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Abstract

Machine learning (ML) has become a significant driver of advancement in
healthcare, enabling advanced solutions for diagnostics, personalized treat-
ments, and decision-making support. In the study of brain dynamics, EEG
microstate analysis stands out as a valuable technique for exploring brain ac-
tivity, offering insights into cognitive functions and neural processes. However,
inherent data variability and model limitations introduce uncertainty, posing
significant challenges to the reliability of ML applications in this domain.

This thesis explores the impact of instantial variability on the accuracy and
robustness of machine learning (ML) models in EEG microstate analysis. EEG
microstates, brief patterns of brain activity, are crucial for understanding neural
dynamics. Using a dataset of resting-state EEG recordings from 203 participants,
key microstate features such as Global Explained Variance, Mean Durations, and
Corrected Time Coverage were analyzed.

To simulate variability, probabilistic augmentation techniques were applied
on the dataset and uncertainty-aware methods were used to classify microstates.
Four classifiers: K-Nearest Neighbors (KNN), Augmented Support Vector Clas-
sifier (ACS), Augmented Gradient Boosting Classifier (ACG), and Weighted
Sampling Forest (WSF) were evaluated under baseline and perturbed conditions
and compared with the performance of a traditional ML model, Linear Support
Vector Machine (LSVM). The ACS model consistently showed the highest perfor-
mance, demonstrating the effectiveness of augmentation and uncertainty quan-
tification in enhancing robustness. To further evaluate the robustness of these
classifiers, perturbations were introduced to simulate real-world variability.

The findings emphasize the importance of variability-aware techniques in
improving ML models for EEG analysis, paving the way for more reliable ap-
plications in clinical diagnostics and brain-computer interfaces. Future work
should focus on expanding datasets, exploring deep learning approaches, and
adapting methods to real-time applications.
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1
Introduction

Machine learning (ML) has become a powerful and transformative tool across
various domains, with its applications in healthcare proving to be particularly
impactful. From diagnostic tools to personalized treatment recommendations,
ML has demonstrated its potential to enhance decision-making and improve
patient outcomes. In critical areas such as brain-computer interfaces (BCIs)
and intensive care units (ICUs), ML models are being increasingly deployed
to interpret complex biosignals like electroencephalography (EEG), providing
real-time insights for clinical interventions [2][35]. However, translating ML
advancements into real-world healthcare settings requires addressing challenges
associated with data variability, model reliability, and uncertainty management
[5][35].

Two primary types of uncertainty that affect ML predictions are: aleatoric
uncertainty, which stems from inherent noise or variability in data, and epis-
temic uncertainty, arising from limitations in the model itself, such as insufficient
training data or model misspecification [2][1]. Aleatoric uncertainty is common
in EEG data due to factors such as equipment differences, environmental condi-
tions, and subject-specific variability, while epistemic uncertainty can manifest
when a model is applied to out-of-distribution data or unseen scenarios [5][35].

EEG, a non-invasive and cost-effective tool, provides high temporal resolu-
tion for monitoring brain activity [27]. It is widely used in neuroscience and
healthcare, particularly for diagnosing neurological disorders and monitoring
cognitive states. Despite its advantages, EEG data is inherently noisy and ex-
hibits significant variability across and within subjects [13][10]. This variability
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poses challenges for ML models, especially when these models are expected to
generalize across diverse populations and experimental conditions [38][11].

A critical aspect of EEG data variability is instantial variability (IV), that
has yet to be tested, captures within-subject differences arising from biological
processes or measurement inconsistencies [7][35]. Unlike variability between
subjects or populations, IV represents intrinsic patterns specific to an individual
and can fluctuate based on physiological or psychological states [10]. IV poses
a significant challenge for ML models, as it may lead to reduced robustness and
inconsistent predictions even in controlled conditions [7][35]. Hence, addressing
IV is essential for developing reliable ML frameworks, particularly for clinical
applications.

EEG microstate analysis offers a useful case study to investigate the impact
of IV on the reliability of ML models [18]. Microstates are brief, quasi-stable
patterns of brain activity that last approximately 40-100 milliseconds [28]. These
patterns reflect distinct functional states of the brain and can provide valuable
insights into cognitive and neurological processes [28][10]. Metrics such as
global explained variance (GEV), mean durations (MeanDurs), and corrected
time coverage (TimeCov_corrected) are commonly used to characterize these
microstates. However, these metrics are sensitive to both inter- and intra-subject
variability [16].

This thesis work investigates the impact of instantial variability on the clas-
sification accuracy and robustness of ML models applied to EEG microstate
analysis. To address the challenges associated with variability and uncertainty,
a systematic computational framework was developed.

This study utilizes an open-source EEG dataset comprising resting-state
recordings from 203 healthy participants across two conditions: eyes-open (EO)
and eyes-closed (EC). The dataset includes detailed demographic information
and was preprocessed to ensure high data quality. A key aspect, the variability
in EEG microstate features was introduced using probabilistic representations
such as Gaussian fuzzy labels and random labels. Hellinger and Mahalanobis
distances were employed to quantify the impact of variability on data distribu-
tions. Four classifiers were used to address variability and uncertainty: Impre-
cise KNeighborsClassifier (KND-f), Augmented Support Vector Classifier (ACS-
a), Augmented Gradient Boosting Classifier (ACG-a), and Weighted Resampling
Forest (WSF-i). These models were designed to incorporate probabilistic aug-
mentation and variability-aware techniques, and they showed more robustness
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CHAPTER 1. INTRODUCTION

under perturbations compared to the traditional ML model Linear Support Vec-
tor Machine (LSVM). The robustness of the models was assessed using metrics
such as Area Under the Curve (AUC), accuracy, and F1 score under both baseline
and perturbed conditions. Stratified K-Fold cross-validation was employed to
ensure reliable performance evaluation. Key findings include the effectiveness
of variability-aware methods in improving model robustness and generalization.
Among the tested classifiers, the ACS-a demonstrated the highest performance
across all metrics under both baseline and perturbed conditions, highlighting
the importance of integrating data augmentation and probabilistic methods in
ML workflows for EEG analysis.

Through these objectives, this thesis work aims to address the research ques-
tion:"How does instantial variability influence the classification accuracy and robust-
ness of a model?" and contribute to the development of more reliable machine
learning frameworks for clinical and neuroscientific applications.

The structure of this thesis work is organized as followed:
Chapter 2 - Background: This chapter provides a detailed overview of the

foundational concepts in uncertainty quantification (UQ) and its relevance to
machine learning and EEG analysis. It explains aleatoric and epistemic uncer-
tainties, the importance of instantial variability (IV) in EEG research, and the
challenges posed by cross-subject variability. Additionally, it introduces a com-
prehensive review of the current state of the art for addressing variability and
uncertainty.

Chapter 3 - Methods: This chapter outlines the methodology used in this
study. It starts with the dataset description and the preprocessing steps. It
explains the variability simulation techniques, uncertainty quantification meth-
ods, and the four classifiers employed. The evaluation framework and pertur-
bation analysis are also detailed to assess model robustness under real-world
variability.

Chapter 4 - Results and Discussions: This chapter presents the results of
the experiments, insights on the performance and a discussion on the impact of
these results.

Chapter 5 - Conclusions and Future Works: This chapter summarizes the
key findings. It highlights the strengths of the proposed methods, limitations
and suggests future research directions.
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2
Background

In machine learning (ML), particularly in applications such as healthcare,
uncertainty quantification (UQ) plays a crucial role in evaluating the confidence
of models’ predictions. This is especially important when working with complex
biosignals, where models must address both the inherent randomness in the data
and the variability between subjects.[22].

Uncertainty in ML can be broadly classified into two primary types: aleatoric
and epistemic uncertainty [2]. Aleatoric uncertainty, often referred to as data
uncertainty, stems from the inherent variability in the data, including factors
such as noise, multi-modality, and complexity [17]. This type of uncertainty
is intrinsic to the data distribution and cannot be mitigated by enhancing the
model, as it reflects the natural randomness or complexity present in the signal,
such as noise in EEG recordings [5]. An example in healthcare is the variability
introduced by differing equipment or protocols across clinical settings. [35].

