
University of Padua
Department of Mathematics "Tullio Levi-Civita"

Master degree in Computer Science

Analysis of the implementation of the
Stipula legal calculus using Distributed

Ledger Technologies
Master’s degree thesis

Supervisor
Professor Silvia Crafa

Graduand
Federico Zanardo

Academic year 2022-2023

Federico Zanardo: Analysis of the implementation of the Stipula legal calculus using
Distributed Ledger Technologies, Master’s degree thesis, © 21 April 2023.

Abstract

The purpose of this thesis is to provide a possible implementation of the domain-specific
language Stipula. The purpose of this language is to assist professionals such as lawyers
in programming legal contracts. The language is based on a set of programming
abstractions that correspond to the distinctive elements that make up a legal contract,
namely, permissions, prohibitions, obligations, asset transfer, and openness to external
context, and that is likely to be executed on both centralized and distributed systems.
The unique characteristics of the language have strongly driven the implementation of
a particular architecture, which is a solution obtained from a combination of different
approaches present in the current blockchain context.
In parallel with the development of a contract execution system, the aim of the project
is also to provide secure mechanisms for asset transfer, to ensure that the transferred
sum is not altered during the sending and receiving of a transaction, and avoid attacks
such as double-spending.
The implementation illustrated in this thesis is the first version that provides the general
idea of the project, oriented towards the execution in different types of distributed
systems, ranging from a simple client-server system to a network of replicated partially
trusted nodes. To illustrate the implementation, the thesis fully discusses the case of
non-trivial contracts such as the trading of assets and the rent of a bike. The final
part of the paper presents the missing functionalities, addresses the current limits of
the version presented, possible solutions proposed, and possible future developments of
the project are introduced. In particular, for this last point, future developments are
understood as evolutions from the point of view of security, usability, computation,
and efficiency for the execution of legal contracts in distributed systems.

iii

Ringraziamenti

Desidero ringraziare la Professoressa Silvia Crafa per avermi dato la possibilità di
svolgere il progetto di tesi a partire da un Suo lavoro di ricerca e di avermi dato ampie
libertà riguardo le scelte di progettazione e di implementazione.

Desidero ringraziare Enrico che mi ha dato un forte sostegno in uno dei momenti più
complicati. Non potrei chiedere un fratello migliore.

Desidero ringraziare i miei genitori e tutti i miei cari per esserci sempre stati nei
momenti più importanti e difficili.

Ringrazio tutti gli amici che mi sono stati vicino e mi hanno sostenuto. In particolare,
vorrei ringraziare Stefano, Lorenzo, Massimo, Manuele, Nicole, Francesco e Maria-
grazia che mi sono stati molto vicini in questi ultimi ostici mesi.

Ringrazio Alessia per avermi dato un grande sostegno e per aver vissuto dei momenti
meravigliosi.

Grazie di cuore a tutti per rendere la mia vita piena di meravigliosi ricordi.

Padova, 21 April 2023 Federico Zanardo

v

Acknowledgements

I would like to thank Professor Silvia Crafa for giving me the opportunity to carry out
the thesis project starting from her research work and for giving me ample freedom
regarding design and implementation choices.

I would like to thank Enrico who gave me strong support in one of the most complicated
moments. I could not ask for a better brother.

I want to thank my parents and all my loved ones for always being there in the most
important and difficult moments.

I thank all the friends who have been close to me and supported me. In particular,
I would like to thank Stefano, Lorenzo, Massimo, Manuele, Nicole, Francesco and
Mariagrazia who have been very close to me in these last difficult months.

I thank Alessia for giving me great support and for having lived such wonderful moments.

Heartfelt thanks to everyone for making my life full of wonderful memories.

Padova, 21 April 2023 Federico Zanardo

vii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Aim of the thesis . 1
1.3 Personal motivations . 5
1.4 Document structure . 6

2 Stipula 7
2.1 Context . 7
2.2 Legal calculi . 8
2.3 Code-driven normativity . 8
2.4 Building blocks of Stipula . 9

2.4.1 Examples of contracts in Stipula 9
2.4.2 Agreement . 11
2.4.3 Permissions and prohibitions 12
2.4.4 Assets . 12
2.4.5 Obligations . 13
2.4.6 Third party enforcements . 13

3 Analysis and design of Stipula platform 15
3.1 Blockchain layers . 15
3.2 Basic ideas . 16
3.3 Architecture . 19

3.3.1 Message Service . 20
3.3.2 Compiler . 20
3.3.3 Virtual Machine . 21
3.3.4 Consensus . 22
3.3.5 Storage . 22
3.3.6 Commitment . 23
3.3.7 Communication protocols . 23

3.4 Interaction between modules . 23
3.5 Asset management . 24

3.5.1 Definition of assets . 24
3.5.2 Transfer of assets . 25

4 Implementation 31
4.1 Introduction to basic concepts . 31

4.1.1 Contracts and contract instances 31
4.1.2 Asset . 33

ix

x CONTENTS

4.2 Libraries . 34
4.2.1 Crypto . 34
4.2.2 Data structures . 34

4.3 Message Service . 35
4.3.1 MessageServer . 35
4.3.2 ClientHandler . 35
4.3.3 ClientConnection . 35
4.3.4 Messages . 35
4.3.5 Interaction with Storage . 38

4.4 Compiler . 39
4.4.1 Grammar, lexer e parser . 40
4.4.2 Generation of the bytecode . 42

4.5 Stipula bytecode . 42
4.5.1 Types . 44
4.5.2 Instructions of the bytecode language 45
4.5.3 Function types . 49

4.6 Virtual Machine . 51
4.6.1 Requests queue . 51
4.6.2 Legal Contract Virtual Machine 53
4.6.3 Script Virtual Machine . 54
4.6.4 Description of the execution flow of a function of a contract . . 58
4.6.5 Pay-to-Party . 60
4.6.6 Obligations . 60

4.7 Storage . 61
4.7.1 LevelDB . 61
4.7.2 Structure . 63

4.8 Examples . 65
4.8.1 Asset swap . 65
4.8.2 Asset swap with scheduled event 79
4.8.3 Bike rental . 83

4.9 Project management . 92
4.9.1 Pipeline . 92
4.9.2 Issues, milestones ans releases 92
4.9.3 Installation . 93

5 Missing features and future developments 97
5.1 Missing features . 97

5.1.1 Language features not implemented in the current version . . . 97
5.1.2 Single-use-seals merge . 98
5.1.3 Creation of assets and their distribution 103

5.2 Optimizations . 104
5.3 Limits of the architecture . 105

5.3.1 Computational and memory resources required 105
5.4 Current version security issues . 106
5.5 Future improvements . 107

5.5.1 Implementation of the consensus module and communication
protocols . 107

5.5.2 Implementation of the commitment module 108
5.5.3 Fees for performance of a contract 108
5.5.4 Script language extension . 108

CONTENTS xi

5.5.5 Implementation of additional software 109

6 Conclusion 111
6.1 Design considerations . 111

6.1.1 Virtual Machine and Stipula bytecode 111
6.1.2 Asset Management and Script Language 111
6.1.3 Distributed context and consent 112

6.2 Implementation consideration . 112
6.2.1 Structure of the project . 113

A Examples of contracts and execution of contracts 115
A.1 Asset swap . 115

A.1.1 Complete code . 115
A.2 Asset swap with scheduled event . 117

A.2.1 Complete code . 117
A.2.2 Complete example of execution 119

A.3 Bike rental . 129
A.3.1 Complete code . 129
A.3.2 Complete example of execution 131

B Grammar 145
B.1 Lexer rules . 145
B.2 Parser rules . 146

C Pipelines 149
C.1 run-tests.yml . 149
C.2 create-and-push-docker-image.yml . 150

D Gradle 151
D.1 build.gradle . 151

E Docker 153
E.1 Dockerfile . 153
E.2 docker-compose.yml . 154

Bibliography 155

Sitography 157

List of Figures

3.1 Possible configurations of the Stipula architecture. 18
3.2 Complete architecture of all modules and interactions between them. . 19

4.1 Current state of the implemented architecture. 32
4.2 Virtual machine. 52
4.3 The instruction sets of the two virtual machines. 55
4.4 Sets of the types of the two virtual machines. 56
4.5 Flow of the execution of a function of a function of a contract. 59
4.6 Flow of execution of an obligation. 62
4.7 Structure of the Storage module. 63
4.8 New contract upload execution flow. 70
4.9 Execution flow for Alice’s funds read request. 71
4.10 Various project releases. For each release it is possible to download the

code and start an instance of Stipula. 93
4.11 Milestones completed. 94
4.12 Milestone opened. 94

5.1 Example of single-use-seals merge. 99

List of Tables

2.1 Correspondence between legal elements and Stipula features (Silvia
Crafa, 2022). 9

4.1 Table of Stipula bytecode instructions. 43
4.2 Table of Script Virtual Machine instructions. 54

xii

LIST OF TABLES xiii

Chapter 1

Introduction

This chapter introduces the general problem of the thesis, the technologies used for
the development of the proposed solution and the structure of the document.

1.1 Context
The digital revolution is having a significant impact on the legal domain, and one of the
main challenges in dealing with legal documents is their complexity. Legal contracts,
which give rise to a binding legal relationship, are a specific subset of legal documents
that are the focus of this research. The principle of freedom of form in contractual
law allows parties to express their agreement using any language or medium, including
programming languages. This creates a need for high-level programming languages
that are easy for non-experts to understand, as genuine agreement can only be reached
if the parties are aware of the computational effects of their code. The researchers
propose a new domain-specific language called Stipula (Silvia Crafa, Cosimo Laneve
and Giovanni Sartor, 2022 and Silvia Crafa, Cosimo Laneve and Giovanni Sartor, 2021),
which uses concise and intelligible primitives that have precise correspondence with the
distinctive elements of legal contracts. Stipula is based on the theory of concurrency
in computer science, which provides a rich toolset of formal techniques to verify the
properties and correctness of software contracts.

1.2 Aim of the thesis
The language definition of Stipula is implementation-agnostic and can be either imple-
mented as a centralized platform or run on top of a distributed system like a blockchain.
Building a distributed system for managing and executing legal contracts involves the
design and development of several very complex components. The Stipula language
guarantees non-trivial primitives for the execution of a contract, such as the automatic
execution of some parts of a contract and the secure transfer of assets between actors
and contracts. The scheduling of an automatic execution of some parts of a contract
when certain conditions are met is not a feature offered by other languages. For the
legal context, however, this represents an important feature for the implementation of
compliance with some obligations of a contract, which, if not respected, trigger penalties
for one or more parties to the contract same. The secure transfer of assets is a subject
that is treated in different languages and there are different approaches to guarantee

1

2 CHAPTER 1. INTRODUCTION

the fundamental properties for the transfer of assets, such as avoiding the possibility
of double-spending, avoiding the generation of a quantity or lose an amount of assets
during a transfer. Furthermore, different blockchains use different representations
for the implementation and management of assets within their network and this is
certainly one of the most delicate and important aspects to take into consideration
when designing a language that allows writing contracts with value legal.

The idea of the Stipula language comes from the languages present in the blockchain
context, proposing new primitives useful for creating legal contracts. However, a
distributed system for executing Stipula contracts can in turn be based on another
distributed system, such as a blockchain. The idea behind the implementation of
the Stipula language is to separate the contract execution layer from the information
storage layer. In doing so, the blockchain is used as a secure ledger in which to store
the information produced by the upper layer that is in charge of executing Stipula
contracts. This separation allows you to leave out a whole series of issues that are
delegated to the lower layer (such as the immutable archiving of information), and to
concentrate on providing functions dedicated to the drafting and execution of legal
contracts.

As with blockchains like Ethereum, the execution of a smart contract requires the
consent of the network in order to validate the result obtained. Consensus is one of
the most complex aspects of distributed systems, as it requires the nodes of a network
to agree on a particular result of a computation. This theme involves different aspects
such as the communication of the nodes. In fact, there must be protocols that allow
the nodes to communicate effectively and efficiently, both information necessary for
maintaining the network (i.e., node discovery) and the information to be submitted for
consent (the results obtained from the execution of a smart contract). In particular,
achieving consensus in a distributed system is a complex task as it involves several
considerations. Firstly, the system must be able to tolerate node errors, message
losses, network partitions, and other failures while ensuring consistency and correctness
(fault tolerance). Secondly, scalability is crucial as the number of nodes in the system
increases. The consensus protocol must adapt to the growing number of nodes to
avoid bottlenecks and delays. Finally, security is also paramount as the consensus
protocol should prevent malicious actors from compromising the system. Attackers
may try to manipulate messages, disrupt communication, or impersonate other nodes
to compromise the integrity of the system.

Furthermore, in a distributed context, aspects such as performance and computa-
tional resources are very important requirements to take into consideration. Requiring
the execution of nodes with high computational and memory capacities would not
help distribute the network as the management and maintenance costs of these nodes
can only be supported by a limited number of entities. Therefore, the implementation
must take into account:

1. Store as little information as possible, ensuring the correct execution of contracts
and asset transfers;

2. Minimize the computational resources required: an implementation that can also
be performed on devices with a low computational capacity allows to increase
the distribution of the network. However, this point collides with the peculiar
features required by the language. Therefore, compromises need to be found.

As far as computation is concerned, a point that can help to minimize the demand
for computational resources is to opt for a compilation of the language instead of

1.2. AIM OF THE THESIS 3

carrying out a pure interpretation. Compiling the language will certainly take more
time when you upload a contract to the network. However, when the contract has
to be performed, the original contract will not be performed, but its compiled will
be performed, obtaining an increase in performance compared to performing the
interpretation of the original contract each time.

The thesis work took into consideration both the aspects strictly related to language
and the aspects related to distribution. Indeed, the design phase took into account
the need for specific components for the implementation of a distributed system. The
realized architecture implements all the most important features of the Stipula language,
such as:

1. Management of the agreement between the parties to start a new contract

2. Management of the progress of a contract

3. The secure transfer of assets between actors and contracts

4. The management of the execution of specific parts of the contract for the imple-
mentation of penalties, if the conditions arise

5. Management of judicial enforcement and exceptional behavior

The most interesting and most complex parts of the architecture involve the compiler,
the virtual machine and the development of a bytecode language and asset
management.

Precisely to try to obtain better performance in the execution phase of the contracts,
the design required the development of a compiler, which could translate the contract
in Stipula into a target language suitable for execution on a protected environment (a
virtual machine). Therefore, a language called Stipula bytecode was designed, and
represents the output produced by the compiler. By doing so, it is possible to carry
out the compilation phase once only when the contract is loaded into the distributed
platform. Every time you want to execute a contract, a specific virtual machine will
execute the compile written in Stipula bytecode. Compiler development tries to do as
many static checks as can be done. Since the Stipula language is an untyped language,
the compiler also performs type inference. This task is not always successful and it
may happen that in certain situations the compiler is not able to determine the type
of a variable. Therefore, a syntax was developed in Stipula bytecode that allows you to
notify the virtual machine to perform a runtime type check.

The Stipula bytecode language is a language designed to run on a stack-based
virtual machine, that is, the variables of the program are loaded on a stack and
the Stipula bytecode language operates on that stack by removing or adding elements.
The Stipula bytecode language has the same expressiveness as the Stipula language.
The advantage of using this bytecode language is the ease of executing a contract,
as a program written in bytecode directly contains the instructions that allow it to
operate on the stack and do not require a further interpretation step. Unlike the
Stipula language, the bytecode language allows types for variables and also takes into
account the presence of variables without a specific type, precisely because of the
untyped behavior of the Stipula language.

The virtual machine represents one of the most interesting and complex modules of
the whole architecture. This component takes care of:

1. Execute contracts written in Stipula bytecode;

4 CHAPTER 1. INTRODUCTION

2. Manage asset transfers between users and contracts;

3. Manage the scheduling of events for the automatic execution of certain obligations;

4. Manage the opening of new contracts and the progress of the same.

The first activity that the virtual machine has to manage is the opening of a contract
which corresponds from a legal point of view to the agreement of minds between two
or more actors. Therefore, it is necessary for this component to correctly manage the
communication between the actors to make sure that everyone is in agreement on
opening a new contract. The main job of the virtual machine is to execute a contract
and ensure that the execution is done in a precise state of the contract, as well as
ensuring that the caller matches the correct participant of the contract and checks on
the input parameters for the execution of the contract. In addition to this, the virtual
machine manages all the event scheduling mechanism for the automatic execution of
obligations: this process starts from the execution of a contract which invoked the
creation of a penalty, in case a participant does not respect the agreements stipulated
at the opening of the contract, and proceeds with the control of certain conditions
at a precise moment. If the conditions for applying the penalty exist, the virtual
machine will execute a specific portion of code that encodes the obligation, otherwise
the virtual machine will avoid applying the penalty. Another very important aspect of
the virtual machine is the management of asset transfers. In fact, all asset transfers
to a contract are verified by the virtual machine, which ensures:

1. To receive the right amount of assets established by the contract;

2. To check that during the transfer of a certain amount of assets, no amount of
assets is generated or lost in the void;

3. To check that the funds received actually belong to the rightful owner;

4. To check that the user who wants to make a payment is not attempting to carry
out a double-spending attack on the system.

Conversely, when a contract makes a payment to a user, the machine must ensure that
an unexpected amount of assets is not lost or generated out of thin air during the
transfer.

Asset management is one of the most delicate aspects of architecture. Asset transfers
directly between users and other users are not permitted, but all transfers must be by
way of a contract. In the thesis an example will be illustrated which will illustrate how
two actors can exchange two assets by means of a contract (4.8.1). The reason is that
this would have defeated the purpose of Stipula for certain applications, so a transfer
can be:

1. Pay-to-Contract: it is a transfer that takes place from a participant of the
contract to a contract;

2. Pay-to-Party: it is a transfer that takes place from a contract to a participant in
the contract.

In order to be able to transfer assets, it is necessary to decide which asset represen-
tation model to adopt. Currently, there are two models in the blockchain context:
the account-balance-based model and the UTXO model (Unspent Transaction
Output). The account-balance-based model, used for example by Ethereum, is the

1.3. PERSONAL MOTIVATIONS 5

simplest model from a conceptual and implementation point of view. In this model,
each user (represented by an alphanumeric address) is associated with the balance of a
specific asset. Each time a transaction is made, the balance of the asset is updated.
This model has severe limitations from the point of view of performance, as it does
not allow the parallel execution of several transactions, and from the point of view of
privacy, as in this model it is very easy to trace the funds associated with the users.
The model used for the implemented architecture has been defined single-use-seal,
and is a simplified version of the UTXO model used by Bitcoin. This model is more
complex from a conceptual and implementation point of view but allows to obtain
performance and privacy advantages, as well as partially mitigating the double-spending
attack by its nature. A single-use-seal can be seen as a box that contains a certain
amount of assets and is sealed by a single-use seal, which can only be broken by the
owner of that amount of assets. To execute a transaction against a contract, the owner
must break the seal, in order to allow the contract to withdraw the required funds.
This seal can only be broken by the owner who is able to provide cryptographic
proof of ownership of the asset amount. By doing so, a contract to withdraw funds
directly from a user’s wallet is denied, as happens in Ethereum. The cryptographic
proof that allows to break the seal consists of a program written in a language called
Script (Antonopoulos, 2017). In particular, a single-use-seal is locked by a program
written in Script, defined as lockScript. The cryptographic proof that the user must
provide to prove that he is the actual owner of the funds is a program written in Script,
defined as unlockScript. The latter program is the one that allows you to unlock
the lockScript script and consequently the funds contained in the seal. This Script
language is a very similar language to the Stipula bytecode language and therefore
programs written in Script can be executed in a virtual machine similar to the one
for Stipula bytecode. Unlike the bytecode language, the Script language has a different
and separate set of instructions from that of Stipula bytecode.

The seal is defined single-use because it can only be used once for an asset transfer,
after which it is destroyed and can no longer be used by the user for other transfers.
Instead, when a contract needs to make a Pay-to-Party, it creates new single-use-seals
to be sent to one or more users.

1.3 Personal motivations

I attended several artificial intelligence courses during my master’s degree. I was very
fascinated by it, however I sensed that perhaps it is not the right career path for me.
For the oral exam of the course Advanced Topics in Programming Languages, held by
Professor Silvia Crafa, I had the opportunity to analyze distributed systems and in
particular the blockchain field. I was introduced to the research project concerning the
development of a programming language aimed at the creation of legal contracts: Stipula.
I accepted the proposal to carry out a thesis work on this topic as it allowed me to
analyze and deal with several separate topics, such as distributed systems, the analysis
and implementation of a programming language, computation and cryptography. I was
very enthusiastic about this project and I am passionate about studying distributed
systems and finding solutions that are inspired by currently existing systems, but
adapting them in a different key for this project.

6 CHAPTER 1. INTRODUCTION

1.4 Document structure
Illustrate the structure of the document:

The second chapter introduces the context of application of this language and all
the main aspects of the language.

The third chapter describes the proposed solution for the language implementation,
focusing on asset management and the components needed for the general
architecture. Furthermore, the implementation is contextualized in a distributed
system, and therefore specifying all the modules necessary to operate in a similar
context.

The fourth chapter describes the design and implementation of the architecture.
All the modules that make up the architecture and the interactions between them
are explained. In addition, examples of contract execution will be illustrated.

The fifth chapter describes the missing features to have a complete implementation
of the language. Furthermore, the limits of the implemented architecture are
presented, the possible optimizations that can be applied to it to increase the
performance and future developments of the project in its entirety.

The sixth chapter provides a brief summary emphasizing the complexity of the
design, both for the implemented architecture and for future developments, and
of the problems faced.

Chapter 2

Stipula

This chapter introduces all the fundamental concepts of the Stipula language. Its
functionality and the main characteristics of the language are analyzed.

2.1 Context
Ethereum’s introduction of smart contracts brought about the Code is Law principle
(Lawrence Lessig, 1999), which relies on software code to provide a clear definition and
automatic execution of transactions between parties who do not trust each other. In
case of disputes, the code of the contract is publicly available and takes precedence.
This principle is based on the idea that trust is built into transparent intermediary
algorithms of the blockchain. As a result, governments recognize the legal value of
smart contracts and programs operating over distributed ledgers.

Code-Driven Law (The CoHuBiCoL research project 2019) is a growing trend
that uses software to represent or enact legislation or regulation. Technologies like
Rules as Code (Cracking the Code 2020), Catala (Catala in action 2022), and Akoma
Ntoso (Akoma Ntoso 2018) are used to create a machine-consumable version of some
types of rules issued by governments and public administrations, such as tax offices,
student grant provisions, or social security agencies. This helps to identify potential
inconsistencies in regulations, reduce the complexity and ambiguity of legal texts, and
support the automation of legal decisions. Instead of relying on ex-post enforcement by
third parties like courts and police, the rules hardwired into code are enforced ex-ante,
making it very difficult for people to breach them in the first place (Primavera De
Filippi and Samer Hassan, 2016).

However, transposing legal rules into technical rules is a delicate process since the
inherent ambiguity of the legal system is necessary to ensure a proper application of
the law on a case-by-case basis. The process of translating parties’ intentions, promises,
actions, powers, and prohibitions into computer code is problematic and does not
solve the problem but moves it into another dimension. Additionally, code-driven
law is based on the automation of compliance with pre-set rules, leaving no room for
disagreement about the right way to interpret the norms. This potentially reduces the
capability of individual human beings to invoke legal remedies.

For example, the Code is Law principle of Ethereum declined with the famous
TheDAO attack (David Siegel, 2016). From the Code is Law perspective, a problem in
the source code leading to unexpected behavior of the smart contract is a feature of the
code and not an error. However, the first hard fork of the Ethereum blockchain showed

7

8 CHAPTER 2. STIPULA

that this principle is not practical when large sums of money are at stake. Furthermore,
blockchain technology does not hardwire trust into algorithms but reassigns trust to a
series of actors who implement, manage and enable the functioning of this technological
platform.

2.2 Legal calculi
Legal contracts are defined as agreements that create a legally binding relationship or
have legal effects. While parties are free to express their agreement using any language
or medium, including a programming language, a contract only produces the intended
effects if it is legally valid. This raises both legal and technological issues when it
comes to software-based contracts.

Different kinds of software-based solutions can be valuable in the different phases of
a legal contract’s lifecycle, which goes through negotiation, storage/notarizing, perfor-
mance, enforcement and monitoring, modification, and dispute resolution. Therefore,
several projects are being developed for defining code-driven legal contracts. The main
problem is defining a suitable programming language to write legal contracts, which
should be easy-to-use and understand for legal practitioners while still being expressive
and precise.

The Stipula programming language is proposed as a solution, which is an inter-
mediate domain-specific language. The language’s basic primitives are designed to
map the building blocks of legal contracts into template programs and design patterns.
The definition of Stipula is influenced by the theory of concurrent systems, and a legal
contract is interpreted as an interaction protocol. Additionally, the language definition
is implementation-agnostic and can be either implemented as a centralized platform
or run on top of a distributed system like a blockchain. A prototype centralized
implementation of Stipula as a Java application is available (Silvia Crafa, Cosimo
Laneve and Adele Veschetti, 2022a).

While only a concrete implementation can address specific issues, studying the theory
of a domain-specific legal calculus (2022 and Vimal Dwivedi, Vishwajeet Pattanaik,
Vipin Deval, Abhishek Dixit, Alex Norta and Dirk Draheim, 2021) is a first step in
shedding some light on the digitization of legal texts.

2.3 Code-driven normativity
A preliminary interdisciplinary study found that most actual legal contracts are
composed of several basic elements (see table 2.1). These elements include themeeting
of the minds, which refers to the agreement of the contract’s parties to its terms,
and marks the moment when legal effects take place. They also include permissions,
prohibitions, and obligation clauses that may change dynamically, such as the right
to use a product until a certain date. In particular, permissions correspond to the
possibility of performing an action at a certain stage, prohibitions correspond to the
interdiction of doing an action, while obligations are recast into commitments that are
checked at a specific time limit and issue a corresponding penalty if the obligation
has not been met. Other elements include the transfer of assets or currency, the
possibility of external conditions or data affecting the contract, and the ability to
activate judicial enforcements in the case of dispute resolution.

2.4. BUILDING BLOCKS OF STIPULA 9

Table 2.1: Correspondence between legal elements and Stipula features (Silvia Crafa, 2022).

Legal contracts Stipula contracts

Meeting of the minds Agreement primitive
Permissions, prohibitions State-aware programming

Obligations Event primitive
Currency and tokens Asset-aware programming

Openness to the environment Intermediary pattern
Judicial enforcement and exceptional behaviours Authority pattern

The Stipula language was designed to easily map these basic elements of legal
contracts into template programs and design patterns. The agreement construct
directly encodes the meeting of the minds, while normative elements such as permissions,
prohibitions, and obligations are expressed using a state-aware programming style
inspired by the state machine pattern used in smart contracts, such as Solidity (Solidity
Documentation: State Machine Common Pattern) and Obsidian (Obsidian: A safer
blockchain programming language 2018).

Asset manipulation is also syntactically distinguished from standard operations to
emphasize that assets cannot be destroyed or forged, but only transferred. Assets are
a specific value type and Stipula wants to promote an asset-aware programming
(Franklin Schrans, Susan Eisenbach and Sophia Drossopoulou, 2018, A. Das, S. Balzer,
J. Hoffmann, F. Pfenning and I. Santurkar, 2021, Sam Blackshear and et al.,
2021). Clauses dependent on external data are implemented by an intermediary party
responsible for retrieving data from an external source agreed upon in the contract.

Dispute resolution, judicial enforcement of legal clauses, and exceptional behaviors
are also included in the contract by assigning legal responsibility to an intermediary
party that interfaces with a court or an Online Dispute Resolutions platform, as The
European ODR platform. This approach differs from relying on Oracles web services,
which cannot be legally held accountable.

2.4 Building blocks of Stipula
It is worth to notice that a Stipula contract begins with the keyword stipula and
define assets and fields that are used therein. We also observe that Stipula is untyped,
to keep a simple syntax. However, a type inference system that allows one to derive
types has been designed.

2.4.1 Examples of contracts in Stipula
This short section introduces two examples of contracts, written in Stipula, to illustrate
the structure and main elements that make up a contract in Stipula. In the following
sections, starting from the bike rental contract, all the fundamental blocks of a Stipula
contract will be illustrated.

Asset swap

In this example, there are two actors, Alice and Bob, who want to trade two assets.
For simplicity, the price variation that these assets may have over time is not taken

10 CHAPTER 2. STIPULA

into consideration, the exchange rate of these two assets is fixed by the parties to the
contract when a new instance of the contract is made.

The complete code of the contract written in Stipula is the following:

1 stipula SwapAsset {
2 asset assetA:stipula_assetA_ed8i9wk,

assetB:stipula_assetB_pl1n5cc↪→

3 field amountAssetA, amountAssetB
4 init Inactive
5

6 agreement (Alice, Bob)(amountAssetA, amountAssetB) {
7 Alice, Bob: amountAssetA, amountAssetB
8 } ==> @Inactive
9

10 @Inactive Alice : depositAssetA()[y]
11 (y == amountAssetA) {
12 y -o assetA;
13 _
14 } ==> @Swap
15

16 @Swap Bob : depositAssetBAndSwap()[y]
17 (y == amountAssetB) {
18 y -o assetB
19 assetB -o Alice
20 assetA -o Bob;
21 _
22 } ==> @End
23 }

Bike rental

The example that will be presented was taken from one of the papers describing the
design of Stipula (Silvia Crafa, Cosimo Laneve and Giovanni Sartor, 2021, Silvia Crafa,
Cosimo Laneve and Giovanni Sartor, 2022 and Silvia Crafa, 2022).There are two actors,
one represents a company that rents bicycles for a defined amount of time and for a
certain amount of money, and the other represents a customer of that company. When
the customer wants to use the service offered by the company, both decide to create a
new instance of the contract (agreement phase). The company will provide a certain
code which will allow the user to unlock the bicycle. When the user has provided
the amount of money needed to use the service, the user will receive the code from
the company and the money will be deposited into the contract. Furthermore, the
obligation will be set that if the user does not stop using the service offered by the
company within a certain period of time, the money will be sent to the company and
the user will be notified of the term of using the service.

The complete code of the contract written in Stipula is the following:

1 stipula BikeRental {
2 asset wallet:stipula_coin_asd345
3 field cost, rentingTime, use_code
4 init Inactive
5

2.4. BUILDING BLOCKS OF STIPULA 11

6 agreement (Lender, Borrower)(cost, rentingTime){
7 Lender, Borrower: cost, rentingTime
8 } ==> @Inactive
9

10 @Inactive Lender : offer(z)[] {
11 z -> use_code;
12 _
13 } ==> @Proposal
14

15 @Proposal Borrower : accept()[y]
16 (y == cost) {
17 y -o wallet;
18 use_code -> Borrower;
19 now + rentingTime >>
20 @Using {
21 "End_Reached" -> Borrower
22 wallet -o Lender
23 } ==> @End
24 } ==> @Using
25

26 @Using Borrower : end()[] {
27 wallet -o Lender;
28 _
29 } ==> @End
30 }

2.4.2 Agreement
One key aspect of a legal contract is the agreement between parties, where they come
to a mutual understanding and give consent to the terms of the contract (meeting
of minds). Stipula provides a specific primitive, called agreement, to indicate when
parties have reached consensus on the contractual arrangement they wish to establish.
As an example, consider a contract regulating a bike rental service. The following
Stipula code implements the agreement phase:

6 agreement (Lender, Borrower) {
7 Lender, Borrower: rentingTime, cost
8 } ==> @Inactive

The code is meeting a Lender and a Borrower to agree on both the rentingTime
and on its cost. After the agreement the contract starts and it goes into a state
@Inactive that expresses that no rent will occur until the payment. The contract
can also have a variation which involves an authority responsible for monitoring
contextual constraints, such as obligations related to storage and care, or the proper
use of goods. This Authority is also responsible for managing litigations and dispute
resolution. In this case, the agreement function would be:

6 agreement (Lender, Borrower, Authority) {
7 Lender, Borrower: rentingTime, cost
8 } ==> @Inactive

12 CHAPTER 2. STIPULA

This code express the fact that only the Lender and the Borrower agree on both
rentingTime and cost, while the Authority, which also engage in the meeting of
minds, is the pointer to a third party that will supervise Lender and Borrower
behaviours.

2.4.3 Permissions and prohibitions
Legal contracts have a unique characteristic where the set of normative elements, such
as permissions and prohibitions, often change based on actions taken or not taken.
To account for these changes, Stipula adopts a state-machine programming approach,
which is a widely supported pattern in programming languages using ad-hoc libraries
or modules. For example, in a bike rental contract, once the Lender and Borrower
agree on the rental period and cost, the Lender is not allowed to prevent the Borrower
from paying for the service and using the bike. Stipula implements this functionality
by enabling the contract to proactively monitor changes in the bike’s status, such as
storing a temporary access code to prevent the Lender from revoking the rental. The
following code defines the function offer that can be invoked by Lender when the
contract is in state @Inactive to send an access code to be used by the Borrower:

10 @Inactive Lender : offer(x) {
11 x -> code
12 } ==> @Payment

Naturally, the Borrower is not informed of the value of the code prior to payment
for the service. In other words, the preceding excerpt authorizes the Lender to invoke
offer function in the @Inactive state. If no further function is defined in @Inactive,
the contract will prohibit other parties from taking any action at this stage. Once the
code is received, the contract will move to the @Payment state, where presumably the
Borrower will pay (in fact, the Borrower is allowed to pay) for the rental.

It’s worth noting that the aforementioned code also emphasizes that the Lender
trusts the contract to act as an intermediary that can store relevant information (such
as assets). Indeed, x -> code stores the value sent by the Lender in a contract field
called code, which cannot be accessed outside the contract.

2.4.4 Assets
Another key characteristic of legal contracts is the handling of assets, such as currency
for payments and escrows, as well as tokens that can represent securities and provide
digital ownership of physical goods. In the example of the bike rental, instead of using
a simple numeric code, a more innovative approach could involve a unique token that
grants access to the bike’s smart lock. Traditionally, the Borrower pays the Lender
with a credit card before using the bike, and the contract only specifies the transaction
through a normative clause, with no guarantee of its occurrence (in case of dispute,
one party has to go to court). However, Stipula enables digital legal contracts that
automatically handle asset transfers, thus eliminating intermediaries even in payments.
Moreover, Stipula allows legal contracts to temporarily retain assets and decide to
redistribute them when certain conditions are met. Therefore, the language treats
assets as first-class values and provides specific operations for their management. For
example, the following function is defining the payment of the rental by Borrower,
which sends an asset y (the argument is in square brackets) to the contract:

2.4. BUILDING BLOCKS OF STIPULA 13

15 @Payment Borrower : accept[y]
16 (y == cost) {
17 y -o wallet
18 use_code -> Borrower
19 } ==> @Using

The function call has a precondition (line 2) that ensures the correctness of the
fee paid by the Borrower before executing the operation at line 3, which transfers
ownership of the asset y to the contract and stores it in the asset field wallet. By
explicitly marking asset movements with the ad-hoc operator -o and separating it
from ->, the language promotes a safer programming discipline that reduces the risk
of double spending, accidental loss, or locked-in assets. Notably, the contract does not
immediately forward the payment to the Lender; instead, it retains the payment until
the rental period terminates to prevent access or use by either the Borrower or the
Lender during disputes. After the fee has been paid, the Borrower receives the access
code to the bike, and the contract enters the @Using state.

2.4.5 Obligations
Stipula embodies another notable aspect of legal contracts: obligations that prescribe
certain actions to be performed within a specified timeframe. These obligations are
converted into commitments in Stipula and are evaluated when the time limit is reached,
with the event primitive serving as the corresponding programming abstraction. For
example, the foregoing pay function may be refined by issuing an event that terminates
the renting service when the time limit is reached. The code becomes:

15 @Payment Borrower : accept[y]
16 (y == cost) {
17 y -o wallet
18 use_code -> Borrower
19 now + rentingTime >>
20 @Using {
21 "End_Reached" -> Borrower
22 wallet -o Lender
23 } ==> @End
24 } ==> @Using

The deadline for returning the bike is denoted by now + rentingTime, and if the
bike has not been returned by then (i.e., the contract remains in the @Using state),
a message requesting the bike’s return is sent to the Borrower (line 7), and the fee
stored in the wallet is transferred to the Lender (line 8). It should be noted that
events are not triggered by any party; they are automatically executed when the
time condition is met. Since the statements within an event’s body will be executed in
the future, it is assumed for simplicity that the event’s body is outside the scope of
function parameters, both for assets and non-assets.

2.4.6 Third party enforcements
Stipula offers a straightforward approach for modelling disputes without the need for
additional features, which resembles the actions of a court. When the software is
unable to verify contract violations, such as bike damage or misuse, or the rental of a

14 CHAPTER 2. STIPULA

defective bike, a trusted third party, the Authority, must be involved in supervising
the dispute and providing a resolution mechanism. The following code demonstrates
how off-chain monitoring and enforcement mechanisms are encoded in Stipula through
an Authority, which must be included in the agreement. The following code is just
an example to show the functionality third party enforcements and external to the
BikeRental code:

1 @Using Lender,Borrower : dispute(x) {
2 x -> _
3 } ==> @Dispute
4

5 @Dispute Authority : verdict(x,y)
6 (y >= 0 && y <= 1) {
7 x -> Lender, Borrower
8 y * wallet -o wallet, Lender
9 wallet -o Borrower

10 } ==> @End

The dispute function can be triggered by either the Lender or the Borrower and
includes a string x as the reason for initiating the dispute. After the reasons are
communicated to all parties (represented by _ instead of writing out three sending
operations), the contract transitions to the @Dispute state, where the Authority
will analyze the issue and issue a verdict. This is accomplished by allowing only the
verdict function to be invoked in the @Dispute state. The verdict function takes
two arguments: a string x indicating the reasons for the decision and a coefficient y
that represents the portion of the wallet that will be reimbursed to the Lender; the
remaining portion will be given to the Borrower. It is important to note that the
statement y * wallet -o wallet represents Lender receiving the y portion of the
wallet (y being in the range [0...1]) and the wallet being adjusted accordingly. The
remaining portion is sent to the Borrower with the statement wallet -o Borrower,
which is shorthand for 1 * wallet -o wallet, Borrower, and the wallet is then
emptied.

