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Abstract

The work in this thesis aims to develop a method to estimate the density of

events in particle physics experiments, through a semiparametric mixture of a

known parametric “signal” density and an unknown nonparametric “background”

density. This method relies on an assumption of local smoothness of the back-

ground around the signal. The nonparametric component is estimated with a

local orthogonal polynomial expansion (LOrPE), the level of overall smoothness

of which is selected through a local version of least squares cross-validation.

The estimate of the background is constructed iteratively through weighting of

the original signal and background sample. The mixing proportion is chosen via

maximum penalized local likelihood and the penalization term is a representa-

tion of the local complexity. This term is obtained with a novel estimator of

the effective degrees of freedom, that relies on rejection sampling to localize the

variability of the data around the interest region. Simulation studies show how

the procedure operates, in its local version and in the global one, which is also

presented.
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Chapter 1

Introduction

Particle physics, or high-energy physics, heavily relies on statistical methods

to obtain accurate answers from the large amounts of data collected during

experiments, in order to test theories. When looking for a new physics process,

the data set will contain “signal” data, representing the process of interest (if

present), and “background” data, which are other processes that are not the

signal, but may mimic it.

The work in this thesis aims to develop a method to estimate the density

of events in particle physics experiments, through a semiparametric mixture

of a known parametric signal density and an unknown nonparametric back-

ground density. This chapter describes the setting of the kind of experiments

being considered and the scope of this thesis, while Chapter 2 details how the

semiparametric mixture is modeled.

It is assumed that the interest lies in estimating the signal fraction and the

density of the background around the signal region, so a method of localization

is introduced into the procedures utilized. The background density is estimated

using a version of LOrPE, a smoothing technique that uses local orthogonal

polynomial expansions, introduced in Chapter 3. The level of smoothness

introduced by LOrPE is determined through (localized) cross-validation and

the estimator is applied on weighted data. The weights are chosen iteratively in

such a way that the distribution of the weighted data represents the background

distribution rather than the total distribution. The method does not need
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a “pure background” sample to be used as training data, instead it directly

utilized the “signal-plus-background” data collected in the experiment. This is

quite common in high-energy physics settings, since it can be difficult to collect

control samples where the signal is absent, that also present the same kind of

background as the one found together with the signal. In order to correctly carry

out the estimation, an assumption of smoothness of the background around

the signal region is made and it is introduced through a complexity term, the

effective degrees of freedom, which penalizes the likelihood. This measure is

defined in Chapter 5 and a novel method of localizing it is also described. The

mixing proportion represents the fraction of signal events in the sample and

it is estimated through penalized maximum likelihood (Chapter 4). Chapter

6 displays a series of simulation studies which show how the method can be

applied in order to estimate the background density and choose the model with

the correct signal fraction, both in the global version of the algorithm for smooth

data and in its localized version for data that contains a non-signal peak. The

code used in this work is written in Python and C++ and relies on the software

NPStat for nonparametric statistical modeling (Volobouev, I. [44]).

1.1 Particle physics experiments

In high-energy physics experiments, the aim is to test a certain theory or model

by seeing whether empirical evidence supports it. In practice, this usually

means attempting to identify the presence of a new particle (search analysis),

or to measure its characteristics (measurement analysis). The processes that

generate these particles are often extremely rare, so large amounts of data need

to be collected in order to observe them. In the analysis, the observed particles

are produced in collision reactions called events. The signal is the process of

interest in the study, while the background is composed by all processes whose

final states mimic that of the signal, but are not in fact that process. The signal

events are usually a much smaller number than the background events and they

differ from the background with respect to one or more discriminating variables,

2



like the mass of the particles. The larger the difference in the distribution

function of this variable between the two types of events, the easier it is to

identify the signal. However, the distinction is often not immediately clear. For

this reason, and because of the quantity of data to be used, statistical analysis

is crucial in order to carry out inference correctly and obtain reliable answers

from the experiment.

The data may come from experiments at accelerators like the Large Hadron

Collider (LHC), where particles collide at high energy, and the energy from

these collisions converts into new states of matter, i.e. new particles. These

particles are then identified and measured by detectors, which send signals to

computers that collect and analyze the data. The events registered in this way

are “signal-plus-background”, as they include the particles we already expect to

see, and might potentially include new particles as well.

Figure 1.1 shows histograms representing the mass distribution of the (ex-

pected) background and signal events, for the discovery of the Higgs boson

(ATLAS Collaboration [6]).

The empirical data can be compared with Monte Carlo simulations of the

process as suggested by the current theory, generated by complex algorithms that

replicate collisions, scattering, decays and interactions between the particles and

the detector, and between the particles themselves. Since they are simulated

from the known theory, these events are “background-only”. If the experimenter

has an idea of what the signal is expected to look like, signal-plus-background

events may also be simulated and compared with the observed ones.

If the comparison results in a difference between the empirical evidence and

the simulations, we might have a signal of new physics. In practice it is a sign

that there are physics phenomena that are not predicted by the Standard Model,

the theory that is currently accepted as describing elementary particles and their

interactions. The Standard Model by itself is not in fact a complete theory. It

does not incorporate a quantum theory of gravitation and it fails to predict the

large scale structure of the universe that is heavily affected by the mysterious

constituents called, according to the current state of knowledge, “dark matter”
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Figure 1.1: Distribution of the invariant mass for selected candidate processes,
compared to the background and signal expectations.

and “dark energy”.

In statistical terms, the background-only hypothesis is the null hypothesis,

while the alternative is the signal-plus-background. If the null hypothesis is not

rejected, this means that there is no strong evidence of new physics. However,

Monte Carlo-driven models are subject to biases that can invalidate inference on

the signal, particularly when looking for new processes. This is due to the fact

that all background sources may not be modeled correctly, or the simulations

may not completely replicate how processes are registered by the detector.
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1.2 Objective

In high-energy physics analyses, the aim is, in practice, to search for a peak in

the invariant mass distribution which has been reconstructed for the particles

of interest. This search is based on the assumption that every selected event

corresponds to a process that generates the signal. In this way, if present, the

signal events will be distributed as a “Breit-Wigner” (or “Lorentz”) distribution

[9], which is a generalized form of the Cauchy distribution, introduced specifically

to describe resonance particle production. This shape may be also convoluted

with a Gaussian smearing to account for the finite experimental resolution

of the mass reconstruction. The background process can take any form, but

in most cases it will assume a rather smooth, featureless and monotonically

decreasing shape. In our work, we do not consider the general case of the true

shape that the reconstructed invariant mass distribution of a particle decay

may take when the natural width of the particle be non-negligible with respect

to the experimental resolution. In that general case the Lorenzian resonance

form convolved with a Gaussian resolution term becomes what is known as a

“Voigtian” distribution; little or nothing of the construction discussed in this

work would change if we were to consider the general case.

Since the variables of interest are numbers of events, the observations may

actually be modeled as realizations of a Poisson process (or a sum of two Poisson

processes with different rates, one for the signal and one for the background).

However, it is often the case that the overall rate of the process (i.e. the expected

total number of events) is unknown and unpredictable, as it can depend not only

on the physics of the phenomenon (which is governed by free parameters, such

as the signal cross section, or the branching fraction of the particle decay in the

studied final state, that are in fact usually the focus of the measurement), but

also on the efficiency of the detector. If this happens, the problem is not one of

estimation of the rates of these Poisson processes, but becomes one of density

estimation: the processes are normalized and they are modelled as probability

density functions, which is the case described in this work.
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The analysis considered in this setting is such that there is a region of the

discriminating variable (which is here taken as the invariant mass of a relevant

combination of observed particles) where the signal is expected to be. The

signal density is assumed, for sake of simplicity, to be a Gaussian centered

in this region, with known variance. The a priori parametric specification of

the signal shape is practically viable, as experiments are often carried out to

test specific theoretical considerations. The background, on the other hand, is

unknown, but we assume it contains a larger number of events at small values

of the mass and a smaller number as the mass increases, and that it is smooth.

This is in fact reasonable, due to the fact that the probability of collisions of

given energy E between constituents of the hadrons (quarks and gluons) is in

general a sharply decreasing function of E. The distribution of the data will thus

look like a smooth decreasing function, potentially with a “bump” indicating a

signal, as in Figure 1.2, which represents the CMS data relative to the Higgs

Boson discovery [12].

The aim of this work is to develop a statistical method that evaluates the

strength of the signal through the estimation of the density of the observed signal-

plus-background events with a mixture of two densities. The known parametric

density of the signal process is one component of the mixture, s(x). The other

component is the background density, b(x) and it is estimated nonparametrically,

since its shape can be much more complicated. For this reason, this work will

refer to “semiparametric” mixtures.