Epistemic uncertainty, also known as knowledge uncertainty, is associated
with the limitations of the model itself. It arises from factors such as insufficient
or biased training data, model misspecification, or changes in the environment
where the model is deployed, commonly referred to as concept drift [5]. Unlike
aleatoric uncertainty, epistemic uncertainty can be reduced by increasing the
diversity and quantity of training data, improving the model architecture, or
adapting the model to new contexts [22].

In ML, aleatoric and epistemic uncertainty are often addressed indepen-
dently. Predictive uncertainty is sometimes modeled by quantifying these two
types separately, enabling researchers to evaluate the model’s confidence in each
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prediction. [17]. This is especially useful in clinical applications, where mod-
els deployed in real-world environments must perform robustly under diverse
conditions, such as varying noise levels or unrepresentative data samples [2][35].

We hypothesize that in EEG research, UQ is essential for managing cross-
subject variability and ensuring that models trained on limited or specific data
can reliably interpret signals from new subjects. This is a crucial step for model
robustness, as the underlying EEG signals may differ due to factors like the
recording equipment, annotation variability, and subject-specific patterns [12].

On the other hand, recent research has been focused also on microstates
[10][16]. EEG microstates represent brief, quasi-stable patterns of electrical
brain activity that can reveal insights into brain dynamics, which can be seen in
Figure 2.1 [3].

Figure 2.1: Topographical maps representing EEG microstates (A, B, C, D),
illustrating the spatial patterns of electrical brain activity associated with distinct
microstate classes [3].

These microstates, typically lasting between 40 to 100 milliseconds, reflect
transient but stable topographical maps on the scalp, indicating synchronous
neural activity across specific brain regions [16]. Microstate analysis, leverages
EEG’s high temporal resolution to segment brain activity into discrete, sequential
microstates. Each microstate is thought to correspond to a distinct functional
state of the brain, enabling researchers to capture rapid transitions in neural
processes associated with various cognitive or sensory tasks, resting states, or
sleep stages [10]. EEG microstate features:

• Gev (Global Explained Variance): Reflects the explanatory power of a
microstate.

• MeanDurs (Mean Durations): The average duration of microstate seg-
ments.
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CHAPTER 2. BACKGROUND

• TimeCov_corrected (Corrected Time Coverage): The fraction of time cov-
ered by a specific microstate [16].

In this study, we hypothethize that microstates are particularly valuable
in understanding both intra- and inter-subject brain variability. Intra-subject
variability refers to changes in microstate patterns within the same individ-
ual under different functional conditions [31], such as sleep stages[6] or task
demands. This variability captures how the brain dynamically shifts between
different functional states based on internal or external stimuli [27]. Inter-subject
variability, on the other hand, reflects differences in microstate patterns between
individuals, which may be linked to unique cognitive or behavioral characteris-
tics [27].

Campagner et al. (2023) have proposed IV to study data robustness and
model reliability. Instantial variability refers to within-subject variability that
stems from the inherent characteristics of an individuals biological processes
or the measurement process itself, rather than from population differences or
errors [7]. IV is often seen in the form of biological variation (BV)the natural
distribution of a subjects physiological features and analytical variation (AV),
which relates to fluctuations introduced by the measurement process or instru-
mentation.

IV could be studied in EEG signals, taken microstate classification as a case
study, where the recorded signal can vary considerably due to intrinsic biological
factors or technical factors, which could impact the robustness on the ML model.

The importance of IV in clinical data has been recognized, as it represents one
of the most significant sources of uncertainty in medical data analysis [7]. Re-
cent studies emphasize the need to incorporate IV into analytical frameworks,
as it reflects essential individual differences that can impact data reliability
and model robustness. By adequately accounting for pre-analytical, analytical,
and within-subject biological variations, researchers can enhance model perfor-
mance, ensuring more consistent and reliable outcomes across different subjects
or conditions [7].

2.1 Uncertainty Quantification Methods

The goal of uncertainty quantification (UQ) techniques has been to quan-
tify the reliability of machine learning (ML) models in real-world applications.
Monte Carlo Dropout and Bayesian Neural Networks (BNNs) are two important
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2.2. INSTANTIAL VARIABILITY

techniques for managing dataset shifts, improving prediction reliability, and
calculating aleatoric and epistemic uncertainty [35][5][2]. Through the identifi-
cation of model variety and the optimization of performance under distribution
shifts, ensemble methods and adaptive data augmentation strategies, like the
Uncertainty Estimation and Reduction Model (UNCER) framework, improve ro-
bustness [5][13]. Domain-guided transformations and latent space evaluations
identify performance degradation in EEG models, while appropriate scoring
rules such as Continuous Ranked Probability Score(CRPS) and quantile loss
functions guarantee calibrated probabilistic forecasts [35][34]. Regardless of re-
cent developments, the need for unified, effective frameworks for uncertainty
estimates is reinforced by the difficulties in scaling these approaches for varied,
high-dimensional data [35][5][13].

2.2 Instantial Variability

Current research emphasizes the importance of intra- and inter-subject vari-
ations as well as instantial variability in comprehending neural and biological
systems. Variability in Stereo Electroencephalographic(SEEG) responses and
task-induced EEG changes are used to improve diagnostic tools, such as identi-
fying functional connectivity in epilepsy [21] and classifying mild cognitive im-
pairment (MCI) with high accuracy [33]. These methods turn variability into a
valuable diagnostic markers. Frameworks like Biological Variation Data Critical
Appraisal Checklist (BIVAC) [1] ensure trustworthy estimates of within-subject
(CVI) and between-subject (CVG) variability, increasing clinical use and reduc-
ing inconsistencies in study design and data reporting [1][30]. EEG reliability
metrics analyses reveal stable intra-subject patterns but significant inter-subject
differences, informing personalized interventions in both neuroscience and re-
habilitation [27][39]. Resting-state EEG (rsEEG) research highlights the impor-
tance of considering external factors, such as time of day and pre-recording
physical activity, to ensure accurate interpretation of metrics. Taking in con-
sideration these factors demonstrates based on evidence, that time of day can
significantly impact EEG measurements, with beta and gamma power increas-
ing during afternoon sessions, likely reflecting circadian rhythms. Addressing
these factors is important for reliable interpretations [36]. Brain-Computer In-
terfaces (BCIs) are systems that enable direct communication between the brain
and external devices. These systems focus on addressing variability and im-
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CHAPTER 2. BACKGROUND

proving generalization across subjects. [36][26]. Another important aspect in
this area of research is the role of microstate metrics, which are influenced by
alpha rhythms. These metrics emphasize the importance of microstates in regu-
lating neural networks, such as the default mode network (DMN) [10]. Instantial
Variability (IV) is a critical source of uncertainty in clinical data analysis, reflect-
ing variations within individual subjects that can influence the interpretation
of outcomes. IV is made up of three key components: pre-analytical variation,
analytical variation (AV), and biological variation (BV) [7].

Pre-analytical variation arises from factors such as patient preparation (e.g.,
physical activity, medication use or fasting) and sample handling (e.g., collection,
storage, transport,). Even though this variation can be minimized (e.g., through
standardized laboratory practices), it still plays a role in the uncertainty [7].
Analytical variation (AV) refers to the inherent uncertainty of measurement
techniques, characterized by [7]:

• Random components (variance): Reflecting consistency between repeated
measurements with the same instrument.

• Systematic components (bias): Highlighting discrepancies in values re-
ported by different instruments.

The following definitions and methods described for AV and BV are based
on the work of Campagner et al. (2023). AV is defined as:

𝐴𝑉𝑝(𝑥𝑖) = 1
𝑚

∑𝑚
𝑡=1 StDev(𝑥𝑝𝑖(𝑡)) ,

Biological variation (BV) refers to the natural fluctuations in a subject’s
biomarkers or features over time, independent of other variation sources. BV
it is computed as 𝐵𝑉𝑝(𝑥𝑖) =

√
𝐼𝑉𝑝(𝑥𝑖)2 − 𝐴𝑉𝑝(𝑥𝑖)2. To quantify IV, which is

computed as 𝐼𝑉𝑝(𝑥𝑖) = StDev(𝑥𝑝𝑖), referenced individuals that are part of the
experimental study are monitored over multiple time points. At each time step,
the repeated measurements performed are done to isolate the AV component.
The total IV is then calculated as the standard deviation of all feature values,
with BV derived as the residual variability after removing AV. These values are
typically expressed as coefficients of variation (e.g., CVT, CVA, CVI) relative to
the features mean [7]. As reported in previous studies [7], the following metrics
are computed:

• CVA (Analytical Variability): Variability arising from measurement or
analytical errors.