Chapter 3

Analysis and design of Stipula
platform

This chapter provides a possible design for the implementation of the Stipula language.
In particular, the general architecture of the implementation will be illustrated, with
its components and modules. Furthermore, the various design choices will be explained
and justified.

3.1 Blockchain layers
Over the years, blockchains such as those of Bitcoin and Ethereum have established
themselves in the new distributed context. One problem that has arisen and is
recognized is the scalability issue of these solutions. Blockchains like the ones mentioned
fail to scale much when faced with having to process a large amount of transactions.
Furthermore, this amount of transactions can congest the network of blockchain nodes
and increase fees for logging information into the ledger. Therefore, over the years,
solutions have been designed and implemented that could remedy the problem of
scalability. These new solutions use an underlying blockchain as a basis, such as
Bitcoin and Ethereum, and develop solutions that allow for an increase in transaction
throughput, while trying to keep the cost of commissions low. To do this, scalability
solutions need a secure and decentralized layer. Networks such as Bitcoin and Ethereum
are defined as layer one, that is, they represent the fundamental layer on which it
is then possible to build other applications, while scalability solutions are defined as
layer two.

There are mainly four types of layer two:

1. Nested blockchain (i.e., Plasma, Plasma chains): they run on top of another
(i.e., Ethereum). Layer one establishes the settings and layer two conducts the
procedures;

2. Sidechains (i.e., Polygon, Polygon Technology): delegate massive transactions,
but this kind of chain is less integrated into the core blockchain. They can have
a different consensus algorithm from the blockchain layer one;

3. Rollups (i.e., Arbitrum, Arbitrum, and Optimism, Optimism): the transactions
are computed off-chain but the data are saved on the blockchain layer one;

15

16 CHAPTER 3. ANALYSIS AND DESIGN OF STIPULA PLATFORM

4. State channels (i.e., LightningNetwork, Lightning Network): establish two-way
communication between a blockchain layer one and off-chain channels. The
transactions are saved on the blockchain layer one when they will be completed
on the state channel.

The first three solutions use a dedicated ledger in layer two similar to that of layer one.
Instead, state channels use other cryptographic methods and ad-hoc communication
protocols, without the need to have their own ledger in which to store the information.
Only a minimal amount of information, produced by this type of scalability solution,
is stored in the underlying layer one.

This separation between layers allows:

1. Layer one to focus on network and ledger distribution and security;

2. Layer two to focus on scaling transaction processing.

3.2 Basic ideas
As stated in the dedicated chapter, it was possible to notice how the Stipula language
offers peculiar functions compared to the other languages present in the smart contract
environment. In particular, it has been possible to find that the language requires that
the concept of time is not dependent on external factors, such as the time required for
the generation of a block. Furthermore, the functionality of invoking events scheduled
over time is such that it must be managed ad-hoc in the implementation, and that
currently there is no similar one in the various languages for smart contracts, except
by resorting to the use of software external to the system (i.e., oracles). Therefore,
due to these particular functionalities that must be guaranteed by the language, one
of the ideas behind the realization of the project is to provide an implementation of
the language as a dedicated layer which rests on another underlying layer. With this
concept we want to place a marked separation between the layer that deals with saving
information in an immutable register and guaranteeing security, and the layer that
deals with the execution of contracts. Thus subdivided, the lower layer is used as a
commitment state, where the upper layers use that layer to timestamp the information;
whereas, the layer that implements the Stipula language only deals with the execution
of contracts (i.e., contract status management, asset transfer management, . . .) and
guarantees compliance with all the constraints imposed by the language , delegating
information storage to the lower layer.

Another of the main ideas that guided the entire planning phase, and subsequently
also the implementation phase, is the creation of a system that could be performed
both in centralized and in distributed form. In fact, the implementation developed in
this thesis work allows you to:

1. Use it as a single instance on a server;

2. Create a distributed network of nodes. By node we mean an instance of the
implementation that is able to communicate with other instances of the same
implementation to update itself regarding, for example, the states of the contracts
in execution. A network of nodes thus defined can be centralized, that is, there
is a single point of control that manages all aspects of the network (i.e., updates,
communications between nodes, . . .), or, decentralized, that is, not there is a
central body that manages the network, but all the nodes are equal to each other

3.2. BASIC IDEAS 17

(a peer-to-peer network). By doing so, a network of nodes providing a language
implementation can be classified as a layer one;

3. Create a network of nodes that rely on an underlying layer (i.e., HyperLedger
Fabric). It is also possible to use layer two as a commitment layer. State channels
(i.e. Lightning Network) could also be used for data commitment. However, the
way they’re designed doesn’t make writing information as easy as other scaling
solutions (see section 3.1). Again, network management can be centralized or
decentralized.

Throughout the thesis, reference will be made to Stipula server and Stipula
node: server means the instance of the language implementation running on a single
machine. This mode mirrors the client-server architecture, in which there is a machine
that provides a service and some clients who want to take advantage of this offered
service. By node, on the other hand, we mean that the instance of the language
implementation runs on different machines, which are able to communicate with each
other to exchange information. Therefore, this architecture needs communication
protocols and a layer that allows to manage the consent. In particular:

1. A Stipula server is a application that runs in a single machine. It is able to
execute contracts and transfer assets among users. It does not have any module
about consensus or module that allows a communication with other Stipula
servers;

2. A Stipula node is able to do all the things cited at the previous point, and it
is able to communicate with other peers (other nodes), in order to exchange
information about the network and the consensus about contract states evolution.

In the figure 3.2 it is possible to notice the possible configurations that the designed
architecture can support:

1. It is possible to run Stipula server on a single machine. This server has no way
to communicate with other servers and is suitable for a centralized concept;

2. It is possible to run a Stipula server and which uses a blockchain as an underlying
layer. The blockchain can be both layer one (L1) and layer two (L2) as long as
it is possible to record information in a ledger (therefore it is not possible to use
state channels). All information regarding contracts and asset transfers will also
be stored in the underlying layer;

3. It is possible to create a network of Stipula nodes, which are able to communicate
with each other for the maintenance of the network itself and to exchange
information regarding the consensus of the results obtained from the execution
of the contracts. There is no need for an underlying layer;

4. To increase security, it is possible to extend the scenario described in the previous
point and also use a blockchain as a lower layer in which information regarding
contracts and asset transfers can be immutably stored.

18 CHAPTER 3. ANALYSIS AND DESIGN OF STIPULA PLATFORM

(a) Example of an instance of
a Stipula server.

(b) Example of an instance of a Stipula
server that relies on a blockchain.

(c) Example of a network of Stipula
nodes.

(d) Example of a network of Stipula
nodes based on a blockchain.

Figure 3.1: Possible configurations of the Stipula architecture.

3.3. ARCHITECTURE 19

3.3 Architecture
The main modules that make up the implementation architecture of the Stipula
language are (3.2):

1. Message Service: manages connection and communication with clients;

2. Compiler : receives as input a contract written in the Stipula language and
compiles it in another language, called Stipula bytecode;

3. Virtual Machine: execute the code in Stipula bytecode received as input;

4. Consensus: implements mechanisms that make it possible to determine consensus
regarding the result of executing a contract, within a network of nodes;

5. Storage: stores information about assets and its transfers, contracts and its
instances;

6. Commitment: deals with communicating with the layer that allows you to securely
store some of the information stored in the storage layer. At this level, it is not
necessary to save exactly all the information stored in the storage, it is sufficient
to save a minimum set of such information;

7. Communication protocols: implements a series of protocols necessary for the
consensus layer and for communication between nodes (i.e. node discovery).

Figure 3.2: Complete architecture of all modules and interactions between them.

20 CHAPTER 3. ANALYSIS AND DESIGN OF STIPULA PLATFORM

3.3.1 Message Service
This module performs the role of server, that is, it waits for new connections from
clients. It was decided to use a TCP connection instead of HTTP for the following
reasons:

1. In order to communicate via the HTTP protocol, a web server must be added
to the implementation. This would have weighed down the implementation and
would not have made use of all the features offered by the HTTP protocol;

2. The TCP protocol is a reliable and connection-oriented protocol, that is, it frees
the application from the task of handling out-of-order or missing packets;

3. The TCP protocol allows you to send and receive streams of bytes directly,
instead of streams of characters as is the case with the HTTP protocol. By doing
so, you also get an advantage in terms of efficiency.

Once a new connection has been received from a client, the management of com-
munication with that client is delegated to a thread, in order to free up the server
thread to accept new requests. Once the message sent by the client has been received
and decoded, we proceed to check the signatures of the message itself. Every message
that is sent must be signed with the private key held by the client. If the signature
check passes, then the request will be routed to other modules. The connection with
the client remains open until the module to which the request was directed returns a
response; once the response is received, it is sent to the client and the connection is
closed.

3.3.2 Compiler
A first implementation of the Stipula language has been done previously. In this
implementation, the language is interpreted at runtime and is executed locally on the
machine. This approach has limitations if you want to translate it into the distributed
context. Interpretation has the advantage of directly executing the code, without
performing intermediate compilation steps. However, it has major drawbacks:

1. Slow to execute: the code is translated directly into machine code. An intermedi-
ate compilation step could have optimized the code before running it;

2. Low performance: since the code is not optimized for the platform on which it
runs;

3. Less error checking: this represents one of the weakest points of this approach,
particularly in the context of writing and executing contracts that have legal
value.

To overcome the limitations of this first implementation, it was decided to divide
the process of executing a contract into two main steps:

1. Compilation: having received the contract as input, it is compiled in an interme-
diate language called Stipula bytecode. The characteristics of this language will
be extensively discussed in the following chapter;

2. Execution: having received the contract compiled in bytecode as input, this is
executed.

https://github.com/stipula-language/stipula

3.3. ARCHITECTURE 21

In this way we obtain an optimization in terms of performance, that is, once the
contract has been compiled, the same contract can be called numerous times, without
having to re-compile each time. Furthermore, having an intermediate compilation step
it is possible to perform static checks: it is possible to verify whether the contract
states can actually be reached during execution, check if the asset transfers have been
defined correctly and implement checks about the types of variables. As regards this
last point, the Stipula language is a weakly typed language: when writing a contract it is
possible to specify whether a variable is a asset or is a field. Obviously, if a variable
is defined as field it is necessary to perform a inference operation to determine the
specific type. However, it’s not always possible to determine the type of a variable at
compile time, so you need to determine it at runtime.

The use of the bytecode language also allows you to obtain an advantage from the
point of view of interoperability. In fact, further compilers could be developed, which
from other smart contract languages (i.e., Solidity), translate the smart contracts into
Stipula bytecode language.

3.3.3 Virtual Machine
The compilation phase produces code written in a particular language, specifically
defined for the purpose of the project. Therefore, you need to build an environment for
executing the contract bytecode. For this reason a virtual machine has been developed.
The benefits that follow from virtualization are:

1. Platform independence: the virtual machine creates an abstraction layer between
the code and the underlying hardware, thus allowing the code to be executed on
different platforms, without the need to recompile it every time;

2. Secure environment: the virtual machine creates a secure environment for execu-
tion, especially needed for asset transfer.

The virtual machine implemented is a stack-based virtual machine, that is, the
program variables are loaded onto a stack and the language instructions operate
on that stack by removing or adding elements to the stack. A stack-based virtual
machine is simpler to implement and requires fewer instructions to perform the same
operations compared to a register-based virtual machine. However, it must be taken
into consideration that a stack-based virtual machine is less performing than a register-
based virtual machine and also requires many more memory accesses. Aware of these
differences, due to issues of time and complexity, it was decided to create a stack-based
virtual machine.

The virtual machine manages various memory areas, as it must take into account
the internal variables of the functions, the parameters of the functions and the global
variables. In addition to these, there are also other memory areas whose purposes will
be defined in the next chapter.

This module also takes care of managing the obligations, that is, scheduling the
events that will allow you to execute a specific portion of code, at a specific time.
The management of this functionality involves both the compiler, in recognizing the
obligation encoded in the code, and the virtual machine: during the execution of
the contract, the scheduling request of an obligation is managed ad-hoc by a specific
component of the virtual machine.

22 CHAPTER 3. ANALYSIS AND DESIGN OF STIPULA PLATFORM

3.3.4 Consensus
Consensus is an essential component for the proper functioning of peer-to-peer networks,
as it allows multiple nodes to agree on a single result, even in the presence of failures.
Without consensus, peer-to-peer networks would be prone to conflicts, inconsistencies,
and vulnerabilities, making them less reliable and less secure. In a distributed context,
multiple nodes work together to perform a task and must communicate with each other
to exchange information and coordinate their actions. However, due to factors such as
network delays, failures and communication errors, different nodes may have different
views of system status (such as a contract or a transfer) or may produce conflicting
results. In particular, the goals of consensus algorithms must guarantee:

1. Data consistency: in a distributed ledger, multiple nodes can contain different
copies of the same data. Consensus algorithms ensure that nodes agree on a single
version of the data, ensuring data consistency and avoiding data corruption;

2. Fault tolerance: nodes can fail or become unresponsive. The consent algorithms
allow the system to continue to operate even in the presence of node failures;

3. Conflict-free: consensus algorithms ensure that the system is conflict-free,
ensuring that nodes agree on a single result;

4. Security: Consensus algorithms can help prevent malicious actors from manipu-
lating the system by ensuring that all nodes agree on a single decision value, even
in the presence of attacks such as data tampering or Denial-of-Service (DoS).

Therefore, the evolution of the status of a contract or the successful transfer of
a certain amount of assets towards an address must be in agreement with the other
nodes making up the network.

3.3.5 Storage
This module takes care of storing various information regarding assets and contracts.
In particular, information concerning:

1. Asset: it is necessary to memorize information that characterizes the asset itself,
such as the name, a unique identifier, the total supply and whether the asset is
divisible or not. Total supply is the total amount of asset that will be available
for a specific asset;

2. Transfer of assets: it is necessary to trace the movements of assets that are
carried out by customers and contracts. Later it will be explained in detail how
asset transfers occur in the current implementation;

3. Contracts: the new contracts are loaded into a Stipula server or a Stipula node
and stored together with the bytecode produced by the compilation phase. Once
a contract is uploaded, it is no longer possible to make any changes;

4. Contract instances: when you want to execute a contract, a new contract
instance is created. The storage keeps track of each running contract instance,
together with its current state. For instance, two actors, Alice and Bob, want to
activate an instance of BikeRental with ItalyRent (see section 2.4.1). There can
be a BikeRental between Alice and ItalyRent in state @Using, and a BikeRental
between Bob and ItalyRent in state @Return.

3.4. INTERACTION BETWEEN MODULES 23

3.3.6 Commitment
For the context created by the proposed implementation, the commitment module
represents the level at which information can be securely stored. Indeed, the purpose
of this component is to offer a high level of security for the recording of information. It
is not necessary to memorize all the information that is saved in the Storage module,
but a minimal set of key information allows to reconstruct the evolution of the contract
and of the asset transfers that have taken place over time. Thus, the commitment
module is used to timestamping the information, proving the existence of a particular
piece of information. The presence of this module within the implementation is not
strictly necessary for the functioning of a Stipula server or node, but it allows it to
offer a higher level of security. As an example: we can devise a simple client-server
implementation where the storage in managed by the server as an internal database, or
a richer implementation where the server commits to a blockchain part of the storage
to notarize the main info of the contract execution.

3.3.7 Communication protocols
In a distributed context, it is necessary that the various nodes can communicate with
each other to exchange information. The type of information exchanged can be divided
into:

1. Information to determine consent about the status of a contract;

2. Information to manage connections with other nodes (i.e., discovery of new nodes,
notify that a node is congested, . . .).

The design of a communication protocol is critical because it determines how
efficiently and accurately information is transmitted and received. Poorly designed
protocols can cause a variety of problems, such as slow performance, lost or corrupted
data, security vulnerabilities, and difficulties in scalability and maintainability.

3.4 Interaction between modules
In this section we want to explain how the interactions between the various modules of
the architecture take place. Each request sent by a client is received by the Message
Service module, which, after carrying out the appropriate checks, can direct the request
towards different modules according to the specific request:

1. Towards the Compiler : when the request received represents the user’s will to
load a new contract. The contract is received from this module, which proceeds
with the compilation of the same;

2. Towards the Virtual Machine: when with this request the client wants to create
a new instance or perform a function of a specific contract instance.

3. Towards the Storage: when the client’s request consists in a reading of some
information (i.e., available assets associated with its address).

It is necessary to specify that all the requests that are addressed to the Storage
module are always read requests and never write requests; writing information can
only be done for compiling a new contract (Compiler) or for running an instance of a
contract (Virtual Machine).

24 CHAPTER 3. ANALYSIS AND DESIGN OF STIPULA PLATFORM

If the request is of type (1) or of type (2), the results produced by the respective
modules are routed to the consent module. The reason is that before writing any
information to the storage and/or commitment layer, the network must agree on the
same information to be written. Consequently, this phase also involves the module
that implements all the communication protocols between the nodes, since, in order
to be able to determine consensus within the network, the nodes must be able to
communicate with each other. Furthermore, this module will carry out activities
regardless of the requests received from the clients, in fact within this part of software
there are also the protocols that allow you to manage the connections with the other
nodes.

3.5 Asset management
The language offers primitives that allow you to handle the transfer of assets carefully
and independently of how the assets are actually implemented. These design choices
made the language very clear to write and read code.

3.5.1 Definition of assets
One of the most important points of the development of this thesis project concerns the
provision of an implementation of the concept of asset. As a basic idea, it was decided
to try to reproduce the same characteristics of blockchain token such as Ethereum or
Algorand, adapting the complexity to the current development of the project. Thus,
the main characteristics of an asset are:

1. Unique identifier: consists of an alphanumeric string to uniquely refer to an
asset;

2. Name of the asset: a name is defined that can be easily remembered by a
person;

3. Unit name: corresponds to what is a ticker of a company listed on the stock
exchange (i.e., APPL for Apple company);

4. Decimals: indicates how many parts a single unit can consist of;

5. Maximum supply: indicates the maximum amount of assets that can exist
over time. The maximum quantity also includes decimal values, for example: if
you want to define an asset StipulaCoin which can only have 10 units and each
unit can be divided into 100 sub-units, therefore the maximum supply will be
1000 sub-units.

Example of definition of an hypothetical StipulaCoin asset:

1. Unique identifier : stipula_coin_asd345

2. Name of the asset: StipulaCoin

3. Unit name: STC

4. Decimals: 3

5. Maximum supply: 1000

3.5. ASSET MANAGEMENT 25

The StipulaCoin asset thus defined has an identifier (stipula_coin_asd345), a unit
name (STC), has a maximum supply of 1000 sub-units and the number of decimals is
equal to 3, so a single unit can be divided into 100 sub-units.

With this structure it is possible to define different types of assets, such as:

1. Fungible assets (i.e., bitcoins and banknotes): an asset is fungible when it is
interchangeable from the point of view of the units that compose it, i.e., that
each of its units is indistinguishable the from each other, for the same nominal
value. It is possible to define both divisible and non-divisible fungible assets;

2. Non-fungible assets (i.e., NFT): contrary to fungibility, the units that make
up the asset are unique and therefore are not interchangeable with each other.
Furthermore, another feature that distinguishes them from fungible assets is that
they are not divisible.

An example of a fungible asset was shown above (3.5.1). An example of a non-
fungible asset is provided:

1. Unique identifier : stipula_nft_abc123

2. Name of the asset: StipulaNFT

3. Unit name: SNFT

4. Decimals: 0

5. Maximum supply: 1

The StipulaNFT asset thus defined has an identifier (stipula_nft_abc123), a unit
name (SNFT), has a maximum supply of 1 unit and the number of decimals is equal to
0, because a non-fungible asset cannot be split.

However, the definition of the characteristics of an asset is not sufficient to also
define in which way the assets are transferred. Therefore in the next section we will
proceed to provide a possible solution for asset transfer.

3.5.2 Transfer of assets
The way in which the transfer of assets is implemented represents one of the most
delicate points of the whole project. When you want to send a certain amount of a
specific asset, you want to guarantee some properties:

1. Atomicity: the transaction must take place atomically from the sender to the
recipient;

2. Consistency in the quantity transferred: we want to ensure that no quanti-
ties of assets are lost or quantities of assets are generated out of nothing, during
a transaction;

3. Prevent assets from getting stuck: you want to prevent assets from getting
stuck in contracts, and therefore cannot be spent;

4. Proof of possession: you want to have proof that the amount of assets you
want to move is actually owned by the sender;

26 CHAPTER 3. ANALYSIS AND DESIGN OF STIPULA PLATFORM

5. Avoid double-spending: prevent an entity from being able to pay two recipients
using exactly the same amount of assets. This is a problem that does not arise
with, for example, banknotes, but it is a problem that affects digital assets. This
problem is due to the fact that in the digital context, unlike the real world, it is
difficult to reproduce the concept of scarcity of a good.

The problems indicated in points (1) and (3) are totally solved by the Virtual
Machine (see section 4.6), however, the check that during the transfer of assets no
amount of assets is lost or generated, is only solved partially (see sections 4.1.2 and
4.6.3). The solution to the other points will be explained later in sections 4.1.2 and 4.6.

Pay-to-Contract and Pay-to-Party

Blockchains like Ethereum or Algorand allow you to send and receive coins without using
contracts and to exchange tokens using smart contracts. In the current implementation
for Stipula, it is not possible for two entities to exchange assets except through a
contract. This is because it would have required the development of primitives external
to the virtual machine in order to enable the transfer of assets without going through
a contract. The purpose of the implementation is to build a platform for the execution
of legal contracts, and not to create a platform for pure asset transaction.

Taking into account that any transfer of assets must take place through the execution
of a contract, it is necessary to define how these transfers must take place between
the participants of a contract. Each party of a contract (that is, the participants of
the contract) owns a pair of cryptographic keys, with which it is able to send signed
messages and to prove possession of certain properties. A party, not being able to
directly send assets to another party, must send these assets to the contract. This
operation is defined as Pay-to-Contract or deposit, i.e., when the party makes a
function call that requires sending a certain amount of assets, it sends it to the contract.
In the execution phase of the function call, all the necessary checks will be performed
to verify that the party is actually the owner of that amount of assets. Once the
checks have been carried out, it will now be the contract that guarantees the integrity
of the assets, i.e., thanks to the definition of the language primitives, it will be the
contract that ensures that no quantities of assets will be lost into thin air or quantities
of assets will be generated from nothing . Instead, the operation that occurs when the
contract has to send assets to a party is called Pay-to-Party or withdrawal. Again,
the language primitives will ensure that the party will receive the correct amount of
assets. Thus defining the deposit of assets in a contract and the withdrawal of assets
from a contract, it is possible to transfer assets between two or more parties by means
of a contract, without the need to implement additional primitives external to the
language and specific to the implementation of the architecture. A simple example
that illustrates how Pay-to-Contract and Pay-to-Party work is shown in the example
in section 4.8.1, where two actors, Alice and Bob, exchange two assets with each other.

Single-use-seals

Despite the definition of an asset management structure and the definition of the
operations to send and receive assets, the definition of a model to represent and
manage the balances of various assets that a party can have is missing. The simplest
model to implement is the account-balance-based model, where each address has
a balance associated with it. With each transaction, the balance of the sent asset is

3.5. ASSET MANAGEMENT 27

updated, both for the sender and for the recipient. An example of an account-balance-
based model:

1 ...
2 "partyA": {
3 "asset1": {
4 "balance": 123.65
5 },
6 "asset2": {
7 "balance": 18.44
8 }
9 }

10 ...

However, this simple model has problems in terms of:

1. Scalability: if you want to send two transactions of an asset asset1, these
transactions cannot be parallelized, as the second transaction must wait for the
balance of asset asset1 is updated for the sender and the recipient after the
execution of the first transaction;

2. Privacy: it is a model that allows you to very easily track the funds associated
with an address.

An alternative model has been introduced by Bitcoin: the Unspent Transaction
Output (UTXO) model. It is a more complex model than the previous one but
offers advantages in terms of scalability, privacy and security. To give a concrete
example, we can define a UTXO as a box that contains a certain amount of an asset.
This box is closed by a single-use-seal which can only be broken by the owner of the
quantity of assets in question. To explain how this model works, we introduce the
following example: suppose Alice has to give Bob 1 StipulaCoin. Alice owns two
UTXOs, UTXO_1 and UTXO_2, each of 1 StipulaCoin. At this point, Alice chooses to
use UTXO_1, she breaks the seal and creates a new seal so that only Bob can then break
it in turn. By doing so, UTXO_1 it becomes Bob’s property and only he can spend it in
future transactions. The breaking of the seal can only be done if the user is able to
provide cryptographic proof that he is the rightful owner of the UTXO. The balance of
Alice and Bob’s wallets are given by the sum of the UTXOs in their possession: before
the transaction, Alice had 2 StipulaCoin contained in two different UTXOs, that
is, two transaction outputs (received) not (yet) spent, while Bob had 0 StipulaCoin;
after the transaction, Alice has 1 StipulaCoin and Bob has 1 StipulaCoin (the one
received from Alice), that is, both have an output of a transaction (received) not (yet)
spent.

The advantages of using this model are:

1. Parallelization: unlike the account-balance-based model, transactions that corre-
spond to two payments using two different UTXOs can be parallelized, without
having to wait for the balance to be updated of the transacted asset after the
first transaction. Taking the above example, Alice could send UTXO_1 to Bob
with a transaction and send UTXO_2 at the same time Charlie;

2. Partially solves the double-spending problem: a specific UTXO can be spent on
only one transaction and not on others. The problem is partially solved because
the network of nodes still has to verify that a user does not try to pay multiple
transactions with the same UTXO;

28 CHAPTER 3. ANALYSIS AND DESIGN OF STIPULA PLATFORM

3. Security: in order to spend funds, cryptographic proof of ownership of the assets
to be moved must be provided;

4. Privacy: this model encourages not to reuse the same addresses, making it
more difficult to trace funds. In fact, each transaction accepts UTXO as input
and generates new UTXO as output. If the same address is used over and
over again to make payments, it becomes easier for an observer to track the
history of transactions associated with that address, potentially revealing sensitive
information;

5. UTXO selection: consists of the process of choosing the UTXOs, from the
set of available UTXOs, to cover the transaction amount while minimizing the
transaction fees in Bitcoin. If you select UTXOs with a large value, you may
pay higher transaction fees than if you selected UTXOs with a smaller value.
Also, if you select too many UTXOs to cover your transaction amount, you may
find yourself having a larger transaction size, which can also result in higher fees.
Introduce the following example to clarify the implications of this technique:
suppose you want to send someone 0.5 StipulaCoin and that you have several
UTXOs in your wallet, including:

∗ 1 StipulaCoin
∗ 0.7 StipulaCoin
∗ 0.5 StipulaCoin
∗ 0.2 StipulaCoin

If you select the UTXO from 1 StipulaCoin to complete the transaction, you
will end up paying a higher commission than if you selected the 0.5 UTXO
StipulaCoin. This is because the transaction size for the UTXO is 1 StipulaCoin
is greater than that of the 0.5 StipulaCoin UTXO, which means that it will
cost more to include in a block. Therefore, selecting the appropriate UTXOs for
a transaction is important to minimize fees and ensure that the transaction is
processed quickly and efficiently.

For the implementation of the Stipula language, it was decided to pay greater
attention to network security (avoiding double-spending), user security (verifying
ownership of funds through cryptography) and privacy. Hence, it was decided to
implement a model similar to that of Bitcoin. The implemented model representation
is much simpler than that of a UTXO, therefore to keep separate the original concept
from the one implemented for the thesis, it was decided to use a different name:
single-use-seal. This term wants to refer in particular to the key action that occurs
during a transaction, i.e. the breaking of the seal by the sender and the creation of a
new seal that only the recipient will be able to break in turn. This step represents the
transfer of ownership of a certain amount of assets from one user to another.

Script

The smart contract concept was first proposed by cryptographer Nick Szabo (Nick
Szabo, 1997). Szabo described smart contracts as computer protocols that facilitate,
verify, or enforce the negotiation or performance of contractual obligations, without
the need for a trusted third party. However, it was only with the development of
blockchains that smart contracts became practical to implement. The first blockchain-
based platform where it was possible to create and execute smart contracts was

3.5. ASSET MANAGEMENT 29

Ethereum. This blockchain introduced a programming language called Solidity, which
allows developers to write smart contracts and deploy them on the blockchain.

Before Ethereum, the first large-scale application of the smart contract concept was
Bitcoin with the implementation of the Script language. It is a stack-based language
and offers a flexible and secure way to define the conditions under which a transaction
can be spent in the Bitcoin network, enabling more advanced transaction types, such
as requiring more signatures or a certain amount of time before that the funds can be
transferred. These rules can be combined in different ways to create more complex
transaction types and smart contracts. For example, a transaction with multiple
signatures might require approval from multiple parties before funds can be transferred,
while a time-locked transaction might require a certain amount of time before funds
can be accessed.

In the previous section we introduced UTXO and its simplified version, single-use-
seals. When a user has to pay for a contract, he has to provide cryptographic proof of
ownership of the single-use-seal. The naive solution is to send a message representing
the call of a function, within which the cryptographic demonstration is provided. The
cryptographic proof can consist in signing the single-use-seal identifier with the private
key, so that the user can prove possession of it. However, this solution is very limited:
if you wanted to implement a payment that requires approval from different users, you
would have to update the message format or create a new message type (i.e., update
the FunctionCall message in order to collect more signatures). To avoid having to
create many different message formats, it is possible to encode the cryptographic proof
as a contract written in Script. By doing so, the cryptographic proof can be represented
by a complex contract written in Script and which will be validated to verify if:

1. The program is syntactically and semantically correct, and

2. The signatures collected are correct and the conditions imposed by the contract
have been respected.

Szabo’s smart contract idea is different from Stipula’s legal contracts. Script allows
you to manage the expenditure of funds in a secure and advanced way, Stipula takes care
of executing programs that codify specific contractual obligations. The two languages
have two different purposes and therefore can coexist in the same implementation.
In fact, a language similar to Script was used to manage asset transfers and whose
programs are executed by a specific component of the virtual machine. Thus, the
Virtual Machine module allows both to execute contracts in Stipula and contracts in
Script. By analogy with the language used in Bitcoin, it was decided not to change
the name of this language, as they share the same instructions and mechanisms. All
the details of how the Script language works will be described later.

Fungibility of assets and non-fungibility of single-use-seals

In the 3.5.1 section, the difference between fungibility and non-fungibility has been
defined. It should be noted that a UTXO or single-use-seal is not fungible. This
is a property that both UTXO and single-use-seals have in common, so during the
explanation we will refer to UTXO for the sake of brevity. A UTXO is non-fungible as
it represents the value (quantity of assets) of a specific output obtained from a specific
transaction. Once a UTXO is spent in a transaction, this UTXO is consumed, and
therefore can not never be used again for a future payment. Also, a UTXO cannot
be split, that is, you cannot break the seal, take a fraction of the amount of assets it

30 CHAPTER 3. ANALYSIS AND DESIGN OF STIPULA PLATFORM

contains, and put the same seal back on. If Alice has to send 2 StipulaCoin to Bob
but she only has a UTXO of 5 StipulaCoin, the following actions will happen:

1. Alice provides cryptographic proof that she owns the UTXO containing 5
StipulaCoin, so she breaks the seal for that UTXO;

2. Alice prepares two new UTXOs: one of 2 StipulaCoin with a seal that only Bob
can break, and a 3 StipulaCoin UTXO with a seal that only Alice can break.
The latter UTXO represents the remainder of a transaction. A similar situation
can be encountered when using banknotes: if you have a banknote whose value
exceeds that of the item you want to buy, the seller will withhold the amount
equal to the value of the item and return it to the buyer the difference.

The non-fungibility of UTXOs is important because it ensures that each transaction
is recorded as a unique event, with a specific sender, recipient and value. This provides
a high level of transparency and security, as it is difficult to manipulate transaction
history. Also, since UTXOs cannot be reused, it reduces the risk of double-spending
and makes it easier to track the movement of funds. However, it also means that it can
be more difficult to make small or precise transactions, as UTXOs must be screened in
their entirety.

Difference from Ethereum

When a user wants to interact with a smart contract on Ethereum, the user must
authorize it to access their funds. By doing so, the contract will be able to spend
funds in your name. This practice is called token allowance. This feature represents
a serious weakness regarding the security of funds. Indeed, there have been several
cases of users approving malicious contracts with the aim of exfiltrating all possible
funds. The philosophy which has been pursued for the implementation of the Stipula
language, and which has already been introduced previously, consists in giving the
user full control over his own funds. When a user wants to make a function call of a
specific Stipula contract that requires the sending of a certain amount of assets, the
user cryptographically proves ownership of the single-use-seal to be sent and transfers
ownership to the contract. Now that the funds belong to the contract, the latter will
be able to manage them adequately according to the defined rules. A contract Stipula
can never embezzle users’ funds without their explicit permission. Obviously, this
approach has the disadvantage for the user of having to sign several transactions if the
contract requires it. Instead, in Ethereum, thanks to the token allowance, the smart
contract can carry out several transactions, without having to ask the user to sign them
each time. The proposed solutions are orthogonal to each other and it was decided to
always aim to ensure a higher level of security, to the detriment of a limitation of the
functions that can be offered.

Chapter 4

Implementation

In the previous chapter the general architecture of the project was introduced (figure
3.2). However, the current version is a simplified version of the initial architecture.
In particular, the current architecture is illustrated in figure 4.1. The implemented
architecture consists of a Java application, usable remotely via socket communication.
All interactions with this architecture take place according to the classic client-server
model. The reason for this simplification is mainly due to the complexity of developing
components, such as the Virtual Machine, the compiler and the asset management
model (single-use-seals). However, the design of this architecture also takes into
account future developments, which will be illustrated in the next chapter. The current
architecture represents a starting point for the realization of the architecture presented
in the previous chapter.

4.1 Introduction to basic concepts
The previous chapter introduced the concepts that form the basis on which the current
architecture is based, such as assets and their management, and contracts. In this
section these concepts will be analyzed from an implementation point of view, in order
to help in understanding the functioning of the architecture in its complexity.

4.1.1 Contracts and contract instances
In the current version of the architecture, there is a difference between a contract and
a instance of a contract. The difference is similar to class and object (or instance of a
class) for object-oriented programming. When two actors want to execute a contract,
they will agree to create a new instance of a contract. The contract will be immutable,
while a contract instance can change over time.

From an implementation point of view, a contract is represented as follows:

1. The source code of the contract;

2. The compiled contract, that is, the bytecode;

3. The initial state of the contract state machine;

4. The final states of the contract state machine (optional);

5. The contract state machine transitions.

31

32 CHAPTER 4. IMPLEMENTATION

Figure 4.1: Current state of the implemented architecture.

4.1. INTRODUCTION TO BASIC CONCEPTS 33

When this set of information is sent to the Storage module, the latter generates
an identification code to be associated with the contract. This identifier is sent in
response to the client requesting to load the contract (see 4.3.4).

An instance of a contract is represented as follows:

1. The identifier of the contract: it must be specified which specific contract
you want to refer to;

2. The participants of the contract;

3. The definition of a memory space dedicated to maintaining the state of the
global variables during the evolution of the instance of the contract;

4. A state machine: this structure is needed to track the progress of the contract
instance over time and to ensure that the contract participants operate without
violating the established order of operations.

This distinction between contract and instance of a contract allows for the creation
of multiple instances starting from the same contract, i.e., multiple users can use the
same contract multiple times, present in a server or Stipula node, creating multiple
instances.

4.1.2 Asset
Definition

As illustrated in the previous chapter (see 3.5.1), the goal is to try to reproduce the
concept of token, as is the case for Ethereum. An asset within the architecture is
represented in Java by the object AssetConfig class:

1. String assetName: a name is defined that can be easily remembered by a
person;

2. String unitName: corresponds to what is a ticker of a company listed on the
stock exchange;

3. int decimals: indicates how many parts a single unit can be in;

4. int supply: indicates the maximum amount of assets that can exist over time.

When this set of information is sent to the Storage module, the latter generates an
identification code to be associated with the asset. The object being stored contains
the String id fields and AssetConfig asset.

At this point, creating fungible and non-fungible assets consists in extending the
AssetConfig class. In particular:

1. 1 public class FungibleAsset extends AssetConfig {
2 public FungibleAsset(String assetName, String

unitName, int supply, int decimals) {↪→

3 super(assetName, unitName, supply, decimals);
4 }
5 }

34 CHAPTER 4. IMPLEMENTATION

2. 1 public class NonFungibleAsset extends AssetConfig {
2 public NonFungibleAsset(String assetName, String

unitName) {↪→

3 super(assetName, unitName, 1, 0);
4 }
5 }

4.2 Libraries
This package contains all the fundamental data structures for the overall development
of the project. Furthermore, a library that implements cryptographic functions has
been implemented.

4.2.1 Crypto
This library implements a number of cryptographic features, useful both for the
architecture and for external software such as SDKs and wallets. The implemented
methods are:

1. generateKeyPair: allows you to generate a 1024-bit RSA key pair;

2. encrypt: allows you to encrypt the received input;

3. decrypt: allows to decrypt the received input;

4. getPublicKeyFromFile: allows you to create a public key from a file;

5. getPrivateKeyFromFile: allows you to create a private key from a file;

6. readKeyFromFile: allows you to read a key from a file;

7. getPublicKeyFromString: allows you to create a public key from a string;

8. sign: allows you to sign the received input;

9. verify: allows you to verify if a signature is valid.

4.2.2 Data structures
This package contains all the fundamental data structures for the implementation of
the architecture. In particular, the data structures are:

1. Pair: represents a collection of two items of any type. The order of the elements
is important and allows two related values to be stored and manipulated as a
single element;

2. Triple: it is a structure similar to the previous one, but it allows to manage
three elements;

3. Queue: is a data structure that implements the First-In-First-Out (FIFO) policy,
ie, the first item added to the queue is the first to be removed. This structure is
used when algorithms need to process a sequence of elements in a specific order;

4. Stack: is a data structure that implements the Last-In-First-Out (LIFO) policy,
i.e., the last element added to the stack is the first to be removed.

