
that gij ∈ Cloc(Uij, G). Moreover, if we assume that the L4-norm
of the Coulomb connection is under a certain threshold, we can
even say that the bundle is W 2,p locally, with 2 < p < 4. Since
such a threshold is scale invariant, from this last result we can infer
that there exists a re�nement of the covering, with respect to which
the bundle is W 2,p. The Hölder's regularity of Coulomb bundles in
critical dimension was proved in [40], and here it will be crucial in
Theorem 4.3.10. Finally, in the last subsection we state and prove
a remarkable result of K.Uhlenbeck [44] which tells us that if two
W 2,p-bundles, with 2 < p < 4, are L∞-close enough (depending on
the cardinality of the covering of Ω) then they are W 2,p-equivalent.

Once all the geometric and analytic tools are de�ned, we are ready
to present the Plateau Problem for the Yang-Mills functional. We
will mainly work with the trivial bundle P = B4 × G, where B4 is
endowed with the Euclidean metric, and consider over it the space
of connections W 1,2(B4, T ∗B4 ⊗ g).
Choosing a g-valued 1-form η out of the space H

1
2 (∂B4, T ∗∂B4⊗g),

the Plateau problem consists in proving whether the in�mum

inf

{
YM(A) :=

∫
B4

|FA|2dx : A ∈ W 1,2
η (B4, T ∗B4 ⊗ g)

}
(1.3)

is attained by someA0 ∈ W 1,2
η (B4, T ∗B4⊗g), whereW 1,2

η (B4, T ∗B4⊗
g) is the space of connections over the trivial bundle whose tangen-
tial component is equal to η. Since the pointwise norm of the �eld
strength is Ad-invariant, the Lagrangians of two gauge equivalent
potentials always coincide, and this realizes a huge invariance group
for the Yang-Mills functional. Classical variational methods here
fail, since such invariance group makes the functional non coercive,
and therefore minimizing sequences are not necessarily weakly com-
pact. We will study the problem both in the Abelian and in the non
Abelian cases.

In the �rst case the non linear term [A,A] inside the �eld strength

7



vanishes identically, and thus we bound the Yang-Mills functional
from above by the more regular Dirichlet energy functional E, which
agrees with the �rst if and only if the connection is Coulomb.
This bears similarities with the approach to the classical Plateau
problem, where instead of studying the surface area functional A(u)
one works with the Dirichlet integral D(u), which agrees with the
�rst one when u is weakly conformal. In particular, we see that
Coulomb connections in the Yang-Mills Plateau problem are the
equivalent of weakly conformal maps in the classical Plateau prob-
lem. This parallelism is explored in Subsection 4.2.1.
The functional E turns out to be coercive inW 1,2

η (B4, T ∗B4⊗g) and
together with its convexity this leads to the existence of a unique
minimizer for E. In particular the Euler-Lagrange equations point
out that it has harmonic components, and is a Coulomb connection.
From this, thanks to the existence of a Coulomb gauge for each
connection proved in Proposition 4.2.1, and the invariance of the
Lagrangian of the Yang-Mills functional with respect to a change of
gauge, one proves that the minimum for E is a minimum also for
the Yang-Mills functional, and the Plateau problem when G = U(1)
is solved.

When G is a compact and connected non Abelian matrix Lie group,
the above technique does not work anymore due to the presence
of the nonlinear term [A,A] in the �eld strength, and therefore we
need to proceed di�erently. In order to �nd a bounded minimizing
sequence we present a result by K.Uhlenbeck [44], which assures that
if the value of the Yang-Mills functional is under a certain threshold
then one can �nd a change of gauge with respect to which the W 1,2-
norm of the gauge equivalent connection is bounded from above by
YM . This result is actually valid for each domain di�eomorphic to
B4, and the threshold, which depends on G and on the domain, is
scale invariant. By exhibiting a bound from above of the Yang-Mills
functional in terms of the H

1
2 -norm of the �xed boundary potential

η, we identify a subdivision in the study of the minimization prob-
lem.

Indeed, when the norm of the prescribed boundary connection is
small enough, by virtue of K.Uhlenbeck Small Energy Theorem,
each element of a minimizing sequence in W 1,2

η admits a gauge
change such that the resulting new sequence is bounded, and there-
fore weakly converging. The tangential component of the minimum
turns out to be gauge equivalent to the �xed boundary potential η
for a gauge on the boundary g ∈ H 3

2 (∂B4, G). Here the Yang-Mills
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Plateau problem meets the extension problem for Sobolev maps be-
tween manifolds. Indeed, if a W 2,2-extension of g exists then this
provides us the existence of a solution to the minimization problem.
Unluckily this is not always possible, and in Chapter 5 we will give
some counterexamples. However, a good bound on the H

1
2 -norm of

dg allows us to extend g to the whole B4, as it will be proved in
Chapter 5. In this case, the condition on the H

1
2 -norm of η trans-

lates in a condition on the H
1
2 -norm of dg, and therefore assuming

‖η‖
H

1
2
small enough we can extend g to the whole B4.

The problem becomes more subtle when we relax the hypothesis on
the norm ‖η‖

H
1
2
, since in this case we cannot apply K.Uhlenbeck

Theorem globally on B4. However, we prove that up to a �nite set of
points {P1, ..., PN} ⊂ B4, called singularities, one can locally apply
the Small Energy Theorem to a minimizing sequence of connections
{Ak}k ⊂ W 1,2

η , producing therefore a sequence of Coulomb Sobolev
bundles Pk := {(gijk , Uij)} with base manifold Cδ ⊂ B4, that are
W 2,p-equivalent to the trivial bundle, for a �xed 2 < p < 4. The
submanifold Cδ of B4 is given by the complement in B4 of neigh-
bourhoods of radii δ of the singularities, and U = {Ui}i∈I is a �nite
covering for Cδ, that in the proof of the theorem will be made of
balls. The diameter of each element of the covering depends on δ.
These results are obtained in Theorem 4.3.10, and here the afore-
mentioned observation on the scale invariance of the threshold both
of the Small Energy Theorem and of Lemma 3.2.15 on Hölder's reg-
ularity of Coulomb bundles, is crucial.
The sequence {Pk}k converges weakly in W 2,p to a limit bundle P∞
in which is de�ned the limit connection A∞. We can apply Lemma
3.2.18 on the W 2,p-equivalence of L∞-near Sobolev bundles getting
therefore that also the limit bundle P∞ is trivial.
We repeat the above argument taking always smaller neighbour-
hoods of the singularities points P1, ..., PN , letting therefore δ → 0,
in order to obtain a minimizer in W 1,2

loc (B4 \ {P1, ..., PN}). At this
point we apply an improved version of the celebrated result by
K.Uhlenbeck on the removability of singularities, see [45], that in-
deed guarantees the existence of a local gauge change that trans-
forms the minimizer in a connection with �nite W 1,2(B4)-norm.
While the Removable singularities Theorem due to K.Uhlenbeck is
proved only for Yang-Mills �elds, namely solutions to the Euler-
Lagrange of YM , the one we prove works for every W 1,2 connection
with singularities, under the only condition of �nite Yang-Mills en-
ergy. It was �rst observed by T.Rivière and M.Petrache in [33], and

9



the local W 2,(2,1)-regularity of W 2,2-Coulomb bundles underlie its
proof.
Once we have removed the singularities of the minimizer, we show
that its tangential component is gauge equivalent to the prescribed
boundary connection for a gauge g ∈ H 3

2 (∂B4, G). In contrast with
the previous case, now that we have dropped the condition on the
H

1
2 -norm of η, we are no longer able to bound properly the H

1
2 -

norm of dg and therefore, we cannot assure the existence of a W 2,2

extension of it. The most we can say therefore, is that there exists
a minimizer of the Yang-Mills functional in the space of connections
with tangential component gauge equivalent to η, for some gauge of
the boundary.

In the last chapter of this thesis we study the extension problem. In
particular, relating it to the problem of weakly harmonic maps, we
exhibit some counterexample of functions, with values in some man-
ifold, that do not admits extensions with the required regularity. In
the last subsection, instead, we give a proof of the extendibility of a
g ∈ H 3

2 (∂B4, G) which has H
1
2 -norm of the di�erential dg under a

certain threshold, depending on the target group G, and the domain.
The proof is obtained following a reasoning of F.Bethuel in [5], which
allows to extend the map to some U ∈ W 2,2(B4 \ Bρ(0), G), with
0 < ρ < 1. One can prove that U is continuous in ∂Bρ(0), and using
the condition on the H

1
2 -norm of dg, we extend U to the whole B4

thanks to the exponential map.
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Chapter 2

Di�erential geometry

2.1 Lie groups

De�nition 2.1.1. A lie group is a group G endowed with a dif-
ferentiable structure relative to which the product G × G → G
((g1, g2) 7→ g1 · g2), and the inverse G → G (g 7→ g−1) are di�eren-
tiable maps. We will denote the identity with e ∈ G.

If G is a Lie group and h ∈ G, we de�ne the left and right
multiplication for h as follows:

Lh : G −→ G Rh : G→ G

g 7→ h · g g 7→ g · h
and these maps are clearly di�eomorphisms.

Example 2.1.2. The following are some examples of Lie Groups

1) (R \ {0}, ·) is a Lie group.

2) If we call Mn(R) the set of real n×n matrices, we can identify
it with Rn2

. Then we have that GL(n,R) = {A ∈ Mn(R) :

det(A) 6= 0} is a open subset of Rn2
, and thus it is a di�er-

entiable manifold. Moreover, the composition of matrices is
smooth with respect to this di�erentiable structure, and there-
fore GL(n,R) is a Lie Group.

De�nition 2.1.3. Let G be a Lie group and H a subgroup of G.
We say that H is a regular Lie subroup of G if it is a submanifold
of G.
If H is an immersed submanifold and at the same time a Lie group
with respect to this di�erential structure, we callH a Lie subgroup
of G.
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Clearly a regular Lie subgroup is a Lie group. Indeed · : H×H →
H can be decomposed as i : H ×H ↪→ G × G → G where the last
row is the product. By de�nition of submanifold we have that the
embedding of H into G is di�erentiable, and so is also the compo-
sition of the embedding of H × H into G × G with the algebraic
product.

Example 2.1.4. The subgroup O(n) :=
{
A ∈ GL(n,R) : AAT = In

}
of GL(n,R) is a regular Lie subgroup. To see this observe that the
map S : GL(n,R) → Mn(R) de�ned as S(A) = AAT , is di�eren-
tiable and has no critical points1. Thus, the preimage of the identity
In, which clearly coincides with O(n), is a submanifold of GL(n,R).
Moreover, SO(n) is the connected component of O(n) containing
the identity, and thus it is also a regular Lie subgroup.

Example 2.1.5. With a similar argument one can prove that also
GL(n,C) is a Lie group, and that both
U(n) =

{
U ∈ GL(n,C) : UU

T
= In

}
and SU(n) are regular Lie

subgroups.

2.1.1 Lie Algebra

De�nition 2.1.6. Consider on a vector space V a bilinear map
[·, ·] : V × V → V such that :

1) [v, w] = −[w, v] for every v, w ∈ V

2) [v, [w, u]] + [w, [u, v]] + [u, [v, w]] = 0 for every v, w, u ∈ V

Then we call V a Lie algebra.

Example 2.1.7. The following are examples of Lie Algebras

1) Let M be a manifold, and τ(M) the space of vector �elds over
M , then τ(M) with the usual bracket Lie operation is a Lie
Algebra.

2) (R3,×), where × is the classical external product, is a Lie Al-
gebra.

De�nition 2.1.8. If V is a Lie algebra, and W is a subspace of V
such that [v, w] ∈ W ∀w, v ∈ W , then we say that W is a subalge-
bra.
Furthermore, if V1 and V2 are Lie algebras, we say that a linear map

1If M,N are manifolds and φ : M → N is di�erentiable, then p ∈ M is a critical point if
dφp : TpM → Tφ(p)N is not surjective
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f : V1 → V2 is a lie algebra morphism if f([v, w]) = [f(v), f(w)],
for each v, w ∈ V1.

Example 2.1.9. A remarkable example of Lie Algebra morphism is
the following. Let M,N be two n-dimensional manifolds and φ :
M → N a di�eomorphism. Furthermore, let φ∗ : τ(M) → τ(N),
the map that to each X ∈ τ(M) associates the vector �eld over
N , φ∗(X)y = (dφ)φ−1(y)(X) for each y ∈ N . Then we have that
[φ∗(X), φ∗(Y )] = φ∗([X, Y ]) for each X, Y ∈ τ(M).

De�nition 2.1.10. Let G be a Lie group. We de�ne the following
subalgebra of τ(G). If X ∈ τ(G) we say that X is left invariant if
for every h ∈ G, (dLh)g(Xg) = Xhg.

The following proposition establishes that the set of left invari-
ant vector �elds is actually a vector space, and furthermore it is a
sublagebra of τ(G).

Proposition 2.1.11. The set g of all left invariant vector �elds is
a subalgebra of τ(G). Moreover, there is an isomorphism between g
and TeG

Proof. If X, Y ∈ g, h ∈ G and a, b ∈ R then (dLh)g(aX + bY )g =
a(dLh)g(Xg)+b(dLh)g(Yg) = (aX+bY )hg. Besides, (dLh)g[X, Y ]g =
[dLh(X), dLh(Y )]hg since Lh is a di�eomorphism, and the last term
is equal to [X, Y ]hg because X and Y are both left invariant.
Finally observe that we can de�ne the following map

f : TeG −→ g

v 7→ X, Xg := (dLg)ev

which is clearly linear and injective. f is also onto, indeed if X ∈ g,
then f(Xe) is exactly X. Observe that this in particular means that
the values of a left invariant vector �eld are completely determined
by its value at the identity.

De�nition 2.1.12. We call the Lie Algebra of G the subalegbra
of τ(G) made of left invariant vector �elds. If v, w ∈ TeG we de�ne
[v, w] := [f(v), f(w)]e, and TeG with this operation is a Lie Algebra
too. Thanks to the proposition above we see that f is a Lie algebra
isomorphism. From now on we will identify TeG with g.

It is well known that a vector �eld over a manifold produces
locally a �ow. What is new now, is that if G is a Lie group, and
the vector �eld is in the Lie algebra of G, then the �ow is a local
group homomorphism between a neighbourhood of zero in R and G
itself. More precisely we have the below relevant proposition. Before
stating it, we will need the following de�nition.
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De�nition 2.1.13. Let G be a connected Lie group. A (global)
1-parameter subgroup of G is a C∞ map σ : R → G which is
also a group homomorphism.

Proposition 2.1.14. Let G be a Lie Group and X ∈ g. Then the
followings hold:

1) The integral curve of X starting at e is a 1-parameter subgroup
of G.

2) If σ : R → G is a 1-parameter subgroup of G, and σ(0)′ = Xe

then σ is the integral line of X at e.

Proof. 1)Let σ : (−ε, ε) → G be the maximal integral curve of X
starting from e. Then if we call γ : (−ε, ε) → G, the map de�ned
as γ(t) = σ(t0)σ(t), where t0 ∈ (−ε, ε), we see that

d

dt
γ(t) = dLσ(t0)(σ(t)

′
) = dLσ(t0)(Xσ(t)) = Xσ(t0)σ(t) = Xγ(t)

This equation implies that γ(t) is the integral curve of X starting
from t0, but for uniqueness we get that

γ(t) = σ(t0)σ(t) = σ(t0 + t)

Moreover, we clearly see that the maximal interval of integration is
actually (−∞,∞).
2)Since σ is a 1-parameter subgroup, we have that σ(t0 + t) =
Lσ(t0)σ(t), and from this we deduce

σ(t0)
′
=

d

dt
(σ(t0 + t))|t=0 = dLσ(t0)(Xe) = Xσ(t0)

and therefore we have proved also the second statement.

Thus, for each left invariant vector �eld X on G, there exists a
unique 1-parameter subgroup σ of G, such that σ(0)′ = Xe, and
it coincides with the integral curve of X at e. This motivates the
following de�nition.

De�nition 2.1.15. Let X ∈ g and σX(t) be the 1-parameter sub-
group associated to it. We de�ne the exponential map as exp :
g→ G where exp(X) := σX(1).

Example 2.1.16. Let X be a left invariant vector �eld of GL(n,R),
and σ(t) the 1-parameter subgroup of GL(n,R) such that σ(0)

′
=

Xe. Since it coincides with the integral curve associated to X, then
σ(s)′ = Xσ(s) = dLσ(s)(Xe). We are dealing with product of matrices
and then for each g ∈ GL(n,R) and A ∈ τ(G), dLg(A) = g·A, which
implies that σ(s)′ = σ(s) · Xe. The solution to this ODE is trivial
and we get exp(X) =

∑∞
k=0

(Xe)k

k!
.
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A signi�cant feature of the exponential map is that in a suitable
neighbourhood of 0 ∈ g it is a di�eomorphism with image in a
neighbourhood of e ∈ G. In the following Theorem we gather some
of the main properties of the exponential map.

Theorem 2.1.17. Let G be a Lie group with Lie algebra g. The
followings hold:

1) exp : g→ G is C∞(g, G)

2) (d exp)0 : g → TeG is the identity, i.e. (d exp)0(X) = Xe.
Furthermore there exists a neighbourhood V0 of 0 ∈ g such that
exp |V0 : V0 → exp(V0) is a di�eomorphism and exp(V0) = Ve is
an open neighbourhood of e ∈ G.

Proof. 1)Let X ∈ g and ΘX the �ow associated to X. Now in the
manifold G× g we build the following vector �eld

Yg,Z := (Xg, 0) ∈ Tg(G)× TZg ∼= Tg,Z(G× g)

If σY is the �ow of Y then: σY (1, (g, Z)) = (ΘX(1, g), Z) = (exp(X), Z).
But then if you call π1 : G× g→ G the canonical projection on the
�rst component, we get exp(X) = π1 ◦ σY (1, (g, Z)) and so the map
is a composition of C∞ function.
2)Now �x X in the lie algebra of G, and consider the map (−ε, ε) 3
t→ exp(tX). We know that it is di�erentiable, and
X = d

dt
exp(tX)|t=0 = (d exp)0X.

Now since the di�erential at the point 0 ∈ g is an isomorphism,
then by the Inverse mapping Theorem we conclude the proof of the
second point.

Remark 2.1.18. By the second point of the above theorem we deduce
in particular that every g ∈ G admits a neighbourhood Vg di�eo-
morphic to V0. Indeed, we just have to compose the left action Lg
with the exponential map:

exp |V0 : V0 → exp(V0) ⊂ G→ Lg exp(V0) := Vg

h 7→ exp(h) 7→ g exp(h) (2.1)

If ω is a di�erential 1-form over a Lie group G, we say that it
is left invariant if (Lg)

∗ω = ω2, namely ωgh((dLg)hXh) = ωh(Xh),
for each h, g ∈ G and X ∈ τ(G). It is easy to see that the subspace
of ∧1(G) made of left invariant 1-forms on G is the dual of g, and
thus it has the same dimension.

2If M,N are manifolds, and φ ∈ C∞(M,N) then we will denote with φ∗ the pull-back.
See [1] for further details.
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De�nition 2.1.19. We de�ne the canonical g-valued 1-form Θ
on G by

Θg : TgG→ TeG ∼= g

v 7→ Θg(v) := (dLg−1)gv

which is clearly a left invariant di�erential form. Equivalently we can
de�ne it as the left invariant g-valued 1-form such that Θ(A) = A
for each A ∈ g.

2.1.2 Action of Lie groups

Le M be a manifold and G a Lie group.

De�nition 2.1.20. We say that G acts di�erentially on M on the
left if

1) G×M →M such that (g,m) 7→ g ·m is di�erentiable.

2) The map m 7→ g ·m for a �xed g ∈ G is an automorphism of
M .

3) (gh) ·m = g · (h ·m) for each g, h ∈ G and m ∈M .

We will also say that G acts freely (resp. e�ectively) if g ·m = m
for some m ∈M implies g = e (resp. for all m ∈M implies g = e).

From 3) and 2) we deduce that the map m→ e ·m is the identity
of M .
If A ∈ g we can associate to it a vector�eld A] ∈ τ(M). It is given
by the action of the one parameter subgroup exp(tA) of G, in the
following way

(A])m =
d

dt
(exp(tA) ·m)|t=0 ∀m ∈M (2.2)

If we de�ne Lm : G→M by Lm(g) = g ·m then (A])m = (dLm)eAe
for each m ∈M . This construction will turn out to be useful later,
for connections on principal bundles. We have the following propo-
sition (see [22], Proposition 4.1).

Proposition 2.1.21. Let G and M as above. The mapping σ :
g→ τ(M) such that σ(A) = A] is a Lie algebra homomorphism. If
G acts e�ectively then σ is an isomorphism of g into σ(g), and if
furthermore G acts freely then (for A 6= 0) A] never vanishes.
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De�nition 2.1.22. We de�ne the conjugation action I : G×G→
G, by Ig(x) = I(g, x) := gxg−1. Taking its push forward we get an
action on g, Ad : G× g→ g, such that Adg(X) := dIg(X), or more
explicitly Adg(X)x = (dIg)I−1

g (x)(XI−1
g (x)) for every x ∈ G, which is

called the adjoint action.

If we apply Proposition 2.1.21 to the adjoint action then we get
the Lie Algebra morphism σ : g→ Γ(g), and to denote this particu-
lar morphism, instead of σ, we will use ad : g→ Γ(g) and for every
X ∈ g we write the image as adX , which is a vector �eld over g.
It is easy to verify that adX |Y = [X, Y ] for every Y ∈ g. Observe
that another way to see ad is as a map that to each element in g
associates a linear map on g as follows:

ad : g→ L(g, g)

X 7→ adX : g→ g

Y 7→ [X, Y ]

where L(g, g) is the monoid of endomorphisms of g.

De�nition 2.1.23. Let G be a Lie group with Lie algebra g. We
construct a symmetric bilinear form called the Killing form

K : g× g→ R

(A,B) 7→ K(A,B) := −Tr(adX ◦ adY ) (2.3)

where Tr is the trace of an endomorphism.

Proposition 2.1.24. Let G be a Lie group, with Lie Algebra g.
Then the Killing form K is Ad invariant, namely

K(Adg(X), Adg(Y )) = K(X, Y ) ∀g ∈ G, ∀X, Y ∈ g

Proof. Since Adg : g → g is an automorphism of g then, for every
X, Y ∈ g

adAdg(X)|Y = [Adg(X), Y ] = Adg◦[X,Adg−1Y ] = Adg◦adX◦Adg−1(Y )

therefore adAdg(X) = Adg ◦ adX ◦ Adg−1 . So we get

K(Adg(X), Adg(Y )) = −Tr(adAdg(X) ◦ adAdg(Y )) =

= −Tr(Adg◦adX◦Adg−1◦Adg◦adY ◦Adg−1) = −Tr(adX◦adY ) = K(X, Y )
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Remark 2.1.25. In particular we can prove that if the Lie Algebra
is semisimple3 then the bilinear form is non degenerate, and if G is
compact and connected it is also positive de�nite (see [18]). Since
we are interested only in such groups then (2.3) induces a scalar
product on g, and then also a norm on it.
Actually we can do even more, by using (2.3) to de�ne a metric g
on the whole G, such to promote G to Riemannian manifold (G,g)
This can be done as follows. For every a ∈ G and every v, w ∈ Ta(G)
we set

ga(v, w) := K(dLa−1(v), dLa−1(w)) = K(Θa(v),Θa(w)) (2.4)

Proposition 2.1.26. The metric g is bi-invariant in G. This means
that for each v, w ∈ TgG and for each g̃ ∈ G the following equations
hold

g(dRg̃(v), dRg̃(w)) = g(v, w)

g(dLg̃(v), dLg̃(w)) = g(v, w) (2.5)

Proof. The second equation is clearly true by de�nition. Indeed,

g(dLg̃(v), dLg̃(w)) = K(dLg−1g̃−1(dLg̃(v)), dLg−1g̃−1(dLg̃(w))) =

= K(dLg−1(v), dLg−1(w)) = g(v, w)

We also see that the property of K of being Ad-invariant is auto-
matically transferred to the metric g. Indeed, we see that

g(Adg̃(v), Adg̃(w)) = g(dLg̃dRg̃−1(v), dLg̃dRg̃−1(w)) =

= g(dRg̃−1(v), dRg̃−1(w)) = K(dLg̃dLg−1dRg̃−1(v), dLg̃dLg−1dRg̃−1(w)) =

= K(Adg̃dLg−1(v), Adg̃dLg−1(w)) = K(dLg−1(v), dLg−1(w)) = g(v, w)

which also proves that g is right invariant.

2.2 Bundles

This section is devoted to the development of the theory of bundles,
which are key geometrical structures in the study of gauge theories.
If M and S are two manifolds, then a bundle over M with �bre S
is, roughly speaking, a manifold that locally in U ⊂ M looks like
U × S. In what follows we are only concerned with vector bundles
and principal �bre bundles. For the �rst subsection we will refer
mainly to [1], while the second subsection is based both on [1] and
[22].

3A Lie Algebra is semisimple if it is a direct sum of simple subalgebras, i.e. non abelian
algebras with trivial ideals.
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2.2.1 Vector Bundles

Let M be a manifold.

De�nition 2.2.1. A manifold E is called a vector bundle of rank
r over M if the followings are true.

1) There exists a surjective di�erential map π : E → M , called
the projection, such that π−1(x) = Ex is a real vectorspace of
dimension r for each x ∈M

2) For each x ∈ M , there exists a neighbourhood U ⊂ M of
x and a di�eomorphism χ : φ−1(U) → U × Rr called local
trivialization, such that π1 ◦ χ = π, namely the following
diagram commutes

π−1(U) U × Rr

U

π

χ

π1 (2.6)

where π1 : U × Rr → U is the projection on the �rst compo-
nent. We also require that χ restricted to Ex is an isomorphism
between Ex and {x} × Rr for each x ∈M .

By point 2) of De�nition 2.2.1 we see that if π : E → M is a
vector bundle then there exists a covering {Ui}i∈I of M and local
trivializations {χi}i∈I de�ned on the covering. We call the family
A = {(Ui, χi)}i∈I an atlas of the vector bundle E. Note that in
Ui ∩ Uj 6= ∅ we have that

χi ◦ χ−1
j : (Ui ∩ Uj)× Rr → (Ui ∩ Uj)× Rr

(x, v) 7−→ (x, φij(x)(v)) (2.7)

where the family of maps φij : Ui ∩ Uj → GL(r,R) satis�es the
following conditions

φijφjl = φil in Ui ∩ Uj ∩ Ul 6= ∅

φijφji = e in Ui ∩ Uj 6= ∅
φii = e in Ui (2.8)

which are called the cocycle conditions.
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De�nition 2.2.2. Let π : E → M be a vector bundle endowed
with an atlas A = {(Ui, χI)}i∈I . The family of smooth maps φij :
Ui ∩Uj → GL(r,R) de�ned by equation (2.7) are called transition
functions of E with respect to the atlas A.

We now give some well known examples of vector bundles. After
that we will de�ne morphisms between vector bundles, and spot a
characterization for bundles that are isomorphic. In particular this
last characterization is signi�cant, and it is strictly related to the
idea of �ech Cohomology, see Appendix B.

Example 2.2.3. The manifold given by M × Rr, and endowed with
the projection on the �rst component π : M×Rr →M is an example
of vector bundle of rank r over M , and it is called trivial bundle.

Example 2.2.4. The most important example of vector bundle over
a manifold M is the tangent bundle π : TM → M , where TM =⋃
x∈M TxM . An atlas A = {(Ui, ϕi)}i∈I for M induces the local

trivializations
χi : π−1(Ui)→ Ui × Rn

(vj∂xji
|x) 7→ (x, v)

where v = (v1, ..., vn) and ϕi = (x1
i , ..., x

n
i ). An easy computation

also shows that the transition functions are φij = ∂xi
∂xj

, where ∂xi
∂xj

is
the Jacobian matrix of the change of coordinates ϕi◦ϕ−1

j . Therefore,
we have obtained from A, an atlas Ã := {(Ui, χi)}i∈I for TM .
Similarly one sees that also T ∗M =

⋃
x∈M T ∗xM , called cotangent

bundle, is a vector bundle over M .

De�nition 2.2.5. Let π1 : E1 → M1 and π2 : E2 → M2 be two
vector bundles. Then a morphism between them is a couple of
di�erentiable maps f : E1 → E2 and F : M1 →M2, such that

1) π2 ◦ f = F ◦ π1, namely the following diagram commutes

E1 E2

M1 M2

π1

f

π2

F
(2.9)

2) f |(E1)x : (E1)x → (E2)F (x) is linear for each x ∈M1.
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If both f and F are di�eomorphism, then the morphism is called
isomorphism. If M1 = M2 and F = id, and f is an isomorphism,
then we will say that π1 : E1 → M and π2 : E2 → M are equiva-
lent.

Remark 2.2.6 (Characterization for equivalent vector bun-
dles). Let π1 : E1 → M and π2 : E2 → M be two equivalent
vector bundles of rank r over M . Let A1 = {(Ui, χi)}i∈I and
A2 = {(Ui, χ̃i)}i∈I be two atlases respectively for E1 and E2, and
denote with φij and φ̃ij the corresponding families of transition func-
tions. Note that it is not restrictive to assume the trivializations of
E1 and E2 over the same covering of M . This is because one can
always �nd a common re�nement of two di�erent coverings.
Let f : E1 → E2 be the equivalence, then we have

π−1
1 (Ui) π−1

2 (Ui)

Ui × Rr Ui × Rr

χi

f

χ̃i

σ̂i
(2.10)

where σ̂i := χ̃i ◦f ◦χ−1
i , and since f |(E1)x is an isomorphism for each

x ∈M , we get that

σ̂i : Ui × Rr → Ui × Rr

(x, v) 7−→ (x, σi(x)(v))

where σi ∈ C∞(Ui, GL(r,R)). In particular we have that

χ̃−1
i ◦ σ̂i ◦ χi = χ̃−1

j ◦ σ̂j ◦ χj in π−1
1 (Ui ∩ Uj)

⇓
χ̃i ◦ χ̃−1

j = σ̂i ◦ χi ◦ χ−1
j σ̂−1

j in (Ui ∩ Uj)× Rr

⇓
φ̃ij = σiφijσ

−1
j in Ui ∩ Uj (2.11)

Conversely, let π : E1 → M and π2 : E2 → M be two vector
bundles over M of rank r, with atlases A1 and A2 as above, and
transition functions φij and φ̃ij. If there exists a family of smooth
maps σi ∈ C∞(Ui, GL(r,R)) satisfying

φ̃ij = σiφijσ
−1
j
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then the two bundles are equivalent, namely there exists a di�eo-
morphism f : E1 → E2 such that π2 ◦ f = π1 and f |(E1)x is a vector
space isomorphism for each x ∈M . Indeed, following the reasoning
above, if we call σ̂i, the maps

σ̂i : Ui × Rr → Ui × Rr

(x, v) 7−→ (x, σi(x)(v))

then de�ning fi := χ̃−1
i ◦ σ̂i◦χi, we have that fi = fj in π−1(Ui∩Uj),

and therefore we have a well de�ned map f : E1 → E2. It is
immediate to see that f satis�es all the requirements in order to be
an equivalence.

We have seen that a vector bundle endowed with an atlas leads
to the existence of a family of transition functions which satisfy the
cocycle conditions. A remarkable property is that also the inverse
is true.

Proposition 2.2.7. Let M be a manifold endowed with an atlas
A = {(Ui, ϕi)}i∈I . We are also given a family of maps φij : Ui ∩
Uj → GL(r,R) satisfying the cocycle conditions. Then there exists a
unique vector bundle E (up to isomorphism) over M with transition
functions φij.

Proof. Consider Ẽ =
⋃
i∈I(Ui × Rr). We denote with E = Ẽ/ ∼

the quotient of Ẽ with respect to the equivalence relation ∼ de-
�ned as follows. Take (x, v) ∈ Ui × Rr and (y, w) ∈ Uj × Rr, then
(x, v) ∼ (y, w) if and only if x = y and φij(x)(w) = v. The cocycle
conditions guarantee that ∼ is actually an equivalence relation.
It is clear that the projection on the �rst component π : E → M
is surjective and that π−1(Ui) = (Ui × Rr)/ ∼. Since we have that
di�erent elements in Ui ×Rr are not equivalent, then we can de�ne
a bijection χi : π−1(Ui)→ Ui × Rr. If x ∈ Ui ∩ Uj and v ∈ Rr, then
the unique element in Uj ×Rr that is equivalent to (x, v) ∈ Ui×Rr

is (x, φji(x)(v)), which implies that χj ◦ χ−1
i (x, v) = (x, φji(x)(v)).

In particular it holds that for each i ∈ I, π1 ◦ χi = π|π−1(Ui). This
last two results are enough to say that E is a vector bundle with
transition functions φij with respect to the atlas {(Ui, χi)}i∈I . In-
deed, if x ∈ Ui, then χi|Ex is a bijection by construction. Therefore
we can endow Ex with a structure of vector space as follows. For
each u1, u2 ∈ Ex we de�ne their sum as

u1 + u2 := χ−1
i (x, v1 + v2)

where ul = χ−1
i (x, vl) for l = 1, 2, and if λ ∈ R, the product λu1 is

de�ned as
λu1 := χ−1

i (x, λv1)

22



Now we need to show that these two operations do not depend on the
choice of the local trivialization. Then let j ∈ I such that Uj∩Ui 6= ∅,
and χj(ul) = (x,wl). We have that (x, vl) = χi ◦ χ−1

j (x,wl) =
(x, φij(x)(wl)), and thus

χ−1
i (x, v1 + v2) = χ−1

i (x, φij(x)w1 + φij(x)w2)) =

χ−1
i (x, φij(v1 + v2)) = χ−1

i ◦ (χi ◦χ−1
j (x,w1 +w2)) = χ−1

j (x,w1 +w2)

which proves that the sum does not depend on the choice of the local
trivialization. Similarly one proves the same for the scalar product.
Consider Ũi := π−1(Ui), and the maps on them ϕ̃i := (ϕi, id) ◦ χi.
Then we have that

ϕ̃i ◦ ϕ̃−1
j = (ϕi ◦ ϕ−1

j , φij)

are C∞-maps, and therefore we can endow E with a manifold struc-
ture, with atlas Ã := {(Ũi, ϕ̃i)}. It is easy to check that π : E →M
satis�es all the properties in order to be a vector bundle of rank r.
It is only left to prove that the bundle is unique up to an isomor-
phism. Let π̂ : Ê → M be a vector bundle over M , with transition
functions φij, and trivializations χ̂i : π̂−1(Ui)→ Ui ×Rr. We de�ne
fi : π−1(Ui)→ π̂−1(Ui) as fi := χ̂−1

i ◦χi. We see that if Ui ∩Uj 6= ∅,
then in π−1(Ui) ∩ π−1(Uj) it holds that fi = fj, indeed this is true
if and only if

χ̂−1
i ◦ χi = χ̂−1

j ◦ χj ⇔ χi ◦ χ−1
j = χ̂i ◦ χ̂−1

j

and this last relation is true since the two vector bundles have the
same transition functions. By the fact that for each i ∈ I, the
maps fi are di�eomorphisms which are linear on the �bres and that
π̂ ◦ fi = π, we conclude that f : E → Ê is an isomorphism (actually
an equivalence) of vector bundles. This concludes the proof.

De�nition 2.2.8. Let π : E →M be a vector bundle over M , and
let U ⊂ M be open. Then a di�erentiable map s : U → E is called
a local section if π ◦ s = idU . A global section is a di�erentiable
map s : M → E such that π ◦ s = idM . We denote the vector space
of global sections as E(M).

Each vector bundle admits always global sections, as one can
easily prove, see for instance [1]. However, it is not always true
that it is possible to build a global section that never vanishes.
We highlight some important sections using the above examples of
vector bundles.
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Example 2.2.9. If M is a manifold, then the vector space of vector
�elds τ(M), is the space of sections of the tangent bundle π : TM →
M . Similarly the space of di�erential 1-forms over M , denoted
with

∧1(M), coincides with the sections of the cotangent bundle
π : T ∗M →M .

Before concluding we de�ne a richer structure of vector bundle,
which will arise in the study of principal bundles. In what follows
let M be the base manifold, and G a Lie group.

De�nition 2.2.10. Let π : E → M be a vector bundle of rank r.
Then we say that it is a G-vector bundle if there exists

1) an action θ : G× Rr → Rr of G on Rr

2) an atlas A = {(Ui, χi)}i∈I and a family of maps gij : Ui ∩Uj →
G such that if ψij are the transition functions of A, then

ψij(x, v) = θ(gij(x), v) (2.12)

for each x ∈ Ui ∩ Uj and v ∈ Rr.

Example 2.2.11. We observe that every vector bundle π : E → M
of rank r is a GL(r,R)-vector bundle with �bre Rr. Other exam-
ples of G-vector bundles will be shown in the subsection devoted to
Principal Fibre bundles.

2.2.2 Principal Fibre Bundles

De�nition 2.2.12. Let M be a manifold and G a Lie group. We
call principal �bre bundle over M with structure group G, a
manifold P with a right action of G, such that

1) G acts freely on the right (p, g) ∈ P ×G→ σg(p) = p · g ∈ P
2) M is the quotient space of the equivalence relation4 induced

by G, and the canonical projection π : P → M = P/G is
di�erentiable.

3) For each x ∈ M there exists a neighbourhood U of x in M
and a di�eomorphism χ : π−1(U) → U × G such that χ(p) =
(π(p), φ(p)), namely the following diagram commutes

π−1(U) U ×G

U

π

χ

π1 (2.13)

4Two point p1, p2 of P are equivalent if there exists g ∈ G such that σg(p1) = p2.

24



and φ : π−1(U) → G satis�es φ(p · g) = φ(p)g for each g ∈ G.
The map π1 is the projection on the �rst component.

We call P the total space,M the base space, and G the struc-
ture group. Since the canonical projection is a submersion, π−1(x)
is a closed submanifold of P for each x ∈M , and it is di�eomorphic
to G. We call π−1(x) the �bre in x, and by de�nition if u ∈ π−1(x)
then π−1(x) = {u · g : g ∈ G}.
If P is a �bre bundle, then by 3) there exists a covering {Ui}i∈I of
M and a local trivialization {χi}i∈I associated to it. We call the
family A = {(Ui, χi)}i∈I an atlas of the bundle.
One may observe that for x ∈ Ui ∩ Uj with i 6= j and p ∈ π−1(x)
the product φi(p · g)(φj(p · g))−1 = φi(p)φj(p)

−1 for each g ∈ G does
not depend on p ∈ π−1(x) but just on x. Therefore, we can de�ne
for Ui ∩ Uj 6= ∅ the maps

gij : Ui ∩ Uj → G

x 7−→ gij(x) := φi(u)φj(u)−1 (2.14)

where u ∈ π−1(x). If (x, g) ∈ (Ui ∩ Uj)×G then we see that

χi ◦ χ−1
j (x, g) = (x, gij(x)g)

and this family of maps gij satisfy the relations

gilglj = gij in Ui ∩ Uj ∩ Ul 6= ∅

gijgji = e in Ui ∩ Uj 6= ∅
gii = e in Ui (2.15)

which are called the cocycle conditions. We clearly see the anal-
ogy with the vector bundle transition functions, and also in this case
we have the following de�nition.

De�nition 2.2.13. Let π : P →M be a principal �bre bundle, with
structure group G overM , endowed with an atlas A = {(Ui, χI)}i∈I .
The family of smooth maps gij : Ui ∩ Uj → G de�ned by equation
(2.14) are called transition functions of P with respect to the
atlas A.

Example 2.2.14. If M is a manifold and G a Lie group, then the
product manifold P = M ×G, endowed with the projection on the
�rst component π : P → M , is a principal �bre bundle over M .
Here the action of G on P is σg1(x, g) = (x, g · g1) for each x ∈ M
and g, g1 ∈ G.
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Example 2.2.15 (The Frame Bundle). Starting from a vector bun-
dle π : E →M of rank r we can build a principal bundle as follows.
For each �bre Ex we can consider the set F (E)x of all basis of Ex.
We denote with F (E) =

⋃
x∈M F (E)x and with π̃ : F (E) → M

the canonical projection on M . Local trivializations of π : E → M
induce local trivializations of F (E). Indeed, if {σ1, ..., σr} is a local
frame for E in U ⊂M , then we can build

χ̃ : π̃−1(U)→ U ×GL(r,R)

that associates to each basis {e1, ..., er} in F (E)x = π̃−1(x) the
couple (x,A), where A = (akh) ∈ GL(r,R) is the unique matrix
such that

eh =
r∑

k=1

akhσk(x)

for x ∈ U . Moreover, GL(r,R) acts on each �bre. Therefore, F (E)
is a principal �bre bundle with structure group G = GL(r,R).