• CVI(s) (Within-Subject Variability): Variability of a feature within the same
subject, capturing intra-individual differences.
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2.3. EEG MICROSTATE ANALYSIS

• CVI(m) (Between-Subject Variability): Variability of a feature across dif-
ferent subjects, representing inter-individual differences.

• CVI(ma) (Total Variability): A composite metric combining the above three
sources of variability into a single measure.

𝐶𝑉𝑇(𝑥𝑖) = 𝐼𝑉(𝑥𝑖)
𝑥̄ 𝑖

, 𝐶𝑉𝐴(𝑥𝑖) = 𝐴𝑉(𝑥𝑖)
𝑥̄ 𝑖

, and 𝐶𝑉𝐼(𝑥𝑖) = 𝐵𝑉(𝑥𝑖)
𝑥̄ 𝑖

,

where 𝑥̄ 𝑖 represents the average value of 𝑥𝑖 across all patients and time steps.
These coefficients facilitate modeling of uncertainty for individual patients as
a 𝑑-dimensional Gaussian distribution, 𝑁𝑝(𝑥̂𝑝 ,Σ𝑝), where 𝑥̂𝑝 is the patients
homeostatic point and Σ𝑝 is a diagonal covariance matrix with elements Σ𝑝,𝑖,𝑖 =

𝐶𝑉𝑇(𝑥𝑖) · 𝑥̂𝑝,𝑖 [7].
These findings demonstrate understanding and managing variability im-

proves robustness, personalization, and clinical relevance across different re-
search domains.

2.3 EEG Microstate Analysis

The advancement of EEG microstate analysis has enhanced its application
in clinical diagnosis [20]. By optimizing across dynamic data distributions, ro-
bust decoding frameworks like Distributionally Robust Optimization (DRO) en-
hance generalization across subjects and conditions [8], facilitating applications
in Brain-Computer Interfaces (BCIs)[12]. Alpha-band oscillation-modulated mi-
crostate measures highlight their role as biomarkers for cognitive processes by
reflecting interactions with neural networks, such as the default mode network
(DMN) [10]. Changes in microstate dynamics, including duration, coverage,
and occurrence, particularly in microstates B and D, are influenced by alpha-
band power, emphasizing the role of alpha oscillations in shaping microstate
behavior and their potential in understanding functional brain networks. [10].
Microstate analysis is further improved by narrowband decomposition, which
demonstrates frequency-specific patterns that perform better in clinical predic-
tions and behavioral state classification than conventional broadband techniques
[16]. Last but not least, a data-driven methodology advances reproducibility and
facilitates cross-research integration by enhancing microstate study comparabil-
ity through the use of geographic similarity analysis and meta-microstate maps
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CHAPTER 2. BACKGROUND

[24]. Together, these techniques boost resilience, and increase the usefulness of
EEG microstate analysis in both clinical and scientific contexts.
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3
Methods

In this chapter it is outlined the implemented methodology to assess vari-
ability, uncertainty, and robustness in machine learning models applied to EEG
microstate data. The primary goal of the analysis is to model and quantify differ-
ent sources of variability and incorporate these into machine learning workflows
to evaluate their performance under realistic perturbations. The methods de-
scribed are designed to address the challenges of uncertainty that are present in
clinical data.

To achieve this, a computational framework was developed that integrates
probabilistic augmentation, advanced classification techniques, and statistical
evaluation. Key features of EEG microstates included Global Explained Vari-
ance (GEV), Mean Durations (MeanDurs), and Corrected Time Coverage (Time-
Cov_corrected). Variability in these features was introduced using probabilistic
representations like GaussianFuzzyLabel and RandomLabel, and uncertainty
was assessed using metrics such as Hellinger and Mahalanobis distances.

This chapter details the framework for simulating variability, training mod-
els, and evaluating their performance under uncertainty. The methodologies
described here form the basis for understanding the interplay between variabil-
ity, uncertainty, and machine learning in EEG microstate classification, offering
insights into improving model robustness and generalizability.
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3.1. DATASET DESCRIPTION

3.1 Dataset Description

The dataset used in this thesis is derived from an open-source, validated,
repository of resting-state electroencephalography (EEG) recordings [4]. It offers
a strong basis for examining brain dynamics since it contains data from 203
healthy participants in both eyes-open (EO) and eyes-closed (EC) settings. In
order to participate in the Mind-Brain-Body study, participants had to meet
strict inclusion requirements and ethical guidelines. In-depth demographic
data comprises two cohorts: Younger adults: Age range 20-35 years (N = 153; 45
females; mean age = 25.1 ± 3.1 years). Older adults: Age range 59-77 years (N =
74; 37 females; mean age = 67.6 ± 4.7 years). Detailed protocol, inclusion criteria,
and preprocessing steps are described in more detail in the literature [4]. Figure
3.1 shows the Power Spectral Density of the EEG signal across frequencies,
using all channels. The topographical maps of synchronized neural activity of
the microstates, can be seen in Figure 3.2 [16].

Figure 3.1: Power Spectral Density of the EEG Frequency Bands

3.1.1 Preprocessing

Comprehensive preprocessing was applied by the experts who made the
dataset available to ensure consistency and quality of the data. The EEG signal
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CHAPTER 3. METHODS

was resampled at 250 Hz and filtered between 1 and 45 Hz with an eighth-order
Butterworth filter. Outlying channels identified and removed after visual inspec-
tion, and noise/artifact segments were excluded [4]. There was implemented the
Independent Component Analysis (ICA) using the Infomax algorithm, which
removed components related to eye blinks, movements, and cardiac artifacts [4].
Dimensionality Reduction was performed with Principal Component Analysis
(PCA), which retained components explaining 95% of variance. EEG data were
filtered into five traditional frequency bandsbroadband (1-30 Hz), delta (1-4 Hz),
theta (4-8 Hz), alpha (8-12 Hz), and beta (15-30 Hz)using zero-phase, non-causal
bandpass finite-impulse response filters [4].

A Hamming window was employed for all filters to minimize border ef-
fects, ensuring optimal passband ripple and stopband attenuation [4]. Final
preprocessing steps performed, included channel interpolation of missing/bad
channels using spherical spline methods. Data was then re-referenced to the
average signal across electrodes, further resampled to 100 Hz for compatibility
with microstate analysis [16]. Given its high temporal resolution and compre-
hensive preprocessing, this dataset serves as the foundation for examining EEG
microstate dynamics and variability under various settings. Reliable features
are then extracted for further modeling and analysis. [16]

3.1.2 Microstates and Their Classification

Here we present microstates and their classification with the baseline model
(linear SVM) without any perturbations. This study used EEG microstate seg-
mentation to explore brain activity patterns across different frequency bands
(broadband, delta, theta, alpha, beta) and behavioral conditions (eyes-open
EO and eyes-closed EC). Microstates, which are brief and stable topograph-
ical maps of synchronized neural activity. The identified microstates were
labeled (A, B, C, D, C’) based on commonly recognized spatial patterns [16]:
left-right diagonal (A), right-left diagonal (B), anterior-posterior (C), fronto-
central maximum (D), and occipito-central maximum (C’). To investigate how
frequency bands influenced these patterns, the EEG data were filtered into
specific bands, and the topographies for each condition were visualized using
’mne.viz.plot_topomap’[16]. This visualization highlighted differences between
EO and EC conditions, with alpha-band activity being particularly prominent
during EC [16]. The classification model used to distinguish between eyes-open
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3.2. SIMULATING VARIABILITY IN MICROSTATES: ARTIFICIAL PERTURBATIONS OF
MICROSTATE FEATURES

(EO) and eyes-closed (EC) conditions based on EEG microstate features is a Lin-
ear Support Vector Machine (SVM). The feature set consisted of the three key
classical microstate parametersGlobal Explained Variance (GEV), Time Cover-
age (TimeCov), and Mean Durations (MeanDurs) calculated for five distinct
microstate maps (A, B, C, D, and C) [16]. The model was separately trained and
tested on data from the alpha frequency band and broadband signals. The Lin-
ear SVM model was evaluated using a 10-fold cross-validation procedure across
data from 203 subjects. The dataset was split into training, validation, and test
sets using an 80-10-10 split, with stratified sampling to maintain class balance.
Hyperparameter tuning was performed on the training set using a grid search
approach to optimize the regularization parameter C and the tolerance tol. The
final model’s performance was assessed on the test set using metrics such as
accuracy and the area under the ROC curve (AUC), with confidence intervals
calculated to account for variability. [16].