The mixing proportion, α, represents the signal strength, or relative number

of signal events.

p(x|α) = αs(x) + (1 − α)b(x)

Monte Carlo simulations may contain bias and modeling errors, so often they

do not provide the precision which is necessary for a two-component fit. For this

reason, in high-energy physics studies, the estimation the background density is,

in many cases, a process of trial and error [35], that eventually leads to a choice

between many different parametric models. There is often no prior knowledge

6



Figure 1.2: Mass distribution of the particles of interest in the Higgs Boson
discovery, from CMS data. The dots represent the observed events, the lines
represent the fitted background and signal, and the coloured bands represent
the ±1 and ±2 standard deviation uncertainties in the background estimate.
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about the specific parametric shape of the background distribution, and the

model is thus chosen by the researcher. This selection procedure implicitly

introduces subjective prior knowledge, which may vary from person to person

and for this reason it is not optimal. By using a nonparametric estimator, the

background is modelled in a very flexible way and the model is chosen on the

basis of the data, excluding subjectivity as much as possible.

A typical characteristic in the setup we are considering is that the support

is bounded [35], due to the researcher’s choice to constrain the analysis to a

certain interval of the spectrum. For univariate data, the boundary consists in

the two endpoints of an interval on the discriminating variable. For this reason,

the nonparametric estimator will need to account for the boundary problem

with some kind of correction. Chapter 3.1 describes how LOrPE implements

this correction.

In general, a semiparametric mixture with a completely arbitrary unknown

component is not identifiable [32]. In practice, if further assumptions are not

made, the signal fraction estimate (obtained, for example, through maximum

likelihood) would be 0 and the best model would be fully nonparametric, since

the nonparametric part is flexible and can also model the signal peak. This

procedure leads to an estimate of the total density, but does not differentiate

between signal and background densities and, crucially, does not estimate the

signal fraction correctly. The following chapter contains some previous work on

this kind of semiparametric mixtures from the literature and a description of

the approach taken in this thesis.
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Chapter 2

Semiparametric mixture

estimation

A symmetry assumption on the nonparametric component has been used in the

literature, like in Ma and Yao [27], and in Bordes et al. [8], who find “almost

everywhere” identifiability under moment and symmetry conditions. In the

case of particle physics events, this assumption is often violated, for example,

as previously mentioned, the background density can be expected (even if not

assumed or constrained) to be a decreasing function of the mass (Figure 1.2).

Al Mohamad and Boumahdaf [3] also state that methods that use this constraint

are of limited use when the proportion of the parametric part is either very

high or very low: the latter is the case for the signal fraction in this kind of

experiments. They thus suggest to incorporate prior linear constraints on the

unknown component, but, as stated above, objective prior information on the

background shape is usually not available.

Rolke and López [35] described a method for fitting this kind of semipara-

metric mixture specifically for high-energy physics data. Their method is only

applicable assuming that a sample of pure background events is available (e.g.

through a selection on the basis of a discriminating variable or via Monte Carlo

simulations). Hall and Zhou [20] prove that in fact models of the type considered

here are identifiable without further constraints when training data (in this

context, background-only) is available. However, the work of this thesis uses
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data that is generated by a signal-plus-background process (if the signal is, in

fact, present).

Robin et al. [34] considered an analogous mixture model and estimated the

unknown density through weighted kernel density estimation, with weights

which are proportional to the estimated probability that the data point was

generated by that distribution. The weights are updated iteratively, for a fixed

value of the mixing proportion parameter.

Xiang et al. [46] also estimated the mixing proportion by minimizing the

Hellinger distance between the estimated and population densities. This is done

iteratively by fixing the parameter and estimating the density, then viceversa.

Zhou and Yao [48] imposed a constraint of log-concavity of the unknown com-

ponent. The estimation is carried out by semiparametric maximum likelihood

through the EM algorithm.

For more work on density estimation through mixing parametric and non-

parametric components, also see Olkin and Spiegelman [30], where the mixing

proportion is an indicator of the goodness-of-fit of the parametric component

and Schuster and Yakowitz [38], who apply semiparametric mixture estimation

to flood frequency analysis.

2.1 Penalization and localization

In this thesis, the assumption imposed on the background in order to estimate it

correctly is one of smoothness (at least in proximity of the signal region). The

mixing proportion is thus chosen with penalized maximum likelihood, where

the penalization is introduced through a measure of complexity, the effective

degrees of freedom. Chapter 4 is dedicated to the selection of the value for the

mixing parameter and Chapter 5 to the choice of the measure of complexity.

Furthermore, many measures and methods utilized in the following work

can be localized. This means that more importance is given to a certain part

of the sample space (on the mass variable), i.e. the region where the signal is

expected to be. Indeed, the question of interest is about the signal process and,
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Figure 2.1: Invariant mass distribution for opposite-sign muon pairs, in the
mass region between 1.5 and 5 GeV/c2, with the result of the fit in blue.

for this reason, the distribution does not need to be estimated accurately on

the whole sample space, but only around the signal region. Figure 2.1, from

the ALICE experiment [4], shows the mass distribution for muon pairs, in a

relatively large mass region (between 1.5 and 5 GeV/c2). It can be seen that

for large mass values (with respect to the signal region), the distribution starts

to become unstable and unpredictable, due to phenomena which are usually

unrelated to the process of interest. For this reason, it is a good idea to not

include this data, or to give it less importance, when carrying out inference.

If we thus assume we are only interested in estimating the background around

the signal, and the background is only assumed to be smooth in that region,

a measure of local complexity based on the effective rank of the covariance
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matrix is sought (see paragraph 5.2.1). The level of overall smoothness of the

nonparametric estimate of the background can also be selected in a localized

way (see paragraph 3.2). Finally, in the localized case, the likelihood is also

adapted in order to not consider points which are far from the signal region (see

paragraph 4.1).
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Chapter 3

Background density estimation

3.1 Local Orthogonal Polynomial Expansion

The estimation of the background density is carried out nonparametrically,

as mentioned above. Nonparametric density estimation does not assume any

parametric structure for the model, which is instead defined by a function

that is not defined by a finite number of parameters. The specific estimator

used in this thesis is a local orthogonal polynomial expansion of the empirical

density function (or LOrPE). This method was developed by Amali Dassanayake

et al. [5] and it consists in generating a truncated orthogonal polynomial series

expansion for the empirical density function near each point where the density

estimate is desired.

The empirical density function is defined as

f̃EDF (x) =
1

n

n∑︂
i=1

δ(x − xi),

where δ(·) is the Dirac delta function.

An orthogonal polynomial series is a family of polynomials such that all

different polynomial in the sequence are orthogonal to each other under a certain

inner product [1].
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The estimate at a point xf it is obtained by computing

f̃LOrPE(x) =
M∑︂
k=0

ck(xf it, h)Pk

(︃
x − xf it

h

)︃
, (3.1)

where M is the maximum degree of the polynomials, h is the bandwidth

(both of these are tuning parameters that control the level of smoothness, their

selection is carried out through a leave-one-out cross-validation method, as

described in Chapter 3.2), Pk are polynomials, constructed such that they

satisfy a normalization condition from which the coefficients ck are then derived.

The condition is that of orthogonality, under the inner product with respect to

a kernel function K(·):

1

h

∫︂ b

a

Pj

(︃
x − xf it

h

)︃
Pk

(︃
x − xf it

h

)︃
K

(︃
x − xf it

h

)︃
dx = δjk , (3.2)

where δjk is the Kronecker delta. In this case the kernel function is a symmetric

Beta function with power parameter 4. This density is defined as:

f (x) = c(1 − x2)p,

where p is the power parameter and c is a normalization constant. Sufficiently

far away from the support boundaries, the normalization condition (equation

3.2) generates orthonormal Gegenbauer polynomials. A Gaussian kernel may

also be used instead of the symmetric Beta function and in this case Hermite

polynomials would be generated [5].

Negative density estimates are dealt with either by taking max{0, f̃LOrPE(xf it)}

as the proposed density estimated (after renormalization), or by using a correc-

tion described by Glad et al. [16].

It is also possible to generalize equation 3.1 through the introduction of a

“taper function” t(k) instead of a sharp cut-off at M terms, so that higher-order
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polynomials are gradually suppressed instead of not being included:

f̃LOrPE(x) =
∞∑︂
k=0

t(k)ck(xf it, h)Pk

(︃
x − xf it

h

)︃
.