De�nition 2.2.16. Let π1 : P1 → M1 and π2 : P2 → M2 be two
principal �bre bundles, both with structure group G. A principal
bundle map from P1 to P2 is de�ned as a di�erentiable map f :
P1 → P2 such that

f(p · g) = f(p) · g ∀p ∈ P1, ∀g ∈ G (2.16)

Notice that this means that f maps the �bre of p to the �bre of
f(p). Condition (2.16) tells us more, each �bre in P1 is carried
di�eomorphically onto a �bre of P2. Therefore, we can de�ne a map
f̃ : M1 →M2 such that π2◦f = f̃ ◦π1, namely the following diagram
commutes

P1 P2

M1 M2

π1

f

π2

f̃
(2.17)

If P1 and P2 are principal bundles over the same base space M , we
say that a principal bundle map f from P1 to P2 is an equivalence
if the induced map f̃ : M → M is the identity. In this case it is
easy to verify that f is a di�eomorphism and the inverse is also an
equivalence. If moreover P1 = P2 and f is an equivalence, the we
call it an automorphism.
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As we already did for equivalent vector bundles, we now introduce
a characterization for equivalent principal �bre bundles. We will see
that it is really similar to the characterization for vector bundles,
and it is strictly related to the concept of �ech cohomology, which
is de�ned in Appendix B. In particular we will show that there is a
one to one correspondence between the set of all G-principal �bre
bundles (up to equivalence) over a manifoldM and the classes of the
�ech cohomology with coe�cients in the sheaf of smooth G-valued
functions on M .
Remark 2.2.17 (Characterization for equivalent principal bun-
dles). Let π : P → M and π̃ : P̃ → M be two principal �bre bun-
dles with structure group G, and base manifold M . If f : P → P̃
is an isomorphism of principal bundles, and A = {(Ui, χi)}i∈I ,
Ã = {(Ui, χ̃i)}i∈I are two atlases for P and P̃ respectively, then
we can de�ne the maps ĥi := χ̃i ◦f ◦χ−1

i , and the following diagram
commutes

π−1(Ui) π̃−1(Ui)

Ui ×G Ui ×G

χi

f

χ̃i

ĥi
(2.18)

It is easy to verify that there exists a family of maps hi ∈ C∞(Ui, G)
such that

ĥi(x, g) = (x, hi(x)g) ∀(x, g) ∈ Ui ×G
Since f is well de�ned, we have the relation

χ̃−1
i ◦ ĥi ◦ χi = χ̃−1

j ◦ ĥj ◦ χj in π−1(Ui ∩ Uj)

which easily implies that

g̃ij = higijh
−1
j in Ui ∩ Uj 6= ∅ (2.19)

where {gij} and {g̃ij} are the transition functions of A and Ã.
Conversely if A and Ã are as above, and their transition func-
tions {gij} and {g̃ij} satisfy the equation (2.19) for a family hi ∈
C∞(Ui, G), then with a construction similar to the one of Remark
2.2.6 we can build an equivalence between P and P̃ .

We have seen how a principal �bre bundle leads to a family
of transition functions satisfying the cocycle conditions. The fol-
lowing proposition, which is the equivalent of Proposition 2.2.7 for
principal bundles, guarantees that given a manifold M , a covering
U = {Ui}i∈I and a family of maps gij ∈ C∞(Ui ∩ Uj, G) satisfying
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the cocycle conditions, we can build a principal �bre bundle overM
with structure group G.

Proposition 2.2.18. Let M be a manifold and {Ui}i∈I a covering
for M . If gij : Ui ∩ Uj → G is a family of di�erentiable functions
satisfying the cocycle conditions, then there exists a principal �bre
bundle P with structure group G and base manifold M with transi-
tion functions gij.

The proof is essentially the same of Proposition 2.2.7. For further
details see [22], Proposition 5.2.

De�nition 2.2.19. Let π : P → M be a principal bundle with
structure group G. A local cross section s : V ⊂ M → π−1(V )
is a smooth map from an open subset V of M into P such that
π ◦ s = idV .

De�nition 2.2.20. Let π : P → M be a principal �bre bundle
over M , with structure group G. If s : V → π−1(V ) is a local
cross section, and g ∈ C∞(V,G), then we de�ne the local gauge
transformation sg(x) := s(x)·g(x) for each x ∈ V , which is clearly
again a local cross section.

The following Proposition highlights that there always exists a
gauge transformation between two di�erent local cross sections de-
�ned in the same open subset of the base manifold.

Proposition 2.2.21. Let π : P → M be a principal �bre bundle
over M , and structure group G. Let V ⊂M be open, then:

1) If h, s : V → π−1(V ) are two local cross sections, then they are
gauge equivalent.

2) Every change of cross section in V , induces a local automor-
phism f : π−1(V )→ π−1(V ), and also the inverse is true.

Proof. 1) If h, s : V → π−1(V ) are both cross sections then there
exists a gauge g : V → G such that sg = h, and this is due to
the fact that for every x ∈ V the elements h(x) and s(x) are in
the same �bre, and so there exists a unique g(x) ∈ G such that
s(x) · g(x) = h(x).

2) Indeed, if s : V → π−1(V ) is a local cross section, then each
�bre in π−1(V ) can be written as π−1(x) = {s(x)h| h ∈ G} for
x ∈ V . Then, if g ∈ C∞(V,G) is a local gauge transformation, we
can de�ne the automorphism

π−1(V ) 3 s(x)h 7→ sg(x)h ∈ π−1(V )
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Conversely if f : π−1(V ) → π−1(V ) is a local automorphism and
s : V → π−1(V ) is a cross section, then V 3 x → f−1(s(x)) ∈
π−1(V ) is clearly a cross section, and by 1) we obtain a local gauge
transformation.

In Example 2.2.15 we saw that starting from a vector bundle we
can build a principal �bre bundle, called the frame bundle. The
following Theorem tells us that also the inverse is true. Namely, if
π : P →M is a principal �bre bundle, with structure group G, and
such that G acts on the left on some vector space V , then there is
a rule that let us build a vector bundle with �bre V and structure
group G, associated to P in some sense. Actually the below result
is more general, and it holds for principal bundles with structure
group acting on the left on manifolds (and not only vector spaces).
For further details see for instance [1].

Theorem 2.2.22. Let π : P → M be a principal �bre bundle with
structure group G, V a vector space and ρ : G → GL(V) a group
representation5. Then it holds

1) The map

R : (P × V)×G→ P × V

((p, v), g) 7→ (p · g, ρ(g−1)(v)) (2.20)

is a free right action of G on P × V.

2) The quotient space P ×GV = (P ×V)/G has a unique structure
of manifold, with respect to which the quotient map ψ : P×V →
P ×G V is a submersion.

3) If π1 : P × V → P is the projection on the �rst component,
then the following diagram

P × V P ×G V

P M

π1

ψ

π

π
(2.21)

de�nes a map π : P ×G V → M with respect to which P ×G V
is a G-vector bundle with �bre V, with left action given by the
group representation ρ.

5A group homomorphism ρ : G → GL(V), where GL(V) denote the group of automor-
phisms of a vector space V, is called group representation
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Proof. 1) This �rst step is an easy exercise.
2) First of all we need to show that the map π is well de�ned. This
request is equivalent to prove that π ◦ π1 is constant on the orbits
of R, which is true. Indeed, if g ∈ G and (p, v) ∈ P × V , then
π ◦ π1(p, s) = π(p) = π(p · g) = π ◦ π1(p · g, ρ(g−1)(v)).
Let A = {(Ui, χi)}i∈I be an atlas for π : P → M , with transition
functions gij : Ui ∩Uj → G. We de�ne the following family of maps

ξi : Ui × V → π−1(Ui)

(x, v) 7−→ ψ(χ−1
i (x, e), v) (2.22)

We show that for each x ∈ Ui the map ξi(x, ·) : V → π−1(x) is bijec-
tive. This is true if and only if for each ψ(p, v′) ∈ π−1(x) there exists
and is unique v ∈ V such that ψ(p, v′) = ψ(χ−1

i (x, e), v). This last
request is satis�ed if and only if there exists and is unique g ∈ G
such that (p · g, ρ(g−1)(v′)) = (χ−1

i (x, e), v). The solution g ∈ G
exists and is unique, and one �xes v = ρ(g−1)(v′).
Therefore, all the ξi are bijective, and we denote χi := ξ

−1

i : π−1(Ui)→
Ui × V . We have that

χ−1
j (x, v) = ψ(χ−1

j (x, e), v) = ψ(χ−1
i (x, gije), v)

= ψ(χ−1
i (x, e), ρ(gij)(v)) = χ−1

i (x, ρ(gij)(v))

In particular A := {(Ui, χi)}i∈I is an atlas for P ×G V , and it in-
duces a di�erentiable structure on it. Moreover, since ξi are all
di�erentiable, we get that also ψ is di�erentiable, and it is actually
a submersion. It is easy to prove that also π is di�erentiable and
surjective, a precise proof of this last fact can be found in Exercise
2.83 of [1].

Remark 2.2.23. If π : P → M is a principal �bre bundle with
structure group G, we know that Ad : G × g → g is a left action
on the Lie Algebra g. Therefore thanks to Theorem 2.2.22, we can
build a G-vector bundle π : P ×G g → M over M , with �bre g.
This is called the Adjoint bundle associated to the principal �bre
bundle π : P →M .

2.3 Connections

Connections on vector bundles are geometrical tools, born in order
to de�ne the concept of derivation of a section along a curve on
the base manifold. The classical idea used in T (Rn) ∼= Rn × Rn

of de�ning the derivative as limit of the di�erence quotient, do not
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work for general vector bundles, since a section usually gives us vec-
tors in di�erent vector spaces (although with the same dimension)
for di�erent points on the base manifold. For this �rst subsection
we refer to [1], while for the third subsection, where we will de�ne
connections also for principal �bre bundles, we will mainly use as
reference [22].
In the second subsection, instead, we will de�ne the Second funda-
mental form, and the Shape operator, for a Riemannian manifold.
These last interesting geometrical constructions, are presented here
just for an Analytic purpose, since the Shape operator naturally
arises in the Euler-Lagrange equations of weakly harmonic maps,
that will be studied in Chapter 5. The relation between the Ana-
lytic problem of weakly Harmonic maps and the Shape operator is
explored for instance in [42].

2.3.1 Connections on a Vector Bundle

Let M be a manifold, and π : E →M a vector bundle on it.

De�nition 2.3.1. A connection over the vector bundle E is a
function

∇ : τ(M)× E(M)→ E(M)

(X, s) 7−→ ∇Xs (2.23)

such that the following are satis�ed

1) ∀X, Y ∈ τ(M) and ∀f1, f2 ∈ C∞(M,R)

∇f1X+f2Y s = f1∇Xs+ f2∇Y s (2.24)

for each s ∈ E(M).

2) ∀X ∈ τ(M) and ∀s1, s2 ∈ E(M) it holds

∇Xa1s1 + a2s2 = a1∇Xs1 + a2∇Xs2 (2.25)

for each a1, a2 ∈ R.

3) ∀X ∈ τ(M) and ∀s ∈ E(M) it holds

∇X(fs) = X(f)s+ f∇Xs (Liebniz's rule) (2.26)

for each f ∈ C∞(M,R).

The section ∇Xs ∈ E(M) is called the covariant derivative of
s ∈ E(M) along X ∈ τ(M). If E = TM then we will call ∇ a
linear connection, and later we will see a fundamental example of
it.
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If ∇ is a connection over the vector bundle π : E → M , then
the value of (∇Xs)(x) depends just on the value of Xx and on the
behaviour of s in a neighbourhood of x ∈M . The following Lemma
makes precise this assertion

Lemma 2.3.2. Let ∇ be a connection over the vector bundle π :
E →M . Then

1) If X, X̃ ∈ τ(M) and s, s̃ ∈ E(M) are such that Xx = X̃x

and s = s̃ in a neighbourhood of x ∈ M , then (∇Xs)(x) =
(∇X̃ s̃)(x).

In particular we can improve this �rst point as follows

2) If X ∈ τ(M) and s, s̃ ∈ E(M), and there exists a curve γ :
(−ε, ε)→M such that γ(0) = x and γ′(0) = Xx and moreover
s ◦ γ = s̃ ◦ γ, then (∇Xs)(x) = (∇X s̃)(x).

A proof for this technical result can be found in [1]. In particular
using Lemma 2.3.2, one can prove the following result, which we
will just state for the sake of completeness and whose proof can be
found for instance in [1].

Theorem 2.3.3. Each vector bundle π : E → M admits a connec-
tion.

One may want to express a connection locally. Let then (U, φ) be
a local chart for M that also trivializes locally the vector bundle π :
E →M of rank r, namely such that there exists a local trivialization
for E

χ : π−1(U)→ U × Rr

Then the canonical basis e1, ..., er of Rr determines a local frame for
π−1(U), i.e. e1, ...er ∈ E(U) as follows

ej : U → π−1(U)

x 7−→ χ−1(x, ej)

While the chart φ : U → φ(U) ⊂ Rn determines a local frame
{∂x1 , ..., ∂xn} for the tangent bundle TM . Then we obtain the exis-
tence of Γkjh ∈ C∞(U,R), called coe�cients of the connection6,
such that

∇∂xj
eh =

r∑
k=1

Γkjhek (2.27)

where j = 1, ..., n and k, h = 1, ..., r. If X ∈ τ(U) and s ∈ E(U),
using equation (2.27) and properties 1),2) and 3) of De�nition 2.3.1
we get

∇Xs = (X(sk) + ΓkjhX
jsh)ek (2.28)

6If E = TM , then the coe�cients of the connection are called Christo�el symbols
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Connection as a di�erential form Let π : E →M be a vector bundle
over the manifoldM . We know that k-di�erential forms overM are
sections of the bundle ∧kT ∗M . Similarly k-di�erential forms with
values in E are sections of the bundle ∧kT ∗M ⊗ E, and we will
denote them with Ak(E). We now give an alternative de�nition of
connection over E.

De�nition 2.3.4. A connection over the vector bundle π : E →M
is a R-linear operator

∇ : E(M)→ A1(E) (2.29)

such that ∇(fs) = f∇s + df ⊗ s, for each s ∈ E(M) and f ∈
C∞(M,R).

The relation with De�nition 2.3.1 is the following. If ∇ is a
connection over π : E →M , then for each X ∈ τ(M), we have

∇Xs = 〈∇s,X〉 (2.30)

where in this context 〈·, ·〉 is de�ned as follows. If ω ∈ A1(E) it
can be expressed as ω =

∑
i ωi ⊗ si where si are sections of E, and

ωi ∈ ∧1(M). Then we have 〈ω,X〉 :=
∑

i ωi(X)si.
Remark 2.3.5. Let π : E →M be a vector bundle over M , and ∇ a
connection over it. Moreover assume that (U, φ) is a local chart for
M , such that there exists a local trivialization

χ : π−1(U)→ U × Rr

Then if {e1, ..., er} is the associated frame for E in U , we have that

∇ej =
r∑

k=1

ωkj ⊗ ek (2.31)

The local chart φ let us express the one forms ωkj locally as follows

ωkj =
n∑
i=1

Γkijdx
i

for proper Γkij ∈ C∞(U,R). The smooth functions Γkij are exactly
the coe�cients of the connection, indeed

∇∂xi
ej = 〈∇ej, ∂xi〉 =

r∑
k=1

ωkj (∂xi)ek =
r∑

k=1

Γkijek

De�nition 2.3.6. The matrix ω whose entries are the di�erential 1-
forms ωkj of equation (2.31) is called the 1-form of the connection,
with respect to the �xed frame.
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Changing the local frame we get of course a di�erent 1-form of
the connection, which is related to the �rst one by a signi�cant equa-
tion. We develop the calculations here because the aforementioned
equation is relevant to us, as it will be extensively explained in Ex-
ample 2.3.30.
Let {ẽ1, ...ẽr} be another frame for E in U . Then it exists and is
unique A ∈ C∞(U,GL(r,R)) such that

ẽj =
r∑

k=1

akhek

where A = (akh)h,k=1,...,r. If ω̃ = (ω̃hi ) is the 1-form of the connection
with respect to the frame ẽ1, ..., ẽr, then we have

∇ẽi = ω̃hi ⊗ ẽh = ω̃hi ⊗ akj ek = akhω̃
h
i ⊗ ek

but also, thanks to De�nition 2.3.4, we get

∇ẽi = ∇(aki ek) = aki∇ek + daki ⊗ ek = aki ω
l
k ⊗ el + daki ⊗ ek

= (ajiω
k
j + daki )⊗ ek

where ω = (ωki ) is the 1-form of the connection with respect to the
frame e1, ..., er, and in the last identity we have just renamed the
indexes. These last two equations lead to

akhω̃
h
i = ajiω

k
j + daki

which in matrix representation reads as

Aω̃ = ωA+ dA⇒ ω̃ = A−1dA+ A−1ωA (2.32)

Levi-Civita Connection

In this subsection we introduce a fundamental connection, called
Levi-Civita connection, on the tangent bundle TM of a Rieman-
nian manifold (M,g). It has a deep geometrical meaning, and as we
will see it is completely determined by the metric we are considering
on M .

De�nition 2.3.7. Let (M,g) be a Riemannian manifold, and ∇
a connection on the tangent bundle TM . Then we say that ∇ is
compatible with the metric g if for each X, Y, Z ∈ τ(M), it holds

Z(g(X, Y )) = g(∇ZX, Y ) + g(X,∇ZY ) (2.33)
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There are several equivalent de�nitions of connection compatible
with the metric of a Riemannian manifold, many of them regarding
the parallel transport, see [1]. However, since this tool is not fun-
damental for this work, we will just state one characterization for
compatible connections, which is actually the compatibility condi-
tion expressed in a generic local chart for M .

Proposition 2.3.8. Let (M,g) be a Riemannian manifold and ∇
a connection on the tangent bundle. The followings are equivalent

1) ∇ is compatible with the metric g

2) In each coordinate system (U,ϕ) for M it holds

∂xkgij = gljΓ
l
ki + gilΓ

l
kj (2.34)

where Γkij are the Christo�el symbols.

Proof. 1)⇒ 2) Let (U,ϕ) be a local chart for M , and ∂xk , ∂xi , ∂xj ∈
τ(U), then we have

∂xkgij = ∂xkg(∂xi , ∂xj) = g(∇∂xk
∂xi , ∂xj) + g(∂xi ,∇∂xk

∂xj)

where the second identity is of course due to 1). Now we have that
∇∂xk

∂xi = Γlki∂xl , and therefore

∂xkgij = g(Γlki∂xl , ∂xj) + g(∂xi ,Γ
l
kj∂xl) = gljΓ

l
ki + gilΓ

l
kj

2)⇒ 1) Since the compatibility condition holds for every local chart,
then of course it holds for every vector �eld over M .

Example 2.3.9. If M = Rn and we endow it with the Euclidean
metric, then it is clear that for each X, Y, Z ∈ τ(Rn), we have

Z(X · Y ) = Z(X) · Y +X · Z(Y )

Therefore the �at connection is compatible with the Euclidean met-
ric.

Proposition 2.3.10. Let ∇ be a connection on the tangent bundle
TM of a manifold M . Then we have that the operator

κ : τ(M)× τ(M)→ τ(M)

(X, Y ) 7−→ ∇XY −∇YX − [X, Y ] (2.35)

is C∞(M,R)-linear, and antisymmetric.
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Proof. The antisymmetry is obvious. Take f ∈ C∞(M,R) and
X, Y ∈ τ(M), then

κ(fX, Y ) = ∇fXY−∇Y (fX)−[fX, Y ] = f∇XY−f∇YX−Y (f)X+

−f [X, Y ] + Y (f)X = fκ(X, Y )

and this proves the assertion.

De�nition 2.3.11. Let M be a manifold, and ∇ a connection on
the tangent bundle TM . Then we say that ∇ is symmetric if for
each X, Y ∈ τ(M) the following holds

κ(X, Y ) = 0 (2.36)

Remark 2.3.12. Note that this de�nition is the generalization to an
arbitrary manifold, of the obvious property of the �at connection on
Rn

X(Y )− Y (X)− [X, Y ] = 0

where X, Y ∈ Rn.

Also in this case we have equivalent de�nitions of symmmetric
connection over the tangent bundle TM of some manifold M .

Proposition 2.3.13. Let ∇ be a connection on the tangent bundle
TM of a manifold M . Then the followings are equivalent

1) ∇ is symmetric

2) In each coordinate system one has that the Christo�el symbols
are symmetric, namely

Γjhi = Γjih (2.37)

Proof. We prove 1)⇒ 2), which is actually just a computation.
Indeed, if (U,ϕ) is a local chart for M , then we have that for
∂xi , ∂xj ∈ τ(U)

κ(∂xi , ∂xj) = ∇∂xi
∂xj −∇∂xj

∂xi − [∂xi , ∂xj ]︸ ︷︷ ︸
=0

= (Γkij − Γkji)∂xk = 0

and this leads us to the wanted symmetry identity.
2)⇒ 1) is obtained by expressing locally two generic vector �elds
X, Y ∈ τ(M), and then using the symmetry of the Christo�el sym-
bols.
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One can prove that there are in�nite connections over the tan-
gent bundle TM of a Riemannian manifold (M,g) that are com-
patible with the metric. However, the following Theorem shows us
that there exists and is unique a connection on TM which is both
compatible with the metric and symmetric. This connection is the
candidate to be the Levi-Civita connection.

Theorem 2.3.14 (Levi-Civita). Let (M,g) be a Riemannian man-
ifold. Then there exists and is unique a connection ∇ on the bundle
TM which is both symmetric and compatible with the metric g. Fur-
thermore it holds

g(∇XY, Z) =
1

2

(
Xg(Y, Z) + Y g(Z,X)− Zg(X, Y )+

g([X, Y ], Z)− g([Y, Z], X) + g([Z,X], Y )

)
(2.38)

which expressed in local coordinates gives us the following equation
for the Christo�el symbols7

Γkij =
1

2
gkl
(
∂glj
∂xi

+
∂gil
∂xj
−
∂gij
∂xl

)
(2.39)

A proof for this important result can be found in [1].

Example 2.3.15 (The Levi-Civita connection of a Lie Group
endowed with a bi-invariant metric). Let G be a compact and
connected Lie Group endowed with a bi-invariant metric g, and ∇
the Levi-Civita connection on it. Then if X, Y are left-invariant
vector �elds it holds

∇XY =
1

2
[X, Y ] (2.40)

To prove this, �rst we observe that ifX, Y, Z are left-invariant vector
�elds, then

g([X, Y ], Z) = −g(Y, [X,Z]) (2.41)

Indeed, we already observe that if g ∈ G then [X, Y ]g = d
dt
Adγ(t)(Y )|t=0,

where γ is the integral curve of X such that γ(0) = g, and since g
is Ad-invariant we get

0 =
d

dt
g(Y, Z)|t=0 =

d

dt
g(Adγ(t)Y,Adγ(t)Z)|t=0 =

= g([X, Y ], Z) + g(Y, [X,Z])

7If (U, φ) is a local chart forM , then if x ∈ U we denote with (g(x)kl)k,l the inverse matrix
of (g(x)ij)ij in the chosen local system of coordinates
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Since g is bi-invariant, it is left invariant, which means thatX(g(Y, Z)) =
Y (g(Z,X)) = Z(g(X, Y )) = 0, for each X, Y, Z left-invariant vector
�elds. Therefore under these assumptions equation (2.38) becomes

g(∇XY, Z) =
1

2
(g([X, Y ], Z)− g(X, [Y, Z]) + g([Z,X], Y ))

which thanks to equation (2.41) can be rewritten as

g(∇XY, Z) =
1

2
g([X, Y ], Z)

and proves the wanted equation (2.40).
We now exhibit a last example before moving on.

Example 2.3.16. Let (M̃, g̃) be a Riemannian manifold, and letM be
a submanifold of M̃ . We endow M̃ with the Levi-Civita connection
∇̃, and in M we consider the induced metric8. In this example we
show that the Levi-Civita connection ∇ for (M, i∗g̃) is given by

∇XY = >(∇̃XY ) ∀X, Y ∈ τ(M) (2.42)

where > : TM̃ → TM is the orthogonal projection. First we
show that it is compatible with the induced metric i∗g̃. Indeed,
we consider TxM as a subspace of TxM̃ for each x ∈ M , and if
X, Y, Z ∈ τ(M), then we have

Zi∗g̃(X, Y ) = Zg̃(X, Y ) = g̃(∇̃ZX, Y ) + g̃(X, ∇̃ZY ) = (∗)

and since it is clear that g̃(∇̃ZX,W ) = g̃(>(∇̃ZX),W ) for each
W ∈ τ(M), then we have that

(∗) = g̃(>(∇̃ZX), Y ) + g̃(X,>(∇̃ZY ))

which proves that ∇ is compatible with the induced metric. Finally
we see that

∇XY −∇YX = >(∇̃XY − ∇̃YX) = >([X, Y ])

but of course [X, Y ] ∈ τ(M), and therefore >([X, Y ]) = [X, Y ], and
we conclude.

2.3.2 Second Fundamental Form & The Shape Operator

In this subsection we de�ne a tool which is useful in order to study
the relations between the geometry of a Riemannian manifold, and a

8If i : M ↪→ M̃ is a submanifold of the Riemannian manifold (M̃, g̃), then the induced
metric on M is given by the pull-back i∗g̃
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submanifold endowed with the induced metric, see [1]. However, we
introduce it just for an Analytic purpose regarding weakly harmonic
maps, see Chapter 5.
Let M be a submanifold of a Riemannian manifold (M̃, g̃), and we
endow M with the induced metric.

De�nition 2.3.17. We denote with > : TM̃ → TM and with
⊥ : TM̃ → (TM)⊥ the orthogonal projections. We call τ(M, M̃)
the space of sections overM of TM̃ |M , and withN (M) the subspace
of sections of TM̃ |M orthogonal to TM .

De�nition 2.3.18. LetM be a submanifold of a Riemannian man-
ifold (M̃, g̃). The second fundamental form is the linear form

II : N (M)× τ(M)× τ(M)→ C∞(M,R) (2.43)

given by II(N,X, Y )x = g̃x(∇̃XN, Y ) where ∇̃ is the Levi-Civita
connection of M̃ , and x ∈M .

Proposition 2.3.19. Let M , M̃ and II be as in De�nition 2.3.18.
Then for each N ∈ N (M) and X, Y ∈ τ(M) it holds

II(N,X, Y ) = −g̃(N, ∇̃XY ) Weingarten's Formula (2.44)

Moreover II is C∞(M,R)-linear, and symmetric with respect to the
last two entries.

Proof. The C∞(M,R)-linearity with respect to the last entry is ob-
vious. As far as the second is concerned, let f ∈ C∞(M,R), then
we have that

II(N, fX, Y ) = g̃(∇̃fXN, Y ) = g̃(f∇̃XN, Y ) = f g̃(∇̃XN, Y ) =

= fII(N,X, Y )

While for the �rst component we observe that

II(fN,X, Y ) = g̃(∇̃XfN, Y ) = g̃(f∇̃XN +X(f)N, Y ) =

= g̃(f∇̃XN, Y ) = f g̃(∇̃XN, Y ) = fII(N,X, Y )

where the third identity is due to the fact thatX(f)N ∈ N (M), and
therefore g̃(X(f)N, Y ) = 0. In particular since ∇̃ is the Levi-Civita
connection, then we have

II(N,X, Y ) = g̃(∇̃XN, Y ) = X(g̃(N, Y ))−g̃(N, ∇̃XY ) = −g̃(N, ∇̃XY )

which proves the Weingarten's Formula. Finally, using always the
properties of the Levi-Civita connection, we obtain

II(N,X, Y )−II(N, Y,X) = g̃(N,−∇̃XY+∇̃YX) = g̃(N, [Y,X]) = 0

which gives us the symmetry with respect to the last two components
of the second fundamental form.

39



We de�ne now another fundamental operator, strictly related to
the second fundamental form, which will be used in Chapter 5 when
we will introduce weakly harmonic maps.

De�nition 2.3.20. LetM be a submanifold of a Riemannian man-
ifold (M̃, g̃). The shape operator of M , is the operator

S : τ(M)× τ(M)→ N (M)

(X, Y ) 7−→ −⊥(∇̃XY ) (2.45)

Remark 2.3.21. The second fundamental form and the shape oper-
ator are related by the following formula. As always let N ∈ N (M)
and X, Y ∈ τ(M), then

II(N,X, Y ) = g̃(N,S(X, Y )) (2.46)

This identity is obtained thanks to the Weingarten's formula. As
a consequence we get that the Shape operator is C∞(M,R)-linear
and symmetric. This means that for each x ∈M the shape operator
de�nes a symmetric bilinear operator

Sx : TxM × TxM → (TxM)⊥

Moreover, from Example 2.3.16, we deduce the following equation
which relates the Shape operator with the Levi-Civita connection in
M̃ , and the induced Levi-Civita connection on M

∇̃XY = ∇XY − S(X, Y ) (2.47)

for each X, Y ∈ τ(M).

2.3.3 Connections on Principal Fibre Bundles

Let π : P → M be a principal �bre bundle over M and with struc-
ture group G. For each p ∈ P we call Gp the subspace of TpP made
of vectors tangent to the �bre {p · g | g ∈ G} in p.

De�nition 2.3.22. A connection Γ in π : P → M is a di�eren-
tiable distribution Hp over P such that

1) TpP = Hp ⊕Gp for each p ∈ P

2) The distribution is right invariant under the action of the
structure Lie group G, i.e. Hp·g = (dσg)pHp for each p ∈ P and
g ∈ G.
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We call Gp the vertical subspace and Hp the horizontal sub-
space of TpP .

By 1) we deduce that every vector X ∈ TpP can be uniquely
decompose in the sum of its horizontal component XH and vertical
component XV , i.e X = XH +XV where XV ∈ Gp and XH ∈ Hp.
We can associate to each connection Γ in P a g-valued 1-form ω on
P . The construction for ω is the following.
The action of G on P induces, as stated in Proposition 2.1.21, a Lie
algebra morphism σ : g → τ(P ), where σ(A) = A], and since the
action is free then σ is an isomorphism into its image. It is called
the fundamental vector�eld corresponding to A.
Moreover, A] was de�ned as A]p := d

dt
(p · exp(tA))|t=0 for each p ∈ P

therefore A]p ∈ Gp ∀p ∈ P . But then this means that for every
p ∈ P the map g 3 A 7→ A]p ∈ Gp is an isomorphim, and therefore for
every X ∈ TpP there exists a unique A ∈ g such that X = XH +A]p.
We de�ne ωp(X) := A.
Obviously ω(X) = 0 if and only if X is horizontal.

De�nition 2.3.23. Let π : P →M be a principal �bre bundle with
structure group G. Then if Γ is a connection on P , we call the g-
valued 1-form ω associated to Γ, de�ned in the above construction,
connection form.

The following proposition is the characterization of connection
forms on P . Namely we pinpoint the necessary and su�cient con-
ditions for a g-valued 1-form on P in order to be a connection form.

Proposition 2.3.24. Let π : P → M be a principal �bre bundle
with structure group G. A connection form ω on P satis�es the
following conditions:

a) ω(A]) = A for every A ∈ g

b) (σg)
∗ω = Adg−1◦ω, that is to say ωp·g((dσg)pXp) = Adg−1(ωp(Xp))

for every vector �eld X on P and g ∈ G.

Conversely given a g-valued 1-form ω on P satisfying condition a)
and b) there is a unique connection in P whose connection form is
ω.

Proof. Let ω be a connection form over the principal �bre bundle
π : P → M . Point a) is a straightforward consequence of the
de�nition. For point b) assume that p ∈ P and X ∈ TpP . Then
we can decompose X = XH + XV = XH + A]p, where A ∈ g is the
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unique element of the Lie Algebra g, such that A]p = XV . Then we
have that

(σ∗gω)p(X) = ωσg(p)(dσg(X)) = ωσg(p)(dσg(X
H) + dσg(A

]
p)) =

= ωσg(p)(dσg(A
]
p))

where the last identity is due to the fact that dσg(XH) ∈ Hσg(p) by
de�nition of horizontal subspace. Now, as already observed in the
�rst section of this chapter, if we call Lp : G → P the map de�ned
by Lp(h) := σh(p), then

A]p = dLp(Ae)

where Ae ∈ TeG ∼= g. Therefore, we get

dσg(A
]
p) = (dσg◦dLp)(Ae) = d(σg◦Lp)(Ae) =

d

dt
(p · exp(tAe)g) |t=0 =

=
d

dt

(
σg(p) · g−1 exp(tAe)g

)
|t=0 =

d

dt
(σg(p) · exp(Adg−1(tAe)) |t=0 =

=: (Adg−1(A))]σg(p)

which means that (σ∗gω)p(X) = Adg−1(A) = Adg−1(ωp(X)), proving
the �rst part of the proposition.
Conversely let ω be g-valued 1-form on P that satis�es both a) and
b). For each p ∈ P we de�ne the following linear subspace of TpP ,

Hp := {X ∈ TpP : ωp(X) = 0} (2.48)

If X ∈ TpP is tangent to the �bre, then X = A]p and thanks to point
a) ωp(A]p) = A ∈ g. This proves that for each p ∈ P the subspace
Hp has always the same dimension, and moreover TpP = Gp ⊕Hp.
Furthermore, p → Hp is di�erentiable, since ω is a di�erentiable
form, thus Hp is a smooth distribution. Using point b) we easily
obtain also that if X ∈ Hp, for p ∈ P , then dσg(X) ∈ Hσg(p) for
each g ∈ G. This concludes the proof.

Suppose now that A = {(Ui, χi)}i∈I is an atlas for the principal
�bre bundle π : P →M , and ω is a connection form in P . As always
we will denote the family of transition functions with {gij}. If we
consider the family of trivial local cross sections

si : Ui → π−1(Ui)

x 7−→ si(x) := χ−1
i (x, e) (2.49)
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then we can build locally a g-valued one form on Ui using the pull-
back

Ai := s∗iω in Ui

Ai is called local gauge potential on Ui in the cross section si.
Suppose now that Ui ∩ Uj 6= ∅ for some i, j ∈ I. Then in this
intersection Ai and Aj satisfy the below compatibility condition.

Proposition 2.3.25. Let Θ be the left invariant g-valued canonical
1-form. For each non empty Ui ∩ Uj let Θij := g∗ijΘ. Then in the
above hypothesis

Aj = Adg−1
ij
◦ Ai + Θij in Ui ∩ Uj 6= ∅ (2.50)

Conversely if a family {Ai}i∈I of g-valued 1 forms, de�ned on the
covering U = {Ui}i∈I , satis�es condition (2.50), there is a unique
connection form ω on P such that Ai = s∗iω.

Proof. We �rst prove that if ω is a connection form and Ai := s∗iω
is the above family of g-valued one forms, then they satisfy the
compatibility condition. It is easy to verify that sj(x) = si(x)·gij(x)
for every x ∈ Ui ∩ Uj. This relation show that sj in Ui ∩ Uj can be
seen as the following composition of maps

Ui ∩ Uj −→ P ×G −→ P

x 7→ (si(x), gij(x)) 7→ si(x) · gij(x) (2.51)

and so by the Leibniz's rule (see [22], Proposition 1.4) we have that
for x ∈ Ui ∩ Uj and v ∈ TxM

(dsj)xv = (dσgij(x))si(x)(dsi)xv + (dLsi(x))gij(x)(dgij)xv

where by an abuse of notation we have called Lsi(x) : G → P the
map de�ned as Lsi(x)g = si(x) · g for every g ∈ G. Now observe that
(dgij)xv = Agij(x) for some A ∈ g. This means that:

(g∗ijΘ)v = Θ(dgij(v)) = Θ(Agij(x)) = A

and since (dLsi(x))gij(x)(dgij)xv = (dLsi(x))gij(x)(Agij(x)) = A]si(x)gij(x)

then we can write

(dsj)xv = (dσgij(x))si(x)(dsi)xv + [(g∗ijΘ)(v)]]sj(x)

If we compute ωsj(x) both on the right and left of the preceding
equation we �nd

(Aj)xv := ωsj(x)((dsj)xv) = ωsj(x)((dσgij(x))si(x)(dsi)xv) + (g∗ijΘ)v
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and the �rst term on the right hand side, thanks to Proposition
2.3.24, is equal to Adg−1

ij (x)(Ai)xv. Therefore we get the wanted
compatibility condition.
We have to prove now that given a family of g-valued 1-forms {Ai}i∈I
such that (2.50) holds, we can get a unique connection form ω on
P such that s∗i (ω) = Ai for every i ∈ I, where si : Ui → π−1(Ui) are
the trivial cross sections, de�ned in (2.49).
We start by building a connection form on π−1(Ui) for every i ∈ I.
If p = χ−1

i (x, g) then for every w ∈ TpP exists and is unique a couple
(v1, v2) ∈ T(x,g)(Ui ×G) such that w = (dχ−1

i )(x,g)(v1, v2). Since the
si are local trivial sections, then χ−1

i (x, g) = si(x)g. Di�erentiating
we obtain

(dχ−1
i )(x,g)(v1, v2) = (dσg)si(x)(dsi)x(v1) + (dLsi(x))g(v2)

where we have used the Leibniz's rule. Now, v2 = (dLg)(Ae) for some
A ∈ g, and therefore the last addendum in the previous equation is
(dLsi(x))g((dLg)(Ae)) = dLp(Ae) = A]p. So we get

(dχ−1
i )(x,g)(v1, v2) = (dσg)si(x)(dsi)x(v1) + A]p

If p = si(x) then for every w ∈ TpP we de�ne

ωi(w) = (ωi)p((dsi)x(v1) + A]p) := (Ai)x(v1) + A (2.52)

since we have just proved that w = (dsi)x(v) +A]p for v ∈ TxM and
A ∈ g.

If instead p = si(x)g, where e 6= g ∈ G, then for w ∈ TpP we
generalize the above equation

(ωi)p(w) := Adg−1 ◦ (ωi)si(x)((dσg−1)p(w)) (2.53)

We have to prove now that this g-valued 1-form ωi in π−1(Ui) is
a connection form. Thanks to Proposition 2.3.24 it is su�cient to
check that:

1) ωi(A]) = A for every A ∈ g

2) σ∗gωi = Adg−1 ◦ ω for every g ∈ G.

We start with the �rst point.
1)Let A ∈ g and p = si(x) for some x ∈ Ui. By equation (2.52) we
trivially obtain the wanted relation. Suppose now that p = si(x)g
for g ∈ G and x ∈ Ui. Equation (2.53) tells us that

(ωi)p(A
]
p) = Adg−1 ◦ (ωi)si(x)((dσg−1)si(x)gA

]) =
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= Adg−1 ◦ (ωi)si(x)((Adg ◦ A)]si(x)) = A

2)As far as the second point is concerned let w ∈ Tp(P ) where
p = si(x)h with h ∈ G, then

(σ∗gωi)p(w) = (ωi)pg((dσg)p(w)) = (ωi)si(x)hg((dσg)si(x)h(w)) =

= Adg−1h−1 ◦ (ωi)si(x)((dσg−1h−1)si(x)hg(dσg)si(x)hw) =

= Adg−1 ◦ Adh−1 ◦ (ωi)si(x)((dσh−1)si(x)hw) = Adg−1 ◦ (ωi)p(w)

where the thirds equivalence is given by (2.53).

Finally we have only to prove that in π−1(Ui ∩ Uj) the connections
ωi and ωj coincide. We will focus only on the subset sj(Ui ∩ Uj) ⊂
π−1(Ui ∩ Uj), the generalization is easy. Let p = sj(x) with x ∈
Uj ∩Ui. We pick w ∈ Tsj(x)P and we know that w = (dsj)x(v) +A]p
for some v ∈ TxM and A ∈ g. Then

(ωj)p(A
]
p) = A = (ωi)p(A

]
p)

While

(ωj)p((dsj)xv) = (Aj)xv = Adg−1
ij
◦ (Ai)xv + (g∗ijΘ)v

where the last equivalence is by hypothesis. We have already proved
that for every v ∈ TxM , (dsi)x(v) = (dσgji)sj(x)(dsj)xv+[g∗jiΘ(v)]]si(x),
and then we can rewrite the last equation as:

Adg−1
ij
◦ (ωi)si(x)((dσg−1

ij
)sj(x)(dsj)xv)− (g∗ijΘ)(v) + (g∗ijΘ)v =

= (ωi)sj(x)((dsj)x(v))

where an easy calculation shows that Adg−1
ij

((g∗jiΘ)v) = −(g∗ijΘ)v.
This concludes the proof of the theorem.

Remark 2.3.26. Let M be a manifold, and G a Lie group. As a con-
sequence of the previous Proposition every g-valued 1-form de�ned
globally on M is the pull-back via some global section of a connec-
tion form de�ned on the trivial bundle P := M ×G. To clearly see
it, just take the trivial atlas A = {(M,χ)} for P where

χ : M ×G→M ×G

(x, g) 7−→ (x, ψ(x)g)

for some ψ ∈ C∞(M,G), and the compatibility condition is trivially
veri�ed.
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Remark 2.3.27. Suppose that in Proposition 2.3.25 G is a matrix Lie
group, with composition of matrices as group operation. If w ∈ TxM
and β(t) is its integral curve with starting point x, then

Θij(w) = Θgij(x)((dgij)xw) = (dLgij(x)−1)gij(x)((dgij)xw) =

=
d

dt
(gij(x)−1gij(β(t)))|t=0 = gij(x)−1 d

dt
(gij(β(t)))|t=0 =

= gij(x)−1dgij(x)w

This means that if G is a matrix Lie group then, in the hypothesis
of Proposition 2.3.25, we can rewrite (2.50) as

Aj = g−1
ij dgij + g−1

ij Aigij (2.54)

Remark 2.3.28. In the previous proposition we have assumed that
the sections are canonical. We want to see how compatibility con-
dition changes if we consider a generic cross section.
Let ω be a connection form and A = {(Ui, χi)}i∈I an atlas for the
principal �bre bundle π : P → M , with transition functions {gij}.
Let s̃i : Ui → π−1(Ui) and s̃j : Uj → π−1(Uj) be two generic cross
sections, and Ui ∩ Uj 6= ∅. Then as we have already argued there
exist smooth hi ∈ C∞(Ui, G) and hj ∈ C∞(Uj, G) such that

χ−1
i (x, hi(x)) = s̃i(x) and χ−1

j (x, hj(x)) = s̃j(x)

Then we create a new atlas Ã := {(Ui, χ̃i)}i∈I , such that

χ̃i(p) := (π(p), h−1
i (π(p))·φi(p)) χ̃j(p) := (π(p), h−1

j (π(p))·φj(p))

and in this way s̃i(x) = χ̃−1
i (x, e) and the same holds for j, which

means that s̃i are now trivial cross sections with respect to the
new atlas Ã. So if we call Ãi := s̃∗i (ω) and Ãj = s̃∗j(ω), then by
Proposition 2.3.25 we get the identity

Ãj = g̃−1
ij dg̃ij + g̃−1

ij Ãig̃ij

where g̃ij(x) := h−1
i (x)gij(x)hj(x) are the new transition functions.

