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Abstract

Brain-machine interface systems (BMIs) allow people to control exter-
nal devices, such as powered wheelchairs, telepresence robots, robotic
arms, exoskeletons, mouse and keyboards, through brain signals. A
BMIs is defined as a closed-loop composed of acquisition, processing,
feature extraction, classification and feedback. To interact with the
devices there are two different control strategies to convert the BMI
decoder’s output into an appropriate signal for the robotic device.
The first one is called discrete control which allows the user to send
discrete commands, therefore there are some seconds between two con-
secutive commands. In the case of BMIs based on motor imagery,
for instance, a command is sent to the robot when a predetermined
threshold is reached, or, in other words, when the control framework
is certain of the user’s intention.

The other is continuous control, which maps each brain signal to a con-
trol signal for the external device. Hence, continuous control increases
precision and performance compared to discrete control, however, is
more challenging to implement. A framework based on dynamical
systems is a possible solution to implement such a continuous con-
trol. However, state-of-art control frameworks based on dynamical
systems rely on several user-dependent hyper-parameters that make
an optimal fine-tuning difficult for each user. In addition, the con-
tinuous control based on a dynamic system already proposed in the
literature is designed to work symmetrically namely it implements the
same behaviours for all the BMI classes. This constraint may be too
strict, especially for a beginner user who has not yet mastered how to
balance different classes in BMIs.

Therefore, the aim of the thesis is twofold: first, to reduce the number
of parameters required for continuous control based on a dynamical
system, and second, to allow the dynamical system to work with an
asymmetrical behaviour, so each class can behave differently. To this
end, we propose a new metric in order to find the most effective com-
bination of parameters for each user.

In the first phase, we examine, a dataset available at IAS-Lab to evalu-
ate the metric and find the proper correlation among parameters via a

posterior analysis. Then, we recruited 12 subjects to perform a 2-class



motor imagery (MI) task by virtually controlling a steering wheel.

The preliminary results confirm that there is a relation between the
parameters used for the symmetrical and the asymmetrical dynamic
system. Consequently, we validate a possible implementation of the
asymmetrical dynamic system based on the relation found in the pre-
vious step with an experiment divided into three sessions. In these
sessions, we compare the dynamic control system to the exponential
one. The results of the experiment confirm that for almost all the
users the asymmetric dynamical system provides better performance

and less workload than the asymmetric exponential system.



Abstract

I sistemi di Brain-machine interface (BMIs) permettono alle persone di
controllare apparecchiature esterne attraverso i segnali celebrali. Ad
esempio, si possono controllare: sedie a rotelle, robot di telepresenza,
bracci robotici, esoscheletri, mouse e tastiere. La BMI e definita da un
loop chiuso composto da: acquisizione, elaborazione, estrazione delle
feature, classificazione e feedback. Per interagire con le apparecchia-
ture esterne ci sono due diverse strategie di controllo che convertono
loutput del classificatore usato dalla BMI in un segnale appropriato
per 'attrezzatura robotica.

Il primo si chiama controllo discreto il quale permette all’'utente di
inviare comandi discreti; quindi, che ci sono alcuni secondi che sepa-
rano due comandi consecutivi. Nel caso di un sistema di BMI basato
sulla motor imagery, per esempio, un comando viene inviato al robot
quando una predefinita soglia viene raggiunta, o in altre parole, quando
il framework di controllo e certo riguardo I'intenzione dell’'utente.
L’altro e il controllo continuo, che mappa ogni segnale celebrale in
un segnale di controllo per un device esterno. Quindi, il controllo
continuo aumenta la precisione e le performance rispetto al controllo
discreto, ma e pit complicato da implementare. Un framework basato
su un sistema dinamico e una possibile soluzione che implementa un
controllo continuo. Pero, lo stato dell’arte dei frameworks di controllo
basati sui sistemi dinamici si basa su molti parametri che sono dipen-
denti all'utente, quindi questo rende difficile un’ottimizzazione di tali
parametri per ogni soggetto. In piu, il controllo continuo basato sul
sistema dinamico gia proposto nella letteratura lavora in modo sim-
metrico, quindi ha lo stesso comportamento per tutte le classi della
BMI. Questa costrizione puo essere troppo stretta specialmente per i
nuovi utenti che non hanno ancora bilanciato le differenti classi usate
nel sistema di BMI.

Dunque, questa tesi ha due scopi: il primo di ridurre il numero di
parametri richiesti per il controllo continuo basato sul sistema dinam-
ico, e il secondo, di permettere al sistema dinamico di lavorare in
modo asimmetrico, quindi permettere alle classi di comportarsi di-
versamente. A questo scopo, noi proponiamo una nuova metrica per

trovare la migliore combinazione di parametri per ogni utente.