3.2 Simulating Variability in Microstates: Artificial
Perturbations of Microstate Features

3.2.1 Simulating Perturbations

To closely create real-world conditions where models encounter variability,
perturbations were applied to the baseline features to simulate variability as
close to reality as possible:

Mean Perturbation: A fixed decrement (e.g., 0.01) was subtracted from the
mean values of each metric to simulate reduced performance due to noise or
other external factors. Standard Deviation Perturbation: A fixed increment (e.g.,
0.001) was added to the standard deviation to reflect increased uncertainty in
the measurements. These changes created the perturbed metrics (*_p_m and
*_p_s), which represent the model’s performance under perturbation.

For the Accuracy metric, the Pooled variance was computed to combine the
variability from both baseline and perturbed conditions [7]. The formula used
was:

Pooled Variance =
2 · Baseline Variance + 2 · Perturbed Variance

6 − 2

This calculation accounted for the contributions of variability from both

16



CHAPTER 3. METHODS

conditions, providing a comprehensive measure of the overall variance. To cal-
culate the differences in Accuracy between baseline and perturbed conditions,
Confidence intervals were calculated using the pooled variance. These inter-
vals quantify the uncertainty in performance changes and provide a statistical
measure of the robustness of the models under perturbation. The bounds were
calculated as:

Lower Bound = (Baseline − Perturbed) − 2.05 ·
√

2 · Pooled Variance
3

Upper Bound = (Baseline − Perturbed) + 2.05 ·
√

2 · Pooled Variance
3

To better understand the impact of perturbations, scatter plots with error
bars were generated for each metric (AUC, Accuracy, and F1 Score). These visu-
alizations compared baseline and perturbed metrics for all models, highlighting
key differences. The error bars for the plots were computed as:

Confidence Interval (CI) = 1.96 · 𝜎√
𝑛

where 𝜎 is the standard deviation, and n is the sample size.

3.2.2 Quantifying Perturbations

To assess variability and uncertainty in EEG microstate features, two key
metrics are applied: Hellinger Distance and Mahalanobis Distance [7]. The two
metrics, Hellinger and Mahalanobis distances were chosen because they com-
plement each other in assessing different aspects of variability [9]. These mea-
sures provide a robust framework for comparing probabilistic labels, modeled
as Gaussian distributions, and quantifying differences in feature distributions
[7] [9].

This metric quantifies the similarity between probability distributions, which
is particularly useful for comparing probabilistic representations of features
(e.g., GaussianFuzzyLabel). It accounts for the differences in both means and
variances of the distributions, making it suitable for understanding the overall
shift between two feature distributions.

The Hellinger Distance metric quantifies the similarity between probability

17



3.2. SIMULATING VARIABILITY IN MICROSTATES: ARTIFICIAL PERTURBATIONS OF
MICROSTATE FEATURES

distributions, which is particularly useful for comparing probabilistic represen-
tations of features (e.g., Gaussian Fuzzy Label). Measures the similarity between
two probability distributions, scaled between 0 (identical distributions) and 1
(maximally dissimilar distributions). It accounts for both the mean and vari-
ance of the distributions, making it suitable for understanding the overall shift
between two feature distributions [29].

𝐻(𝑃, 𝑄) =
√

1 − BC(𝑃, 𝑄)
where:

BC(𝑃, 𝑄) =
√

det(Σ1)1/2 · det(Σ2)1/2√
det

(
Σ1+Σ2

2

) · exp

(
−1

8(𝜇1 − 𝜇2)⊤
(
Σ1 + Σ2

2

)−1
(𝜇1 − 𝜇2)

)

The Mahalanobis Distance measures the separation between a point and a
distribution, considering the correlations among variables. It is widely used in
multivariate analysis, including classification and clustering, due to its ability
to account for the covariance structure of the data. The Mahalanobis distance is
particularly effective in identifying outliers and understanding the structure of
multivariate data. [15]. In the context of EEG analysis, both distances have been
employed to assess variability and uncertainty in EEG microstate features. For
instance, the Mahalanobis distance has been utilized to measure the separation
between different EEG states, considering the covariance among EEG features.
Similarly, the Hellinger distance has been applied to compare the similarity
between probability distributions of EEG features, providing insights into the
variability of brain activity patterns.

𝐷𝑀(𝑃, 𝑄) = 1
2

(√
(𝜇1 − 𝜇2)⊤Σ−1

1 (𝜇1 − 𝜇2) +
√
(𝜇1 − 𝜇2)⊤Σ−1

2 (𝜇1 − 𝜇2)
)

Each feature in the datasets, such as Global Explained Variance (GEV) and Mean
Durations (MeanDurs), was assigned a Gaussian Fuzzy Label, where the mean
reflects the expected value of the feature and the standard deviation quantifies
its variability. These values were either derived from dataset-specific variabil-
ity factors or based on assumptions from relevant literature [7]. By using this
approach, each feature was represented not as a fixed value but as a distri-
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bution, capturing the inherent uncertainty due to biological and measurement
inconsistencies [7].

The purpose of creating these two datasets was because it allowed the quan-
tification of the deviation between the perturbed dataset and the original dataset.
This helped to evaluate how well augmentation techniques introduced realis-
tic variability while preserving the representativeness of the data. Second, the
datasets provided a framework to assess the effectiveness of machine learning
methods in handling variability, with probabilistic labels enabling the simula-
tion of real-world conditions [7]

The implementation of probabilistic labels [7] involved sampling values
based on the predefined means and standard deviations of each feature. This
sampling process supported the calculation of the Hellinger Distance, which
quantified the differences in distributions between the datasets (non-perturbed
and perturbed) and Mahalanobis Distance measured multivariate deviations be-
tween the datasets, accounting for correlations between features [7][9]. Together,
these metrics provided insights into how variability affected feature distributions
and how well the augmentation techniques maintained the integrity of the data
[7]. This approach underscores the importance of probabilistic representations
in capturing the uncertainty inherent in EEG microstate features and ensuring
robust model performance in the presence of variability.

3.3 Classification Models with Implementation

This section describes advanced machine learning classifiers and methods
designed to address variability and uncertainty in datasets, particularly those
involving probabilistic or imprecise features like EEG microstate characteris-
tics. The methods implemented include probabilistic classifiers, kernel-based
approaches, and ensemble techniques tailored for uncertainty-aware classifica-
tion. The chosen models are based on algorithms proposed in literature that
also investigated methods to manage imprecise data [7]. Four classifiers are
implemented to evaluate variability-aware classification [7]:

• KND-f (ImpreciseKNeighborsClassifier): Uses a custom Mahalanobis dis-
tance metric for variability-aware, distance-based classification [40].

• ACS-a (Augmented SVC): A support vector classifier trained on augmented
data for robust classification [7].
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• ACG-a (Augmented Gradient Boosting Classifier): Tree-based ensemble
learning method incorporating probabilistic augmentation for enhanced
robustness [19].

• WSF-i (Imprecise Forest): Ensemble classifier that trains decision trees on
resampled datasets, addressing variability in data distribution [32] [14].