De�nition 2.3.29. Let ω1 and ω2 be two connection forms over
the principal �bre bundle π : P →M . We say that they are gauge
equivalent if there exists an automorphism of the bundle f : P →
P such that

f ∗ω1 = ω2
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Example 2.3.30. In Example 2.2.15 we showed how from a vector
bundle π : E → M of rank r, we can build a principal �bre bundle
π̃ : F (E) → M with structure group G(r,R) over M , called the
frame bundle of E.
In this example we show that given a connection ∇ on the vector
bundle π : E → M , we can endow also F (E) with a connection,
completely determined by ∇. If A = {(χi, Ui)}i∈I is an atlas for
π : E → M , then we already saw how to obtain an atlas Ã =
{(χ̃i, Ui)}i∈I for π̃ : F (E)→M .
Once we are given the atlas A, we can associate to the connection
∇ the family of matrices of the connection {ωi}i∈I , where each ωi is
considered with respect to the frame {e1, ..., er} in Ui associated to
χi, namely for j = 1, ..., r we have

ej : Ui → π−1(Ui)

x 7−→ ej(x) := χ−1
i (x, ej)

where {e1, ..., er} is the canonical basis of Rr. These matrices of
di�erential forms are related by the equation

ωj = g−1
ij dgij + g−1

ij ωigij (2.55)

where gij ∈ C∞(Ui ∩ Uj, GL(r,R)) are such that
χ−1
j (x, eh) = χ−1

i (x, gijeh) = gijχ
−1
i (x, eh). It is immediate to see

that gij are also the transition functions of F (E), namely

χ̃i ◦ χ̃−1
j (x,A) = (x, gijA) ∀(x,A) ∈ (Ui ∩ Uj)×GL(r,R)

Therefore, thanks Proposition 2.3.25 we conclude. Indeed, observe
that each ωi ∈ Mr(R) ∼= g, where g is the Lie Algebra of the struc-
ture group G = GL(r,R).

One sees that once a connection is de�ned over a principal �bre
bundle then for every p ∈ P the di�erential of the canonical projec-
tion dπp : TpP → Tπ(p)M maps isomorphically Hp into Tπ(p)M .

De�nition 2.3.31. Let X ∈ τ(M), we de�ne its horizontal lift
X∗, as the unique horizontal vector �eld in P such that for every
p ∈ P , dπp(X∗) = Xπ(p).

Proposition 2.3.32. Given a connection over P and X ∈ τ(M),
there exists and is unique the horizontal lift X∗, and furthermore it
is right invariant. Conversely if Y ∈ τ(P ) and it is horizontal and
right invariant, then there exists a unique vector �eld over M whose
horizontal lift coincides with Y .
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Remark 2.3.33. Let π : P → M a principal �bre bundle with a
connection, and (U, φ = (x1, ..., xn)) a local chart for M . Let ∂∗i
be the horizontal lift in π−1(U) of the local vector �eld ∂xi . Then
∂∗1 , ..., ∂

∗
n is a local frame for the horizontal distribution p → Hp in

π−1(U).
Before concluding we make the following observation. Later it

will be useful in order to achieve a deeper geometric interpretation
on the Yang-Mills functional. If ω is some connection over a princi-
pal bundle π : P →M and s : U → π−1(U) a cross section, then by
de�nition π ◦ s = idU . Di�erentiating we get that dπ ◦ ds(X) = X
for every X ∈ τ(U). In particular X = dπ(ds(X)H + ds(X)V ) =
dπ(ds(X)H) and therefore ds(X)H = X∗.

2.4 Curvature form

Let π : P →M be a principal �bre bundle. We de�ne an important
class of tensors over P . Let V be a vector space and ρ : G→ GL(V)
be a group representation.

De�nition 2.4.1. We say that a V-valued k-form α over P is a
pseudotensorial of type ρ, if σ∗gα = ρ(g−1) ◦ α for every g ∈ G,
where σg : P → P is the right action of the group G on P , i.e.
σg(p) = p · g.
A pseudotensorial of type ρ which vanishes on vertical tangent vec-
tors, namely ∀p ∈ P if at least one of the tangent vectors v1, ..., vk ∈
TpP is vertical then αp(v1, ..., vk) = 0, is called tensorial of type
ρ.

We already encountered a pseudotensorial. Indeed if we consider
as ρ the Adjoint representation Ad : G → GL(g), then every con-
nection form ω over P is actually a 1-pseudotensorial of type Ad .
It is easy to verify that if φ is some pseudotensorial form then, also
dφ is pseudotensorial, but if φ is tensorial then its di�erential is not
necessarily tensorial too. With the following de�nition we introduce
the covariant exterior derivative, and from each pseudotensorial form
we will be able to get a tensorial form.

De�nition 2.4.2. Let ω be a connection form over a principal �bre
bundle π : P → M . If φ is any V-valued pseudotensorial form of
type ρ where ρ : G → GL(V) is a group representation, then we
de�ne the exterior covariant derivative dωφ as

(dωφ)p(v1, ..., vk+1) := dφp(v
H
1 , ..., v

H
k+1) v1, ..., vk+1 ∈ TpP (2.56)
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Proposition 2.4.3. In the same hypothesis of the above de�nition,
we have that dωφ is a (k + 1)-tensorial form of type ρ.

Proof. The (k+ 1)-form is clearly vanishing on vertical vectors. We
just have to prove that it is pseudotensorial. Let v1, ..., vk+1 ∈ TpP
and σg : P → P de�ned as always. Then

σ∗g(d
ωφ)(v1, ..., vk+1) = dωφσg(p)(dσgv1, ..., dσgvk+1) =

= dφσg(p)((dσgv1)H , ..., (dσgvk+1)H) =

but since (dσg(vi))
H = dσg(v

H
i ), then the last equation is equal to

= dφσg(p)(dσg(v
H
1 ), ..., dσg(v

H
k+1)) = (σ∗gdφ)(vH1 , ..., x

H
k+1) =

= (dσ∗gφ)(vH1 , ..., x
H
k+1) = (d(ρ(g−1) ◦ φ))(vH1 , ..., v

H
k+1)

and since ρ(g−1) is linear we �nally �nd:

ρ(g−1) ◦ dωφ(v1, ..., vk+1)

We introduce now a fundamental example of a g-valued tenso-
rial 2-form of type Ad, and we get it trough the covariant exterior
derivative of a connection form.

De�nition 2.4.4. Let π : P → M be a principal �bre bundle and
ω a connection form on P . We de�ne the curvature form Ω of ω,
as the exterior covariant derivative of ω:

Ω := dωω (2.57)

Since it is not always convenient to compute the horizontal com-
ponent of a vector �eld over the bundle, we state the following impor-
tant formula for the curvature form, called the Cartan structure
equation.

Theorem 2.4.5. Let π : P → M be a principal �bre bundle and ω
a connection on it. Then we can rewrite its curvature form as

Ω = dω + [ω, ω] (2.58)

where we de�ne the g-valued 2-form [ω, ω](v, w) := [ω(v), ω(w)] for
each v, w ∈ TpP and p ∈ P . Furthermore, if X, Y ∈ τ(P ) then

Ω(X, Y ) = −ω([XH , Y H ]) (2.59)
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Proof. Fix v, w ∈ TpP , we want to prove that

Ωp(v, w) = dωp(v, w) + [ω(v), ω(w)] (2.60)

Since both sides are bilinear, then it is su�cient to check the equa-
tion for the following three cases:

1) v, w are both vertical

2) v, w are both horizontal

3) v is horizontal and w is vertical.

We start with 1). Since v, w are vertical then the left hand side of
(2.60) is vanishing, and furthermore there exist A,B ∈ g such that
A]p = v and B]

p = w. This means that thanks to the Cartan formula
for the exterior derivative:

dωp(v, w) = (dω(A], B]))p = B](ω(A]))p−A](ω(B]))p−ω([A], B]])p =

= −ω([A,B]]) = −[A,B]

where the equivalence in the last equation is due to the fact that
the map g 3 A 7→ A] ∈ τ(P ) is a Lie Algebra morphism. Since
[ω(A]), ω(B])] = [A,B], then the �rst point is proved.
2) We suppose now that v, w are both horizontal. Then

Ωp(v, w) = dωp(v
H , wH) = dωp(v, w)

and [ω(v), ω(w)] = [0, 0] = 0 and so also this case is proved.
3)We extend v to a horizontal vector�eld V in P , and there exists
B ∈ g such that B]

p = w. Then Ω(v, w) = 0, while the right hand
side of (2.60) is

dω(V,B])p+[0, B] = B](ω(V ))p−V (ω(B]))p−ω([V,B]])p = −ω([V,B]])p

So we have to prove that ω([V,B]]) = 0, namely [V,B]] is horizontal.
Indeed, observe that the �ow of B] around p ∈ P is σb(t), where b(t)
is the integral curve of B in G. Then

[V,B]] = − lim
t→0

dσb(t)(V )− V
t

and since the horizontal distribution is right invariant then [V,B]]
is horizontal.

Now let X, Y be two vector �elds over P , then by de�nition one
easily obtain that for every p ∈ P

Ωp(X, Y ) = Ωp(X
H , Y H) = (dω(XH , Y H))p
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and by the Cartan formula for the exterior di�erential

dω(XH , Y H) = Y H(ω(XH))−XH(ω(Y H))− ω([XH , Y H ])

Since ω is vanishing on horizontal vector �elds, then

Ω(X, Y ) = −ω([XH , Y H ]).

As we already did for the connection form, we can build a lo-
cal representation of the curvature form by considering some local
section over the principal bundle π : P →M .

De�nition 2.4.6. Let ω be a connection form over a principal �bre
bundle π : P → M , and let Ω be its curvature form. If s : V →
π−1(V ) is some local cross section, where V is an open set in M , we
de�ne the local �eld strength in gauge s as:

F := s∗Ω (2.61)

which is a g-valued 2-form over V ⊂M .

Observe that if in V we have A = s∗ω, then we can write F in
terms of the local gauge potential A. Indeed,

F = s∗Ω = s∗dω + s∗([ω, ω]) = d(s∗ω) + [s∗ω, s∗ω] = dA+ [A,A]

For this reason every time we �x a connection form ω and a section
s such that s∗ω = A we will write FA instead of F to specify the
local gauge potential, and therefore the local cross section.

Theorem 2.4.7. Let π : P → M be a principal �bre bundle and ω
be a connection form over it. Let V1 and V2 be two open sets in M
such that V1 ∩ V2 6= ∅, and s1 : V1 → π−1(V1) and s2 : V2 → π−1(V2)
be two local cross sections. Then if Ω is the curvature form:

s∗2Ω = Adg−1
12
◦ s∗1Ω in V1 ∩ V2

where s2 = s1 · g12 and g12 : V1 ∩ V2 → G.

Proof. Let x0 ∈ V1 ∩ V2 and v, w ∈ Tx0M , then

(s∗2Ω)(v, w) = Ωs2(x0)(ds2(v), ds2(w)) = Ωs2(x0)(d(s1g12)(v), d(s1g12)(w))

and thanks to the Leibniz's rule, as we already saw, it holds that

d(s1g12)(v) = dσg12(ds1(v)) + dLs1(dg12(v))
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where the map Ls1 : G → P is de�ned as Ls1(g) = s1 · g. Now if
we call A the element of the Lie algebra of G such that Ag12(x0) =
dg12(v) in g12(x0), then dLs1(dg12(v)) = A∗s1·g12

, which means that
it is vertical, and its image through Ω is therefore zero. So we have
proved:

(s∗2Ω)(v, w) = Ωs2(x0)(dσg12(ds1(v)), dσg12(ds1(w)) =

= σ∗g12
s∗1Ωx0(v, w) = Adg−1

12
◦ (s∗1Ω)(v, w)

where the last equivalence is given by Proposition 2.4.3. This con-
cludes the proof of the theorem.

In particular if ω is some connection form over the principal �bre
bundle π : P → M and s1,s2 are de�ned as in the theorem, then
if we call A1 = s∗1ω and A2 = s∗2ω the equation in Theorem 2.4.7
becomes

FA2 = Adg−1
12
◦ FA1

Unlike the classical exterior derivative, usually dω ◦dω 6= 0. How-
ever if we consider as pseudotensorial form of type Ad the connec-
tion form inducing the exterior covariant derivative itself then the
vanishing relation holds.

Theorem 2.4.8. Let π : P → M be a principal bundle and ω a
connection form. Then

dω(dωω) = dωΩ = 0 (Bianchi Identity) (2.62)

Proof. Let v, w, z ∈ TpP . If any one of them is vertical then
dωΩp(v, w, z) = 0. So we restrict to the case where v, w, z are hori-
zontal. We extend them to horizontal vector �elds V,W,Z and we
�nd thanks to the Cartan structure equation:

dωΩp(v, w, z) = (dΩ(V,W,Z))p = (ddω︸︷︷︸
=0

(V,W,Z))p+d([ω, ω])(V,W,Z)p

The last summand in the above equation is equal to

V ([ω, ω](W,Z))p −W ([ω, ω](V, Z))p + Z([ω, ω](V,W ))p

−([ω, ω]([V,W ], Z))p − ([ω, ω](V, [W,Z]))p = 0

since V,W,Z are horizontal vector �elds, and ω is vanishing on hor-
izontal vectors.
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Chapter 3

Hodge Theory

3.1 Di�erential Forms & Hodge operator

In this section we de�ne Rm-valued di�erential forms, extending
them from smooth objects to less regular one, a necessary require-
ment when studying variational problems that a priori cannot be
solved working with smooth di�erential forms.
If M is a manifold we know that a k-form is de�ned as a section of
the vector bundle ∧kM1. When M is a open domain in some Rn,
then any k-form admits a global representation, using the Euclidean
coordinates of Rn.

De�nition 3.1.1. Let Ω ⊆ Rn be open. We de�ne a smooth Rm-
valued di�erential k-form as a section of the bundle ∧kΩ ⊗ Rm. In
coordinates any k-form can be written as

ω(x) =
∑

i1<...<ik

ωi1,...,ik(x)dxi1 ∧ ... ∧ dxik

where ωi1,...,ik ∈ C∞(Ω,Rm). We denote as C∞(Ω,∧kT ∗Ω⊗Rm) the
space of Rm-valued k-forms over Ω.

When working with Rm-valued di�erential k-forms, one can ex-
tend the idea of exterior product as in the following de�nition.
From now on we assume that Rm is endowed with a scalar prod-
uct · : Rm × Rm → R.

De�nition 3.1.2. We de�ne the following operator

∧ : C∞(Ω,∧kT ∗Ω⊗ Rm)× C∞(Ω,∧lT ∗Ω⊗ Rm)→ ∧l+k(Ω)

(α, β) 7−→ α ∧ β (3.1)
1∧kM is the vector bundle de�ned as the disjointed union of ∧k(T ∗pM) over p ∈ M . For

further details see for instance [1]
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and α ∧ β is the (l + k)-di�erential form de�ned as2

α∧β(v1, ...vk+l) =
∑

σ∈S(k,k+l)

sgn(σ)α(vσ(1), ..., vσ(k))·β(vσ(k+1), ..., vσ(k+l))

where v1, ..., vl+k are arbitrary vector�elds in Ω.

As one expects we can also de�ne the standard exterior derivative
d of a smooth Rm-valued k-form.

De�nition 3.1.3. Let Ω ⊂ Rn, and α ∈ C∞(Ω,∧kT ∗Ω⊗Rm). Then
we set

dα =
∑

i1<...<ik

(∑
j

∂αi1,...,ik
∂xj

dxj

)
∧ dxi1 ∧ ... ∧ dxik (3.2)

Now we de�ne a fundamental operator in Hodge theory. We will
de�ne it for any open domain Ω ⊂ Rn with a generic Riemannian
metric g on it. As we will see, this new operator let us construct
a formal de�nition of pointwise norm of di�erential forms. The
following de�nitions can easily be generalized to any Riemannian
manifold.

De�nition 3.1.4. Let Ω ⊆ Rn open, and let g be a Riemannian
metric on it.

1) Let X1, ..., Xn be a g-orthonormal frame in Ω. This de�nes a
pointwise product in C∞(Ω,∧kT ∗Ω⊗ Rm), given by

〈·, ·〉g : C∞(Ω,∧kT ∗Ω⊗Rm)×C∞(Ω,∧kT ∗Ω⊗Rm)→ C∞(Ω,R)

(α, β) 7−→
∑

i1<...<ik

α(Xi1 , ..., Xik)·β(Xi1 , ..., Xik)

(3.3)
We denote with |α|2 := 〈α, α〉 the pointwise square norm of α.

2) The Hodge operator
?g : C∞(Ω,∧kT ∗Ω ⊗ Rm) → C∞(Ω,∧n−kT ∗Ω ⊗ Rm) is deter-
mined by

β ∧ ?gα = 〈β, α〉gη ∀β ∈ C∞(Ω,∧kT ∗Ω⊗ Rm) (3.4)

where η is the volume form on Ω induced by the Riemannian
metric g. In coordinates we have η :=

√
| det(g)|dx1∧...∧dxn.3

It is clear that ?g depends explicitly on the chosen metric.
2We denote with S(k, n) for k ≤ n, the set of all permutations of {1, ..., n}, such that

σ(1) < ... < σ(k) and σ(k + 1) < ... < σ(k + l)
3A volume form over an n-dimensional manifold M is any di�erential n-form, and we have

that it is nowhere vanishing if and only if the manifold is orientable. Each open subset of Rn,
is of course orientable, and therefore it admits a volume form.
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Note that De�nition 3.1.4 does not depend on the particular
choice of the g-orthonormal frame.
Remark 3.1.5. We will denote the Hodge star operator associated
to the Euclidean metric with ?, without any subscript.
With this metric we have that { ∂

∂x1
, ..., ∂

∂xn
} is an orthonormal frame,

and therefore for any α, β ∈ C∞(Ω,∧kT ∗Ω ⊗ Rm) we can rewrite
equation (3.3) as

〈α, β〉(x) =
∑

i1<...<ik

αi1,...,ik(x) · βi1,...,ik(x) (3.5)

with x ∈ Ω. The volume form associated to the Euclidean metric
is dx1 ∧ ... ∧ dxn, and if in the above de�nition we choose β :=
ejdx

in−k+1 ∧ ...∧dxin , where {ei}i=1,...,m is the canonical basis of Rm,
then

αjin−k+1,...,in
= 〈β, α〉 = (β ∧ ?α)1,...,n = sgn(σ)(?α)ji1,...,in−k(x)

where σ({1, ..., n}) = {in−k+1, ..., in} ∪ {i1, ..., in−k}, for some per-
mutation σ.
Remark 3.1.6. In De�nition 3.1.4 we have de�ned the pointwise
scalar product between two Rm-valued k-forms α and β. If now
we assume that α is still Rm-valued but β has values in R, then with
abuse of notation we de�ne 〈α, β〉(x) :=

∑
i1<...<ik

αi1...ik(x)βi1...ik(x),
which is not a scalar product anymore.

The following proposition establishes the most important prop-
erties of the Hodge star operator.

Proposition 3.1.7. Let Ω ⊂ Rn be open and endowed with a Rie-
mannian metric g.

1) ?g : C∞(Ω,∧kT ∗Ω⊗Rm)→ C∞(Ω,∧n−kT ∗Ω⊗Rm), is a linear
operator. Furthermore it holds α ∧ ?gβ = β ∧ ?gα.

2) ?g(η) = 1 and ?g1 = η, where η is the volume form associated
to g.

3) If β is a Rm-valued k-form, then ?g(?gβ) = (−1)k(n−k)β

4) If φ : Ω1 → Ω is a di�eomorphism, then

φ∗ ◦ ?g = ?φ∗(g) ◦ φ∗ (3.6)

where φ∗ is the pull-back of φ.4

4If φ : Ω1 → Ω is a di�eomorphism and Ω is endowed with a Riemannian metric g, then
we can "transport" this metric on Ω1 through the pull-back as follows. For each x ∈ Ω1 and
v, w ∈ TxΩ1, we have φ∗(g)x(v, w) = gφ(x)(dφ(v), dφ(w)).
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Proof. Points 1),2) and 3) are simply direct consequences of the
de�nition, and therefore a proof is not necessary. For details see
[39].
4)Fix α ∈ C∞(Ω,∧kT ∗Ω ⊗ Rm), and for every smooth Rm-valued
k-form in Ω1, we have by de�nition of Hodge star operator that

β ∧ ?φ∗(g)φ
∗(α) = 〈β, φ∗(α)〉φ∗(g)η

where η is the volume form associated to φ∗(g). We �x a φ∗(g)-
orthonormal frame in Ω1, {X1, ..., Xn}. If we compute the right
hand side of the above equation in y ∈ Ω1, we obtain∑

i1<...<ik

βy(Xi1 , ..., Xik) · αφ(y)(dφ(Xi1), ..., dφ(Xik))ηy = (∗)

and since φ : Ω1 → Ω is a di�eomorphism, then if x = φ(y)

(∗) =
∑

i1<...<ik

βφ−1(x)(dφ
−1(Yi1), ..., dφ−1(Yik)) · αx(Yi1 , ..., Yik)ηφ−1(x)

where dφ(Xi) = Yi for each i = 1, ..., n. In particular by de�nition
of φ∗(g), we have that {Y1, ..., Yn} is a g-orthonormal frame in Ω,
and also that (φ∗)−1(η) = ω is the volume form associated to g in
Ω. Therefore we get for each y ∈ Ω1

(∗) = φ∗(〈(φ∗)−1(β), α〉gω)y

So �nally we have that

β ∧ ?φ∗(g)φ
∗(α) = 〈β, φ∗(α)〉φ∗(g)η = φ∗(〈(φ∗)−1(β), α〉gω) =

= φ∗((φ∗)−1(β) ∧ ?gα) = β ∧ φ∗(?gα)

and this concludes the proof.

From now on we will work exclusively with the Euclidean metric
and the Hodge star operator associated to it, if not di�erently spec-
i�ed.
Now that we have introduced the concept of pointwise scalar prod-
uct for di�erential forms, we are ready to de�ne the Sobolev spaces
of di�erential forms.

De�nition 3.1.8. For 1 ≤ p < ∞ we consider the subspace of
C∞(Ω,∧kT ∗Ω⊗ Rm) made of Rm-valued k-forms α such that

‖α‖Lp :=

(∫
Ω

|α|pdx
) 1

p

<∞ (3.7)
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Smooth Rm-valued k-forms are a subspace of measurable Rm-valued
k-forms, and therefore we de�ne
Lp(Ω,∧kT ∗Ω ⊗ Rm) = C∞(Ω,∧kT ∗Ω⊗ Rm)

‖·‖Lp . This space co-
incides with the space of Rm-valued k-forms α, whose components
αi1,...,ik are chosen in L

p(Ω,Rm), and the following is clearly an equiv-
alent norm:

‖α‖Lp(Ω) :=
∑

i1<...<ik

‖αi1,...,ik‖Lp(Ω,Rm) (3.8)

De�nition 3.1.9. For r ∈ N and 1 < p < ∞ we also de�ne the
space of Sobolev Rm-valued k-forms

W r,p(Ω,∧kT ∗Ω⊗ Rm) =

=
{
ω ∈ Lp(Ω,∧kT ∗Ω⊗ Rm) : ωi1,...,ik ∈ W r,p(Ω,Rm)

}
(3.9)

with the norm

‖ω‖W r,p(Ω) :=
∑

i1<...<ik

‖ωi1,...,ik‖W r,p(Ω,Rm) (3.10)

and in this fashion we can de�ne the usual function spaces but for
Rm-valued k-di�erential forms, just working componentwise. Ob-
serve that if m = 1 we have the usual k-forms.

We introduce now the notion of inner product, that soon will
let us de�ne the concept of tangential and normal component of a
di�erential form.

De�nition 3.1.10. Let 0 ≤ k, l ≤ n and α a Rm-valued k-di�erential
form, and β a l-form. We de�ne the inner product of α with β as:

βyα := (−1)n(k−l) ? (β ∧ (?α)) (3.11)

If k = l one see that βyα = 〈α, β〉, while if l > k then βyα = 0.

Remark 3.1.11. The results of Proposition 3.1.7 can be easily gen-
eralized to the Sobolev space W r,p(Ω,∧kT ∗Ω⊗Rm) using density of
smooth Rm-valued k-di�erential forms in this space.

3.1.1 Tangential and Normal component

In what follows we consider Ω an open bounded an su�ciently
smooth subset of Rn, and if x ∈ ∂Ω we call ν(x) the outer unit
normal at x.
The unit normal is a vector�eld restricted to ∂Ω, in the sense that
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ν ∈ τ(Ω|∂Ω), but anyway we will often identify it with a 1-form, as
follows. If ν(x) = (ν1(x), ..., νn(x)) then we associate to it the 1-
form ν(x) = ν1(x)dx1 + ...+ νn(x)dxn. Observe that we can always
identify a vector�eld with a 1-form if we de�ne on Ω a Riemannian
metric, which in this case is the norm induced by the standard scalar
product on Rn.
We give two de�nitions of tangential component, and normal com-
ponent. The Proposition below would underline in what sense they
are equivalent.

De�nition 3.1.12. Let α ∈ W 1,p(Ω,∧kT ∗Ω ⊗ Rm). We de�ne the
restriction of α to ∂Ω as

α|∂Ω =
∑

i1<...<ik

αi1,...,ik |∂Ωdx
i1 ∧ ... ∧ dxik

where thanks to the Trace Theorem for Sobolev spaces one has
that αi1,...,ik |∂Ω is well de�ned in W 1− 1

p
,p(∂Ω,Rm). By de�nition

this means that α|∂Ω ∈ W 1− 1
p
,p(∂Ω,∧kT ∗Ω|∂Ω ⊗ Rm).

De�nition 3.1.13. The tangential component of α on ∂Ω is the
(k + 1)-form ν ∧ α ∈ W 1− 1

p
,p(∂Ω,∧k+1T ∗Ω|∂Ω ⊗ Rm). The normal

component of α on ∂Ω is the (k − 1)-form
νyα ∈ W 1− 1

p
,p(∂Ω,∧k−1T ∗Ω|∂Ω ⊗ Rm).

Let α be as above. We introduce the other two equivalent de�-
nitions for tangential and normal component.

De�nition 3.1.14. Let {X1, ..., Xn} be a basis of Rn at x ∈ ∂Ω with
{X1, ..., Xn−1} spanning Tx(∂Ω) and Xn orthogonal to Tx(∂Ω), then
we call tangential component αT ∈ W 1− 1

p
,p(∂Ω,∧kT ∗Ω|∂Ω⊗Rm)

the k-form de�ned as:

αT (x)(Xi1 , ..., Xik) = α(x)(Xi1 , ..., Xik) 1 ≤ i1 < ... < ik < n

and
αT (x)(Xi1 , ..., Xik) = 0 1 ≤ i1 < ... < ik = n

While the normal component is simply αN(x) := α(x) − αT (x)

for each x ∈ ∂Ω. Obviously αN is in W 1− 1
p
,p(∂Ω,

∧k T ∗Ω|∂Ω ⊗ Rm)
too.

Remark 3.1.15. In De�nition 3.1.14 we have de�ned αT as a di�eren-
tial form which is identically zero outside the tangent bundle of ∂Ω.
Thus we can identify αT as an object ofW 1− 1

p
,p(∂Ω,

∧k T ∗∂Ω⊗Rm)
without losing any information.
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In the following proposition we higlight the relation between the
two di�erent de�nitions of tangential and normal component. For a
proof in the case m = 1 see [11].

Proposition 3.1.16. Let α ∈ W 1,p(Ω,
∧k T ∗Ω⊗ Rm), then

αT = νy(ν ∧ α) and αN = ν ∧ (νyα) (3.12)

Corollary 3.1.17. The map

T : W 1,p(Ω,∧kT ∗Ω⊗ Rm)→ W 1− 1
p
,p(∂Ω,∧kT ∗∂Ω⊗ Rm)

α 7→ αT

is linear and continuous.

Proof. The linearity is clear by De�nition 3.1.14. Using the previous
proposition and the standard Trace Theorem for Sobolev spaces

‖αT‖
W

1− 1
p ,p

= ‖νy(ν ∧ α)‖
W

1− 1
p ,p
≤ C‖α‖

W
1− 1

p ,p
≤ C‖α‖W 1,p

and this inequality establishes continuity.

We conclude this subsection with a result on the properties of
the Hodge star operator.

Proposition 3.1.18. Let α ∈ W 1,p(Ω,∧kT ∗Ω⊗Rm), then we have
the following equivalences

(?α)T = ?(αN) and (?α)N = ?(α)T

Proof. Let x ∈ ∂Ω and {X1, ..., Xn} a basis for TxΩ withX1, ..., Xn−1

spanning Tx∂Ω and Xn orthogonal to Tx∂Ω. Then using the de�ni-
tion of ?α, and �xing a permutation σ(1, ..., n) = (i1, ..., in)

(?α)T (Xik+1
...Xin) = ?α(Xik+1

...Xin) if Xn 6∈ {Xik+1
, ..., Xin}

(?α)T (Xik+1
...Xin) = 0 if Xn ∈ {Xik+1

, ..., Xin}
Since ?α(Xik+1

...Xin) = sgn(σ)α(Xi1 ...Xik) then the last two equa-
tions imply

(?α)T (Xik+1
...Xin) = sgn(σ)α(Xi1 ...Xik) if Xn ∈ {Xi1 , ..., Xk}

(?α)T (Xik+1
...Xin) = 0 if Xn 6∈ {Xi1 , ..., Xk}

and this means that (?α)T = ?(αN). The other equations can be
proved similarly.
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3.1.2 Ga�ney's Inequality

We say that α has vanishing tangential component if αT = 0,
and thanks to the Proposition above this condition is equivalent to
ν ∧ α = 0 on ∂Ω.
Similarly we say that α has vanishing normal component if αN =
0, or νyα = 0 on ∂Ω. We call

W r,p
T (Ω,∧kT ∗Ω⊗ Rm) := {α ∈ W r,p : αT = 0}

W r,p
N (Ω,∧kT ∗Ω⊗ Rm) := {α ∈ W r,p : αN = 0}

The theorem below is the integration by parts formula for di�er-
ential forms, and it will give us a characterization for di�erential
forms with vanishing tangential (or normal) component. First we
need to de�ne the following operator, called the codi�erential. We
also de�ne the Laplacian for di�erential forms. This last de�nition is
fundamental and heavily used throughout this thesis, since it allows
us to describe the Laplacian of a di�erential form as the composition
of the di�erential and codi�erential, as follows.

De�nition 3.1.19. If α is a k-form in W r,p(Ω,∧kT ∗Ω ⊗ Rm) (for
some p > 1 and r ≥ 1) then we de�ne the codi�erential of α as

d?α = (−1)n(k−1) ? (d(?α))

De�nition 3.1.20. Let α ∈ W r,p(Ω,∧kT ∗Ω⊗ Rm), then we de�ne
the Laplacian of α, as

∆α := (dd? + d?d)α (3.13)

Theorem 3.1.21 ([11], Theorem 3.28). Let Ω be an open bounded
smooth domain, then ∀α ∈ W 1,p(Ω,∧kT ∗Ω⊗ Rm) and
β ∈ W 1,p′(Ω,∧k+1T ∗ ⊗ Rm) we have the following identity:∫

Ω

〈dα, β〉+

∫
Ω

〈α, d?β〉 =

∫
∂Ω

〈ν ∧ α, β〉 =

∫
∂Ω

〈α, νyβ〉 (3.14)

where 1
p

+ 1
p′

= 1.

So we can also de�neW 1,p
T (Ω,∧kT ∗Ω⊗Rm) as the set of α ∈ W 1,p

such that∫
Ω

〈dα, β〉+
∫

Ω

〈α, d?β〉 = 0 ∀β ∈ C∞(Ω,∧k+1T ∗Ω⊗Rm) (3.15)
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Now we state a �rst version of the Ga�ney's inequality, that later
will be generalized. A proof of the following theorem can be found
in [11].

Theorem 3.1.22. Let Ω ⊂ Rn be a smooth bounded domain, and
ω ∈ W 1,2

T (Ω,∧kT ∗Ω ⊗ Rm) ∪W 1,2
N (Ω,∧kT ∗Ω ⊗ Rm). Then the fol-

lowing inequality holds

‖ω‖W 1,2(Ω) ≤ C(‖dω‖L2(Ω) + ‖d?ω‖L2(Ω) + ‖ω‖L2(Ω)) (3.16)

We see that the above Theorem allows us to bound from above
the W 1,2-norm of a di�erential form ω ∈ W 1,2

T (Ω,∧kT ∗Ω ⊗ Rm) ∪
W 1,2
N (Ω,∧kT ∗Ω⊗Rm) by means of the L2-norm of dω and d?ω and

the L2-norm of the di�erential form itself. This is not a trivial result,
indeed on the right hand side of (3.16) we are not considering the
L2 norm of all the partial derivatives of ω, unlike in the classical
de�nition of W 1,2-norm of ω.
Now we introduce the space of harmonic �elds, which will be used
in the generalization of the Ga�ney's inequality.

De�nition 3.1.23. The set of Rm-valued harmonic �elds is de-
�ned as

H(Ω,∧kT ∗Ω⊗Rm) =
{
ω ∈ W 1,2(Ω,∧kT ∗Ω⊗ Rm) : dω = 0, d?ω = 0

}
(3.17)

Furthermore we de�ne

HT (Ω,∧kT ∗Ω⊗Rm) := H(Ω,∧kT ∗Ω⊗Rm)∩W 1,2
T (Ω,∧kT ∗Ω⊗Rm)

HN(Ω,∧kT ∗Ω⊗Rm) := H(Ω,∧kT ∗Ω⊗Rm)∩W 1,2
N (Ω,∧kT ∗Ω⊗Rm)

(3.18)

We list now some properties of harmonic �elds, that will be useful
in stating the main result of this section, the generalized Ga�ney's
inequality.

Theorem 3.1.24. Let Ω be an open bounded smooth domain in Rn,
then the followings hold

1) H(Ω,∧kT ∗Ω⊗ Rm) ⊂ C∞(Ω,∧kT ∗Ω⊗ Rm)

2) HT (Ω,∧kT ∗Ω ⊗ Rm) and HN(Ω,∧kT ∗Ω ⊗ Rm) are both �nite
dimensional

If Ω is also contractible5 then

5We say that a set Ω is contractible if there exists x0 ∈ Ω and F ∈ C∞([0, 1]×Ω,Ω) such
that F (0, x) = x0 and F (1, x) = x for each x ∈ Ω.
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3) For 0 ≤ k ≤ n − 1 the space HT (Ω,∧kT ∗Ω ⊗ Rm) = {0}, and
for 1 ≤ k ≤ n the space HN(Ω,∧kT ∗Ω⊗ Rm) = {0}

Proof. 1) The �rst property is an easy consequence of the Weyl's
Lemma (see [47]). Indeed, if ω ∈ H(Ω,∧kT ∗Ω⊗Rm) then for every
φ ∈ C∞c (Ω,∧kT ∗Ω⊗Rm) thanks to the integration by parts formula
in Theorem 3.1.21 for di�erential forms∫

Ω

〈ω,∆φ〉dx =

∫
Ω

〈ω, d∗dφ+ dd∗φ〉dx =

=

∫
Ω

〈dω, dφ〉dx+

∫
Ω

〈d∗ω, d∗φ〉dx = 0

and therefore each component of ω is smooth.
2) We will prove this point using Riesz Theorem (see for instance
[8]). Consider a W 1,2-bounded sequence {ωn}n ⊂ HT (Ω,∧kT ∗Ω ⊗
Rm), then by re�exivity it admits a subsequence weakly converging
to some ω̃ in W 1,2. Corollary 3.1.17 tells us that the map

T : W 1,2(Ω,∧kT ∗Ω⊗ Rm)→ W
1
2
,2(∂Ω,∧kT ∗∂Ω⊗ Rm)

is linear and continuous for the strong topology of W 1,2, and there-
fore also for the weak one, which implies that ω̃ ∈ W 1,2

T (Ω, T ∗Ω ⊗
Rm). The lower semicontinuity of the norm with respect to the
weak convergence implies that dω̃ = 0 and d∗ω̃ = 0. Then ω̃ ∈
HT (Ω,∧kT ∗Ω ⊗ Rm). Finally by Rellich-Kondrakov we have that
W 1,2(Ω,∧kT ∗Ω ⊗ Rm) ↪→ L2(Ω,∧kT ∗Ω ⊗ Rm) compactly, and thus
there is a strongly L2 converging subsequence {ωnk}k of {ωn}n. This
last observation and Theorem 3.1.22 imply that

‖ωnk−ω̃‖W 1,2(Ω) ≤ C

(
‖ d(ωnk − ω̃)︸ ︷︷ ︸

=0

‖L2(Ω)+‖ d?(ωnk − ω̃)︸ ︷︷ ︸
=0

‖L2(Ω)+

+‖ωnk − ω̃‖L2(Ω)

)
and therefore ωnk converges strongly to ω̃ ∈ HT (Ω,∧kT ∗Ω ⊗ Rm)
in W 1,2. By Riesz theorem this implies that HT (Ω,∧kT ∗Ω⊗Rm) is
�nite dimensional.
3)Let Ω be contractible, and 1 ≤ k ≤ n. If ω ∈ HN(Ω,∧kT ∗Ω⊗Rm)
then dω = 0 and by Poincaré Lemma there exists
β ∈ W 1,2(Ω,∧k−1T ∗Ω ⊗ Rm) such that dβ = ω. We apply the
integration by parts formula (3.14) and get

‖ω‖2
L2 =

∫
Ω

〈ω, ω〉dx =

∫
Ω

〈dβ, ω〉dx =

62



= −
∫

Ω

〈β, d?ω〉dx+

∫
∂Ω

〈β, νyω〉dσ = 0

Similarly we obtain the same result for HT (Ω,∧kΩ ⊗ Rm) for 0 ≤
k ≤ n− 1

The following theorem from [6], is a generalization of Ga�ney's
inequality and it will be really useful since it allows us to endow the
W r,p(Ω,∧kT ∗Ω⊗ Rm) spaces with an equivalent but more versatile
norm.