This is used in the case where the optimal M is not an integer, so the taper

function is defined as:

t(k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if k ≤ m

√
M −m, if k = m + 1

0, if k ≥ m + 2,

where m is the largest integer such that m ≤ M (m = ⌊M ⌋).

LOrPE may be interpreted as a linear combination of kernel density estima-

tors, with different kernels; or as a localized version of orthogonal series density

estimation, where the polynomials depend on the point of estimation (xf it). The

problem of the boundary bias is approached by matching local moments of the

polynomials to sample values, using polynomial approximations. Note that, for

maximum degree of the polynomial equal to 0, LOrPE is equivalent to kernel

density estimation with a boundary kernel correction (also described by Scott

[39]).

Through simulation studies, Amali Dassanayake et al. [5] observed that, at

lower sample sizes, LOrPE has almost always lower Mean Square Integrated

Error (MISE) than kernel density estimation; also for larger sample sizes it

yields consistently minimum MISE for some distributions (it is still competitive

for others). Finally, since it allows for a taper function, it is more flexible

than kernel density estimation and particularly useful with sharp truncation at

boundaries.

3.2 Selection of the complexity level

The optimal level of smoothing (controlled for the LOrPE estimator by the

bandwidth and the maximum polynomial degree) is not attainable in practice,
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as it depends on the unknown density that we want to estimate. It can be chosen

with rules of thumb, plug-in methods, or with automatic selection methods such

as cross-validation, which is employed here. A model which is too smooth is

less affected by statistical fluctuations, but risks ignoring important structures

in the shape of the generating process, thus introducing a large amount of bias.

On the other hand, a model that is too complex risks overfitting, or having

too large variance. It will follow fluctuations closely and not perform well in

prediction problems. Cross-validation is a data-based method which reutilizes

the data in order to obtain a compromise between the bias and the variance

of the model, ensuring that the model is not too smooth nor too complex.

It consists in dividing the dataset into a certain number k of parts, or folds,

estimating the model on k − 1 folds, then evaluating it using the k-th fold.

The fold which is used as validation set is rotated so that each data point acts

both as estimation and validation. This method is used to compute a certain

criterion for each level of complexity. The complexity that optimizes it is then

selected. A global version of the Least Squares Cross-Validation criterion and a

localized one are explored in this chapter. These criteria are minimized in order

to obtain optimal values of the bandwidth and the maximum degree. In practice,

they are computed on a grid of degree and bandwidth values. For each degree

value a different range of bandwidths is explored, since a higher polynomial

degree will generally require a larger bandwidth. The factors with which this

range changes for each degree value are derived from theoretical considerations

using the Asymptotic Mean Integrated Squared Error (AMISE) of a plug-in

Gaussian distribution (Turlach et al. [43]). The actual extremes of the range of

bandwidth values scanned for each maximum degree level are reported in Table

3.1. However, these are only starting points and their optimization may benefit

the speed of the algorithm.

3.2.1 Least Squares Cross-Validation

The Least Squares Cross-Validation (LSCV) criterion is based on the Integrated

Squared Error (ISE) [39], which we want to minimize with respect to h (a
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Degree Minimum bandwidth Maximum bandwidth
0 0.1500 10.0000

0.25 0.1778 11.8555
0.5 0.2054 13.6930

0.75 0.2325 15.4995
1 0.2590 17.2672

1.25 0.2849 18.9917
1.5 0.3101 20.6713

1.75 0.3346 22.3052
2 0.3584 23.8941

2.25 0.3816 25.4391
2.5 0.4041 26.9417

2.75 0.4261 28.4034
3 0.4474 29.8263

3.25 0.4682 31.2119
3.5 0.4884 32.5622

3.75 0.5082 33.8789
4 0.5275 35.1636

Table 3.1: Lower and upper extremes of the bandwidth ranges scanned by the
algorithm, for each maximum polynomial degree.

smoothing parameter):

ISE(h) =

∫︂
[f̂ (x) − f (x)]2dx =

∫︂
f̂ (x)2dx +

∫︂
f (x)2dx − 2

∫︂
f̂ (x)f (x)dx.

Rudemo [37] used leave-one-out cross-validation (a number of folds equal

to the number of data points) to estimate this criterion for the kernel density

estimation of a histogram fit. He notes that the first term can be computed

from the estimate, while the second one is not affected by the smoothing and

the third one can be estimated with the aforementioned cross-validation.

∫︂
f̂ (x)f (x)dx = E [f̂ (X)] ≈ 1

n

n∑︂
i=1

f̂−i(xi)

The LSCV criterion is then

LSCV (h) =

∫︂
f̂ (x)2dx − 2

n

n∑︂
i=1

f̂−i(xi).

The integral in the first term is computed through numerical integration, with
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the Gauss-Legendre quadrature method. This method is a way of approximating

an integral with a weighted sum of values of the function of interest, evaluated

at the points corresponding to the roots of the n-th Legendre polynomial, where

n is the number of sample points (terms of the sum).

3.2.2 Weighted Least Squares Cross-Validation

The LSCV criterion may be weighted, in order to give more importance in the

choice of bandwidth to the points around the region of interest.

The weight function w(x) which is used in this thesis is a convolution of a

standard normal and a uniform distribution (Figure 3.1). A scale and location

transformation may be applied to this function, the parameters of which should

be such that the signal region is included in the “flat” part of the function and

coordinates corresponding to any potential non-signal structures in the tail are

given a very small or approximately null weight.

A location-scale family [31] is a parametric family of distributions with scale

parameter σ ≥ 0 and location parameter µ ∈ R for a univariate observation y

with density

p(y; µ, σ) =
1

σ
p0

(︃
y − µ

σ

)︃
,

where in this case p0(·) is the original Uniform-normal convolution.

The simulation studies in Chapter 6 show how the smaller the region with

non-null weights is, the smoother the overall model is, as more fluctuations are

excluded in the complexity choice.

A Gaussian function was initially considered for this purpose, for analogy

with the weights chosen for the localization of the effective degrees of freedom,

in paragraph 5.2.1. However, simulations and logical considerations suggest

that it is more appropriate to give full importance to the left-hand side part of

the distribution, which is assumed to contain a high density of events and not

as many unpredictable processes as the tail of the distribution.

Introducing the weight function w(x) for the localization of the criterion, a
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Figure 3.1: Convolution of a Uniform between −6.5 and 6.5, and a standard
normal, with scale transformation parameter equal to 0.4 and location transfor-
mation with parameter 0.8.
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Weighted ISE is defined:

WISE(h) =

∫︂
[f̂ (x) − f (x)]2w(x)dx

=

∫︂
f̂ (x)2w(x)dx +

∫︂
f (x)2w(x)dx − 2

∫︂
f̂ (x)f (x)w(x)dx

and thus a Weighted LSCV:

WLSCV (h) =

∫︂
f̂ (x)2w(x)dx − 2

n

n∑︂
i=1

wif̂−i(xi),

where wi = w(xi).

If any kind of weighting of the sample is to be used as well with weights ws
i

(e.g. the sampling function weights for the localization of the effective degrees

of freedom or the weights introduced for the solution of the Fredholm equation

in Chapter 3.3), the WLSCV criterion is computed in the following way:

WLSCV (h) =

∫︂
f̂ (x)2w(x)dx − 2∑︁

ws
i

n∑︂
i=1

ws
iwif̂−i(xi),

where ws
i = ws(xi); the leave-one-out estimate

∑︁n
i=1 f̂−i(xi) and the regular

estimate f̂ (x) are computed on the weighted sample.

Loader [26] similarly introduced a local cross-validation criterion based on

the application of weights to the Mean Squared Error for local regression.

3.3 Iterative algorithm for the point weights

The LOrPE smoother is used to nonparametrically estimate the background

density from the data. Since the data we have is signal-plus-background and we

do not have a pure background sample, we do not have the empirical density

function of the background. However, the latter could be approximated by

applying weights to the original sample, which are equal to the ratio of the

background density and the total (mixture) density evaluated at the sample

points. The empirical density function is then computed on the weighted sample:
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EDFb(x|α) =
c

n

n∑︂
i=1

b(x)

αs(x) + (1 − α)b(x)
δ(x − xi),

where δ(·) is the Dirac delta and c is a normalization constant.

Of course, the background density is not known (nor is the total density), so

we will substitute it with an estimate:

EDFˆ b(x|α) =
c

n

n∑︂
i=1

b̂(x)

αs(x) + (1 − α)b̂(x)
δ(x − xi).

The mixing proportion α is also unknown. It will be substituted with a

plug-in value, and the whole procedure will be repeated for a grid of possible

values of α. The best model between these will be chosen with the penalized

likelihood method (Chapter 4).