The K-Nearest Neighbors (KNN) algorithm was extended by incorporating
custom distance metrics and probabilistic predictions, enabling robust classifi-
cation in the presence of uncertainty. The classifier is initialized with parameters
such as the number of nearest neighbors (k) and a custom distance metric tai-
lored to uncertain feature spaces. For each test point, the classifier calculates
distances using the specified custom metric, identifies the k-nearest neighbors,
and predicts the most frequent label among them. This method is suitable for
handling noisy data and scenarios where uncertainty in the similarity metric
impacts classification accuracy.

Two kernel methods for probabilistic features are utilized. Mean Embedding
Kernel computes similarity by sampling multiple values from probabilistic labels
(e.g., Gaussian Fuzzy Label) and calculating average pairwise similarities. The
process involves sampling n-values from probabilistic labels and using kernels
such as radial basis function (RBF), polynomial, or sigmoid to compute pairwise
similarities. The results are then averaged to produce an overall similarity score.
The other kernel used is RBF Embedding Kernel. It is a kernel designed to
account for both the means and variances of probabilistic labels, leveraging
Gaussian properties to enhance similarity computations.

The Imprecise Forest Classifier builds upon ensemble learning techniques
to handle uncertainty or imprecise labels by training multiple decision trees on
resampled data. The classifier is initialized with parameters such as the base
estimator (e.g., ExtraTreeClassifier) and the number of trees. Each tree is trained
on either the entire dataset or resampled subsets, capturing diverse perspectives
of the data. This allows the model to incorporate variability during the training
phase. Predictions from all trees are aggregated, with the final class being
assigned based on the highest aggregated score.

These methods address challenges in EEG microstate analysis, related to
variability and uncertainty in feature measurements. These approaches are
implemented to address the robustness of model, ensuring that variability and
uncertainty are effectively managed. Cross-Validation: A StratifiedKFold cross-
validation approach with three splits was implemented to ensure balanced class
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representation across training and test sets. This method was chosen to maintain
class proportions, especially important given the variability in EEG microstate
data. [7]. For each fold, both the training and test datasets were augmented
using the Data Generator method. This ensured the incorporation of realis-
tic variability into the data to simulate real-world conditions. The augmented
training data was used to train the models. Each model learned from proba-
bilistic representations of feature values, enhancing its robustness to variability:
The models were evaluated on augmented test data to quantify their perfor-
mance under baseline and perturbed conditions. Metrics were computed across
all folds to provide mean values and standard deviations, highlighting perfor-
mance consistency and robustness.

The computational environment for this study was Google Colab, utiliz-
ing Python version 3.10.12 for implementing and evaluating machine learning
methods, NVIDIA A100-SXM4-40GB GPU with CUDA version 12.1

3.4 Assessing the Impact of Variability on Classifi-
cation

In this study, the models were evaluated on perturbed and non-perturbed
data. The non-perturbed dataset orresponds to the original feature distribution,
which represents the baseline EEG data, while the perturbed dataset captures the
perturbed or augmented feature distribution, simulating real-world conditions
by introducing variability [7]. These datasets are used to assess the impact
of variability and uncertainty on EEG microstate features, with each feature
modeled as a probabilistic representation using Gaussian Fuzzy Labels.

Resting-state EEG recordings were conducted using 61 scalp electrodes ar-
ranged according to the international 10-20 extended localization system, with
FCz as the reference electrode. A vertical electrooculography (EOG) electrode
was added to monitor right-eye activity. The recordings had a sampling fre-
quency of 2500 Hz, which was later down-sampled to 250 Hz and then to 100
Hz, with an amplitude resolution of 0.1 𝜇V, and an initial bandpass filter (0.0151
kHz), that was refined later for specific analyses. The ground electrode was
located at the sternum and the electrode impedance was maintained below 5
kΩ. FOr the timespan of 16 minutes, alternate 60-second EO and EC blocks were
recorded in an electrically shielded, sound-attenuated booth (8 blocks each, be-
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ginning with EC). Participants in EO were told to stay awake and focus on a
black cross on a white background. All the details are reported in detail by the
experts who made the dataset available [4].

3.4.1 Microstates and their artificial perturbation

Figure 3.2: Spatial correlation between microstate (MS) topographies across
behavioural conditions. Global cluster centroids of each frequency band for the
eyes-open (EO) or eyes-closed (EC) condition [16].

To quantify the variability inherent in EEG microstate features, in this thesis
work, it was implemented a systematic computational framework that calculates
variability metrics across analytical, within-subject, and between-subject levels
of the monitored individuals over multiple time points. This approach enables
the evaluation of feature reliability and consistency, which is critical for under-
standing EEG microstate dynamics and improving the robustness of machine
learning models [7] [16].

These metrics were calculated for the following EEG microstate features:

• Gev (Global Explained Variance): Reflects the explanatory power of a
microstate.

• MeanDurs (Mean Durations): The average duration of microstate seg-
ments.

• TimeCov_corrected (Corrected Time Coverage): The fraction of time cov-
ered by a specific microstate [16].

IV perturbations of the original dataset were kept as close to reality as pos-
sible in order to simulate real life perturbations that might occur when training
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machine learning model with clinical data. In this study perturbations were per-
formed on the machine learning models in order to assess how robust where the
models faced with variability. These methods where applied to the ML models
that were designed based on literature to be more robust and take in consider-
ation uncertainty and variability, and also to the simple ML model used for the
microstates behavioral classification. Below is the description of the methods
used in this thesis work to introduce uncertainty to the models, and later on to
assess how this uncertainty influenced the performance and robustness of the
model.

Gaussian Fuzzy Label and Random Label: These classes introduce variabil-
ity and probabilistic reasoning into label representation, making them particu-
larly useful for tasks involving imprecise or noisy data, such as EEG microstate
analysis [7].

The Gaussian Fuzzy Label class represents a fuzzy label modeled as a Gaus-
sian distribution, defined by a mean (𝜇) and standard deviation (𝜎). This allows
labels to be associated with a range of plausible values rather than fixed deter-
ministic values, which is essential for capturing uncertainty in measurements
[7].

The Random Label class represents a general approach to probabilistic labels,
supporting any probability distribution (e.g., Gaussian, uniform, or exponen-
tial). This flexibility allows for modeling variability in scenarios where data do
not follow a Gaussian distribution. Both classes are integrated into the data aug-
mentation pipeline to introduce realistic variability into EEG microstate features.
This approach enhances the robustness of machine learning models by ensur-
ing they are exposed to a range of plausible scenarios, ultimately improving
generalization and reliability. These probabilistic labeling techniques provide a
foundational step toward uncertainty-aware modeling, enabling more accurate
interpretations of noisy, real-world data [7].

3.4.2 Evaluation Metrics

to evaluate the robustness of machine learning models when exposed to
perturbations, simulating real-world variability. The performance of the models
was assessed using these key metrics: Area Under the Curve (AUC), Accuracy
(ACC), and F1 Score, under both baseline and perturbed conditions.

To assess the model performance under both baseline and perturbed condi-
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tions, a strategy combining cross-validation and detailed performance metrics
was used. This strategy ensured that variability was incorporated into the pro-
cess, and the robustness of machine learning models was evaluated.

Metrics:

• AUC (Area Under the Curve): This metric measures the model’s ability
to distinguish between classes, providing an aggregate measure of per-
formance across all classification thresholds. Accuracy: Represents the
proportion of correctly predicted instances among the total instances eval-
uated, offering a direct measure of overall correctness.

• Accuracy: Reflects the proportion of correct predictions.

• F1 Score: Balances precision (the ratio of true positive predictions to all
positive predictions) and recall (the ratio of true positive predictions to
all actual positives). This metric is particularly important for imbalanced
datasets where precision and recall trade-offs need to be balanced.
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4
Results and Discussions

This chapter presents the results of this study, focusing on the performance
of machine learning models applied to EEG microstate features under both
baseline and perturbed conditions. The analysis emphasizes the effects of vari-
ability and uncertainty on the data distributions and machine learning models,
highlighting the role of techniques such as data augmentation and variability-
aware methods in improving model robustness. Key sections include variability
analysis, the impact of data augmentation, classifier performance, and model
robustness under perturbations. The results demonstrate that classifiers leverag-
ing data augmentation and variability-aware methods significantly outperform
traditional models under conditions of variability and uncertainty. The findings
underscore the importance of robustness as a critical criterion for machine learn-
ing models applied to EEG microstate analysis and similar real-world datasets.