4.3. MESSAGE SERVICE 35

In addition to these data structures, data structures provided directly by Java have
been used, such as ArrayList and HashMap.

4.3 Message Service
This module is responsible for managing communication with clients, accepting their
requests and redirecting them to the appropriate architecture modules. Before accepting
requests, checks are carried out on the correct format of the message and the signatures
associated with the message itself.

4.3.1 MessageServer
This component allows you to create an instance of a server, which waits for new
connections from clients. When a new request arrives, the connection is delegated to
a dedicated thread; by doing so, the server is ready to accept new connections. The
other tasks of this component are to:

1. Instruct the dedicated thread, passing it all the objects it needs;

2. Allocate a specific zone in shared memory. This memory zone is shared
between these threads and the virtual machine and is required for communication
between these two components. From the point of view of the implementation,
shared memory is represented by one map, where the key is a string that serves
as an identifier to access the cell, and the value is a generic T object.

4.3.2 ClientHandler
This component takes care of managing a single connection with a client. In addition,
this component takes care of:

1. Check the signatures of the message received from the client;

2. If the previous check is successful, this component takes care of directing the
request to the correct module.

When a response has been received from the module to which the request was
directed, the ClientHandler deallocate the memory zone from shared memory.

4.3.3 ClientConnection
This component allows you to manage the connection more easily. In fact, it exposes
high-level functionality, hiding certain complexities regarding socket management. This
component allows you to make the ClientHandler code more compact and readable.

4.3.4 Messages
The messages currently in the implementation will be explained below. These represent
the fundamental messages to allow the execution of the contracts. In the future, this
ensemble will certainly be expanded. For ease of implementation, message transmission
consists of direct encoding of Java objects in JSON format.

36 CHAPTER 4. IMPLEMENTATION

DeployContract

This message allows you to load a new contract into the Stipula instance. The only
required value is the source code of the contract. This request will then be routed to
the compiler.

FunctionCall

This message allows you to make a function call for a specific instance of a contract.
The required parameters are:

1. contractInstanceId: identifier of the instance of the contract to which it refers;

2. functionName: name of the function to call;

3. arguments: the list of arguments of the function to call. The elements of this list
are triples. In this case, the meaning of a triple is variable type, variable name
and variable value.

This request will then be routed to the virtual machine.

Pay-to-Contract In the previous chapter the concept of Pay-to-Contract was intro-
duced (see 3.5.2), that is, the user can make a payment to an instance of a contract, using
one of its single-use-seals. Previously, the FunctionCall object was introduced, which
allows you to supply the parameters of a specific function. These parameters are speci-
fied by the arguments field, which is of type Triple<String, String, Object>. The
last component of the triple accepts a value of type String or of type PayToContract.
This last object allows you to provide all the information necessary to make the payment
to the contract instance. In particular, the fields of the object are:

1. String ownershipId: it is the identifier of the single-use-seal that the user
wants to spend;

2. String address: the address of the owner of the single-use-seal;

3. String unlockScript: consists of a cryptographic proof proving that the user
is the effective owner of the single-use-seal. The meaning of this field will be
described later.

Here is an example of Pay-to-Contract:

1 ...
2 "arguments": [
3 {
4 "argument": {
5 "first": "asset",
6 "second": "y",
7 "third": {
8 "ownershipId": "2b4a4614-3bb4-4554-93fe-c034c3ba5a9c",
9 "address":

"ubL35Am7TimL5R4oMwm2OxgAYA3XT3BeeDE56oxqdLc=",↪→

4.3. MESSAGE SERVICE 37

10 "unlockScript": "PUSH str PLjodnT+m3RNIitQAPBDCsRmJPHC c
qrwZOY/CPiHFZGnl+DRN6soqxMy3ehTFaUwxBjjf7qfBfvTDq5 c
oBItTFrtz1Rn5SDS1ybdbkwpKaOXVglNOw7ZEG9bbZ1mo1oA7I c
AjRiIilzUetCstE5rPZIf9XOXr/RQ5AHkZUn2CztsvA=\nPUSH
str MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS c
+3gAA55+kko41yINdOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLP c
sSga8hQMr3+v3aR0IF/vfCRf6SdiXmWx/jflmEXtnT6fkGcnV6 c
dGNUpHWXSpwUIDt0N88jfnEqekx4S+KDCKg99sGEeHeT65fKS8 c
lB0gjHMt9AOriwIDAQAB\n"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

11 }
12 }
13 }
14],
15 ...

AgreementCall

The agreement function is a particular function compared to the others and therefore
must be managed ad-hoc. For this function you need:

1. contractId: identifier of the contract. This function call will create a new
instance of the indicated contract;

2. arguments: the list of arguments of the function to call;

3. parties: is a map that provides the association between the party name in
the contract and the user’s address and public key. An address is a compact
representation of the public key, in particular, it is the hash of the public key.
For example:

1 ...
2 "parties": {
3 "Bob": {
4 "address":

"f3hVW1Amltnqe3KvOT00eT7AU23FAUKdgmCluZB+nss=",↪→

5 "publicKey": "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBg c
QDErzzgD2ZslZxciFAiX3/ot7lrkZDw4148jFZrsDZPE6CV c
s9xXFSHGgy/mFvIFLXhnChO6Nyd2be3lbgeavLMCMVUiTSt c
Xr117Km17keWpb3sItkKKsLFBOcIIU8XXowI/OhzQN2XPZY c
ESHgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB"

↪→

↪→

↪→

↪→

6 },
7 "Alice": {
8 "address":

"ubL35Am7TimL5R4oMwm2OxgAYA3XT3BeeDE56oxqdLc=",↪→

9 "publicKey": "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBg c
QCo/GjVKS+3gAA55+kko41yINdOcCLQMSBQyuTTkKHE1mhu c
/TgOpivM0wLPsSga8hQMr3+v3aR0IF/vfCRf6SdiXmWx/jf c
lmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88jfnEqekx4S+KD c
CKg99sGEeHeT65fKS8lB0gjHMt9AOriwIDAQAB"

↪→

↪→

↪→

↪→

10 }
11 },
12 ...

38 CHAPTER 4. IMPLEMENTATION

Alice and Bob are the names of the variables representing the parties in the
contract. With this function call, these variables now have an associated address
and public key.

The AgreementCall is a bit more complicated than just FunctionCall. The
reason is that in order to agree to a contract, both parties to the contract must
sign a single message. There are different ways to collect signatures to add
to your message. An easy way could be for the two parties to the contract
to agree on the terms of a contract (i.e., the cost of a service) by means of
communication channels such as chat or email. One of the two parties creates
the AgreementCall message, signs it with his private key and sends it via chat
or email to the other party. The other party downloads the message, checks that
the previously agreed values have been entered, checks that the other party’s
signature is legitimate and also signs the message. Once this procedure has been
carried out, one of the two actors sends the AgreementCall message only once
to the server. Another context could be an external application that relies on a
Stipula server. This application can perform the same operations described in
the previous example, hiding all the steps through a single graphical interface.
Once all the signatures of the actors have been collected, the application, based
on the Stipula server, will send the AgreementCall to the Stipula server. The
advantage of having structured the architecture and the communication in this
way is that it does not place any constraints on the communication between the
actors. When the Stipula server has received the AgreementCall message with
legitimate signatures, the architecture will create a new instance of the contract
chosen by the actors.

The AgreementCall request it will then be directed to the virtual machine.

GetAssetById

This message allows you to obtain information about a specific asset, given an identifier.
In fact, the only required value is the identifier of the asset whose information is to be
obtained.

This request will then be routed to Storage.

GetOwnershipsByAddress

This message allows you to get all spent and unspent funds from a specific address. In
fact, the only required value is a address. The use of an address allows to transmit
less data in the socket and to carry out less computations in the Storage to find the
address associated with the public key.

This request will then be routed to Storage.

4.3.5 Interaction with Storage
The only requests that allow this module to interact directly with the Storage module
are GetAssetById and GetOwnershipsByAddress. These messages require to be able
to obtain information, that is, to perform a read operation from the Storage module.
In fact, all the requests that imply a modification of a piece of information are requests
that are addressed to the compiler and virtual machine modules. Only these two
modules can actually write to Storage.

4.4. COMPILER 39

4.4 Compiler
A compiler is a software program that translates source code, written in a high-level
programming language, into machine code that can be executed by a computer. In
this case, we want to develop a compiler to translate the high-level language Stipula
into a language that can be executed by a machine: the Stipula bytecode.

A compiler is made up of several components, which can be grouped into:

1. Front-end: it is the part of the compiler that deals directly with the source
code and produces an internal representation that can be easily processed by
the back-end. The front-end output is usually an intermediate representation
such as an abstract syntax tree, which can be optimized and transformed by
the back-end before being translated into machine code or some other target
language. This involves tasks such as lexical parsing (splitting input into tokens),
syntax parsing (parsing tokens into a parse tree or an abstract syntax tree), and
semantic analysis (making sure the input conforms to the rules of the language
and generating an intermediate representation);

2. Back-end: is responsible for generating executable code from the intermediate
representation produced by the front-end. This involves several stages, including:

(a) Optimization: this phase involves the analysis of the intermediate code and
its transformation to produce a more efficient code;

(b) Code generation: in this phase, the optimized intermediate code is trans-
formed into executable machine code. This involves translating each inter-
mediate code instruction into one or more machine instructions, taking into
account the target hardware platform and processor specific instruction set;

(c) Linking: The generated code is combined with any required runtime libraries
and other resources to produce an executable program.

A compiler’s backend is typically heavily dependent on the target architecture, and
different backends may be needed for different hardware platforms or operating
systems.

The typical structure of a compiler includes the following components:

1. Lexer: this component reads the source code character by character and de-
composes it into token. A token is a sequence of characters that represents a
significant unit of the language, such as a keyword, an identifier or an operator;

2. Parser: this component takes the stream of tokens generated by the lexer and
builds a syntax tree or an abstract syntax tree (AST) which represents the
syntax structure of the program. The AST captures the hierarchical relationships
between language constructs in the program;

3. Semantic Analyzer: This component checks the AST for semantic correctness,
such as type checking and error detection. Ensures that the program follows the
rules of the programming language and can run correctly;

4. Intermediate code generator: this component translates the AST into an
intermediate representation, i.e. a machine-independent low-level code that can
be optimized and further translated into executable code;

40 CHAPTER 4. IMPLEMENTATION

5. Code optimizer: this component applies various optimization techniques to
intermediate code to improve its efficiency and reduce its size;

6. Code generator: this component translates the optimized intermediate code
into machine code that can be executed by the target processor;

7. Linker: this component combines the object files produced by the code generator
into a single executable file and resolves any external references between them.

An external tool (see section 4.4.1) was used to automate the development of some
parts of the compiler. The part that was implemented manually is the part that
concerns the mapping of the Stipula instructions into Stipula bytecode instructions.

For the implementation of the compiler not all the steps described have been
followed:

1. The linker is not useful in the current state of the language;

2. The intermediate code generator is replaced by the code generator, as the Stipula
bytecode already represents the target language;

3. The code optimization phase is missing, especially when it comes to analyzing
and solving syntactic sugar. In particular, see 5.1.1 for an illustration of this
problem.

4.4.1 Grammar, lexer e parser
Grammar

The original grammar of the Stipula language (Silvia Crafa, Cosimo Laneve and Adele
Veschetti, 2022b and Silvia Crafa, Cosimo Laneve and Adele Veschetti, 2022c) is as
follows:
<prog> ::= 'stipula' <id> ’{’ <declist>∗ <agreement>? <fun>+ ’}’;

<agreement> ::= ('agreement' ’(’ <disputer> (',' <disputer>)∗ ’)’ ’(’ <vardec> (’,’
<vardec>)∗ ’)’ ’{’ (<assign>)+ ’}’ ’==>’ ’@’ <state>);

<fun> ::= ((’@’ <state>)+ <disputer> (’,’ <disputer>)∗ ’:’ <id> ’(’ (<vardec> (’,’
<vardec>)∗)? ’)’ ’[’ (<assetdec> (’,’ <assetdec>)∗)? ’]’ (’(’ <prec> ’)’)? ’{’ <stat>+ ’;’
<events>+ ’}’ ’==>’ ’@’ <state>);

<assign> ::= (<disputer> (’,’ <disputer>)∗ ’:’ <vardec> (’,’ <vardec>)∗);

<stat> ::= ’_’ | (<value> (’->’ | ’-o’) <value> (’,’ <value>)?) | <ifelse>;

<ifelse> ::= (’if’ ’(’ <expr> ’)’ ’{’ <stat>+ ’}’ (’else if’ ’(’ <expr> ’)’ ’{’ <stat>+
’}’)∗ (’else’ ’{’ <stat>+ ’}’)?);

<events> ::= ’_’ | (<expr> ’>>’ ’@’ ’id’ ’{’ <stat>+ ’}’ ’==>’ ’@’ ’id’);

<prec> ::= <expr>;

<expr> ::= (’-’)? <term> ((’+’ | ’-’ | ’||’) <expr>)?;

4.4. COMPILER 41

<term> ::= <factor> ((’*’ | ’/’ || ’&&’) <term>)?;

<factor> ::= <value> ((’==’ | ’<’ | ’>’ | ’<=’ | ’>=’ | ’!=’) <value>)?;

<varasm> ::= <vardec> ’=’ <expr>;

<declist> ::= <type> <strings>;

<type> ::= ’asset’ | ’field’ | ’int’ | ’real’ | ’boolean’ | ’party’ | ’string’ | ’time’ | ’init’;

<state> ::= <strings>;

<disputer> ::= <strings>;

<vardec> ::= <strings>;

<assetdec> ::= <strings>;

<value> ::= <number> | ’now’ | ’(’ <expr> ’)’ | <strings> | ’_’ | (’true’ | ’false’);

<id> ::= ’id’;

<strings> ::= SINGLE_STRING | DOUBLE_STRING | ’id’;

<real> ::= <number> ’.’ <number>;

<number> ::= INT | REAL;

This grammar has a limitation regarding assets. Suppose you need to write a
contract to swap two assets. The code could be as follows:

1 stipula SwapAsset {
2 asset assetA, assetB
3 field amountAssetA, amountAssetB
4 ...

However, from this code it is not possible to understand which assets are being
referred to exactly. That is, if Alice wants to swap assetA for assetB owned by Bob,
there is no specific indication of these assets in the code. The change that was made
to the grammar is as follows:

<declist> ::= (<assetdecl>)? (<fielddecl>)?;

<assetdecl> ::= ’asset’ <strings> ’:’ <strings>;

<fielddecl> ::= <type> <strings>;

<type> ::= ’field’ | ’int’ | ’real’ | ’boolean’ | ’party’ | ’string’ | ’time’ | ’init’;

By doing so, it is possible to specify the assets that must be accepted by the contract.
Thus, the previous code in Stipula transforms with the grammar change as follows:

42 CHAPTER 4. IMPLEMENTATION

1 stipula SwapAsset {
2 asset assetA:stipula_assetA_ed8i9wk,

assetB:stipula_assetB_pl1n5cc↪→

3 field amountAssetA, amountAssetB
4 ...

The B appendix illustrates the rules of the defined grammar previously (see 4.4.1)
translated into ANTLR.

Lexer, Parser and ANTLR

ANTLR (ANother Tool for Language Recognition) is a lexer and parser generator
that can be used to create compilers, interpreters and other language processing tools.
It is a tool well known for its ability to generate highly efficient parsers that can handle
complex and context sensitive grammars. It also provides a simple syntax for defining
grammars, which makes it easier to create parsers for new languages or formats.

In order to use this tool, it is necessary to convert the grammar defined in the
previous section, following the rules established by ANTLR (see the B appendix).
Version 4.10 was used for this project (ANTLR v4.10).

The tool is written in Java and in order to use it you need to execute a .jar file.
In particular, the command to generate the classes that implement the lexer and the
parser is the following:

java -jar antlr-4.10-complete.jar -visitor Stipula.g4

In order to use the lexer and parser produced by ANTLR, it is necessary to integrate
the latter tool into the project. The integration is specified in the D appendix.

4.4.2 Generation of the bytecode
This stage occurs after the parser has produced the abstract syntax tree. In particular,
the AST is visited and for each instruction of the Stipula language one or more bytecode
instructions are generated. In this phase, any syntactic sugar present in the contract is
also resolved. The translation of the syntactic sugar takes place by generating fixed
structures in bytecode language, that is, once the syntax variant of a specific instruction
has been recognized, this is always translated into a fixed structure. This practice
allows in the execution phase not to worry about the presence of any syntactic sugar
to be resolved.

Once compiled, the source code of the contract and the compiled are stored in the
Storage module.

In the next section we will introduce the Stipula bytecode language, that is, its
functioning and its instructions.

4.5 Stipula bytecode
This language was designed to mirror the functionality of the high-level language and
to run on a stack-based virtual machine. A summary table of the instructions is shown
below 4.1: the - symbol means that the statement takes no value as input or returns
no value as output, while the * means that the instruction accepts a value of any type
or outputs a value of any type.

4.5. STIPULA BYTECODE 43

Table 4.1: Table of Stipula bytecode instructions.

Instruction Behavior

PUSH − → ∗
HALT − → −
ADD (int, int)→ int,

(real, real)→ real,
(asset, asset)→ real,
(asset, real)→ real,
(real, asset)→ real,
(time, time)→ time

SUB (int, int)→ int,
(real, real)→ real,

(asset, asset)→ real,
(asset, real)→ real,
(real, asset)→ real

MUL (int, int)→ int,
(real, real)→ real,

(asset, asset)→ real,
(asset, real)→ real,
(real, asset)→ real

DIV (int, int)→ int,
(real, real)→ real,

(asset, asset)→ real,
(asset, real)→ real,
(real, asset)→ real

INST − → −
AINST − → −
GINST − → −
LOAD − → ∗
ALOAD − → ∗
GLOAD − → ∗
STORE ∗ → −
ASTORE ∗ → −
GSTORE ∗ → −

AND (bool, bool)→ bool
OR (bool, bool)→ bool
NOT bool→ bool
JMP − → −

JMPIF bool→ − || bool
ISEQ ∗ → bool
ISLE ∗ → bool
ISLT ∗ → bool

DEPOSIT (asset, asset)→ −
WITHDRAW (real, asset, party)→ −

RAISE − → str
TRIGGER time→ −

44 CHAPTER 4. IMPLEMENTATION

4.5.1 Types
This section introduces the types that are supported by the Stipula bytecode.

Integers, Strings e Booleans These are the simplest types to implement, as only
one field in the Java object representation is required for storing the value. Examples
of declarations:

1. Integer: int <variable_name> 123;

2. String: str <variable_name> abc;

3. Boolean: bool <variable_name> true or bool <variable_name> false.

Time From an implementation point of view, this type is similar to the previous
one. However, the value of a variable of type time represents a certain amount of time
expressed in seconds. Example of declaration: time <variable_name> 123.

Real numbers This type was implemented in a simple way: there are two fields,
one representing the number for extended, that is, without the comma; the other
indicates the number of decimals to apply to the number contained in the first field.
For example, to encode the number 134.28 you would write 13428 2, that is, 13428
represents the number in full and 2 represents the number of decimals to apply to that
value. Example of declaration: float <variable_name> 123 1 means 12.3.

Party The Java object that represent the type party in the bytecode language is
structured as follows:

9 ...
10 public class Party implements Serializable {
11 private final String address;
12 private final String publicKey;
13

14 public Party(String publicKey) throws
NoSuchAlgorithmException {↪→

15 this.publicKey = publicKey;
16

17 // Hash the public key
18 Base64.Encoder encoder = Base64.getEncoder();
19 MessageDigest digest =

MessageDigest.getInstance("SHA-256");↪→

20

21 this.address = encoder.encodeToString(digest.digest(publ c
icKey.getBytes(StandardCharsets.UTF_8)));↪→

22 }
23 ...

1. publicKey represents a user’s public key;

2. address is a more compact representation of the public key, in particular, it is
the hash of the public key. Having this field will allow you to use less space and
make Storage searches faster.

4.5. STIPULA BYTECODE 45

Example of declaration:

party <variable_name>
ubL35Am7TimL5R4oMwm2OxgAYA3XT3BeeDE56oxqdLc=↪→

Asset The structure of this type consists of:

1. The real part represents the quantity of assets contained in the variable;

2. The assetId field represents the identifier of the asset. This makes it possible
to understand which asset the quantity specified by the real part belongs to.

Example of declaration: asset <variable_name> 100 2 stipula_coin_asd345.

4.5.2 Instructions of the bytecode language
In this section we will explain how the language instructions work. In section 3.3.3
it was explained what a stack-based virtual machine is. The virtual machine is able
to manage the values on the stack by means of two operations. When an instruction
takes a value as input, it means that it pop from the stack. While, when an instruction
returns a value in output, it means that it performs the push operation on the stack.

PUSH This statement allows you to insert values into the stack. This statement
takes an input value of any type and returns no output value. Possible formats for
this statement are:

1. PUSH int <value>;

2. PUSH bool <value>;

3. PUSH str <value>;

4. PUSH party <value>;

5. PUSH time <value> and PUSH time now: now is a reserved word and when this
instruction is read by the virtual machine, this word is interpreted as the intention
to get the current timestamp;

6. PUSH real <value> <decimals> (i.e., PUSH real 13428 2);

7. PUSH asset <value> <decimals> <asset-id>
(i.e., PUSH asset 13428 2 stipulation_coin_asd345).

HALT This statement notifies the virtual machine that the function code is finished.
If this statement is executed, it means that the entire execution of the function did
not generate any errors. With this instruction, the virtual machine proceeds to store
the results produced, send any payments to addresses and provide a response for the
client. This statement takes no value as input and returns no output.

46 CHAPTER 4. IMPLEMENTATION

ADD This statement implements the sum mathematical operation. This statement
takes two values as input and returns one value as output. In most cases, the types of
the two input values must be equal to each other, and the type of the output value
must be equal to the type of the input values. For example, if two values of type int
are received as input, then the output will be of type int.

However, there is an exception regarding the asset type. In fact, manipulation
of variables of this type must be done with great caution. If you want to somehow
add the amount of assets owned by a specific instance of a contract with other values,
this operation must absolutely not affect the amount of assets present, that is, a sum
operation involving a variable of type |asset|,must ensure that after this operation
no quantity has been lost or some quantity of asset has been generated out of thin
air. The only operations that can manipulate the quantity of assets contained in the
appropriate variable are the deposit and withdrawal operations, which will be described
later. Therefore, the application of mathematical operations to variables of type asset
has been limited as follows:

1. A variable of type real is accepted as input and one of type asset and the
output of the operation will be a value of type real;

2. A variable of type asset is accepted as input and one of type real and the
output of the operation will be a value of type real;

By doing so, it is not possible to generate or destroy quantities of assets through
the use of mathematical operations.

Finally, this is the only mathematical instruction that allows you to manipulate
time values. Therefore, this sequence of instructions:

1 ...
2 GLOAD waitTime
3 PUSH time now
4 ADD
5 ...

will add the value contained in the global variable waitTime at the timestamp
calculated at the instant in which the virtual machine will read the instruction on line
3.

SUB, MUL and DIV These instructions implement the mathematical operations of
subtraction, multiplication and division, respectively. The behavior of these instructions
is similar to the operation of the add instruction, except that they cannot handle values
of type time.

INST, AINST and GINST These statements take no value as input and return
no value as output. These statements allow you to instantiate new variables. In
particular:

1. INST allows to instantiate a variable in the space dedicated to the function;

2. AINST allows you to instantiate a variable in the space dedicated to the function’s
arguments;

3. GINST allows you to instantiate a variable in the space dedicated to global
variables of the contract instance.

4.5. STIPULA BYTECODE 47

The possible formats for these instructions are:

1. INST AINST | GINST <int | bool | str | party | time> <value>|;

2. INST AINST | GINST time <value> | now|;

3. INST AINST | GINST real <value> <decimals>|;

4. INST AINST | GINST asset <value> <decimals> <asset-id>|;

5. INST AINST | GINST * <value>|: this format allows you to instantiate a
variable whose type must be determined at runtime.

Before instantiating a new variable, the virtual machine will make sure that another
variable with the same name does not exist in memory.

LOAD, ALOAD and GLOAD These instructions allow you to load a variable
from memory onto the stack. These instructions take no value as input and return the
variable loaded from memory as output. In particular:

1. LOAD: allows you to load a variable from the space dedicated to the function;

2. ALOAD: allows you to load a variable from the space dedicated to the function
arguments;

3. GLOAD: allows you to load a variable from the space dedicated to global variables
of the contract instance.

The instruction formats are:

LOAD | ALOAD | GLOAD <variable_name>

Before loading a variable, the virtual machine will make sure that the variable exists
in memory.

STORE, ASTORE and GSTORE These statements allow you to store a variable
in memory. These statements take a value of any type as input and return no value as
output. In particular:

1. STORE: allows you to store a variable in the space dedicated to the function;

2. ASTORE: allows you to store a variable in the space dedicated to the function
arguments;

3. GSTORE: allows you to store a variable in the space dedicated to the global
variables of the contract instance.

The instruction formats are:

STORE | ASTORE | GSTORE <variable_name>

Before storing the variable, the virtual machine will make sure that the variable
exists in memory.

48 CHAPTER 4. IMPLEMENTATION

AND and OR These statements take two boolean values as input and return a
boolean value as output. For the AND statement, if both input values are true, then the
output will be true, otherwise the output will be false. While, for the OR statement,
if one of the two input values is true, then the output will be true, otherwise the
output will be false.

NOT This statement takes a boolean value as input and returns a boolean value as
output. The output of this statement is the inverse of the input value, that is, if the
input is true, then the output will be false, and vice versa.

ISEQ Given two boolean inputs, this statement checks whether two values are equal.
If the input values are equal, the output will be true, otherwise the output will be
false. This statement can be applied to any type, as long as the input types are
the same. The only allowed exceptions are the input pairs (asset, real) and (real,
asset).

Combining this statement with the NOT statement it is possible to check if the two
input values are different from each other: if the values are different, the output will
be true, otherwise the output will be false.

ISLE Given two boolean inputs, this statement checks whether the first value is less
than or equal to the second value. If this condition is true, then the output will be
true, otherwise the output will be false. This statement only applies to types int,
real and assets.

Combining this statement with the NOT statement it is possible to check if the first
value is strictly greater than the second value: if this condition is true, the output will
be true, otherwise the output will be false.

ISLT Given two boolean inputs, this statement checks whether the first value is
strictly less than the second value. If this condition is true, then the output will be
true, otherwise the output will be false. This statement only applies to types int,
real and assets.

Combining this statement with the NOT statement it is possible to check if the first
value is greater than or equal to the second value: if this condition is true, the output
will be true, otherwise the output will be false.

JMP This statement takes no value as input and returns no value as output. This
instruction represents the unconditional jump and allows interrupting the normal flow
of execution of the function to reach a specific area of code (always within the function),
indicated by a label. The format of the statement is JMP <label>. Since the high-level
language Stipula is not a Turing complete language, it is not possible to create loops
with this instruction, since the jump can only be made in "forward", i.e., the search of
the label starts from the position where the last statement was just executed and goes
forward, it is not allowed to search for the label starting from the beginning of the
function.

JMPIF This instruction takes as input a value of type bool. This instruction allows
to implement the conditional jump, that is, it is possible to interrupt the normal
execution flow and reach a specific area of code, within the function, only if a previous
condition has been satisfied. The format of the statement is JMPIF <label>. If the

4.5. STIPULA BYTECODE 49

input value is true, then jumping to the code area indicated by <label> will happen
and no value will be output, otherwise if the input value is false, the input value will
be output.

DEPOSIT This statement takes two values as input, both of type asset, and
returns no value as output. This statement allows you to deposit assets into an instance
of a contract. The first value represents the amount of assets deposited by the user
and this amount is accumulated into the second value, which represents the amount of
assets present in the contract instance. This is one of two instructions that is allowed
to directly manage assets and store updates to these variables.

WITHDRAW This instruction allows you to make payments to a specific participant
of the contract. This statement takes three values as input and returns no value as
output. The input values are:

1. real: this value represents the quantity of assets that must be withdrawn;

2. asset: this value represents the quantity of assets contained in the contract
instance;

3. party: this value represents the party of the contract to which the payment must
be made.

This instruction is allowed to directly manage the assets and to store the updates
regarding these variables.

RAISE This statement takes no value as input and outputs a value of type str which
will be placed on the error stack of the virtual machine. This statement is used to block
the flow of function execution to notify an error. In this version of the architecture,
the only error that can be reported to the error stack is AMOUNT_NOT_EQUAL and is
notified when the user wants to deposit an amount of assets that does not match the
amount of assets agreed at the beginning of the contract.

TRIGGER This instruction takes as input a value of type time and returns no out-
put. This instruction allows you to create an event to schedule, at a precise moment, the
execution of a obligation. The format of the instruction is TRIGGER <obligation_function_name>,
having to for <obligation_function_name> we refer to the name of the function that
encodes the obligation that will have to be performed.

4.5.3 Function types
In the bytecode language we can define three types of functions:

1. agreement function: this is the function that allows you to create a new instance
of a contract. Here is an example:

fn agreement Alice,Bob Inactive real,str

In particular:

(a) fn agreement: it specifies that the function to be performed will be a
agreement function;

50 CHAPTER 4. IMPLEMENTATION

(b) Alice,Bob: the participants in the contract are defined. When this function
is called, the addresses and public keys of the users who want to execute
the contract will need to be provided. Therefore, two parameters of type
party will have to be supplied;

(c) Inactive: indicates the state in which the instance of the contract must
go, once the virtual machine has finished executing the agreement function
without errors;

(d) real,str: it indicates that, in addition to the addresses and public keys of
the users, two parameters must be supplied, one of type real and the other
of type str;

2. Function representing a obligation: this is the function that is invoked at a
given moment by an event. This event was previously scheduled by another
function. Here is an example:

obligation Swap obligation_1 End

In particular:

(a) obligation: it specifies that the function to be performed is a obligation;
(b) Swap: indicates the state in which the instance of the contract must be in

order to be able to execute the obligation;
(c) obligation_1: is the name of the function that represents the obligation;
(d) End: indicates the state in which the instance of the contract must go, once

the virtual machine has finished executing, without errors, the function that
represents the obligation;

Functions that represent obligations do not accept any parameters.

3. generic function: this is a generic function that can be called by a user via the
FunctionCall message. Here is an example:

fn Inactive Alice deposit Swap int,asset

In particular:

(a) fn: you specify that you are going to execute a function;
(b) Inactive: indicates the state in which the instance of the contract must be

in order to execute the function;
(c) Alice: indicates which participant of the contract can call this function;
(d) deposit: is the name of the function;
(e) Swap: indicates the state in which the instance of the contract must go, once

the virtual machine has finished executing the function, without errors;
(f) int,asset: it indicates that two parameters must be supplied, one of type

int and the other of type asset.

These functions differ only in their definition, the body of each type of function is
no different from the other, they all use the same set of instructions and types.

In a Stipula contract there must be only one agreement function, while for the other
functions it is also possible to overloading. Indeed, taking as an example

4.6. VIRTUAL MACHINE 51

fn Inactive Alice deposit Swap int,asset

the following definitions are all legitimate in a Stipula contract:

1. fn Inactive Alice deposit End int,asset

2. fn Start Alice deposit Swap int,asset

3. fn Inactive Bob deposit Swap int,asset

4. fn Inactive Alice deposit Swap asset,int

5. fn Inactive Alice deposit Swap int

Those defined are just some examples of permitted overloading.

4.6 Virtual Machine
This module handles client function calls, executes contract code, and makes payments
to users (Pay-to-Party). In addition, this module also takes care of updating contract
instance information and verifying user payments (Pay-to-Contract).

At a certain level of abstraction it is possible to consider the virtual machine as
a single component. However, the implemented implementation foresees two distinct
virtual machines, which execute different programs: a virtual machine for the execution
of contracts (Legal Contract Virtual Machine, 4.6.2) and a virtual machine which
validates the programs written in Script (Script Virtual Machine, 4.6.3).

4.6.1 Requests queue
This component implements a queue that collects all requests made by clients and
events for the execution of obligations. In the Stipula language, for a contract, if at the
same time t a request from the client to perform a function and a request to perform an
obligation arrive simultaneously, the execution of the obligation takes precedence over
the execution of the function requested by the client. To do this, the RequestQueue
manages two queues: one queue collects client requests (functionCallRequests)
and one queue collects obligation execution requests (obligationRequests). The
RequestQueue object has two main methods:

1. enqueue: this method allows you to add a request to the queue;

2. dequeue: this method allows you to get a request from one of the two queues.
If the obligationRequests has items, this method will return an item from
this queue. If the obligationRequests is empty, then an item from the
functionCallRequests queue will be returned.

Access to these queues is controlled by a mutex, in order to properly handle
precedence between requests. The approach used in the current implementation of the
architecture may be a performance limitation. In the next chapter some optimizations
have been proposed (see 5.2).

52 CHAPTER 4. IMPLEMENTATION

Figure 4.2: Virtual machine.

4.6. VIRTUAL MACHINE 53

4.6.2 Legal Contract Virtual Machine
This component performs contract functions written in Stipula bytecode. The instruc-
tions of this virtual machine are those listed in the 4.1 table. The functioning of this
component is very simple: given as input a function of a contract written in bytecode
and the arguments of this function, the virtual machine sequentially executes each
instruction. If one or more errors are thrown during the execution of the function, the
virtual machine interrupts the execution and returns the errors in a special error stack;
otherwise, execution proceeds until the HALT instruction is reached, which corresponds
to the end of the function.

In this virtual machine there are several memory zones:

1. stack: this is the memory area used by the virtual machine to manipulate the
values by means of the instructions read;

2. scopeSpace: this space is dedicated to the storage of local variables to the
function;

3. argumentsSpace: this space is dedicated to storing the arguments of the function;

4. globalSpace: this space is dedicated to storing global variables of the contract
instance. This space is valued through the information saved in the Storage
module;

5. singleUseSealsToCreate: this space is dedicated to the temporary storage
of the single-use-seals to be created. When a function whose code expects to
perform one or more Pay-to-Party is executed, the execution is not momentarily
interrupted to send the payments. We want to ensure atomicity in the execution
of the code of a function. Therefore, when the virtual machine realizes that
it needs to make a payment to one or more users, it temporarily stores the
single-use-seals it has to create. Once the virtual machine finishes executing the
function and the execution has not generated any errors, then we will proceed to
perform the different Pay-to-Party;

6. createEventRequests: similarly to the previous point, when the virtual machine
reads the TRIGGER <obligation_function_name> instruction, it stores in this
dedicated space all the events it will have to create once the execution of the
function has finished.

In addition, there are two other important fields:

1. executionPointer: this field indicates the current instruction that has been
executed;

2. offset: a full contract is never input to the virtual machine. Only the code
of the function to be executed is loaded, therefore the initial value of the
executionPointer will always be zero. However, when debugging a contract
it is useful to have a reference to the line of code that threw an error against
the full code of the contract, and not the local code of the function. For this
reason, this field stores the line number where the function code starts in the
contract and when an error is thrown, in the logs it is possible to have both the
line number local to the function and the global line number of the complete
contract . Thus, the line number that takes into account the position it is in the
contract is given by offset + executionPointer.

54 CHAPTER 4. IMPLEMENTATION

4.6.3 Script Virtual Machine
Single-use-seal and Ownership

In the previous chapter, the concept of single-use-seal (see 3.5.2) was introduced as a
model for asset management. The structure of a single-use-seal was introduced earlier
(see 4.3.4). To ensure that a single-use-seal can only be spent by the rightful owner,
this seal is blocked using a specific program written in Script language. This program
is saved in the lockScript field and is stored along with the other single-use-seal
information. If a user wants to spend a specific single-use-seal, he must provide proof
to prove rightful ownership of the funds. The proof is coded as another program
written in Script, which allows you to unlock the unlockScript program. When a user
provides this program as proof of ownership of the single-use-seal, he is demonstrating
the ownership of the funds. In fact, when a user wants to make a Pay-to-Contract, the
user provides the proof in the FunctionCall message (see section 4.3.4). The proof is
coded in the Java object Ownership and is structured as follows:

1. String contractInstanceId: it indicates to which instance of the contract the
payment must be made;

2. SingleUseSeal singleUseSeal: indicate the funds to be spent;

3. String unlockScript: the program that allows you to unlock the lockScript
contained in the singleUseSeal object.

Joining unlockScript and lockScript it is possible to check if the user is the
actual owner of the single-use-seal he wants to spend. The main idea of this mechanism
was formulated in Bitcoin in 2009 and is called Pay-to-Public-Key-Hash (P2PKH)
(Antonopoulos, 2017). This was one of the very first mechanisms to be able to make
payments in the Bitcoin network. The lockScript program can only be unlocked if
in the unlockScript program cryptographic proof is provided via the funds holder’s
private key. In this way, when a user wants to pay for an instance of a contract, it
is the user himself who voluntarily transfers the ownership of a single-use-seal to the
instance of the contract.

Script

In the previous chapter, the Script language was introduced (see 3.5.2). The instructions
of this language are very limited and most of them are separate from the instructions
of the Legal Contract Virtual Machine. The instructions of the Script Virtual Machine
are listed in the 4.2 table and it is possible to notice the difference in the sets of
instructions between the two virtual machines in the image 4.3 . Furthermore, this
language only allows you to handle values that are of type bool or str (see image 4.4).

Table 4.2: Table of Script Virtual Machine instructions.

Instruction Behavior

PUSH − → ∗
HALT − → −
DUP ∗ → (∗, ∗)

SHA256 str→ str
EQUAL (str, str)→ −||str

CHECKSIG (str, str)→ bool

4.6. VIRTUAL MACHINE 55

Figure 4.3: The instruction sets of the two virtual machines.

PUSH and HALT These statements have the same behavior as those defined for
the Legal Contract Virtual Machine. The only difference is that these statements
operate only on values of type bool and str.