Theorem 3.1.25. Let n > 2, r ≥ 1 and 1 < p < ∞. Let Ω be
a bounded open and smooth domain in Rn, with exterior normal
ν. Then there exists a constant C1 > 0 such that for every ω ∈
W r,p(Ω,∧kT ∗Ω⊗ Rm) with 1 ≤ k ≤ n− 1

‖ω‖W r,p(Ω) ≤ C1

(
‖dω‖W r−1,p(Ω) + ‖d?ω‖W r−1,p(Ω)

)
+

+C1

(
‖ν ∧ ω‖

W
r− 1

p ,p(∂Ω)
+

Bn−k∑
i=1

∣∣∣∣ ∫
∂Ω

〈ω, ν ∧ zi〉
∣∣∣∣
)

(3.19)

where {zi}i=1,...,Bn−k
is a basis of HN(Ωc,∧k−1T ∗Ω⊗ Rm)6. It holds

also the following inequality, where instead we consider the normal
component,

‖ω‖W r,p(Ω) ≤ C2(‖dω‖W r−1,p(Ω) + ‖d?ω‖W r−1,p(Ω))+

+C2

(
‖νyω‖

W
r− 1

p ,p(∂Ω)
+

Bk∑
i=1

∣∣∣∣ ∫
∂Ω

〈ω, νyyi〉
∣∣∣∣
)

(3.20)

where {yi}i=1,...,Bk is a basis of HT (Ωc,∧k+1)

Remark 3.1.26. Observe that if Ω is a contractible domain and 1 ≤
k ≤ n − 1, then we have HT (Ω,∧kT ∗Ω ⊗ Rm) = HN(Ω,∧kT ∗Ω ⊗
Rm) = {0}, and since the following equations hold

dim(HT (Ω,∧kT ∗Ω⊗ Rm)) = dim(HN(Ωc,∧k−1T ∗Ω⊗ Rm))

dim(HN(Ω,∧kT ∗Ω⊗ Rm)) = dim(HT (Ωc,∧k+1T ∗Ω⊗ Rm)) (3.21)

as proved in [23], we can rewrite (3.19) and (3.20) as

‖ω‖W r,p(Ω) ≤ C1

(
‖dω‖W r−1,p(Ω) + ‖d?ω‖W r−1,p(Ω) + ‖ν ∧ ω‖

W
r− 1

p ,p(∂Ω)

)
(3.22)

6The space HN (Ωc,∧k−1T ∗Ω ⊗ Rm)) is de�ned analogously to HN (Ω,∧k−1T ∗Ω ⊗ Rm))
with the further requirement that if |x| → ∞ then ω(x) → 0 uniformly. We call Bn−k =
dim(HN (Ωc,∧k−1T ∗Ω⊗Rm)) Betti's number. Similarly one de�ne alsoHT (Ωc,∧k+1T ∗Ω⊗
Rm), and dim(HT (Ωc,∧k+1T ∗Ω⊗ Rm) = Bk
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‖ω‖W r,p(Ω) ≤ C2

(
‖dω‖W r−1,p(Ω) + ‖d?ω‖W r−1,p(Ω) + ‖νyω‖

W
r− 1

p ,p(∂Ω)

)
(3.23)

If furthermore we assume also that
ω ∈ W r,p

T (Ω, T ∗Ω⊗ Rm) ∪W r,p
N (Ω, T ∗Ω⊗ Rm) then

‖ω‖W r,p(Ω) ≤ C1

(
‖dω‖W r−1,p(Ω) + ‖d?ω‖W r−1,p(Ω)

)
(3.24)

3.2 Sobolev Bundles & Sobolev Connections

In section 2.2 we have given a de�nition of principal �bre bundle
through a family of transition functions satisfying the cocycle con-
ditions, as follows.
Let M be a m-dimensional manifold and G a matrix Lie Group,
that for our purposes will be compact and connected, and naturally
embedded in some Rn2

, for n ≥ 1. Then a principal bundle with
base manifold M and structure Lie group G is the data of an open
covering {Ui}i∈I ofM and a family of smooth maps gij : Ui∩Uj → G
satisfying the cocycle conditions.
In the Analytic part of this thesis we mainly deal with bundles that
have as base manifolds smooth bounded and connected open subsets
Ω of Rm. So from now on we will always identify M = Ω.
When dealing with a variational problem, one need to consider less
restrictive structures, since the search for a minimum often requires
variational methods based on re�exivity of function spaces. For this
reason we introduce the concept of Sobolev bundles.
To achieve our purpose we let the transition maps to be in a proper
Sobolev space. Let k ≥ 1 and 1 ≤ p ≤ ∞, then for every open
U ⊂ Ω we de�ne the following space

W k,p(U,G) =
{
g ∈ W k,p(U,Rn2

)|g(x) ∈ G for a.e. x ∈ U
}

De�nition 3.2.1. We de�ne a Sobolev principal bundle of class
W k,p with base manifold Ω and structure group G as the data of an
open covering {Ui}i∈I of Ω, and a family of functions
gij ∈ W k,p(Ui ∩Uj, G), for Ui ∩Uj 6= ∅, such that the cocycle condi-
tions hold

gijgjl = gil in Ui ∩ Uj ∩ Ul 6= ∅
gijgji = e in Ui ∩ Uj 6= ∅

where in the above two equations we have considered the pointwise
product. We will denote such a bundle with P = {(gij, Uij)}, where
for convenience we called Uij = Ui ∩ Uj.
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Anyway, it is not clear if this pointwise operation is de�ned in
W k,p, since usually the product of two Sobolev functions loses reg-
ularity. The following theorem guarantees us that it is well de�ned,
makingW k,p(U,G) a topological group7 for every open subset U ⊂ Ω
smooth enough.

Theorem 3.2.2. The space W k,p(U,G) de�ned as in De�nition
3.2.1 is a topological group with respect to pointwise multiplication
W k,p(U,G)×W k,p(U,G) 3 (f, g) 7→ f ·g ∈ W k,p(U,G) and pointwise
inversion W k,p(U,G) 3 f 7→ f−1 ∈ W k,p(U,G).

Proof. Before checking the continuity of the operations one should
clearly prove that the product and inversion are actually de�ned
in W k,p(U,G). Since the approach is similar to the one we will
perform in order to get continuity, we skip this �rst part of the
proof, assuming that the operations are well de�ned.
The Sobolev norm is de�ned as always ‖u‖k,p =

∑
|α|≤k ‖Dαu‖Lp ,

where we adopt the classical multi index notation. Let {fn}n and
{gn}n be two sequences in W k,p(U,G) converging in this space to f
and g respectively.

‖fngn− fg‖k,p = ‖fngn− fg‖Lp +
∑

0<|α|≤k

‖Dα(fngn)−Dα(fg)‖Lp ≤

≤ ‖fngn−fg‖Lp+C(α, β)
∑

0<|α|≤k

∑
β≤α

‖Dα−βfnD
βgn −Dα−βfDβg‖Lp︸ ︷︷ ︸

(I)

Clearly ‖fngn − fg‖Lp is converging, indeed

‖fngn − fg‖Lp ≤ ‖fn(gn − g)‖Lp + ‖(fn − f)g‖Lp

≤ ‖fn‖L∞‖gn − g‖Lp + ‖fn − f‖Lp‖g‖L∞
and the convergence then follows by the fact that |fn| ≤ M a.e.,
and the same obviously holds also for g, since they all have image in
the compact G, which implies that W k,p(U,G) ⊂ L∞(U,Rn2

). (I) is
bounded from above by

(I) ≤ ‖(Dα−βfn −Dα−βf)Dβgn‖Lp + ‖Dα−βf(Dβgn −Dβg)‖Lp

We focus on the convergence of the �rst term on the right hand
side (the second can be studied similarly) when β 6= 0, α. Applying
Hölder's inequality we get

‖(Dα−βfn−Dα−βf)Dβgn‖Lp ≤ ‖Dα−βfn−Dα−βf‖
L

pk
k−|β|
‖Dβgn‖

L
pk
|β|

(3.25)
7A topological group is a group equipped with a Hausdor� topology with respect to which

the group operations are continuous
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SinceW k,p(U,G) ⊂ L∞(U,Rn2
), Gagliardo Nirenberg inequality (see

[29]) implies that

max
|γ|=|β|

‖Dγgn‖Lq ≤ C1‖gn‖
(1− |β|

k
)

L∞ max
|δ|=k
‖Dδgn‖

|β|
k
Lp + C2‖gn‖Lp

where q = kp
|β| , and therefore the last term in (3.16) is bounded. Now

we apply the same inequality to Dα−βfn −Dα−βf :

max
|λ|=|α−β|

‖Dλfn−Dλf‖Ls ≤ C1‖fn−f‖
(1− |α−β|

k
)

L∞ max
|µ|=k
‖Dµfn−Dkf‖

|α−β|
k

Lp +

+C2‖fn − f‖Lp
where s = kp

|α−β| . The right hand side of the above inequality goes to
zero by hypothesis, and so does also the left hand side. Notice that
in general fn 9 f with respect the L∞-norm, the term ‖fn − f‖L∞
is simply bounded. Since U ⊂ Ω which is bounded, then L

pk
k−|β| ⊂

L
pk
|α−β| , and therefore the �rst term on the right hand side of (3.25)

is converging. If β = 0, or β = α then one can get the convergence
with a reasoning similar to the one we have exhibited for the Lp

convergence. Finally the continuity of the pointwise inversion can
be proved with similar arguments.

The above theorem holds also when M is any compact Rieman-
nian m-dimensional manifold. The generalization, though not dif-
�cult, requires some geometrical tools that go beyond the purpose
of this work. A more complete proof can be found in [19]. If in
the above theorem we assume kp > m, then the Sobolev embedding
W k,p(U,G) ↪→ C0(U,G) implies also that the bundle is actually con-
tinuous.

In the section devoted to the development of the theory of bun-
dles, we have also seen a characterization for isomorphic principal
�bre bundles. Namely, if π : P → M and π̃ : P̃ → M are two
principal �bre bundles and A := {(Ui, χi)}i∈I Ã := {(Ui, χ̃i)}i∈I are
their atlases, then they are equivalent (or isomorphic), if and only
if there exists a family of maps hi ∈ C∞(Ui, G) such that

g̃ij = higijh
−1
j in Ui ∩ Uj 6= ∅

where {gij} and {g̃ij} are the transition functions corresponding
respectively to the atlases A and Ã, see Remark 2.2.17.
We want to do the same thing for principal Sobolev bundles, and this
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motivates the following de�nition, which, as always in the analytic
part of this work, is stated for M = Ω.

De�nition 3.2.3. Let Ω ⊂ Rm be a bounded and smooth do-
main, and U = {Ui}i∈I a covering of Ω. If P = {(Uij, gij)} and
P̃ = {(Uij, g̃ij)} are two W k,p-Sobolev bundles, then we say they
are W k,p-equivalent, if there exists a re�nement8 V = {Vj}j∈J of
U = {Ui}i∈I and a family of maps hj ∈ W k,p(Vj, G) satisfying

g̃φ(i)φ(j) = higφ(i)φ(j)h
−1
j in Vi ∩ Vj =: Vij (3.26)

where φ is the re�nement map. We will say that a W k,p bundle over
Ω is trivial if it is W k,p-equivalent to the trivial bundle M ×G.
Remark 3.2.4. De�nition 3.2.3 has been stated assuming that P
and P̃ are de�ned over the same covering U = {Ui}i∈I . This is not
restrictive, since one can always choose a common re�nement of two
di�erent coverings of the same manifold M .

Now that we have de�ned a Sobolev principal bundle, we would
like to de�ne also the concept of Sobolev connection. In section
2.3 we have seen how to de�ne a connection on a bundle, once it
was given an open covering for the base manifold, and the family
of transition functions, via what we have called the compatibility
condition. We restrict ourselves to the aforementioned case when
M = Ω, and consider an open covering U = {Ui}i∈I for it. We
recall that if {gij} is a family of smooth transition functions, then
we can de�ne a connection on the bundle as a family {Ai}i∈I of g-
valued 1-forms on U such that in the overlapping Ui ∩ Uj 6= ∅ the
compatibility condition holds:

Aj = g−1
ij dgij + g−1

ij Aigij (3.27)

Let P = {(Uij, gij)} be a W k,p-Sobolev principal bundle over Ω ⊂
Rm bounded and smooth, where U = {Ui}i∈I is the chosen covering
for Ω, and k ≥ 1 and 1 ≤ p < ∞. We consider only the case of
k = 1, k = 2 since they will be the most used throughout this work.

De�nition 3.2.5. Let P = {(Uij, gij)} be the W k,p-Sobolev bundle
on Ω de�ned above. Then we have that

• If k = 1, then a Sobolev connection on P is given by a fam-
ily {Ai}i∈I in Lp(Ui, T ∗Ui⊗ g) such that the condition (3.27) is
satis�ed a.e. ∀i, j such that Ui ∩ Uj 6= ∅.

8If U = {Ui}i∈I is a covering of a manifold M , then we say that V = {Vj}j∈J is a
re�nement, if it is still a covering of M , and there exists φ : J → I such that Vj ⊂⊂ Uφ(j) for
each j ∈ J . We call φ re�nement map.
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• If k = 2, then a Sobolev connection on P is given by a family
{Ai}i∈I in L2p∩W 1,p(Ui, T

∗Ui⊗g) such that the condition (3.27)
is satis�ed a.e. ∀i, j such that Ui ∩ Uj 6= ∅.

Remark 3.2.6. If k = 2 we have asked the family {Ai}i∈I to be
in (W 1,p ∩ L2p)(Ui, T

∗Ui ⊗ g), and not just in W 1,p. This is be-
cause if Ui ∩ Uj 6= ∅ and gij ∈ W 2,p(Ui ∩ Uj, G) then the condition
Aj = g−1

ij dgij + g−1
ij Aigij is required, but though

g−1
ij dgij ∈ W 1,p(Ui ∩ Uj, T ∗(Ui ∩ Uj) ⊗ g) thanks to Theorem 3.2.2,
the same generally does not hold for the term g−1

ij Aigij unless we
ask Ai to be also in L2p(Ui, T

∗Ui ⊗ g). Indeed, if we assume Ai ∈
(L2p∩W 1,p)(Ui, T

∗Ui⊗g) for each i ∈ I, then we get that g−1
ij Aigij ∈

L2p(Ui ∩ Uj, T ∗(Ui ∩ Uj) ⊗ g) since gij ∈ G a.e. and G is compact.
While we see that for each k = 1, ...,m we have that ∂xk(g

−1
ij Aigij) =

∂xkg
−1
ij Aigij + g−1

ij ∂xkAigij + g−1
ij Ai∂xkgij, and the second term is

clearly in Lp. For the �rst term instead we can perform the bound

‖∂xkg−1
ij Aigij‖Lp(Ui∩Uj) ≤ C‖∂xkg−1

ij Ai‖Lp(Ui∩Uj) ≤

≤ C‖∂xkg−1
ij ‖L2p(Ui∩Uj)‖Ai‖L2p(Ui∩Uj)

where in the last inequality we have used Hölder's inequality, and
∂xkg

−1
ij ∈ L2p(Ui ∩ Uj) thanks to Gagliardo-Nirenberg inequalilty.

If A ∈ W 1,p(Ω, T ∗Ω ⊗ g) then it is a Sobolev connection in the
trivial bundle P := Ω×G by De�nition 3.2.5, and if g ∈ W 2,p(Ω, G)
then the g-valued 1-form Ag := g−1dg + g−1Ag is still a connection
on P . Note that the de�nition we have given for Sobolev connec-
tions tells us that the family {A,Ag} is a connection in the bundle
given by the trivial covering {Ω} with transition function g in Ω.

If m = 4 and p = 2, then we see that if A ∈ W 1,2(Ω, T ∗Ω ⊗ g)
is a connection on the trivial bundle Ω × G, then it is automati-
cally in the space L4(Ω, T ∗Ω ⊗ g), thanks to the Sobolev embed-
ding W 1,2(Ω, T ∗Ω ⊗ g) ↪→ L4(Ω, T ∗Ω ⊗ g). This embedding, if
p = 2, does not hold in higher dimensions than four, which means
that if m > 4, then we will have to reintroduce the request A ∈
(W 1,2 ∩ L4)(Ω, T ∗Ω ⊗ g). For this reason we will refer to the di-
mension 4 as critical dimension. We have the following technical
results, in critical setting, that will be used several times throughout
this thesis.

Proposition 3.2.7. Let Ω ⊂ R4 be an open bounded smooth domain
and An ∈ W 1,2(Ω, T ∗Ω ⊗ g) such that An → A in W 1,2(Ω, T ∗Ω ⊗
g), and the sequence of gauges gn ∈ W 2,2(Ω, G) converging to g ∈
W 2,2(Ω, G). Then Agnn → Ag in W 1,2(Ω, T ∗Ω⊗ g).
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Proof. We have the following estimates

‖Agnn −Ag‖W 1,2 ≤ ‖g−1
n dgn−g−1dg‖W 1,2 +‖g−1

n Angn−g−1Ag‖W 1,2 ≤

≤ ‖g−1
n dgn − g−1dg‖W 1,p + ‖(g−1

n − g−1)Angn‖W 1,2+

+‖g−1(An − A)gn‖W 1,2 + ‖g−1A(gn − g)‖W 1,2

The �rst term in the second inequality goes to zero by Theorem
3.2.2. Using the fact that G is a compact group and therefore gn, g ∈
L∞∩W 2,2(Ω, G) and Hölder's inequality we get the convergence also
of the other terms.

Proposition 3.2.8. Let Ω ⊂ R4 be a bounded and smooth do-
main, and A ∈ W 1,2(Ω, T ∗Ω ⊗ g) with ‖A‖W 1,2(Ω) ≤ ε and let
g ∈ W 2,2(Ω, G) be a gauge such that also ‖g‖W 2,2(Ω) ≤ ε. Then
there exists a constant C(G) depending on the gauge group G such
that

‖Ag‖W 1,2 ≤ C(G)ε (3.28)

Proof. We have that ‖Ag‖W 1,2 ≤ ‖Ag‖L2 +
∑4

i=1 ‖∂xiAg‖L2 The L2-
norm of Ag is bounded by

‖Ag‖L2 ≤ ‖g−1dg‖L2 + ‖g−1Ag‖L2 ≤ ‖g−1dg‖L2 + ‖A‖L2

C‖dg‖L2 + ε ≤ ε(C + 1)

The L2-norm of the �rst derivatives of Ag has similar estimates, for
every i = 1, ..., 4

‖∂xiAg‖L2 ≤ ‖∂xig−1dg‖L2+‖g−1d(∂xig)‖L2+2C‖∂xig‖L4‖A‖L4+‖∂xiA‖L2

≤ ‖∂xig−1‖L4‖dg‖L4 + C‖d(∂xig)‖L2 + 2Cε2 + ε ≤
(2C + 1)ε2 + (C + 1)ε

and this concludes the proof.

3.2.1 Hölder's regularity of Coulomb Bundles in critical
dimension

In this subsection we study Sobolev bundles in critical dimension,
endowed with a particular type of connection, called Coulomb con-
nection. As we will soon see, these bundles are particularly interest-
ing because from the compatibility condition we can extract a PDE
satis�ed by the transition functions. This PDE will lead us to an
higher regularity of the transition functions.
We start with the de�nition of Coulomb bundle.
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De�nition 3.2.9. Let Ω ⊂ R4 be bounded and smooth, and P =
{(gij, Uij)} be a W 2,2-Sobolev principal bundle on Ω. If in P we are
given a W 1,2-connection {Ai}i∈I such that ∀i ∈ I

d?Ai = 0 in Ui (3.29)

we call P a Coulomb bundle, and {Ai}i∈I a Coulomb connec-
tion.

Remark 3.2.10. Let U = {Ui}i∈I be a covering of Ω ⊂ R4 bounded
and smooth, and P = {(Uij, gij)} be a W 2,2-Coulomb bundle over
Ω. Then if {Ai}i∈I is the Coulomb connection de�ned in P , the
compatibility condition

Aj = g−1
ij dgij + g−1

ij Aigij in Ui ∩ Uj

leads to the equation

dgij = gijAj − Aigij in Ui ∩ Uj (3.30)

We take the codi�erential on both sides of equation (3.30), and using
the hypothesis d?Ai = 0 for each i ∈ I, then we obtain9

∆gij = d?dgij = dgij · Aj − Ai · dgij in Ui ∩ Uj (3.31)

Equation (3.31) was the PDE, solved by the transition functions
of a Coulomb bundle, we were referring to at the beginning of this
subsection. From this PDE we can deduce some regularity results
on the family {gij}. In particular �rst we show that the transition
functions gij are in C0

loc(Uij, G), and then we will show that one
can choose a suitable re�nement {Vj}j∈J of the covering {Ui}i∈I
such that the transition functions in this new covering are C0,α-
continuous for each 0 ≤ α < 1.

Lemma 3.2.11 ([33]). Let P = {(gij, Uij)} be a W 2,2-Coulomb bun-

dle over Ω ⊂ R4 bounded and smooth. Then gij ∈ W 2,(2,1)
loc (Uij, G).

Furthermore, for each compact Kij ⊂⊂ Uij there exists gij ∈ G, and
a constant Cij := C(Kij, Uij, G) > 0 such that

‖gij − gij‖W 2,(2,1)(Kij) ≤ Cij

(
‖Ai‖W 1,2(Uij) + ‖Aj‖W 1,2(Uij)+

+
(
‖Ai‖W 1,2(Uij) + ‖Aj‖W 1,2(Uij)

)2
)

(3.32)

where {Ai}i∈I is the Coulomb connection de�ned on P.
9If α and β are two g-valued 1-forms, then we denote α · β =

∑
i αiβi, where αiβi is the

composition of the matrix αi with the matrix βi
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Proof. As already discussed, the compatibility condition for the Coulomb
connection {Ai}i∈I

Aj = g−1
ij dgij + g−1

ij Aigij in Uij = Ui ∩ Uj
leads to equation (3.30), that gives us the bound

‖dgij‖L(4,2)(Uij) ≤ C(‖Ai‖L(4,2)(Uij) + ‖Aj‖L(4,2)(Uij)). (3.33)

since gij ∈ G a.e. in Uij and G is compact. The embedding
L(2,1)(Uij) ↪→ L4(Uij) and Poincaré inequality imply that

‖gij − g̃ij‖L(2,1)(Uij) ≤ C‖dgij‖L4(Uij) (3.34)

where g̃ij := 1
|Uij |

∫
Uij
g(x)dx, and the embedding L(4,2)(Uij) ↪→ L4(Uij)

gives us the estimate

‖gij − g̃ij‖L(2,1)(Uij) ≤ C‖dgij‖L(4,2)(Uij) (3.35)

By hypothesis we know that d?Ai = d?Aj = 0, and therefore gij
satis�es the PDE (3.31). We want now to bound the L2,1-norm of
the Laplacian of gij, and applying the Lorentz embedding L4,2(Uij)×
L4,2(Uij) ↪→ L2,1(Uij) to (3.31) we �nd:

‖∆gij‖L2,1(Uij) ≤ C‖dgij‖L4,2(Uij)

(
‖Aj‖L4,2(Uij) + ‖Ai‖L4,2(Uij)

)
(3.36)

The Sobolev embeddingW 1,2(Uij, T
∗Uij⊗g) ↪→ L4,2(Uij, T

∗Uij⊗g),
see Theorem A.3.8, implies that inside the parentheses in the right
hand side of (3.36) one can replace the L4,2-norm with theW 1,2 one,
and so we get

‖∆gij‖L(2,1)(Uij) ≤ C
(
‖Ai‖W 1,2(Uij) + ‖Aj‖W 1,2(Uij)

)2

If we now �x a compact subset Kij ⊂⊂ Uij, following the arguments
of Example A.2.9, we �nd that

‖D2gij‖L(2,1)(Kij) ≤ Ĉij

(
‖gij − g̃ij‖L(2,1)(Uij)+

+‖dgij‖L(2,1)(Uij) + ‖∆gij‖L(2,1)(Uij)

)
≤

≤ C
(
‖Ai‖W 1,2(Uij) + ‖Aj‖W 1,2(Uij) +

(
‖Ai‖W 1,2(Uij) + ‖Aj‖W 1,2(Uij)

)2
)

(3.37)
where Ĉij depends on the group G, on Kij and Uij. Therefore we
have obtained that

‖gij − g̃ij‖W 2,(2,1)(Kij) ≤ C̃ij

(
‖Ai‖W 1,2(Uij) + ‖Aj‖W 1,2(Uij)+
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+
(
‖Ai‖W 1,2(Uij) + ‖Aj‖W 1,2(Uij)

)2
)

(3.38)

and clearly also here the constant C̃ij depends on the group G, on
the compact Kij and on Uij. The element g̃ij is not necessarily in
G, but anyway we can substitute it. Indeed, G is compact and
gij(x) ∈ G for a.e. x ∈ Uij, therefore there exists gij ∈ G, such that
|g̃ij − gij| = inf{|y − g̃ij| : y ∈ Im(gij) ∩G}, which implies that for
a.e. x ∈ Uij it holds

|gij(x)− gij| ≤ |gij(x)− g̃ij|+ |g̃ij − gij| ≤ 2|gij(x)− g̃ij|

This last inequality in addition to the embedding W 2,(2,1)(Kij) ↪→
L∞(Kij), see Theorem A.3.10 in appendix A, leads to

‖gij−gij‖L∞(Kij) ≤ C‖gij−gij‖W 2,(2,1)(Kij) ≤ C‖gij−g̃ij‖W 2,(2,1)(Kij) ≤

≤ Cij

(
‖Ai‖W 1,2(Uij) + ‖Aj‖W 1,2(Uij) +

(
‖Ai‖W 1,2(Uij) + ‖Bij‖W 1,2(Uij)

)2
)

(3.39)

Let P = {(Uij, gij)} and {Ai}i∈I be as in Remark 3.2.10. We
know that the family of transition functions {gij} satis�es the PDE

∆gij = dgij · Aj − Ai · dgij in Ui ∩ Uj = Uij

The following two Lemmas give us some important elliptic estimates
of solutions of the above equation, under suitable conditions on the
L4-norm of {Ai}i∈I , improving signi�cantly the regularity of the
transition functions.
In what follows remember that we assumed G ↪→ Rn2

for some
n ∈ N.

Lemma 3.2.12. Let Ω ⊂ R4 be bounded and smooth, and
A ∈ L4(Ω, T ∗Ω⊗ Rn2

). If α ∈ W 2,2
0 (Ω,Rn2

) satis�es

∆α = A · dα + F in Ω (3.40)

with F ∈ Lp(Ω,Rn2
) with 2 < p < 4, then ∃ε1 = ε1(n2, p,Ω) > 0

such that if ‖A‖L4(Ω) < ε1, then α ∈ W 2,p
0 (Ω,Rn2

) and the following
estimate is true

‖α‖W 2,p(Ω) ≤ C1‖F‖Lp(Ω) (3.41)

for C1 = C1(n2, p,Ω) > 1. The constant ε1 is scale invariant10, and
invariant with respect to translations of the domain.

10We say that ε1 is scale invariant if ε1(n2, p,Ωr) = ε1(n2, p,Ω), where for r > 0 we have
called Ωr = {xr : x ∈ Ω}.
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Proof. This result is obtained through a �xed point argument. For
each v ∈ W 2,p

0 (Ω,Rn2
) let T (v) be the solution to{

∆T (v) = A · dv + F in Ω

T (v) = 0 in ∂Ω

Now since A ∈ L4(Ω,Rn2
) and dv ∈ L

4p
4−p (Ω), by Hölder's inequality,

we have that ∆T (v) ∈ Lp(Ω). Therefore, from Calderón-Zygmund
inequality, see Appendix A, we obtain that D2T (v) ∈ Lp(Ω), which
means that T (v) ∈ W 2,p

0 (Ω,Rn2
). From classical elliptic estimates

we have that for each v, w ∈ W 2,p
0 (Ω,Rn2

) it holds

‖T (v)− T (w)‖W 2,p
0 (Ω) ≤ C‖∆T (v)−∆T (w)‖Lp(Ω)

and therefore

‖T (v)−T (w)‖W 2,p
0 (Ω) ≤ C‖A‖L4(Ω)‖dv−dw‖

L
4p

4−p (Ω)
≤

≤ C‖A‖L4(Ω)‖v − w‖W 2,p
0 (Ω)

This last estimate implies that if the L4-norm of A is small enough,
then we can apply the Shrinking Lemma (Lemma 1.1 in [24]). There-
fore, there exists and is also unique a solution to equation (3.40) in
W 2,p

0 (Ω,Rn2
). Since α ∈ W 2,2

0 (Ω,Rn2
) is a solution to the same

equation we get the estimates

‖α− v‖W 2,2(Ω) ≤ C‖dα− dv‖W 1,2(Ω) ≤ C‖d?dα− d?dv‖L2(Ω) ≤

≤ ‖A‖L4(Ω)‖dα− dv‖L4(Ω) ≤ C‖A‖L4(Ω)‖α− v‖W 2,2(Ω)

where the second inequality is a consequence of Ga�ney's inequality
(3.19). Therefore, if ‖A‖L4 is small enough, we must have α = v,
which implies �nally that α ∈ W 2,p

0 (Ω,Rn2
). The estimate (3.41) is

obtained by observing that

‖α‖W 2,p(Ω) ≤ C

(
‖A‖L4(Ω)‖dα‖

L
4p

4−p (Ω)
+ ‖F‖Lp(Ω)

)
and therefore for ‖A‖L4(Ω) small enough, we get that

‖α‖W 2,p(Ω) ≤ C1‖F‖Lp(Ω)

where C1 depends on ε1. The scale invariance is easy to obtain.
Indeed, if α,A, F satisfy (3.40) in Ωr, then for x ∈ Ω we de�ne the
new functions, α̃(x) = α(rx), Ã(x) = rA(rx) and F̃ (x) = r2F (rx) ,
and an easy computation shows that

∆α̃ = Ã · dα̃ + F̃ in Ω
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and since ‖Ã‖L4(Ω) = ‖A‖L4(Ωr), we can conclude. The invariance
with respect to translations is trivial.

Lemma 3.2.13. Let Ω ⊂ R4 be bounded and smooth, and A ∈
L4(Ω, T ∗Ω ⊗ Rn2

). If ‖A‖L4(Ω) ≤ ε1, where ε1 has been de�ned
in Lemma 3.2.12 and 2 < p < 4 is �xed, then for every α ∈
W 2,2(Ω,Rn2

) solution of

∆α = A · dα in Ω (3.42)

it holds α ∈ W 2,p
loc (Ω,Rn2

). Furthermore, for every K ⊂⊂ Ω there
exists a constant C2 = C2(n2, p,Ω, K) such that

‖α‖W 2,p(K) ≤ C2‖α‖W 2,2(Ω) (3.43)

The constant ε1 is still scale invariant with respect to translations
of the domain.

Proof. Let us �x K ⊂⊂ Ω1 ⊂⊂ Ω. Then we choose φ ∈ C∞c (Ω1),
such that φ = 1 in K. We have that φα ∈ W 2,2

0 (Ω1,Rn2
). We can

easily extend φα in the following way

v :=

{
φα in Ω1

0 in Ω \ Ω1

(3.44)

and we get that v ∈ W 2,2
0 (Ω,Rn2

). Since α is a solution to (3.42) we
have that

∆(φα) = A · d(φα) + α(∆φ− A · dφ) + 2dφ · dα in Ω1 (3.45)

and moreover we see that

∆v = A · dv in Ω \ Ω1 (3.46)

since v = 0 in Ω \ Ω1. Finally we set

F̃ =

{
α(∆φ− A · dφ) + 2dφ · dα in Ω1

0 in Ω \ Ω1

(3.47)

and a simple computation shows that F̃ ∈ Lp(Ω,Rn2
), for each

2 < p < 4. Therefore, we have found that

∆v = A · dv + F̃ in Ω (3.48)

and if ‖A‖L4(Ω) < ε1(n2, p,Ω), we can apply Lemma 3.2.12 to v in
Ω, since equation (3.48) is in the same form of (3.40).
Therefore, we have obtained that φα ∈ W 2,p

0 (Ω1,Rn2
), and since
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φ = 1 in K, then α ∈ W 2,p(K,Rn2
). It is left to prove the inequality,

which anyway follows easily from (3.41). Indeed,

‖α‖W 2,p(K) ≤ ‖φα‖W 2,p(Ω1) ≤ C‖α(∆φ− A · dφ) + 2dφ · dα‖Lp(Ω1) ≤

≤ C2‖α‖W 2,2(Ω)

where of course the last constant C2 > 0 depends also on K.

Remark 3.2.14. From the proof of Lemma 3.2.13, we deduce that if
‖A‖L4(Ω) ≤ ε1(p, n2,Ω), then for each V ⊂ Ω and for each α ∈
W 2,2(V,Rn2

) solution of

∆α = A · dα in V

it holds that α ∈ W 2,p
loc (V,Rn2

), even though we did not explicitly
require that ‖A‖L4(V ) ≤ ε1(n2, p, V ). To clearly see it, �x K ⊂⊂
Ω1 ⊂⊂ V ⊂ Ω, and φ ∈ C∞c (Ω1) such that φ = 1 in K. Then we
can build, as we did in Lemma 3.2.13, the function

v :=

{
φα in Ω1

0 in Ω \ Ω1

and thanks to the same reasoning we get

∆v = A · dv + F̃ in Ω

where

F̃ :=

{
α(∆φ− A · dφ) + 2dφ · dα in Ω1

0 in Ω \ Ω1

is clearly Lp. Then, all the hypothesis in order to apply Lemma
3.2.12 are satis�ed, and v ∈ W 2,p

0 (Ω,Rn2
), which means that α ∈

W 2,p(K,Rn2
). Moreover, the inequality

‖α‖W 2,p(K) ≤ C(K,n2, p, V )‖α‖W 2,2(V ) still clearly holds.
Let again P = {(gij, Uij)} and {Ai}i∈I be as in Remark 3.2.10.

We use the elliptic estimates obtained in the above two Lemmas
to prove that the transition functions gij ∈ W 2,p

loc (Uij, G) for any
2 < p < 4, if ‖Ai‖L4(Ui) is small enough for each i ∈ I.

Lemma 3.2.15. Let P = {(gij, Uij)} be a W 2,2-Coulomb bundle
over Ω ⊂ R4 bounded and smooth, and U = {Ui}i∈I the covering for
Ω. There exists ε2 := ε2(n2, p,U) > 0 for each �xed 2 < p < 4, such
that if the Coulomb connection {Ai}i∈I de�ned on P satis�es

‖Ai‖L4(Ui) ≤ ε2 ∀i ∈ I (3.49)
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then gij ∈ W 2,p
loc (Uij, G). Moreover, for each Kij ⊂⊂ Uij there exists

a constant Mij = Mij(Kij, Uij, n
2, p) such that

‖gij‖W 2,p(Kij) ≤Mij‖gij‖W 2,2(Uij) (3.50)

Proof. From the compatibility condition

Aj = g−1
ij dgij + g−1

ij Aigij in Ui ∩ Uj = Uij

we have already deduced the partial di�erential equation for the
transition functions gij ∈ W 2,2(Uij, G)

∆gij = d?dgij = dgij · Aj − Ai · dgij in Ui ∩ Uj = Uij

in Remark 3.2.10, and it is an equation of the same form of (3.42).
This means that if

‖Ai‖L4(Ui) ≤ ε2 with ε2 := min
i∈I

(
ε1(n2, p, Ui)

4

)
(3.51)

thanks to Remark 3.2.14, we can apply Lemma 3.2.13 to the family
{gij} and thus get gij ∈ W 2,p

loc (Uij, G) for each 2 < p < 4. The
estimate (3.50) follows trivially from (3.43).

Remark 3.2.16 ([41],Theorem 16). Let Ω ⊂ R4 be bounded and
smooth, U = {Ui}i∈I be a covering. Moreover, let P = {(gij, Uij)}
be a W 2,2-Coulomb bundle over Ω, where the Coulomb connection
is {Ai}i∈I .
One may observe that even though we do not have a proper bound
on the L4-norm of {Ai}i∈I , we can take a re�nement V = {Vj}j∈J
of U = {Ui}i∈I such that there is an enlarged cover V ′ := {V ′j }j∈J ,
which is also a re�nement of U , with the same re�nement map φ :
J → I of V and we have

‖Aφ(j)‖L4(V ′j ) ≤
ε1(n2, p, Vj)

4
∀j ∈ J

with Vj ⊂⊂ V ′j . In this way we have that P̃ = {(Vij, gφ(i),φ(j))} is an
W 2,p-Sobolev bundle. This is possible thanks to the fact that ε1 is
scale invariant.

3.2.2 W 2,p-equivalence of L∞-near W 2,p-Sobolev Bundles

This subsection is devoted to an important result, due to K.Uhlenbeck,
on equivalence of W 2,p bundles (with p > 2) in the critical dimen-
sion four. We will see in Lemma 3.2.18 that if P = {(gij, Uij)} and
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P ′ = {(hij, Uij)} are two W 2,p-Sobolev bundles over Ω ⊂ R4, that
are L∞-near, namely

‖gij − hij‖L∞(Uij) < δ

with δ small enough, then they are W 2,p equivalent. The constant
δ will be shown to be dependent on the number of elements of the
covering.
In what follows we denote with Ve a neighbourhood of e ∈ G, where
the map exp−1 is well de�ned and di�erentiable.

Lemma 3.2.17 ([44], Lemma 3.1.). Let G be a compact connected
matrix Lie Group, endowed with a bi-invariant metric. There exists
a constant δ0 > 0 such that if h, g, ρ ∈ G, and | exp−1(hg)| ≤ δ0 and
also | exp−1(ρ)| ≤ δ0, then hρg ∈ Ve and

| exp−1(hρg)| ≤ 2(| exp−1(hg)|+ | exp−1(ρ)|) (3.52)

Proof. There exists a neighbourhood V0 of 0 ∈ g, such that the map

Q : V0 × V0 → g

(k, u) 7→ Q(k, u) := exp−1(exp(k) exp(u)) (3.53)

is well de�ned and di�erentiable. It is clear that Q(0, 0) = 0 and also
that |dQ(0, 0)| = 1. We �x the neighbourhood V0 ⊇ O := {x ∈ g :
|x| ≤ δ0} of 0 ∈ g, such that |dQ(k, u)| ≤ 2 for each (k, u) ∈ O×O.
Thanks to the convexity of O and the di�erentiability of Q, we can
apply the mean value theorem, which tells us that

|Q(k, u)| ≤ 2(|k|+ |u|) ∀(k, u) ∈ O ×O

We have proved the result. Indeed, if we set k = exp−1(hg) and
u = Adg−1 exp−1(ρ), we get

Q(k, u) = exp−1(hg exp(Adg−1 exp−1(ρ))) = exp−1(hρg)

and the following estimate holds

|Q(k, u)| ≤ 2(| exp−1(hg)|+ |Adg−1(exp−1(ρ))|) =

= 2(| exp−1(hg)|+ | exp−1 ρ|)
where the last identity is due to the hypothesis that the metric is
bi-invariant.

Lemma 3.2.18 ([44], Proposition 3.2 & Corollary 3.3). Let Ω ⊂
R4 be bounded, smooth and connected, and U = {Ui}i∈I a �nite
covering of Ω. Let P := {(gij, Uij)} and P ′ := {(hij, Uij)} be two
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W 2,p-Sobolev bundles over Ω. Then there exists a constant δI > 0,
depending on the cardinality of I and the group G, such that if for
each i, j ∈ I satisfying Ui ∩ Uj 6= ∅ it holds

m = ‖ exp−1(hjigij)‖L∞(Uij) ≤ δI (3.54)

then P is W 2,p-equivalent to P ′. In particular for each re�nement
V = {V }i∈I of U satisfying V i ⊂ Ui and ∪iVi ⊃ Ω, there exists a
family σi ∈ W 2,p(Vi, G), such that

hij = σigijσ
−1
j in Vi ∩ Vj 6= ∅ (3.55)

Proof of Lemma 3.2.18. Let U = {Ui}i∈I be as in the statement.
The result is proved by induction on the number of elements of the
cover U = {Ui}i∈I . If |I| = 1, then g11 = e = h11 and therefore
σ1 = e ∈ G.
Now suppose we have constructed for k ∈ I, (|I| > 1) and for
1 ≤ i, j ≤ k,

1)k σi ∈ W 2,p(Wi,k, G) satisfying

hij = σigijσ
−1
j on Wi,k ∩Wj,k

where V i ⊂ Wi,k ⊂ Ui.

Moreover we also assume that

2)k ‖ exp−1 σi‖L∞(Wi,k) ≤ ckm, where ck > 1 is a constant depend-
ing on k.

We claim that if m is small enough, then we can continue our
construction from k to k+1, namely that 1)k, 2)k imply 1)k+1,2)k+1,
proving therefore the Lemma by induction. Let l = k + 1, if we
assume m ≤ δ0

ck
, then we have

‖ exp−1(hligil)‖L∞(Ui∩Uj) ≤ m ≤ δ0

ck
and also

‖ exp−1 σi‖L∞(Wi,k) ≤ ckm ≤ δ0

and thanks to Lemma 3.2.17, we have that for i ≤ k = l − 1 the
map

fl : Wi,k ∩ Ul → g

x 7→ fl(x) := exp−1(hli(x)σi(x)gil(x)) (3.56)

is well de�ned and actually W 2,p. Furthermore, we also have that

‖fl‖L∞(Wi,k∩Ul) ≤ 2(1 + ck)m = clm
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and since the families {gij} and {hij} satisfy the cocycle conditions,
then an easy computation shows that fl is well de�ned in the whole
Ul ∩

(⋃
i≤kWi,k

)
. We now choose a cuto� function φl ∈ C∞(R4)

such that {
φl = 0 in Ul \

(⋃
i≤kWi,k

)
φl = 1 in

⋃
i≤k Ṽi

where V i ⊂ Ṽi ⊂ Wi,k is arbitrary. We also set

Wi,l := Wi,k ∩ int{x ∈ R4 : φl(x) = 1} ∀i ≤ k (3.57)

Then we de�ne σl : Ul → G as follows

σl :=

{
exp(φlfl) in Ul ∩

(⋃
i≤kWi,k

)
σl = 1 in Ul \

(⋃
i≤kWi,k

) (3.58)

It is clear that ‖ exp−1 σl‖L∞(Ul) ≤ ‖φlfl‖L∞(Ul) ≤ 2(1 + ck)m = clm.
Finally we choose Wl,l any open subset, satisfying V l ⊂ Wl,l ⊂ Ul.
The map σl ∈ W 2,p(Wll, G) by construction, and properties 1)k+1

and 2)k+1 are true for the new family of sets Wi,l and maps σi.
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Chapter 4

The Plateau Problem for the
YM functional

4.1 YM functional and its properties

We will consider connections over the trivial �bre bundle P = B4×
G. If A ∈ C∞(B4, T ∗B4 ⊗ g) then its �eld strength is de�ned by
FA := dA + [A,A]. Let us endow the Lie Algebra g with the norm
induced by the Killing form. Then the Yang-Mills energy of A is
the L2-norm square of FA

YM(A) :=

∫
B4

|FA|2dx =
∑
i<j

∫
B4

|F ij
A |

2dx (4.1)

The functional admits a geometrical interpretation that concerns the
integrability of the horizontal distribution associated to A. Indeed
we remember that from A we can build a unique connection form
ω on the bundle B4 × G, such that if s : B4 → P is the trivial
section, then s∗ω = A. The distribution on P given by P 3 p →
Hp := ker(ωp) ⊂ TpP is horizontal and right equivariant. From the
vector �elds ∂x1 , ..., ∂x4 we can �nd a global frame for the distribution
H, using their horizontal lifts ∂∗x1

, ..., ∂∗x4
. By Frobenius theorem

(see for instance [1]) the distribution H on P is integrable if and
only if it is involutive, namely [∂∗xi , ∂

∗
xj

]p ∈ Hp for every p ∈ P

and i, j = 1, ..., 4. This is true if and only if [∂∗xi , ∂
∗
xj

]V = 0, or
equivalently ω([∂∗xi , ∂

∗
xj

]) = 0 for any i, j. Theorem 2.4.5 tells us that
Ω(∂∗xi , ∂

∗
xj

) = −ω([∂∗xi , ∂
∗
xj

]) and therefore the horizontal distribution
is integrable if and only if Ω(∂∗xi , ∂

∗
xj

) = 0 for every i, j. Now since
FA = F ij

A dx
i ∧ dxj, we have that

F ij
A = FA(∂xi , ∂xj) = (s∗Ω)(∂xi , ∂xj) = Ω(ds(∂xi), ds(∂xj)) =
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= −ω([ds(∂xi)
H , ds(∂xj)

H ]) = −ω([∂∗xi , ∂
∗
xj

])

Therefore, one can interpret the Yang-Mills energy of A as the L2

measure of lack of integrability of the horizontal distribution asso-
ciated to A.