The LOrPE smoother, which will be used to estimate the background, can

be represented as an operator applied on the empirical density function, in the

general way:

f̂LOrPE = AM,h(EDF (x)),

where M and h are the smoothing parameters, respectively the maximum degree

of the polynomials and the bandwidth.

We will thus apply LOrPE to the estimated empirical density function of

the background, an obtain, in turn, an estimate of the background.

b̂(x|α) = AM,h(EDFˆ b(x|α))

b̂(x|α) = AM,h

(︄
c

n

n∑︂
i=1

b̂(x)

αs(x) + (1 − α)b̂(x)
δ(x − xi)

)︄
. (3.3)

Equation 3.3 is a nonlinear kind of Fredholm equation. Fredholm equations are

generally such that an operator is applied to a function, and another function is

obtained. In this case operator is quite complicated, as it includes smoothing

through LOrPE, discretization and sample weights. Nevertheless, the equation

can be solved iteratively, since the solution function and the function in the

operator are the same (note that b̂ is present on both sides of the equation).
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The iterative procedure allows one to obtain, at convergence, a set of weights.

Applying LOrPE on the sample, modulated by the weights obtained through

this process, yields an estimate of the background.

The iterative algorithm consists in starting from weights chosen more or

less arbitrarily. In simulations, “oracle” weights based on the true generating

densities and the true α can be used as a starting point, to make convergence

faster. These weights are applied to the sample, cross-validation is run on the

weighted sample as described in paragraph 3.2, leading to a choice of maximum

degree and bandwidth and an estimate of the background is obtained through

LOrPE. This estimate is then substituted into the weight formula, and the

process is repeated with the new weights. Convergence is reached at iteration k

when the following condition is met:

(︄
1∑︁
vi

n∑︂
i=1

vi

⃓⃓⃓⃓
2

ωi,k − ωi,k−1

|ωi,k | + |ωi,k−1| + 1

⃓⃓⃓⃓q)︄1/q

< ϵ

where vi are localizing weights (they may be, for example, the same weights used

for the cross-validation localization); q > 0 is a parameter which is chosen a

priori (in this work, the value 1 is used); ϵ is a tolerance parameter (10−6 in this

work); ωi,k is the weight to be solved for in the iterative process, corresponding

to the i-th coordinate, in the k-th iteration:

ωi,k =
b̂
k
(xi)

αs(xi) + (1 − α)b̂
k
(xi)

,

where b̂
k
(x) is the density estimate of the background obtained in the k-th

iteration.

The convergence criterion is also localized, as the aim is not necessarily to

estimate the background accurately outside of the interest region and thus it is

not expected for the algorithm to converge on the entire support. In general,

the convergence of the iterations is not guaranteed. Iterations always converge

for the examples used in this thesis, but theoretical proof of the convergence

could be a topic of future research.
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Chapter 4

Choice of the mixing proportion

Once the background is estimated for a grid of values of the mixing proportion,

since the signal is assumed to be known, the total density from the semipara-

metric mixture p(x|α) can be estimated for each α, obtaining p̂(x|α) and, from

it, the empirical likelihood function

L(α) =
n∏︂

i=1

p̂i(α),

where p̂i(α) = p̂(xi|α) is the density estimate at xi, i = 1, . . . , n.

The log-likelihood function is thus

l(α) =
n∑︂

i=1

log p̂i(α).

As mentioned in Chapter 1.2, the estimation of α cannot be carried out

correctly through the maximization of the likelihood, as a model of this kind is

not identifiable, and a possible solution is to introduce a penalty term into the

likelihood, which will account for the complexity of the model.

As stated by Cole et al. [13], the penalized log-likelihood is the log-likelihood

with a penalty subtracted from it that will pull or shrink the final estimates away

from the maximum likelihood estimates, toward values that have some grounding

in information outside of the likelihood as good guesses for the parameters.

The idea behind penalizing the complexity here is based on an assumption of
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smoothness of the background in the proximity of the signal region, and on the

fact that, if the value of α is close to the true signal fraction, the estimate of the

background will be smooth, because it does not need to compensate a wrong

value of α with a peak (if the assumed α is smaller than the true one; Figure

6.3, left) or with a dip (if the assumed α is larger than the true one; Figure 6.3,

right).

The penalized log-likelihood, to be maximized in order to get the final

estimate of the signal fraction (and thus the density estimate) is

ld(α) =
n∑︂

i=1

log p̂i(α) − γ · d,

where d is a measure of complexity based on the effective rank of the covariance

matrix of the bootstrap density, which will be shown in Chapter 5, and γ is

a parameter that defines how much the complexity should influence the final

estimate. In this thesis, the penalization parameter γ is chosen empirically and

the simulation studies show that it is possible to find a value that returns a

correct estimate of α.

Further research may include the search of a value for γ based on theoretical

considerations.

Good and Gaskins [18] introduced the idea of penalizing the log-likelihood for

roughness in nonparametric density estimation. Their approach is proposed with

a Bayesian interpretation, which introduces information on how much better one

density estimate is than another one. They also describe some conditions under

which the estimate is consistent. Akaike [2] formulated the Akaike Information

Criterion, which uses a complexity-based penalization of the likelihood for model

selection.

The choice of α here is treated as a model selection problem, however

Silverman [41] describes maximum penalized likelihood estimation in a formal

way, Nong et al. [29] carry out hypothesis tests with a penalized likelihood

approach, while Good and Gaskins [19] specifically use likelihood penalization

for “bump-hunting”. Chen [11] applied the penalized likelihood method to finite
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mixture models and was able to obtain formal likelihood ratio tests.

4.1 Local likelihood

If localized cross-validation is used, the fit will not be required to be accurate

on the entire sample space, thus likelihood also needs to be localized. Localizing

weights may thus applied to the likelihood function in order to obtain a kind of

composite likelihood function [25]:

cL(α) =
n∏︂

i=1

(p̂i(α))
wi ,

the weights wi are, again, coordinate-based and they may be the same weights

used for the localization of the cross-validation criterion, or the convergence of

the Fredholm equation.

The log-likelihood function is

cl(α) =
n∑︂

i=1

wi log p̂i(α).

The penalization is then applied in the same way as the global version:

cld(α) =
n∑︂

i=1

wi log p̂i(α) − γ · d,

where in this case d is a localized measure of complexity, as described in

paragraph 5.2.1.

Loader [26] and Tibshirani and Hastie [42] provided detailed descriptions of

local likelihood, also for density estimation. Wang et al. [45] proved consistency,

asymptotic normality and other important properties of the maximum weighted

likelihood estimators.
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Chapter 5

Effective degrees of freedom

In parametric statistics, the complexity of a model is represented by the number

of estimated parameters. In a nonparametric or semiparametric setting, this

concept is not as obvious, so the number of parameters (which is not defined, of

course) is usually replaced by that of “effective degrees of freedom”. Effective

degrees of freedom for a linear smoother Sh, such that ŷ = Shy (where h is a

smoothing parameter) are defined by Buja et al. [10] as tr(Sh), i.e. the trace of

the smoothing matrix (or hat matrix). Other definitions from the same authors

are tr(ShS
T
h ) and n − tr(2Sh − ShS

T
h ). These formulations are all motivated by

analogies with the linear regression model and can be extended to nonlinear

smoothers, although they may, in this case, depend on the distribution of the

data [21]. In general, the number of effective degrees of freedom is a quantity

that is related to the complexity or dimensionality of the system at hand, so in

this way also to the degree of smoothing given by the operator.

This concept has been studied extensively for nonparametric regression, not

as much for nonparametric density estimation.

McCloud and Parmeter [28] state that the trace of the usual smoothing matrix

is not ideal to determine effective degrees of freedom in density estimation and

they suggest transforming the density estimator (in their case, a kernel density

estimator) to resemble a regression estimator in order to obtain a new kind

of hat matrix, the trace of which is used to estimate the effective degrees of

freedom.
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Barron and Cover [7] used the concept of “description length” in order to

carry out consistent density estimation.

Gao and Jojic [15] computed effective degrees of freedom for neural networks

through a Monte Carlo method and used them in model selection problems.

Ye [47] introduced “generalized degrees of freedom”, which are applicable to

complex modeling procedures, like the ones utilized in data mining, and can

be used as measures of complexity. The definition of this quantity is based on

the sum of the average sensitivities of the fitted values to perturbation in the

observed value. Hauenstein and Dormann [22] reviewed the use of generalized

degrees of freedom, tested it and compared it with cross-validation.