DUP This statement takes a value of any type as input and outputs two values that
have the same type as the input value. This duplicates the value received as input,
that is, it pops from the stack and performs two pushes of the same value.

SHA256 This instruction takes as input a value of type str and outputs a value of
the same type. This instruction calculates the SHA256 hash of the input value.

EQUAL Given two inputs of type str, this statement checks whether the two strings
are equal. If the two values are equal, no value is returned, if instead the values are
not equal, then a value of type str in the error stack of the virtual machine.

CHECKSIG This instruction takes as input two values of type str and outputs a
value of type bool. The first value represents a public key, while the second represents
a signature. This instruction allows you to check if, using the public key received as
input, the signature is valid or not.

Instruction table A summary table of the instructions is shown below: the - symbol
means that the statement takes no value as input or returns no value as output, while
the * means that the instruction accepts a value or outputs a value of type bool or
str.

56 CHAPTER 4. IMPLEMENTATION

Figure 4.4: Sets of the types of the two virtual machines.

LockScript and UnlockScript

Having illustrated the Script and P2PKH language, give the well-defined structure of
lockScript and unlockScript:

1. lockScript: DUP SHA256 PUSH str <pub_key_hash> EQUAL CHECKSIG;

2. unlockScript: PUSH str <signature> PUSH str <pub_key>;

where,

1. <pub_key>: is the public key of the user in possession of the single-use-seal;

2. <pub_key_hash>: corresponds to the SHA256 hash of the public key;

3. <signature>: corresponds to the signature of the identifier of the single-use-seal
to be spent.

The <signature> corresponds to the cryptographic proof that only the user can
provide to demonstrate possession of the single-use-seal. Signing the single-use-seal
identifier provides unique cryptographic proof and cannot be reused to prove ownership
of other funds. So, when the user sends the signature and his public key to a Stipula
server or node, anyone can check it. Therefore, if the signature were made using
information that can be reused to prove possession of multiple funds, this would lead to
a major security problem, as anyone can verify the signature and reuse the information
used in the signature to misappropriate other funds.

The union of lockScript and unlockScript, create the following program which
will be validated by the virtual machine:

1 PUSH str <signature> PUSH str <pub_key> DUP SHA256 PUSH str
<pub_key_hash> EQUAL CHECKSIG↪→

4.6. VIRTUAL MACHINE 57

The program is evaluated as follows (an example is illustrated by observing the
evolution of the stack):

1. PUSH str <signature>: la <signature> is loaded onto the stack

<signature>

2. PUSH str <pub_key>: the public key is loaded onto the stack

<pub_key>
<signature>

3. DUP: you duplicate the last element of the stack, which in this case is the public
key

<pub_key>
<pub_key>

<signature>

4. SHA256: the hash of the last element of the stack is computed, which in this case
is the previously duplicated public key

<pub_key_hash>
<pub_key>

<signature>

5. PUSH str <pub_key_hash>: the public key hash is loaded onto the stack. This
hash is taken from the unlockScript

<pub_key_hash>
<pub_key_hash>

<pub_key>
<signature>

58 CHAPTER 4. IMPLEMENTATION

6. EQUAL: occurs if the computed hash is the hash of the unlockScript it is equal
or less

<pub_key>
<signature>

7. CHECKSIG: occurs if the <signature> is valid with the <pub_key> present in the
stack. If the check is successful, true will be pushed onto the stack, otherwise
false

true

The example just illustrated described all the operations that are performed by the
Script Virtual Machine.

4.6.4 Description of the execution flow of a function of a con-
tract

This section illustrates the execution flow of a generic contract function (see figure 4.5).
More precisely, let’s suppose that the generic function requires as input a value of type
asset, and that therefore, the user has to make a payment. The flow is as follows:

1. A FunctionCall message is received (see section 4.3.4): the ClientHandler
performs all checks on the format of the message and the signature. After that,
the ClientHandler adds this new request to the queue of requests (1.1, in figure
4.5) and notifies the virtual machine (1.2). The notification action of the virtual
machine is useful in case the latter is waiting for new requests, but the request
queue is empty;

2. Suppose that the only request in the request queue is the one added in the
previous point. The virtual machine dequeues the only request present (2);

3. As mentioned previously, this is a function call that requires an asset as a
parameter, therefore, in the FunctionCall there is all the information to verify if
the funds sent are actually in the user’s possession and if they are of the requested
quantity. The verification of possession of the sent single-use-seal is delegated to
the Script Virtual Machine (3). If the checks fail, the virtual machine notifies
the ClientHandler (6);

4. If the verification of the script gives a positive result, then we proceed to execute
the function indicated by the request. The execution of the function is delegated
to the Legal Contract Virtual Machine (4);

4.6. VIRTUAL MACHINE 59

Figure 4.5: Flow of the execution of a function of a function of a contract.

60 CHAPTER 4. IMPLEMENTATION

5. When the execution of the function ends and there are no errors, all the modifi-
cations concerning the global variables, the change of the state of the contract
and the updating of the single-use-seal, which now can no longer be spent in
other contract instances are sent to the Storage module (5);

6. Finally, the virtual machine notifies the ClientHandler, returning a response
regarding the success or failure of the function execution (6).

Next, concrete examples of some contract examples will be shown (see section 4.8).

4.6.5 Pay-to-Party
Previously, we discussed Pay-to-Contract, that is, how a user makes a payment
to an instance of a contract. When, on the other hand, it is the instance of a
contract that has to send payments to one or more users, this method is called Pay-
to-Party. Again, this concept was introduced in the previous chapter (see 3.5.2).
This mechanism is much simpler than Pay-to-Contract. When a certain function of
a contract expects to send a payment to a user, the virtual machine performs all
the preliminary checks, for example, it makes sure that it does not disappear by the
amount of assets from the funds present in the contract instance. Once these checks
have been made, the virtual machine creates new single-use-seals, locking them with
the public key of the recipient of the funds. Specifically, the lockScript will have
the following structure: DUP SHA256 PUSH str <pub_key_hash> EQUAL CHECKSIG,
where <pub_key_hash> corresponds to the SHA256 hash of the payment recipient’s
public key; By doing so, these funds are now no longer owned by the contract instance,
but by a specific user. As explained above (see 4.6.3), only the new owner of the funds
will be able to spend them.

4.6.6 Obligations
In the context of the Stipula language, obligations are formulated into commitments
that are verified at a given time and issue a corresponding penalty if the obligation
has not been fulfilled. From an implementation point of view, an obligation consists in
the scheduling of a event which at a given moment will call a specific function of the
contract. If the obligation has been fulfilled, then there won’t be the conditions to be
able to execute the function, otherwise the virtual machine will execute the function,
applying penalties.

Scheduling of an event and description of the flow of execution of an obli-
gation

Scheduling always occurs through the execution, by a function, of a piece of code
similar to the following:

1 ...
2 GLOAD waitTime
3 PUSH time now
4 ADD
5 TRIGGER obligation_1
6 ...

4.7. STORAGE 61

where, from line 2 to line 4 we define the time t in which the obligation must
be performed (if the conditions allow it), and in line 5 we specify which function
must be performed at time t. When the machine finishes executing the function,
a CreateEventRequest object is created, in which the name of the function to be
called and the time t in which this function must be called must be present. After
that, this object is incorporated into the EventSchedulingRequest object, which also
contains information about the contract instance. This last object is added to a list of
EventTrigger, managed by EventScheduler, which collects all the scheduled events.
EventTrigger is an object that extends the TimerTask class, which allows you to
create a thread and carry out tasks at a set time t. From here we illustrate the
execution flow (see figure 4.6):

1. When the time t is reached, the EventTrigger adds the EventSchedulingRequest
object to the request queue (1.1). This way, the next request that the vir-
tual machine executes will be a request to perform an obligation. After that,
EventTrigger notifies the virtual machine if it is waiting for new requests, but
the request queue is empty (1.2);

2. Suppose that the only request in the request queue is the one added in the
previous point. The virtual machine dequeues the only request present (2);

3. If the conditions are satisfied, the virtual machine proceeds to execute the function
that represents the obligation, and therefore, to apply the penalties; otherwise
the virtual machine does not perform the function. The condition for being able
to perform an obligation is if the current state of the contract instance coincides
with the state in which the obligation must be performed (3);

4. When the execution of the function ends and there are no errors, all the modifi-
cations concerning the global variables, the change of the state of the contract
and the updating of the single-use-seal, which now can no longer be spent in
other contract instances are sent to the Storage module (4);

Next, concrete examples of some contract examples will be shown (see section 4.8).

4.7 Storage
This module allows you to store all the information regarding contracts, contract
instances and their evolution, assets and all asset transfers between users and contract
instances.

4.7.1 LevelDB
LevelDB (LevelDB Official Repository) is an open source key-value storage library
developed by Google. It is a light, fast and efficient storage system capable of handling
large amounts of data. LevelDB is designed to provide an ordered key-value store with
high performance for read and write operations. Keys and values can be of any length,
and the data is sorted by key in a natural order. The data is stored as a binary blob
and the key can be any stream of bytes. However, it is important to note that LevelDB
is an unstructured database, which means it doesn’t enforce a particular schema or
data model, and it is up to the application developer to define how to organize and
access the data. For simplicity in the development of the architecture, it was decided

62 CHAPTER 4. IMPLEMENTATION

Figure 4.6: Flow of execution of an obligation.

4.7. STORAGE 63

to archive the Java objects directly, without designing a particular structure, if not
following the key-value structure offered by the library.

LevelDB supports various operations, including basic CRUD operations (create,
read, update, delete), batch operations, and textitsnapshot.

LevelDB is a library written in C++, but it also has bindings for other languages,
such as Java, Python and Go. This library is used in various applications, including
the Bitcoin and Ethereum blockchains.

4.7.2 Structure
The Storage module consists mainly of four components (see figure 4.7):

1. Asset storage: all the data concerning the definition of the assets are stored in
this component;

2. Ownerships storage: this component stores all spent and unspent single-use-seals;

3. Contracts storage: this component has the task of storing all the information
concerning the contract, such as the source code, the bytecode and the information
for instantiating a state machine;

4. Contract instances storage: this component stores all the information that allows
you to track the evolution of the state of a contract instance.

Figure 4.7: Structure of the Storage module.

Storage serializer There are two operations that unite all the components that
allow information to be stored and they are:

1. byte[] serialize(T data): this method allows you to serialize the data re-
ceived as input, that is, transforming the input data into a stream of output
bytes;

2. T deserialize(byte[] bytes): this method allows you to deserialize the byte
stream received as input into a target object T.

Each component of this module extends this class.

Asset storage In this class there is a main method, getAsset, which allows to
obtain all the information concerning a specific asset, given an asset identifier as input.
There is another method, seed, which allows you to initialize a certain number of
assets when starting the Stipula instance. This is a method that will be removed in the

64 CHAPTER 4. IMPLEMENTATION

future: the need for this method to exist is closely related to the current limitations
of the architecture. See section 4.9.3, to see how database seeding can be done, and
section 5.1.3 to see a possible solution to this limitation.

Ownerships storage Also in this class there is the seed method, which allows you
to create, in a hard-coded way, single-use-seals for some users. The reason is the same
as the one expressed previously, that is, the need for this method is due to the current
limitations of the implemented architecture.

The other methods in this class are:

1. getFunds: this method allows you to get all the funds, given a specific input
address;

2. getFund: this method allows you to obtain the information of a specific ownership,
given the property identifier and an address;

3. addFunds: with this method it is possible to add ownership to different addresses;

4. makeOwnershipSpent: this method allows you to update a specific ownership as
spent. This method requires as input:

(a) The address to which the ownership is associated;
(b) The identifier of the ownership to update;
(c) The identifier of the instance of the contract: this information is important

as it is useful to trace from which instance of the contract the payment was
made;

(d) unlockScript: once the virtual machine has validated the script which
allows to certify the user’s possession of the ownership, the missing part
of the script is saved, i.e. unlockScript. By doing so, this ownership can
now no longer be spent.

Contracts storage This class contains the following methods:

1. getContract: this method allows you to obtain information about a specific
contract, given the identifier of an input contract;

2. saveContract: this method allows you to store a new contract. If this method
is called, the contract has been compiled successfully.

Once a contract is stored in this form, it can no longer be deleted or modified.

Contract instances storage This class contains the following methods:

1. getContractInstance: this method allows to obtain the information of a specific
instance of a contract, given the identifier of an instance of an input contract;

2. saveContractInstance: this method allows you to create a new instance of a
contract. If this method is called, it means that the agreement phase has been
successful;

3. storeGlobalSpace: this method allows you to update the global variables of a
specific instance of a contract. If this method is called, it means that the function
execution was successful;

4.8. EXAMPLES 65

4. storeStateMachine: this method allows you to update the current state of the
state machine of a contract instance. If this method is called, it means that the
function execution was successful.

4.8 Examples
In this section, concrete examples of code will be introduced to illustrate how the
implemented implementation works. Examples will include writing the contract in
Stipula, loading and compiling the contract, and running an instance of the contract.

4.8.1 Asset swap
In this example, there are two actors, Alice and Bob, who want to trade two assets.
For simplicity, the price variation that these assets may have over time is not taken
into consideration, the exchange rate of these two assets is fixed by the parties to the
contract when a new instance of the contract is made.

For this example there are two versions: in the first version, when Bob deposits
his asset, the swap happens immediately; in the second version, when both parties
deposit their assets, the swap is delegated to a obligation, which will be triggered after
a certain time indicated by the variable waitTimeBeforeSwapping.

The complete code is present in the appendix A.1.1.

Agreement

This first part of the contract defines the variables for:

1. The assets: the identifiers of the assets to be exchanged in this contract are
specified (line 2);

2. The quantities of assets to be traded (line 3);

3. The initial state of the contract state machine (line 4).

1 stipula SwapAsset {
2 asset assetA:stipula_assetA_ed8i9wk,

assetB:stipula_assetB_pl1n5cc↪→

3 field amountAssetA, amountAssetB
4 init Inactive

When two parties decide to exchange two specific assets, they make a agreement.
In the code of this function it is possible to notice that the participants of the contract
are defined and the values for amountAssetA and amountAssetB, that is, indicate the
amount of assets that will have to be exchanged. Once this function has been called
it means that both parties to the contract are in agreement to trade those particular
assets, at an agreed rate.

6 agreement (Alice, Bob)(amountAssetA, amountAssetB) {
7 Alice, Bob: amountAssetA, amountAssetB
8 } ==> @Inactive

66 CHAPTER 4. IMPLEMENTATION

The following bytecode is associated with this function in Stipula:

1 fn agreement Alice,Bob Inactive real,real
2 global:
3 GINST party Alice
4 GINST party Bob
5 GINST asset assetA 2 stipula_assetA_ed8i9wk
6 GINST asset assetB 2 stipula_assetB_pl1n5cc
7 GINST real amountAssetA 2
8 GINST real amountAssetB 2
9 args:

10 PUSH party :Alice
11 GSTORE Alice
12 PUSH party :Bob
13 GSTORE Bob
14 PUSH real :amountAssetA
15 GSTORE amountAssetA
16 PUSH real :amountAssetB
17 GSTORE amountAssetB
18 start:
19 end:
20 HALT

In line 1 it is possible to note the signature of the function, where the name of
the function (agreement), the participants of the contract (Alice,Bob), the state in
which the instance of the contract will go once the execution of the function will have
terminated without errors (Inactive) and the types of the parameters of the function
(real,real). In this case, the function takes two parameters and both must be of type
real.

From line 2 to line 8, the global variables of the contract are created, i.e. the
participants of the contract (lines 3-4), the variables that will contain the assets that
will have to be exchanged (lines 5-6) and the variables that indicate the amount of
assets that will have to be deposited (lines 7-8).

From line 9 to line 17, the global variables are valued using the values contained in
the function parameters. In particular:

1. Lines 10-13: information about the parties to the contracts is stored (public key
and address);

2. Lines 14-17: the variables indicating the quantity of assets that must be deposited
in the contract by each participant in the contract are set.

From line 18 to line 19 the body of the function is defined, which in this case is
empty, and in line 20 the end of the function is indicated by the function HALT.

Deposit of the first asset

This portion of code allows Alice to deposit a certain amount of assets, agreed during
the agreement phase. In particular:

1. Line 10: this function can only be called by Alice and if the contract is in the
@Inactive state. Note that this function takes a asset as an argument (note
[y]);

4.8. EXAMPLES 67

2. Line 11: a check is made to verify if the quantity received as input is equal to
the quantity established in the agreement phase;

3. Line 12: this instruction represents the deposit of a certain quantity of assets
within the instance of the contract;

4. Line 14: at the end of the function, the state of the contract will change from
@Inactive to @Swap.

10 @Inactive Alice : depositAssetA()[y]
11 (y == amountAssetA) {
12 y -o assetA;
13 _
14 } ==> @Swap

The following bytecode is associated with this function in Stipula:

21 fn Inactive Alice depositAssetA Swap asset
22 args:
23 PUSH asset :y
24 AINST asset :y
25 ASTORE y
26 start:
27 ALOAD y
28 GLOAD amountAssetA
29 ISEQ
30 JMPIF if_branch
31 RAISE AMOUNT_NOT_EQUAL
32 JMP end
33 if_branch:
34 ALOAD y
35 GLOAD assetA
36 DEPOSIT assetA
37 end:
38 HALT

On line 21 it is possible to note the signature of the function, where the following
are specified:

1. The state the contract instance must be in in order to call this function (@Inactive);

2. The party that can call this function (Alice);

3. The name of the function (depositAssetA);

4. The state the contract instance will go to once the function’s execution has
finished without errors (Swap);

5. The type of the function parameter (asset).

From line 22 to line 25, the function argument is instantiated. This variable is
stored in the argument space (argumentSpace).

From line 26 to line 37 is the body of the function. In particular, from line 27 to
line 30, the virtual machine checks if the quantity of assets received as input is equal

68 CHAPTER 4. IMPLEMENTATION

to that established during the agreement phase. If the result of this check is false, then
the virtual machine will continue executing first with line 31 and then with line 32, the
function execution will terminate. If instead the result of the check is true, starting
from line 30, the virtual machine will execute the instructions starting from line 33 in
sequence.

From line 34 to line 36, it is possible to note the effective action of deposit of assets
within the instance of the contract (Pay-to-Contract). In particular:

33 ...
34 ALOAD y
35 GLOAD assetA
36 DEPOSIT assetA
37 ...

corresponds to the following line written in Stipula

11 ...
12 y -o assetA;
13 ...

Deposit of the second asset and swap

The code of this function is very similar to that of the previous function, except for
the swap operation. This function, in fact, allows Bob to deposit the asset in his
possession and then to exchange the assets between the participants of the contract.
In particular, it is possible to observe that line 19 and line 20 implement the actual
asset swap operation, ie: the asset previously deposited by Alice is sent to Bob; the
asset deposited in this function by Bob is sent to Alice.

16 @Swap Bob : depositAssetBAndSwap()[y]
17 (y == amountAssetB) {
18 y -o assetB
19 assetB -o Alice
20 assetA -o Bob;
21 _
22 } ==> @End
23 }

The following bytecode is associated with this function in Stipula:

39 fn Swap Bob depositAssetBAndSwap End asset
40 args:
41 PUSH asset :y
42 AINST asset :y
43 ASTORE y
44 start:
45 ALOAD y
46 GLOAD amountAssetB
47 ISEQ
48 JMPIF if_branch
49 RAISE AMOUNT_NOT_EQUAL
50 JMP end

4.8. EXAMPLES 69

51 if_branch:
52 ALOAD y
53 GLOAD assetB
54 DEPOSIT assetB
55 PUSH real 100 2
56 GLOAD assetB
57 GLOAD Alice
58 WITHDRAW assetB
59 PUSH real 100 2
60 GLOAD assetA
61 GLOAD Bob
62 WITHDRAW assetA
63 end:
64 HALT

Again, the bytecode produced is very similar to that produced for the previous
function. It can be seen that from line 55 to line 62 the asset swap is implemented. In
particular, it is possible to note:

1. From line 52 to line 54 there is a deposit (Pay-to-Contract)

51 ...
52 ALOAD y
53 GLOAD assetB
54 DEPOSIT assetB
55 ...

This piece of code corresponds to the following line written in Stipula

17 ...
18 y -o assetB;
19 ...

2. From line 55 to line 58 there is a withdraw towards Alice (Pay-to-Party)

54 ...
55 PUSH real 100 2
56 GLOAD assetB
57 GLOAD Alice
58 WITHDRAW assetB
59 ...

This piece of code corresponds to the following line written in Stipula

18 ...
19 assetB -o Alice;
20 ...

3. From line 59 to line 62 there is a withdraw towards Bob (Pay-to-Party)

58 ...
59 PUSH real 100 2
60 GLOAD assetA
61 GLOAD Bob

70 CHAPTER 4. IMPLEMENTATION

62 WITHDRAW assetA
63 ...

This piece of code corresponds to the following line written in Stipula

19 ...
20 assetA -o Bob;
21 ...

Example of execution

An example of execution of this contract is illustrated.

Figure 4.8: New contract upload execution flow.

Deploy contract The flow for deploy a new contract is illustrated in figure 4.8. The
request is received by the MessageService and via the ClientHandler the request is
directed to the compiler (1). The contract is compiled and if the compilation returns
no errors (2), it stores the contract and the compiled in the Storage module (3).

Request to the server for contract deployment:
1 {
2 "message": {
3 "sourceCode": "stipula SwapAsset {\n asset

assetA:stipula_assetA_ed8i9wk,
assetB:stipula_assetB_pl1n5cc\n field amountAssetA,
amountAssetB\n init Inactive\n\n agreement (Alice,
Bob)(amountAssetA, amountAssetB) {\n Alice, Bob:
amountAssetA, amountAssetB\n } ==> @Inactive\n\n
@Inactive Alice : depositAssetA()[y]\n (y ==
amountAssetA) {\n y -o assetA;\n _\n

} ==> @Swap\n\n @Swap Bob :
depositAssetBAndSwap()[y]\n (y == amountAssetB) {\n

y -o assetB\n assetB -o Alice\n
assetA -o Bob;\n _\n } ==> @End\n}",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

4.8. EXAMPLES 71

4 "type": "DeployContract"
5 },
6 "signatures": {
7 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+kko41yIN c

dOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3aR0IF/vfCRf6 c
SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88jfnEqekx4S+KDCK c
g99sGEeHeT65fKS8lB0gjHMt9AOriwIDAQAB":
"V5gJHSax5J5nWYZlyhJr+RdJhbWrog9/urvyfWPTNWf6jkLRT16xAdLYBR c
1NucOmKTf9iW6mVMVpUxtrGPXktTUEIzxJpp81jR06hDBUpH0Eu6pkiw9no c
mTUZvuCX9DR/+WOSBz0jMO5lOznl6At3OP1mXsgNyRtPJTi2q4yHs0="

↪→

↪→

↪→

↪→

↪→

↪→

8 }
9 }

Server response:

1 {
2 "data": "d50ed1a3-7a65-4238-867e-df48536b7243",
3 "statusCode": 200,
4 "statusMessage": "Success",
5 "type": "SuccessDataResponse"
6 }

The value in the data field indicates the identifier of the deployed contract.

Figure 4.9: Execution flow for Alice’s funds read request.

Single-use-seals by Alice The description of the following flow is illustrated in
figure 4.9. When a user wants to know the available funds associated with his address,
the user sends a particular message (1). The request is directed to the Storage module
(2) and the availability of funds is sent to the user in response.

Request to the server to get the single-use-seals in Alice’s possession:

1 {
2 "message": {
3 "address": "ubL35Am7TimL5R4oMwm2OxgAYA3XT3BeeDE56oxqdLc=",
4 "type": "GetOwnershipsByAddress"
5 },
6 "signatures": {

72 CHAPTER 4. IMPLEMENTATION

7 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+kko41yIN c
dOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3aR0IF/vfCRf6 c
SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88jfnEqekx4S+KDCK c
g99sGEeHeT65fKS8lB0gjHMt9AOriwIDAQAB":
"MomZTc63z7PfH35c1dL4tjXebcsW+0Zxl0nP1NQdcUFws98DX+bMWI7L0C c
6IO5lxvkYve4zdio1Crn97FXvngK4aVfiEZEnHOJ0tstq7uQYGErM3DDAAB c
qPq8HH5yoKnLST2LWpO0oD8G/VXvIE6qMT5D34W1Ci0q4uh+7y3EcY="

↪→

↪→

↪→

↪→

↪→

↪→

8 }
9 }

Server response:
1 {
2 "data": "[
3 Ownership{
4 id='2b4a4614-3bb4-4554-93fe-c034c3ba5a9c',
5 singleUseSeal=SingleUseSeal{
6 assetId='stipula_assetA_ed8i9wk',
7 amount=RealType{
8 value=1400,
9 decimals=2

10 },
11 lockScript='DUP\nSHA256\nPUSH str ubL35Am7TimL5R4oMwm2Oxg c

AYA3XT3BeeDE56oxqdLc=\nEQUAL\nCHECKSIG\nHALT\n'↪→

12 },
13 unlockScript='',
14 contractInstanceId=''
15 }
16]",
17 "statusCode": 200,
18 "statusMessage": "Success",
19 "type": "SuccessDataResponse"
20 }

Single-use-seals by Bob Server request to get Bob’s single-use-seals:
1 {
2 "message": {
3 "address": "f3hVW1Amltnqe3KvOT00eT7AU23FAUKdgmCluZB+nss=",
4 "type": "GetOwnershipsByAddress"
5 },
6 "signatures": {
7 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFAiX3/ot7 c

lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Nyd2be3lbgeav c
LMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXowI/OhzQN2XPZYES c
HgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB":
"hSNodnUyusffNlv+KNq4605pFvqh91pVspFhTgbmWccE/LKM6h4bedpvTg c
MHoVDezvA7v2XTzmLG5eL3lOeA6I2xJMH32DcV60IPSoh61oVHnwPQcQHY0 c
39D4y5VSJ0GMQJKIcTEq3fqIdabg7261xUaegHUnXrcyynh9GpMJxk="

↪→

↪→

↪→

↪→

↪→

↪→

8 }
9 }

Server response:
1 {
2 "data": "[
3 Ownership{
4 id='7a19f50e-eae9-461d-bd58-9946ea39ccf0',

4.8. EXAMPLES 73

5 singleUseSeal=SingleUseSeal{
6 assetId='stipula_assetB_pl1n5cc',
7 amount=RealType{
8 value=1100,
9 decimals=2

10 },
11 lockScript='DUP\nSHA256\nPUSH str f3hVW1Amltnqe3KvOT00eT7 c

AU23FAUKdgmCluZB+nss=\nEQUAL\nCHECKSIG\nHALT\n'↪→

12 },
13 unlockScript='',
14 contractInstanceId=''
15 }
16]",
17 "statusCode": 200,
18 "statusMessage": "Success",
19 "type": "SuccessDataResponse"
20 }

Agreement The description of the following flow is illustrated in figure 4.5. When
users have agreed to execute an agreement, an AgreementCall message is sent (see
4.3.4). This request is placed in the request queue (1.1 and 1.2). The virtual machine
dequeues the request (2) and the function agreement (4) is executed. Once the
execution of the function has finished without errors, the result of the processing will
be stored in the Storage module (5) and finally the virtual machine will notify the
client of the success of the operation (6).

Request to the server to make the agreement function call:

1 {
2 "message": {
3 "contractId": "d50ed1a3-7a65-4238-867e-df48536b7243",
4 "arguments": [
5 {
6 "argument": {
7 "first": "real",
8 "second": "amountAssetA",
9 "third": "1400 2"

10 }
11 },
12 {
13 "argument": {
14 "first": "real",
15 "second": "amountAssetB",
16 "third": "1100 2"
17 }
18 }
19],
20 "parties": {
21 "Bob": {
22 "address": "f3hVW1Amltnqe3KvOT00eT7AU23FAUKdgmCluZB+nss=",
23 "publicKey":

"MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciF c
AiX3/ot7lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6N c
yd2be3lbgeavLMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XX c
owI/OhzQN2XPZYESHgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB"

↪→

↪→

↪→

↪→

74 CHAPTER 4. IMPLEMENTATION

24 },
25 "Alice": {
26 "address": "ubL35Am7TimL5R4oMwm2OxgAYA3XT3BeeDE56oxqdLc=",
27 "publicKey":

"MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+ c
kko41yINdOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3 c
aR0IF/vfCRf6SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N8 c
8jfnEqekx4S+KDCKg99sGEeHeT65fKS8lB0gjHMt9AOriwIDAQAB"

↪→

↪→

↪→

↪→

28 }
29 },
30 "type": "AgreementCall"
31 },
32 "signatures": {
33 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFAiX3/ot7 c

lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Nyd2be3lbgeav c
LMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXowI/OhzQN2XPZYES c
HgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB":
"crMKGFVc5QYmYfbyxDaqhXEi0/GRO+j2OD8HtBbysVm1/+2D+nFATAOvm+ c
LbDtLMMBHxTE8a4JHzMN1DZ1uokkwHKyv80/IVMLwjZi6RFl1Jk7jUpUq6n c
BCPfqfa7u2IKtzv0joJXR/8BNyN3u6+PReS+4N530+ESN3W2P3tIFk=",

↪→

↪→

↪→

↪→

↪→

↪→

34 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+kko41yIN c
dOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3aR0IF/vfCRf6 c
SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88jfnEqekx4S+KDCK c
g99sGEeHeT65fKS8lB0gjHMt9AOriwIDAQAB":
"OK9fuuEHTIV5gjtghgvFqsJZI98Ip7IYXvph0J79kTwfRVvJnH5mX9Rs/l c
DUWnznOmY3HTADwn4QgzMQgdu+qAfixoyJWvZJZ8XjNo/N1YI3nnaaXhvkp c
R80SHhxqhFLfET6rAx5qXpziOZS7NfcIasn6Lj35hbQCfcjKvxf76w="

↪→

↪→

↪→

↪→

↪→

↪→

35 }
36 }

Server response:
1 {
2 "data": "e9cbb96e-4d20-47d2-80e6-5b56701800b1",
3 "statusCode": 200,
4 "statusMessage": "Success",
5 "type": "SuccessDataResponse"
6 }

The value in the data field indicates the identifier of the created contract instance.

depositAssetA call In this function Alice has to make a Pay-to-Contract. Compared
to the description of the previous flow, before the Legal Contract Virtual Machine
executes the function, it is necessary to check that the single-use-seal sent by Alice
actually belongs to Alice and is of the quantity requested by the instance of the contract.
To do this, it is necessary to carry out these checks with the Script Virtual Machine
(see point 3 of figure 4.5). Once these checks have been completed, the virtual machine
will be able to proceed with the execution of the function requested by Alice.

Request to the server to make the depositAssetA function call:
1 {
2 "message": {
3 "contractInstanceId": "e9cbb96e-4d20-47d2-80e6-5b56701800b1",
4 "functionName": "depositAssetA",
5 "arguments": [
6 {

4.8. EXAMPLES 75

7 "argument": {
8 "first": "asset",
9 "second": "y",

10 "third": {
11 "ownershipId": "2b4a4614-3bb4-4554-93fe-c034c3ba5a9c",
12 "address":

"ubL35Am7TimL5R4oMwm2OxgAYA3XT3BeeDE56oxqdLc=",↪→

13 "unlockScript": "PUSH str PLjodnT+m3RNIitQAPBDCsRmJPHCq c
rwZOY/CPiHFZGnl+DRN6soqxMy3ehTFaUwxBjjf7qfBfvTDq5oB c
ItTFrtz1Rn5SDS1ybdbkwpKaOXVglNOw7ZEG9bbZ1mo1oA7IAjR c
iIilzUetCstE5rPZIf9XOXr/RQ5AHkZUn2CztsvA=\nPUSH str
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA c
55+kko41yINdOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8h c
QMr3+v3aR0IF/vfCRf6SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHW c
XSpwUIDt0N88jfnEqekx4S+KDCKg99sGEeHeT65fKS8lB0gjHMt c
9AOriwIDAQAB\n"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

14 }
15 }
16 }
17],
18 "type": "FunctionCall"
19 },
20 "signatures": {
21 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+kko41yIN c

dOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3aR0IF/vfCRf6 c
SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88jfnEqekx4S+KDCK c
g99sGEeHeT65fKS8lB0gjHMt9AOriwIDAQAB":
"MVm0fv9zBntC7ElPhNYaISpgmOdCh8blRsvkU2gtulbWQvwg/CuKtcOIHx c
akTrffnrW7iw/KLB0n46HulBL6KAcl02U9HSt0+YwX3imJ50QVWU7kmLoMy c
5d8uQ+seZzXifsaf7OvE1OpAWXNwh7ICsRZv9U6aV39c13SUqwHjTs="

↪→

↪→

↪→

↪→

↪→

↪→

22 }
23 }

Server response:
1 {
2 "statusCode": 200,
3 "statusMessage": "Success",
4 "type": "SuccessDataResponse"
5 }

depositAssetBAndSwap call Request to the server to make the depositAssetBAndSwap
function call:

1 {
2 "message": {
3 "contractInstanceId": "e9cbb96e-4d20-47d2-80e6-5b56701800b1",
4 "functionName": "depositAssetBAndSwap",
5 "arguments": [
6 {
7 "argument": {
8 "first": "asset",
9 "second": "y",

10 "third": {
11 "ownershipId": "7a19f50e-eae9-461d-bd58-9946ea39ccf0",
12 "address":

"f3hVW1Amltnqe3KvOT00eT7AU23FAUKdgmCluZB+nss=",↪→

76 CHAPTER 4. IMPLEMENTATION

13 "unlockScript": "PUSH str Q0bPh9lThyrg1slz9AGDJDJh1BecN c
9SlGCeVe3BqLod+zO7q0wvIy8tLognHNBkR8e8zKo6nWGQ8qZ7e c
gjOmm5BQsqZzt8xL3gBbR36vgk9J3G9ObiTR2Dd7hMqsqyJnLT3 c
aZUPXGc6RZoM/iUFGJUXhq2T6DStvYNKuAH+Lfow=\nPUSH str
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZx c
ciFAiX3/ot7lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLX c
hnChO6Nyd2be3lbgeavLMCMVUiTStXr117Km17keWpb3sItkKKs c
LFBOcIIU8XXowI/OhzQN2XPZYESHgjdQ5vwEj2YyueiS7WKP94Y c
Wz/pswIDAQAB\n"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

14 }
15 }
16 }
17],
18 "type": "FunctionCall"
19 },
20 "signatures": {
21 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFAiX3/ot7 c

lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Nyd2be3lbgeav c
LMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXowI/OhzQN2XPZYES c
HgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB":
"kh7JupouiEdeLuilXUdoJqAuPVx28JTg9dySp/ZNJGD5+XW8YhhIgiMJYO c
hGeN6DJTj/x+TmC96uyS8IwssUt/Hulnh2OAZzkc3FljWj1k/XfL0yye95u c
+YBxg+t8AddQBi+4uA4yOdzb8YdrONlzGu7t0roirmO8SbOqQR1uX8="

↪→

↪→

↪→

↪→

↪→

↪→

22 }
23 }

Server response:
1 {
2 "statusCode": 200,
3 "statusMessage": "Success",
4 "type": "SuccessDataResponse"
5 }

Single-use-seals by Alice Server request to get Alice’s single-use-seals:
1 {
2 "message": {
3 "address": "ubL35Am7TimL5R4oMwm2OxgAYA3XT3BeeDE56oxqdLc=",
4 "type": "GetOwnershipsByAddress"
5 },
6 "signatures": {
7 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+kko41yIN c

dOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3aR0IF/vfCRf6 c
SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88jfnEqekx4S+KDCK c
g99sGEeHeT65fKS8lB0gjHMt9AOriwIDAQAB":
"MomZTc63z7PfH35c1dL4tjXebcsW+0Zxl0nP1NQdcUFws98DX+bMWI7L0C c
6IO5lxvkYve4zdio1Crn97FXvngK4aVfiEZEnHOJ0tstq7uQYGErM3DDAAB c
qPq8HH5yoKnLST2LWpO0oD8G/VXvIE6qMT5D34W1Ci0q4uh+7y3EcY="

↪→

↪→

↪→

↪→

↪→

↪→

8 }
9 }

Server response:
1 {
2 "data": "[
3 Ownership{
4 id='2b4a4614-3bb4-4554-93fe-c034c3ba5a9c',

4.8. EXAMPLES 77

5 singleUseSeal=SingleUseSeal{
6 assetId='stipula_assetA_ed8i9wk',
7 amount=RealType{
8 value=1400,
9 decimals=2

10 },
11 lockScript='DUP\nSHA256\nPUSH str ubL35Am7TimL5R4oMwm2Oxg c

AYA3XT3BeeDE56oxqdLc=\nEQUAL\nCHECKSIG\nHALT\n'↪→

12 },
13 unlockScript='PUSH str PLjodnT+m3RNIitQAPBDCsRmJPHCqrwZOY/C c

PiHFZGnl+DRN6soqxMy3ehTFaUwxBjjf7qfBfvTDq5oBItTFrtz1Rn5 c
SDS1ybdbkwpKaOXVglNOw7ZEG9bbZ1mo1oA7IAjRiIilzUetCstE5rP c
ZIf9XOXr/RQ5AHkZUn2CztsvA=\nPUSH str
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+k c
ko41yINdOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3a c
R0IF/vfCRf6SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88 c
jfnEqekx4S+KDCKg99sGEeHeT65fKS8lB0gjHMt9AOriwIDAQAB\n',

↪→

↪→

↪→

↪→

↪→

↪→

↪→

14 contractInstanceId='e9cbb96e-4d20-47d2-80e6-5b56701800b1'
15 },
16 Ownership{
17 id='4cbec85d-f17e-4928-a029-7cf0e646a3f6',
18 singleUseSeal=SingleUseSeal{
19 assetId='stipula_assetB_pl1n5cc',
20 amount=RealType{
21 value=100,
22 decimals=2
23 },
24 lockScript='DUP\nSHA256\nPUSH str ubL35Am7TimL5R4oMwm2Oxg c

AYA3XT3BeeDE56oxqdLc=\nEQUAL\nCHECKSIG\nHALT\n'↪→

25 },
26 unlockScript='',
27 contractInstanceId=''
28 }
29]",
30 "statusCode": 200,
31 "statusMessage": "Success",
32 "type": "SuccessDataResponse"
33 }

It is possible to see that the first single-use-seal has been spent and that’s what was
deposited in the contract instance. Evidence that the funds have been spent is given
by the unlockScript field. While, the second single-use-seal represents the asset that
was in Bob’s possession.