We now consider a more generic framework, passing from smooth
connections to Sobolev one. In particular we can extend the �eld
strength to connections A ∈ W 1,2(B4, T ∗B4⊗g), and the Yang-Mills
energy of A will be still well de�ned, as the following proposition
shows.

Proposition 4.1.1. For each A ∈ W 1,2(B4, T ∗B4⊗g), the g-valued
2-form FA ∈ L2(B4,∧2T ∗B4 ⊗ g).

Proof. By hypothesis dA ∈ L2(B4,∧2T ∗B4 ⊗ g). The 2-form [A,A]
de�ned as [A,A](∂xi , ∂xj) := [A(∂xi), A(∂xj)] = [Ai, Aj], where A =
Aidx

i and the Lie bracket [·, ·] is the commutator of matrices, is in
L2 too. Indeed

‖[A,A]‖L2 =
∑
i<j

‖AiAj − AjAi‖L2 ≤ 2
∑
i<j

‖Ai‖L4‖Aj‖L4

where we have used Hölder's inequality. The last term is �nite
thanks to the Sobolev embedding
W 1,2(B4, T ∗B4 ⊗ g) ↪→ L4(B4, T ∗B4 ⊗ g) and so we conclude.

We de�ne the Yang-Mills functional:

YM : W 1,2(B4, T ∗B4 ⊗ g)→ R

A 7→ YM(A) :=

∫
B4

|dA+ [A,A]|2dx,

which is continuous, as the following proposition shows.

Proposition 4.1.2. Let us consider {Ak} ⊂ W 1,2(B4, T ∗B4 ⊗ g)
such that Ak → A ∈ W 1,2(B4, T ∗B4 ⊗ g). Then

FAk → FA (4.2)

strongly in L2(B4,
∧2 T ∗B4 ⊗ g).

Proof. We have the following Sobolev embedding:

W 1,2(B4, T ∗B4 ⊗ g) ↪→ L4(B4, T ∗B4 ⊗ g) (4.3)

and thus Ak → A in W 1,2 implies the convergence also in L4. By
Hölder's inequality we get that [Ak, Ak]→ [A,A] in L2. Finally

‖FAk − FA‖L2 = ‖dAk + [Ak, Ak]− dA− [A,A]‖L2 ≤
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≤ ‖dAk − dA‖L2 + ‖[Ak, Ak]− [A,A]‖L2 (4.4)

therefore FAk → FA strongly in L2

Remark 4.1.3. The above result can be extended in the following
sense. If instead ofW 1,2 connections we considerW 1,p(B4, T ∗B4⊗g)
as domain for YM , one can �nd that FAk converges strongly in Lp,
when 2 < p < 4, and Ak is a converging sequence in W 1,p. This is
obtained thanks to the Sobolev embedding

W 1,p(B4, T ∗B4 ⊗ g) ↪→ L
4p

4−p (B4, T ∗B4 ⊗ g) (4.5)

and Hölder's inequality.
The key property of the Yang-Mills functional is the gauge in-

variance, namely if A,B are two gauge potentials and there exists
g ∈ W 2,2(B4, G) such that A = Bg, then they have the same Yang-
Mills energy.

Proposition 4.1.4. Let A ∈ W 1,2(B4, T ∗B4⊗g) and g ∈ W 2,2(B4, G).
Then

YM(Ag) = YM(A) (4.6)

Proof. Observe that if A is a smooth connection and g is a smooth
gauge then by Theorem 2.4.7, we have that FAg = g−1FAg. Since
the norm induced by the killing form in g is Ad-invariant, then

|F ij
Ag | = |F

ij
A | in B4

which clearly implies the identity YM(Ag) = YM(A). For Sobolev
connections we use a density argument. We consider a sequence of
smooth connections An ∈ C∞(B4, T ∗B4 ⊗ g) converging in W 1,2 to
A, and a sequence of smooth gauges gn ∈ C∞(B4, G) converging in
W 2,2 to g1. As we have already argue

|FAgnn | = |FAn| ∀x ∈ B
4 (4.7)

and by Proposition 3.2.7 Agnn → Ag in W 1,2, which implies thanks
to Proposition 4.1.2 that

YM(Ag) = YM(A).

This huge group of invariances makes the functional non coer-
cive2, as the following easy example shows.

1Note that generally if we have two compact manifolds M and N then C∞(M,N) is
not necessarily dense in Wk,p(M,N) for any k, p. It has been proved that this is true for
kp = dim(M). See [37],[38]

2Let V be a normed space, we say that F : V → R is coercive if for every {xn}n ⊂ V such
that ‖xn‖ → ∞ then |F (xn)| → ∞ too.
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Example 4.1.5. Fix any A ∈ W 1,2(B4, T ∗B4⊗g) and a sequence gn ∈
W 2,2(B4, G) such that ‖dgn‖L2 → ∞. Then clearly YM(Agn) =
YM(A) is constant and therefore �nite, but ‖Agnn ‖W 1,2 ≥ ‖Agn‖L2 ≥
‖g−1

n dgn‖L2 − ‖g−1
n Agn‖L2 ≥ m‖dgn‖L2 − ‖A‖L2 → ∞, where m =

ming∈G |g|.
In particular this means that minimizing sequences are not auto-

matically bounded, and therefore not necessarily weakly converging.
The �rst result of K.Uhlenbeck we will present deals with this prob-
lem when the connections have small enough Yang-Mills energy.
Similarly to the classical Plateau problem, in which we �x some
curve Γ and try to �nd a map u : D2 → R such that Im(u|∂D2) = Γ
and whose graph has minimum surface measure, we build the Yang-
Mills plateau problem. Let η ∈ H 1

2 (∂B4, T ∗∂B4 ⊗ g) be �xed,
then we want to �nd some
A ∈ W 1,2(B4, T ∗B4⊗g) solution of the following minimization prob-
lem:

inf
{
YM(A) : A ∈ W 1,2(B4, T ∗B4 ⊗ g) and AT = η

}
(4.8)

If η ∈ H 1
2 (∂B4, T ∗∂B4 ⊗ g), then we will denote

W 1,2
η (B4, T ∗B4 ⊗ g) := {A ∈ W 1,2(B4, T ∗B4 ⊗ g) : AT = η}.

Remark 4.1.6. At the beginning of this section we have given an in-
terpretation of the Yang-Mills energy of a connection as the L2 mea-
sure of lack of integrability of the associated distribution. Similarly
if we �x the boundary form η, which can be seen as a Sobolev con-
nection on the boundary, one can consider the minimization prob-
lem as the attempt to �nd a gauge potential in B4 that extends
the boundary potential, and at the same time has minimum lack of
integrability3

4.2 Abelian gauge group: U(1)

We aim to solve the minimization problem in the case G = U(1).
The Yang-Mills functional reads as

YM(A) =

∫
B4

|dA|2dx (4.9)

since U(1) is an abelian group and then [A,A] = 0 for each
A ∈ W 1,2(B4, T ∗B4⊗ g). The request thus is to see if there exists a

3As a smooth connection de�nes a horizontal distribution, so does a Sobolev connection,
with the di�erence that the distribution is not more smooth but Sobolev in some sense. One
can �nd a detalied de�nition of Sobolev distributions in [39]
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minimum of{∫
B4

|dA|2dx : A ∈ W 1,2(B4, T ∗B4 ⊗ g) and AT = η

}
(4.10)

where η is some given 1-form in H
1
2 (∂B4, T ∗∂B4 ⊗ g).

Proposition 4.2.1. For each B ∈ W 1,2
η (B4, T ∗B4 ⊗ g) there exists

a gauge g ∈ W 2,2(B4, G) such that d?Bg = 0 and at the boundary
Bg
T = η.

Proof. Indeed, let ϕ ∈ W 1,2
0 (B4,R) be the unique solution of{

−i∆ϕ = d?B in D
′
(B4)

ϕ|∂B4 = 0
(4.11)

which is in W 2,2(B4,R), for the L2-regularity theory for elliptic sys-
tems (see Theorem 4.14 [14]). Note that we have multiplied ∆ϕ by
i because if G = U(1), then g = iR. Hence we have that

d(B + idϕ) = dB in D
′
(B4)

d?(B + idϕ) = 0 in D
′
(B4)

(B + idϕ)T = η

(4.12)

Taking g := exp(iϕ) we have that Bg = B + idϕ , and thanks to
(4.12), (4.11) we get d?Bg = 0.

In order to �nd a minimizer of (4.10) we will need to introduce a
backup functional, reminiscent in some way to the Classical Plateau
Problem (see the subsection below). Let us de�ne the energy func-
tional

E : W 1,2(B4, T ∗B4 ⊗ g)→ R

A 7−→ E(A) :=

∫
B4

(
|dA|2 + |d?A|2

)
dx

Remark 4.2.2. If η ∈ H
1
2 (∂B4, T ∗∂B4 ⊗ g), then the energy func-

tional E is strictly convex in W 1,2
η (B4, T ∗B4⊗ g). Indeed, if A,B ∈

W 1,2
η (B4, T ∗B4 ⊗ g) then for each h ∈ (0, 1)

E(hA+(1−h)B) =

∫
B4

(
|hdA+ (1− h)dB|2 + |hd∗A+ (1− h)d∗B|2

)
dx

(4.13)
the square norm | · |2 is strictly convex therefore the last term is
bounded by

hE(A) + (1− h)E(B)
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and the equivalence holds true if and only if dA = dB and d∗A =
d∗B almost everywhere in B4. Therefore if we call B̃ := A − B we
have that B̃ is a harmonic �eld with B̃T = 0. In Theorem 3.1.24 we
have proved that the space of harmonic �elds with vanishing tan-
gential component over a contractible domain is {0}. The identity
in (4.13) then holds if and only if A = B, and we conclude.

Lemma 4.2.3. Fix η ∈ H
1
2 (∂B4, T ∗∂B4 ⊗ g). Then E admits a

unique minimizer Ã in W 1,2
η (B4, T ∗B4 ⊗ g) which satis�es

d?dÃ = 0 in D
′
(B4)

d?Ã = 0 in D
′
(B4)

ÃT = η

(4.14)

where the �rst two equations are the Euler-Lagrange of E.

Proof. Let A ∈ W 1,2
η (B4, T ∗B4 ⊗ g), we want to establish

‖A‖2
W 1,2 ≤ C

[
E(A) + ‖η‖2

H
1
2 (∂B4)

]
(4.15)

To this purpose we apply Ga�ney's inequality (3.22) which implies
that

‖A‖W 1,2(B4) ≤ C
(
‖dA‖L2(B4) + ‖d?A‖L2(B4) + ‖ν ∧ A‖

H
1
2 (∂B4)

)
,

(4.16)
where ν is the outer unit normal of ∂B4. Since on the boundary
A = AN + AT , by Proposition 3.1.16 we get

ν ∧ A = ν ∧ AT (4.17)

and this gives

‖ν ∧ A‖
H

1
2

= ‖ν ∧ AT‖H 1
2
≤ C‖AT‖H 1

2
= C‖η‖

H
1
2 (∂B4)

Then (4.16) implies that

‖A‖W 1,2(B4) ≤ C
(
‖dA‖2

L2 + ‖d?A‖2
L2 + ‖η‖2

H
1
2 (∂B4)

) 1
2

and squaring we obtain (4.15). Therefore if An is a minimizing se-
quence inW 1,2

η (B4, T ∗B4⊗g), we have that it is bounded. By re�ex-
ivity the sequence admits a subsequence Ank weakly converging to
some Ã ∈ W 1,2(B4, T ∗B4⊗g). By Corollary 3.1.17 we have that the
trace operator for the tangential component T : W 1,2(B4, T ∗B4 ⊗
g)→ H

1
2 (∂B4, T ∗∂B4⊗ g) such that T (A) = AT is continuous, and
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since it is linear it is also weakly continuous. Therefore ÃT = η. It is
easy to see that E is continuous with respect to the strong topology,
and thus it is also lower semicontinuous. But a convex functional
which is lower semicontinuous for the strong topology is automat-
ically lower semicontinuous for the weak one, as a consequence of
Mazur's Corollary [8], and therefore

E(Ã) ≤ lim inf
k

E(Ank)

which means that Ã is a minimum. By Remark 4.2.2 we have also
that Ã is the unique minimum. Let us compute the Euler-Lagrange
equations of E. Let φ ∈ C∞c (B4, g) then since Ã is a minimum

0 =
d

dt
E(Ã+ tdφ)

∣∣
t=0

=

∫
B4

〈d(dφ), dÃ〉+ 〈d?dφ, d?Ã〉dx (4.18)

and the �rst term inside the integral is trivially equal to zero. As
far as the second is concerned observe that since φ is a zero-form,
then ∆φ = d?dφ. But since for every f ∈ C∞c (B4, g) there exists φ
such that ∆φ = f , equation (4.18) reads as∫

B4

〈f, d?Ã〉dx = 0 ∀f ∈ C∞c (B4, g)

which implies d?Ã = 0. If now instead of dφ in (4.18) we choose any
ψ ∈ C∞c (B4, T ∗B4 ⊗ g) then we obtain

0 =

∫
B4

〈dψ, dÃ〉dx = −
∫
B4

〈ψ, d?dÃ〉dx

where we have used Theorem 3.1.21 in addition to the fact that ψ
has compact support in B4, and so we get d?dÃ = 0.

Theorem 4.2.4. For any η ∈ H 1
2 (∂B4, T ∗∂B4 ⊗ g) there exists a

minimizer Ã ∈ C∞(B4, T ∗B4 ⊗ g) of (4.10).

Proof. Since YM is not coercive then it could be that a minimizing
sequence does not admit a subsequence weakly converging. Anyway,
we notice that

YM(A) ≤ E(A) ∀A ∈ W 1,2(B4, T ∗B4 ⊗ g)

with equality if and only if d?A = 0.
Thanks to Lemma 4.2.3 we know that E admits a unique mini-
mizer Ã ∈ W 1,2

η (B4, T ∗B4 ⊗ g) which is a solution of the Euler-
Lagrange equations (4.14). By the �rst two equations we deduce
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that Ã has harmonic components, and therefore it is smooth. More-
over YM(Ã) = E(Ã). We claim that Ã is a minimizer also for YM .
Indeed by contradiction suppose
B ∈ W 1,2

η (B4, T ∗B4 ⊗ g) and YM(B) < YM(Ã). By Proposition
4.2.1 we can �nd a gauge g ∈ W 2,2(B4, G) such that YM(B) =
YM(Bg) = E(Bg) and therefore this leads to E(Bg) = YM(Bg) =
YM(B) < YM(Ã) ≤ E(Ã) which is a contradiction, since Ã was
the unique minimizer for E.

4.2.1 The U(1) Yang-Mills Plateau Problem & The Clas-
sical Plateau Problem

The Plateau problem for the Yang-Mills functional when G = U(1)
is very similar to the classical Plateau problem, and the idea used
to solve it displays some analogy.
In the classical Plateau problem we �x a Jordan oriented curve Γ
in Rn and search for a map u : D2 → Rn whose trace is an oriented
parametrization of Γ and whose surface area measure is minimum.
Therefore the functional we need to study is

A(u) =

∫
D2

∣∣∣∣∂u∂x ∧ ∂u∂y
∣∣∣∣dxdy (4.19)

and we take u in the following set

C(Γ) = {u ∈ W 1,2(D2,Rn) : u|∂D2 ∈ C0(S1,Rn) is an oriented

parametrization of Γ} (4.20)

It is easy to see that the group of invariances for A is the group
of di�eomorphisms of the disc, and for this reason the functional is
easily showed to be non coercive. The problem is treated introducing
the Dirichlet functional

A(u) ≤ D(u) :=
1

2

∫
D2

|∇u|2dx (4.21)

which is invariant for a smaller group, but anyway non compact,
namely the conformal di�eomorphisms of D2. The two functionals
above coincide if and only if u is weakly conformal.4 By Morrey-
Lichtenstein Theorem, we have that

inf
u∈C(Γ)

A(u) = inf
u∈C(Γ)

D(u) (4.22)

4a map u is weakly conformal if
∣∣ ∂u
∂x

∣∣ =
∣∣ ∂u
∂y

∣∣ and ∂u
∂x
· ∂u
∂y

= 0
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This result would have been trivial if for every u, a di�eomorphism
η of D2 had existed such that u ◦ η is weakly conformal. Therefore
now the problem is to minimize D. Note that the study of D would
have been easier if we had prescribed the trace of u. Indeed, in this
last case the existence of the minimum is a well known result, see for
instance [14]. However by slightly restricting C(Γ) by the so called
three points condition, we can achieve the existence of a minimum
for D and thus for A.

Now that we have brie�y recalled the Classical Plateau Problem,
let us spot the similarities and di�erences with the Abelian Yang-
Mills one.
As we have already seen the Yang-Mills functional has a big group
of invariances too that prevents YM from being coercive. The strat-
egy we applied to overcome this lack of regularity was based on the
introduction of the backup functional E, which bounds from above
YM , similarly to what is done in (4.21) for A with D in the Classical
Plateau Problem. We showed that

inf
A∈W 1,2

η

YM(A) = inf
A∈W 1,2

η

E(A) (4.23)

and we actually got this result thanks to Proposition 4.2.1, that as-
sures the existence of a Coulomb gauge for everyA ∈ W 1,2

η (B4, T ∗B4⊗
g), that preserves the tangential component. Note that here coulomb
gauges play the same role of weakly conformal parametrizations,
that make the functionals A and D coincide. However remember
that the existence of a weakly conformal parametrization for ev-
ery u is not true, and we got (4.22) thanks to Morrey-Lichtenstein
Theorem.

4.3 Non Abelian Gauge Group

We now consider the minimization problem when G is a non abelian
Lie Group. In this case due to the non vanishing term [A,A] in
FA we cannot be sure anymore that YM(A) ≤ E(A) for every
A ∈ W 1,2(B4, T ∗B4 ⊗ g). Also in this case one can prove the exis-
tence of a Coulomb gauge, but this does not mean necessarily that
for such a gauge the two functionals coincide. So we cannot discuss
the existence of the minimizer with the same method of G = U(1).
Since, as we already discussed, YM is non coercive, classical meth-
ods for the minimization do not work. In 1982 K.Uhlenbeck proved
in [44] that every W 1,2 connection A with a good enough bound on
the L2 norm of its curvature FA admits a Coulomb gauge g ∈ W 2,2,
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such that Ag has W 1,2-norm controlled by its Yang-Mills energy .
This fundamental result tells us that from a sequence of connections
with a suitable L2 bound on their curvature, we can build a sequence
of gauge equivalent connections that is weakly compact in W 1,2.

Theorem 4.3.1 (Small Energy Theorem, [44]). Let G be a compact
and connected matrix Lie group. There exists two positive constants
εG and CG, both of them depending on G, such that for each A ∈
W 1,2(B4, T ∗B4 ⊗ g) satisfying∫

B4

|FA|2dx < εG (4.24)

there exists g ∈ W 2,2(B4, G) such that:
‖Ag‖L4(B4) + ‖DAg‖L2(B4) ≤ CG‖FA‖L2(B4)

d?Ag = 0 in B4

(Ag)N = 0

(4.25)

Proof. We will �rst prove the result for 2 < p < 4, and then extend
it to the case p = 2 with a density argument. In the third step of
the theorem it will be clear why we need to do so. Fix 2 < p < 4,
and for ε > 0 we introduce the following two sets:

U ε :=
{
A ∈ W 1,p(B4, T ∗B4 ⊗ g) | YM(A) < ε

}
V ε
C̃

:=

{
A ∈ U ε

∣∣ ∃g ∈ W 2,p(B4, G) s.t. ‖dAg‖qLq(B4) ≤ C̃‖FA‖qLq(B4)

q = 2, p and d?Ag = 0, (Ag)N = 0

}
We are going to prove that for a suitable ε and C̃ the previous two
sets coincide, and this will prove the theorem for 2 < p < 4. In
order to accomplish this, we will prove the following three steps:

1) U ε is path connected (and therefore topologically connected)

2) V ε
C̃
is closed in U ε with respect to the W 1,p topology

3) V ε
C̃
is open in U ε with respect to the W 1,p topology.

First step.
Since the zero connection is in U ε we can establish path connect-
edness by proving that for every A ∈ U ε there exists a continuous
map [0, 1] 3 t 7→ At ∈ U ε such that A0 = 0 and A1 = A. So let us
de�ne At ∈ W 1,p(B4, T ∗B4 ⊗ g) as follows

At(x) := tA(tx) (4.26)
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Let us prove that At ∈ U ε for every t ∈ [0, 1].
Observe that FAt(x) = t2FA(tx), as the following calculation shows

FAt(x) = dAt(x) + [At(x), At(x)] = t2dA(tx)+

+t2[A(tx), A(tx)] = t2FA(tx)

We set B4
t = {tx : x ∈ B4} and we see that YM(At) < ε∫

B4

|FAt(x)|2dx =

∫
B4

t4|FA(tx)|2dx =

∫
B4
t

|FA(x)|2dx < ε

therefore At ∈ Uε for each t ∈ [0, 1]. Now it is left to prove that
the path is continuous. By the embedding Lp

∗
(B4, T ∗B4 ⊗ g) ↪→

Lp(B4, T ∗B4 ⊗ g) we get

‖At‖Lp(B4) ≤ C‖At‖Lp∗ (B4) = Ct1−
4
p∗ ‖A‖Lp∗ (B4

t ) ≤ Ct1−
4
p∗ ‖A‖Lp∗ (B4)

(4.27)
where p∗ is the Sobolev conjugate of p; and similarly we also have

‖DAt‖Lp(B4) = t2−
4
p‖DA‖Lp(B4

t ) ≤ t2−
4
p‖DA‖Lp(B4) (4.28)

By the last two inequalities we deduce thatAt → 0 inW 1,p(B4, T ∗B4⊗
g) for t→ 0. As a straightforward consequence of (4.27) and (4.28)
we also get the path continuity. Thus we have proved that U ε is
path connected.

Second step
Now we prove that V ε

C̃
is closed in U ε for the W 1,p topology. Con-

sider a sequence {Ak}k in V ε
C̃
and assume that Ak converges strongly

in W 1,p(B4, T ∗B4 ⊗ g) to some limit A∞ ∈ U ε. We want to prove
that A∞ ∈ V ε

C̃
. By de�nition of V ε

C̃
there exists a sequence {gk}k ⊂

W 2,p(B4, G) such that the followings hold∫
B4

|dAgkk |
qdx ≤ C̃

∫
B4

|FAk |
qdx for q = 2, p (4.29)

d?Agkk = 0 (Agkk )N = 0 (4.30)

As a consequence of Proposition 4.1.2 we have that the right hand
side of (4.29) is uniformly bounded and then ‖dAgkk ‖Lp(B4) is uni-
formly bounded too. Ga�ney's inequality (3.23) applied to Agkk gives

‖Agkk ‖W 1,p(B4) ≤ C
(
‖dAgkk ‖Lp(B4) + ‖d?Agkk ‖Lp(B4) + ‖νyAgkk ‖W 1− 1

p ,p(∂B4)

)
=

= C‖dAgkk ‖Lp(B4)
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where the last equality is given by (4.30) together with the fact that
0 = (Agkk )N = ν(νyAgkk ) by equation (3.12).
From this last result we get also the boundedness of dgk with respect
to theW 1,p-norm. Indeed Agkk = g−1

k dgk+g−1
k Akgk, and this relation

can be rewritten as

dgk = gkA
gk
k − Akgk (4.31)

By de�nition of norm we have that

‖dgk‖W 1,p(B4) = ‖dgk‖Lp(B4) + ‖D2gk‖Lp(B4) (4.32)

and using (4.31) we see that the �rst term in the right hand side of
(4.32) is bounded

‖dgk‖Lp(B4) ≤ C
(
‖Agkk ‖Lp(B4) + ‖Ak‖Lp(B4)

)
< C (4.33)

since both Ak and Agkk are bounded in W 1,p(B4, T ∗B4 ⊗ g) by hy-
pothesis. The other term instead can be estimated observing that
for i, j = 1, ..., 4

∂2gk
∂xi∂xj

= ∂xigk(A
gk
k )j+gk∂xi(A

gk
k )j−∂xi(Ak)jgk−(Ak)j∂xigk (4.34)

The estimates (4.33) together with Hölder's inequality and the em-
bedding (4.5) lead to the boundedness of D2gk in Lp(B4). Now
since gk is bounded in W 2,p(B4, G) and this last space embeds com-
pactly in C0(B4, G), then there exists a subsequence which converges
strongly to some g∞ ∈ C0(B4, G). Furthermore W 2,p(B4,Rm2

) is a
re�exive space and so gk′ ⇀ g∞ weakly in W 2,p(B4,Rm2

). The weak
limit coincides with the limit in C0(B4, G) because of the compact
embedding of W 2,p(B4, G) ↪→ C0(B4, G). Thus we deduce the fol-
lowing weak convergence in W 1,p(B4, T ∗B4 ⊗ g)

g−1
k′ dgk′ + g−1

k′ Ak′gk′ ⇀ g−1
∞ dg∞ + g−1

∞ A∞g∞ (4.35)

So we have found that Agk′k′ ⇀ Ag∞∞ weakly in W 1,p(B4, T ∗B4 ⊗ g).
The W 1,p-norm is weakly lower semicontiuous, therefore

‖Ag∞∞ ‖W 1,p(B4) ≤ lim inf
k′
‖Agk′k′ ‖W 1,p(B4) ≤

≤ C̃ lim inf
k′
‖FAk′‖Lp(B4) = C̃‖FA∞‖Lp(B4) (4.36)

where the second inequality is given by (4.29), while the equality
holds since FAk′ → FA in Lp(B4,∧2T ∗B4 ⊗ g). Notice that the

91



above inequality holds true also for p = 2.
The codi�erential d? : W 1,p(B4, T ∗B4⊗g)→ Lp(B4, g) is linear and
continuous with respect to the strong topology, and therefore it is
linear and continuous also if in both spaces we consider the weak
topology. This leads us to 0 = d?A

gk′
k′ ⇀ d?Ag∞∞ weakly in Lp(B4, g).

Corollary 3.1.17 implies also that 0 = (A
gk′
k′ )N ⇀ (Ag∞∞ )N weakly in

W 1− 1
p
,p(∂B4, T ∗B4|∂B4 ⊗ g) which �nally means A∞ ∈ V ε

C̃
.

Third step
V ε
C̃

is open in Uε with respect to the W 1,p-topology if for every
A ∈ V ε

C̃
we can �nd an open neighbourhood V of A inW 1,p such that

V ⊂ V ε
C̃
. Fix then A ∈ V ε

C̃
, and consider the gauge g ∈ W 2,p(B4, G),

associated to A, given in the de�nition of V ε
C̃
. Then we have that

the following map is continuous

g : W 1,p(B4, T ∗B4 ⊗ g)→ W 1,p(B4, T ∗B4 ⊗ g)

B 7→ Bg := g−1dg + g−1Bg

and clearly g(VC̃ε) = VC̃ε
5. Then if for δ > 0 small enough the

neighbourhood Vδ := {Ag + ω : ‖ω‖W 1,p(B4) < δ} of Ag is such
that Vδ ⊂ V ε

C̃
, we have that g−1(Vδ) is a neighbourhood of A and

g−1(Vδ) ⊂ V ε
C̃
.

So we can assume from the beginning that d?A = 0 and AN = 0,
and furthermore that for q = 2, p it holds ‖dA‖qLq(B4) ≤ C̃‖FA‖qLq(B4),

where now we have �xed C̃ > 1. We are looking for the existence
of δ > 0 su�ciently small such that (A + ω) ∈ V ε

C̃
for each ω ∈

W 1,p(B4, T ∗B4 ⊗ g) with ‖ω‖W 1,p(B4) < δ. The requirement for
A+ ω to be in V ε

C̃
reads as: there exists g ∈ W 2,p(B4, G) such that

d?(A+ ω)g = 0

(A+ ω)gN = 0

‖d(A+ ω)g‖qLq(B4) ≤ C̃‖FA+ω‖qLq(B4) q = 2, p

(4.37)

In order to prove the �rst two equations of (4.37) we introduce the
following C1 map

N : W 1,p(B4, T ∗B4⊗g)×W 2,p(B4, g)→ Lp(B4, g)×W 1− 1
p
,p(∂B4, T ∗B4|∂B4⊗g)

(ω, U) 7→ (d?(A+ ω)gU , (A+ ω)gUN ) (4.38)

where gU := exp(U) ∈ W 2,p(B4, G), see Lemma 4.3.3. If we prove
that the Fréchet derivative of the map in (0, 0) with respect to the
second variable is an isomorphism, then we can apply the implicit

5If E ⊂W 1,p(B4, T ∗B4 ⊗ g) then g(E) := {Bg : B ∈ E}
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function theorem (see [24]), and since by hypothesisN (0, 0) = (0, 0),
we will �nd that for each ω, in a proper neighbourhood of 0 ∈
W 1,p(B4, T ∗B4 ⊗ g), there exists a gauge g such that the �rst two
equations of (4.37) hold.
By Lemma 4.3.3 the derivative of N along the U direction at (0, 0)
is

∂UN (0, 0) : W 2,p(B4, g) −→ H ⊂ Lp(B4, g)×W 1− 1
p
,p(∂B4, T ∗B4|∂B4⊗g)

V 7−→ ∂UN (0, 0)·V = (∆V +(A, dV ), (dV )N)
(4.39)

where H is the hyperplane of Lp(B4, g)×W 1− 1
p
,p(∂B4, T ∗B4|∂B4⊗g)

made of couples (f, g) such that∫
B4

f(x)dx =

∫
∂B4

νygdσ3 (4.40)

We can establish (4.40) applying Green's identity, since (A, dV )6

has null integral over B4, as a straightforward consequence of the
integration by parts formula for 1-forms in (3.1.21), remembering
that 0-forms have zero normal component.
Applying Ga�ney's inequality (3.23) to dV we have the following a
priori estimate for any V ∈ W 2,p(B4, g):

‖dV ‖W 1,p(B4) ≤ C
(
‖d?dV ‖Lp(B4) + ‖〈ν, dV 〉‖

W
1− 1

p ,p(∂B4)

)
(4.41)

where observe that for a zero form as V holds ∆V = d?dV , and
moreover the product 〈ν, dV 〉 coincides with ∂rV . Furthermore if
we ask that

V ∈
{
U ∈ W 2,p(B4, g) :

∫
B4

U = 0

}
:= E

one can apply Poincaré inequality to V , ‖V ‖Lp(B4) ≤ C‖dV ‖Lp(B4).
This last inequality and (4.41) leads to:

‖V ‖W 2,p(B4) ≤ C
(
‖∆V ‖Lp(B4) + ‖∂rV ‖

W
1− 1

p ,p(∂B4)

)
≤

≤ C
(
‖∂UN (0, 0) · V ‖H + ‖(A, dV )‖Lp(B4)

)
≤

≤ C
(
‖∂UN (0, 0) · V ‖H + C‖A‖L4(B4)‖dV ‖Lp∗ (B4)

)
(4.42)

Using Ga�ney's inequality and the given hypothesis on A ∈ V ε
C̃
we

have
‖A‖W 1,2(B4) ≤ C‖dA‖L2(B4) ≤ CC̃

1
2 ε

1
2 (4.43)

6If α and β are two g-valued 1-forms, then we denote (α, β) = α · β − β · α where α · β =∑
i αiβi and αiβi is the composition of the matrix αi with the matrix βi.
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and the embedding W 1,2(B4, T ∗B4⊗g) ↪→ L4(B4, T ∗B4⊗g) clearly
implies ‖A‖L4(B4) ≤ CC̃

1
2 ε

1
2 . Substituting this inequality in (4.42)

we �nd

‖V ‖W 2,p(B4) ≤ C
(
‖∂UN (0, 0) · V ‖H + CC̃

1
2 ε

1
2‖dV ‖Lp∗

)
and by the Sobolev embeddingW 1,p(B4, T ∗B4⊗g) ↪→ Lp

∗
(B4, T ∗B4⊗

g) we get(
1− CC̃

1
2 ε

1
2

)
‖V ‖W 2,p(B4) ≤ C‖∂UN (0, 0) · V ‖H (4.44)

and for ε su�ciently small therefore ∂UN (0, 0) is injective in E. We
know by elliptic theory that the following linear map is invertible

L0 : E → H

V 7→ (∆V, (dV )N) (4.45)

and applying the method of continuity (see [15] Theorem 5.2) to the
following family of linear and continuous maps

Lt : E → H

V 7→ (∆V + t(A, dV ), (dV )N)

with t ∈ [0, 1], we have that L1 = ∂UN (0, 0) is invertible too in E.
Finally we can apply the implicit function theorem. So there ex-
ists a neighbourhood U0 of 0 ∈ E and a δ > 0 such that ∀ω ∈
W 1,p(B4, T ∗B4 ⊗ g) satisfying ‖ω‖W 1,p(B4) < δ there exists and is
unique Vω ∈ U0 such that N (ω, Vω) = 0.
Now it is left only to check the third equation in (4.37), namely

‖d(A+ ω)gω‖qLq(B4) ≤ C̃‖FA+ω‖qLq(B4) (4.46)

for q = 2, p. To prove this last inequality, which concludes the proof
of the third step, observe that

‖d(A+ ω)gω‖Lq(B4) ≤ ‖FA+ω‖Lq(B4) + ‖[(A+ ω)gω , (A+ ω)gω ]‖Lq(B4)

(4.47)
The last addendum on the right hand side of (4.47) can be bounded,
thanks to Hölder's inequality, by

‖(A+ ω)gω‖L4(B4)︸ ︷︷ ︸
(I)

‖(A+ ω)gω‖Lq∗ (B4) (4.48)

and the �rst multiplicand is such that

(I) ≤ C(‖A‖L4(B4) + ‖ω‖L4(B4) + ‖dgω‖L4(B4)) ≤
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≤ C(‖dA‖L2(B4) + δ + ‖dgω‖L4(B4)) ≤ C(ε+ δ + ‖dgω‖L4(B4))

where ‖dgω‖L4(B4) < Cδ, since gω := exp(Vω) with Vω ∈ U0 and U0

is small with δ. We already proved that ‖A‖L4(B4) ≤ C‖dA‖L2(B4).
Finally, since we have just showed that d?(A + ω)gω = 0 and also
(A+ω)gωN = 0, thanks to Ga�ney's inequality (3.23) and the classical
Sobolev embedding W 1,q(B4, T ∗B4 ⊗ g) ↪→ Lq

∗
(B4, T ∗B4 ⊗ g)

‖(A+ ω)gω‖Lq∗ (B4) ≤ C‖d(A+ ω)gω‖Lq(B4) (4.49)

Therefore, these last estimates and equations (4.47) and (4.48) imply
that

‖d(A+ ω)gω‖Lq(B4) ≤
1

1− C(ε+ δ)
‖FA+ω‖Lq(B4)

and since for ε and δ small enough, 1
1−C(ε+δ)

< C̃
1
q , we conclude.

End of the Proof Now that we have proved V ε
C̃

= U ε for ε and C̃
as above, we need to substitute W 1,p with W 1,2.
So let the 1-form A ∈ W 1,2(B4, T ∗B4⊗g) such that condition (4.24)
holds. By density there exists An ∈ C∞(B4, T ∗B4 ⊗ g) converg-
ing strongly to A in W 1,2(B4, T ∗B4 ⊗ g). Thus one obtain that
FAn → FA strongly in L2(B4,∧2T ∗B4 ⊗ g) and therefore

‖FAn‖2
L2(B4) < ε n ≥ N (4.50)

where N is taken large enough. Then An ∈ V ε
C̃
and so there exists

gn ∈ W 2,p(B4, G) such that

‖dAgnn ‖2
L2(B4) ≤ C̃‖FAn‖2

L2 (4.51)

holds and furthermore d?Agnn = 0 and (Agnn )N = 0. As we have
already seen, by Ga�ney's inequality we �nd that Agnn is uniformly
bounded in W 1,2(B4, T ∗B4 ⊗ g).
Repeating a reasoning not di�erent from the one of equations (4.31)-
(4.34) we �nd out that the sequence of gauges {gn} is bounded in
W 2,2(B4, G), and therefore it weakly converges to a g0 ∈ W 2,2(B4,Rm2

).
By Rellich-Kondrakov theorem it also converges strongly to g0 in
Lp(B4) for each 1 ≤ p < ∞, and thus gn → g0 a.e. which means
g0 ∈ W 2,2(B4, G). We easily �nd that

Agnn ⇀ Ag0 weakly in W 1,2(B4, T ∗B4 ⊗ g) (4.52)

As we have already observed, the map d? : W 1,2(B4, T ∗B4 ⊗ g) →
L2(B4, g) is a linear and continuous map for the norm topology, and
so it is also for the weak one, i.e. if we substitute in both spaces the
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strong topology with the weak one then the map d? is still continu-
ous. Thus by d?Agnn = 0 we easily obtain d?Ag0 = 0.
As far the normal component is concerned, we know by Corollary
3.1.17 that N : W 1,2(B4, T ∗B4 ⊗ g) → H

1
2 (∂B4, T ∗B4|∂B4 ⊗ g)

is linear and continuous and then 0 = (Agnn )N ⇀ Ag0

N weakly in
H

1
2 (∂B4, T ∗B4|∂B4 ⊗ g).

Finally the lower semicontinuity of the L2-norm together with this
weak convergence leads us to:

‖dAg0‖2
L2(B4) ≤ C̃‖FA‖2

L2(B4)

That was the last step of the proof.

Remark 4.3.2. We have constructed the proof of Theorem 4.3.1, by
�rst proving the result for A ∈ W 1,p(B4, T ∗B4 ⊗ g) with 2 < p < 4,
and then generalizing it when A ∈ W 1,2(B4, T ∗B4 ⊗ g) thanks to a
density argument.
This choice was necessary since the map N , introduced in the third
step, is not C1 when the gauges are not at least continuous. Thanks
to the embedding W 2,p(B4, G) ↪→ C0(B

4
, G), valid for 2 < p < 4,

this was the case.

Lemma 4.3.3. Let B4 ⊂ R4 be the unit ball, and 2 < p < 4. Then:

1) The map W 2,p(B4, g) 3 V 7→ exp(V ) :=
∑∞

k=0
V k

k!
has image in

W 2,p(B4, G). Moreover it is Fréchet di�erentiable.

2) The map N in (4.38) is C1, and the derivative in (0, 0) with
respect to the second direction is ∂UN (0, 0) · V = (−∆V +
(A, dV ), (dV )N) for V ∈ W 2,p(B4, g).

Proof. 1) exp(V ) is the composition between V : B4 → g and exp :

g→ G. By hypothesis V ∈ W 2,p(B4, g) ↪→ C0(B
4
, g) and therefore

it has bounded image. On the other hand exp ∈ C∞(g, G), and thus
exp(V ) ∈ W 2,p(B4, G).
Now we focus on the Fréchet di�erentiability of exp. We �x U ∈
W 2,p(B4, g) and we claim that the directional derivative of exp(U)
in the V direction is

DV exp(U) = V +
∞∑
k=2

Uk−1

k!
· V + V ·

∞∑
k=2

Uk−1

k!

for any V ∈ W 2,p(B4, g). We have to check that for any ε > 0 there
exists δ > 0 such that

‖ exp(U+V )−exp(U)−DV exp(U)‖W 2,p(B4) < ε‖V ‖W 2,p(B4) (4.53)
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for any V with ‖V ‖W 2,p(B4) < δ. We can rewrite the left hand side
of (4.53) as:∥∥∥∥ ∞∑
k=0

(U + V )k

k!
−
∞∑
k=0

Uk

k!
−V −

∞∑
k=2

Uk−1

k!
·V −V ·

∞∑
k=2

Uk−1

k!

∥∥∥∥
W 2,p(B4)

=

=

∥∥∥∥ ∞∑
k=2

(U + V )k

k!
−
∞∑
k=2

Uk

k!
−
∞∑
k=2

Uk−1

k!
· V − V ·

∞∑
k=2

Uk−1

k!

∥∥∥∥
W 2,p(B4)

The last equation is bounded from above by:
∞∑
k=2

1

k!