During the development of this thesis, several methods of estimating the

level of smoothing for the density estimation of the background were considered

and tested.

5.1 Binned data

In an early stage of the studies reported here, data binned into a histogram was

considered. Since smoothing tends to lower variance, an estimator of complexity

was first developed as

dfratio =
K∑︂
i=1

σ2
a,i

σ2
b,i

,

where K is the number of bins, σ2
a,i is the variance in bin i after smoothing, σ2

b,i

is the variance in bin i before smoothing. The reasoning behind this estimator

is that the more smoothing there is, the lower the complexity is and the lower

the ratio of the variance after and before smoothing is, so this quantity should

diminish as the amount of smoothing increases.

Since the sample size of the simulated data was itself generated from a

Poisson distribution, the number of observations in each bin is also distributed

as a Poisson density, so the variance before smoothing corresponds to the number

of entries in that bin. The variance after smoothing is calculated in the following
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way:

ŷ = Shy

V ar(ŷ) = ShV ar(y)S
T
h .

In the case of simulations, the number of entries in the bins may be the

expected (according to the distribution function of the data-generating process)

or observed one: the quantities obtained in these two ways were both considered

and analyzed. They are analogous to, respectively, the Pearson and Neyman

Chi-squared measures for goodness of fit analyses, often used in high-energy

physics [24]. For this reason, we will refer to these measures with dfP and dfN ,

using the initials of Pearson and Neyman; and define them as follows:

dfP =
K∑︂
i=1

[ShNS
T
h ]ii

Nii

,

dfN =
K∑︂
i=1

[ShN̂S
T
h ]ii

N̂ ii

,

where Sh is the smoothing matrix, N is a diagonal matrix, with the expected

number of entries in each bin as diagonal elements, N̂ is an analogous matrix

with observed values instead of expected ones. Note that, for large sample sizes,

these two measures tend to the same values.

Given the previous considerations on the decreasing shape of the background

density, the data used to study the behaviour of the estimators of complexity is

generated from a truncated exponential distribution (unless specified otherwise),

with density function

fY (y|λ, b) =
e−y/λ/λ

1 − e−b/λ
,

where b is the upper limit of the distribution, the lower limit is 0 and λ is a

parameter which corresponds to the mean in the non-truncated version of the

distribution.

For data generated from an exponential with λ = 3, truncated between 0 and

5, the dependence of these measures on the bandwidth of the LOrPE smoother is
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Figure 5.1: Dependence of dfP (left) and dfN (right) on the bandwidth, for an
exponential with λ = 3, truncated between 0 and 5. The degree is fixed at 3.

Figure 5.2: Dependence of dfP (left) and dfN (right) on the degree, for an
exponential with λ = 3, truncated between 0 and 5. The bandwidth is fixed at
3.

decreasing (Figure 5.1); and it is increasing with the degree of the polynomials

used in the smoother (Figure 5.2), which is in line with what is expected from

the estimators.

However, if λ is smaller, these measures tend to actually be larger for very

high levels of smoothing (large bandwidths).

This phenomenon is interpreted as being due to the fact that if λ is small,

then the density decays quickly towards 0 and so the bins in the tail have a

very small number of entries compared to the bins near 0. With higher levels of

smoothing, this curve becomes more flattened and the number of entries in the

tail bins actually increases, and so does the variance. If the difference between

the bins is large, this effect dominates (Figure 5.3).

Since the level of smoothing is related to the covariance between the value of

the estimated density at different points, another way of estimating the density
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Figure 5.3: Dependence of dfP (left) and dfN (right) on the bandwidth, for an
exponential with λ = 1, truncated between 0 and 5. The degree is fixed at 3.
The bandwidth axis is in the logarithmic scale in order to visually highlight the
non-monotonicity of the plots.

is through the covariance matrix of the estimated density. In the binned case,

this matrix is ShNS
T
h .

This is analogous to estimating the “effective dimensionality” of a set of

variables. The structure of a set of variables, as described by the covariance

(or correlation) matrix, can in fact be summarized by an equivalent number

of orthogonal dimensions, which quantifies the effective dimensionality of the

original variables. This is closely tied to the concept of information entropy.

In information theory, entropy may be defined intuitively as the information

content of a probability distribution [14].

Thus, in order to obtain a single value that estimates the overall level of

complexity, we considered the use of the entropy-based effective rank (Roy and

Vetterli [36]), which is defined as follows.

Assume the covariance matrix has size K (i.e. the number of bins in the

discretized density) and let σ = (σ1, . . . , σK) be its singular values. Take

pi = σi/||σ||1, i = 1, . . . , K ;

where ||σ||1 =
∑︁K

i=1 |σi| is the L1 norm. Then

H(p1, . . . , pK) = −
K∑︂
i=1

pi log pi
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is the Shannon entropy [40].

An indicator of effective complexity is thus the entropy-based effective rank

of the covariance matrix,

dfer = erank(C) = eH(p1 ,...,pK ).

Good [17] also used entropy as a roughness penalty, in discrete probability

function estimation.

Another measure that was considered is a trace-based effective rank:

dftr =

∑︁K
i=1 λi

λ1

, (5.1)

where λi is the i-th eigenvalue of the covariance matrix and λ1 is the largest

one.

Del Giudice [14] reviews other measures of effective complexity, which have

been also considered here in an exploratory analysis, the results of which are

reported in the Appendix, in Section A.

5.2 Unbinned data

The final objective of this study is to work on a non-discretized density function,

as the mass is in fact a continuous variable. In this case, it is not possible to

obtain the covariance matrix analytically, as there are no bins the distribution

of which may be known.

The covariance is thus estimated through the bootstrap method, which is

implemented in the following way.

1. Resample the original data (real or simulated);

2. apply the smoother on this data and obtain a vector of values of the

estimated density corresponding to a grid of coordinates of length K ;

3. repeat this a large number of times, always on the same grid;
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4. compute the K × K variance and covariance matrix for the estimated

densities.

Once the covariance matrix is obtained, a measure of the effective degrees of

freedom can be obtained through the estimators introduced above.

It can be seen that the complexity computed from the bootstrap estimate of

the covariance matrix are equivalent to the ones computed from the analytical

covariance matrix: Figure 5.4 shows, for different values of the bandwidth,

the entropy-based and the trace-based effective ranks for the two methods of

computing the covariance, both on binned data, and the bootstrap estimate for

the unbinned case. For large sample sizes and a very fine grid of coordinates

or finely binned data, these measures are expected to be a representation of

the true complexity of the model and to converge to the same values in the

binned and unbinned cases. In fact, the figure represents these measures with

50 bins and they are the same as their unbinned versions. For an increasing

number of bins, the number of effective degrees of freedom from the bootstrap

covariance on binned data converges to the unbinned measure (Figure 5.5). For

the comparison, in the unbinned case the grid of coordinates is chosen so that

the points at which the estimated density is evaluated correspond to the centers

of the bins of the binned case.

5.2.1 Local effective degrees of freedom

The effective degrees of freedom are localized through the use of a “Gaussian

dip” sampling function d(x) (between 0 and 1) (Figure 5.6). It is such that the

center of its “dip” corresponds to the center of the region of interest and defined

as:

d(x) =
(︂
1 + a · e−

1
2 (

x−µ
σ )

2)︂−1

,

where µ is the location of the dip, σ > 0 and a > 0 represents the “amplitude”

of the dip.
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Figure 5.4: Dependence of dfer , dftr on the bandwidth, as computed from the
analytical covariance matrix on binned data, with 50 bins (purple, brown); from
the bootstrap estimate on binned data (blue, orange); from the bootstrap esti-
mate on unbinned data (green, red). The degree parameter is 0, the bandwidth
varies around the one chosen with Cross-Validation. Note that the bootstrap
measures for binned and unbinned data overlap.
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Figure 5.5: Dependence of dfer , dftr from the bootstrap covariance matrix on
the number of bins, compared to the unbinned version. The degree parameter
is 0, the bandwidth is chosen via LSCV.
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This function can be used to generate weighted random samples from some

density f (x) as follows.

1. Generate a random number x distributed with density f (x);

2. calculate d(x);

3. generate a random number r distributed uniformly in [0, 1];

4. accept x if r ≤ d(x) and reject otherwise. Assign the weight d(x)−1 to the

accepted point;

5. repeat previous steps until some predefined number of points, n, is ac-

cepted.

This procedure is equivalent to generating n random points xi i.i.d. with

density ρ(x) = d(x)f (x)∫︁ b
a d(y)f (y)dy

, and assigning weights d(xi)
−1 to these points. These

weights need to be assigned as less points will be accepted in the dip region and

so they need to weigh more in order to maintain the original shape of the target

function.