Single-use-seals by Bob Server request to get Bob’s single-use-seals:

1 {
2 "message": {
3 "address": "f3hVW1Amltnqe3KvOT00eT7AU23FAUKdgmCluZB+nss=",
4 "type": "GetOwnershipsByAddress"
5 },
6 "signatures": {

78 CHAPTER 4. IMPLEMENTATION

7 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFAiX3/ot7 c
lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Nyd2be3lbgeav c
LMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXowI/OhzQN2XPZYES c
HgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB":
"hSNodnUyusffNlv+KNq4605pFvqh91pVspFhTgbmWccE/LKM6h4bedpvTg c
MHoVDezvA7v2XTzmLG5eL3lOeA6I2xJMH32DcV60IPSoh61oVHnwPQcQHY0 c
39D4y5VSJ0GMQJKIcTEq3fqIdabg7261xUaegHUnXrcyynh9GpMJxk="

↪→

↪→

↪→

↪→

↪→

↪→

8 }
9 }
Server response:
1 {
2 "data": "[
3 Ownership{
4 id='7a19f50e-eae9-461d-bd58-9946ea39ccf0',
5 singleUseSeal=SingleUseSeal{
6 assetId='stipula_assetB_pl1n5cc',
7 amount=RealType{
8 value=1100,
9 decimals=2

10 },
11 lockScript='DUP\nSHA256\nPUSH str f3hVW1Amltnqe3KvOT00eT7 c

AU23FAUKdgmCluZB+nss=\nEQUAL\nCHECKSIG\nHALT\n'↪→

12 },
13 unlockScript='PUSH str Q0bPh9lThyrg1slz9AGDJDJh1BecN9SlGCeV c

e3BqLod+zO7q0wvIy8tLognHNBkR8e8zKo6nWGQ8qZ7egjOmm5BQsqZ c
zt8xL3gBbR36vgk9J3G9ObiTR2Dd7hMqsqyJnLT3aZUPXGc6RZoM/iU c
FGJUXhq2T6DStvYNKuAH+Lfow=\nPUSH str
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFA c
iX3/ot7lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Ny c
d2be3lbgeavLMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXo c
wI/OhzQN2XPZYESHgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB\n',

↪→

↪→

↪→

↪→

↪→

↪→

↪→

14 contractInstanceId='e9cbb96e-4d20-47d2-80e6-5b56701800b1'
15 },
16 Ownership{
17 id='bd1f5959-cd8d-4716-8ece-19e1757c6ac2',
18 singleUseSeal=SingleUseSeal{
19 assetId='stipula_assetA_ed8i9wk',
20 amount=RealType{
21 value=100,
22 decimals=2
23 },
24 lockScript='DUP\nSHA256\nPUSH str f3hVW1Amltnqe3KvOT00eT7 c

AU23FAUKdgmCluZB+nss=\nEQUAL\nCHECKSIG\nHALT\n'↪→

25 },
26 unlockScript='',
27 contractInstanceId=''
28 }
29]",
30 "statusCode": 200,
31 "statusMessage": "Success",
32 "type": "SuccessDataResponse"
33 }

It is possible to see that the first single-use-seal has been spent and that’s what was
deposited in the contract instance. Evidence that the funds have been spent is given

4.8. EXAMPLES 79

by the unlockScript field. While, the second single-use-seal represents the asset that
was in Alice’s possession.

4.8.2 Asset swap with scheduled event
The complete code is present in the appendix A.2.1. The Stipula code compared to
the previous version does not change much. The only changes made are:

1. Line 3: A new global variable waitTimeBeforeSwapping is defined. This variable
indicates the time needed to wait before being able to swap assets. It is a value
that is agreed between the participants of the agreement contract;

2. Lines 6 and 7: it is specified that a value for waitTimeBeforeSwapping must be
supplied during the agreement phase;

3. Line 14: the state the contract instance will go to once the function is executed
depositAssetA will exit without errors, it is no longer @Swap but @Deposit;

4. Line 16: if Bob wants to deposit his asset, the contract instance must be in
the @Deposit and no longer @Swap. Also, the function name changes from
depositAssetBAndSwap to depositAssetB;

5. From line 19 to line 23: the code that encodes the obligation that will have to be ex-
ecuted at the time indicated in line 19 is defined, that is, an event will be scheduled
that will execute the obligation at the time now + waitTimeBeforeSwapping;

6. Line 24: the state the contract instance will go to once the depositAssetB will
exit without errors, it is no longer @End but @Swap;

7. Line 20: in order to execute the obligation at the defined time, the status of the
contract instance must be @Swap;

8. Line 23: the state in which the contract instance will go once the execution of
the obligation has finished without errors, will be @End.

The bytecode is almost similar to the one produced for the previous example, the
substantial change occurs for the encoding of the obligation. In particular:

1. Lines 58 to 60: This piece of code is part of the depositAssetB function. These
specific lines allow to calculate the absolute time, necessary to schedule an event,
which will carry out a particular function call. To indicate where the function
code to be executed by the event begins, the TRIGGER obligation_1 instruction
is used. Once the execution of the function is finished, the event will be scheduled
and when the time t arrives, the EventTrigger will put the request in the request
queue (see 4.6.6);

2. Line 64 to line 75: lines 66 to 75 correspond exactly to lines 55 to 64 of the
previous function. However, this code is now part of a particular function, whose
signature is defined on line 64. Indeed, it specifies: this code encodes a obligation
(obligation); in order to perform this obligation, the state of the contract
instance must be @Swap; the name of the function obligation_1; the state in
which the contract instance will go once the execution of the obligation has
finished without errors, will be @End.

80 CHAPTER 4. IMPLEMENTATION

Example of execution

An example of execution of this contract is illustrated in the appendix A.2.2. Only a
few steps will be shown in this section.

Agreement The agreement phase is very similar to the previous example, the only
change is to set the value to the variable waitTimeBeforeSwapping.

Request to the server to make the agreement function call:
1 {
2 "message": {
3 "contractId": "79caadf1-abbe-418a-a9a2-bd132a6f3e9e",
4 "arguments": [
5 {
6 "argument": {
7 "first": "real",
8 "second": "amountAssetA",
9 "third": "1400 2"

10 }
11 },
12 {
13 "argument": {
14 "first": "real",
15 "second": "amountAssetB",
16 "third": "1100 2"
17 }
18 },
19 {
20 "argument": {
21 "first": "time",
22 "second": "waitTimeBeforeSwapping",
23 "third": "100"
24 }
25 }
26],
27 "parties": {
28 "Bob": {
29 "address": "f3hVW1Amltnqe3KvOT00eT7AU23FAUKdgmCluZB+nss=",
30 "publicKey":

"MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciF c
AiX3/ot7lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6N c
yd2be3lbgeavLMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XX c
owI/OhzQN2XPZYESHgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB"

↪→

↪→

↪→

↪→

31 },
32 "Alice": {
33 "address": "ubL35Am7TimL5R4oMwm2OxgAYA3XT3BeeDE56oxqdLc=",
34 "publicKey":

"MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+ c
kko41yINdOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3 c
aR0IF/vfCRf6SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N8 c
8jfnEqekx4S+KDCKg99sGEeHeT65fKS8lB0gjHMt9AOriwIDAQAB"

↪→

↪→

↪→

↪→

35 }
36 },
37 "type": "AgreementCall"
38 },

4.8. EXAMPLES 81

39 "signatures": {
40 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFAiX3/ot7 c

lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Nyd2be3lbgeav c
LMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXowI/OhzQN2XPZYES c
HgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB":
"Wrqyz5udZAGarLbSlxhYD+Ur6+EqTCFiwqBHEL2IsO5Y23Yxv14O3Uzknr c
wK41L5LPUgVxR3K75AAZ4n+UcUdDNHlm9KHN7rqpsbe7v3yK2q8Qkk6c4IY c
NPDRFy3Zw62HH94O7tx8CzcvRfdX4fi+RItf4Fa7hb8Ui/crxDEQN8=",

↪→

↪→

↪→

↪→

↪→

↪→

41 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+kko41yIN c
dOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3aR0IF/vfCRf6 c
SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88jfnEqekx4S+KDCK c
g99sGEeHeT65fKS8lB0gjHMt9AOriwIDAQAB":
"o/bdsudfHdR4BBd9EVaGYikksIezSEdwhHELH/f7xRD9g4uokO5g8wHph6 c
LOht5dt9Y+dYt+Qrt+zNZzGUP8a50R7WB2gNz0Jn3zndKnVoBVhsda/zEwI c
A2pqccP2Sda7zCYiFTfgnmlUZZZfxjtLazBUzDE/vVVFcwtXAHYMXk="

↪→

↪→

↪→

↪→

↪→

↪→

42 }
43 }

For simplicity, the value for waitTimeBeforeSwapping is equal to 100, that is, after
Bob deposits his asset, they will wait 100 seconds before exchanging assets.

Server response:
1 {
2 "data": "48819afd-e28f-4037-82fd-1d073ee1d318",
3 "statusCode": 200,
4 "statusMessage": "Success",
5 "type": "SuccessDataResponse"
6 }

The value in the data field indicates the identifier of the created contract instance.

Event trigger and execution of the obligation The call of depositAssetA and
depositAssetB are the same as the previous example.

From the server logs it can be seen that the event was triggered, the code encoding
the obligation was loaded and executed:

1 EventTrigger: A new scheduled request has been triggered =>
EventTriggerSchedulingRequest{↪→

2 request=CreateEventRequest{
3 obligationFunctionName='obligation_1',
4 time=1680032647
5 },
6 contractId='79caadf1-abbe-418a-a9a2-bd132a6f3e9e',
7 contractInstanceId='48819afd-e28f-4037-82fd-1d073ee1d318'
8 }
9 EventTrigger: Enqueuing the request...

10 EventTrigger: Notifying the virtual machine...
11 EventTrigger: Virtual machine notified
12 EventTrigger: Removing the request from EventTriggerHandler...
13 VirtualMachine: Ready to dequeue a value...
14 VirtualMachine: Request received => Pair{
15 first=null,
16 second=EventTriggerSchedulingRequest{
17 request=CreateEventRequest{
18 obligationFunctionName='obligation_1',
19 time=1680032647
20 },

82 CHAPTER 4. IMPLEMENTATION

21 contractId='79caadf1-abbe-418a-a9a2-bd132a6f3e9e',
22 contractInstanceId='48819afd-e28f-4037-82fd-1d073ee1d318'
23 }
24 }
25 VirtualMachine: Just received a trigger request
26 loadObligationFunction: Loading the obligation function...
27 loadObligationFunction: Obligation function loaded
28 VirtualMachine: Function
29 start:
30 PUSH real 100 2
31 GLOAD assetB
32 GLOAD Alice
33 WITHDRAW assetB
34 PUSH real 100 2
35 GLOAD assetA
36 GLOAD Bob
37 WITHDRAW assetA
38 end:
39 HALT
40

41 loadBytecode: Loading the bytecode...
42 loadBytecode: Bytecode loaded
43

44 VirtualMachine: loadBytecode
45 start:
46 PUSH real 100 2
47 GLOAD assetB
48 GLOAD Alice
49 WITHDRAW assetB
50 PUSH real 100 2
51 GLOAD assetA
52 GLOAD Bob
53 WITHDRAW assetA
54 end:
55 HALT
56

57 LegalContractVirtualMachine: execute => Final state of the
execution below↪→

58 LegalContractVirtualMachine: execute => The stack is empty
59

60 LegalContractVirtualMachine: execute => GlobalSpace
61 assetA: 13.00 stipula_assetA_ed8i9wk, changed: true
62 amountAssetA: 14.00, changed: false
63 assetB: 10.00 stipula_assetB_pl1n5cc, changed: true
64 amountAssetB: 11.00, changed: false
65 Bob: f3hVW1Amltnqe3KvOT00eT7AU23FAUKdgmCluZB+nss=

MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFAiX3/ot7l c
rkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Nyd2be3lbgeavLMCMV c
UiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXowI/OhzQN2XPZYESHgjdQ5vwE c
j2YyueiS7WKP94YWz/pswIDAQAB, changed:
false

↪→

↪→

↪→

↪→

↪→

4.8. EXAMPLES 83

66 Alice: ubL35Am7TimL5R4oMwm2OxgAYA3XT3BeeDE56oxqdLc=
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+kko41yINd c
OcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3aR0IF/vfCRf6SdiXm c
Wx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88jfnEqekx4S+KDCKg99sGEeHe c
T65fKS8lB0gjHMt9AOriwIDAQAB, changed:
false

↪→

↪→

↪→

↪→

↪→

67 waitTimeBeforeSwapping: 100, changed: false
68

69 LegalContractVirtualMachine: execute => The argument space is empty
70

71 LegalContractVirtualMachine: execute => The data space is empty
72

73 Global state of the execution
74 running -> false
75 executionPointer -> 10
76 executionPointer (with offset) -> 74
77 length of the program -> 11
78 length of the program (with offset) -> 75
79 VirtualMachine: Updating the global store...
80 VirtualMachine: Global store updated
81 VirtualMachine: Ready to dequeue a value...
82 VirtualMachine: I'm waiting...

The description of the following flow is illustrated in figure 4.6. When the
EventTrigger added the request to the request queue, the virtual machine will dequeue
the request (2) and execute the function that encodes the obligation. If the conditions
exist to execute the obligation, then the virtual machine will execute the function (3)
and will send the processing result to the Storage module (4). If there are no conditions
to perform the obligation, the virtual machine will not perform the function.

4.8.3 Bike rental
The context of use of this agreement has been described above (see section 2.4.1).
However, since in the current implementation it is not possible to send messages to
the contract participants, the illustrated bytecode will refer to the code of the contract
Stipula of the appendix A.3.1. In the same appendix there is also the complete contract
written in Stipula bytecode.

Agreement

This first part of the contract defines the variables for:

1. The asset that the Borrower he will have to deposit in order to then be able to
pay the Lender (line 2);

2. In line 3 the following are defined:

(a) cost: the amount of assets that the Borrower will have to deposit;
(b) rentingTime: the time available for which the Borrower will be able to use

the service;
(c) use_code: represents the bicycle code. This code must be provided by the

Lender;

3. The initial state of the contract state machine (line 4).

84 CHAPTER 4. IMPLEMENTATION

1 stipula BikeRental {
2 asset wallet:stipula_coin_asd345
3 field cost, rentingTime, use_code
4 init Inactive

When the agreement function call is made, the contract parties have found an
agreement regarding the cost of the service and the duration of the same.

6 agreement (Lender, Borrower)(cost, rentingTime){
7 Lender, Borrower: cost, rentingTime
8 } ==> @Inactive

The following bytecode is associated with this function in Stipula:

1 fn agreement Lender,Borrower Inactive real,time
2 global:
3 GINST party Lender
4 GINST party Borrower
5 GINST asset wallet 2 stipula_coin_asd345
6 GINST real cost 2
7 GINST time rentingTime
8 GINST * use_code
9 args:

10 PUSH party :Lender
11 GSTORE Lender
12 PUSH party :Borrower
13 GSTORE Borrower
14 PUSH real :cost
15 GSTORE cost
16 PUSH time :rentingTime
17 GSTORE rentingTime
18 start:
19 end:
20 HALT

The structure of the code is very similar to that illustrated for the previous examples.
The peculiarity that can be noticed is found in line 8. The * symbol means that the
compiler was unable to determine the type of the use_code variable. Therefore, the
type of the variable will have to be defined later at runtime.

The Lender sends the bicycle code

This piece of code allows the Lender to send the code of the bicycle to be used by the
Borrower. In particular, in line 11 it is possible to notice that the code provided by
the Lender, through the parameter z, is stored in the global variable use_code.

10 @Inactive Lender : offer(z)[] {
11 z -> use_code;
12 _
13 } ==> @Proposal

4.8. EXAMPLES 85

The following bytecode is associated with this function in Stipula:

21 fn Inactive Lender offer Proposal *
22 args:
23 PUSH * :z
24 AINST * :z
25 ASTORE z
26 start:
27 ALOAD z
28 GSTORE use_code
29 end:
30 HALT

In the function signature it is possible to see that an argument of any type (except
asset) is accepted. In fact, it will be the Lender function call to value the variable
and to define its type.

The Borrower deposits the funds in the instance of the contract

The code of this function allows the Borrower to deposit funds (lines 15 and 16) and
to schedule an event that will execute the obligation at time now + rentingTime (line
17 to line 20). The code that encodes the obligation will send the funds contained in
the contract instance to the Lender.

14 @Proposal Borrower : accept()[y]
15 (y == cost) {
16 y -o wallet;
17 now + rentingTime >>
18 @Using {
19 wallet -o Lender
20 } ==> @End
21 } ==> @Using

The following bytecode is associated with this function in Stipula:

31 fn Proposal Borrower accept Using asset
32 args:
33 PUSH asset :y
34 AINST asset :y
35 ASTORE y
36 start:
37 ALOAD y
38 GLOAD cost
39 ISEQ
40 JMPIF if_branch
41 RAISE AMOUNT_NOT_EQUAL
42 JMP end
43 if_branch:
44 ALOAD y
45 GLOAD wallet
46 DEPOSIT wallet
47 GLOAD rentingTime

86 CHAPTER 4. IMPLEMENTATION

48 PUSH time now
49 ADD
50 TRIGGER obligation_1
51 end:
52 HALT

The code is very similar to the example we did earlier for the evented asset swap.
The code that implements the obligation is defined as follows:

61 obligation Using obligation_1 End
62 start:
63 PUSH real 100 2
64 GLOAD wallet
65 GLOAD Lender
66 WITHDRAW wallet
67 end:
68 HALT

End of the contract

If the event to execute the obligation has not yet been triggered, the Borrower can
terminate the contract by calling the end function. Calling this function sends the
funds contained in the contract instance to the Lender.

22 @Using Borrower : end()[] {
23 wallet -o Lender;
24 _
25 } ==> @End

The following bytecode is associated with this function in Stipula:

53 fn Using Borrower end End
54 start:
55 PUSH real 100 2
56 GLOAD wallet
57 GLOAD Lender
58 WITHDRAW wallet
59 end:
60 HALT

The code that implements this function, both of the Stipula contract and of the
bytecode, is almost similar to the code that encodes the obligation, illustrated above.

Example of execution

An example of execution of this contract is illustrated in the appendix A.3.2. Only
a few steps will be shown in this section. For simplicity, the value for rentingTime
is equal to 100, that is, after the Borrower has deposited its asset, it will take 100
seconds before the Borrower terms of using the service.

Two executions were made for this contract:

1. On the first run, the Borrower calls the end function before the event that
executes the obligation code is triggered;

4.8. EXAMPLES 87

2. In the second execution, instead, the event that executes the obligation code is
triggered first and then the Borrower calls the end function, which will fail.

Most of the steps of the two executions are the same, the steps that differ according
to the execution are specifically indicated.

offer call Request to the server to make the offer function call:
1 {
2 "message": {
3 "contractInstanceId": "4cc1f3c7-5cb4-4528-b15a-8e5cacf5b18a",
4 "functionName": "offer",
5 "arguments": [
6 {
7 "argument": {
8 "first": "real",
9 "second": "z",

10 "third": "100 2"
11 }
12 }
13],
14 "type": "FunctionCall"
15 },
16 "signatures": {
17 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+kko41yIN c

dOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3aR0IF/vfCRf6 c
SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88jfnEqekx4S+KDCK c
g99sGEeHeT65fKS8lB0gjHMt9AOriwIDAQAB":
"bJ0xnIhcDlPMmKYx7h8jjX8Q7PaSdqxRg7xq/zTM0vEKqJVDIN0JcT8Qj7 c
jEX5Pwm2YOq+kSwEAxqlPzwoZoQNhe6FPyz6dbj9/LQ0rg79x4QD5ZrCawp c
cbbtJ/U5l1RPGvl06EdHeQc4YFlsIW4yywD1XlKtfJc7IJwes/iKrE="

↪→

↪→

↪→

↪→

↪→

↪→

18 }
19 }

Through this function call, the global variable use_code henceforth it will be of
type real (see section 4.8.3).

Server response:
1 {
2 "statusCode": 200,
3 "statusMessage": "Success",
4 "type": "SuccessDataResponse"
5 }

accept call Request to the server to make the accept function call:
1 {
2 "message": {
3 "contractInstanceId": "4cc1f3c7-5cb4-4528-b15a-8e5cacf5b18a",
4 "functionName": "accept",
5 "arguments": [
6 {
7 "argument": {
8 "first": "asset",
9 "second": "y",

10 "third": {
11 "ownershipId": "1ce080e5-8c81-48d1-b732-006fa1cc4e2e",

88 CHAPTER 4. IMPLEMENTATION

12 "address":
"f3hVW1Amltnqe3KvOT00eT7AU23FAUKdgmCluZB+nss=",↪→

13 "unlockScript": "PUSH str CJ3CdFnd6QiRoNaxxJN6sEYkmhKsS c
Ki0SP5YXiSGhygZs+EMyE2bPrI+hRL4PSA0vLh0X6PNpDhTaPxx c
4kc1LEk9su8+6kkDvi3xpLG9bDoPjss+LEPXUjPTcGVB/3jITb8 c
W+GmX1kDYhGHKtSuhvxBjTwwbtok4gRDD1BcMX/o=\nPUSH str
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZx c
ciFAiX3/ot7lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLX c
hnChO6Nyd2be3lbgeavLMCMVUiTStXr117Km17keWpb3sItkKKs c
LFBOcIIU8XXowI/OhzQN2XPZYESHgjdQ5vwEj2YyueiS7WKP94Y c
Wz/pswIDAQAB\n"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

14 }
15 }
16 }
17],
18 "type": "FunctionCall"
19 },
20 "signatures": {
21 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFAiX3/ot7 c

lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Nyd2be3lbgeav c
LMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXowI/OhzQN2XPZYES c
HgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB":
"wL3r61IgwBGau7S7V967ZSA8B0lLiOMi0qai1YGQVFXnCTvL9WDVMGTwp7 c
XXAQ77f23Hw5y6Ho5SFUMRRfaTLguIJBx9twRSUfpTP4bh3K4RB2yg32rkO c
P16G2vIfEirTT+v2wmp1f10pY+dY/QdMzua7EFdQNmL7PhJnA96CpM="

↪→

↪→

↪→

↪→

↪→

↪→

22 }
23 }

Server response:
1 {
2 "statusCode": 200,
3 "statusMessage": "Success",
4 "type": "SuccessDataResponse"
5 }

Version 1 - end call Request to the server to make the end function call:
1 {
2 "message": {
3 "contractInstanceId": "4cc1f3c7-5cb4-4528-b15a-8e5cacf5b18a",
4 "functionName": "end",
5 "arguments": [],
6 "type": "FunctionCall"
7 },
8 "signatures": {
9 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFAiX3/ot7 c

lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Nyd2be3lbgeav c
LMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXowI/OhzQN2XPZYES c
HgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB":
"hU6i0eGRNcZB+ZCxeLCPBM31iai412yczQ4/Td+roq9jnBU7agWfuOyVl/ c
6fCKdTZcKkxASJs1tCpe4bLlpUHt01lFlGM8n9+sPHXl+1/jXMngmmPhuNU c
PrtsD7PGeFtuC3JJkcqTq3WkyWz6nVdn55bzX6BxleN/I6MPgmDroc="

↪→

↪→

↪→

↪→

↪→

↪→

10 }
11 }

Server response:

4.8. EXAMPLES 89

1 {
2 "statusCode": 200,
3 "statusMessage": "Success",
4 "type": "SuccessDataResponse"
5 }

Version 1 - Trigger of the event and non-execution of the obligation This
situation occurs when the customer, who has used the service, has returned the bicycle
before the end of use of the service.

From the server logs it can be seen that the event was triggered and the code
encoding the obligation was not executed:

1 EventTrigger: A new scheduled request has been triggered =>
EventTriggerSchedulingRequest{↪→

2 request=CreateEventRequest{
3 obligationFunctionName='obligation_1',
4 time=1680036610
5 },
6 contractId='622ad60b-ab1f-4c2c-9f64-1307c046b55d',
7 contractInstanceId='4cc1f3c7-5cb4-4528-b15a-8e5cacf5b18a'
8 }
9 EventTrigger: Enqueuing the request...

10 EventTrigger: Notifying the virtual machine...
11 EventTrigger: Virtual machine notified
12 EventTrigger: Removing the request from EventTriggerHandler...
13 VirtualMachine: Ready to dequeue a value...
14 VirtualMachine: Request received => Pair{
15 first=null,
16 second=EventTriggerSchedulingRequest{
17 request=CreateEventRequest{
18 obligationFunctionName='obligation_1',
19 time=1680036610
20 },
21 contractId='622ad60b-ab1f-4c2c-9f64-1307c046b55d',
22 contractInstanceId='4cc1f3c7-5cb4-4528-b15a-8e5cacf5b18a'
23 }
24 }
25 VirtualMachine: Just received a trigger request
26 VirtualMachine: This function cannot be called in the current state
27 VirtualMachine: Obligation function name => obligation_1
28 VirtualMachine: Current state => DfaState{name='End'}
29 VirtualMachine: Next state => null
30 VirtualMachine: Ready to dequeue a value...
31 VirtualMachine: I'm waiting...

From line 20 to line 22 it can be seen that the obligation has not been performed
because the current state of the contract instance is @End. Instead, the state in which
the obligation should be executed is @Using. For this reason it was not possible to
fulfill the obligation.

Version 2 - Event trigger and execution of the obligation This situation
occurs when the customer, who has used the service, has not returned the bicycle
before the end of use of the service.

From the server logs it can be seen that the event was triggered, the code encoding
the obligation was loaded and executed:

90 CHAPTER 4. IMPLEMENTATION

1 EventTrigger: A new scheduled request has been triggered =>
EventTriggerSchedulingRequest{↪→

2 request=CreateEventRequest{
3 obligationFunctionName='obligation_1',
4 time=1680037664
5 },
6 contractId='51d909ae-45f8-47d2-90de-40699c8a8a3d',
7 contractInstanceId='1a7c6469-b4a3-4c67-8a43-ca60514345f6'
8 }
9 EventTrigger: Enqueuing the request...

10 EventTrigger: Notifying the virtual machine...
11 EventTrigger: Virtual machine notified
12 EventTrigger: Removing the request from EventTriggerHandler...
13 VirtualMachine: Ready to dequeue a value...
14 VirtualMachine: Request received => Pair{
15 first=null,
16 second=EventTriggerSchedulingRequest{
17 request=CreateEventRequest{
18 obligationFunctionName='obligation_1',
19 time=1680037664
20 },
21 contractId='51d909ae-45f8-47d2-90de-40699c8a8a3d',
22 contractInstanceId='1a7c6469-b4a3-4c67-8a43-ca60514345f6'
23 }
24 }
25 VirtualMachine: Just received a trigger request
26 loadObligationFunction: Loading the obligation function...
27 loadObligationFunction: Obligation function loaded
28 VirtualMachine: Function
29 start:
30 PUSH real 100 2
31 GLOAD wallet
32 GLOAD Lender
33 WITHDRAW wallet
34 end:
35 HALT
36

37 loadBytecode: Loading the bytecode...
38 loadBytecode: Bytecode loaded
39

40 VirtualMachine: loadBytecode
41 start:
42 PUSH real 100 2
43 GLOAD wallet
44 GLOAD Lender
45 WITHDRAW wallet
46 end:
47 HALT
48

49 LegalContractVirtualMachine: execute => Final state of the
execution below↪→

50 LegalContractVirtualMachine: execute => The stack is empty
51

52 LegalContractVirtualMachine: execute => GlobalSpace

4.8. EXAMPLES 91

53 rentingTime: 100, changed: false
54 wallet: 11.00 stipula_coin_asd345, changed: true
55 cost: 12.00, changed: false
56 Borrower: f3hVW1Amltnqe3KvOT00eT7AU23FAUKdgmCluZB+nss=

MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFAiX3/ot7l c
rkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Nyd2be3lbgeavLMCMV c
UiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXowI/OhzQN2XPZYESHgjdQ5vwE c
j2YyueiS7WKP94YWz/pswIDAQAB, changed:
false

↪→

↪→

↪→

↪→

↪→

57 use_code: 1.00, changed: false
58 Lender: ubL35Am7TimL5R4oMwm2OxgAYA3XT3BeeDE56oxqdLc=

MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+kko41yINd c
OcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3aR0IF/vfCRf6SdiXm c
Wx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88jfnEqekx4S+KDCKg99sGEeHe c
T65fKS8lB0gjHMt9AOriwIDAQAB, changed:
false

↪→

↪→

↪→

↪→

↪→

59

60 LegalContractVirtualMachine: execute => The argument space is empty
61

62 LegalContractVirtualMachine: execute => The data space is empty
63

64 Global state of the execution
65 running -> false
66 executionPointer -> 6
67 executionPointer (with offset) -> 67
68 length of the program -> 7
69 length of the program (with offset) -> 68
70 VirtualMachine: Updating the global store...
71 VirtualMachine: Global store updated
72 VirtualMachine: Ready to dequeue a value...
73 VirtualMachine: I'm waiting...

In this case, however, it was possible to execute the code that encodes the obligation
because the current state of the contract instance is @Using and coincides with the
state in which the obligation is to be performed.

Version 2 - end call Here we show the example in which the user tries to call the
end function, to notify the company of the end of using the service. However, the call
to this function took place after the maximum time established by the contract, and
therefore the penalty foreseen by the contract was activated.

Request to the server to make the end function call:

1 {
2 "message": {
3 "contractInstanceId": "1a7c6469-b4a3-4c67-8a43-ca60514345f6",
4 "functionName": "end",
5 "arguments": [],
6 "type": "FunctionCall"
7 },
8 "signatures": {

92 CHAPTER 4. IMPLEMENTATION

9 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFAiX3/ot7 c
lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Nyd2be3lbgeav c
LMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXowI/OhzQN2XPZYES c
HgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB":
"Ow8gS8d5SChD3E5CgtsnFHTRWskdeWW2IsTLQJk92mS40LfVtPcxuDiIbz c
L7xWwtUTMFxza+/TSxU+rMsVvMqQLLyUQ4e6UrLO25+Nr7p5x013JGIaxc1 c
8G5kqEuS4iEyiqN1479E4ElLROE+VpI5DBAKMegw0h9m5cbtHFN/fA="

↪→

↪→

↪→

↪→

↪→

↪→

10 }
11 }

Server response:
1 {
2 "data": "This function cannot be called in the current state",
3 "statusCode": 404,
4 "statusMessage": "Error",
5 "type": "ErrorDataResponse"
6 }

4.9 Project management
In this short section we will explain the methods to be able to install an instance of
the Stipula implementation and how the project was managed.

4.9.1 Pipeline
A pipeline is a feature offered by a platform that allows for the automation of various
tasks in the software development process. In essence, it is a script that can be triggered
by events, such as a new commit in a repository or the opening of a merge request.
The script can then perform a variety of tasks, such as running tests, authoring code,
and deploying applications.

Two pipelines were created for this project:

1. run-tests.yml: it is invoked every time the branch test or master, or, when a
merge request is closed. This pipeline allows you to run the tests that have been
defined in the project. There is currently only one sample test. The goal is to
set up a testing environment for future developments;

2. create-and-push-docker-image.yml: this pipeline is called every time a new
tag is created. This pipeline allows you to create a Docker image and publish it
in a dedicated page of the project (see Zanardo, 2023g and Zanardo, 2023a).

These pipelines lay the groundwork for creating a more sophisticated test environ-
ment and for facilitating the installation of an instance of the Stipula implementation.
In the appendix C there is the code of both pipelines.

4.9.2 Issues, milestones ans releases
To track the evolution of the project and the problems that arise during development,
the issue provided by GitHub was used (Zanardo, 2023d). To better organize the
work, these issues have been collected in milestone (2023f). The completion of all the
issues of a milestone leads to the creation of a deliverable (Zanardo, 2023h), that is, a
working version of the project that brings new features. Each deliverable is specified

4.9. PROJECT MANAGEMENT 93

by a release (note the image 4.10), which informs all the features introduced and any
problems solved. In the milestones page it is possible to notice that the work has been
mainly organized in versions (note the image 4.11). It can also be noted that the work
has been geared towards future versions (note the image 4.12). The current version is
v0.4.2 (Zanardo, 2023e).

Figure 4.10: Various project releases. For each release it is possible to download the code
and start an instance of Stipula.

4.9.3 Installation
Starting a Stipula server can be done by downloading the code and installing all the
packages, or by downloading a Docker image and running the container. For manual
installation, you need:

1. Java SDK 8

2. Gradle 7.6.0

3. Gson 2.10.1

4. LevelDb 0.9

5. ANTLR 4.10

6. JUnit 5.8.1

The D appendix contains the code of the build.gradle file, which allows you to
install and manage the project packages.

For a faster and easier to manage installation it is better to use a Docker image.
You can create an instance of Stipula with Docker in two ways:

94 CHAPTER 4. IMPLEMENTATION

Figure 4.11: Milestones completed.

Figure 4.12: Milestone opened.

4.9. PROJECT MANAGEMENT 95

1. Download the project and run docker build -t stipula-node:<version> .,
where you must specify the version you want to use instead of <version>. You
also specify the version in the docker-compose.yml file and execute the command
docker-compose -f docker-compose.yml up -d;

2. Download the Docker files and specify in the docker-compose.yml file that the im-
age you want to use must be downloaded from a particular page (Zanardo, 2023a),
that is, image: "ghcr.io/federicozanardo/stipula-node:<version>". To
start the container, use the command docker-compose -f docker-compose.yml up -d.

The benefit you get is that you can run an instance on any machine that supports
Docker and takes the responsibility off managing package updates.

Furthermore, each Docker image available at the address

ghcr.io/federicozanardo/stipula-node:<version>

is an image that is created at each new release, to which it is obviously subjected to tests.
In the appendix E there is the code of the Dockerfile and docker-compose.yml.

Due to the limitations of the implemented architecture, to carry out tests and
demonstrate the functioning of the implemented implementation, there is the need
to initialize assets and single-use-seals for addresses. To do this, it is necessary to
set the SEED environment variable: by setting yes, assets and single-use-seals will
be created when the program is started; valuing with no, this procedure will not be
performed. The enhancement of this environment variable can be done inside the
docker-compose.yml (line 12). The following chapter will illustrate the limits of this
architecture and propose solutions. In the future, this database seeding procedure will
be removed.

Chapter 5

Missing features and future
developments

This chapter will illustrate the missing features, the limitations of the implemented ar-
chitecture, the possible optimizations that can be implemented and future developments
for the project as a whole.

5.1 Missing features
In this section we introduce the missing features for a complete implementation of the
Stipula language. The reason for the lack of these features is not due to a limitation of
the built architecture, but due to a lack of time to implement them.

5.1.1 Language features not implemented in the current ver-
sion

The language offers several features for writing contracts. Many of these features
require certain properties to be guaranteed, which are often complex to maintain. In the
architecture illustrated above, all the features of the language have been implemented,
except one: the sending of messages from the contract to the customer. The original
example of the BikeRental contract (see section 2.4.1) foresaw:

1. When the user called the accept function, the bicycle code was sent to the
customer. In particular, the complete code would have been:

14 ...
15 @Proposal Borrower : accept()[y]
16 (y == cost) {
17 y -o wallet;
18 use_code -> Borrower
19 ...

2. When the accept function is required was executed, the contract would notify
the customer of the end of the service, by sending the "End_Reached" message.
In particular, the complete code would have been:

97

98 CHAPTER 5. MISSING FEATURES AND FUTURE DEVELOPMENTS

18 ...
19 now + rentingTime >>
20 @Using {
21 "End_Reached" -> Borrower
22 wallet -o Lender
23 } => @End
24 ...

The architecture is ready to implement this feature, that is, the infrastructure
for communication between the virtual machine and the client has already been
implemented. The missing part is figuring out the necessary data structures and
response messages to send to the client.

Due to time constraints, it was not possible to implement the syntactic sugar
required by the language. The language expects the following syntactic sugar:

1. ...
@State1,@State2 Party1,Party2 : functionName()[]
...

That is, allowing a specific function to be called from multiple parties and/or from
multiple states. The implementation of this syntactic sugar involves both the
compiler and the virtual machine: the compiler must produce optimized bytecode,
that is, instead of writing the function body for each state and for each party,
one could update the bytecode language to notify the virtual machine that that
code can be invoked from different parties and in different states. The benefits
would be obtained from the point of view of memory, as it would be possible
to save space instead of duplicating the body of the function each time. In a
distributed context, this represents an important point, because it is important
to minimize memory usage as much as possible. It is necessary to clarify this is a
pure consideration from the point of view of optimization and not from the point
of view of expressiveness. The lack of this syntactic sugar does not diminish the
expressiveness of the language: in fact, it is possible to write the same function
code several times in the bytecode with different states and callers. However, the
implementation of this syntactic sugar was not possible due to lack of time.

2. See Silvia Crafa and Cosimo Laneve, 2022

...
~ @End _ : block(x) {

x -> _
} ==> @Exception
...

Similarly to the previous point, the implementation of this syntactic sugar involves
the compiler and the virtual machine. The meaning of this code is as follows:
the block function can be invoked by any party ("_" notation) provided that the
duration of the contract has not expired, that is, the contract is not in the @End
state.