∥∥(U + V )k − Uk − Uk−1V − V Uk−1
∥∥
W 2,p(B4)

= (I)

and if we expand (U+V )k we see that for any V such that ‖V ‖W 2,p(B4) <
δ:

(I) ≤ CMδp‖V ‖W 2,p(B4)

where M is a constant depending on the W 2,p-norm of U and on δ.
If we choose δ small enough then we obtain (4.53).
2)Now we prove the di�erentiability of

N : W 1,p(B4, T ∗B4⊗g)×W 2,p(B4, g)→ Lp(B4, g)×W 1− 1
p
,p(∂B4, T ∗B4|∂B4⊗g)

(ω, U) 7→ (d?(A+ ω)gU , (A+ ω)gUN )

which is clearly a composition of maps, and gU := exp(U). In par-
ticular the �rst component, call it N (1), can be written as

N (1)(ω, U) = d? ◦ F (1)(ω, U) + d? ◦ T (1)(ω, U)

with d? : W 1,p(B4, T ∗B4 ⊗ g)→ Lp(B4, g), where we have de�ned

F (1)(ω, U) = g−1
U dgU and T (1)(ω, U) := g−1

U (A+ ω)gU

Since d? is linear and continuous, it is trivially Fréchet di�erentiable.
Thus, in order to prove the di�erentiability of N (1), we just have to
check that

(ω, U) 7→ (A+ ω)gU = F (1)(ω, U) + T (1)(ω, U)

is smooth. Indeed composition of Fréchet di�erentiable functions
is still Fréchet di�erentiable, see for instance [24]. We see that
F (1)(ω, U) = b(g−1

U , dgU) = b ◦ (g−1
U , d ◦ gU) where b is the bilinear

form

b : W 2,p(B4,Rm2

)×W 1,p(B4, T ∗B4⊗Rm2

)→ W 1,p(B4, T ∗B4⊗Rm2

)
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(A,B) 7−→ b(A,B) := ABidx
i

with B =
∑4

i=1 Bidx
i. We have already proved in 1) that

W 2,p(B4, g) 3 U 7→ gU ∈ W 2,p(B4, G) is Fréchet di�erentiable, and
therefore so is d ◦ gU : W 2,p(B4, g) 7→ W 1,p(B4, T ∗B4 ⊗ TG) since,
as already discussed, composition of Fréchet di�erentiable maps is
Fréchet di�erentiable. Similarly also the map W 2,p(B4, g) 3 U 7→
exp(−U) = g−1

U ∈ W 2,p(B4, G) is Fréchet di�erentiable too. The
bilinear map b is bounded

‖b(A,B)‖W 1,p(B4) ≤ C‖A‖W 2,p(B4)‖B‖W 1,p(B4)

indeed

‖b(A,B)‖W 1,p(B4) :=
4∑
i=1

‖ABi‖Lp(B4)+
4∑

i,j=1

‖(∂xjA)Bi+A∂xjBi‖Lp(B4) ≤

≤ ‖A‖C0‖B‖Lp(B4) +
4∑
j=1

‖∂xjA‖Lp∗ (B4)‖B‖L4(B4)+

+
4∑

i,j=1

‖A‖C0‖∂xjBi‖Lp(B4) ≤ C‖A‖W 2,p‖B‖W 1,p

The boundedness of the bilinear form let us apply Proposition 3.3
of [3] and so establish �nally the di�erentiability of F (1). Arguing
in a similar way, we can prove that also T (1) is di�erentiable.
This concludes the proof of the Fréchet di�erentiability, because,
also the second component of N , call it N (2), is the composition
of F (1) + T (1) with the linear and continuous map that to each
B ∈ W 1,p(B4, T ∗B4 ⊗ g) gives its normal component
BN ∈ W 1− 1

p
,p(∂B4, T ∗B4|∂B4 ⊗ g).

We need now to compute the Fréchet derivative of the map N at
the point (0, 0) in the second direction. We will start by determin-
ing the value of ∂V (N (1))(0, 0) with V ∈ W 2,p(B4, g). We have that
N (1) = d? ◦F (1) +d? ◦T (1) and by linearity of the Fréchet derivative,
we have

∂V (N (1))(0, 0) = ∂V (d? ◦ F (1))(0, 0)︸ ︷︷ ︸
(I)

+ ∂V (d? ◦ T (1))(0, 0)︸ ︷︷ ︸
(II)

Since d? : W 1,p(B4, T ∗B4 ⊗ g)→ Lp(B4, g) is linear and continuous
we have that Df (d

?)(g) = d?(f), for each f, g ∈ W 1,p(B4, T ∗B4⊗g).
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Therefore, using the chain rule for maps between Banach spaces, see
for instance [3], we get

∂V (d? ◦ F (1))(0, 0) = D∂V F (1)(0,0)(d
?)(F (1)(0, 0)) = d?(∂V F

(1)(0, 0))

and so (I) is obtained by computing DV (F (1))(0, 0). When a map is
Frechét di�erentiable then it is also Gateaux di�erentiable, and these
two derivatives agree. The Gateaux di�erential in the V direction
of F (1) in (0, 0) is

lim
h→0

g−1
hV dghV
h

(4.54)

where the limit is considered with respect the W 1,p(B4, T ∗B4 ⊗ g)
topology. Since we already know that a limit in W 1,p(B4, T ∗B4⊗ g)
exists, we can try to compute it pointwise. For x ∈ Ω we have

exp(−hV (x))d exp(hV (x))

h
=

exp(−hV (x))D exp(hV (x))hdV (x)

h
=

= exp(−hV (x))D exp(hV (x))dV (x)

where D exp(hV (x)) is the di�erential of exp : g→ G computed in
the point hV (x) ∈ g. Taking the pointwise limit, exp(−hV ) → e
and D(exp(hV )) turns to be the identity map between T0g ∼= g and
Te(G) ∼= g. Therefore, we have that

∂V (d? ◦ F (1))(0, 0) = d?(∂V F
(1)(0, 0)) = d?dV = ∆V

As far as the other term is concerned we will apply a slightly di�erent
strategy. We compute the Gateaux derivative of d? ◦ T (1) at (0, 0)
in the V direction. Therefore, we need to study the limit

lim
h→0

d?(g−1
hVAghV )

h
= (∗)

since by hypothesis 0 = d?A = d?(T (1)(0, 0)). Then we have

d?(g−1
hVAghV ) = dg−1

hV · AghV + g−1
hVA · dghV

Using the previous computations of dghV , we get the pointwise limit

(∗) = lim
h→0

d?(g−1
hVAghV )

h
= −dV · A+ A · dV = (A, dV )

and so we have obtained ∂V (N (1))(0, 0) = ∆V + (A, dV ) as wanted.
We now need to compute ∂V (N (2))(0, 0). Similarly to what we have
done before we note that

DV (N (2))(0, 0) = DV (N ◦ F (1))(0, 0) +DV (N ◦ T (1))(0, 0)
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since N (2) = N ◦F (1) +N ◦ T (1), where the normal component map
N : W 1,p(B4, T ∗B4⊗ g)→ W 1− 1

p
,p(∂B4, T ∗B4|∂B4 ⊗ g) is linear and

continuous. Reasoning as we did for the map d?, we get that

∂V (N ◦F (1))(0, 0) = N(∂V (F (1))(0, 0)) = N ◦dV = (dV )N = 〈ν, dV 〉

where ν is the external normal to B4. If we compute now ∂V (N ◦
T (1))(0, 0) using the Gateaux derivative, we see that

lim
h→0

N ◦ T (1)(0, hV )−N ◦ T (1)(0, 0)

h
= 0

since T (1)(0, 0) = A andAN = 0 by hypothesis. WhileN◦T (1)(0, hV ) =
(g−1
hVAghV )N = g−1

hVANghV = 0.

It is clear that Theorem 4.3.1 holds for every ball in R4, and not
only for B4. In the following proposition we show that the constants
εG and CG are the same, independently from the ball considered.

Proposition 4.3.4. The constants εG and CG appearing in Theo-
rem 4.3.1, are invariant under translations and also scale invariant.

Proof. The invariance for translations is trivial. We will prove only
the invariance for dilations of the domain. Suppose that
A ∈ W 1,2(B4

r , T
∗B4

r ⊗ g) satis�es equations (4.24) in B4
r . Then, we

de�ne the following connection

Ã(x) := rA(rx) x ∈ B4 (4.55)

and clearly Ã ∈ W 1,2(B4, T ∗B4 ⊗ g). As proved in Part One of
Theorem 4.3.1, we have that for x ∈ B4

FÃ(x) = r2FA(rx) (4.56)

and integrating its square norm we obtain∫
B4

|FÃ(x)|2dx =

∫
B4

|r2FA(rx)|2dx =

∫
B4
r

|FA|2dy

where the second inequality is due to the change of variable rx = y.
Therefore if ‖FA‖2

L2(B4
r ) ≤ εG, we can apply Theorem 4.3.1 to Ã,

getting a gauge g ∈ W 2,2(B4, G) such that equations (3.47) hold.
Then we have that Ãg(x)(x) = rAg(x)(rx), and therefore it can be
easily proved that

d?Ag = 0, AgN = 0 where g(y) := g
(y
r

)
for y ∈ B4

r (4.57)
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and clearly g ∈ W 2,2(B4
r , G). Since that Ag(y) = 1

r
Ãg(x), where

y = rx, then
‖Ag‖L4(B4

r ) = ‖Ãg‖L4(B4)

and a similar computation shows also that ‖DAg‖L2(B4
r ) = ‖DÃg‖L2(B4).

Therefore we have seen that both εG and CG do not change by di-
lations of B4.

The Small Energy Theorem is actually valid for each domain Ω
which is di�eomorphic to B4. Indeed, the second and third steps
of the proof of Theorem 4.3.1 are clearly valid also when working
on a generic contractible smooth bounded four dimensional domain.
The only step which is not immediate is the �rst. In the following
proposition we show that it holds true also for domains that are
di�eomorphic to the unit ball.

Proposition 4.3.5. Let Ω ⊂ R4, and φ : B4 → Ω be a di�eomor-
phism. Then there exists ε(Ω, G), depending also on Ω, such that
for each A ∈ W 1,2(Ω, T ∗Ω⊗ g) satisfying∫

Ω

|FA|2dx < ε(Ω, G) (4.58)

there exists g ∈ W 2,2(Ω, G) and a constant C(Ω, G) such that
‖Ag‖L4(Ω) + ‖DAg‖L2(Ω) ≤ C(Ω, G)‖FA‖L2(Ω)

d?Ag = 0 in Ω

(Ag)N = 0

(4.59)

Proof. The idea is to show that for every ε > 0, the set

U ε
Ω :=

{
A ∈ W 1,2(Ω, T ∗Ω⊗ g) :

∫
Ω

|FA|2dx < ε

}
(4.60)

is path connected. The only obstruction is that Ω is not necessarily
a star domain, and therefore performing a path between two connec-
tions in U ε

Ω is not straightforward. The di�eomorphism φ : B4 → Ω,
induces the following isomorphism:

φ∗ : C∞(Ω, T ∗Ω⊗ g)→ C∞(B4, T ∗B4 ⊗ g)

A 7−→ φ∗(A) (4.61)

through the pull-back. Of course by density we have that it naturally
extends to an isomorphism

φ∗ : W 1,2(Ω, T ∗Ω⊗ g)→ W 1,2(B4, T ∗B4 ⊗ g)
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Therefore, if we prove that φ∗(U ε
Ω) is path connected, then the same

property holds also for U ε
Ω. We see that for each A ∈ U ε

Ω, it holds∫
Ω

|FA|2dx =

∫
B4

φ∗(FA ∧ ?FA)dx =

∫
B4

φ∗(FA) ∧ φ∗(?FA)dx = (I)

(4.62)
where the Hodge star operator is taken with respect to the Euclidean
metric. The Hodge star operator generally does not commute with
the pull-back, but anyway, as proved in Proposition 3.1.7, the fol-
lowing signi�cant equation holds

φ∗ ◦ ? = ?φ∗(E) ◦ φ∗ (4.63)

where φ∗(E) is the pull-back of the Euclidean metric. Note that by
linearity of the pull-back we have that φ∗(dA + [A,A]) = φ∗(dA) +
φ∗([A,A]), and since it is well known that the pull-back commutes
with the di�erential, and that φ∗([A,A]) = [φ∗(A), φ∗(A)], we get
Fφ∗(A) = φ∗(FA). So we can write

(I) =

∫
B4

φ∗(FA) ∧ ?φ∗(E)φ
∗(FA)dx =

∫
B4

Fφ∗(A) ∧ ?φ∗(E)Fφ∗(A)dx =

=

∫
B4

|Fφ∗(A)|2dx

Therefore, if we consider the Riemannian manifold (B4, φ∗(E)), we
have that

φ∗(U ε
Ω) = U ε

B4 (4.64)

and the set on the right hand side is easily proved to be path con-
nected.

Remark 4.3.6. The constants ε(Ω, G) and C(Ω, G) are still scale
invariant, and also invariant by translations. The proof of this fact
is the same of Proposition 4.3.4.

4.3.1 Small boundary connection norm

In what follows we prove the existence of the minimizer for the
minimization problem (4.8) assuming that the prescribed boundary
connection η has a small enough trace norm. This is fundamental,
indeed we will be able to bound the value of YM(B) for some B ∈
W 1,2
η from above with the norm of η, and therefore apply the Small

Energy Theorem to minimizing sequences.

Theorem 4.3.7. There exists δ > 0 such that for each
η ∈ H

1
2 (∂B4, T ∗∂B4 ⊗ g) satisfying ‖η‖

H
1
2
< δ the minimization

problem (4.8) is solved by a connection A0 ∈ W 1,2
η (B4, T ∗B4 ⊗ g).
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Proof. First of all we will prove that we can apply the Small Energy
Theorem to a minimizing sequence {An} ⊂ W 1,2

η (B4, T ∗B4 ⊗ g),
under a suitable condition on the norm of η ∈ H 1

2 (∂B4, T ∗∂B4⊗g).
So let B ∈ W 1,2

η (B4, T ∗B4 ⊗ g) then it holds that

YM(B) ≤ 2‖dB‖2
L2(B4) + 2

∫
B4

∣∣[B,B]
∣∣2dx

and applying Hölder's inequality

YM(B) ≤ C
(
‖B‖4

L4(B4) + ‖dB‖2
L2(B4)

)
By the embedding W 1,2(B4, T ∗B4⊗g) ↪→ L4(B4, T ∗B4⊗g) and the
obvious inequality ‖dB‖2

L2(B4) ≤ ‖B‖2
W 1,2(B4) we get

YM(B) ≤ C
(
‖B‖4

W 1,2(B4) + ‖B‖2
W 1,2(B4)

)
(4.65)

By Lemma 4.2.3 we know that the functional E, de�ned in Section
4.2, admits a unique minimizer Ã in W 1,2

η (B4, T ∗B4 ⊗ g) and if we
choose B = Ã, then B coincides with the Harmonic extension of η,
and from classical elliptic estimates (see Lemma 7.1 in [11]) we get

‖B‖W 1,2(B4) ≤ C‖η‖
H

1
2 (∂B4)

which leads to the following energy bound

YM(B) ≤ C
(
δ2 + δ4

)
(4.66)

We choose δ such that C(δ2+δ4) < εG. If Ak ∈ W 1,2
η (B4, T ∗B4⊗g) is

a minimizing sequence then we can assume without loss of generality
that for each k, YM(Ak) ≤ YM(B) < εG. Then by Theorem 4.3.1
we have that there exists gk ∈ W 2,2(B4, G) such that{

‖Agkk ‖L4(B4) + ‖DAgkk ‖L2(B4) ≤ CG‖FAk‖L2(B4)

d?Agkk = 0 in B4
(4.67)

So the new sequence Agkk is bounded in W 1,2(B4, T ∗B4⊗ g), and up
to a subsequence then Agkk ⇀ A∞ weakly in W 1,2(B4, T ∗B4⊗g), for
some A∞ ∈ W 1,2(B4, T ∗B4 ⊗ g).
We claim that there exists g∞ ∈ W 2,2(B4, G) such that (Ag∞∞ )T = η.
First observe that

(Agkk )T := g−1
k (dgk)T + g−1

k ηgk ⇀ A∞

weakly in H
1
2 (∂B4, T ∗∂B4⊗g), by Corollary 3.1.17. By the Sobolev

embedding

H
1
2 (∂B4, T ∗∂B4 ⊗ g) ↪→ L3(∂B4, T ∗∂B4 ⊗ g)
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(Agkk )T is converging weakly in L3(∂B4, T ∗∂B4 ⊗ g) too. Thus also
gk
∣∣
∂B4 converges weakly to some g∞ ∈ W 1,3(∂B4,Rm2

). This is
true because d(gk|∂B4) = (dgk)T . The spaceW 1,3(∂B4,Rm2

) embeds
compactly in Lq(∂B4,Rm2

) for each q > 1, which means that gk
converges strongly in Lq(∂B4,Rm2

) for each q > 1. This last note
implies that gk → g∞ a.e. in ∂B4, and therefore g∞ has values a.e.
in G (for the sphere measure) which means that g∞ ∈ W 1,3(∂B4, G).
Another consequence of this strong convergence is

g−1
∞ dg∞ + g−1

∞ ηg∞ = (A∞)T (4.68)

Now we need to extend g∞ to a g̃ ∈ W 2,2(B4, G). If we can do
this then we have proved the claim. To this purpose we state the
following theorem, which will be proved in Chapter 5.

Theorem 4.3.8. There exists a constant ε3 such that for any g ∈
H

3
2 (∂B4, G) satisfying

‖dg‖
H

1
2 (∂B4)

< ε3

there exists an extension g̃ ∈ W 2,2(B4, G) of g.

Thus, in order to apply the previous theorem we need to bound
properly the H

1
2 -norm of dg∞. By the relation (4.68) we have that

‖dg∞‖H 1
2
≤ C

(
‖g∞A∞‖H 1

2
+ ‖ηg∞‖H 1

2

)
Thanks to the following embedding,

L∞ ∩W 1,3(∂B4) ·H
1
2 (∂B4) ↪→ H

1
2

we �nd that the �rst addendum in the last inequality, is well de�ned,
and in particular:

‖g∞A∞‖H 1
2
≤ C (‖g∞‖L∞ + ‖g∞‖W 1,3) ‖A∞‖H 1

2

and a similar bound holds also for the second addendum. Thus, since
by the lower semincontinuity of the norm with respect to the weak
convergence we have that ‖A∞‖H 1

2
≤ lim infk ‖Agkk ‖H 1

2
< C(δ2 + δ4)

we have that:

‖dg∞‖H 1
2
≤ C (‖g∞‖L∞ + ‖g∞‖W 1,3) (δ2 + δ4) (4.69)

In particular if δ is small enough then we can apply Theorem 4.3.8,
and obtain then the extension g̃ ∈ W 2,2(B4, G). We de�ne A0 =
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Ag̃
−1

∞ , which is a minimum for our problem and its tangential com-
ponent on the boundary coincides with η. Indeed, since YM is a
lower semicontinuous functional7 for the W 1,2 weak topology, then:

YM(Ag̃
−1

∞ ) = YM(A∞) ≤ lim inf
k

YM(Agkk ) = lim inf
k

YM(Ak)

and since Ak is a minimizing sequence then A0 is a minimum. As
far as the boundary condition is concerned, one can observe that if
g ∈ W 2,2(B4, G), then by the relation g · g−1 = id one gets

∂xig · g−1 = −g · ∂xig−1

for each i = 1, ..., 4. Then

A0
T = (Ag̃

−1

∞ )T = g̃d(g̃−1)T + g̃(A∞)T g̃
−1 =

g∞d((g∞)−1) + g∞
(
(g∞)−1dg∞ + (g∞)−1ηg∞

)
(g∞)−1 = η

and this concludes the proof.

4.3.2 Arbitrary boundary connection norm

We have proved that for a small enough H
1
2 -norm of the given

boundary connection η, we can establish the existence of a mini-
mum for the minimization problem. This result was achieved using
K.Uhlenbeck's Small Energy Theorem on the whole B4, since thanks
to an estimate of YM in terms of ‖η‖

H
1
2
we could make YM smaller

than the constant εG.
If we relax the hypothesis on the norm of the boundary connection,
we cannot apply anymore the Small Energy Theorem to a minimiz-
ing sequence of connections {Ak} on the whole B4, but anyway we
can use it locally in the sense of the following proposition.

Proposition 4.3.9. Let {Ak} be a sequence in W 1,2(B4, T ∗B4⊗ g)
such that YM(Ak) is bounded, and ε a positive constant. Then there
exists a subsequence of {Ak} and N points P1, ..., PN ∈ B4 such that
∀δ > 0 ∃ρ > 0

sup
n

∫
Bρ(y)∩B4

|FAkn |
2dx ≤ ε ∀y ∈ B4 \ ∪Ni=1Bδ(Pi)

Proof. We de�ne the map ρk : B4 → R where

ρk(x) := sup

{
0 < ρ < 1 :

∫
Bρ(x)∩B4

|FAk |2dx < ε

}
7We can get this property using for example Tonelli's Theorem
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Claim 4.3.9.1. There is a �nite set of points {P1, ..., PN} ⊂ B4 such
that infk ρk(Pi) = 0.

If the claim is true then ρ(x0) := infk ρk(x0) > 0 for each x0 ∈
B4 \ ∪Ni=1Bδ(Pi) =: Cδ, where δ > 0 is a constant we �x.
Now observe that each ρk is continuous. Indeed, take {xn}n∈N ⊂ Cδ
converging to x0, and �x ε > 0. Then there exists ρ̃ such that

ρ̃ < ρk(x0) < ρ̃+ ε and
∫
Bρ̃(x0)∩B4

|FAk |2dx < ε

There exists N(ε) ∈ N large enough such that ∀n ≥ N(ε) it holds
Bρ̃−ε(xn) ⊂ Bρ̃(x0) and so ρk(xn) > ρ̃ − ε. It is also clear by con-
struction that ρk(xn) < ρk(x0) + |xn − x0|. Putting together these
inequalities we get:

−|xn − x0| < ρk(x0)− ρk(xn) < ρ̃+ ε− ρ̃+ ε = 2ε ∀n ≥ N(ε)

Since ρk is continuous, then infk ρk = ρ is continuous too in Cδ,
and by the claim it is also positive. Thus, it admits a minimum,
ρ := minx∈C ρ(x) > 0. This last thing means that

sup
k

∫
Bρ(y)∩B4

|FAk |2dx ≤ ε

for every y ∈ Cδ. So we need to prove the claim now.

Proof of claim 1. Suppose by contradiction that

S :=
{
P ∈ B4 : inf

k
ρk(P ) = 0

}
is at least countable. Choose a couple (P1, ρ1) ∈ S × R+ such
that S \ Bρ1(P1) is still in�nite, and a subsequence Ak1 of Ak with∫
Bρ1 (P1)

|FAk1
|2dx > ε. Out of this subsequence we choose a generic

Ã1.
Now let (P2, ρ2) ∈ S × R+ such that Bρ1(P1) ∩Bρ2(P2) = ∅ and
S \ (Bρ1(P1)∪Bρ2(P2)) is still in�nite. Then there is a subsequence
Ak2 of Ak1 , such that

∫
Bρ2 (P2)

|FAk2
|2dx > ε, and we select a connec-

tion Ã2.
Going on in this fashion, we �nd (Pn, ρn) ∈ S × R+ such that
∩ni=1Bρi(Pi) = ∅ and S \ ∪ni=1Bρi(Pi) is still in�nite, and there is
a subsequence Akn of Akn−1 with

∫
Bρn (Pn)

|FAkn |
2dx > ε, and we pick
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Ãn from Akn . We have thus constructed a subsequence Ãk such that∫
B4

|FÃk |
2dx ≥

∫
∪ki=1Bρi (Pi)

|FÃk |
2dx >

k∑
i=1

ε = kε,

and clearly YM(Ãk) is not bounded, contradiction.

At this point we know that we can give a cover U = {Ui}i∈I
of the submanifold Cδ de�ned as in Proposition 4.3.9, such that in
each Ui (choosing ε < εG) we can apply the Small Energy Theorem
producing a sequence of families of gauges gijk ∈ W 2,2(Ui ∩ Uj, G),
that de�nes a sequence of bundles. We are ready to state and prove
the Theorem for the existence of the minimizer, up to a gauge of
the �xed boundary connection.

Theorem 4.3.10. Let G be a compact and connected matrix Lie
group. For any 1-form on the boundary η ∈ H

1
2 (∂B4, T ∗∂B4 ⊗ g)

there exists A0 ∈ W 1,2(B4, T ∗B4 ⊗ g) such that

YM(A0) = inf
A∈W 1,2

η (B4,T ∗B4⊗g)
YM(A)

and (A0)T = ηg for some g ∈ H 3
2 (∂B4, G).

Proof. Consider a minimizing sequence Ak in W 1,2
η (B4, T ∗B4 ⊗ g),

and let us �x any 2 < p < 4. Then if we choose

ε ≤ inf
y∈B4

ρ∈(0,1)

{
ε(B4 ∩Bρ(y), G),

ε1(n2, p, Bρ(y) ∩B4)2

16C(Bρ(y) ∩B4, G)2

}
(4.70)

in the previous proposition, where ε(B4∩Bρ(y), G),C(B4∩Bρ(y), G)
and
ε1(n2, p, Bρ(y) ∩ B4) have been de�ned respectively in Proposition
4.3.4 and in Lemma 3.2.13, we know that there are at most N points
P1, ..., PN in B4 such that for any δ > 0 there exists a ρ > 0

sup
y∈Cδ

sup
k

{∫
Bρ(y)∩B4

|FAk |2dx < ε

}
(4.71)

where Cδ := B4\∪Ni=1Bδ(Pi). The constant ε is non vanishing thanks
to the fact that the three constants involved in its de�nition are all
scale invariant and also invariant by translations of the domain. The
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proof of the theorem is divided in two main steps.
1)We start assuming that {P1, ..., PN} = ∅. Then we know that
there exists ρ > 0 such that

sup
k

sup
y∈B4

∫
B4∩Bρ(y)

|FAk |2dx < ε (4.72)

and we choose a good �nite covering8 by balls B ρ
2

:=
{
B ρ

2
(xi)

}
i∈I

of B4 with xi ∈ B4 for each i ∈ I. For convenience we will denote

B ρ
2
(xi) =: Bi

ρ
2
∀i ∈ I and Bi

ρ
2
∩Bj

ρ
2

:= Bij
ρ
2
∀i, j ∈ I

Therefore, by the Small Energy Theorem 4.3.1, we know that there
exists for each i ∈ I a gauge gik ∈ W 2,2(Bi

ρ ∩B4, G), such that

‖Ag
i
k
k ‖L4(Biρ∩B4)+‖DA

gik
k ‖L2(Biρ∩B4) ≤ C(Bi

ρ∩B4, G)

(∫
Biρ∩B4

|FAk |2dx

) 1
2

d?A
gik
k = 0 in Bi

ρ ∩B4 (4.73)

From now on we will not indicate anymore the intersections of the
balls with B4, just meaning it whenever it is necessary.
The sequence of families gijk := (gik)

−1gjk ∈ W 2,2(Bij
ρ , G) de�nes a

sequence ofW 2,2-principal Sobolev G-bundles Pk = {(Bij
ρ , g

ij
k )}, and

in each one of them we have the Sobolev connection {Ag
i
k
k }i∈I that

satis�es the classical compatibility condition

A
gjk
k = (gijk )−1dgijk + (gijk )−1A

gik
k g

ij
k in Bij

ρ 6= ∅ (4.74)

We want to prove that the sequence of bundles converges to a trivial
Sobolev bundle. Since Pk is a Coulomb bundle for each k ∈ N, and
by equation (4.73) we have that

‖Ag
i
k
k ‖L4(Biρ) ≤

ε1(n2, p, Bi
ρ)

4

then by Lemma 3.2.13 we have that for the �xed 2 < p < 4 it holds

gijk ∈ W
2,p
(
Bij

3
4
ρ
, G
)
↪→ C0,α

(
Bij

3
4
ρ
, G
)

where the Sobolev embedding is compact. This tells us that if
we consider the re�nement B 3

4
ρ :=

{
Bi

3
4
ρ

}
i∈I

, we have that P ′k :=

8We say that a �nite open covering is good if the intersections of the sets are all contractible
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{(
Bij

3
4
ρ
, gijk

)}
is a sequence of Hölder continuous bundles. Further-

more, Lemma 3.2.13 also gives us the bound

‖gijk ‖
W 2,p

(
Bij3

4 ρ

) ≤ C‖gijk ‖
W 2,2

(
Bij3

4 ρ

) (4.75)

Using the compatibility condition (4.74) we get the equation

dgijk = gijk A
gjk
k − A

gik
k g

ij
k

that we use in order to obtain the following two bounds

‖dgijk ‖
L4

(
Bij3

4 ρ

) ≤ C
(
‖Ag

i
k
k ‖L4(Biρ) + ‖Ag

j
k
k ‖L4(Bjρ)

)

‖D2gijk ‖
L2

(
Bij3

4 ρ

) ≤ C
(
‖Ag

i
k
k ‖L4(Biρ) + ‖Ag

j
k
k ‖L4(Bjρ)

)2

+

+C
(
‖DAg

i
k
k ‖L2(Biρ) + ‖DAg

j
k
k ‖L2(Bjρ)

)
(4.76)

Therefore, using these estimates and equation (4.75) we have found
that there exists a constant M > 0, depending also on ε1 and G,
such that

‖gijk ‖
W 2,p

(
Bij3

4 ρ

) ≤M

Thus, the sequence of transitions functions gijk is uniformly bounded
in W 2,p, and since W 2,p is a re�exive space then there exists a sub-
sequence of gijk such that

gijk ⇀ gij∞ weakly in W 2,p
(
Bij

3
4
ρ

)
(4.77)

and moreover from the inequality in (4.73) we deduce that

A
gik
k ⇀ Ai∞ wealky in W 1,2(Bi

ρ, T
∗Bi

ρ ⊗ g)

for each i ∈ I. The weak convergence in W 2,p and the compact
embedding W 2,p ↪→ C0 imply that

‖gijk − g
ij
∞‖

L∞
(
Bij3

4 ρ

) → 0 for k →∞ (4.78)

This also means that gijk → gij∞ a.e. inBij
3
4
ρ
, hence gij∞ ∈ W 2,p

(
Bij

3
4
ρ
, G
)
.

It is straightforward to see that in each Bij
3
4
ρ
6= ∅ it holds

Aj∞ = (gij∞)−1dgij∞ + (gij∞)−1Ai∞g
ij
∞ (4.79)
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and furthermore the family of limits {gij∞} still respects the cocycle
conditions

gij∞g
jl
∞ = gil∞ in Bijl

3
4
ρ

gij∞g
ji
∞ = e in Bij

3
4
ρ

(4.80)

This means that the family of maps gij∞ de�nes aW 2,p-bundle P∞ :={(
Bij

3
4
ρ
, gij∞

)}
, which is actually a Coulomb bundle, since clearly

d?Ai∞ = 0 in Bi
3
4
ρ
∀i ∈ I.

The next step is to show that the limit bundle P∞ is trivial. This
fundamental result is achieved thanks to Lemma 3.2.18, that can be
easily applied to gij = gij

k
and hij = gij∞ for a k ∈ N large enough,

thanks to equation (4.78). The re�nement we choose is B ρ
2
, and we

get the existence of a family σi
k
∈ W 2,p

(
Bi

ρ
2
, G
)
, such that

gij∞ = (σi
k
)−1gij

k
σj
k

in Bij
ρ
2

(4.81)

Now equation (4.81) together with the fact that for each k ∈ N it
holds gijk = (gik)

−1gjk in B
ij
ρ
2
leads to the triviality also of the cocycle

gij∞
gij∞ = (gi

k
σi
k
)−1gj

k
σj
k
in Bij

ρ
2

(4.82)

Then, the connection {Ai∞}i∈I in the trivial bundle reads as

A0 := f−1
i dfi + f−1

i Ai∞fi = (Ai∞)fi in Bi
ρ
2

(4.83)

where fi = (gi
k
σi
k
)−1 ∈ W 2,p

(
Bi

ρ
2
, G
)
, and A0 ∈ W 1,2(B4, T ∗B4,⊗g)

minimizes the YM functional. Indeed we can extract from the fam-
ily B ρ

2
a covering which is disjointed, de�ning U1 := B1

ρ
2
, U2 :=

B2
ρ
2
\B1

ρ
2
, U3 := B3

ρ
2
\ (B1

ρ
2
∪B2

ρ
2
),..., Ut := Bt

ρ
2
\ (∪t−1

i=1B
i
ρ
2
), and so we

get∫
B4

|FA0|2dx =

∫
∪ti=1Ui

|FAi∞|
2dx ≤

≤
t∑
i=1

lim inf
k

∫
Ui

|FAik |
2dx = lim inf

k

∫
B4

|FAk |2dx (4.84)

The last step before concluding the proof of part 1) of the Theorem,
is to show that there exists a gauge g ∈ H

3
2 (∂B4, G) such that

A0
T = ηg.
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Consider any i ∈ I such that Bi
ρ
2
∩S3 6= ∅. We know that in Bi

ρ
2
∩B4

the sequence Ag
i
k
k ⇀ Ai∞ weakly in W 1,2. As we have already proved

in Theorem 4.3.7, by this last consideration we deduce that

(A
gik
k )T := (gik)

−1d(gik
∣∣
Vi

) + (gik)
−1((Ak)T )gik ⇀ (Ai∞)T (4.85)

weakly in H
1
2 (Vi, T

∗Vi ⊗ g), where Vi := ∂(Bi
ρ
2
∩ B4). Furthermore

if we call Si := Vi ∩ S3, then the last convergence is true also in
H

1
2 (Si, T

∗Si⊗g) and the sequence gik
∣∣
Si
⇀ g̃i weakly inW 1,3(Si, G),

and one proves, always with the same arguments of Theorem 4.3.7,
that g̃i ∈ H 3

2 (Si, G). Passing to the limit in (4.85) we get that

(g̃i)−1dg̃i + (g̃i)−1(η)g̃i = (Ai∞)T in Si (4.86)

Therefore, we have obtained that in each Si the following identity
is true

A0
T = ((Ai∞)fi)T = ((Ai∞)T )fi = (η)g̃

i·fi

The second identity is justi�ed by the fact that (dfi)T = d(fi|Si).
Finally note that ∪iSi = S3, and that in particular g̃ifi = g̃jfj in
each intersection Si∩Sj 6= ∅. Indeed, the weak convergence gik ⇀ g̃i

in W 1,3(Si, G) implies by Rellich-Kondrakov that the convergence is
actually strong in Lq and therefore it also converges pointwise a.e.
in Si. In Si ∩ Sj we have that fi = gij∞fj. If we call f

i
k := gijk fj then

such a sequence by (4.77) converges weakly to fi in W 2,2
(
Bij

ρ
2
, G
)

and therefore its trace converges too weakly in H
3
2

(
∂
(
Bij

ρ
2

)
, G
)
,

and we clearly understand that

f ik → fi a.e. in Si ∩ Sj
Finally we have that

gikf
i
k = gikg

ij
k f

j
k = gjkf

j
k in Si ∩ Sj

and the pointwise convergence gives us g̃ifi = g̃jfj a.e. in Si ∩ Sj.

2) Suppose now that {P1, ..., PN} 6= ∅. Repeating the same ar-
guments of part 1) we �nd a �nite good open covering B ρ

2
:={

Bi
ρ
2

}
of Cδ := B4 \ ∪Nl=1Bδ(Pl) and a family of gauge changes

gik ∈ W 2,2(Bi
ρ, G) such thatA

gik
k ⇀ Ai∞ weakly in W 1,2(Bi

ρ, T
∗Bi

ρ ⊗ g)

gijk ⇀ gij∞ weakly in W 2,p
(
Bij

3ρ
4

) (4.87)

111



Each gij∞ is aW 2,p-cocycle, and applying the same arguments adopted
in the previous step of the proof we get that gij∞ are still trivial for
the �ech Cohomology Ȟ1(Cδ, C

0(G)), see Appendix B. This is due
to the fact that Lemma 3.2.18 can be applied to any four dimen-
sional bounded and smooth domain, and not only to the ball.
Thus we can build a connection A0

δ de�ned on the whole Cδ, such
that in ∂B4 \ ∪Nl=1Bδ(Pl) it is gauge equivalent to η and∫

Cδ

|FA0
δ
|2dx ≤ lim inf

k
C

∫
B4

|FAk |2dx (4.88)

Suppose now that δ1 < δ, and A0
δ and

{
Bi

ρ
2

}
i∈I

are as above. Then

we consider the following open covering for Cδ1

B =
{
Bi

ρ
2

}
i∈I
∪
{
Bj

ρ1
2

}
j∈J

(4.89)

where ∪j∈JBj
ρ1
2

⊇ Cδ1 , and ρ1 is de�ned as always. Using B we can

then extend A0
δ to a g-valued 1-form A0

δ1
∈ W 1,2(Cδ1 , T

∗Cδ1 ⊗ g).
Taking δ → 0, we �nd an A0 ∈ W 1,2

loc (B4 \ {P1, ..., PN}) which is
a minimizer for YM and at the boundary is gauge equivalent to
η for some g ∈ H

3
2 (∂B4, G). Thanks to the Removable Singular-

ities Theorem 4.3.14, we can �nd a local gauge g ∈ W 2,2
loc (UPl , G)

on a neighbourhood UPl of each point Pl such that (A0|UPl )
g ∈

W 1,2(UPl , T
∗UPl⊗g). Therefore, we have found �nally a gloabal con-

nection Ã0 ∈ W 1,2(B4, T ∗B4⊗g) which is a minimizer, gauge equiv-
alent to η at the boundary ∂B4, namely there exists g ∈ H 3

2 (∂B4, G)
such that (A0)T = ηg.

Remark 4.3.11. We note that, similarly to Theorem 3.5.4, we arrived
in this proof to a minimizing connection whose tangential compo-
nent is gauge equivalent, for a g ∈ H 3

2 (∂B4, G), to the prescribed η.
However, unlike the previous theorem, since we dropped the condi-
tion on the norm of η, now we do not have anymore a suitable small
bound on the H

1
2 -norm of dg, and so generally g does not admit an

extension on the whole B4, see Chapter 5 for further details. There-
fore, all we can say, in this case, is that if A is our minimum, then
AT = ηg for some gauge of the boundary g ∈ H 3

2 (∂B4, G).
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4.3.3 The Removable singularities Theorem

The Removable singularities Theorem, �rst proved by K.Uhlenbeck
in [45], for Yang-Mills �elds9 with a singularity, asserts that it is
possible to �nd a local gauge, such that the �eld in this new gauge
has lost its singularity.
The following result, established by T.Rivière and M.Petrache in
[33], is an improved version of this Theorem, indeed here we do not
assume that the connection is a minimizer but only that it has �nite
Yang-Mills energy. The key point, that allows such a generalization,
is based on Lemma 3.2.11, also proved in [33], and the embedding
W 2,(2,1) ↪→ L∞ in dimension four.
We will prove the theorem for the punctured ball B4 \ {0}, namely
for connections whose blow up point for the W 1,2-norm coincides
with the origin. Before stating the main Theorem of this section we
will need the following preliminary Lemma. We �x the notation for
k ∈ N

Tk = B2−k+4 \B2−k−4 , Sk = B2−k+3 \B2−k−3

Lemma 4.3.12. There exists ε̃, not depending on k, such that if
A ∈ W 1,2(Tk, T

∗Tk ⊗ g) satis�es∫
Tk

|FA|2dx < ε̃

then there exists g ∈ W 2,2(Sk, G) and a constant C̃ such that{
d?Ag = 0 in Sk
‖Ag‖L4(Sk) + ‖DAg‖L2(Sk) ≤ C̃‖FA‖L2(Tk)

(4.90)

Remark 4.3.13. We see that Tk = 2−kT0 and also Sk = 2−kS0.
Therefore performing the same computations of Proposition 4.3.4
we get that the constants ε̃ and C̃ are independent from k.