The method described above can not only be used to sample from any

continuous function f (x), but from the empirical density function of the data

as well: sampling from it through this sampling function generates a weighted

resampled set of the original data. By taking the effective rank of the covariance

matrix of the smoothed densities computed on the weighted sample, an estimate

of a kind of localized effective degrees of freedom may be obtained. The intuition

behind this method relies on the fact that this weighted resampling causes less

data points to be accepted in the region of interest so, when repeating the

resampling many times (as it is done when computing the bootstrap variance

and covariance matrix), the resampled data sets will have more variability in

that region. More variability translates in higher complexity, viceversa in regions

far from the coordinates of interest. For this reason the method is explored as a

way of localizing the measure of model complexity.

Section C of the Appendix contains a series of plots, showing the dependence

of the global and local effective degrees of freedom, obtained as described above,
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Figure 5.6: Gaussian dip sampling function with λ = 2, standard deviation =
0.2 and amplitude = 10.
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on the bandwidth and maximum degree of the LOrPE operator. The plots also

represent the behaviour of these measures when the underlying distribution of

the simulated data and the parameters of the localizing Gaussian dip function

vary.

The exploration of other methods of localization of the effective degrees of

freedom is reported in the appendix, in Section B.
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Chapter 6

Simulation studies

This chapter presents some simulation studies, which encompass different cases

to which the procedure for the semiparametric density estimation may be

applied.

6.1 Global procedure

The first case considered is one in which the background density is an exponential

with λ equal to 2, truncated between 0 and 5.

The signal is assumed to have a Gaussian shape with mean equal to 2 and

standard deviation equal to 0.1. The total number of simulated signal-plus-

background observations is a realization of a Poisson distribution with mean

5000. The signal fraction is 0.05.

Let us first apply the global procedure, scanning a grid of values for α between

0 and 0.1, with a 0.005 step. Small value of the signal fraction are scanned as this

is in line with the usual rarity of signal processes in particle physics experiments.

The model chosen by the algorithm, using the log-likelihood penalized with

the entropy-based effective rank of the covariance matrix, is in fact the one

where the mixing proportion is 0.05, which is the true signal fraction (Figure

6.1, left). Simulations show that this measure of complexity is more reliable

than the trace-based one, so it will be used in the following examples. Plotting

the estimated and true densities over the histogram also shows how the density
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of the background (and thus the total density, since the signal is known) is

correctly estimated (Figure 6.2). Since this is the global version of the procedure,

and the background is overall smooth, the density is estimated well on the entire

support. On the other hand, Figure 6.1 (right) shows the likelihood of each α,

and it illustrates how the semiparametric mixture is not identifiable without

considering the smoothness assumption: the maximum-likelihood value of α

is, in fact, 0. The algorithms scans maximum degree values between 0 and 4,

with a 0.25 step. Non-integer values of the degree represent the use of a taper

function, mentioned in paragraph 3.1. The bandwidth values which are scanned

by the cross-validation algorithm are reported in Table 3.1. The bandwidth

and degree chosen by the localized cross-validation are such that the overall

complexity is lower when the signal fraction is correct, since the background

does not need to compensate for the incorrectly modeled signal peak (see Figure

6.1 for the density estimate with assumed α = 0.05). If the assumed α is smaller

than 0.05, the complexity is larger, to allow for the background to model a

peak to be added to the signal one. For α larger than 0.05, the bandwidth also

allows for larger complexity, and the background models a dip to compensate

for the assumed signal. The latter is not in practice a problem in the setting

considered here, as we are interested in signals which are very small. Figure 6.3

displays this effect, with assumed α = 0.005 (left) and 0.1 (right). Figure 6.4

shows how the effective degrees of freedom are in fact smaller around the true

signal fraction. 500 resampling iterations are used for the computation of the

bootstrap covariance matrix of the estimated densities, and they are computed

on a grid of 500 coordinates. The value for γ , the penalization parameter which

decides the weight given to the complexity, is here chosen empirically through

simulations and it is 2.

If the signal fraction is instead 0.03, the correct value is again chosen and

the density estimate is very accurate (Figure 6.5).

The algorithm also identifies the absence of a signal, and selects α = 0 in

this case (Figure 6.6).

Consider now a 80− 20 mixture of a Beta distribution with parameters 1 and
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3 and a Uniform between 0 and 1 as background distribution, and a Gaussian

signal with 0.3 and standard deviation 0.02. The signal fraction is α = 0.03.

The chosen α is 0.035 (Figure 6.7, left) which is still quite close to the correct

one. See Figure 6.7 (right) for the fit to the histogram.

Let us now introduce a nuisance structure in the tail of the distribution,

by using, as a background density, a 95 − 5 mixture of an exponential with

λ = 2, truncated between 0 and 5, and a Gaussian with mean 4.5 and standard

deviation 0.05, truncated between 0 and 5. This results in a high, narrow peak at

the tail of the distribution. This corresponds to a structure that has a different

scale than the ones associated with the background near the signal, so it may

not be effectively estimated by a model with the same smoothness level. Note

that the nuisance may also consist in smaller fluctuations. The signal is here

again a Gaussian with mean equal to 2 and standard deviation equal to 0.1.

The signal fraction is 0.05.

This extreme case of severe non-smoothness illustrates precisely why lo-

calization may be necessary, as a potential element of nuisance is the reason

why the localization method developed in this thesis is useful. Indeed, the

non-localized procedure fails in this case, since the estimation of complexity also

takes into consideration the peak at the tail, which is not of interest. Indeed,

if the cross-validation takes into consideration the nuisance in the tail, since

the bandwidth is fixed on the entire support, it chooses an optimal complexity

level which is too high for the smooth background near the signal, so the model

chosen is not smooth. Furthermore, the maximum penalized likelihood signal

fraction is 0.035, not the correct 0.05 (Figure 6.8). The complexity, estimated

by the effective degrees of freedom, does not only take into account the peak or

dip in the signal region, but also the non-signal peak, so it is not an accurate

penalization for the choice of α (Figure 6.9).
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Figure 6.1: Dependence of the penalized likelihood (left), and non-penalized
likelihood (right) on the assumed signal fraction, for the smooth truncated
exponential background, when the true signal fraction is 0.05.

Figure 6.2: Histogram of the data (black), true total density (green) and esti-
mated densities using the maximum penalized likelihood value of α (background
density in red, total density in blue), for the smooth truncated exponential
background, when the true signal fraction is 0.05.
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Figure 6.3: Histogram of the data (black), true total density (green) and
estimated densities using α = 0.005 (left) and α = 0.1 (left), for the smooth
truncated exponential background, when the true signal fraction is 0.05.

Figure 6.4: Dependence of the effective degrees of freedom on the assumed
signal fraction, for the smooth truncated exponential background, when the
true signal fraction is 0.05.
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Figure 6.5: Dependence of the penalized likelihood on the assumed signal
fraction, for the smooth truncated exponential background, when the true signal
fraction is 0.03 (left); true and estimated densities with the maximum penalized
likelihood value of α (right).

Figure 6.6: Dependence of the penalized likelihood on the assumed signal
fraction, for the smooth truncated exponential background, when the true signal
fraction is 0 (left); true and estimated densities with the maximum penalized
likelihood value of α (right).
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Figure 6.7: Dependence of the penalized likelihood on the assumed signal
fraction, for the Beta-Uniform mixture background, when the true signal fraction
is 0.03 (left); true and estimated densities with the maximum penalized likelihood
value of α (right).

Figure 6.8: Dependence of the penalized global likelihood on the assumed signal
fraction, for the truncated exponential background with nuisance, when the true
signal fraction is 0.05 (left); true and estimated densities with the maximum
penalized likelihood value of α (right).
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Figure 6.9: Dependence of the effective degrees of freedom (entropy-based,
left and trace-based, right) on the assumed signal fraction, for the truncated
exponential background with nuisance, when the true signal fraction is 0.05.

6.2 Local procedure

The simulations in this paragraph showcase how the introduction of localization

allows the method to work correctly and accurately also on data that contains

structures with different scales from the signal. In this case, since the algorithm

can be slower when localized, a fixed maximum polynomial degree equal to 0 was

used. This means using kernel density estimation with a boundary correction,

as described in paragraph 3.1. The localization of the bandwidth choice makes

the goodness-of-fit of the model worse far from the signal region, but, as stated

before, this is not a problem of interest. The penalization using the localized

effective degrees of freedom also only penalizes the model which contains a peak

or a dip in the background density in the signal region, and ignores irregularities

outside of it. The dependence of the effective degrees of freedom once again

has a minimum at the true signal fraction (Figure 6.11, left). Since the degree

is fixed, this shape is also reflected in the bandwidth choice for each assumed

α (Figure 6.11, right). This behaviour allows the density to be estimated

correctly around the signal (Figure 6.12, left) and the mixing proportion to be

chosen appropriately, 0.05 in this case (Figure 6.12, right). Note that, without

penalization, the maximum local likelihood estimate of α is 0 (Figure 6.13).