Figure 4.1 illustrates a snapshot of raw EEG signals recorded from multiple
channels across the scalp, showcasing the complexity and variability inherent
in these biosignals. Complementing the time-domain signals, Figure 3.2 [16]
presents the topographic distribution of EEG microstates across five frequency
bands (broadband, delta, theta, alpha, beta) for eyes-open (EO) and eyes-closed
(EC) conditions. The topographic maps highlight the spatial patterns associated
with each microstate (A, B, C, D, C’) and their variations across different fre-
quency bands and behavioral conditions. These visualizations provide insights
into how brain activity is distributed and modulated by frequency-specific dy-
namics and external states. In addition, Figure 3.2 displays the power spectral
density (PSD) of the EEG signals, which decomposes the EEG recordings into

25



4.1. VARIABILITY ANALYSIS

their constituent frequency components. The PSD plot distinctly highlights the
contributions of delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), and beta (13-30
Hz) frequency bands. Using this data this work tries to investigate how the
inherent complexity of EEG signals forms the basis for exploring variability and
developing robust models capable of handling real-world conditions.

D

Figure 4.1: Raw EEG data

4.1 Variability Analysis

The results of the analysis, quantified using Hellinger and Mahalanobis dis-
tances, provide insights into the impact of perturbations on the data distributions
and their potential implications for machine learning model performance.

Hellinger Distance: 0.909. A value of 0.909 indicates a high degree of dissim-
ilarity between the baseline (original) and perturbed data distributions. This
means that the perturbations introduced into the data caused changes to its
distribution. Mahalanobis Distance: 3.873, the observed value of 3.873 indicates a
substantial divergence in the multivariate structure of the perturbed data com-
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pared to the baseline. This suggests that the perturbations affected not only
individual features but also their interrelationships, such as correlations or co-
variance patterns. Both metrics, the Hellinger and Mahalanobis distances, reveal
a comprehensive picture of how the perturbations influenced the data.

The high Hellinger distance suggests that models trained on baseline data
might face difficulty when applied to perturbed data, as the shift in feature
distributions could reduce classification accuracy. The high Mahalanobis dis-
tance further indicates that the altered feature relationships may distort decision
boundaries, compounding the difficulty of maintaining robust performance un-
der variability. In Table 4.3 are reported also the values for the variability factors
discussed in methods section 3.2.3.

Map Metric CVA CVI(s) CVI(m) CVI(ma)
Map1 Gev 0.4484 0.3129 0.3103 0.6287
Map2 Gev 0.4320 0.3017 0.3050 0.6088
Map3 Gev 0.3766 0.2676 0.2497 0.5251
Map4 Gev 0.6101 0.4966 0.3462 0.8595
Map5 Gev 0.6277 0.5024 0.3708 0.8853
Map1 MeanDurs 0.2948 0.2832 0.0989 0.4206
Map2 MeanDurs 0.3170 0.3037 0.1001 0.4503
Map3 MeanDurs 0.4691 0.3937 0.1627 0.6337
Map4 MeanDurs 0.2904 0.2680 0.1060 0.4091
Map5 MeanDurs 0.2994 0.2738 0.1098 0.4203
Map1 TimeCov_corrected 0.3512 0.2460 0.2436 0.4931
Map2 TimeCov_corrected 0.3355 0.2341 0.2373 0.4729
Map3 TimeCov_corrected 0.2911 0.1940 0.2083 0.4072
Map4 TimeCov_corrected 0.4372 0.3414 0.2714 0.6175
Map5 TimeCov_corrected 0.4369 0.3292 0.2865 0.6176

Table 4.1: Variability Factors for Gev, MeanDurs, and TimeCov_corrected Fea-
tures.

Then we evaluate how data augmentation influenced the statistical prop-
erties of EEG microstate features, focusing on key metrics: mean, standard
deviation (Std), skewness, and kurtosis, before and after augmentation. These
metrics reveal how augmentation affects the data’s central tendency, variability,
symmetry, and the presence of outliers, providing valuable insights into the
robustness and generalizability of augmented datasets for machine learning ap-
plications. All the results can be seen in Figures 4.6 - 4.8, alongside the respective
statistical metrics in Table 4.1-4.2. The first two panels in each figure present
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the histograms of specific features, highlighting the differences in data distribu-
tion before and after the augmentation process. In the "Before Augmentation"
histograms, the distributions appear narrower, reflecting lower variability in
the feature values. This representation captures the original dataset’s charac-
teristics, which remain unaltered by external perturbations. While, the "After
Augmentation" histograms exhibit broader distributions, signifying an increase
in variability. This observed is consistent with the intended effects of the aug-
mentation process, which introduces controlled noise or variability to emulate
real-world diversity in the data. It is also worth mentioning that the y-axis
scales in these panels differ, as the augmented dataset typically includes a larger
number of samples or greater spread compared to the original data.

The third panel in each figure displays overlapping distributions, comparing
the probability density functions (PDFs) of the original and augmented datasets.
These panels reveal a noticeable shift in the augmented dataset’s distribution,
indicating that variability has been successfully introduced while preserving
the general shape and fundamental characteristics of the original data. For key
features such as MeanDurs, TimeCov_corrected, and Gev, the augmentation
process demonstrates its effectiveness by maintaining the essential properties
of the original feature distributions while expanding their range. This balance
ensures that the augmented data not only reflects the inherent variability present
in real-world scenarios but also remains representative of the original dataset’s
core traits.

From the values reported in Tables 4.1-4.2 , we can see that: The tables il-
lustrate the statistical properties of the EEG microstate features "MeanDurs,"
"TimeCov_corrected," and "Gev" before and after the augmentation process.
The mean values for all features ("MeanDurs," "TimeCov_corrected," and "Gev")
remained relatively consistent after augmentation. For example, the mean of
"MeanDurs" shifted slightly from 0.1017 to 0.1035. This stability indicates that
the augmentation process preserved the central tendency of the data, which is
essential for ensuring that the original signal characteristics remain intact. Large
deviations in mean values could distort the underlying patterns of the dataset,
potentially compromising the interpretability and reliability of downstream ma-
chine learning models. A noticeable increase in the standard deviation is evident
across all features post-augmentation. For instance, the standard deviation of
"TimeCov_corrected" increased from 0.0585 to 0.0933, and "Gev" saw a rise from
0.0378 to 0.0604. This broadening reflects the successful introduction of vari-
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ability into the dataset, which mimics real-world diversity. Such variability
is particularly advantageous in EEG microstate studies, where biological and
technical factors inherently introduce uncertainty. By broadening the spread of
data points, the augmentation process enhances the generalizability of models
to unseen scenarios. The skewness metric, which measures the asymmetry of
feature distributions [23], exhibited mixed trends. For "MeanDurs," skewness
decreased slightly from 1.2651 to 1.0454, suggesting a more symmetric distribu-
tion. However, "TimeCov_corrected" and "Gev" showed increases in skewness,
moving from 0.3951 to 0.6731 and 0.6609 to 0.8892, respectively. Kurtosis, a
measure of the "tailedness" or extremity of outlier values in a distribution, also
demonstrated feature-dependent behavior. For "MeanDurs," kurtosis increased
from 2.3217 to 2.7469, reflecting a more pronounced presence of outliers. In
contrast, "TimeCov_corrected" exhibited a reduction in kurtosis from 0.8698 to
0.5952, indicating a smoothing of the distribution and fewer extreme values.
For "Gev," kurtosis reduced from 1.8387 to 1.0569, similarly pointing to a de-
cline in the prevalence of extreme values. These changes highlight the dual role
of augmentation in both dampening and amplifying outlier behavior, contin-
gent on the feature’s original distribution characteristics [37]. The mean values
of most features remained relatively stable after augmentation, indicating that
the central tendency of the data was preserved. This consistency is important
as drastic shifts in mean values could distort the underlying patterns within
the data, potentially affecting the interpretability and effectiveness of machine
learning models. A consistent increase in the standard deviation was observed
across all features, highlighting that data augmentation successfully introduced
higher variability. By broadening the spread of data points, the augmenta-
tion process mimics real-world diversity, enabling models to generalize better
to unseen conditions. This is particularly beneficial in EEG microstate studies,
where variability due to biological and technical factors is inherent [16]. The
data augmentation process effectively introduced variability into the dataset
while preserving the central tendencies (mean values) of most features [7] [25].
This balance ensures that augmented data remains representative of the original
dataset while simulating real-world variations.