Proof. We start by assuming that ‖FA‖2
L2(T0) ≤ ε, where the con-

stant ε will be speci�ed later, in order to satisfy some requests.
Thanks to Remark 4.3.13 it is su�cient to prove the theorem for the
case k = 0. We can take a covering U = {U1, U2} for T0 made of two
open sets di�eomorphic to the ball B4, and with smooth intersection
U1 ∩ U2 =: U12.
By choosing

ε ≤ min
i=1,2

{
ε(Ui, G),

ε1(n2, p, Ui)
2

16C(Ui, G)2

}
9A connection A is a Yang-Mills �eld if it is a minimizer of the Yang-Mills functional
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for a �xed 2 < p < 4, we can apply the small energy theorem on
both U1 and U2, as a consequence of Proposition 4.3.5, which gives
the existence of gi ∈ W 2,2(Ui, G) such that{

d?Agi = 0 in Ui

‖Agi‖L4(Ui) + ‖DAgi‖L2(Ui) ≤ C(Ui, G)‖FA‖L2(Ui)

(4.91)

This leads to theW 2,2-Coulomb bundle P = {(g12, U12)} on T0, with
Coulomb connection {Agi}i=1,2. As already discussed in Lemma
3.2.15 we have that g21 := g−1

2 g1 ∈ W 2,p
loc (U12, G). In particular, as

already proved before, we have the existence of a g ∈ G, such that
in Ũ12 := S0 ∩ U12, we have the estimates

‖g21 − g‖W 2,p(Ũ1,2) ≤ C

(
‖Ag1‖W 1,2(U12) + ‖Ag2‖W 1,2(U12)+

+
(
‖Ag1‖W 1,2(U12) + ‖Ag2‖W 1,2(U12)

)2
)
≤ C

(
‖FA‖L2(T0) + ‖FA‖2

L2(T0)

)
(4.92)

and the last inequality is given by equations (4.91). We rescale one
of the two gauges as follows,

h2 := g2g, h1 := g1 (4.93)

so that we have that both Ah1 and Ah2 still satisfy equations{
‖Ahi‖L4(Ui) + ‖DAhi‖L2(Ui) ≤ C(Ui, G)‖FA‖L2(Ui)

d?Ahi = 0 in Ui
(4.94)

and the inequality (4.92) together with the embeddingW 2,p(Ũ12, G) ↪→
C0(Ũ12, G) implies that

‖h21−e‖L∞(Ũ12) ≤ C‖h21−e‖W 2,p(Ũ12) ≤ C
(
‖FA‖L2(T0) + ‖FA‖2

L2(T0)

)
(4.95)

Therefore for ε small enough there exists V21 ∈ W 2,p(Ũ12, g), such
that

h21 = exp(V21) in Ũ12

and it also holds that

‖V21‖W 2,p(Ũ12) ≤ C
(
‖FA‖L2(T0) + ‖FA‖2

L2(T0)

)
Now we can extend the map V21 to the whole Ũ2 := S0 ∩ U2, by
the classical extension theorem for Sobolev functions. So we get
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Ṽ ∈ W 2,p(Ũ2, g), such that Ṽ = V21 in Ũ12, and ‖Ṽ ‖W 2,p(Ũ2) ≤
C‖V21‖W 2,p(Ũ12).
We claim that the extension Ṽ can be chosen such that if we de�ne
the gauge

h(x) :=

{
h1(x) if x ∈ Ũ1

h2(x)h̃(x) if x ∈ Ũ2

(4.96)

where h̃ := exp(Ṽ ) ∈ W 2,p(Ũ2, G), then it satis�es the wanted equa-
tions {

d?Ah = 0 in S0

‖Ah‖L4(S0) + ‖DAh‖L2(S0) ≤ C‖FA‖L2(T0)

(4.97)

To prove the claim we consider the following map between Banach
spaces

Ñ : W 2,p(Ũ2, g)×W 2,p
0 (U2, g)→ Lp(U2, g)

(V1, V2) 7−→ d?Ah2 exp(V1+V2) (4.98)

where we have de�ne U2 := Ũ2 \ Ũ12. We see that this map, which is
similar to N de�ned in Theorem 4.3.1, is also a C1 map, as one can
easily prove following the same arguments of Lemma 4.3.3. We see
that Ñ (0, 0) = 0 by hypothesis, and the idea is to apply the implicit
function theorem to Ñ , just as we did in Theorem 4.3.1. To do so
we have to prove that the Fréchet derivative of Ñ with respect to
the second component ∂UÑ (0, 0) : W 2,p

0 (U2, g) → Lp(U2, g) is an
isomorphism. Computing it we �nd

∂UÑ (0, 0) · V2 = ∆V2 + (Ah2 , dV2) (4.99)

for each V2 ∈ W 2,p
0 (U2, g). Using Ga�ney's inequality (3.24) in U2

we get the following bound for the W 1,p-norm of dV2

‖dV2‖W 1,p(U2) ≤ C‖∆V2‖Lp(U2)

Then Poincaré inequality holds and therefore

‖V2‖W 2,p
0 (U2) ≤ C‖∆V2‖Lp(U2) ≤

≤ C
(
‖∂V2Ñ (0, 0)‖Lp(U2) + ‖(Ah2 , dV2)‖Lp(U2)

)
(4.100)

Using Hölder's inequality and the Sobolev embeddingW 1,p(U2, g) ↪→
L

4p
4−p (U2, g) we get

‖V2‖W 2,p
0 (U2) ≤ C

‖∂V2Ñ (0, 0)‖Lp(U2) + ‖Ah2‖L4(U2)︸ ︷︷ ︸
≤Cε

‖dV2‖
L

4p
4−p (U2)
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and the last equation leads to

(1− Cε
1
2 )‖V2‖W 2,p

0 (U2) ≤ C‖∂V2Ñ (0, 0)‖Lp(U2)

and this �nally means that for ε small enough ∂Ñ (0, 0) is injective.
It remains only to show that it is surjective, and after this we will
be �nally able to apply the Implicit Function Theorem.
As we already did in Theorem 4.3.1, we apply the method of conti-
nuity to the family of linear maps

Lt : W 2,p
0 (U2, g)→ Lp(U2, g)

V2 7−→ ∆V2 + t(Ah2 , dV2) (4.101)

The surjectivity of L0 is guaranteed by the existence of the solution
for the classical Dirichlet problem for the Laplace equation. There-
fore, by the method of continuity L1 = ∂UÑ (0, 0) is surjective too,
and thus an isomorphism.
We can �nally apply the Implicit Function Theorem, and infer that
there exists a δ > 0 such that if we call Vδ := {V ∈ W 2,p(Ũ2, g) :
‖V ‖W 2,p < δ}, then

∀V1 ∈ Vδ ∃!V2 ∈ W 2,p
0 (U2, g) such that Ñ (V1, V2) = 0

and furthermore we have the bound

‖V2‖W 2,p
0 (U2) ≤ Cδ

So if we choose ε small enough then Ṽ ∈ Vδ, and then there exists
Ṽ2 such that Ñ (Ṽ , Ṽ2) = 0. We de�ne h̃ := exp(Ṽ + Ṽ2), and set the
gauge h ∈ W 2,2(S0, G) as in equation (4.96). By construction we
have that d?Ah = 0 in S0. The inequality in equations (4.97) also
follows easily by construction.

Theorem 4.3.14. Let A ∈ W 1,2
loc (B4 \ {0}, T ∗(B4 \ {0}) ⊗ g) such

that ∫
B4

|FA|2dx <∞ (4.102)

Then there exists g ∈ W 2,2
loc (B4 \ {0}, G) such that

Ag ∈ W 1,2(B4, T ∗B4 ⊗ g).

Proof. We start by assuming, without loss of generality that YM(A) <
δ, with δ smaller then the constant ε̃. We divide the ball in concen-
tric annuli Tk around the origin. Then in each one of them we can ap-
ply Lemma 4.3.12, and therefore we �nd a sequence gk ∈ W 2,2(Sk, G)
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such that{
‖Agk‖L4(Sk) + ‖DAgk‖L2(Sk) ≤ C̃‖FA‖L2(Tk)

d?Agk = 0 in Sk
(4.103)

In the intersections Sk ∩ Sk+1 we have the compatibility condition

Agk+1 = g−1
k,k+1dgk,k+1 + g−1

k,k+1A
gkgk,k+1 (4.104)

where gk,k+1 := (gk)
−1gk+1. Since d?Agk = 0 for each k then by

Lemma 3.2.11, we �nd that gk,k+1 ∈ W 2,(2,1)
loc (Sk ∩Sk+1, G), and also

that there exists gk,k+1 such that

‖gk,k+1 − gk,k+1‖C0(S̃k∩S̃k+1) ≤ C‖gk,k+1 − gk,k+1‖W 2,(2,1)(S̃k∩S̃k+1) ≤

C ≤
(
‖FA‖L2(Tk∪Tk+1) + ‖FA‖2

L2(Tk∪Tk+1)

)
(4.105)

where we have denoted

S̃k := B2−k+2 \B2−k−2

We now build a new family of gauges {hk}k that are allW 2,(2,1)-near
to the same element of the gauge group G. To do so consider

σk :=
k−1∏
l=1

gl,l+1 ∈ G (4.106)

Our new family of gauges will be hk := gkσ
−1
k ∈ W 2,2(S̃k, G). First

observe that for each k ∈ N the connection Ahk clearly satis�es{
‖Ahk‖L4(S̃k) + ‖DAhk‖L2(S̃k) ≤ C̃‖FA‖L2(Tk)

d?Ahk = 0 in S̃k
(4.107)

Furthermore, we have that in S̃k ∩ S̃k+1 the usual compatibility
condition

Ahk+1 = (hk,k+1)−1dhk,k+1 + h−1
k,k+1A

hkhk,k+1,

with hk,k+1 = σkgk,k+1σ
−1
k+1. Observing that gk,k+1 = σ−1

k σk+1, and
that the σk are all constant we get the wanted estimate

‖hk,k+1 − e‖L∞(S̃k∩S̃k+1) ≤ C‖gk,k+1 − gk,k+1‖L∞(S̃k∩S̃k+1)

≤ C
(
‖FA‖L2(Tk∪Tk+1) + ‖FA‖2

L2(Tk∪Tk+1)

)
(4.108)
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Therefore by Theorem 2.1.17, choosing δ small enough we have the
existence of a family Uk,k+1 ∈ W 2,(2,1)(S̃k ∩ S̃k+1, g) such that

hk,k+1 = exp(Uk,k+1) in S̃k ∩ S̃k+1 (4.109)

and we have a small W 2,(2,1)-bound also for Uk,k+1, speci�cally

‖Uk,k+1‖W 2,(2,1)(S̃k∩S̃k+1) ≤ C
(
‖FA‖L2(Tk∪Tk+1) + ‖FA‖2

L2(Tk∪Tk+1)

)
We now glue together all the gauges hk, in order to get a global
gauge. We consider a new family of annuli given by

Qk := B
2−k+ 3

2
\B2−k

and in each one of them we give new gauges as follows. We take a
smooth map ρ ∈ C∞c ([0, 2]) such that ρ ≡ 1 in [1,

√
2]. We build the

family of cuto� functions

ρk(x) := ρ(|x|2k)

and the new gauges are hkτk ∈ W 2,2(Qk, G) with

τk = exp(ρkUk,k+1) in Qk (4.110)

Then we note that in Qk ∩Qk+1 we have τk = hk,k+1 and τk+1 = e ,
which means that

hk(x)τk(x) = hk+1(x)τk+1(x) if x ∈ Qk ∩Qk+1

and we de�ne therefore the gauge

g(x) = hk(x)τk(x) if x ∈ Qk

We prove that the connection A|∪kQk in this new gauge g

Ã := (A|∪kQk)g (4.111)

has W 1,2-norm bounded in ∪kQk. Since we already know that

‖Ahk‖L4(Qk) + ‖DAhk‖L2(Qk) ≤ C̃‖FA‖L2(Tk)

then by Proposition 3.2.8 we just need to prove that τk has a good
enough W 2,2-bound in Qk. Note that

‖τk‖L2(Qk) ≤ C
(
‖FA‖L2(Tk∪Tk+1) + ‖FA‖2

L2(Tk∪Tk+1)

)
by construction. Computing its �rst derivatives we get
∂xiτk = ∂xj exp(ρkUk,k+1)(∂xiρkU

j
k,k+1 + ρk∂xiU

j
k,k+1), and we have

therefore the following L2-bound for each i = 1, ..., 4
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‖∂xiτk‖L2(Qk) ≤ C
(
‖FA‖L2(Tk∪Tk+1) + ‖FA‖2

L2(Tk∪Tk+1)

)
(‖∂xiρk‖L2(Qk)+1)

(4.112)
and since ρk = ρ(|x|2k), there exists M > 0 such that for each k the
pointwise estimate |∂xiρk| ≤M2k holds. Then, we have the measure
|Qk| = π2

2
2−4k(26 − 1), which gives

‖∂xiρk‖L2(Qk) ≤ C2−k

In particular C
(
‖FA‖L2(Tk∪Tk+1) + ‖FA‖2

L2(Tk∪Tk+1)

)
controls theW 1,2-

norm of τk. Similar estimates show that the same bound holds for
the W 2,2-norm of τk. Therefore, applying Proposition 3.2.8, we get

‖Ahkτk‖W 1,2(Qk) ≤ C

∫
Tk∪Tk+1

|FA|2dx+ C

(∫
Tk∪Tk+1

|FA|2dx

) 1
2

(4.113)
Then summing over k ∈ N we have

‖Ã‖W 1,2(∪kQk) ≤
∑
k

‖Ahkτk‖W 1,2(Qk) ≤

≤ 14C

∫
Tk∪Tk+1

|FA|2dx+14C

(∫
Tk∪Tk+1

|FA|2dx

) 1
2

(4.114)

Therefore, Ã ∈ W 1,2(∪kQk, T
∗(∪kQk) ⊗ g), and extending g from

∪kQk to the whole B4 is just a technical exercise.
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Chapter 5

The Extension Problem

In Chapter 4 we found that given η ∈ H 1
2 (∂B4, T ∗∂B4 ⊗ g) then

1) If we assume ‖η‖
H

1
2 (∂B4)

< δ, for δ speci�ed in Theorem 4.3.7,
then there exists a solution to the minimization problem (4.8),
i.e. there exists A0 ∈ W 1,2

η (B4, T ∗B4 ⊗ g) which minimizes the
Yang-Mills functional in W 1,2

η (B4, T ∗B4 ⊗ g)

2) If instead we do not make any assumption on the boundary
connection η ∈ H

1
2 (∂B4, T ∗∂B4 ⊗ g), we can only say that

there exists A0 ∈ W 1,2(B4, T ∗B4 ⊗ g) such that

YM(A0) = inf
A∈W 1,2

η

YM(A) (5.1)

and (A0)T = ηg, where g ∈ H
3
2 (∂B4, G). This was Theorem

4.3.10.

In the proof of Theorem 4.3.7 we also arrived to the existence of
A0 ∈ W 1,2(B4, T ∗B4 ⊗ g) such that (5.1) holds and (A0)T = ηg, for
some g ∈ H 3

2 (∂B4, G). We were able to say that the minimization
problem (4.8) was actually solved, because the condition on the H

1
2 -

norm of η translated to a condition on the H
1
2 - norm of dg, and this

let us extend g to the whole B4 to a g̃ ∈ W 2,2(B4, G) thanks to
Theorem 4.3.8, and therefore Ag̃

−1

0 was a solution.
One may try to see if it is possible to extend always a Sobolev map
g ∈ H 3

2 (∂B4, G) to a g̃ ∈ W 2,2(B4, G), also without any condition
on the norm of dg, so that the Plateau Problem for the Yang-Mills
functional always has a solution. However, this is not generally
possible, and in the following section we will be able to give some
counterexamples when the boundary of the domain is S2 and S1.
Note that we have found that the Yang-Mills Plateau problem is
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strictly related to the problem of extension of Sobolev maps between
manifolds, where the target manifold is a compact connected matrix
Lie Group G.

5.1 The Extension Problem & Weakly Harmonic

maps

In this section we brie�y de�ne the concept of weakly harmonic
map and local minimizer of the Dirichlet energy functional. We will
refer mainly to [14] and [17]. Let (N, γ) be a Riemannian manifold,
and by Nash's Theorem, we know that there exists p ∈ N such that
N ↪→ Rp isometrically, where in Rp we are considering the Euclidean
metric. As we already did for maps with values in the group G, we
now de�ne

W 1,2(Bm, N) := {u ∈ W 1,2(Bm,Rp) : u(x) ∈ N, for a.e. x ∈ Bm}
(5.2)

and similarly one de�nes also the space of traces with values in N .
Let us �x u ∈ H 1

2 (Sm−1, N), and we de�ne the (eventually empty)
set

Au := {ũ ∈ W 1,2(Bm, N) : ũ|∂B4 = u} (5.3)

The extension problem consists in proving whether for a u ∈ H 1
2 (Sm−1, N)

the set Au is non empty. For each one of these traces we build the
minimization problem

inf
ũ∈Au

∫
Bm
|dũ|2dx (5.4)

where E(u) :=
∫
Bm
|du|2dx is called the Dirichlet Energy func-

tional. The following Proposition shows that the extension problem
and the minimization problem (5.4) are actually related.

Proposition 5.1.1. Let u ∈ H 1
2 (Sm−1, N) then we have

Au 6= ∅ ⇔ the minimization problem (5.4) admits a solution

Proof. (⇐) This implication is obvious.
(⇒) If ũ ∈ Ag, then we have the existence of a minimizing se-
quence {un}n ⊂ Au for the minimization problem (5.4). We de-
�ne the sequence {vn}n ⊂ W 1,2

0 (Bm,Rp) where vn := un − ũ for
each n ∈ N, and by Poincaré inequality we have that ‖vn‖L2(Bm) ≤
C‖dvn‖L2(Bm), which leads to

‖vn‖2
W 1,2(Bm) ≤ C

∫
Bm
|dvn|2dx
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Since the right hand side of the last inequality is bounded by hypoth-
esis, then {un}n is bounded in W 1,2 and therefore un ⇀ û ∈ W 1,2.
This weak convergence, thanks to Rellich-Kondrakov Theorem, gives
us that û ∈ N almost everywhere. Furthermore we have the weak
convergence in H

1
2 (Sm−1,Rp) also of the traces un|Sm−1 = u, and

therefore û|Sm−1 = u.

De�nition 5.1.2. Let ũ ∈ W 1,2
loc (Bm, N). Then, we say that ũ is

a local minimizer of the Dirichlet energy functional if for every
Bρ(x0) ⊂⊂ Bm and for every v ∈ W 1,2(Bρ(x0), N) with v = u in
∂Bρ(x0), we have ∫

Bρ(x0)

|dũ|2dx ≤
∫
Bρ(x0)

|dv|2dx (5.5)

It can be proved that if ũ ∈ W 1,2
loc (Bm, N) is a local minimizer of

the Dirichlet Energy functional, then it satis�es the Euler Lagrange

∆ũ+
4∑
i=1

Sũ(∂xiũ, ∂xiũi) = 0 in D′(Bρ(x0)) (5.6)

for each Bρ(x0) ⊂⊂ Bm. This result is obtained using inner varia-
tions of ũ, and the fact that it is a local critical point for the function
E , see for instance [17]. The operator S has already been de�ned,
and it is the shape operator of N .

De�nition 5.1.3. Let ũ ∈ W 1,2
loc (Bm, N). Then we say that ũ

is a weakly harmonic map if it satis�es equation (5.6) in each
Bρ(x0) ⊂⊂ Bm.

Remark 5.1.4. Note that each local minimizer is a weakly harmonic
map, but the inverse is generally false.

Let u ∈ H 1
2 (Sm−1, N). It is clear that if a solution ũ ∈ W 1,2(Bm, N)

to (5.4) exists then it is also a global minimizer for the Dirichlet En-
ergy functional in Au and thus it satis�es the set of equations{

∆ũ+
∑4

i=1 Sũ(∂xiũ, ∂xiũi) = 0 in D′(Bm)

ũ|Sm−1 = u
(5.7)

Therefore, if for some u ∈ H 1
2 (Sm−1, N) the set Au is non empty,

then there exists û ∈ Au satisfying (5.7).
Now we use the theory on the regularity of local minimizers of E
in order to show some counterexamples on the extension problem.
Namely we show that it is not true that for each u ∈ H 1

2 (Sm−1, N)
the set Au is non empty.
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Example 5.1.5 (Counterexamples on the extension problem).
In what follows we produce two examples of maps from Sm−1 to some
manifold N , for m = 2, 3, such that they do not admit extensions
with enough regularity. In particular:

• Let N = S2 and consider the map u ∈ H 1
2 (S1,S2) de�ned by

u(x) = x. By contradiction let us assume that Au 6= ∅. We ap-
ply Proposition 5.1.1 getting the existence of a solution û ∈ Au
of (5.4).
Then it is clear that û is a weakly harmonic map, and by the
regularity theory for 2-dimensional weakly harmonic maps, see
[20], we have that û ∈ C∞(B2,S1). This is clearly a contradic-
tion since û is a continuous retraction of B2 to its boundary.

• This counterexample is taken from [17], and the idea used to
build it is essentially the same of the above example. Let N =
SO(2) ∼= S1, and consider the map g : S2 ⊂ R3 → S1 de�ned
as

g(x1, x2, x3) :=
(x1, x2)

|(x1, x2)|
where

(x1, x2, x3) ∈ S2 \ {(0, 0, 1), (0, 0,−1)}
and we have identi�ed S2 := {x ∈ R3 : |x| = 1} and S1 = {x ∈
R3 : x = (x1, x2, 0) and |x| = 1}. One can easily prove that
g ∈ H 1

2 (S2,S1). If there exists an extension g̃ ∈ W 1,2(B3,S1) of
g, then we are able to �nd also a map ĝ ∈ W 1,2(B3,S1) solution
of the minimization problem (5.4).
Using the regularity theory for local minimizers of the Dirichlet
energy functional (see [14], Theorem 10.11) we have that ĝ is
Hölder's continuous in B3 \Σ, where Σ is a subset of B3 made
of isolated points. Therefore, there exists an hyperplane π of
R3, such that ĝ|B3∩π : B3 ∩ π → S1 is continuous. This is not
possible since ĝ|∂(B3∩π) is an homeomorphism, and therefore
we would be able to build a continuous retraction from the disc
B3 ∩ π to its boundary.

5.2 The Extension Theorem for gauges with proper

bound on the norm

We now move to the case N = G, for G a compact connected ma-
trix Lie group, and m = 4. In G, as always, we consider the metric
g induced by the killing form. In the previous section we have es-
tablished that if g ∈ H

1
2 (S3, G) then Ag 6= ∅ if and only if the
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minimization problem (5.4) admits a solution.
For our purposes we will ask g ∈ H 3

2 (S3, G) ↪→ H
1
2 (S3, G), and we

will show that if we have a proper bound on the H
1
2 -norm of dg,

then Ag 6= ∅, which means that the extension can be chosen as a
solution of (5.7). Furthermore, we will show that, under these as-
sumptions on dg, we can �nd an extension g̃ ∈ W 2,2(B4, G), which
is the result we wanted to prove in this chapter.

We give a proof of Theorem 5.2.1, and we follow the same idea
of F.Bethuel in [5], Theorem 2. There, it is proved that each map
W 1− 1

4
,4(S3, G) admits an extension inW 1,4(B4, G) if and only if each

u ∈ C0(S3, G) admits a continuous extension. Since this last prop-
erty does not hold when the domain is B4 and the target manifold is
any compact and connected matrix Lie group G, we need some fur-
ther requirement. In particular, we will ask to the H

1
2 -norm of the

di�erential of the boundary gauge to be under a suitable threshold.

Theorem 5.2.1. There exists a constant ε3 > 0 such that for each
g ∈ H 3

2 (∂B4, G) satisfying

‖dg‖
H

1
2 (∂B4)

< ε3 (5.8)

there exists an extension g̃ ∈ W 2,2(B4, G) of g.

Proof. We start by extending g ∈ H 3
2 (S3, G) in a suitable submani-

fold of B4. In particular for some 0 < δ < 1 we identify,

φ : (B4 \B1−ρ(0))→ S3 × [0, δ]

x 7−→ (PS3(x), d(x,S3)) (5.9)

where PS3 is the projection on S3, while d(x,S3) is the distance
of x ∈ R4 from the boundary S3. Note that the projection map
PS3 : B4 \B1−ρ(0)→ S3 is well de�ned for each 0 < δ < 1. Now, for
x′ ∈ S3 and h ∈ [0, δ] we de�ne the following map

v(x′, h) =
1

|Bh(x′)|

∫
Bh(x′)

g(y)dσ3(y) (5.10)

where Bh(x
′) is the geodesic ball in S3 centred in x′ and with radius

h. It can be proved that v ∈ W 2,2(S3 × [0, δ],Rp) (see for instance
[25]) where G ↪→ Rp isometrically. Actually, one also has that v is
C1 in ]0, δ]× S3.
We show that for each (x′, h) ∈ S3 × [0, δ], there exists z ∈ Bh(x

′)
and a constant C > 0 such that

|v(x′, h)− g(z)| ≤ Cε3 (5.11)
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Indeed, note that for each z ∈ Bh(x
′)

v(x′, h)− g(z) =
1

|Bh(x′)|

∫
Bh(x′)

g(y)− g(z)dσ3(y)

We integrate both sides with respect to z ∈ Bh(x
′), and following

the computations in [5], we get

1

|Bh(x′)|

∫
Bh(x′)

|v(x′, h)− g(z)|4dσ3(z) ≤

≤ C

∫
Bh(x′)

∫
Bh(x′)

|g(y)− g(z)|4

|y − z|6
dσ3(y)dσ3(z)

(5.12)
Using Poincaré inequality on the sphere S3, see for instance [36], we
get that

‖g − g‖
H

3
2 (S3)

≤ Cε3 where g =
1

|S3|

∫
S3

g(x)dσ3(x) (5.13)

and the Sobolev embedding H
3
2 (S3) ↪→ W 1− 1

4
,4(S3) guarantee there-

fore that the left hand side of equation (5.12) is bounded from above
by Cε3. Therefore, we have obtained that inequality (5.11) holds.
This means that for ε3 small enough the image of v is all con-
tained in a tubular neighbourhood of G, where the projection map
Π on G is well-de�ned. Therefore, we can de�ne the map Uδ ∈
W 2,2(B4 \B1−ρ(0), G) as,

Uδ := Π ◦ v ◦ φ (5.14)

The next step is to extend to the whole B4 the map Uδ. As we
already did several times in this thesis, we can substitute in equation
(5.13) the mean value g with an element of the group ĝ ∈ G, and
obtain

‖g − ĝ‖
H

3
2 (S3)

≤ Cε3 (5.15)

We see that if we �x δ < 1, then we get

|v(x′, δ)− ĝ| ≤ 1

|Bδ(x′)|

∫
Bδ(x′)

|g(y)− ĝ|dσ3(y) ≤ 1

|Bδ(x′)|
Cε3

where in the last inequality we have used the Sobolev embedding
H

3
2 (S3) ↪→ L1(S3) together with the estimate (5.15). This implies

that there exists Û ∈ G, such that

‖Uδ − Û‖L∞(∂B1−ρ(0)) ≤ Cδε3
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and therefore for ε3 small enough, there exists V ∈ C1∩H 3
2 (∂B1−δ(0), g)

such that
Uδ|B1−δ(0) = Û exp(V )

and we extend V harmonically to a Ṽ ∈ C1 ∩ W 2,2(B1−δ(0), g).
Therefore, the function de�ned by

g̃ :=

{
Uδ in B4 \B1−δ(0)

Û exp(Ṽ ) in B1−δ(0)

is a W 2,2-extension for g ∈ H 3
2 (S3, G).
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Appendix A

Sobolev and Lorentz-Sobolev
spaces

In this Appendix we introduce some important function spaces that
we have used throughout this work, and we will give formal de�ni-
tions of them. The �rst spaces we de�ne are Lorentz spaces, which
can be considered as intermediate spaces of the classical Lp, and for
them we will present two equivalent formulations, the �rst based
on the concept of decreasing rearrangement and the second one will
require interpolation theory. For the Fractional Sobolev spaces and
Besov spaces we will instead workout just their interpretation as in-
terpolation spaces since with this method we can easily obtain some
important embeddings, that can be considered as a generalization
of the classical Sobolev embeddings.
The �rst section of this Appendix is therefore devoted to the devel-
opment of the interpolation theory, that we will heavily use in the
other two sections. We will follow essentially [4].

A.1 Interpolation Theory

LetN be the category1 of normed vector spaces, and we will consider
as morphisms between to objects A and B, the set of all linear and
continuous maps T : A→ B.

De�nition A.1.1. More generally let A0 and A1 be two topological
vector spaces. Then we shall say that they are compatible if there

1A category C is the data of a class of objects Ob(C) of C and morphisms HomC(A,B)
between A,B ∈ Ob(C) such that if f ∈ HomC(A,B) and g ∈ HomC(B,D) then g ◦ f ∈
HomC(A,D) and associativity holds. Furthermore for every object A in Ob(C) there exists
a morphism 1A ∈ HomC(A,A) called identity such that for every f ∈ HomC(A,D) and
g ∈ HomC(B,A) one has 1A ◦ f = f and g ◦ 1A = g for B,D objects of C.
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is an Hausdor� topological vector space U , such that A0 and A1 are
both subspaces of U .

If A0 and A1 are two compatible normed vector spaces then it
can be easily proved that A0∩A1 is a normed vector space with the
norm

‖a‖A0∩A1 = max (‖a‖A0 , ‖a‖A1) a ∈ A0 ∩ A1

and also A0 + A1 is a normed vector space with the norm

‖a‖A0+A1 = inf
a=a0+a1

(‖a0|A0 + ‖a1‖A1) a ∈ A0 + A1

Proposition A.1.2. Let A0 and A1 be compatible Banach vector
spaces. Then A0 ∩ A1 and A0 + A1 are Banach too.

Proof. We prove the statement for A0 ∩ A1, using the characteriza-
tion of Banach spaces. Consider a sequence {an}n ⊂ A0 ∩ A1, such
that ∑

n

‖an‖A0∩A1 <∞

This means that both
∑

n ‖an‖A0 and
∑

n ‖an‖A1 are �nite. Then
they both converge, since A0 and A1 are Banach. Moreover these
two spaces are compatible, therefore the limits of the series (in the
two di�erent norms) are coinciding and then it is in A0 ∩ A1. Thus
the series

∑
n an converges also in A0 ∩ A1.

Let now C denote any subcategory2 of N , such that the mor-
phisms between two objects A,B in C are still all the linear and
continuous operators from A to B. Then with C1 we indicate a new
category made of couples A = (A0, A1) of compatible vector spaces,
such that A0 + A1 and A0 ∩ A1 are objects in C. The morphisms
T : (A0, A1) → (B0, B1) in C1 are all the bounded and linear maps
from A0 +A1 to B0 +B1 such that their restrictions TA0 : A0 → A1

and TB0 : B0 → B1 are morphisms is C. Now we consider C such
that it is also closed under the operations of sum and intersection.

De�nition A.1.3. Let A = (A0, A1) be a given couple in C1. Then
a space A in C is an intermediate space between A0 and A1 if
A0 ∩ A1 ⊂ A ⊂ A0 + A1, with continuous inclusions. The space A
is called an interpolation space between A0 and A1 if in addition
T : A→ A implies T : A→ A.
More generally let A and B be two couples in C1. Then we say that
two spaces A and B in C are interpolation spaces with respect to
A and B if A and B are intermediate spaces with respect to A and
B and if T : A→ B implies T : A→ B.

2A subcategory S of a category C is a category whose objects are objects of C and whose
morphisms are morphisms in C with the same identities and composition of morphisms.
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Example A.1.4. Let A and B be two couples in C1. Then clearly
∆(A) := A0 ∩A1 and ∆(B) are interpolation spaces with respect to
A and B. The same holds true for

∑
(A) := A0 +A1 and

∑
(B). In

particular it is easy to see that if A = ∆(A) and B = ∆(B) then
for any T : A→ B we have3

‖T‖A,B ≤ max (‖T‖A0,B0 , ‖T‖A1,B1) (A.1)

Interpolations spaces are classi�ed as follows

De�nition A.1.5. If A and B are as above, and A,B are interpo-
lation spaces with respect to A and B, then we say that they are
exact interpolation spaces if (A.1) holds for every T : A → B.
If equation (A.1) holds but with a multiplicative constant C 6= 1 on
the right hand side, then we say that A and B are uniform inter-
polation spaces.
Finally the interpolation spaces A and B are said to be of exponent
θ if

‖T‖A,B ≤ C‖T‖1−θ
A0,B0
‖T‖θA1,B1

(A.2)

for every T : A→ B. If C = 1 then we say that A and B are exact
of exponent θ, where 0 ≤ θ ≤ 1.

We now de�ne what is an interpolation functor, namely a method
of constructing interpolation spaces. In the following subsection we
will present the two main real interpolation functors, the K-method
and the J-method.

De�nition A.1.6. By an interpolation functor on C we mean a
functor4 F from C1 to C such that if A and B are couples in C1 then
F (A) and F (B) are interpolation spaces with respect to A and B.
Moreover we shall write F (T ) = T for every T : A→ B. We will say
that F is a uniform (or exact) interpolation functor if F (A) and
F (B) are uniform (or exact) interpolation spaces with respect to A
and B. Similarly we deduce the de�nition of functor of exponent
θ.

A.1.1 The K-Method & The J-Method

We now introduce two families of interpolation functors on N . The
theory we develop follows essentially the work of Jaak Peetre [31].

3If T : A→ B is linear and continuous, with A and B normed vector spaces, then we de�ne
‖T‖A,B := sup‖a‖A=1 ‖Ta‖B

4A (covariant) functor F from a category C to a category D is a mapping such that F (A) ∈
Ob(D) for every A ∈ Ob(C), and F (f) ∈ HomD(F (A), F (B)) for every f ∈ HomC(A,B).
Furthermore if f ∈ HomC(A,B) and g ∈ HomC(B,E) then F (g ◦ f) = F (f) ◦ F (g) and
F (1A) = 1F (A) for every A ∈ Ob(C).
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The K-Method We start by de�ning the following function for ev-
ery �xed couple A = (A0, A1) in the category N1,

K : R+ × (A0 +A1)→ R+

(t, a) −→ K(t, a;A) := inf
a=a0+a1

(‖a0‖A0 + t‖a1‖A1) (A.3)

and for every �xed t > 0, it is clearly an equivalent norm on A0 +A1.
In particular we have the following proposition.

Proposition A.1.7. For every �xed a ∈ A0 + A1, K(t, a) is a
positive, increasing and concave function of t. In particular we have
the following inequality

K(t, a) ≤ max

(
1,
t

s

)
K(s, a) (A.4)

Proof. The proof of K(t, a) being positive and increasing for every
�xed a ∈ A0 +A1 is straightforward. While for the concavity we see
that if t, h ∈ R+ and a ∈ A0 + A1 is �xed, then

K

(
t+ h

2
, a

)
= inf

a=a0+a1

(
1

2
‖a0‖A0 +

t

2
‖a1‖A1 +

1

2
‖a0‖A0 +

h

2
‖a1‖A1

)
≥

≥ 1

2
inf

a=a0+a1

(‖a0‖A0 + t‖a1‖A1) +
1

2
inf

a=a0+a1

(‖a0‖A0 + h‖a1‖A1) =

=
1

2
K (t, a) +

1

2
K (h, a)

Instead, for inequality (A.4) we choose t, s ∈ R+, and see that for
each �xed a ∈ A0 + A1, we have

K(t, a) = inf
a=a0+a1

(
‖a0‖A0 +

t

s
s‖a1‖A1

)
≤ max

(
1,
t

s

)
K(s, a)

We de�ne the functional Φθ,q over measurable functions φ : R+ →
R+, for 0 ≤ θ ≤ 1 and 1 ≤ q ≤ ∞:

Φθ,q(φ) :=

(∫ ∞
0

(
t−θφ(t)

)q dt
t

) 1
q

if 1 ≤ q <∞

Φθ,q(φ) := sup
t
t−θφ(t) if q =∞ (A.5)
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De�nition A.1.8. Let 0 < θ < 1 and 1 ≤ q ≤ ∞, either 0 ≤ θ ≤ 1
and q =∞. For these values we let Aθ,q;K = Kθ,q(A) denote the set
of all elements a ∈ A0 + A1 such that

Φθ,q(K(·, a)) <∞ (A.6)

This is a normed subspace of A0 + A1, endowed with the norm
‖a‖θ,q = Φθ,q(K(·, a)).

Theorem A.1.9. Kθ,q is an exact interpolation functor of exponent
θ on the category N . Moreover we have the inequality

K(s, a;A) ≤ Cθ,qs
θ‖a‖θ,q (A.7)

Proof. Inequality (A.4) can be rewritten as

min

(
1,
t

s

)
K(s, a) ≤ K(t, a)

for each �xed a ∈ A0 + A1. Applying then the functional Φθ,q on
both sides we get

Φθ,q

(
min

(
t

s
, 1

))
K(s, a) ≤ ‖a‖θ,q

and a computation, see [4], shows that Φθ,q

(
min

(
t
s
, 1
))

= s−θC−1
θ,q ,

where C−1
θ,q is a constant depending on θ and q.

Inequality (A.7), with s = 1, tells us that Aθ,q ↪→ A0 + A1. For the
remaining inclusion we note that if a ∈ A0 ∩ A1, then

K(t, a) ≤ min(1, t)‖a‖A0∩A1 ⇒ ‖A‖θ,q ≤ Φ(min(1, t))‖a‖A0∩A1

and therefore A0∩A1 ↪→ Aθ,q. So far, we have proved that Aθ,q is an
intermediate space. Now we show that Kθ,q is an exact interpolation
functor. Let A = (A0, A1), and B = (B0, B1), and consider the
linear and continuous operator T : A → B. Then if we call Mi =
‖T‖Ai,Bi for i = 0, 1, we have that

K(t, Ta;B) ≤ inf
a=a0+a1

(‖Ta0‖A0 + t‖Ta1‖A1) ≤M0K

(
t
M1

M0

, a;A

)
Applying on both sides the functional Φθ,a, after a computation we
get

‖Ta‖Bθ,q ≤M1−θ
0 M θ

1‖a‖Aθ,q
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The J-Method We de�ne the following function for every �xed cou-
ple A = (A0, A1) in N1

J : R+ × A0 ∩ A1 → R+

(t, a) 7→ J(t, a;A) := max (‖a‖A0 , t‖a‖A1) (A.8)

and for every t ∈ R+ the function J(t, ·) is an equivalent norm in
A0 ∩ A1. We collect some useful properties of J in the following
proposition.

Proposition A.1.10. For every �xed a ∈ A0 ∩ A1 the function
J(·, a) is a positive, increasing and convex function of t. Further-
more the following inequalities hold:

J(t, a) ≤ max

(
1,
t

s

)
J(s, a)

K(t, a) ≤ min

(
1,
t

s

)
J(s, a) (A.9)

We are now ready to de�ne the interpolation spaces obtained
through this interpolation method.

De�nition A.1.11. For 0 < θ < 1 and 1 ≤ q ≤ ∞, either 0 ≤ θ ≤ 1
and q = 1, we de�ne Aθ,q;J = Jθ,q(A) as the normed subspace of
A0 + A1 made of a ∈ A0 + A1 such that they can be represented
by a =

∫∞
0
u(t)dt

t
(the convergence is in A0 + A1)5 where u(t) is

measurable with values in A0 ∩ A1 and Φθ,q(J(t, u(t)) < ∞. The
norm we consider for Aθ,q;J is ‖a‖θ,q;J := infu Φθ,q(J(t, u(t)).

Theorem A.1.12. Let Jθ,q be de�ned as above. Then Jθ,q is an ex-
act interpolation functor of exponent θ on the category N . Moreover
we have the following inequality

‖a‖θ,q;J ≤ Cs−θJ(s, a;A) (A.10)

for every a ∈ A0 ∩ A1, where C is a constant independent of θ and
q.

The J-method admits a discrete formulation which turns out to
be useful in some situations. Here we state a Lemma, that we will
apply later when studying Lorentz-Sobolev spaces.

Lemma A.1.13. Let a ∈ A0 + A1, then a ∈ Jθ,q(A) if and only if
there exists a sequence an ∈ A0 ∩A1 (with −∞ < n <∞) such that

a =
∞∑
−∞

an (A.11)

5Here the integral is the Bochner integral, see for instance [26]
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where the convergence is in A0+A1, and 2−nθJ(2n, an)q ∈ l1.6 More-
over

‖a‖θ,q;J ∼ inf
an

(
∞∑
−∞

2−nθJ(2n, an)q

) 1
q

(A.12)

where the in�mum is taken over all sequences {an} satisfying (A.11).

It can be proved that the K-method and the J-method are equiv-
alent as far as θ 6= 0, 1. This result is called the equivalence the-
orem.

Theorem A.1.14. If 0 < θ < 1 and 1 ≤ q ≤ ∞ then Jθ,q(A) =
Kθ,q(A) with equivalent norms.

We now state some few simple properties of interpolation spaces.
These results are stated for θ ∈ (0, 1) which implies that the K
and J methods produce the same spaces, therefore we will drop the
index K and J . In this case we will denote the space Aθ,q also with
(A0, A1)θ,q, always assuming that 0 < θ < 1. When θ = 0, 1 we will
specify what method we are using.

Proposition A.1.15. Let A = (A0, A1) be a couple in N1, and
0 < θ < 1, 1 ≤ q ≤ ∞. Then we have the followings properties:

a) (A0, A1)θ,q = (A1, A0)1−θ,q with equal norms

b) Aθ,q ⊂ Aθ,r if q ≤ r

c) If furthermore A0 and A1 are complete then so is Aθ,q

d) if q <∞ then A0 ∩ A1 is dense in Aθ,q.

e) If A0 and A1 are both re�exive Banach spaces and q <∞, then
Aθ,q is re�exive too.

Proof. b)If r =∞ then by equation (A.7) we get that t−θK(t, a) ≤
C‖a‖θ,q, and therefore a ∈ Aθ,∞. Now let 1 ≤ q ≤ r < ∞ and
a ∈ Aθ,q, then

‖a‖θ,r =

(∫ ∞
0

(t−θK(t, a))q
1

t
((t−θK(t, a))r−qdt

) 1
r

Using again inequality (A.7) in the third factor inside the integral
we easily get that ‖a‖θ,r ≤ C‖a‖θ,q.
c)To prove this we use a characterization of Banach spaces.7 Take

6The space l1 is the space of all real sequences an such that
∑
n |an| <∞.