In the case just described, the sampling function for the computation of the
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localized effective degrees of freedom is a Gaussian dip centered on 2, with

σ = 0.2 and amplitude equal to 10. A location transformation with parameter

0.8 is applied to the localizing function (Figure 6.10, left). A transformation

with parameter 1.5 was also explored (Figure 6.10, right), and the algorithm

still chose the correct signal fraction (Figure 6.14, left), however the function

seemed to give too much importance to a region with fluctuations and thus the

bandwidth choice was small, and the estimate not very smooth (Figure 6.14,

right).

If the true signal fraction is instead 0, so there is no signal fraction, the model

also chooses the correct background density. For the truncated exponential

background with a nuisance element at the tail, the smoothest model estimate

of α is, correctly, 0 (Figure 6.15, left), and the density estimate is accurate

(Figure 6.15, right).

The exemplifying cases considered can, of course, be treated by simple

truncation, so that the non-signal structure is not included in the support.

However, in practice, contamination might not be this obvious and it may not

be possible to find a suitable margin for truncation.

These simulations have been run using “oracle” weights for faster convergence

(as mentioned in paragraph 3.3), but the procedure yields the same results if

starting from an arbitrary density as a first approximation of the background.

For example, by starting the iterations with a uniform approximation of the

background density instead of the correct truncated exponential with nuisance,

the model estimate is equally as accurate (Figure 6.16, right) and the chosen α

is correct (0.05 in this case, see Figure 6.16, left).

6.3 Comparison with the parametric fit

Let us now consider the first case of the truncated exponential background

with λ = 2 and signal fraction equal to 0.05. If we assume the shape of the

background density to be known, a fully parametric fit (obtained by maximizing

the likelihood with the optimization tool Minuit [23]) yields a correct estimate

46



Figure 6.10: Convolution of a Uniform between −6.5 and 6.5, and a standard
normal, with scale transformation parameter equal to 0.4 and location trans-
formation with parameter 0.8 (left) and 1.5 (right), plotted in red over the
histogram of the truncated exponential with nuisance simulated data, in black.
In the plots, the weight function is multiplied by a factor that depends on the
scale of the histogram, for sake of visual clarity.

Figure 6.11: Dependence of the localized entropy-based effective degrees of
freedom (left) and localized cross-validation bandwidth (right) on the assumed
signal fraction, for the truncated exponential with nuisance background, when
the true signal fraction is 0.05.
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Figure 6.12: Dependence of the penalized local likelihood on the assumed signal
fraction, for the truncated exponential with nuisance, when the true signal
fraction is 0.05 (left); true and estimated densities with the maximum penalized
local likelihood value of α (right).

Figure 6.13: Dependence of the non-penalized local likelihood on the assumed
signal fraction, for the truncated exponential with nuisance, when the true
signal fraction is 0.05.
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Figure 6.14: Dependence of the penalized local likelihood on the assumed signal
fraction, for the truncated exponential with nuisance, when the true signal
fraction is 0.05 (left); true and estimated densities with the maximum penalized
local likelihood value of α (right), with 1.5 location parameter for the localizing
function.

Figure 6.15: Dependence of the penalized local likelihood on the assumed signal
fraction, for the truncated exponential with nuisance, when the true signal
fraction is 0 (left); true and estimated densities with the maximum penalized
local likelihood value of α (right).
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Figure 6.16: Dependence of the penalized local likelihood on the assumed signal
fraction, for the truncated exponential with nuisance, when the true signal
fraction is 0.05 (left); true and estimated densities with the maximum penalized
local likelihood value of α (right). The weights are obtained by starting from a
Uniform approximation of the background.

of the density (Figure 6.17), with an estimated λ equal to 1.928 ± 0.044. The

estimate of α is 0.058 ± 0.005. This method allows one to obtain the level of

uncertainty of the estimates and thus to carry out statistical tests and compute

confidence intervals on α. This is not yet implemented in the semiparametric

version, where the choice of α is treated as a model selection problem, however

it may be introduced during future research. Some previous work on the

formalization of penalized likelihood and local likelihood estimation is cited in

Chapter 4.

Furthermore, the shape of the background is not assumed to be known,

as is often the case in practice. If we thus assume an incorrect background

density (while still considering the signal to be known), the performance of the

parametric method is worse than the semiparametric one. If we use a Gaussian

with mean 0 and unknown standard deviation, the estimated signal fraction

is 0.039 ± 0.005, which is quite far from the true one, 0.05, and the fit is not

accurate (Figure 6.18). The fully parametric fit is thus correct if the model

chosen is correct, but it is not robust with respect to model misspecification.
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Figure 6.17: True (green) and estimated (blue) total densities with the para-
metric method, by assuming the correct parametric specification, in the smooth
truncated exponential background case.
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Figure 6.18: True (green) and estimated (blue) total densities with the paramet-
ric method, by assuming the incorrect parametric specification (half normal),
in the smooth truncated exponential background case.
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Chapter 7

Conclusions

The method developed in this thesis allows the density of the background events

to be estimated effectively around a region of interest, through an iterative

method that uses signal-plus-background data to nonparametrically estimate

the sole background density. The estimate is produced using Local Orthogonal

Polynomial Expansions and the complexity of this estimator is chosen using a

(potentially localized) cross-validation criterion. The total density is estimated

with a mixture of a known parametric signal and the nonparametric estimate

of the background, its mixing proportion parameter is chosen via maximum

penalized (local) likelihood. The penalization term accounts for the assumption

of background smoothness and it is based on a estimator of the entropy of the

covariance matrix, which is computed on resampled data. The data may be

resampled using an algorithm that localizes the complexity around the signal

region. The method is empirically shown to work in its global version on smooth-

background simulated data, and in the localized version in the presence of a

non-signal peak in the tail of the distribution.
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Chapter 8

Further research and discussion

As mentioned before, the penalization term in the likelihood is defined up to a

multiplicative factor, so the penalization parameter is not uniquely determined:

simulations show that the penalized likelihood method works if enough weight is

given to the smoothness term, however further studies to obtain a value that is

supported by theory would improve the procedure. If the local complexity were

computed in a sharply defined interval instead of a smooth one, the value of

the smoothness term might be chosen such that, by summing the local degrees

of freedom computed on each of the intervals that make up the support, the

global degrees of freedom be obtained. A starting point for the theory behind

the choice of the penalization parameter might thus be the search for a way

of obtaining global effective degrees of freedom through combining the local

effective degrees of freedom.

The effect that was described in Chapter 5 (Figure 5.3), can be further

explored in a separate discussion, including the identification of “admissible”

smoothers, which would be ones such that high levels of smoothing do not

increase the variability with respect to that of the original data.

Theoretical studies are also to be carried out on the distribution of the

maximum penalized likelihood estimator of the signal fraction parameter α, in

order to get an appropriate measure of uncertainty on it. This is necessary for

hypothesis testing and building confidence intervals.

The signal density is here assumed to be completely known, however a point
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of future research is the extension of the algorithm to include the estimation of

the signal location, scale, or both of these parameters. The entire procedure

may be adapted to the multivariate setting, in order to use more than one

discriminating variable. Finally, further optimization of the algorithm to make

it faster and more efficient may be needed to work with very large amounts of

data, which is crucial when analyzing real high-energy physics data.
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Appendix A

Other eigenvalue-based

estimators

The estimators reviewed here are based on the eigenvalue decomposition of the

covariance matrix, and are derived from the general form of the Rényi entropy

[33]:

Hq =
1

1 − q
log

(︄
K∑︂
i=1

pqi

)︄
,

for different values of q, which defines what specific measure of entropy is to

be used. pi is the normalized i-th eigenvalue:

pi =
λi∑︁K
j=1 λj

,

where λi is the i-th eigenvalue of the covariance matrix.

The first three estimators are obtained from different measures of entropy,

while nC is based on the variance of the eigenvalues.

• n1 is based on the Shannon entropy (q = 1):

n1 =
K∏︂
i=1

(︄
λi∑︁K
j=1 λj

)︄− λi∑︁K
j=1

λj

.