These adjustments are useful for training machine learning models to handle
variability and uncertainty. The enhanced variability observed in the augmented
features improves model robustness, equipping classifiers to generalize better
across diverse conditions.
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Figure 4.2: Mean Duration Feature Map 1 Before and After Augmentation

Figure 4.3: TimeCov_Corrected Feature Map 1 Before and After Augmentation

Statistic MeanDurs TimeCov_corrected Gev
Mean 0.1017 0.1666 0.0843

Standard Deviation 0.0300 0.0585 0.0378
Skewness 1.2651 0.3951 0.6609
Kurtosis 2.3217 0.8698 1.8387

Table 4.2: Statistical Metrics for Map 1 - Before Augmentation

Statistic MeanDurs TimeCov_corrected Gev
Mean 0.1035 0.1644 0.0848

Standard Deviation 0.0538 0.0933 0.0604
Skewness 1.0454 0.6731 0.8892
Kurtosis 2.7469 0.5952 1.0569

Table 4.3: Statistical Metrics for Map 1 - After Augmentation

4.2 The Impact of Variability on Classification

This section presents the evaluation of machine learning models applied to
EEG microstate features under conditions of variability and uncertainty. Four
classifiers : KND-f, ACS-a, ACG-a, and WSF-i were implemented and tested us-
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Figure 4.4: Gev Feature Map 1 - Before and After Augmentation

ing metrics like AUC (Area Under the Curve), Accuracy, and F1 Score. Stratified
K-Fold cross-validation with three folds was used to ensure robust evaluation,
with results expressed as mean ± standard deviation across splits [7].

4.2.1 Classification Performance with no Perturbations

Below are reported the results of the classifiers on the baseline datasets with
no perturbations. The chance level is 20% and the classification task in the
code is a multi-class classification. The goal is to predict the frequency band
(broadband, delta, theta, alpha, beta) corresponding to EEG microstate data.

KND-f (ImpreciseKNeighborsClassifier)

• AUC: 0.9366 ± 0.0022

• Accuracy: 0.7916 ± 0.0140

• F1 Score: 0.7921 ± 0.0143

The KND-f classifier demonstrates moderate performance across all metrics,
with relatively low variability. Its probabilistic approach effectively handles
uncertainty but does not outperform other models in distinguishing between
classes.

ACS-a (Augmented SVC)

• AUC: 0.9855 ± 0.0009

• Accuracy: 0.9054 ± 0.0032

• F1 Score: 0.9054 ± 0.0031

The ACS-a model achieves the highest performance across all metrics, with
exceptional AUC, accuracy, and F1 score. Its minimal standard deviations high-
light its robustness and consistency. The use of data augmentation in this model
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likely enhances its ability to generalize across variable conditions, making it the
most effective classifier in this study.

ACG-a (Augmented Gradient Boosting Classifier)

• AUC: 0.9596 ± 0.0039
• Accuracy: 0.8167 ± 0.0207

• F1 Score: 0.8159 ± 0.0219

ACG-a exhibits high AUC, indicating strong class separation ability. How-
ever, its accuracy and F1 score are slightly lower than those of ACS-a, with higher
variability (standard deviations), suggesting sensitivity to data splits and a need
for further optimization.

WSF-i (Weighted Resampling Forest)

• AUC: 0.9589 ± 0.0030
• Accuracy: 0.8222 ± 0.0099

• F1 Score: 0.8190 ± 0.0116

WSF-i shows good performance, with metrics close to those of ACG-a but
slightly lower variability. This stability makes it a reliable alternative for scenar-
ios requiring robust classification under uncertain conditions.

The ROC curve in Figure 4.5 evaluates the classification performance of the
models applied to EEG microstate data, with the Area Under the Curve (AUC)
serving as the primary metric to quantify discriminatory power. Among the
models, the Weighted Sampling Forest (WSF) shows the most consistent and
robust performance, achieving high AUC values across all classes (0.910.95).
The Augmented Classifier Support Vector Machine (ACS) also performs well,
with AUC values generally around 0.850.86, though it struggles with Class 4,
which has a lower AUC of 0.77. The Augmented Gradient Boosting Classifier
(ACG) and Imprecise KNeighbors Classifier (KND) exhibit moderate perfor-
mance, with AUC values ranging from 0.76 to 0.89 and 0.79 to 0.90, respectively.
Class 4 proves to be the most challenging to classify, likely due to overlapping
feature distributions with other classes, while Classes 0, 1, and 2 are classified
more effectively. All models outperform the random classifier baseline (AUC =
0.5), underscoring their ability to leverage the input features for classification.

The confusion matrices in Figures 4.64.9 provide a comparative analysis of
the performance of the KND, ACS, ACG, and WSF models in classifying EEG
microstate data into five classes (04). The KND model shows strong performance
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for Class 1 but struggles with overlapping classes, evident in misclassifications
like Class 2 being predicted as Class 0 or 3. The ACS model demonstrates
improved precision for certain classes, particularly Class 4, while still exhibiting
some misclassification issues, such as confusion between Class 0 and Class 1.
The ACG model achieves the highest accuracy for Class 1 but underperforms for
Class 4 and exhibits significant misclassifications for Class 2. The WSF model
achieves a balanced performance, excelling in Class 1 and Class 3, but faces
challenges with Class 0, which shows significant confusion with Classes 2 and
4. This comparison highlights the varying strengths and weaknesses of each
model, with the ACG model excelling in handling separable features, the ACS
model achieving consistent performance, and the WSF model showing promise
but requiring improvements in handling overlapping classes.

Figure 4.5: ROC Curve for all the models.

Based on the performance of the classifiers under baseline conditions, ACS
outperforms all models, achieving near-perfect AUC (0.99) and the highest Ac-
curacy and F1 Score (0.91± 0.00). This reflects the effectiveness of the augmented
classifier in leveraging variability in training data to improve predictive power.
ACG and WSF provide competitive results but fall short of ACS, particularly
in standard deviations, which are slightly higher, indicating less consistent per-
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Figure 4.6: KND Model Confusion Matrix

Figure 4.7: ACS Model Confusion Matrix

34



CHAPTER 4. RESULTS AND DISCUSSIONS

Figure 4.8: ACG Model Confusion Matrix

formance. KND lags behind the other models, showing moderate performance
that is more adequate for controlled conditions.

4.3 Performance Degradation under Perturbations

The results provided below, demonstrate the performance of four machine
learning models: KND, ACS, ACG, and WSF evaluated under both baseline
(results discussed in the section above) and under perturbed conditions. The
evaluation metrics used are AUC (Area Under the Curve), Accuracy, and F1
Score, which are indicators of classification performance. Perturbation is used
to simulate real-world variability, introducing noise or uncertainty into the data.
The results highlight that all models exhibit some level of performance degra-
dation when moving from baseline to perturbed conditions. This reflects the
models’ varying degrees of robustness in handling uncertainty. However, their
performance is quite good, and the results are still reliable compared to the per-
formance of the ML that didn’t have methods to account for variability. Below
are the results obtained from the perturbation of the 4 ML models. In figure
4.16 can also be seen the visualization of these results and the comparison of the
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Figure 4.9: WSF Model Confusion Matrix

baseline vs pertubed performance. Since the results of the baseline performance
are discussed in the previous section, below will be discussed the performance
of the models with a perturbed dataset.

KND (Imprecise KNeighbors) - Perturbed Performance: It can be observed
a performance decline, with AUC dropping to 0.84 and both Accuracy and F1
Score falling to 0.71 ± 0.02. This substantial drop makes this model the least
robust model in the group.