5.1.2 Single-use-seals merge
The current version has an important limitation when the user has to make a payment
to an instance of a contract. In order to make a payment, the user must have available

5.1. MISSING FEATURES 99

a single-use-seal of the exact quantity required by the contract: if the user does not
have a single-use-seal of the requested quantity, the user cannot make the payment.
This problem represents a strong limit to be able to massively use this implementation.
One proposed solution is to merge single-use-seals. Suppose Alice has to pay the
contract C_1 15 StipulaCoin. Alice has the following single-use-seals available (note
the image 5.1):

1. Single-use-seal 1 (S_1): 5 StipulaCoin;

2. Single-use-seal 2 (S_2): 7 StipulaCoin;

3. Single-use-seal 3 (S_3): 2 StipulaCoin;

4. Single-use-seal 4 (S_4): 2 StipulaCoin;

Figure 5.1: Example of single-use-seals merge.

In the current version Alice could not pay the contract as she does not have a single-
use-seal of 15 StipulaCoin, however the sum of all available funds is 16 StipulaCoin,
enough to be able to carry out the transaction. The proposed solution consists first
of all in modifying the message to make function calls (see 4.3.4), specifically when
a Pay-to-Contract must be made. The message must be able to collect multiple
single-use-seals in its payload. More precisely:

1. unlockScript must be provided for each single-use-seals, so that the user proves
ownership of the funds;

2. Create new single-use-seals:

(a) One represents the single-use-seal that will be sent to the contract (merged);
(b) The other single-use-seal represents the remainder (remainder), that is,

the difference between the sum of all the single-use-seals in input minus the
amount of asset needed to contract.

100 CHAPTER 5. MISSING FEATURES AND FUTURE DEVELOPMENTS

I single-use-seals merged and remainder are the new single-use-seals that will need
to be stored. The identifier of these single-use-seals is computed from the hash of the
input single-use-seals identifiers. The reason is to decrease the probability of collision
between the identifiers of the other single-use-seals. The merged must be sent with the
contract and therefore unlockScript must be provided, to demonstrate possession of
the single-use-seal. Instead, you don’t need to supply unlockScript for the remainder,
as it is not to be spent in this transaction.

An example is shown below:

1. Line 5 specifies that the payment is a single-use-seal merge (merge). From line
8 to line 29, all single-use-seals that Alice wants to merge are specified. You
can see that for each single-use-seal, Alice has provided cryptographic proof of
ownership of those funds. In particular, on line 12, 17, 22, 27 it is possible to
note the presence of the unlockScript field.
For <ownershipId_S_1> we refer to the identifier of the first single-use-seal that
Alice wants to spend and for <unlockScript_S_1> refers to the unlockScript del
first single-use-seal. The same goes for <ownershipId_S_2>, <ownershipId_S_3>,
<ownershipId_S_4>, <unlockScript_S_2>, <unlockScript_S_3> and <unlockScript_S_4>

1 ...
2 "arguments": [
3 {
4 "argument": {
5 "first": "merge",
6 "second": "y",
7 "third": {
8 "input": [
9 {

10 "ownershipId": "<ownershipId_S_1>",
11 "address": "<Alice_address>",
12 "unlockScript": "<unlockScript_S_1>"
13 },
14 {
15 "ownershipId": "<ownershipId_S_2>",
16 "address": "<Alice_address>",
17 "unlockScript": "<unlockScript_S_2>"
18 },
19 {
20 "ownershipId": "<ownershipId_S_3>",
21 "address": "<Alice_address>",
22 "unlockScript": "<unlockScript_S_3>"
23 },
24 {
25 "ownershipId": "<ownershipId_S_4>",
26 "address": "<Alice_address>",
27 "unlockScript": "<unlockScript_S_4>"
28 }
29],

2. From line 30 to line 56, it is possible to notice what is the output of the merger
of the previous single-use-seals (output). From line 31 to line 45, you can see the

5.1. MISSING FEATURES 101

specification of the new single-use-seal merged, which will be sent to the contract
instance to make the payment. In fact, this new single-use-seal already comes
with the unlockScript (line 43). By doing so, the contract will be able to verify
whether these funds will actually belong to Alice or not. Instead, from line 46 to
line 56, it is possible to notice that a new single-use-seal (remainder) is created
which represents the difference between the sum of all single-use-seals specified
in input minus the amount of assets required by the contract instance. No
unlockScript needs to be supplied for this single-use-seal because it must not
be spent on this payment.
For <hash(ownershipId_S_1)> means the hash of the identifier of the first in-
put single-use-seal and for <unlockScript_hash(ownershipId_S_1)> means the
unlockScript of this new single-use-seal with identifier <hash(ownershipId_S_1)>.
The same goes for the single-use-seal remainder

57 "output": {
58 "merged": {
59 "single_use_seal": {
60 "asset_id": "stipula_coin_345",
61 "amount": {
62 "value": "1500",
63 "decimals": "2"
64 }
65 },
66 "ownership": {
67 "ownershipId": "<hash(ownershipId_S_1)>",
68 "address": "<Alice_address>",
69 "unlockScript":

"<unlockScript_hash(ownershipId_S_1)>"↪→

70 }
71 },
72 "remainder": {
73 "single_use_seal": {
74 "asset_id": "stipula_coin_345",
75 "amount": {
76 "value": "100",
77 "decimals": "2"
78 }
79 }
80 }
81 }

Let’s illustrate the complete example:

1 ...
2 "arguments": [
3 {
4 "argument": {
5 "first": "merge",
6 "second": "y",
7 "third": {
8 "input": [

102 CHAPTER 5. MISSING FEATURES AND FUTURE DEVELOPMENTS

9 {
10 "ownershipId": "<ownershipId_S_1>",
11 "address": "<Alice_address>",
12 "unlockScript": "<unlockScript_S_1>"
13 },
14 {
15 "ownershipId": "<ownershipId_S_2>",
16 "address": "<Alice_address>",
17 "unlockScript": "<unlockScript_S_2>"
18 },
19 {
20 "ownershipId": "<ownershipId_S_3>",
21 "address": "<Alice_address>",
22 "unlockScript": "<unlockScript_S_3>"
23 },
24 {
25 "ownershipId": "<ownershipId_S_4>",
26 "address": "<Alice_address>",
27 "unlockScript": "<unlockScript_S_4>"
28 }
29],
30 "output": {
31 "merged": {
32 "single_use_seal": {
33 "id": "<hash(S_1)>",
34 "asset_id": "stipula_coin_345",
35 "amount": {
36 "value": "1500",
37 "decimals": "2"
38 }
39 },
40 "ownership": {
41 "ownershipId": "<hash(ownershipId_S_1)>",
42 "address": "<Alice_address>",
43 "unlockScript":

"<unlockScript_hash(ownershipId_S_1)>"↪→

44 }
45 },
46 "remainder": {
47 "single_use_seal": {
48 "id": "<hash(S_2)>",
49 "asset_id": "stipula_coin_345",
50 "amount": {
51 "value": "100",
52 "decimals": "2"
53 }
54 }
55 }
56 }
57 }

5.1. MISSING FEATURES 103

58 }
59 }
60],
61 ...
62 }
63 ...
64 }

This solution allows you to make payments even if you don’t have single-use-seals
of the precise quantity required by the contract. The solution requires updating the
message format and carrying out further preliminary checks before executing the
contract, namely:

1. Checking the single-use-seals of inputs: in addition to verifying ownership via
the Script, it is also necessary to check that the sum of the inputs is greater than
or equal to the quantity required by the contract;

2. Controlling single-use-seals merged and optionally remainder: verify that the
sum of the quantities of the input single-use-seals is equal to the sum of the
quantities of merged and optionally remainder. Also, verify that the single-use-
seal merged is equal to the quantity required by the contract;

Passing these checks, the input single-use-seals will be updated in Storage as spent.
The single-use-seals merged will be stored in storage directly as spent, while the
single-use-seal remainder is stored as unspent. At this point, the virtual machine can
continue with the execution of the contract.

5.1.3 Creation of assets and their distribution
One of the missing aspects in the current version is the ability to create additional
assets beyond the hard-coded one. As an example, hard-coded assets have been created
for the implemented version. One of the peculiarities of the Stipula language is that of
being able to schedule the execution of certain obligations over time. This functionality
could be leveraged to manage the creation, issuance and destruction of assets. The
creation of an asset should take place by means of a special contract, separate from
the classic contracts seen above. In this special contract, the maximum supply, the
fractionability of the asset, the name and an identifier would be defined. However, an
asset issuance mechanism could also be defined, such as the halving for Bitcoin ((see
Bitcoin mining and halving, Bitcoin halving explained and Antonopoulos, 2017)): using
the scheduling of events over time, it is possible to establish that periodically a certain
amount of assets is entered into the system. Furthermore, it is also possible to define
addresses for the burn of the assets. Burning an asset is used to remove liquidity from
circulation, thereby decreasing available supply and appreciating the asset. If you want
to burn a certain amount of assets, you send it to a specific address where you can
only deposit and not withdraw. In this way, it is also possible to monitor and verify
the amount of burned assets.

104 CHAPTER 5. MISSING FEATURES AND FUTURE DEVELOPMENTS

5.2 Optimizations
The current architecture has mainly two bottlenecks:

1. Virtual Machine: requests to execute function calls of an instance of a contract
or the execution of a time-scheduled event are computed sequentially;

2. Storage: for simplicity in the realization of the implementation, each request,
both for reading and for writing, is managed by a mutex, to guarantee exclusive
access to the memory by a superior module .

Requests addressed to the compiler and requests addressed to the virtual machine are
handled in parallel until one has to interact with the Storage module.

Virtual Machine

Requests directed to the virtual machine are done sequentially. Unfortunately, this
implementation choice represents a bottleneck as regards system performance, in
particular, precisely for the virtual machine, which is the most used module during the
execution of a contract. However, it is possible to implement optimizations, paying
attention, however, to avoid cases of competition. Some possible optimizations for the
virtual machine are:

1. Parallelization of single-use-seals: this is possible thanks to the UTXO model
used in the architecture. The operation of this property has been described 1.
For example: Alice has two single-use-seals S_1 and S_2 and she wants to make
two payments to two different contracts C_1 and C_2. With this optimization,
Alice can pay the C_1 contract with S_1 and C_2 with S_2. The two requests
can be run in parallel because they use separate funds and there is no need to
run either request first to update the asset balance, as might be the case in
an account-balance-based model. The same dynamic would also occur if Alice
had to pay two different instances of the same contract or two instances of two
different contracts;

2. Parallelization of function calls: if a user is interacting with multiple instances of
contracts at the same time, the requests can be executed in parallel. If multiple
users are interacting with the same instance of a contract, requests will be fulfilled
in order of arrival. As regards the execution of obligations (events scheduled over
time), the basic principle does not change: the event can be parallelized if the
other requests interact in different contract instances, otherwise the execution of
the event has priority over the execution of function calls.

These optimizations can significantly increase the throughput of requests, especially
in a distributed context. However, it is necessary to update the structure of some
modules and to pay particular attention to concurrency.

Storage

Requests received by this module could be parallelized by splitting them into read and
write requests. Requests can come from the compiler, from the virtual machine or
directly from the Message Service. If the module is only receiving read requests, these
requests can be executed in parallel; when a write request is received, it takes priority
over read requests. As a further optimization, you could make a specific resource
exclusive when a write request is received, and leave free access to other resources.

5.3. LIMITS OF THE ARCHITECTURE 105

5.3 Limits of the architecture
5.3.1 Computational and memory resources required
One of the factors to increase the decentralization of a network is to allow the creation of
nodes that have a low computational capacity and limited storage capacity. If a ledger
were to require large computational capabilities and large amounts of memory, this
implies that more expensive machines would be needed. The need for more expensive
machines increases the centralization of the network, as the subjects who will be able
to buy and maintain these machines will be limited in number. Therefore, in the design
phase it is also important to take into account the computational and memory aspect.
One of the most expensive operations in a decentralized network is the synchronization
of the nodes. If the ledger used a lot of memory, this would increase the time it
takes to synchronize, thus increasing the possibility of transmission errors. Obviously,
this phase would be much more complex and difficult to complete for devices with
limited computational and memory capabilities. The current implementation stores
various information in the Storage module. This could pose a problem for especially
distributed networks, if decentralized. During the development of the project we
focused on saving all the information necessary to allow the execution of the contracts
and for the management of the asset transfers. It would be necessary to analyze
whether all the information that is currently stored is actually necessary or, on the
other hand, it is possible to omit some information because it is possible to deduce
it from other information. Obviously, this balance must be calibrated correctly with
the computational cost required to retrieve this information: if it is possible to save a
minimal set of information that is currently stored, but the operations necessary to
retrieve it require a considerable increase in computational resources, this represents
one downside. Furthermore, for simplicity and for a limited amount of time available,
the information has been stored according to the data structures of Java objects, as
the LevelDB library allows information to be stored in bytes. A necessary development
is to create information storage interfaces for the various storages (contracts, contract-
instances, assets and ownerships), in order to allow to implement nodes also in other
programming languages.

From a computational point of view, the current version of the language is not Turing-
complete, so it is not possible to loop and make function calls from other functions.
This design choice limits the expressiveness of the language and therefore also limits the
possibility of creating programs that may require significant computational resources.
The Script language is also not Turing-complete, so it is possible to create programs
that require little computational resources. Furthermore, non-Turing-completeness also
allows you to avoid unwanted behavior and prevent potential security vulnerabilities.
In the previous section (5.2), possible optimizations were introduced to increase request
throughput. These optimizations must also take into consideration devices that have
limited computational capacity: in this case it is preferable to implement certain
optimizations and others not, obtaining a lower throughput for greater decentralization.
Obviously, these considerations refer exclusively to decentralized networks.

106 CHAPTER 5. MISSING FEATURES AND FUTURE DEVELOPMENTS

5.4 Current version security issues
One of the key principles that guided the entire development is security from various
points of view. In fact, security can be understood as regards:

1. The assets, that is, guaranteeing that the transfer of assets between users and
contracts, and vice versa, takes place without loss of quantity or generation of
new quantities from scratch;

2. Prevent a user from double-spending;

3. Ensure that after a contract is executed, the correct state is reached.

The architecture presented above has a security problem regarding the transmission
of messages between the server/node and the client. The attack that might occur is
a Man-In-The-Middle (MITM) attack. When a user wants to send a message to the
Stipula server/node, the message is signed. The benefits of signing are:

1. Authentication: the recipient can verify that the message was sent by the declared
sender, since only the sender has the private key to sign the message;

2. Integrity: the recipient can be certain that the message has not been tampered
with during transmission, as any alteration of the message would invalidate the
signature;

3. Non-repudiation: the sender cannot deny having sent the message once signed,
since the signature provides verifiable proof of authorship.

Thus, when the Stipula server/node receives a message, even if it is not encrypted,
the sender has expressed his intentions of wanting to create a new instance of a contract
or make a function call. However, when it is the Stipula server/node that has to send
response messages to the client, these can be intercepted and tampered with. Indeed,
in the server/node there are no cryptographic keys that certify the authenticity and
integrity of a message. The problems of having cryptographic keys inside a server/node
are:

1. If the cryptographic keys are found by an attacker, the latter can send malicious
messages to users;

2. If the keys are lost and a new pair is generated, the problem described in the
previous point would arise: the user could not think that the keys have been
changed by an attacker and therefore could think that they are receiving malicious
messages.

However, in a distributed and centralized context, the use of cryptographic keys in
the nodes could be a sufficiently secure solution, as the control of the network belongs
to a central body which monitors the traffic. Therefore, nodes with a cryptographic
key pair and the central body would be able to cope with similar attacks. The problem
arises in networks where there is no central body that governs the network.

You can locate the problem in some response messages:

1. When the server/node has to send the response after the agreement phase of a
contract. When the agreement phase takes place, the server/node creates a new
instance of the contract and assigns it a unique identifier. This identifier will
be inserted as the response payload. An attacker could intercept this message

5.5. FUTURE IMPROVEMENTS 107

and alter it by inserting an identifier that points to an instance of a malicious
contract. By doing so, the user would not notice the change of identifier and
would go to accept, and therefore have to respect, the obligations defined in the
contract uploaded by the attacker;

2. When server/node sends additional payload in responses. Taking as an example
the instruction use_code -> Borrower, previously defined in 1, the server/node
should add the bicycle code as payload to the response. This message could be
intercepted by an attacker, replace the bike code with a fake one, and keep the
original bike code. At this point the user would not be able to use the service,
as the code is not the original one and if the situation were not resolved before
the penalty is triggered, i.e. the trigger of the event previously defined in 2, the
contract will send all the money to the company.

We are aware of the issues associated with this architecture, but it was not possible
to take steps to mitigate these issues due to lack of time.

5.5 Future improvements
5.5.1 Implementation of the consensus module and communi-

cation protocols
This represents the most important module in the distributed context. In this module,
it will be necessary to develop communication protocols and algorithms that make it
possible to determine consensus regarding the result of the execution of a contract.

The design and development of this module will be very complex as it will have to
take into account various security aspects, such as spam. A proposal to try to mitigate
the phenomenon of spam is the use of hashcash (Adam Back, 2002), a proof-of-work
algorithm which aims to prevent spam and DoS attacks (Denial-of-Service), making
it more difficult and time-consuming for a sender to send large volumes of requests
to a service. The way hashcash works requires the sender to solve a computational
puzzle that requires significant computational power to complete. The puzzle is to find
a hash value that meets certain criteria, such as having a certain number of leading
zeros. The sender has to compute many hash values until it finds one that satisfies
the criteria, which takes a lot of computing power and time. Once the sender has
solved the puzzle and found a valid hash value, they include this value in the request
as proof of work. The recipient can then quickly verify the proof of work by checking
the hash value, which allows them to determine whether the sender expended enough
computing power to send the request. The power of this mechanism consists in the
need for a substantial amount of time and energy to create a proof of work, and at the
same time, the verification of the latter can be done instantaneously. The concept of
hashcash underpins how Bitcoin proof-of-work works. A similar algorithm adapted to
Stipula could allow the network of nodes to limit the spam introduced by one or more
attackers.

Another useful consensus module component is the creation of a mempool. When
the virtual machine executes an instance of a contract and the execution is successful,
the results produced must first be verified with other nodes to verify that the network
(or the majority of the network) agrees with the same results. The network of nodes
may be congested and therefore requests may not be served immediately. To free
up the virtual machine and run other instances of contracts, it might be useful to
implement a queue of requests to submit for consent.

108 CHAPTER 5. MISSING FEATURES AND FUTURE DEVELOPMENTS

5.5.2 Implementation of the commitment module
This layer allows you to communicate with an underlying layer to do the timestamping
and commitment of information. In particular, this module will have to provide
common interfaces, in order to make the implementation of Stipula independent from
the layer that will be used. In fact, if you want to use Ethereum as a commitment
layer, you will have to develop specific code that allows you to interact directly with
the blockchain, and at the same time respect the common interfaces of the Stipula
commitment module: in doing so the others modules of the architecture will not change.
To do this, the modules that would be involved are:

1. The Storage module (see sections 3.3.5 and 4.7): this module will have to store
inside the data that will indicate how to find the information saved in the
commitment layer;

2. The Commitment module (see section 3.3.6): this module will have to interface
with the underlying layer to instruct which information will have to be saved;

3. The Communication protocols module (see section 3.3.7): communication proto-
cols will be needed between the commitment layer and the Stipula implementation
for the exchange of information.

Also in this case it is useful to implement a mempool, as the layer could be congested
and consequently there could be slowdowns in writing the results obtained from the
execution of the contracts.

5.5.3 Fees for performance of a contract
All the smart contracts of various blockchains require fees to be paid for their execution,
as the computational and memory resources of a distributed network are used. This
also happens for layer two, such as Arbitrum (see Arbitrum and Arbitrum fees) and
Optimism (see Optimism and Optimism fees) for Ethereum. Fees make possible network
attacks (such as spam) costly in terms of money and/or resources. Furthermore, fees
are a useful tool for prioritizing requests: when a blockchain is congested, the network
prioritizes those transactions that pay more fees than the others.

The current implementation of Stipula does not take this dynamic into consideration:
if this version were based on a commitment layer, it is not possible to pay commissions
for writing the information. Nor are there any commissions for the network of nodes
that execute the Stipula contracts. As a future development, it may be necessary
to separate the payments to be made to a contract from the commission costs for
the execution of the same, both for the network of Stipula nodes and for a possible
commitment layer. This problem may not arise if HyperLedger Fabric nodes are used
as commitment layer, which do not include commission costs for writing information
in the ledger.

5.5.4 Script language extension
The advantages of using the Script language have been described in previous chapters.
By extending this language, it is possible to create advanced ways to spend funds, such
as authorizing a transaction from multiple users or restricting that a certain amount
of assets can only be spent after a certain date. The extensibility of the language
makes it possible to satisfy certain needs that could arise in certain contexts, for

5.5. FUTURE IMPROVEMENTS 109

example: in a corporate context, it could be useful to carry out a certain expense only
with the authorization of several figures, such as directors or managing directors. So,
extensibility also allows you to create new, more secure ways to manage your assets.
Extensibility can be implemented by adding new instructions to the already existing
set (see 4.2) or modifying the current ones, tightening or relaxing the constraints.

5.5.5 Implementation of additional software
In order to incentivize the use of Stipula and allow developers to build software on top
of its implementation, it is necessary to provide a set of tools and software, such as
SDKs. In particular, it is very useful for users to have an application that implements
the functions of a wallet, that is, a software that allows you to view the balance sheet
for each asset, sign transactions, view all sent and received transactions, view the
contracts it has approved and other privacy-focused features, such as coin selection (5).
Another context that requires support software is that of writing contracts. Whoever
writes the contracts will be a professional figure in the legal field and therefore it will be
necessary to provide tools that allow for the translation of the contractual clauses into
Stipula code. Therefore, it could be useful to modularize the compiler and the virtual
machine to develop tools to be integrated into the IDEs: in doing so, before loading
a contract into an instance or a Stipula node, the person who will write the contract
will be able to check whether the written code will be correct and that respects the
expected behaviors. Developing additional tools and software requires interacting only
with the Message Service module (see 4.3), as all requests and replies go through this
module. This facilitates the work of developers, as:

1. They must not interact with other modules, such as the virtual machine, whose
tasks are very delicate;

2. Message formats are defined, and therefore it is possible to build tools on top of
a Stipula server or node, without worrying about messages changing structure.
Currently, message formats may change over time until the architecture structure
is solid and stable. At that point, message formats will no longer have to change,
but new messages can be created for new features.

Chapter 6

Conclusion

The thesis work was mainly divided into two phases: the first research phase, both
for the fundamental themes of distributed systems and for programming languages
for smart contracts; the second stage of architecture development. The second phase
however involved a research activity, aimed however at finding implementation solutions.
The first research phase lasted from October to December 2022, while the design and
development of the entire architecture lasted from December 2022 until the beginning
of April 2023.

6.1 Design considerations
The design took a long time to organize the fundamental concepts of the architecture,
such as organizing the components and managing their interactions. In particular, a
lot of time was required to design:

1. Virtual Machine and Stipula bytecode

2. Asset management and Script language

3. Distributed context and consent

6.1.1 Virtual Machine and Stipula bytecode
The decision to make the Stipula language a compiled language required the creation
of a target language for execution, namely, the Stipula bytecode. The design of this
language took some time to devise the necessary statements. The goal was to create
a minimal set of instructions that would allow for the implementation of all aspects
of the high-level language, trying not to make the set of instructions too large, but
to reuse the existing instructions as much as possible. Even the design of the virtual
machine was not trivial as the goal was to create a component that would allow for
the execution of a contract in isolation from the other components of the architecture.

6.1.2 Asset Management and Script Language
The implementation of a UTXO model is more complex than the account-balance-based
model, both from a theoretical point of view and from an implementation point of
view. The UTXO model requires you to understand a different approach than classic

111

112 CHAPTER 6. CONCLUSION

balance sheet management. Furthermore, the cryptographic aspect combined with
asset management complicates the understanding more. However, this model has
important advantages for the application context, such as the possibility of crypto-
graphically verifying the ownership of the funds. By doing so, there can be no contract
that could misappropriate your funds. It is always the user who approves an asset
transfer to a contract. Connected to the UTXO model, the understanding, design
and implementation of the Script language was also not trivial. Understanding the
usefulness of this language is not trivial, as at first glance it might seem like a useless
complication to architecture. Instead, as has been explained in this thesis work, the
advantage of the Script language is twofold: firstly, it allows to cryptographically
demonstrate the ownership of a user’s funds; secondly, the extensibility of this language
will make it possible to expand the methods of transferring assets, minimizing the
architectural modules to be updated.

The idea of reproducing Ethereum/Algorand-style assets and combining the UTXO
model was not trivial. Ethereum tokens and Algorand assets use a classic account-
balance-based model and therefore their functions for smart contracts also adapt to
this model. The use of a UTXO model has overturned the classic interaction between
the user and the contracts of Ethereum and Algorand.

6.1.3 Distributed context and consent
The entire research phase and the design phase have always taken into consideration
the distributed context. In fact, all the design choices have been made taking into
consideration that in the future the current architecture will be placed in a possible
distributed system. Then the components and modules needed to adapt the current
architecture for a distributed system were also thought of. In the research phase, various
problems of distributed systems were analyzed and raised, such as the consensus between
the nodes of a network. It is a very interesting topic which would require just as much
time to study and propose a solution to be integrated into the current project. Due to
lack of time, it was not possible to study these topics further.

6.2 Implementation consideration
The project consists of approximately 15,000 lines of code, of which approximately
4,500 were generated by the ANTLR tool. The code is divided into 107 classes and
in the repository there is a graph of the dependencies between the various classes
and the various packages (Zanardo, 2023b). Most of the code is dedicated to the
development of the Virtual Machine, the Stipula bytecode and the compiler, as they
are the most complex components of the whole architecture. In particular:

1. Stipula bytecode and Virtual Machine (23 classes and 3121 lines of code):

(a) Stipula bytecode: the implementation of the language required a lot of code
as it was necessary to implement all its instructions. For each instruction,
the necessary checks must be carried out to avoid unwanted behaviour;

(b) Virtual Machine: this module required a lot of code as it has to handle a
very complex flow. Must consider receiving and sending payments (Pay-
to-Contract and Pay-to-Party). In particular, for Pay-to-Contract it is
necessary to check whether the user is the effective owner of the funds. This
module also deals with managing communication with the client and also
managing the scheduling of obligations;

6.2. IMPLEMENTATION CONSIDERATION 113

2. Compiler (28 classes and 6261 lines of code with ANTLR tool, 21 classes and
3007 lines of code without the code generated by ANTLR): this module requires
a lot of code (excluding the one generated by ANTLR) to be able to visit the
abstract syntax tree and then to map the Stipula statements into the Specify
bytecode statement.

6.2.1 Structure of the project
The project repository (Zanardo, 2023c) is organized as follows:

1. .github/workflows: contains the pipelines described in the 4.9.1 section and in
the C appendix;

2. examples: this folder contains example contracts (see the 4.8 section) and
example code pieces written in Stipula bytecode;

3. gradle/wrapper, build.gradle, gradlew, gradlew.bat and settings.gradle:
files needed for Gradle;

4. src: contains the architecture implementation code;

5. Dockerfile: it is the file that allows you to create a Docker image (see the
appendix E);

6. README.md: it is a file that introduces the project, its use, the available features
and the installation process;

7. docker-compose.yml: is a file that allows you to run a Docker container (see
the appendix E);

src

The structure of the src folder it’s the following:

1. main/java: contains the architecture implementation code;

2. test/java: currently, contains only an example test. In the future, all architec-
ture tests will be collected.

main/java

The structure of the main/java folder it’s the following:

1. compiler: contains all the code related to the compiler implementation (see
section 4.4);

2. constants: contains a file containing the constants shared between the various
modules;

3. exceptions: contains classes that implement exceptions for data structures;

4. lib: contains the code of some libraries in common with the other modules (see
section 4.2);

114 CHAPTER 6. CONCLUSION

5. models:

(a) assets: contains the code that allows you to implement assets (see the
4.1.2 section);

(b) contract: contains the code that implements contracts and contract in-
stances (see section 4.1.1), Pay-to-Contract, Ownership (see section 4.3.4)
and single-use-seals (see section 4.6.3) 4.3.4;

(c) dto:
i. requests: contains the code for implementing the messages defined in

the 4.3.4 section;
ii. responses: contains the code for the responses to be sent to the client;

(d) party: contains the code for implementing a party (see paragraph 4.5.1);

6. server: contains the code implementing the Message Service module (see the
4.3 section);

7. shared: implements a shared memory area between the virtual machine and the
ClientHandler (see 2);

8. storage: contains the code implementing the Storage module (see the 4.7 section);

9. vm: contains all the code that implements the Virtual Machine module (see the
4.6 section) and the implementation of the Stipula bytecode (see the section 4.5);

10. Main.java: it is the main file from which it is possible to start the implementation
instance;

Appendix A

Examples of contracts and
execution of contracts

A.1 Asset swap
A.1.1 Complete code
The complete code of the contract written in Stipula is the following:

1 stipula SwapAsset {
2 asset assetA:stipula_assetA_ed8i9wk,

assetB:stipula_assetB_pl1n5cc↪→

3 field amountAssetA, amountAssetB
4 init Inactive
5

6 agreement (Alice, Bob)(amountAssetA, amountAssetB) {
7 Alice, Bob: amountAssetA, amountAssetB
8 } ==> @Inactive
9

10 @Inactive Alice : depositAssetA()[y]
11 (y == amountAssetA) {
12 y -o assetA;
13 _
14 } ==> @Swap
15

16 @Swap Bob : depositAssetBAndSwap()[y]
17 (y == amountAssetB) {
18 y -o assetB
19 assetB -o Alice
20 assetA -o Bob;
21 _
22 } ==> @End
23 }

115

116APPENDIX A. EXAMPLES OF CONTRACTS AND EXECUTION OF CONTRACTS

The complete bytecode produced is:

1 fn agreement Alice,Bob Inactive real,real
2 global:
3 GINST party Alice
4 GINST party Bob
5 GINST asset assetA 2 stipula_assetA_ed8i9wk
6 GINST asset assetB 2 stipula_assetB_pl1n5cc
7 GINST real amountAssetA 2
8 GINST real amountAssetB 2
9 args:

10 PUSH party :Alice
11 GSTORE Alice
12 PUSH party :Bob
13 GSTORE Bob
14 PUSH real :amountAssetA
15 GSTORE amountAssetA
16 PUSH real :amountAssetB
17 GSTORE amountAssetB
18 start:
19 end:
20 HALT
21 fn Inactive Alice depositAssetA Swap asset
22 args:
23 PUSH asset :y
24 AINST asset :y
25 ASTORE y
26 start:
27 ALOAD y
28 GLOAD amountAssetA
29 ISEQ
30 JMPIF if_branch
31 RAISE AMOUNT_NOT_EQUAL
32 JMP end
33 if_branch:
34 ALOAD y
35 GLOAD assetA
36 DEPOSIT assetA
37 end:
38 HALT
39 fn Swap Bob depositAssetBAndSwap End asset
40 args:
41 PUSH asset :y
42 AINST asset :y
43 ASTORE y
44 start:
45 ALOAD y
46 GLOAD amountAssetB
47 ISEQ
48 JMPIF if_branch

A.2. ASSET SWAP WITH SCHEDULED EVENT 117

49 RAISE AMOUNT_NOT_EQUAL
50 JMP end
51 if_branch:
52 ALOAD y
53 GLOAD assetB
54 DEPOSIT assetB
55 PUSH real 100 2
56 GLOAD assetB
57 GLOAD Alice
58 WITHDRAW assetB
59 PUSH real 100 2
60 GLOAD assetA
61 GLOAD Bob
62 WITHDRAW assetA
63 end:
64 HALT

A.2 Asset swap with scheduled event
A.2.1 Complete code
The complete code of the contract written in Stipula is the following:

1 stipula SwapAssetWithEvent {
2 asset assetA:stipula_assetA_ed8i9wk,

assetB:stipula_assetB_pl1n5cc↪→

3 field amountAssetA, amountAssetB, waitTimeBeforeSwapping
4 init Inactive
5

6 agreement (Alice, Bob)(amountAssetA, amountAssetB,
waitTimeBeforeSwapping) {↪→

7 Alice, Bob: amountAssetA, amountAssetB,
waitTimeBeforeSwapping↪→

8 } ==> @Inactive
9

10 @Inactive Alice : depositAssetA()[y]
11 (y == amountAssetA) {
12 y -o assetA;
13 _
14 } ==> @Deposit
15

16 @Deposit Bob : depositAssetB()[y]
17 (y == amountAssetB) {
18 y -o assetB;
19 now + waitTimeBeforeSwapping >>
20 @Swap {
21 assetB -o Alice
22 assetA -o Bob
23 } ==> @End
24 } ==> @Swap

118APPENDIX A. EXAMPLES OF CONTRACTS AND EXECUTION OF CONTRACTS

25 }

The complete bytecode produced is:

1 fn agreement Alice,Bob Inactive real,real,time
2 global:
3 GINST party Alice
4 GINST party Bob
5 GINST asset assetA 2 stipula_assetA_ed8i9wk
6 GINST asset assetB 2 stipula_assetB_pl1n5cc
7 GINST real amountAssetA 2
8 GINST real amountAssetB 2
9 GINST time waitTimeBeforeSwapping

10 args:
11 PUSH party :Alice
12 GSTORE Alice
13 PUSH party :Bob
14 GSTORE Bob
15 PUSH real :amountAssetA
16 GSTORE amountAssetA
17 PUSH real :amountAssetB
18 GSTORE amountAssetB
19 PUSH time :waitTimeBeforeSwapping
20 GSTORE waitTimeBeforeSwapping
21 start:
22 end:
23 HALT
24 fn Inactive Alice depositAssetA Deposit asset
25 args:
26 PUSH asset :y
27 AINST asset :y
28 ASTORE y
29 start:
30 ALOAD y
31 GLOAD amountAssetA
32 ISEQ
33 JMPIF if_branch
34 RAISE AMOUNT_NOT_EQUAL
35 JMP end
36 if_branch:
37 ALOAD y
38 GLOAD assetA
39 DEPOSIT assetA
40 end:
41 HALT
42 fn Deposit Bob depositAssetB Swap asset
43 args:
44 PUSH asset :y
45 AINST asset :y
46 ASTORE y
47 start:

A.2. ASSET SWAP WITH SCHEDULED EVENT 119

48 ALOAD y
49 GLOAD amountAssetB
50 ISEQ
51 JMPIF if_branch
52 RAISE AMOUNT_NOT_EQUAL
53 JMP end
54 if_branch:
55 ALOAD y
56 GLOAD assetB
57 DEPOSIT assetB
58 GLOAD waitTimeBeforeSwapping
59 PUSH time now
60 ADD
61 TRIGGER obligation_1
62 end:
63 HALT
64 obligation Swap obligation_1 End
65 start:
66 PUSH real 100 2
67 GLOAD assetB
68 GLOAD Alice
69 WITHDRAW assetB
70 PUSH real 100 2
71 GLOAD assetA
72 GLOAD Bob
73 WITHDRAW assetA
74 end:
75 HALT

A.2.2 Complete example of execution
Deploy contract Request to the server for contract deployment:

1 {
2 "message": {
3 "sourceCode": "stipula SwapAsset {\n asset

assetA:stipula_assetA_ed8i9wk,
assetB:stipula_assetB_pl1n5cc\n field amountAssetA,
amountAssetB, waitTimeBeforeSwapping\n init Inactive\n\n
agreement (Alice, Bob)(amountAssetA, amountAssetB,

waitTimeBeforeSwapping) {\n Alice, Bob: amountAssetA,
amountAssetB, waitTimeBeforeSwapping\n } ==> @Inactive\n\n

@Inactive Alice : depositAssetA()[y]\n (y ==
amountAssetA) {\n y -o assetA;\n _\n
} ==> @Deposit\n\n @Deposit Bob : depositAssetB()[y]\n

(y == amountAssetB) {\n y -o assetB;\n
now + waitTimeBeforeSwapping >>\n @Swap {\n

assetB -o Alice\n assetA
-o Bob\n } ==> @End\n } ==> @Swap\n}",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

4 "type": "DeployContract"
5 },
6 "signatures": {

120APPENDIX A. EXAMPLES OF CONTRACTS AND EXECUTION OF CONTRACTS

7 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+kko41yINdO c
cCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3aR0IF/vfCRf6SdiX c
mWx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88jfnEqekx4S+KDCKg99sGE c
eHeT65fKS8lB0gjHMt9AOriwIDAQAB":
"MXw6Xje7jDsbk0Cqfrx6z2pWZiUchw8i9+KsYQ5KPVNic4YQtYYn0Ei64Yul c
npdNS/jTUxMuJnxW8dOAItDbPeR233731Lh3clnR1xWhRezUBNIF0ZAL2iqVH c
gaHUYeVNXBaZz1QR+xuj1srSarugnX4LshvZSXGTUUR/U7W4bE="

↪→

↪→

↪→

↪→

↪→

↪→

8 }
9 }

Server response:
1 {
2 "data": "79caadf1-abbe-418a-a9a2-bd132a6f3e9e",
3 "statusCode": 200,
4 "statusMessage": "Success",
5 "type": "SuccessDataResponse"
6 }

The value in the data field indicates the identifier of the deployed contract.