7A normed space (N, ‖ · ‖) is a Banach space if and only if for every sequence {an}n∈N
such that

∑
‖an‖ <∞ ⇒

∑
an converges in N .

134



therefore a sequence {an} in Aθ,q such that
∑
‖an‖θ,q is �nite. Then

this sum is clearly �nite also if we substitute the norm of Aθ,q with
the one of A0 + A1. But A0 + A1 is a Banach space, and thus
there exists ã ∈ A0 + A1, such that

∑
n an = ã. Now observe that

K(t, ã) ≤
∑

nK(t, an), therefore applying the functional Φθ,q to
both sides we get ‖ã‖θ,q ≤

∑
n ‖an‖θ,q, and this concludes the proof.

e)A Banach space (E, ‖ · ‖E) is re�exive, if the canonical injection8

J : E → E∗∗ is also surjective. Then by hypothesis we have that
J : Ai → A∗∗i is surjective for i = 0, 1. Using Theorem 3.7.1 in [4],
we get that (A0, A1)∗∗θ,q = (A∗∗0 , A

∗∗
1 )θ,q, and therefore the surjectivity

of J : Aθ,q → A
∗∗
θ,q easily follows.

Remark A.1.16. Point d) of Proposition A.1.15 has a consequence
that can be useful. If C is a normed vector space that is dense in
A0 ∩A1 then it is also dense in Aθ,q, as far we are assuming q <∞.
Indeed, if f ∈ Aθ,q and {φn}n ⊂ A0 ∩ A1 is a converging sequence
to f , we can consider for each �xed n a sequence {φnm}m in C that
converges to φn in A0 ∩ A1, by density of C in A0 ∩ A1. Then for
every ε > 0, we have that

‖f − φmn ‖Aθ,q ≤ ‖f − φn‖Aθ,q + ‖φn − φmn ‖Aθ,q ≤

≤ ‖f − φn‖Aθ,q + C‖φn − φmn ‖A0∩A1 < ε

for a proper choice of n and m.

A.1.2 The Reiteration Theorem

This section is devoted to a fundamental result of the real inter-
polation method. If two spaces X0 and X1 are obtained from a
given couple A = (A0, A1) in N1 by means of the real interpolation
method, and if X is constructed from X = (X0, X1) by means of the
real method too then X can be directly built from A always by the
real interpolation method. In what follows we give some de�nitions
that will allow us to specify the proper conditions under which we
can apply such a theorem.

De�nition A.1.17. Let A = (A0, A1) be a given couple of normed
vector spaces. Suppose that X is an intermediate space with respect
to A. For 0 ≤ θ ≤ 1 we say that

• X is of class CK(θ, A) if K(t, a;A) ≤ Ctθ‖a‖X , with a ∈ X
8If (E, ‖ · ‖E) is a Banach spaces, then the canonical injection J : E → E∗∗ is de�ned as

J(f) = 〈·, f〉 : E∗ → R for eachf ∈ E, where in this context we denoted with 〈·, ·〉 the dual
coupling.
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• X is of class CJ(θ, A) if ‖a‖X ≤ Ct−θJ(t, a;A), with a ∈ A0∩A1

• We say that X is of class C(θ, A) if X is of class CK(θ, A) and
of class CJ(θ, A).

Sometimes it is convenient to use the following characterization
of the above de�nition. In particular we have this result.

Proposition A.1.18. Let A = (A0, A1) be a given couple of normed
vector spaces, and let X be an intermediate space. Then

a) X is of class CK(θ, A) ⇔ A0 ∩ A1 ⊂ X ⊂ Aθ,∞;K

b) X is of class CJ(θ, A) ⇔ Aθ,1;J ⊂ X ⊂ A0 + A1 ⇔ we have
‖a‖X ≤ C‖a‖1−θ

A0
‖a‖θA1

for each a ∈ A0 ∩ A1.

Note that we already know that Aθ,q is of class C(θ, A) if 0 <
θ < 1. We are now ready to state the reiteration theorem.

Theorem A.1.19. Let A = (A0, A1) and X = (X0, X1) be two cou-
ples of spaces in N1, and assume that Xi are complete and of class
C(θi, A), where 0 ≤ θi ≤ 1 and θ0 6= θ1. Then for 1 ≤ q ≤ ∞ Xη,q =
Aθ,q where θ = (1− η)θ0 + ηθ1 with η ∈ (0, 1). As a consequence if
0 < θi < 1 and Aθi,q are complete then (Aθ0,q0 , Aθ1,q1)η,q = Aθ,q and
1 < q0, q1 ≤ ∞

A.2 Lorentz spaces

In this section we will introduce Lorentz spaces, and we will de�ne
them in two di�erent but equivalent ways. First we will get these
spaces using the decreasing rearrangement function. Our second
de�nition instead is based on the interpolation by means of the real
method of the most known Lp spaces.

A �rst de�nition of Lorentz spaces Let Ω be an open subset of Rn,
and let f be a scalar measurable function which is �nite a.e. (for
the Lebesgue measure). We introduce the function9

mf (σ) = |{x ∈ Ω : |f(x)| > σ}| (A.13)

The function mf : R+ → R+ is non increasing and continuous on
the right.

De�nition A.2.1. Let f : Ω → R+ be measurable. Then its de-
creasing rearrangement f ∗ is the following function on R+

f ∗(t) := inf{σ ∈ R+ : mf (σ) ≤ t} (A.14)
9If A is any Lebesgue measurable subset of Rn, then by |A| we denote its Lebesgue measure.
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The decreasing rearrangement is clearly a non negative, non in-
creasing function on R+ and it satis�es mf (σ) = mf∗(σ) for every
σ ≥ 0. In the following proposition we will state some of its proper-
ties that will turn out to be useful later. Further signi�cant features
of this function can be found in [16].

Proposition A.2.2. Let f, g : Ω→ R be two measurable functions.
Then :

1) (f + g)∗(t1 + t2) ≤ f ∗(t1) + g∗(t2)

2) (fg)∗(t1 + t2) ≤ f ∗(t1)g∗(t2)

3) (|f |p)∗ = (f ∗)p for 0 < p <∞

4)
∫

Ω
|f |p =

∫ |Ω|
0

(f ∗)p for 0 < p <∞

5) If f ∈ L∞(Ω), then ‖f‖L∞ = f ∗(0).

Proof. 1)& 2) We de�ne the following two sets A := {s1| mf (s1) ≤
t1} and B := {s2| mg(s2) ≤ t2}. Then if we call C := {s| mfg(s) ≤
t1 + t2} and S = {s| mf + g ≤ t1 + t2} we clearly have A · B ⊂ C,
and A+B ⊂ S10. In particular we have that (fg)∗(t1+t2) = inf C ≤
s1 · s2 and (f + g)∗(t1 + t2) = inf S ≤ s1 + s2 for each s1 ∈ A and
s2 ∈ B. Then taking the in�mum over all elements in A and B we
�nally get the wanted inequalities.
3)Note that the following sets coincide
{s| m(s, |f |p) ≤ t} = {σp| m(σ, f) ≤ t}. Therefore, taking the
in�mum in both sides we deduce that (|f |p)∗ = (f ∗)p.
5)By the fact that mf (‖f‖L∞) = 0 we get that f ∗(0) ≤ ‖f‖L∞ .
Conversely one sees that if there exists s < ‖f‖L∞ such thatmf (s) =
0, then s must be larger or equal to ‖f‖L∞ , which is a contradiction.

De�nition A.2.3. For 1 ≤ p ≤ ∞ we de�ne the Lorentz space
Lp,q(Ω), as the space of all measurable functions f : Ω → R , such
that ‖f‖Lp,q <∞ where

‖f‖Lp,q :=

(∫
0

∞ (
t

1
pf ∗(t)

)q dt
t

) 1
q

if q <∞

‖f‖Lp,q := sup
t>0

t
1
pf ∗(t) if q =∞ (A.15)

10If A and B are two subsets of R, then we de�ne A ·B = {s1 · s2| s1 ∈ A and s2 ∈ B}
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Remark A.2.4. Note that Lp,p(Ω) = Lp(Ω), for every 1 ≤ p < ∞.
Indeed by the above de�nition we have that

‖f‖Lp,p =

(∫ ∞
0

f ∗(t)pdt

) 1
p

=

(∫
Ω

|f |pdx
) 1

p

= ‖f‖Lp

where the penultimate equality is due to the fourth point of Propo-
sition A.2.1. Nevertheless it is important to highlight the fact that
if p 6= q then ‖ · ‖L(p,q) , de�ned in equation (A.15), is not a norm but
a seminorm.

We now give a second de�nition of Lorentz spaces based on in-
terpolation theory, and after that we will state the most important
properties of these spaces.

An interpolation Formulation We start with the following theorem,
that allows us to de�ne the Lorentz spaces as interpolation spaces
of Lp spaces. As above let Ω be an open subset of Rn.

Theorem A.2.5. Suppose that f ∈ Lp(Ω) +L∞(Ω) for 1 ≤ p <∞.

Then K(t, f ;Lp(Ω), L∞(Ω)) ∼
(∫ tp

0
(f ∗(s))pds

) 1
p
. Moreover with

1 ≤ p0 < p1 ≤ ∞ we have

(Lp0(Ω), Lp1(Ω))θ,q = Lp,q(Ω) (A.16)

if p0 < q ≤ ∞ and 1
p

= 1−θ
p0

+ θ
p1
.

Proof. Let 1 ≤ p <∞, and consider the decomposition f = f0 + f1,
where

f0(x) :=

{
f(x)− f ∗(tp) if |f(x)| > f ∗(tp)

0 otherwise

and clearly f1 := f − f0. The function f1 by de�nition is L∞(Ω),
while it is easy to show that f0 ∈ Lp(Ω). If we call
E = {x ∈ Ω| f0(x) 6= 0}, we have by de�nition of decreasing rear-
rangement of f that |E| ≤ tp, and since f ∗ is constant in the interval
[|E|, tp] we get

K(t, f ;Lp(Ω), L∞(Ω)) ≤ ‖f0‖Lp + t‖f1‖L∞ =

=

(∫
E

|f(x)− f ∗(tp)|pdx
) 1

p

+ tf ∗(tp) = (∗)

By the fourth point of Proposition A.2.1 we get

(∗) =

(∫ tp

0

(f ∗(s)− f ∗(tp))pds
) 1

p

+

(∫ tp

0

(f ∗(tp))p
) 1

p

≤
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≤ C

(∫ tp

0

f ∗(s)ds

) 1
p

Consider now any decomposition f = f0 + f1 with f0 ∈ Lp(Ω) and
f1 ∈ L∞(Ω). Then by the �rst point of Proposition A.2.2 we have
that for 1 > ε > 0, f ∗(s) = (f0 + f1)∗(s) ≤ f ∗0 ((1 − ε)s) + f ∗1 (εs),
and this implies that(∫ tp

0

(f ∗(s))pds

) 1
p

≤
(∫ tp

0

(f ∗0 ((1− ε)s)pds
) 1

p

+

(∫ tp

0

(f ∗1 (εs))p
) 1

p

By point 5) of Proposition A.2.2, and by the fact that the decreasing
rearrangement is decreasing, we get(∫ tp

0

(f ∗(s))pds

) 1
p

≤ (1− ε)−
1
p‖f0‖Lp + t‖f1‖L∞

Taking the in�mum over the decompositions f = f0 +f1, and letting
ε→ 0 we get the wanted inequality.
We will prove (A.16) �rst for p1 = ∞ and p0 < p �xed. Let f ∈
Lp,q(Ω), with θ = 1− p0

p
then we have

‖f‖θ,q =

(∫ ∞
0

(t−θK(t, f))q
dt

t

) 1
q

= (∗)

using the proportionality we have just proved, we get

(∗) ∼

(∫ ∞
0

t−θq
(∫ tp0

0

(f ∗(s))p0ds

) q
p0 dt

t

) 1
q

=

=

(∫ ∞
0

(∫ 1

0

t
1−θ
p0 f ∗(stp0)p0

ds

t
p0
q

) q
p0

dt

) 1
q

≤

≤ C

(∫ 1

0

(∫ ∞
0

s
(θ−1) q

p0
+1
(
t

1−θ
p0 f ∗(t)

)q dt
t

) p0
q

ds

) 1
p0

where between the second and third line we have used the Minkowski's
integral inequality. The last term is easily seen to be controlled by
C‖f‖Lp,q . If now f ∈ (Lp0 , L∞)θ,q, and 1

p
:= 1−θ

p
, then for the con-

verse inequality we have

‖f‖Lp,q =

(∫ ∞
0

(
t

1
pf ∗(t)

)q dt
t

) 1
q

= p
1
q

0

(∫ ∞
0

(
t
p0
p f ∗(tp0)

)q dt
t

) 1
q

≤
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≤ C

(∫ ∞
0

(
t
p0
p
−1

(∫ tp0

0

f ∗(s)ds

) 1
p0

)q

dt

t

) 1
q

∼

∼
(∫ ∞

0

(
t−θK(t, f)

)q dt
t

) 1
q

and the last term is equal to ‖f‖θ,q, and therefore we have concluded.
It is left only to drop the condition p1 = ∞, and this can be easily
obtained by the Reiteration Theorem. Indeed for 1 ≤ p0 < p1 <∞,
we have that

(Lp0(Ω), Lp1(Ω))θ,q = ((Lr(Ω), L∞(Ω))θ0,p0 , (L
r(Ω), L∞(Ω))θ1,q1)θ,q =

= (Lr(Ω), L∞(Ω))η,q = Lp,q(Ω)

where the second equality is due to the Reiteration theorem and
r = 1−θ0

p0
.

Theorem A.2.6. Let 1 ≤ p <∞ and q ≤ r ≤ ∞. Then

1) Lp,q(Ω) are all Banach spaces.

2) Lp,q(Ω) ⊂ Lp,r(Ω)

3) C∞(Ω) ∩ Lp,q(Ω) is dense in Lp,q(Ω) for 1 ≤ q <∞.

4) If Ω has �nite Lebesgue measure, then for r > p and 1 ≤ q ≤ ∞
we have Lr(Ω) ↪→ Lp,q(Ω).

Proof. Points 1) and 2) are straightforward consequences of points
c) and b) of Proposition A.1.15 respectively.
The third point is a direct consequence of Remark A.1.16 together
with the fact that C∞(Ω) ∩ Lp(Ω) is dense in Lp(Ω) for each 1 ≤
p <∞.
4)It is enough to prove the result for q = 1 since L(p,1)(Ω) ⊂ L(p,q)(Ω)
if q > 1. Let then f ∈ L(p,1)(Ω) = (L1(Ω), L∞(Ω))1− 1

p
,1. Then it

holds

‖f‖L(p,1)(Ω) =

∫ ∞
0

t
1
p
−1K(t, f)

dt

t
=

∫ ∞
0

t
1
p
−1

∫ t

0

f ∗(s)ds
dt

t
=

=

∫ |Ω|
0

t
1
p
−1

∫ t

0

f ∗(s)ds
dt

t
+

∫ ∞
|Ω|

t
1
p
−1

∫ t

0

f ∗(s)ds
dt

t
= (∗)

Applying Hölder's inequality in the �rst term above we �nd that

(∗) ≤
∫ |Ω|

0

t
1
p
− 1
r ‖f‖Lr(Ω)

dt

t
+

∫ ∞
|Ω|

t
1
p
−1‖f‖L1(Ω)

dt

t
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Since 1
p
− 1

r
> 0 by hypothesis, then the �rst integral converges.

Thanks to the embedding Lr(Ω) ↪→ L1(Ω) we conclude.

A.2.1 The Calderón-Zygmund inequality

We now de�ne the concept of kernel, which will be useful in studying
the regularity of the Laplace equation. For this subsection we will
refer to [14].

De�nition A.2.7. We say that a function k : Rn \ {0} → R is a
Calderón-Zygmund kernel if

1) k(x) = ω(x)
|x|n for each x ∈ Rn, where ω is a zero-homogeneous

function11

2) ω|∂B(0) ∈ L∞

3)
∫
∂B(0)

kdσ = 0.

Let k be a Calderón-Zygmund kernel, and kε := kχRn\Bε(0). Then
we de�ne the convolution

Tε(f) := kε ∗ f(x) :=

∫
Rn\Bε(0)

k(x− y)f(y)dy (A.17)

where f ∈ Lp(Rn). A classical Theorem of Calderón-Zygmund states
that if f ∈ Lp(Rn) with 1 < p <∞ then the limit T (f) of Tε(f) for
ε→ 0 exists in Lp and furthermore

‖T (f)‖Lp(Rn) ≤ C(p)‖f‖Lp(Rn) (A.18)

where C(p) is constant depending on p. See for instance Theorem
7.22 [14]. Using the interpolation theory we have developed, we will
extend this result to Lorentz spaces.

Corollary A.2.8. Let k : Rn \ {0} → R be a Calderón-Zygmund
kernel, with Lipshitz continuous restriction on ∂B(0). Then we have
that if f ∈ Lp,r(Rn), 1 < p <∞

‖T (f)‖Lp,r(Rn) ≤ A‖f‖Lp,r(Rn) (A.19)

where 0 < r ≤ ∞.
11A function f : Rn → R is called homogeneous of degree n if f(kx) = knf(x) for each

k ∈ R and x ∈ Rn
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Proof. The proof is straightforward. Indeed, we have already seen
that Lp,q(Rn) = (Lp0(Rn), Lp1(Rn))θ,q for 1

p
= 1−θ

p0
+ θ

p1
. Then this

means that for p > 1 we can choose both p0, p1 > 1. Then the map
T is continuous from Lpi(Rn) to Lpi(Rn) with i = 0, 1 by Calderón-
Zygmund theorem. Since Lp,q(Rn) is an interpolation space, then
T : Lp,q(Rn)→ Lp,q(Rn) is continuous too.

The following example is signi�cant. Indeed, it uses the above
Corollary, in the framework of the Laplace equation, to get an higher
regularity for the solution. It is fundamental also because, as already
discussed, the improved version of the Removable singularities the-
orem of T.Riviére partially relies in some consequences of it.

Example A.2.9. Let Ω be a bounded domain in Rn, and f ∈ W 2,2(Ω,R)
such that ‖∆f‖L2,1(Ω) ≤M and also ‖f‖L2,1(Ω),‖∇f‖L2,1(Ω) ≤M .
We show that this is enough to prove that f ∈ W 2,(2,1)

loc (Ω,Rm). Take
η ∈ C∞c (Ω,R) a cut-o� function satisfying η ≡ 1 in K, where K ⊂ Ω
is compact. We build the following Dirichlet problem{

∆V = ∆(ηf) in Ω

V = 0 in ∂Ω
(A.20)

Clearly the solution exists and is unique V = ηf ∈ W 2,2
0 (Ω,Rm).

Moreover, we know that we can also rewrite it as

V (x) =

∫
Rn

Γ(x− y)∆(η(y)f(y))dy =

∫
Ω

Γ(x− y)∆(η(y)f(y))dy

(A.21)
where Γ is the Newtonian potential, and ∂2Γ

∂xi∂xj
can be proved to be

a Calderón-Zygmund Kernel for each i, j = 1, ..., n (see for instance
[14]). So in particular thanks to Calderón-Zygmund inequality and
Corollary A.2.8 we have that

‖D2V ‖L2,1(Ω) ≤ C‖∆(ηf)‖L2,1(Ω)

as far as the L2,1-norm of the right hand side is �nite, which by
hypothesis is the case. Since η = 1 in K and ∆(ηf) = ∆ηf + 2∇f ·
∇η + η∆f , then the above inequality leads to

‖D2f‖L2,1(K) ≤ C‖∆(ηf)‖L2,1(Ω) ≤

≤ C̃
(
‖f‖L2,1(Ω) + ‖∇f‖L2,1(Ω) + ‖∆f‖L2,1(Ω)

)
≤ C̃M
(A.22)

where C̃ is a constant depending on K and Ω.
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A.3 Sobolev and Lorentz-Sobolev spaces

We will now introduce Fractional Sobolev spaces, Lorentz-Sobolev
spaces and Besov spaces. We will give just an interpolation formu-
lation of them, and it is important to know that this choice does
not allow us to describe them all, but only those spaces that are
needed in our treatment. A more complete construction, which uses
the Bessel and Riesz potentials, can be found for example in [4]. In
this section we will refer for the most to [43].

De�nition A.3.1. For 1 ≤ p ≤ ∞ and 0 < s < 1, the Fractional
Sobolev space W s,p(Rn) is de�ned as

W s,p(Rn) := (W 1,p(Rn), Lp(Rn))1−s,p (A.23)

For 1 ≤ p, q ≤ ∞ and 0 < s < 1 one de�nes also the Besov space
Bs
p,q(Rn), as

Bs
p,q(Rn) := (W 1,p(Rn), Lp(Rn))1−s,q (A.24)

We extend this de�nition to non integers s > 1 as follows.

De�nition A.3.2. Let k ∈ N and k < s < k + 1. Then if m ∈ N
such that m ≥ k + 1, for (1− θ)m = s, we de�ne

W s,p(Rn) := (Wm,p(Rn), Lp(Rn))θ,p (A.25)

and for 1 ≤ q ≤ ∞

Bs
p,q(Rn) := (Wm,p(Rn), Lp(Rn))θ,q (A.26)

The last de�nition seems to depend on the choice of the integer
m, but as we will see it is well de�ned. We will get this using the
Reiteration Theorem.

Proposition A.3.3. Let 1 ≤ p < ∞, and k ∈ N. If m is any
integer such that m ≥ k + 1, then we have that

W k,p(Rn) is of class C

(
m− k
m

;A

)
(A.27)

where A = (Wm,p(Rn), Lp(Rn)). In particular De�nition A.3.2 is
well de�ned.

Proof. We will skip the proof of W k,p(Rn) being of class C
(
m−k
m
, A
)

since it is technical, anyway it can be found in [43]. The last state-
ment is proved thanks to the Reiteration Theorem. Let m1,m2 ∈ N,
such that m1,m2 ≥ k+ 1, and k < s < k+ 1. Furthermore, suppose
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that m1 < m2. Then we have Wm1,p(Rn) is of class C
(
m2−m1

m2
, A
)
,

and Lp is of class C
(
1, A

)
, where A = (Wm2,p(Rn), Lp(Rn)). There-

fore, applying the reiteration theorem we get that

(Wm1,p(Rn), Lp(Rn))m1−s
m1

,q
= (Wm2,p(Rn), Lp(Rn))θ,q

where θ =
(

1− m1−s
m1

)
m2−m1

m2
+ m1−s

m1
= m2−s

m2
. This concludes the

proof of our statement.

Remark A.3.4. Applying again the Reiteration Theorem we can
rewrite Bs

p,q(Rn) and W s,p(Rn), when s is a positive non integer
in the following way:

Bs
p,q(Rn) = (W s1,p(Rn),W s2,p(Rn))θ,q for s = (1− θ)s1 + θs2

(A.28)
and 0 < s1 < s < s2.
Remark A.3.5. When s is a positive non integer then by the above
de�nitions we have that Bs

p,p(Rm) = W s,p(Rn). This is not anymore
true when s is an integer. Anyway, we can obtain Wm,p(Rn) by
interpolating on the exponent of integrability, rather than the order
of (weak) di�erentiability. Before stating this result we introduce
another Sobolev space.

De�nition A.3.6. For m ∈ N, and 1 ≤ p <∞ and 1 ≤ q ≤ ∞, we
de�ne the Sobolev-Lorentz space

Wm,(p,q)(Rn) = {f ∈ Lp,q(Rn)| Dαf ∈ Lp,q(Rn) ∀α such that |α| ≤ m}
(A.29)

which is clearly a generalization of the classical Sobolev spaces. Here
we assume that the weak derivatives are in Lorentz spaces, rather
then just in Lp.

Theorem A.3.7. Let k ∈ N and 1 < p <∞. Then we can rewrite
W k,p(Rn) as an interpolation space:

1) W k,p(Rn) = (W k,p0(Rn),W k,p1(Rn))θ,p, where
1
p

= 1−θ
p0

+ θ
p1
.

2) W k,(p,q)(Rn) = (W k,p0(Rn),W k,p1(Rn))θ,q where
1
p

= 1−θ
p0

+ θ
p1
.

These two last results, even though they seem intuitive, are not
easy to prove. A proof of them can be found for instance in [12] or
[10].
In particular writing these last spaces as interpolation spaces will let
us prove easily some improved Sobolev embeddings, that otherwise
would require a greater e�ort. The following results are mainly due
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to Jaak Peetre [30] who �rst got some of these new embeddings
thanks to interpolation techniques.

Theorem A.3.8. We have the following embeddings.

1) Let 0 < s < n
p
for 1 < p <∞, then

Bs
p,q(Rn) ↪→ Lp(s),q(Rn) for

1

p(s)
:=

1

p
− s

n
(A.30)

and similarly if k < n
p
we have

W k,(p,q)(Rn) ↪→ Lp(k),q(Rn) for
1

p(k)
:=

1

p
− k

n
(A.31)

where 1 ≤ q ≤ ∞.

2) For every s > 0

Bs
p,q1

(Rn) ⊂ Bs
p,q2

(Rn) for q1 < q2 (A.32)

and furthermore when k < s1 < s2 < k + 1 for k ∈ N we have
that

W k+1,p(Rn) ⊂ W s2,p(Rn) ⊂ W s1,p(Rn) ⊂ W k,p(Rn) (A.33)

Proof. 1)By de�nition Bs
p,q(Rn) = (Wm,p(Rn), Lp(Rn))θ,q with s =

(1−θ)m and s < m ∈ N. Now we use the Reiteration theorem as fol-
lows. We can choosem such thatmp > n, then using the Gagliardo-
Nirenberg inequality we have that for every f ∈ Wm,p(Rn), the fol-
lowing holds

‖f‖L∞(Rn) ≤ C

∑
|α|=m

‖Dαf‖Lp

 n
mp

‖f‖
1− n

mp

Lp (A.34)

which by Proposition A.1.15 implies that (Wm,p(Rn), Lp(Rn))θ1,1 ⊂
L∞(Rn) with θ1 = 1− n

mp
. Now clearly we have that

(Wm.p(Rn), Lp(Rn)1,1 ⊂ Lp(Rn). These two embeddings together
with the Reiteration Theorem let us conclude that

(Wm,p(Rn), Lp(Rn))η,q ⊂ (Lp(Rn), L∞(Rn))λ,q (A.35)

where η = (1 − λ) + λθ1. Using therefore η = θ we �nd that
Bs
p,q(Rn) ⊂ (Lp(R), L∞(Rn))) ps

n
,q, and this last space is Lp(s),q(Rn),

with 1
p(s)

= 1
p
− s

n
.

Let us consider the space W k,(p,q)(Rn) with k < n
p
an integer. By

145



Theorem A.3.7 we have that
W k,(p,q)(Rn) = (W k,p1(Rn),W k,p2(Rn))θ,q where p1 < p < p2 and
1
p

= 1−θ
p1

+ θ
p2
. We choose both p1 and p2 such that p1k < n and

p2k < n, and applying the classical Sobolev embeddings we get that
W k,pi(Rn) ↪→ Lp

∗
i (Rn) where p∗i = npi

n−kpi for each i = 1, 2. Then by
interpolating we get that

W k,p(Rn) = (W k,p1(Rn),W k,p2(Rn))θ,q ↪→ (Lp
∗
1(Rn), Lp

∗
2(Rn))θ,q

(A.36)
and the last space is Lp

∗,q(Rn) and this concludes the �rst point.
2)The embedding (A.32) is a direct consequence of point b) of
Proposition A.1.15. If s2 is a positive non integer such that k +
1 > s2, then we can �nd two positive integers m1,m2, such that
m1 ≤ s2 ≤ m2 and m1,m2 ≤ k + 1. Therefore, we can write
W s2,p(Rn) = (Wm1,p(Rn),Wm2,p(Rn)) where W k+1,p(Rn) embeds in
Wmi,p(Rn) for each i = 1, 2. This last observation leads to the �rst
inclusion in (A.33). The others can be proved with an analogous
reasoning.

So far we have de�ned these function spaces when the domain is
Rn. We now generalize these de�nitions when the domain is some
open subset Ω of Rn regular enough. In particular the following re-
sult is valid for every open domain of Rn with the extension property,
but we will state it only for bounded Lipschitz domains.

Proposition A.3.9. Let Ω ⊂ Rn be a bounded Lipschitz domain.
Then if we call

Xs
p,q(Ω) = {f |Ω | f ∈ Bs

p,q(Rn)}

with the norm ‖f‖Xs
p,q(Ω) := infF |Ω=f ‖F‖Bsp,q(Rn), and

Y s
p,q(Ω) = (Wm1,p(Ω),Wm2,p(Ω))θ,q

for s a positive non integer, and 1 ≤ p < ∞, 1 ≤ q ≤ ∞ , then
Xs
p,q = Y s

p,q.

Proof. Note that the restriction map RΩ : Wmi,p(Rn) → Wmi,p(Ω)
is linear and continuous for i = 1, 2. Then it is also linear and
continuous from Bs

p,q(Rn) to Y s
p,q(Ω), which means that Xs

p,q(Ω) ⊂
Y s
p,q(Ω).

Conversely, since Ω is bounded and Lipschitz it has the extension
property, namely we have the existence of the extension map E :
Wmi,p(Ω) → Wmi,p(Rn) for i = 1, 2. Then by interpolation we
get that E : Y s

p,q(Ω) → Bs
p,q(Rn), and so every f ∈ Y s

p,q(Ω) is the
restriction of some map E(f) in Bs

p,q(Rn), which implies Y s
p,q(Ω) ⊂

Xs
p,q(Ω).
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When kp = n we know that for Ω bounded and Lipschitz it
holds the embedding W k,p(Ω) ↪→ Lq(Ω) for every q ∈ [1,∞[. One
could try to see what happens when instead of W k,p(Ω) we consider
the slightly smaller space W k,(p,1)(Ω). In particular we have the
following result that we state for a bounded Lipschitz domain. The
proof is based on the discrete version of the J-method, see Lemma
A.1.13, and on the interpolation formulation of the Lorentz-Sobolev
spaces as in Theorem A.3.7.

Theorem A.3.10. Let Ω ⊂ Rn be a bounded and Lipschitz domain.
Then if pk = n we have the following embeddings

W k,(p,1)(Ω) ↪→ C0(Ω) ↪→ L∞(Ω) (A.37)

Proof. By Theorem A.3.7 we have the identity
W k,(p,1)(Ω) = (W k,p0(Ω),W k,p1(Ω))θ,1, where 1

p
= 1−θ

p0
+ θ

p1
. We

choose p0 = Mp with 1 < M < 2, which of course implies that kp0 >
n and leads to the embedding W k,p0(Ω) ↪→ C0(Ω). Furthermore, we
select p1 = mp with m := M

1+M2−M < 1. In this way we have that
θ = m(M−1)

M−m = n
kp0

. This particular choice for p0 and p1 will be clear
soon.
By the discrete formulation of the real J-method, see Lemma A.1.13,
we have that for each f ∈ W k,(p,1)(Ω), there exists a sequence fn ∈
W 2,p0(Ω) such that f =

∑
n fn, where the convergence is inW

2,p1(Ω)
and furthermore it holds that 2−nθJ(2n, fn) ∈ l1, and its norm is
controlled by ‖f‖Wk,(p,1)(Ω). So we have that

‖f‖L∞(Ω) ≤
∑
n

‖fn‖L∞(Ω) = (∗)

Now we apply Theorem 5.8 in [2] to each fn, which gives us the
following bound

‖fn‖L∞(Ω) ≤ C‖fn‖θWk,p0 (Ω)‖fn‖
1−θ
Lp0 (Ω) (A.38)

and therefore we have that

(∗) ≤ C1

∑
n

‖fn‖θWk,p0 (Ω)‖fn‖
1−θ
Lp0 (Ω) = (∗1)

where the constant C1 depends on p0, k, n and the domain Ω. The
previous choice for M < 2, implies that p∗1 > p0 so that now
W k,p1(Ω) ↪→ Lp

∗
1(Ω) ↪→ Lp0(Ω), and thus inequality (A.38) is bounded

from above by
≤ C2‖fn‖θWk,p0 (Ω)‖fn‖

1−θ
Wk,p1 (Ω)
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Using Proposition A.1.10, we �nally get

(∗1) ≤ C2

∑
n

2−nθJ(2n, fn) ≤ C‖f‖Wk,(p,1)(Ω)

and the last inequality is given always by Lemma A.1.13.
By the well known fact that C1(Ω)∩W k,p0(Ω) is dense in W k,p0(Ω)
and thanks to Remark A.1.16, we have that for each f ∈ W k,(p,1)(Ω),
there exists {fn}n ⊂ W k,(p,1)(Ω) ∩ C1(Ω), such that fn → f . This
observation and the inequality we have proved imply

‖f − fn‖L∞(Ω) ≤ C‖f − fn‖Wk,(p,1)(Ω)

and therefore there exists f̃ continuous such that f̃ = f almost
everywhere.
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Appendix B

�ech Cohomology

In what follows we brie�y workout a de�nition for �ech cohomol-
ogy with coe�cients in the sheaf of smooth G-valued functions on
a manifold M , and prove that there is a one to one correspondence
between the possible di�erent principal bundles over M (up to iso-
morphism) and the classes in its �ech cohomology Ȟ1(M,C∞(G)).
We refer mainly to [46], where the theory requires an accurate de�-
nition of sheaves, presheaves and some category tools. We will skip
these de�nitions and present a more straightforward construction.
Let M be a manifold, U = {Ui}i∈I be an open covering for M , and
G a Lie group. We choose a family of C∞ functions

ϕ := {φi0...in : Ui0...in → G} (B.1)

where we have adopted the notation Ui0...in := Ui0 ∩ ... ∩ Uin . We
call this collection a di�erentiable �ech n-cochain, and we indicate
with Čn(U , C∞(G)) the set of all n-cochains.

De�nition B.0.1. We de�ne the coboundary operator for 1-
cochains as the map δ : Č1(U , C∞(G))→ Č2(U , C∞(G)) such that

(δφ)ijl : Ui ∩ Uj ∩ Ul → G

x 7−→ (δφ)ijl(x) := φij(x)φjl(x)φli(x) (B.2)

while for 0-cochains we have δ : Č0(U , C∞(G)) → Č1(U , C∞(G))
de�ned by

(δφ)ij : Ui ∩ Uj → G

x 7−→ (δφ)ij(x) := φi(x)φj(x)−1 (B.3)

If a 1-cochain φ is such that δφ = e, where e is the constant function
equal to the indentity of G, then we say that φ is a �ech 1-cocycle.

149



We denote the set of 1-cocycles with Ž1(U , C∞(G)).
If a 1-cochain φ is such that φ = δα for some 0-cochain α then φ
is called a �ech coboundary. Note that a �ech coboundary is
automatically 1-�ech cocycle.

De�nition B.0.2. We say that two 1-cocycles φ, ψ ∈ Ž1(U , C∞(G))
are cohomologus, and we write φ ∼ ψ, if there exists a 0-cochains
β such that for each i, j

φij(x) = βi(x)ψij(x)β−1
j (x) (B.4)

It is easy to check that∼ is an equivalence relation in Ž1(U , C∞(G)).

De�nition B.0.3. We de�ne �ech cohomology with coe�cients
in the sheaf of smooth G-valued functions of the covering U =
{Ui}i∈I as the quotient space

H1(U , C∞(G)) :=
Ž1(U , C∞(G))

∼
of the 1-cocycles via the equivalence relation ∼.

We now introduce two fundamental categories in the study of
�ech cohomology Ȟ1(M,C∞(G)), which allow a more precise expo-
sition of the basic concepts of this theory.

De�nition B.0.4. We call Cov(M) the category whose objects
Ob(Cov(M)) are open coverings of M , and if V , U ∈ Ob(Cov(M))
are two objects then the set of all morphisms HomCov(M)(V ,U) co-
incides with the set of all maps

τ : J → I such that Vj ⊂ Uτ(j) ∀j ∈ J

where U = {UI}i∈I and V = {Vj}j∈J .

We de�ne also the category Set∗ whose objects Ob(Set∗) are pointed
sets, namely couples (X, x) where X is a set and x ∈ X is �xed. If
(X, x), (Y, y) ∈ Ob(Set∗), then we choose

HomSet∗((X, x), (Y, y)) := {f : X → Y : f(x) = y}

If V , U ∈ Ob(Cov(M)) are two objects, then each morphism
τ ∈ HomCov(M)(V ,U) induces the following map

τ ∗ : Ž1(U , C∞(G))→ Ž1(V , C∞(G))

φ 7−→ τ ∗(φ) :=
{
φτ(j)τ(j′ )

∣∣
Vj∩Vj′

→ G
}

(B.5)
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If two 1-cocycles φ, ψ ∈ Ž1(U , C∞(G)), are such that φ ∼ ψ then
also τ ∗(φ) ∼ τ ∗(ψ), therefore the map τ ∗ de�ned in equation (B.5)
is well de�ned if we pass to the quotient spaces

τ ∗ : Ȟ1(U , C∞(G))→ Ȟ1(V , C∞(G))

[φ]∼ 7→ [τ ∗(φ)]∼ (B.6)

and it maps the equivalence class of the identity (the map costantly
equal to the identity of G) to itself. Thus, if we consider
(Ȟ1(U , C∞(G)), [1]∼) as objects in Set∗, (B.6) becomes a morphism
in the category of pointed sets Set∗. In particular we have the fol-
lowing proposition. The proof is just an exercise.

Proposition B.0.5. The map between the categories Cov(M)opp

and Set∗
F : Cov(M)opp → Set∗

U 7→ F (U) := Ȟ1(U , C∞(G)) (B.7)

and such that

Hom(U ,V) 3 τ 7→ F (τ) := τ ∗ ∈ Hom(F (U), F (V))

is a (covariant) functor.

Now that we have gathered all the necessary tools, we are �nally
ready to de�ne Ȟ1(M,C∞(G)).

De�nition B.0.6. We de�ne the �ech cohomology with coe�-
cients in the sheaf of smooth G-valued functions on M as

Ȟ1(M,C∞(G)) =

(∐
U

Ȟ1(U , C∞(G))

)
/ ∼ (B.8)

where the disjointed union is taken over the open coverings ofM . If
x ∈ Ȟ1(U , C∞(G)) and y ∈ Ȟ1(V , C∞(G)) we say that x ∼ y if and
only if there exists a re�nement W = {Wk}k∈K of both U = {Ui}i∈I
and V = {Vj}j∈J , with inclusion maps τ1 : K → I and τ2 : K → J ,
such that τ ∗1 (x) = τ ∗2 (y).

Observe that the equivalence relation above, roughly speaking,
is saying that two cocycles (de�ned in di�erent coverings U and V)
are in the same class in Ȟ1(M,C∞(G)) if there exists a re�nement
W of both U and V such that the restrictions of this two cocycles
in W are cohomologus in H1(W , C∞(G)).

The following theorem highlight the connection between principal
�bre bundles and �ech cohomology.
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Theorem B.0.7. Let G be a Lie group and M a manifold. Then
we have the following isomorphism in the category of Set∗

γ :

{
principal bundles with structure group G
and base manifold M (up to isomorphism)

}
→ Ȟ1(M,C∞(G))

(B.9)

Proof. Let π : P → M be a principle bundle with structure group
G and base manifold M . We consider an atlas A = {(Uα, χα)} for
P . Then we know that the local trivializations lead to a 1-cocycle
{gαβ : Uα ∩ Uβ → G} (transition maps), which then corresponds to
a class [gαβ] in Ȟ1(U , C∞(G)). We de�ne γ(P ) as the class of [gαβ]
in Ȟ1(M,C∞(G)). Now we prove that the map is well de�ned, that
is to say it does not depend on the choices of di�erent, but isomor-
phic, bundles.
Let π : P → M and π̃ : P̃ → M be two principal �bre bun-
dles with structure group G, and base manifold M . Moreover, let
A = {(Uα, χα)} and Ã = {(Uα, χ̃α)} be two atlases for P and P̃ re-
spectively, with transition functions {gαβ} and {g̃αβ}. If f : P → P̃
is an isomorphism of principal bundles, we have seen in Remark
2.2.17 that there exists a family of smooth maps hα ∈ C∞(Uα, G),
such that

g̃αβ = hαgαβh
−1
β in Uα ∩ Uβ 6= ∅

This last equation shows that {gαβ} and {g̃αβ} are cohomologus in
Ȟ1(U , C∞(G)), and then they represent the same class in Ȟ1(M,C∞(G)).
Observe that the invariance of γ(P ) by isomorphism, implies also
invariance by di�erent choices of local parametrizations. We have
proved the map γ is well de�ned.
Now we prove that it is an isomorphism in the category of pointed
sets. Note that if two bundles P and P̃ are such that γ(P ) = γ(P̃ ),
then by de�nition of class in Ȟ1(M,C∞(G)), there exist two atlases
A = {(Uα, χα)} and Ã = {(Uα, χ̃α)}, such that the transition func-
tions are cohomologus in
Ȟ1(U , C∞(G)). Then we can easily build a isomorphism between P
and P̃ . This proves that γ is injective. Finally if g ∈ Ȟ1(M,C∞(G)),
then we choose a representative {gαβ} of g in some Ȟ1(U , C∞(G)),
and thanks to Proposition 2.2.18 there exists a bundle whose transi-
tion functions are exactly gαβ and so the map is also surjective. To
conclude, the image of the trivial bundle is the identity class, and
so γ is an isomorphism in the category of Set∗.
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