ACS (Augmented Classifier with SVM) - Perturbed Performance: Despite
perturbation, ACS maintains high performance relative to other models, with
AUC dropping slightly to 0.89 and Accuracy and F1 Score reducing to 0.81 ±
0.00. The smaller performance drop demonstrates ACS’s robustness to data vari-
ability. ACS emerges as the most reliable model, showcasing the effectiveness of
data augmentation techniques in improving generalization and stability under
real-world variability.

ACG (Augmented Gradient Boosting Classifier) - Perturbed Performance:
Performance decreases to an AUC of 0.86 and Accuracy and F1 Score to 0.74
± 0.03. The slightly higher standard deviations compared to ACS indicate that
ACG is more sensitive to variability in the data. While ACG performs well under
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baseline conditions, it is moderately impacted by perturbations, suggesting it
benefits less from data augmentation than ACS.

WSF (Weighted Sampling Forest) - Perturbed Performance: Similar to ACG,
WSF shows a decline in performance, with AUC at 0.86 and Accuracy and F1
Score at 0.74 ± 0.01. However, the smaller standard deviations compared to
ACG indicate more stable behavior under perturbations. WSF demonstrates
robust performance and stability, making it a valuable alternative for scenarios
requiring both robustness and consistent predictions.

4.3.1 Comparative Analysis of Models

Performance Under Perturbed Conditions: ACS remains the most robust
model, with a smaller relative drop in all metrics (AUC: -0.10, Accuracy: -0.10,
F1 Score: -0.10). This indicates that its data augmentation techniques enable it
to better handle real-world variability. WSF and ACG are closely matched in
perturbed conditions, with nearly identical AUC (0.86) and slightly lower Accu-
racy and F1 Scores (0.74). However, WSF exhibits smaller variability, making it
slightly more reliable. KND shows the largest performance decline out of the
four, with a drop in AUC (-0.10) and Accuracy and F1 Score (-0.08). This shows
it has a lower robustness to variability compared to the other models. On the
other hand, we have the performance of the LinearSVC Model under baseline
and perturbed conditions. The results highlight the sensitivity of the LinearSVC
model to input variability and provide insights into its robustness in real-world
scenarios. The figure 4.10 illustrates topographic maps of EEG microstates un-
der baseline and perturbed conditions, showing the spatial distribution of brain
activity. The baseline maps represent the original neural activity patterns, while
the perturbed maps demonstrate changes introduced through data augmenta-
tion. Despite the added variability, the core spatial characteristics of the baseline
maps are retained. The perturbations increase diversity in the data, simulating
real-world variability such as biological and technical inconsistencies. This
highlights the effectiveness of augmentation in expanding the range of training
data, improving model robustness, and enabling better generalization to unseen
scenarios. Each row corresponds to a specific frequency band, while columns
within a condition show the maps for five microstates labeled A, B, C, D, and C’.
Perturbed maps are labeled similarly, with a "(P)" suffix, to indicate their altered
nature.
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Figure 4.10: Topographic Maps of Baseline and Perturbed Conditions

For the baseline: Accuracy ranges from 0.834 to 0.884, indicating high per-
formance under controlled conditions. Perturbed: Accuracy drops significantly
to 0.3540.430, reflecting a substantial degradation in performance. This means
that the model is highly sensitive to perturbations. The F1 scores are closely
aligned with accuracy values, ranging from 0.833 to 0.884, reflecting balanced
performance between precision and recall, while for the perturbed: F1 scores
decline to 0.3410.419. The perturbed F1 scores suggest reduced reliability in
predicting the positive class, further highlighting the model’s vulnerability to
input variability. The consistently high accuracy and F1 scores demonstrate
that LinearSVC performs well in idealized conditions with clean and precise
data. A significant drop across both accuracy and F1 scores underlines the
model’s inability to generalize when faced with variability or noise. The per-
turbed performance suggests a lack of inherent robustness, making the model
unsuitable for applications where input variability is expected. This analy-
sis demonstrates that while LinearSVC excels in idealized scenarios with clean
data, its performance degrades significantly under perturbed conditions. Data
augmentation and variability-aware methods, as implemented in ACS, WSF, and
ACG, play a crucial role in improving model robustness to real-world conditions
[7]. The visualization of the performance of the models under baseline and per-
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turbed conditions is showed in Figure 4.11. The analysis provided several key

(a) AUC Plot (b) Accuracy Plot

(c) F1 Score Plot

Figure 4.11: Baseline vs. Perturbed Performance Metrics for Different Models.
Results for measuring the impact of IV on the performance of data augmentation-
based and data imprecisiation-based models, for both baseline (that is, non-
perturbed) and IV perturbed data.

insights, where perturbed metrics systematically exhibited lower mean values,
demonstrating reduced performance under stressed conditions. Also exhibiting
increased uncertainty. Perturbed metrics had higher standard deviations, result-
ing in wider confidence intervals and indicating greater variability. Confidence
intervals for the differences in Accuracy between conditions. Visualizations
comparing baseline and perturbed metrics for all models. This methodology
provided a systematic framework to evaluate the robustness of machine learning
models, particularly in handling variability and uncertainty.
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5
Conclusions and Future Works

This thesis work explored the impact of instantial variability on the clas-
sification accuracy and robustness of machine learning models, focusing on
EEG microstate data. The results demonstrated that advanced classifiers in-
corporating variability techniques, such as data augmentation and probabilistic
labeling, performed better than traditional models in handling variability and
uncertainty.

Augmentation effectively increased the variability of EEG microstate features
without distorting their central tendencies, enhancing the generalization of ma-
chine learning models to unseen conditions. Regarding the performance of the
models, among the tested classifiers: the Augmented Support Vector Classifier
(ACS-a) consistently achieved the highest performance across all metrics (AUC:
0.9855± 0.0009, Accuracy: 0.9054± 0.0032, F1 Score: 0.9054± 0.0031) under base-
line and perturbed conditions, demonstrating robustness. The Weighted Re-
sampling Forest (WSF-i) and Augmented Gradient Boosting Classifier (ACG-a)
showed competitive performance, with WSF exhibiting slightly higher stability
under perturbations. The Imprecise KNeighbors Classifier (KND-f) displayed
moderate performance but was less robust to perturbations. All models exhib-
ited performance degradation under perturbations, with the ACS-a showing
the least decline. This underscores the importance of incorporating uncertainty-
aware methods for robust real-world applications. In summary, the research
highlights the significance of integrating variability-aware techniques and un-
certainty quantification to improve the robustness and reliability of machine
learning models, particularly in applications involving biosignals like EEG mi-
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crostates.
While this study provides promising insights into handling variability and

uncertainty in EEG microstate classification, there are several areas that re-
quire further improvements. These include, incorporating larger, more diverse
datasets to assess the generalizability of the proposed methods across varied
populations and conditions. Also including data from clinical populations to
evaluate the robustness of classifiers in pathological conditions.

Another aspect to be considered would be the application of deep learn-
ing models, such as convolutional neural networks (CNNs) or recurrent neural
networks (RNNs), for EEG microstate analysis. An important focus could be
incorporating Bayesian deep learning techniques to improve uncertainty quan-
tification in EEG microstate analysis. Additionally, the simulation of variability
can be refined by developing more advanced augmentation methods that bet-
ter replicate real-world noise and variability. Exploring alternative probabilistic
representations for labels, such as mixture models or adaptive uncertainty quan-
tification approaches, could further enhance the modeling of uncertainty and
variability in the data.

Future work could involve applying the proposed framework to real-time
applications like brain-computer interfaces (BCIs) and clinical decision support
systems. It could also be explored in personalized healthcare to tailor treatments
based on patient-specific EEG patterns. Incorporating advanced evaluation
metrics, such as calibration error and task-specific measures, could improve
understanding of model reliability. Additionally, adapting the framework to
other fields, such as speech recognition or sensor data analysis, would test its
versatility in handling variability and uncertainty.

This study lays the groundwork for developing variability-aware, uncertainty-
quantifying machine learning models, emphasizing their importance in robust
EEG microstate analysis. Future efforts should focus on advancing the proposed
methods to bridge the gap between experimental and real-world applications,
ultimately improving the reliability of machine learning models in clinical and
neuroscientific domains.
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