Single-use-seals by Alice Server request to get Alice’s single-use-seals:
1 {
2 "message": {
3 "address": "ubL35Am7TimL5R4oMwm2OxgAYA3XT3BeeDE56oxqdLc=",
4 "type": "GetOwnershipsByAddress"
5 },
6 "signatures": {
7 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+kko41yIN c

dOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3aR0IF/vfCRf6 c
SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88jfnEqekx4S+KDCK c
g99sGEeHeT65fKS8lB0gjHMt9AOriwIDAQAB":
"MomZTc63z7PfH35c1dL4tjXebcsW+0Zxl0nP1NQdcUFws98DX+bMWI7L0C c
6IO5lxvkYve4zdio1Crn97FXvngK4aVfiEZEnHOJ0tstq7uQYGErM3DDAAB c
qPq8HH5yoKnLST2LWpO0oD8G/VXvIE6qMT5D34W1Ci0q4uh+7y3EcY="

↪→

↪→

↪→

↪→

↪→

↪→

8 }
9 }

Server response:
1 {
2 "data": "[
3 Ownership{
4 id='2b4a4614-3bb4-4554-93fe-c034c3ba5a9c',
5 singleUseSeal=SingleUseSeal{
6 assetId='stipula_assetA_ed8i9wk',
7 amount=RealType{
8 value=1400,
9 decimals=2

10 },
11 lockScript='DUP\nSHA256\nPUSH str ubL35Am7TimL5R4oMwm2Oxg c

AYA3XT3BeeDE56oxqdLc=\nEQUAL\nCHECKSIG\nHALT\n'↪→

12 },
13 unlockScript='',
14 contractInstanceId=''
15 }
16]",

A.2. ASSET SWAP WITH SCHEDULED EVENT 121

17 "statusCode": 200,
18 "statusMessage": "Success",
19 "type": "SuccessDataResponse"
20 }

Single-use-seals by Bob Server request to get Bob’s single-use-seals:
1 {
2 "message": {
3 "address": "f3hVW1Amltnqe3KvOT00eT7AU23FAUKdgmCluZB+nss=",
4 "type": "GetOwnershipsByAddress"
5 },
6 "signatures": {
7 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFAiX3/ot7 c

lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Nyd2be3lbgeav c
LMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXowI/OhzQN2XPZYES c
HgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB":
"hSNodnUyusffNlv+KNq4605pFvqh91pVspFhTgbmWccE/LKM6h4bedpvTg c
MHoVDezvA7v2XTzmLG5eL3lOeA6I2xJMH32DcV60IPSoh61oVHnwPQcQHY0 c
39D4y5VSJ0GMQJKIcTEq3fqIdabg7261xUaegHUnXrcyynh9GpMJxk="

↪→

↪→

↪→

↪→

↪→

↪→

8 }
9 }

Server response:
1 {
2 "data": "[
3 Ownership{
4 id='7a19f50e-eae9-461d-bd58-9946ea39ccf0',
5 singleUseSeal=SingleUseSeal{
6 assetId='stipula_assetB_pl1n5cc',
7 amount=RealType{
8 value=1100,
9 decimals=2

10 },
11 lockScript='DUP\nSHA256\nPUSH str f3hVW1Amltnqe3KvOT00eT7 c

AU23FAUKdgmCluZB+nss=\nEQUAL\nCHECKSIG\nHALT\n'↪→

12 },
13 unlockScript='',
14 contractInstanceId=''
15 }
16]",
17 "statusCode": 200,
18 "statusMessage": "Success",
19 "type": "SuccessDataResponse"
20 }

Agreement Request to the server to make the agreement function call:
1 {
2 "message": {
3 "contractId": "79caadf1-abbe-418a-a9a2-bd132a6f3e9e",
4 "arguments": [
5 {
6 "argument": {
7 "first": "real",
8 "second": "amountAssetA",

122APPENDIX A. EXAMPLES OF CONTRACTS AND EXECUTION OF CONTRACTS

9 "third": "1400 2"
10 }
11 },
12 {
13 "argument": {
14 "first": "real",
15 "second": "amountAssetB",
16 "third": "1100 2"
17 }
18 },
19 {
20 "argument": {
21 "first": "time",
22 "second": "waitTimeBeforeSwapping",
23 "third": "100"
24 }
25 }
26],
27 "parties": {
28 "Bob": {
29 "address": "f3hVW1Amltnqe3KvOT00eT7AU23FAUKdgmCluZB+nss=",
30 "publicKey":

"MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciF c
AiX3/ot7lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6N c
yd2be3lbgeavLMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XX c
owI/OhzQN2XPZYESHgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB"

↪→

↪→

↪→

↪→

31 },
32 "Alice": {
33 "address": "ubL35Am7TimL5R4oMwm2OxgAYA3XT3BeeDE56oxqdLc=",
34 "publicKey":

"MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+ c
kko41yINdOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3 c
aR0IF/vfCRf6SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N8 c
8jfnEqekx4S+KDCKg99sGEeHeT65fKS8lB0gjHMt9AOriwIDAQAB"

↪→

↪→

↪→

↪→

35 }
36 },
37 "type": "AgreementCall"
38 },
39 "signatures": {
40 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFAiX3/ot7 c

lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Nyd2be3lbgeav c
LMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXowI/OhzQN2XPZYES c
HgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB":
"Wrqyz5udZAGarLbSlxhYD+Ur6+EqTCFiwqBHEL2IsO5Y23Yxv14O3Uzknr c
wK41L5LPUgVxR3K75AAZ4n+UcUdDNHlm9KHN7rqpsbe7v3yK2q8Qkk6c4IY c
NPDRFy3Zw62HH94O7tx8CzcvRfdX4fi+RItf4Fa7hb8Ui/crxDEQN8=",

↪→

↪→

↪→

↪→

↪→

↪→

41 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+kko41yIN c
dOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3aR0IF/vfCRf6 c
SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88jfnEqekx4S+KDCK c
g99sGEeHeT65fKS8lB0gjHMt9AOriwIDAQAB":
"o/bdsudfHdR4BBd9EVaGYikksIezSEdwhHELH/f7xRD9g4uokO5g8wHph6 c
LOht5dt9Y+dYt+Qrt+zNZzGUP8a50R7WB2gNz0Jn3zndKnVoBVhsda/zEwI c
A2pqccP2Sda7zCYiFTfgnmlUZZZfxjtLazBUzDE/vVVFcwtXAHYMXk="

↪→

↪→

↪→

↪→

↪→

↪→

42 }

A.2. ASSET SWAP WITH SCHEDULED EVENT 123

43 }

For simplicity, the value for waitTimeBeforeSwapping is equal to 100, that is, after
Bob deposits his asset, they will wait 100 seconds before exchanging assets.

Server response:
1 {
2 "data": "48819afd-e28f-4037-82fd-1d073ee1d318",
3 "statusCode": 200,
4 "statusMessage": "Success",
5 "type": "SuccessDataResponse"
6 }

The value in the data field indicates the identifier of the created contract instance.

depositAssetA call Request to the server to make the depositAssetA function
call:

1 {
2 "message": {
3 "contractInstanceId": "48819afd-e28f-4037-82fd-1d073ee1d318",
4 "functionName": "depositAssetA",
5 "arguments": [
6 {
7 "argument": {
8 "first": "asset",
9 "second": "y",

10 "third": {
11 "ownershipId": "2b4a4614-3bb4-4554-93fe-c034c3ba5a9c",
12 "address":

"ubL35Am7TimL5R4oMwm2OxgAYA3XT3BeeDE56oxqdLc=",↪→

13 "unlockScript": "PUSH str PLjodnT+m3RNIitQAPBDCsRmJPHCq c
rwZOY/CPiHFZGnl+DRN6soqxMy3ehTFaUwxBjjf7qfBfvTDq5oB c
ItTFrtz1Rn5SDS1ybdbkwpKaOXVglNOw7ZEG9bbZ1mo1oA7IAjR c
iIilzUetCstE5rPZIf9XOXr/RQ5AHkZUn2CztsvA=\nPUSH str
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA c
55+kko41yINdOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8h c
QMr3+v3aR0IF/vfCRf6SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHW c
XSpwUIDt0N88jfnEqekx4S+KDCKg99sGEeHeT65fKS8lB0gjHMt c
9AOriwIDAQAB\n"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

14 }
15 }
16 }
17],
18 "type": "FunctionCall"
19 },
20 "signatures": {
21 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+kko41yIN c

dOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3aR0IF/vfCRf6 c
SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88jfnEqekx4S+KDCK c
g99sGEeHeT65fKS8lB0gjHMt9AOriwIDAQAB":
"mo7rInHGBgsYK0igMBDbcWbRLHF93GnpKGj3NYttddc62CdS5yPg+S7XtH c
SULj50UCMQZRm3l5uPGtJySlaG31m8tV/JtpTSYNuZLOJdt8ViTMYzHPj0O c
3tI90R5VzZyyqBV7MkYmKkCK9jBAG3v0V1AqPD8wupXmXjzb5jWi1Q="

↪→

↪→

↪→

↪→

↪→

↪→

22 }
23 }

124APPENDIX A. EXAMPLES OF CONTRACTS AND EXECUTION OF CONTRACTS

Server response:
1 {
2 "statusCode": 200,
3 "statusMessage": "Success",
4 "type": "SuccessDataResponse"
5 }

depositAssetB call Request to the server to make the depositAssetBAndSwap
function call:

1 {
2 "message": {
3 "contractInstanceId": "48819afd-e28f-4037-82fd-1d073ee1d318",
4 "functionName": "depositAssetB",
5 "arguments": [
6 {
7 "argument": {
8 "first": "asset",
9 "second": "y",

10 "third": {
11 "ownershipId": "7a19f50e-eae9-461d-bd58-9946ea39ccf0",
12 "address":

"f3hVW1Amltnqe3KvOT00eT7AU23FAUKdgmCluZB+nss=",↪→

13 "unlockScript": "PUSH str Q0bPh9lThyrg1slz9AGDJDJh1BecN c
9SlGCeVe3BqLod+zO7q0wvIy8tLognHNBkR8e8zKo6nWGQ8qZ7e c
gjOmm5BQsqZzt8xL3gBbR36vgk9J3G9ObiTR2Dd7hMqsqyJnLT3 c
aZUPXGc6RZoM/iUFGJUXhq2T6DStvYNKuAH+Lfow=\nPUSH str
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZx c
ciFAiX3/ot7lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLX c
hnChO6Nyd2be3lbgeavLMCMVUiTStXr117Km17keWpb3sItkKKs c
LFBOcIIU8XXowI/OhzQN2XPZYESHgjdQ5vwEj2YyueiS7WKP94Y c
Wz/pswIDAQAB\n"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

14 }
15 }
16 }
17],
18 "type": "FunctionCall"
19 },
20 "signatures": {
21 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFAiX3/ot7 c

lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Nyd2be3lbgeav c
LMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXowI/OhzQN2XPZYES c
HgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB":
"VpIlGFopW81rCZ85cuFG+ks5UEhOz4Au8YGAtL7RDH+62l7Va159SCjiyy c
9y/FBTkYqgId74CC1jJnjfOdMiUy7jasgPa9JiJVUZSo5L/pq3e3pA5LWc4 c
cb/8Yslu+Ax8zPmMzRwCPPu9/5jcowvtk06NcG1NNdW3Np5vP+M9vM="

↪→

↪→

↪→

↪→

↪→

↪→

22 }
23 }

Server response:
1 {
2 "statusCode": 200,
3 "statusMessage": "Success",
4 "type": "SuccessDataResponse"
5 }

A.2. ASSET SWAP WITH SCHEDULED EVENT 125

Event trigger and execution of the obligation From the server logs it can be
seen that the event was triggered, the code encoding the obligation was loaded and
executed:

1 EventTrigger: A new scheduled request has been triggered =>
EventTriggerSchedulingRequest{↪→

2 request=CreateEventRequest{
3 obligationFunctionName='obligation_1',
4 time=1680032647
5 },
6 contractId='79caadf1-abbe-418a-a9a2-bd132a6f3e9e',
7 contractInstanceId='48819afd-e28f-4037-82fd-1d073ee1d318'
8 }
9 EventTrigger: Enqueuing the request...

10 EventTrigger: Notifying the virtual machine...
11 EventTrigger: Virtual machine notified
12 EventTrigger: Removing the request from EventTriggerHandler...
13 VirtualMachine: Ready to dequeue a value...
14 VirtualMachine: Request received => Pair{
15 first=null,
16 second=EventTriggerSchedulingRequest{
17 request=CreateEventRequest{
18 obligationFunctionName='obligation_1',
19 time=1680032647
20 },
21 contractId='79caadf1-abbe-418a-a9a2-bd132a6f3e9e',
22 contractInstanceId='48819afd-e28f-4037-82fd-1d073ee1d318'
23 }
24 }
25 VirtualMachine: Just received a trigger request
26 loadObligationFunction: Loading the obligation function...
27 loadObligationFunction: Obligation function loaded
28 VirtualMachine: Function
29 start:
30 PUSH real 100 2
31 GLOAD assetB
32 GLOAD Alice
33 WITHDRAW assetB
34 PUSH real 100 2
35 GLOAD assetA
36 GLOAD Bob
37 WITHDRAW assetA
38 end:
39 HALT
40

41 loadBytecode: Loading the bytecode...
42 loadBytecode: Bytecode loaded
43

44 VirtualMachine: loadBytecode
45 start:
46 PUSH real 100 2
47 GLOAD assetB
48 GLOAD Alice
49 WITHDRAW assetB
50 PUSH real 100 2

126APPENDIX A. EXAMPLES OF CONTRACTS AND EXECUTION OF CONTRACTS

51 GLOAD assetA
52 GLOAD Bob
53 WITHDRAW assetA
54 end:
55 HALT
56

57 LegalContractVirtualMachine: execute => Final state of the
execution below↪→

58 LegalContractVirtualMachine: execute => The stack is empty
59

60 LegalContractVirtualMachine: execute => GlobalSpace
61 assetA: 13.00 stipula_assetA_ed8i9wk, changed: true
62 amountAssetA: 14.00, changed: false
63 assetB: 10.00 stipula_assetB_pl1n5cc, changed: true
64 amountAssetB: 11.00, changed: false
65 Bob: f3hVW1Amltnqe3KvOT00eT7AU23FAUKdgmCluZB+nss=

MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFAiX3/ot7l c
rkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Nyd2be3lbgeavLMCMV c
UiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXowI/OhzQN2XPZYESHgjdQ5vwE c
j2YyueiS7WKP94YWz/pswIDAQAB, changed:
false

↪→

↪→

↪→

↪→

↪→

66 Alice: ubL35Am7TimL5R4oMwm2OxgAYA3XT3BeeDE56oxqdLc=
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+kko41yINd c
OcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3aR0IF/vfCRf6SdiXm c
Wx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88jfnEqekx4S+KDCKg99sGEeHe c
T65fKS8lB0gjHMt9AOriwIDAQAB, changed:
false

↪→

↪→

↪→

↪→

↪→

67 waitTimeBeforeSwapping: 100, changed: false
68

69 LegalContractVirtualMachine: execute => The argument space is empty
70

71 LegalContractVirtualMachine: execute => The data space is empty
72

73 Global state of the execution
74 running -> false
75 executionPointer -> 10
76 executionPointer (with offset) -> 74
77 length of the program -> 11
78 length of the program (with offset) -> 75
79 VirtualMachine: Updating the global store...
80 VirtualMachine: Global store updated
81 VirtualMachine: Ready to dequeue a value...
82 VirtualMachine: I'm waiting...

The description of the following flow is illustrated in figure 4.6. When the
EventTrigger added the request to the request queue, the virtual machine will dequeue
the request (2) and execute the function that encodes the obligation. If the conditions
exist to execute the obligation, then the virtual machine will execute the function (3)
and will send the processing result to the Storage module (4). If there are no conditions
to perform the obligation, the virtual machine will not perform the function.

A.2. ASSET SWAP WITH SCHEDULED EVENT 127

Single-use-seals by Alice Server request to get Alice’s single-use-seals:
1 {
2 "message": {
3 "address": "ubL35Am7TimL5R4oMwm2OxgAYA3XT3BeeDE56oxqdLc=",
4 "type": "GetOwnershipsByAddress"
5 },
6 "signatures": {
7 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+kko41yIN c

dOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3aR0IF/vfCRf6 c
SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88jfnEqekx4S+KDCK c
g99sGEeHeT65fKS8lB0gjHMt9AOriwIDAQAB":
"MomZTc63z7PfH35c1dL4tjXebcsW+0Zxl0nP1NQdcUFws98DX+bMWI7L0C c
6IO5lxvkYve4zdio1Crn97FXvngK4aVfiEZEnHOJ0tstq7uQYGErM3DDAAB c
qPq8HH5yoKnLST2LWpO0oD8G/VXvIE6qMT5D34W1Ci0q4uh+7y3EcY="

↪→

↪→

↪→

↪→

↪→

↪→

8 }
9 }

Server response:
1 {
2 "data": "[
3 Ownership{
4 id='2b4a4614-3bb4-4554-93fe-c034c3ba5a9c',
5 singleUseSeal=SingleUseSeal{
6 assetId='stipula_assetA_ed8i9wk',
7 amount=RealType{
8 value=1400,
9 decimals=2

10 },
11 lockScript='DUP\nSHA256\nPUSH str ubL35Am7TimL5R4oMwm2Oxg c

AYA3XT3BeeDE56oxqdLc=\nEQUAL\nCHECKSIG\nHALT\n'↪→

12 },
13 unlockScript='PUSH str PLjodnT+m3RNIitQAPBDCsRmJPHCqrwZOY/C c

PiHFZGnl+DRN6soqxMy3ehTFaUwxBjjf7qfBfvTDq5oBItTFrtz1Rn5 c
SDS1ybdbkwpKaOXVglNOw7ZEG9bbZ1mo1oA7IAjRiIilzUetCstE5rP c
ZIf9XOXr/RQ5AHkZUn2CztsvA=\nPUSH str
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+k c
ko41yINdOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3a c
R0IF/vfCRf6SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88 c
jfnEqekx4S+KDCKg99sGEeHeT65fKS8lB0gjHMt9AOriwIDAQAB\n',

↪→

↪→

↪→

↪→

↪→

↪→

↪→

14 contractInstanceId='48819afd-e28f-4037-82fd-1d073ee1d318'
15 },
16 Ownership{
17 id='a325a1ed-612c-4201-b5ef-0a58ff184509',
18 singleUseSeal=SingleUseSeal{
19 assetId='stipula_assetB_pl1n5cc',
20 amount=RealType{
21 value=100,
22 decimals=2
23 },
24 lockScript='DUP\nSHA256\nPUSH str ubL35Am7TimL5R4oMwm2Oxg c

AYA3XT3BeeDE56oxqdLc=\nEQUAL\nCHECKSIG\nHALT\n'↪→

25 },
26 unlockScript='',
27 contractInstanceId=''
28 }

128APPENDIX A. EXAMPLES OF CONTRACTS AND EXECUTION OF CONTRACTS

29]",
30 "statusCode": 200,
31 "statusMessage": "Success",
32 "type": "SuccessDataResponse"
33 }

It is possible to see that the first single-use-seal has been spent and that’s what was
deposited in the contract instance. Evidence that the funds have been spent is given
by the unlockScript field. While, the second single-use-seal represents the asset that
was in Bob’s possession.

Single-use-seals by Bob Server request to get Bob’s single-use-seals:
1 {
2 "message": {
3 "address": "f3hVW1Amltnqe3KvOT00eT7AU23FAUKdgmCluZB+nss=",
4 "type": "GetOwnershipsByAddress"
5 },
6 "signatures": {
7 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFAiX3/ot7 c

lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Nyd2be3lbgeav c
LMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXowI/OhzQN2XPZYES c
HgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB":
"hSNodnUyusffNlv+KNq4605pFvqh91pVspFhTgbmWccE/LKM6h4bedpvTg c
MHoVDezvA7v2XTzmLG5eL3lOeA6I2xJMH32DcV60IPSoh61oVHnwPQcQHY0 c
39D4y5VSJ0GMQJKIcTEq3fqIdabg7261xUaegHUnXrcyynh9GpMJxk="

↪→

↪→

↪→

↪→

↪→

↪→

8 }
9 }

Server response:
1 {
2 "data": "[
3 Ownership{
4 id='7a19f50e-eae9-461d-bd58-9946ea39ccf0',
5 singleUseSeal=SingleUseSeal{
6 assetId='stipula_assetB_pl1n5cc',
7 amount=RealType{
8 value=1100,
9 decimals=2

10 },
11 lockScript='DUP\nSHA256\nPUSH str f3hVW1Amltnqe3KvOT00eT7 c

AU23FAUKdgmCluZB+nss=\nEQUAL\nCHECKSIG\nHALT\n'↪→

12 },
13 unlockScript='PUSH str Q0bPh9lThyrg1slz9AGDJDJh1BecN9SlGCeV c

e3BqLod+zO7q0wvIy8tLognHNBkR8e8zKo6nWGQ8qZ7egjOmm5BQsqZ c
zt8xL3gBbR36vgk9J3G9ObiTR2Dd7hMqsqyJnLT3aZUPXGc6RZoM/iU c
FGJUXhq2T6DStvYNKuAH+Lfow=\nPUSH str
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFA c
iX3/ot7lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Ny c
d2be3lbgeavLMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXo c
wI/OhzQN2XPZYESHgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB\n',

↪→

↪→

↪→

↪→

↪→

↪→

↪→

14 contractInstanceId='48819afd-e28f-4037-82fd-1d073ee1d318'
15 },
16 Ownership{
17 id='fa8a1383-3f42-4d7b-ad2a-d3e47ee1eb4b',
18 singleUseSeal=SingleUseSeal{

A.3. BIKE RENTAL 129

19 assetId='stipula_assetA_ed8i9wk',
20 amount=RealType{
21 value=100,
22 decimals=2
23 },
24 lockScript='DUP\nSHA256\nPUSH str f3hVW1Amltnqe3KvOT00eT7 c

AU23FAUKdgmCluZB+nss=\nEQUAL\nCHECKSIG\nHALT\n'↪→

25 },
26 unlockScript='',
27 contractInstanceId=''
28 }
29]",
30 "statusCode": 200,
31 "statusMessage": "Success",
32 "type": "SuccessDataResponse"
33 }

It is possible to see that the first single-use-seal has been spent and that’s what was
deposited in the contract instance. Evidence that the funds have been spent is given
by the unlockScript field. While, the second single-use-seal represents the asset that
was in Alice’s possession.

A.3 Bike rental
A.3.1 Complete code
The complete code of the contract written in Stipula is the following:

1 stipula BikeRental {
2 asset wallet:stipula_coin_asd345
3 field cost, rentingTime, use_code
4 init Inactive
5

6 agreement (Lender, Borrower)(cost, rentingTime){
7 Lender, Borrower: cost, rentingTime
8 } ==> @Inactive
9

10 @Inactive Lender : offer(z)[] {
11 z -> use_code;
12 _
13 } ==> @Proposal
14

15 @Proposal Borrower : accept()[y]
16 (y == cost) {
17 y -o wallet;
18 now + rentingTime >>
19 @Using {
20 wallet -o Lender
21 } ==> @End
22 } ==> @Using
23

24 @Using Borrower : end()[] {

130APPENDIX A. EXAMPLES OF CONTRACTS AND EXECUTION OF CONTRACTS

25 wallet -o Lender;
26 _
27 } ==> @End
28 }

The complete bytecode produced is:

1 fn agreement Lender,Borrower Inactive real,time
2 global:
3 GINST party Lender
4 GINST party Borrower
5 GINST asset wallet 2 stipula_coin_asd345
6 GINST real cost 2
7 GINST time rentingTime
8 GINST * use_code
9 args:

10 PUSH party :Lender
11 GSTORE Lender
12 PUSH party :Borrower
13 GSTORE Borrower
14 PUSH real :cost
15 GSTORE cost
16 PUSH time :rentingTime
17 GSTORE rentingTime
18 start:
19 end:
20 HALT
21 fn Inactive Lender offer Proposal *
22 args:
23 PUSH * :z
24 AINST * :z
25 ASTORE z
26 start:
27 ALOAD z
28 GSTORE use_code
29 end:
30 HALT
31 fn Proposal Borrower accept Using asset
32 args:
33 PUSH asset :y
34 AINST asset :y
35 ASTORE y
36 start:
37 ALOAD y
38 GLOAD cost
39 ISEQ
40 JMPIF if_branch
41 RAISE AMOUNT_NOT_EQUAL
42 JMP end
43 if_branch:
44 ALOAD y

A.3. BIKE RENTAL 131

45 GLOAD wallet
46 DEPOSIT wallet
47 GLOAD rentingTime
48 PUSH time now
49 ADD
50 TRIGGER obligation_1
51 end:
52 HALT
53 fn Using Borrower end End
54 start:
55 PUSH real 100 2
56 GLOAD wallet
57 GLOAD Lender
58 WITHDRAW wallet
59 end:
60 HALT
61 obligation Using obligation_1 End
62 start:
63 PUSH real 100 2
64 GLOAD wallet
65 GLOAD Lender
66 WITHDRAW wallet
67 end:
68 HALT

A.3.2 Complete example of execution

Deploy contract Request to the server for contract deployment:

1 {
2 "message": {
3 "sourceCode": "stipula BikeRental {\n asset

wallet:stipula_coin_asd345\n field cost,
rentingTime, use_code\n init Inactive\n\n
agreement (Lender, Borrower)(cost, rentingTime){\n

Lender, Borrower: cost, rentingTime\n } ==>
@Inactive\n\n @Inactive Lender : offer(z)[] {\n

z -> use_code;\n _\n } ==> @Proposal\n\n
@Proposal Borrower : accept()[y]\n (y ==

cost) {\n y -o wallet;\n now +
rentingTime >>\n @Using {\n

wallet -o Lender\n } ==> @End\n
} ==> @Using\n\n @Using Borrower : end()[] {\n

wallet -o Lender;\n _\n } ==> @End\n}\n",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

4 "type": "DeployContract"
5 },
6 "signatures": {

132APPENDIX A. EXAMPLES OF CONTRACTS AND EXECUTION OF CONTRACTS

7 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+kko c
41yINdOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3aR c
0IF/vfCRf6SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88 c
jfnEqekx4S+KDCKg99sGEeHeT65fKS8lB0gjHMt9AOriwIDAQAB":
"UTtjlNtPutvql7jAaC0N6HiD1Q+83hborpEvcjvnzbc6lDwwZioGj c
p2cOKHpC6YXypyqjQZnp1TeagacO9KSZLSZuduBHwiNE20qEgXTCYr c
0oB1Sww09AQgI23vEoIHf7V0SzLdkfTC6DMxD2nBcMju/4z6xGbXnj c
fwR+sqxkZE="

↪→

↪→

↪→

↪→

↪→

↪→

↪→

8 }
9 }

Server response:

1 {
2 "data": "622ad60b-ab1f-4c2c-9f64-1307c046b55d",
3 "statusCode": 200,
4 "statusMessage": "Success",
5 "type": "SuccessDataResponse"
6 }

The value in the data field indicates the identifier of the deployed contract.

Single-use-seals by Lender Server request to get Lender’s single-use-seals:

1 {
2 "message": {
3 "address": "ubL35Am7TimL5R4oMwm2OxgAYA3XT3BeeDE56oxqdLc=",
4 "type": "GetOwnershipsByAddress"
5 },
6 "signatures": {
7 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+kko c

41yINdOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3aR c
0IF/vfCRf6SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88 c
jfnEqekx4S+KDCKg99sGEeHeT65fKS8lB0gjHMt9AOriwIDAQAB":
"MomZTc63z7PfH35c1dL4tjXebcsW+0Zxl0nP1NQdcUFws98DX+bMW c
I7L0C6IO5lxvkYve4zdio1Crn97FXvngK4aVfiEZEnHOJ0tstq7uQY c
GErM3DDAABqPq8HH5yoKnLST2LWpO0oD8G/VXvIE6qMT5D34W1Ci0q c
4uh+7y3EcY="

↪→

↪→

↪→

↪→

↪→

↪→

↪→

8 }
9 }

Server response:

1 {
2 "data": "[]",
3 "statusCode": 200,
4 "statusMessage": "Success",
5 "type": "SuccessDataResponse"
6 }

It is possible to notice that the Lender it has no funds.

A.3. BIKE RENTAL 133

Single-use-seals by Borrower Server request to get Borrower’s single-use-seals:

1 {
2 "message": {
3 "address": "f3hVW1Amltnqe3KvOT00eT7AU23FAUKdgmCluZB+nss=",
4 "type": "GetOwnershipsByAddress"
5 },
6 "signatures": {
7 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFAiX c

3/ot7lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Nyd c
2be3lbgeavLMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXo c
wI/OhzQN2XPZYESHgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB":
"hSNodnUyusffNlv+KNq4605pFvqh91pVspFhTgbmWccE/LKM6h4be c
dpvTgMHoVDezvA7v2XTzmLG5eL3lOeA6I2xJMH32DcV60IPSoh61oV c
HnwPQcQHY039D4y5VSJ0GMQJKIcTEq3fqIdabg7261xUaegHUnXrcy c
ynh9GpMJxk="

↪→

↪→

↪→

↪→

↪→

↪→

↪→

8 }
9 }

Server response:

1 {
2 "data": "[
3 Ownership{
4 id='1ce080e5-8c81-48d1-b732-006fa1cc4e2e',
5 singleUseSeal=SingleUseSeal{
6 assetId='stipula_coin_asd345',
7 amount=RealType{
8 value=1200,
9 decimals=2

10 },
11 lockScript='DUP\nSHA256\nPUSH str

f3hVW1Amltnqe3KvOT00eT7AU23FAUKdgmCluZB+nss=\nEQ c
UAL\nCHECKSIG\nHALT\n'

↪→

↪→

12 },
13 unlockScript='',
14 contractInstanceId=''
15 }
16]",
17 "statusCode": 200,
18 "statusMessage": "Success",
19 "type": "SuccessDataResponse"
20 }

Agreement Request to the server to make the agreement function call:

1 {
2 "message": {
3 "contractId": "622ad60b-ab1f-4c2c-9f64-1307c046b55d",
4 "arguments": [
5 {
6 "argument": {

134APPENDIX A. EXAMPLES OF CONTRACTS AND EXECUTION OF CONTRACTS

7 "first": "real",
8 "second": "cost",
9 "third": "1200 2"

10 }
11 },
12 {
13 "argument": {
14 "first": "time",
15 "second": "rentingTime",
16 "third": "100"
17 }
18 }
19],
20 "parties": {
21 "Borrower": {
22 "address":

"f3hVW1Amltnqe3KvOT00eT7AU23FAUKdgmCluZB+nss=",↪→

23 "publicKey": "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDE c
rzzgD2ZslZxciFAiX3/ot7lrkZDw4148jFZrsDZPE6CVs9xXFS c
HGgy/mFvIFLXhnChO6Nyd2be3lbgeavLMCMVUiTStXr117Km17 c
keWpb3sItkKKsLFBOcIIU8XXowI/OhzQN2XPZYESHgjdQ5vwEj c
2YyueiS7WKP94YWz/pswIDAQAB"

↪→

↪→

↪→

↪→

24 },
25 "Lender": {
26 "address":

"ubL35Am7TimL5R4oMwm2OxgAYA3XT3BeeDE56oxqdLc=",↪→

27 "publicKey": "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo c
/GjVKS+3gAA55+kko41yINdOcCLQMSBQyuTTkKHE1mhu/TgOpi c
vM0wLPsSga8hQMr3+v3aR0IF/vfCRf6SdiXmWx/jflmEXtnT6f c
kGcnV6dGNUpHWXSpwUIDt0N88jfnEqekx4S+KDCKg99sGEeHeT c
65fKS8lB0gjHMt9AOriwIDAQAB"

↪→

↪→

↪→

↪→

28 }
29 },
30 "type": "AgreementCall"
31 },
32 "signatures": {
33 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFAiX c

3/ot7lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Nyd c
2be3lbgeavLMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXo c
wI/OhzQN2XPZYESHgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB":
"o9hrAXSkpskhxRdS+7vWSi85DhAlYlPt7EWUkYFsLOmo8ZluA0MNc c
Lksi2FEFs3f5Gsike0nvrVCKKGVHIQLaBsDr9TgHVBEwNV7IqsvBaT c
uO7GaIndWmaC2T+oVKzzpuO30p5MWx4ukmZ+c3BjZrtS060qVZdfYX c
aa9mByBDPM=",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

A.3. BIKE RENTAL 135

34 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+kko c
41yINdOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3aR c
0IF/vfCRf6SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88 c
jfnEqekx4S+KDCKg99sGEeHeT65fKS8lB0gjHMt9AOriwIDAQAB":
"ITY3VKqPbsLtAuSk5xabu2v9pVTaGyypMxEzxhLv+JOgoHmdkCkPV c
8k3JG4efJR/AdqaZrFvJWg8SGFwylWBKMP0/83GvToRdIBkfHg78v6 c
fOzh+xVRtFH0OhPnPHNksKn9EZwidhJEiNyEKYMfT6VADhaFkjdLCX c
cYqjUUrKzY="

↪→

↪→

↪→

↪→

↪→

↪→

↪→

35 }
36 }

For simplicity, the value for rentingTime is equal to 100, that is, after the Borrower
has deposited its asset, it will take 100 seconds before the Borrower terms of using
the service.

Server response:

1 {
2 "data": "4cc1f3c7-5cb4-4528-b15a-8e5cacf5b18a",
3 "statusCode": 200,
4 "statusMessage": "Success",
5 "type": "SuccessDataResponse"
6 }

The value in the data field indicates the identifier of the created contract instance.

offer call Request to the server to make the offer function call:

1 {
2 "message": {
3 "contractInstanceId":

"4cc1f3c7-5cb4-4528-b15a-8e5cacf5b18a",↪→

4 "functionName": "offer",
5 "arguments": [
6 {
7 "argument": {
8 "first": "real",
9 "second": "z",

10 "third": "100 2"
11 }
12 }
13],
14 "type": "FunctionCall"
15 },
16 "signatures": {
17 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+kko c

41yINdOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3aR c
0IF/vfCRf6SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88 c
jfnEqekx4S+KDCKg99sGEeHeT65fKS8lB0gjHMt9AOriwIDAQAB":
"bJ0xnIhcDlPMmKYx7h8jjX8Q7PaSdqxRg7xq/zTM0vEKqJVDIN0Jc c
T8Qj7jEX5Pwm2YOq+kSwEAxqlPzwoZoQNhe6FPyz6dbj9/LQ0rg79x c
4QD5ZrCawpcbbtJ/U5l1RPGvl06EdHeQc4YFlsIW4yywD1XlKtfJc7 c
IJwes/iKrE="

↪→

↪→

↪→

↪→

↪→

↪→

↪→

136APPENDIX A. EXAMPLES OF CONTRACTS AND EXECUTION OF CONTRACTS

18 }
19 }

Through this function call, the global variable use_code henceforth it will be of
type real (see section 4.8.3).

Server response:

1 {
2 "statusCode": 200,
3 "statusMessage": "Success",
4 "type": "SuccessDataResponse"
5 }

accept call Request to the server to make the accept function call:

1 {
2 "message": {
3 "contractInstanceId":

"4cc1f3c7-5cb4-4528-b15a-8e5cacf5b18a",↪→

4 "functionName": "accept",
5 "arguments": [
6 {
7 "argument": {
8 "first": "asset",
9 "second": "y",

10 "third": {
11 "ownershipId":

"1ce080e5-8c81-48d1-b732-006fa1cc4e2e",↪→

12 "address":
"f3hVW1Amltnqe3KvOT00eT7AU23FAUKdgmCluZB+nss=",↪→

13 "unlockScript": "PUSH str
CJ3CdFnd6QiRoNaxxJN6sEYkmhKsSKi0SP5YXiSGhygZs+ c
EMyE2bPrI+hRL4PSA0vLh0X6PNpDhTaPxx4kc1LEk9su8+ c
6kkDvi3xpLG9bDoPjss+LEPXUjPTcGVB/3jITb8W+GmX1k c
DYhGHKtSuhvxBjTwwbtok4gRDD1BcMX/o=\nPUSH str
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2 c
ZslZxciFAiX3/ot7lrkZDw4148jFZrsDZPE6CVs9xXFSHG c
gy/mFvIFLXhnChO6Nyd2be3lbgeavLMCMVUiTStXr117Km c
17keWpb3sItkKKsLFBOcIIU8XXowI/OhzQN2XPZYESHgjd c
Q5vwEj2YyueiS7WKP94YWz/pswIDAQAB\n"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

14 }
15 }
16 }
17],
18 "type": "FunctionCall"
19 },
20 "signatures": {

A.3. BIKE RENTAL 137

21 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFAiX c
3/ot7lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Nyd c
2be3lbgeavLMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXo c
wI/OhzQN2XPZYESHgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB":
"wL3r61IgwBGau7S7V967ZSA8B0lLiOMi0qai1YGQVFXnCTvL9WDVM c
GTwp7XXAQ77f23Hw5y6Ho5SFUMRRfaTLguIJBx9twRSUfpTP4bh3K4 c
RB2yg32rkOP16G2vIfEirTT+v2wmp1f10pY+dY/QdMzua7EFdQNmL7 c
PhJnA96CpM="

↪→

↪→

↪→

↪→

↪→

↪→

↪→

22 }
23 }

Server response:

1 {
2 "statusCode": 200,
3 "statusMessage": "Success",
4 "type": "SuccessDataResponse"
5 }

Version 1 - end call Request to the server to make the end function call:

1 {
2 "message": {
3 "contractInstanceId":

"4cc1f3c7-5cb4-4528-b15a-8e5cacf5b18a",↪→

4 "functionName": "end",
5 "arguments": [],
6 "type": "FunctionCall"
7 },
8 "signatures": {
9 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFAiX c

3/ot7lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Nyd c
2be3lbgeavLMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXo c
wI/OhzQN2XPZYESHgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB":
"hU6i0eGRNcZB+ZCxeLCPBM31iai412yczQ4/Td+roq9jnBU7agWfu c
OyVl/6fCKdTZcKkxASJs1tCpe4bLlpUHt01lFlGM8n9+sPHXl+1/jX c
MngmmPhuNUPrtsD7PGeFtuC3JJkcqTq3WkyWz6nVdn55bzX6BxleN/ c
I6MPgmDroc="

↪→

↪→

↪→

↪→

↪→

↪→

↪→

10 }
11 }

Server response:

1 {
2 "statusCode": 200,
3 "statusMessage": "Success",
4 "type": "SuccessDataResponse"
5 }

138APPENDIX A. EXAMPLES OF CONTRACTS AND EXECUTION OF CONTRACTS

Version 1 - Trigger of the event and non-execution of the obligation This
situation occurs when the customer, who has used the service, has returned the bicycle
before the end of use of the service.