• n2 is based on the Rényi entropy with q = 2, it is more conservative than

62



Figure A.1: Dependence of n1 (black), n2 (red), n∞ (green), nC (blue) on the
bandwidth. Computed from ShNS

T
h matrix on binned data, generated from a

truncated exponential with λ = 1 between 0 and 5. Degree is fixed at 3.

n1. Its computation may fail (Figure A.1) if one or more of the eigenvalues

is 0 or close to 0, which can be the case for the covariance matrix (Figure

A.3).

n2 =
(
∑︁K

j=1 λj)
2∑︁K

j=1 λ
2
j

.

• n∞ is a conservative estimator (note that it corresponds to the trace-based

effective rank):

n∞ =

∑︁K
j=1 λj

maxj λj

;

• nC systematically overestimate the effective dimensionality and is thus

not recommended:

nC = K − K2

(
∑︁K

j=1 λj)2
V ar(λ).
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Figure A.2: Dependence of n1 (black), n2 (red), n∞ (green), nC (blue) on
the degree. Computed from ShNS

T
h matrix on binned data, generated from a

truncated exponential with λ = 1 between 0 and 5. Bandwidth is fixed at 3.

Figure A.3: Eigenvalues of the ShNS
T
h covariance matrix of the smoothed

densities, in the binned case (20 bins), from smallest to largest. It can be seen
that many of these values are very close to 0.
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Appendix B

Effective degrees of freedom

localization

Different definitions of effective degrees of freedom were considered, and so were

different ways of introducing localization.

For dfratio (see Chapter 5), a the following weight function was proposed:

The weight wi, corresponding to the i − th bin is a Gaussian function of the

distance between the the bin and the region of interest:

wi =
1

σ
√
2π

exp

{︃
− d2i
2σ2

}︃
,

where σ > 0 is the standard deviation of the Gaussian and di is the euclidean

distance from the center of the bin to the center of the region of interest.

The localized version of the estimator is thus

ldfratio =
K∑︂
i

wi

σ2
a,i

σ2
b,i

,

where σ2
a,i and σ

2
b,i are, respectively, the variances in the i-th bin after and

before smoothing.

With the expected and observed variances:

ldfP =
K∑︂
i

wi
[ShNS

T
h ]ii

Nii

;
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Figure B.1: Dependence of dfP , ldfP (left), dfN and ldfN (right) on the band-
width, for an exponential with λ = 1, truncated between 0 and 5. The degree is
fixed at 3.

Figure B.2: Dependence of ldfP (left) and ldfN (right) on the bandwidth, for
an exponential with λ = 1, truncated between 0 and 5. The degree is fixed at 3.

ldfN =
K∑︂
i

wi
[ShN̂S

T
h ]ii

N̂ ii

,

The estimator, for both the “Neyman” and “Pearson” versions, meets the

expectation for the localized degrees of freedom to be less than the global ones

(Figure B.1). However, it also presents the effect described in Chapter 5, Figure

B.2.

Another option for localization was creating a diagonal matrix W of weights,

where each diagonal element Wii is wi. The weights are applied to the covariance

matrix C through the transformation CW = W 1/2CW 1/2. Figure B.3 offers a

visualization of the C (left) and the CW (right) matrices. The C matrix used for

the figures is the analytical form, for binned data. The effective rank measures

of effective degrees of freedom obtained from this matrix are, for large numbers,
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Figure B.3: Covariance matrix before (left) and after applying localizing weights
(right), computed from binned data (100 bins). Horizontal axis indicates columns,
vertical axis indicates rows.

Figure B.4: Dependence of the entropy-based effective rank of the covariance
matrix (black) and the same measure computed on the weighted covariance
matrix (red) on the bandwidth (left) and degree (right), for an exponential with
λ = 1, truncated between 0 and 5.

equivalent to the ones obtained from the bootstrap estimate for unbinned (or

binned) data. Note that these measures also do not depend on the normalization

of the weights, as it can be written as a multiplicative constant, which does not

affect the computation of the entropy-based effective rank [36], or the trace-

based one (all eigenvalues are also modified by a multiplicative factor which

simplifies in the computation in Equation 5.1).

However, this method of localizing the covariance matrix does not result in

a measure that represents local complexity. As shown in Figure B.4, this local

measure is not smaller than the global one.
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Appendix C

Plots of the effective degrees of

freedom

Figures C.1 - C.7 show the trace-based and entropy-based effective rank of the

bootstrap covariance matrix, in their global (non weighted) version and local

(weighted) version, and the distributions used to generate the data for each plot.

Although in practice the bandwidth is chosen via (localized) cross-validation, in

each of these plots it varies in the same interval for each plot, in order to see

the dependence of these measures as not only the bandwidth varies, but also

the polynomial degree.

A sample size of 500 has been used for each of the simulated samples and

500 bootstrap iterations for the computation of the covariance matrix of the

estimated density. It has been verified that a higher number of sample points

or bootstrap iterations and the use of resampling rather than toy samples

(generated from the original density), do not notably improve or otherwise

change the estimates.

In all these situations, it can be seen that the local degrees of freedom are,

as expected, a smaller number than the global ones.

Note that, since the bandwidth ranges here are not chosen on the basis of

cross-validation, it is not useful to compare the effective degrees of freedom for

the different distributions. For example, if uniform data were used in practice,

the bandwidth chosen would be much larger, as the distribution is completely
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Figure C.1: Dependence of the entropy-based (global version in blue, local
version in green) and trace-based (global version in orange, local version in
red) effective rank of the bootstrap covariance matrix on the bandwidth, with
maximum degree of the polynomials equal to 0 (top left) and 3 (top right).
Data generated from a truncated exponential with λ = 1, localization through a
Gaussian dip function with mean 2 and standard deviation 0.3 (bottom).
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Figure C.2: Dependence of the entropy-based (global version in blue, local
version in green) and trace-based (global version in orange, local version in
red) effective rank of the bootstrap covariance matrix on the bandwidth, with
maximum degree of the polynomials equal to 0 (top left) and 3 (top right).
Data generated from a truncated exponential with λ = 1, localization through a
Gaussian dip function with mean 2 and standard deviation 0.5 (bottom).
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Figure C.3: Dependence of the entropy-based (global version in blue, local
version in green) and trace-based (global version in orange, local version in
red) effective rank of the bootstrap covariance matrix on the bandwidth, with
maximum degree of the polynomials equal to 0 (top left) and 3 (top right).
Data generated from a truncated exponential with λ = 3, localization through a
Gaussian dip function with mean 4 and standard deviation 0.3 (bottom).
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Figure C.4: Dependence of the entropy-based (global version in blue, local
version in green) and trace-based (global version in orange, local version in
red) effective rank of the bootstrap covariance matrix on the bandwidth, with
maximum degree of the polynomials equal to 0 (top left) and 3 (top right). Data
generated from a uniform between 0 and 5, localization through a Gaussian dip
function with mean 1 and standard deviation 0.3 (bottom).
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Figure C.5: Dependence of the entropy-based (global version in blue, local
version in green) and trace-based (global version in orange, local version in
red) effective rank of the bootstrap covariance matrix on the bandwidth, with
maximum degree of the polynomials equal to 0 (top left) and 3 (top right). Data
generated from a uniform between 0 and 5, localization through a Gaussian dip
function with mean 4 and standard deviation 0.3 (bottom).
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Figure C.6: Dependence of the entropy-based (global version in blue, local
version in green) and trace-based (global version in orange, local version in
red) effective rank of the bootstrap covariance matrix on the bandwidth, with
maximum degree of the polynomials equal to 0 (top left) and 3 (top right). Data
generated from a Gaussian mixture with means 1 and 3, standard deviations 0.5,
mixing proportions 0.3 and 0.7, localization through a Gaussian dip function
with mean 1 and standard deviation 0.3 (bottom).
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Figure C.7: Dependence of the entropy-based (global version in blue, local
version in green) and trace-based (global version in orange, local version in
red) effective rank of the bootstrap covariance matrix on the bandwidth, with
maximum degree of the polynomials equal to 0 (top left) and 3 (top right).
Data generated from a mixture of a truncated exponential with λ = 5 and a
normal with with mean 2 and standard deviation 0.3, mixing proportions 0.9
and 0.1, localization through a Gaussian dip function with mean 2 and standard
deviation 0.6 (bottom).
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smooth, and thus the effective degrees of freedom would be less. However, fixing

the bandwidth range allows to compare, for each distribution, the different

polynomial degrees and verify that with a higher degree (higher complexity),

the effective degrees of freedom are in fact a larger number, the bandwidth

being equal.
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