From the server logs it can be seen that the event was triggered and the code
encoding the obligation was not executed:

1 EventTrigger: A new scheduled request has been triggered =>
EventTriggerSchedulingRequest{↪→

2 request=CreateEventRequest{
3 obligationFunctionName='obligation_1',
4 time=1680036610
5 },
6 contractId='622ad60b-ab1f-4c2c-9f64-1307c046b55d',
7 contractInstanceId='4cc1f3c7-5cb4-4528-b15a-8e5cacf5b18a'
8 }
9 EventTrigger: Enqueuing the request...

10 EventTrigger: Notifying the virtual machine...
11 EventTrigger: Virtual machine notified
12 EventTrigger: Removing the request from EventTriggerHandler...
13 VirtualMachine: Ready to dequeue a value...
14 VirtualMachine: Request received => Pair{
15 first=null,
16 second=EventTriggerSchedulingRequest{
17 request=CreateEventRequest{
18 obligationFunctionName='obligation_1',
19 time=1680036610
20 },
21 contractId='622ad60b-ab1f-4c2c-9f64-1307c046b55d',
22 contractInstanceId='4cc1f3c7-5cb4-4528-b15a-8e5cacf5b18a'
23 }
24 }
25 VirtualMachine: Just received a trigger request
26 VirtualMachine: This function cannot be called in the current

state↪→

27 VirtualMachine: Obligation function name => obligation_1
28 VirtualMachine: Current state => DfaState{name='End'}
29 VirtualMachine: Next state => null
30 VirtualMachine: Ready to dequeue a value...
31 VirtualMachine: I'm waiting...

From line 20 to line 22 it can be seen that the obligation has not been performed
because the current state of the contract instance is @End. Instead, the state in which
the obligation should be executed is @Using. For this reason it was not possible to
fulfill the obligation.

A.3. BIKE RENTAL 139

Version 2 - Event trigger and execution of the obligation This situation
occurs when the customer, who has used the service, has not returned the bicycle
before the end of use of the service.

From the server logs it can be seen that the event was triggered, the code encoding
the obligation was loaded and executed:

1 EventTrigger: A new scheduled request has been triggered =>
EventTriggerSchedulingRequest{↪→

2 request=CreateEventRequest{
3 obligationFunctionName='obligation_1',
4 time=1680037664
5 },
6 contractId='51d909ae-45f8-47d2-90de-40699c8a8a3d',
7 contractInstanceId='1a7c6469-b4a3-4c67-8a43-ca60514345f6'
8 }
9 EventTrigger: Enqueuing the request...

10 EventTrigger: Notifying the virtual machine...
11 EventTrigger: Virtual machine notified
12 EventTrigger: Removing the request from EventTriggerHandler...
13 VirtualMachine: Ready to dequeue a value...
14 VirtualMachine: Request received => Pair{
15 first=null,
16 second=EventTriggerSchedulingRequest{
17 request=CreateEventRequest{
18 obligationFunctionName='obligation_1',
19 time=1680037664
20 },
21 contractId='51d909ae-45f8-47d2-90de-40699c8a8a3d',
22 contractInstanceId='1a7c6469-b4a3-4c67-8a43-ca60514345f6'
23 }
24 }
25 VirtualMachine: Just received a trigger request
26 loadObligationFunction: Loading the obligation function...
27 loadObligationFunction: Obligation function loaded
28 VirtualMachine: Function
29 start:
30 PUSH real 100 2
31 GLOAD wallet
32 GLOAD Lender
33 WITHDRAW wallet
34 end:
35 HALT
36

37 loadBytecode: Loading the bytecode...
38 loadBytecode: Bytecode loaded
39

40 VirtualMachine: loadBytecode
41 start:
42 PUSH real 100 2
43 GLOAD wallet

140APPENDIX A. EXAMPLES OF CONTRACTS AND EXECUTION OF CONTRACTS

44 GLOAD Lender
45 WITHDRAW wallet
46 end:
47 HALT
48

49 LegalContractVirtualMachine: execute => Final state of the
execution below↪→

50 LegalContractVirtualMachine: execute => The stack is empty
51

52 LegalContractVirtualMachine: execute => GlobalSpace
53 rentingTime: 100, changed: false
54 wallet: 11.00 stipula_coin_asd345, changed: true
55 cost: 12.00, changed: false
56 Borrower: f3hVW1Amltnqe3KvOT00eT7AU23FAUKdgmCluZB+nss=

MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFAiX3 c
/ot7lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Nyd2be3l c
bgeavLMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXowI/OhzQN2 c
XPZYESHgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB, changed:
false

↪→

↪→

↪→

↪→

↪→

57 use_code: 1.00, changed: false
58 Lender: ubL35Am7TimL5R4oMwm2OxgAYA3XT3BeeDE56oxqdLc=

MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+kko4 c
1yINdOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3aR0IF/v c
fCRf6SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88jfnEqekx4 c
S+KDCKg99sGEeHeT65fKS8lB0gjHMt9AOriwIDAQAB, changed:
false

↪→

↪→

↪→

↪→

↪→

59

60 LegalContractVirtualMachine: execute => The argument space is
empty↪→

61

62 LegalContractVirtualMachine: execute => The data space is empty
63

64 Global state of the execution
65 running -> false
66 executionPointer -> 6
67 executionPointer (with offset) -> 67
68 length of the program -> 7
69 length of the program (with offset) -> 68
70 VirtualMachine: Updating the global store...
71 VirtualMachine: Global store updated
72 VirtualMachine: Ready to dequeue a value...
73 VirtualMachine: I'm waiting...

In this case, however, it was possible to execute the code that encodes the obligation
because the current state of the contract instance is @Using and coincides with the
state in which the obligation is to be performed.

A.3. BIKE RENTAL 141

Version 2 - end call Here we show the example in which the user tries to call the
end function, to notify the company of the end of using the service. However, the call
to this function took place after the maximum time established by the contract, and
therefore the penalty foreseen by the contract was activated.

Request to the server to make the end function call:

1 {
2 "message": {
3 "contractInstanceId":

"1a7c6469-b4a3-4c67-8a43-ca60514345f6",↪→

4 "functionName": "end",
5 "arguments": [],
6 "type": "FunctionCall"
7 },
8 "signatures": {
9 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFAiX c

3/ot7lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Nyd c
2be3lbgeavLMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXo c
wI/OhzQN2XPZYESHgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB":
"Ow8gS8d5SChD3E5CgtsnFHTRWskdeWW2IsTLQJk92mS40LfVtPcxu c
DiIbzL7xWwtUTMFxza+/TSxU+rMsVvMqQLLyUQ4e6UrLO25+Nr7p5x c
013JGIaxc18G5kqEuS4iEyiqN1479E4ElLROE+VpI5DBAKMegw0h9m c
5cbtHFN/fA="

↪→

↪→

↪→

↪→

↪→

↪→

↪→

10 }
11 }

Server response:

1 {
2 "data": "This function cannot be called in the current

state",↪→

3 "statusCode": 404,
4 "statusMessage": "Success",
5 "type": "SuccessDataResponse"
6 }

Single-use-seals by Lender Server request to get Lender’s single-use-seals:

1 {
2 "message": {
3 "address": "ubL35Am7TimL5R4oMwm2OxgAYA3XT3BeeDE56oxqdLc=",
4 "type": "GetOwnershipsByAddress"
5 },
6 "signatures": {
7 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCo/GjVKS+3gAA55+kko c

41yINdOcCLQMSBQyuTTkKHE1mhu/TgOpivM0wLPsSga8hQMr3+v3aR c
0IF/vfCRf6SdiXmWx/jflmEXtnT6fkGcnV6dGNUpHWXSpwUIDt0N88 c
jfnEqekx4S+KDCKg99sGEeHeT65fKS8lB0gjHMt9AOriwIDAQAB":
"MomZTc63z7PfH35c1dL4tjXebcsW+0Zxl0nP1NQdcUFws98DX+bMW c
I7L0C6IO5lxvkYve4zdio1Crn97FXvngK4aVfiEZEnHOJ0tstq7uQY c
GErM3DDAABqPq8HH5yoKnLST2LWpO0oD8G/VXvIE6qMT5D34W1Ci0q c
4uh+7y3EcY="

↪→

↪→

↪→

↪→

↪→

↪→

↪→

142APPENDIX A. EXAMPLES OF CONTRACTS AND EXECUTION OF CONTRACTS

8 }
9 }

Server response:

1 {
2 "data": "[
3 Ownership{
4 id='205cd89a-c078-4f1a-8dd7-dae683c4f3a8',
5 singleUseSeal=SingleUseSeal{
6 assetId='stipula_coin_asd345',
7 amount=RealType{
8 value=100,
9 decimals=2

10 },
11 lockScript='DUP\nSHA256\nPUSH str

ubL35Am7TimL5R4oMwm2OxgAYA3XT3BeeDE56oxqdLc=\nEQ c
UAL\nCHECKSIG\nHALT\n'

↪→

↪→

12 },
13 unlockScript='',
14 contractInstanceId=''
15 }
16]",
17 "statusCode": 200,
18 "statusMessage": "Success",
19 "type": "SuccessDataResponse"
20 }

It is possible to notice that the Lender has received a new single-use-seal from the
agreement instance.

Single-use-seals by Borrower Server request to get Borrower’s single-use-seals:

1 {
2 "message": {
3 "address": "f3hVW1Amltnqe3KvOT00eT7AU23FAUKdgmCluZB+nss=",
4 "type": "GetOwnershipsByAddress"
5 },
6 "signatures": {
7 "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2ZslZxciFAiX c

3/ot7lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/mFvIFLXhnChO6Nyd c
2be3lbgeavLMCMVUiTStXr117Km17keWpb3sItkKKsLFBOcIIU8XXo c
wI/OhzQN2XPZYESHgjdQ5vwEj2YyueiS7WKP94YWz/pswIDAQAB":
"hSNodnUyusffNlv+KNq4605pFvqh91pVspFhTgbmWccE/LKM6h4be c
dpvTgMHoVDezvA7v2XTzmLG5eL3lOeA6I2xJMH32DcV60IPSoh61oV c
HnwPQcQHY039D4y5VSJ0GMQJKIcTEq3fqIdabg7261xUaegHUnXrcy c
ynh9GpMJxk="

↪→

↪→

↪→

↪→

↪→

↪→

↪→

8 }
9 }

A.3. BIKE RENTAL 143

Server response:

1 {
2 "data": "[
3 Ownership{
4 id='1ce080e5-8c81-48d1-b732-006fa1cc4e2e',
5 singleUseSeal=SingleUseSeal{
6 assetId='stipula_coin_asd345',
7 amount=RealType{
8 value=1200,
9 decimals=2

10 },
11 lockScript='DUP\nSHA256\nPUSH str

f3hVW1Amltnqe3KvOT00eT7AU23FAUKdgmCluZB+nss=\nEQ c
UAL\nCHECKSIG\nHALT\n'

↪→

↪→

12 },
13 unlockScript='PUSH str CJ3CdFnd6QiRoNaxxJN6sEYkmhKsSKi c

0SP5YXiSGhygZs+EMyE2bPrI+hRL4PSA0vLh0X6PNpDhTaPxx4 c
kc1LEk9su8+6kkDvi3xpLG9bDoPjss+LEPXUjPTcGVB/3jITb8 c
W+GmX1kDYhGHKtSuhvxBjTwwbtok4gRDD1BcMX/o=\nPUSH
str MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDErzzgD2 c
ZslZxciFAiX3/ot7lrkZDw4148jFZrsDZPE6CVs9xXFSHGgy/m c
FvIFLXhnChO6Nyd2be3lbgeavLMCMVUiTStXr117Km17keWpb3 c
sItkKKsLFBOcIIU8XXowI/OhzQN2XPZYESHgjdQ5vwEj2Yyuei c
S7WKP94YWz/pswIDAQAB\n',

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

14 contractInstanceId='4cc1f3c7-5cb4-4528-b15a-8e5cacf5b1 c
8a'↪→

15 }
16]",
17 "statusCode": 200,
18 "statusMessage": "Error",
19 "type": "ErrorDataResponse"
20 }

It can be seen that the single-use-seal has been spent and is demonstrated by the
unlockScript field.

Appendix B

Grammar

B.1 Lexer rules

1 SEMIC : ';' ;
2 COLON : ':' ;
3 COMMA : ',' ;
4 DOT : '.' ;
5 EQ : '==' ;
6 NEQ : '!=' ;
7 IMPL : '==>' ;
8 ASM : '=' ;
9 ASSETUP : '-o' ;

10 FIELDUP : '->' ;
11 PLUS : '+' ;
12 MINUS : '-' ;
13 TIMES : '*' ;
14 DIV : '/' ;
15 AT : '@' ;
16 TRUE : 'true' ;
17 FALSE : 'false' ;
18 LPAR : '(' ;
19 RPAR : ')' ;
20 SLPAR : '[' ;
21 SRPAR : ']' ;
22 CLPAR : '{' ;
23 CRPAR : '}' ;
24 LEQ : '<=';
25 GEQ : '>=';
26 LE : '<';
27 GE : '>';
28 OR : '||';
29 AND : '&&';
30 NOT : '!';
31 EMPTY : '_' ;
32 NOW : 'now' ;
33 TRIGGER : '>>';

145

146 APPENDIX B. GRAMMAR

34 IF : 'if' ;
35 ELSEIF : 'else if' ;
36 ELSE : 'else' ;
37 STIPULA : 'stipula';
38 ASSET : 'asset' ;
39 FIELD : 'field' ;
40 AGREEMENT : 'agreement';
41 INTEGER : 'int' ;
42 DOUBLE : 'real' ;
43 BOOLEAN : 'bool' ;
44 STRING : 'string' ;
45 PARTY : 'party' ;
46 INIT : 'init' ;
47

48 RAWSTRING : '\'' ~('\'')+ '\'' | '"' ~('"')+ '"' ;
49

50 INT : '0' | [1-9] [0-9]* ;
51

52 REAL : [0-9]* '.' [0-9]+ ;
53

54 WS
55 : [\t\r\n] -> skip
56 ;
57

58 //IDs
59 fragment CHAR : 'a'..'z' |'A'..'Z' ;
60 ID : CHAR (CHAR | INT | EMPTY)* ;
61

62 OTHER
63 : .
64 ;
65

66 //ESCAPED SEQUENCES
67 LINECOMENTS : '//' (~('\n'|'\r'))* -> skip;
68 BLOCKCOMENTS : '/*'(

~('/'|'*')|'/'~'*'|'*'~'/'|BLOCKCOMENTS)* '*/' -> skip;↪→

B.2 Parser rules
1 prog : STIPULA contract_id = ID CLPAR (assetdecl)?

(fielddecl)? INIT init_state = ID agreement (fun)+ CRPAR ;↪→

2

3 agreement : (AGREEMENT LPAR party (COMMA party)* RPAR LPAR
vardec (COMMA vardec)* RPAR CLPAR (assign)+ CRPAR IMPL AT
state);

↪→

↪→

4

5 assetdecl : ASSET idAsset+=ID ':' assetId+=ID (','
idAsset+=ID ':' assetId+=ID)* ;↪→

6

7 fielddecl : FIELD idField+=ID (',' idField+=ID)* ;

B.2. PARSER RULES 147

8

9 fun : ((AT state)* party (COMMA party)* COLON funId=ID LPAR
(vardec (COMMA vardec)*)? RPAR SLPAR (assetdec (COMMA
assetdec)*)? SRPAR (LPAR prec RPAR)? CLPAR (stat)+ SEMIC
(events)+ CRPAR IMPL AT state) ;

↪→

↪→

↪→

10

11 assign : (party (COMMA party)* COLON vardec (COMMA vardec)*);
12

13 dec : (ASSET | FIELD) ID ;
14

15 type : INTEGER | DOUBLE | BOOLEAN | STRING ;
16

17 state : ID;
18

19 party : ID;
20

21 vardec : ID ;
22

23 assetdec : ID ;
24

25 varasm : vardec ASM expr ;
26

27 stat : EMPTY
28 | left=value operator=ASSETUP right=ID (COMMA

rightPlus=ID)?↪→

29 | left=value operator=FIELDUP right=(ID | EMPTY)
30 | ifelse
31

32 ;
33

34 ifelse : (IF LPAR cond=expr RPAR CLPAR ifBranch+=stat
(ifBranch+=stat)* CRPAR (ELSEIF condElseIf+=expr CLPAR
elseIfBranch+=stat (elseIfBranch+=stat)* CRPAR)* (ELSE
CLPAR elseBranch+=stat (elseBranch+=stat)* CRPAR)?);

↪→

↪→

↪→

35

36 events : EMPTY
37 | (expr TRIGGER AT ID CLPAR stat+ CRPAR IMPL AT ID)
38 ;
39

40 prec : expr
41 ;
42

43 expr : ('-')? left=term (operator=(PLUS | MINUS | OR)
right=expr)?↪→

44 ;
45

46 term : left=factor (operator=(TIMES | DIV | AND)
right=term)?↪→

47 ;
48

148 APPENDIX B. GRAMMAR

49 factor : left=value (operator = (EQ | LE | GE | LEQ | GEQ |
NEQ) right=value)?↪→

50 ;
51

52 value : number
53 | ID
54 | NOW
55 | LPAR expr RPAR
56 | RAWSTRING
57 | EMPTY
58 | (TRUE | FALSE)
59 ;
60

61 real : number DOT number ;
62

63 number : INT | REAL ;

Appendix C

Pipelines

C.1 run-tests.yml

1 name: Tests
2

3 on:
4 push:
5 branches: [master, test]
6 pull_request:
7 types:
8 - closed
9 branches:

10 - master
11

12 jobs:
13 run-tests:
14 runs-on: ubuntu-latest
15

16 steps:
17 - uses: actions/checkout@v3
18 - name: Set up JDK 8
19 uses: actions/setup-java@v3
20 with:
21 java-version: '8'
22 distribution: 'corretto'
23 - name: Validate Gradle wrapper
24 uses: gradle/wrapper-validation-action@e6e38bacfdf1a33 c

7459f332974bb2327a31aaf4b↪→

25 - name: Build with Gradle
26 uses: gradle/gradle-build-action@67421db6bd0bf253fb4bd c

25b31ebb98943c375e1↪→

27 with:
28 arguments: build
29 version: 7.6.0-jdk8

149

150 APPENDIX C. PIPELINES

C.2 create-and-push-docker-image.yml
1 name: Create and publish a Docker image
2

3 on:
4 push:
5 tags: [v*]
6

7 env:
8 REGISTRY: ghcr.io
9 IMAGE_NAME: ${{ github.repository }}

10

11 jobs:
12 build-and-push-image:
13 runs-on: ubuntu-latest
14 permissions:
15 contents: read
16 packages: write
17

18 steps:
19 - name: Checkout repository
20 uses: actions/checkout@v3
21

22 - name: Log in to the Container registry
23 uses: docker/login-action@f054a8b539a109f9f41c372932f1 c

ae047eff08c9↪→

24 with:
25 registry: ${{ env.REGISTRY }}
26 username: ${{ github.actor }}
27 password: ${{ secrets.GITHUB_TOKEN }}
28

29 - name: Extract metadata (tags, labels) for Docker
30 id: meta
31 uses: docker/metadata-action@98669ae865ea3cffbcbaa878c c

f57c20bbf1c6c38↪→

32 with:
33 images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
34

35 - name: Build and push Docker image
36 uses: docker/build-push-action@ad44023a93711e3deb33750 c

8980b4b5e9bcdc5dc↪→

37 with:
38 context: .
39 push: true
40 tags: ${{ steps.meta.outputs.tags }}
41 labels: ${{ steps.meta.outputs.labels }}

Appendix D

Gradle

D.1 build.gradle

1 plugins {
2 id 'antlr'
3 id 'java'
4 }
5

6 group 'org.example'
7 version '1.0-SNAPSHOT'
8

9 repositories {
10 mavenCentral()
11 }
12

13 dependencies {
14 implementation 'com.google.code.gson:gson:2.10.1'
15 implementation 'org.iq80.leveldb:leveldb-api:0.9'
16 implementation 'org.iq80.leveldb:leveldb:0.9'
17

18 implementation 'org.antlr:antlr4-runtime:4.10'
19 antlr 'org.antlr:antlr4:4.10'
20

21 testImplementation
'org.junit.jupiter:junit-jupiter-api:5.8.1'↪→

22 testRuntimeOnly
'org.junit.jupiter:junit-jupiter-engine:5.8.1'↪→

23 }
24

25 test {
26 useJUnitPlatform()
27 }
28

29 jar {
30 manifest {
31 attributes "Main-Class": "Main"

151

152 APPENDIX D. GRADLE

32 }
33

34 from {
35 configurations.runtimeClasspath.collect {

it.isDirectory() ? it : zipTree(it) }↪→

36 }
37 }
38

39 generateGrammarSource {
40 maxHeapSize = "64m"
41 arguments += ["-visitor"]
42 }

Appendix E

Docker

E.1 Dockerfile
1 # Setup Gradle
2 FROM gradle:7.6.0-jdk8 AS TEMP_BUILD_IMAGE
3 ENV APP_HOME=/usr/app
4 WORKDIR $APP_HOME
5 COPY build.gradle settings.gradle $APP_HOME
6

7 COPY gradle $APP_HOME/gradle
8 COPY --chown=gradle:gradle . /home/gradle/src
9 USER root

10 RUN chown -R gradle /home/gradle/src
11

12 RUN gradle build || return 0
13 COPY . .
14 RUN gradle clean build
15

16 # Setup Java
17 FROM amazoncorretto:8
18 ENV ARTIFACT_NAME=stipula-node-1.0-SNAPSHOT.jar
19 ENV APP_HOME=/usr/app
20

21 WORKDIR $APP_HOME
22 COPY --from=TEMP_BUILD_IMAGE

$APP_HOME/build/libs/$ARTIFACT_NAME .↪→

23

24 # Run
25 EXPOSE 8080
26 ENTRYPOINT exec java -jar ${ARTIFACT_NAME}

153

154 APPENDIX E. DOCKER

E.2 docker-compose.yml
1 version: "3.3"
2 services:
3 node:
4 container_name: "stipula-node"
5 image: stipula-node:v0.4.2
6 ports:
7 - 127.0.0.1:8080:8080
8 - 127.0.0.1:61000:61000
9 volumes:

10 - stipula-storage:/usr/app/storage/
11 environment:
12 - SEED=no
13

14 volumes:
15 stipula-storage:

If you don’t want to manually build the Docker image, you can replace line 5 with
image: "ghcr.io/federicozanardo/stipula-node:v0.4.2", this will download a
specific image from a specific GitHub page (Zanardo, 2023a).

Bibliography

References
A. Das, S. Balzer, J. Hoffmann, F. Pfenning and I. Santurkar (2021). Resource-Aware

Session Types for Digital Contracts. 2021 2021 IEEE 34th Computer Security
Foundations Symposium (CSF), IEEE Computer Society, 111–126. url: https:
//doi.org/10.1109/CSF51468.2021.00004.

Antonopoulos, Andreas M. (2017).Mastering Bitcoin. Programming the open blockchain.
Second Edition. O’Reilly. Chap. 6,10, pp. 131–138, 215–237.

David Siegel (2016). Understanding the dao attack. First Monday 21(12). url: doi:
10.5210/fm.v21i12.7113.

Franklin Schrans, Susan Eisenbach and Sophia Drossopoulou (2018). Writing Safe Smart
Contracts in Flint. Conference Companion of the 2nd International Conference on
Art, Science, and Engineering of Programming, Programming’18 Companion, ACM,
218–219. url: https://doi.org/10.1145/3191697.3213790.

Lawrence Lessig (1999). Code and Other Laws of Cyberspace. Basic Books, Inc.

Primavera De Filippi and Samer Hassan (2016). Blockchain technology as a regulatory
technology: From code is law to law is code. url: https://top-forex-brokers.
com/%202021/10/07/understanding-the-dao-attack/.

Sam Blackshear and et al. (2021). Move: A Language With Programmable Resources.
url: https://developers.diem.com/papers/diem-move-a-language-with-
programmable-resources/2020-04-09.pdf.

Shrutarshi Basu, Anshuman Mohan, James Grimmelmann and Nate Foster (2022).
Legal Calculi. ProLaLa Programming Languages and the Law. url: https://
popl22.sigplan.org/details/prolala-2022-papers/6/Legal-Calculi.

Silvia Crafa (2022). From Legal Contracts to Legal Calculi: the code-driven normativity.
Proc. of Workshop EXPRESS/SOS 2022 368 EPTCS, 23–42. url: doi.org/10.
4204/EPTCS.368.2.

Silvia Crafa, Cosimo Laneve and Giovanni Sartor (2021). Pacta sunt servanda: legal
contracts in Stipula. arXiv. url: https://arxiv.org/abs/2110.11069.

— (2022). Stipula: a domain specific language for legal contracts. Technical Report,
ProLaLa 2022 ProLaLa Programming Languages and the Law. url: https://
popl22.sigplan.org/details/prolala-2022-papers/6/Legal-Calculi.

155

https://doi.org/10.1109/CSF51468.2021.00004
https://doi.org/10.1109/CSF51468.2021.00004
doi:10.5210/fm.v21i12.7113
doi:10.5210/fm.v21i12.7113
https://doi.org/10.1145/3191697.3213790
https://top-forex-brokers.com/%202021/10/07/understanding-the-dao-attack/
https://top-forex-brokers.com/%202021/10/07/understanding-the-dao-attack/
https://developers.diem.com/papers/diem-move-a-language-with-programmable-resources/2020-04-09.pdf
https://developers.diem.com/papers/diem-move-a-language-with-programmable-resources/2020-04-09.pdf
https://popl22.sigplan.org/details/prolala-2022-papers/6/Legal-Calculi
https://popl22.sigplan.org/details/prolala-2022-papers/6/Legal-Calculi
doi.org/10.4204/EPTCS.368.2
doi.org/10.4204/EPTCS.368.2
https://arxiv.org/abs/2110.11069
https://popl22.sigplan.org/details/prolala-2022-papers/6/Legal-Calculi
https://popl22.sigplan.org/details/prolala-2022-papers/6/Legal-Calculi

156 BIBLIOGRAPHY

Vimal Dwivedi, Vishwajeet Pattanaik, Vipin Deval, Abhishek Dixit, Alex Norta and
Dirk Draheim (2021). Legally Enforceable Smart-Contract Languages: A Systematic
Literature Review. ACM Comput. url: https://doi.org/10.1145/3453475.

https://doi.org/10.1145/3453475

Sitography

References
Adam Back (2002). Hashcash - a denial of service counter-measure. url: https:

//www.hashcash.org/papers/hashcash.pdf.

Akoma Ntoso (2018). Akoma Ntoso XML for parliamentary, legislative and judiciary
documents. url: http://www.%20akomantoso.org/.

ANTLR v4.10. ANTLR official site. url: https://github.com/antlr/website-
antlr4/blob/gh-pages/download/antlr-4.10-complete.jar.

ANTLR. ANother Tool for Language Recognition. ANTLR official site. url: https:
//www.antlr.org/.

Arbitrum. Arbitrum official site. url: https://arbitrum.io/.

Arbitrum fees. Arbitrum official site. url: https://developer.arbitrum.io/arbos/
gas.

Bitcoin halving explained. Coindesk official site. url: https://www.coindesk.com/
learn/bitcoin-halving-explained/.

Bitcoin mining and halving. Cointelegraph official site. url: https://cointelegraph.
com/learn/bitcoin-halving-how-does-the-halving-cycle-work-and-why-
does-it-matter.

Catala in action (2022). Language site. url: https://catala-lang.org/.

Cracking the Code (2020). Cracking the Code: Rulemaking for humans and machines.
url: https://oecd-opsi.org/publications/cracking-the-code/.

Docker: Accelerated, Containerized Application Development. Docker official site. url:
https://www.docker.com/.

GitHub. GitHub official site. url: https://github.com/.

IntelliJ IDEA. IntelliJ IDEA official site. url: https://www.jetbrains.com/idea/.

Java. Java official site. url: https://www.java.com/.

LevelDB Official Repository. Official GitHub repository. url: https://github.com/
google/leveldb.

Lightning Network. url: https://lightning.network/.

Nick Szabo (1997). Formalizing and Securing Relationships on Public Networks. url:
https://bitcoinstan.io/prehistory/doc/1997_2.pdf.

157

https://www.hashcash.org/papers/hashcash.pdf
https://www.hashcash.org/papers/hashcash.pdf
http://www.%20akomantoso.org/
https://github.com/antlr/website-antlr4/blob/gh-pages/download/antlr-4.10-complete.jar
https://github.com/antlr/website-antlr4/blob/gh-pages/download/antlr-4.10-complete.jar
https://www.antlr.org/
https://www.antlr.org/
https://arbitrum.io/
https://developer.arbitrum.io/arbos/gas
https://developer.arbitrum.io/arbos/gas
https://www.coindesk.com/learn/bitcoin-halving-explained/
https://www.coindesk.com/learn/bitcoin-halving-explained/
https://cointelegraph.com/learn/bitcoin-halving-how-does-the-halving-cycle-work-and-why-does-it-matter
https://cointelegraph.com/learn/bitcoin-halving-how-does-the-halving-cycle-work-and-why-does-it-matter
https://cointelegraph.com/learn/bitcoin-halving-how-does-the-halving-cycle-work-and-why-does-it-matter
https://catala-lang.org/
https://oecd-opsi.org/publications/cracking-the-code/
https://www.docker.com/
https://github.com/
https://www.jetbrains.com/idea/
https://www.java.com/
https://github.com/google/leveldb
https://github.com/google/leveldb
https://lightning.network/
https://bitcoinstan.io/prehistory/doc/1997_2.pdf

158 SITOGRAPHY

Obsidian: A safer blockchain programming language (2018). Official Obsidian site. url:
http://obsidian-lang.com/.

Optimism. Optimism official site. url: https://www.optimism.io/.

Optimism fees. Optimism official site. url: https://help.optimism.io/hc/en-us/
articles/4411895794715-How-do-transaction-fees-on-Optimism-work-.

Plasma chains. url: https : / / ethereum . org / en / developers / docs / scaling /
plasma/.

Polygon Technology. url: https://polygon.technology/.

Silvia Crafa and Cosimo Laneve (2022). Programming legal contracts: A beginners guide
to Stipula. url: https://cs.unibo.it/~laneve/papers/beginStipula.pdf.

Silvia Crafa, Cosimo Laneve and Adele Veschetti (2022a). Stipula Prototype. GitHub
Repository. url: https://github.com/stipula-language.

— (2022b). Stipula Prototype. GitHub Repository. url: https : / / github . com /
stipula-language/stipula/blob/master/Stipula-LAN/Stipula.g4.

— (2022c). Stipula Prototype. GitHub Repository. url: https : / / github . com /
stipula-language/stipula/blob/6e98b56bb10403eb5e23ec8a8ef832dee1ff51d8/
syntax.pdf.

Solidity Documentation: State Machine Common Pattern. Official Solidity site. url:
https://docs.soliditylang.org/en/v0.8.0/common-patterns.html#state-
machine.

The CoHuBiCoL research project (2019). url: https://www.cohubicol.com/about.

The European ODR platform. Official site. url: https://ec.europa.eu/consumers/
odr.

Zanardo, Federico (2023a). Stipula available packages. Official GitHub repository.
url: https://github.com/federicozanardo/stipula-node/pkgs/container/
stipula-node.

— (2023b). Stipula graph dependencies. Official GitHub repository. url: https://
github.com/federicozanardo/stipula-node/tree/master/graphs.

— (2023c). Stipula implementation. Official GitHub repository. url: https://github.
com/federicozanardo/stipula-node.

— (2023d). Stipula issues section. Official GitHub repository. url: https://github.
com/federicozanardo/stipula-node/issues.

— (2023e). Stipula last release. Official GitHub repository. url: https://github.
com/federicozanardo/stipula-node/releases/tag/v0.4.2.

— (2023f). Stipula milestones section. Official GitHub repository. url: https://
github.com/federicozanardo/stipula-node/milestones.

— (2023g). Stipula packages page. Official GitHub repository. url: https://github.
com/federicozanardo?tab=packages&repo_name=stipula-node.

— (2023h). Stipula releases. Official GitHub repository. url: https://github.com/
federicozanardo/stipula-node/releases.

http://obsidian-lang.com/
https://www.optimism.io/
https://help.optimism.io/hc/en-us/articles/4411895794715-How-do-transaction-fees-on-Optimism-work-
https://help.optimism.io/hc/en-us/articles/4411895794715-How-do-transaction-fees-on-Optimism-work-
https://ethereum.org/en/developers/docs/scaling/plasma/
https://ethereum.org/en/developers/docs/scaling/plasma/
https://polygon.technology/
https://cs.unibo.it/~laneve/papers/beginStipula.pdf
https://github.com/stipula-language
https://github.com/stipula-language/stipula/blob/master/Stipula-LAN/Stipula.g4
https://github.com/stipula-language/stipula/blob/master/Stipula-LAN/Stipula.g4
https://github.com/stipula-language/stipula/blob/6e98b56bb10403eb5e23ec8a8ef832dee1ff51d8/syntax.pdf
https://github.com/stipula-language/stipula/blob/6e98b56bb10403eb5e23ec8a8ef832dee1ff51d8/syntax.pdf
https://github.com/stipula-language/stipula/blob/6e98b56bb10403eb5e23ec8a8ef832dee1ff51d8/syntax.pdf
https://docs.soliditylang.org/en/v0.8.0/common-patterns.html#state-machine
https://docs.soliditylang.org/en/v0.8.0/common-patterns.html#state-machine
https://www.cohubicol.com/about
https://ec.europa.eu/consumers/odr
https://ec.europa.eu/consumers/odr
https://github.com/federicozanardo/stipula-node/pkgs/container/stipula-node
https://github.com/federicozanardo/stipula-node/pkgs/container/stipula-node
https://github.com/federicozanardo/stipula-node/tree/master/graphs
https://github.com/federicozanardo/stipula-node/tree/master/graphs
https://github.com/federicozanardo/stipula-node
https://github.com/federicozanardo/stipula-node
https://github.com/federicozanardo/stipula-node/issues
https://github.com/federicozanardo/stipula-node/issues
https://github.com/federicozanardo/stipula-node/releases/tag/v0.4.2
https://github.com/federicozanardo/stipula-node/releases/tag/v0.4.2
https://github.com/federicozanardo/stipula-node/milestones
https://github.com/federicozanardo/stipula-node/milestones
https://github.com/federicozanardo?tab=packages&repo_name=stipula-node
https://github.com/federicozanardo?tab=packages&repo_name=stipula-node
https://github.com/federicozanardo/stipula-node/releases
https://github.com/federicozanardo/stipula-node/releases

	Sommario
	Ringraziamenti
	Ringraziamenti
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Aim of the thesis
	1.3 Personal motivations
	1.4 Document structure

	2 Stipula
	2.1 Context
	2.2 Legal calculi
	2.3 Code-driven normativity
	2.4 Building blocks of Stipula
	2.4.1 Examples of contracts in Stipula
	2.4.2 Agreement
	2.4.3 Permissions and prohibitions
	2.4.4 Assets
	2.4.5 Obligations
	2.4.6 Third party enforcements

	3 Analysis and design of Stipula platform
	3.1 Blockchain layers
	3.2 Basic ideas
	3.3 Architecture
	3.3.1 Message Service
	3.3.2 Compiler
	3.3.3 Virtual Machine
	3.3.4 Consensus
	3.3.5 Storage
	3.3.6 Commitment
	3.3.7 Communication protocols

	3.4 Interaction between modules
	3.5 Asset management
	3.5.1 Definition of assets
	3.5.2 Transfer of assets

	4 Implementation
	4.1 Introduction to basic concepts
	4.1.1 Contracts and contract instances
	4.1.2 Asset

	4.2 Libraries
	4.2.1 Crypto
	4.2.2 Data structures

	4.3 Message Service
	4.3.1 MessageServer
	4.3.2 ClientHandler
	4.3.3 ClientConnection
	4.3.4 Messages
	4.3.5 Interaction with Storage

	4.4 Compiler
	4.4.1 Grammar, lexer e parser
	4.4.2 Generation of the bytecode

	4.5 Stipula bytecode
	4.5.1 Types
	4.5.2 Instructions of the bytecode language
	4.5.3 Function types

	4.6 Virtual Machine
	4.6.1 Requests queue
	4.6.2 Legal Contract Virtual Machine
	4.6.3 Script Virtual Machine
	4.6.4 Description of the execution flow of a function of a contract
	4.6.5 Pay-to-Party
	4.6.6 Obligations

	4.7 Storage
	4.7.1 LevelDB
	4.7.2 Structure

	4.8 Examples
	4.8.1 Asset swap
	4.8.2 Asset swap with scheduled event
	4.8.3 Bike rental

	4.9 Project management
	4.9.1 Pipeline
	4.9.2 Issues, milestones ans releases
	4.9.3 Installation

	5 Missing features and future developments
	5.1 Missing features
	5.1.1 Language features not implemented in the current version
	5.1.2 Single-use-seals merge
	5.1.3 Creation of assets and their distribution

	5.2 Optimizations
	5.3 Limits of the architecture
	5.3.1 Computational and memory resources required

	5.4 Current version security issues
	5.5 Future improvements
	5.5.1 Implementation of the consensus module and communication protocols
	5.5.2 Implementation of the commitment module
	5.5.3 Fees for performance of a contract
	5.5.4 Script language extension
	5.5.5 Implementation of additional software

	6 Conclusion
	6.1 Design considerations
	6.1.1 Virtual Machine and Stipula bytecode
	6.1.2 Asset Management and Script Language
	6.1.3 Distributed context and consent

	6.2 Implementation consideration
	6.2.1 Structure of the project

	A Examples of contracts and execution of contracts
	A.1 Asset swap
	A.1.1 Complete code

	A.2 Asset swap with scheduled event
	A.2.1 Complete code
	A.2.2 Complete example of execution

	A.3 Bike rental
	A.3.1 Complete code
	A.3.2 Complete example of execution

	B Grammar
	B.1 Lexer rules
	B.2 Parser rules

	C Pipelines
	C.1 run-tests.yml
	C.2 create-and-push-docker-image.yml

	D Gradle
	D.1 build.gradle

	E Docker
	E.1 Dockerfile
	E.2 docker-compose.yml

	Bibliography
	Sitography