Nella prima fase, noi esaminiamo un dataset disponibile presso [AS-
Lab per valutare la metrica e trovare la correlazione tra i parametri at-
traverso questa analisi a posteriori. Poi, abbiamo reclutato 12 soggetti
per eseguire un compito basato su 2-classi usando come paradigma la
motor imagery (MI) permettendo il controllo virtuale di un volante.

I risultati preliminari confermano che c¢’e una relazione tra i parametri
usati dal sistema dinamico sia per il caso simmetrico sia per quello
asimmetrico. Di conseguenza, abbiamo validato una possibile im-
plementazione del sistema dinamico asimmetrico basandoci sulla re-
lazione trovata precedentemente con un esperimento diviso in tre ses-
sioni. In queste sessioni abbiamo comparato il sistema dinamico con
quello esponenziale. I risultati dell’esperimento confermano che per
la maggior parte degli utenti il sistema dinamico asimmetrico fornisce
migliori prestazioni e meno carico di lavoro rispetto al sistema espo-

nenziale asimmetrico.

Vi
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Chapter 1
Introduction

Many different disorders, such as amyotrophic lateral sclerosis (ALS), brainstem
stroke, brain or spinal cord injury and multiple sclerosis can disrupt the neuro-
muscular channels through which the brain communicates with and control the
external environment. The most studied disease by researchers is the one which
causes the loss of control of all voluntary muscles and the person is locked in
his/her body, unable to communicate in any way [1, 2].

There are three ways to restore the normal function of the body system [3]:

1. by increasing the capacity of the other pathways. For example, communi-

cating using eye movements [4, 5],

2. by restoring the function and avoiding the break in the neural pathway
which controls the muscle. For instance, people affected by spinal cord
injury could use electromyographic (EMG) signals above the level of the

lesion to allow the paralyzed muscle to move through electrical stimulation
[6],

3. by using an alternative channel based on brain signals with a brain-machine
interface (BMI) which allows the communication and control of external
devices [3, 2].

1.1 Brain-machine interface (BMI)

The aim of brain-machine interface systems (BMIs) is to provide the brain with a
new channel which allows the communication and the control of external devices
such as powered wheelchairs, robotic arms, exoskeletons and telepresence robots
3,2, 7,1, 8.



Each BMIs relies on the so-called closed-loop (Figure 1.1) composed of several
modules: acquisition, feature extraction, classification, control strategy and feed-
back [3, 8.

CLASSIFICATION

USER ACQUISITION FEATURE EXTRACTION

FEEDBACK

ROBOT

CONTROL

D, D — DISCRETE ‘CONTINUOUS %

Figure 1.1: Closed-loop of a brain-machine interface (BMI).

e The acquisition module. It is in charge of recording brain activity. All
BMI systems can be divided into two groups according to the scale at which

the neural brain patterns are acquired [3, 7].

1. Invasive BMIs can directly acquire a single neuron or a small group of
them, they require surgery in order to plant some microelectrodes at
the cortical and/or subcortical level. On the one hand, this method-
ology provides high-precision signals, on the other hand, a surgey is
required and the user undergoes some medical risks, like electrodes
infections [9, 10]

2. Non-invasive BMIs can utilize hemodynamic responses (e.g., func-
tional magnetic resonance imaging (fMRI) [11], functional near-infrared
spectroscopy (NIRS) [12]) or the electrical activity in the brain (e.g.,
via electroencephalography (EEG) or magnetoencephalography (MEG))
[3, 8]. The most used method is EEG which allows high time resolution
and does not need sophisticated instruments. Therefore, this method
does not require surgeries, but the acquired brain signals have some

noise.

During the acquisition, the user is required to perform a specific mental task.

There are two different paradigms: exogenous and endogenous stimulation.

2



In the first case, the signals depend on external stimulus (like light flashing),
e.g., two systems that are well studied are P300 and Steady State Visually
Evoked Potential (SSVEP) [13, 14]. In the second case, instead, the signal
is the self-paced modulation of the brain rhythms of the user, and the most
studied approach is the motor imagery (MI) that is based on the kinesthetic
imagination of body parts [15, 16, 17, 18, 19, 20, 21, 22] (both paradigms
will be further discussed in Section 1.2). Lastly, by combining different
information signals we can have a hybrid BMI (hBMI), e.g., combining
SSVEP with P300 [23].

The feature extraction module. It filters the acquired signals with
spatial and/or time filters in order to extract some features of interest in
line with the required task. Based on these features, a detector is trained.
For instance, we will use a Gaussian classifier and it is built up during the
calibration phase. Then, the same classifier is used in real-time. Moreover,
the output of the classifier a raw probability [16, 24, 25].

The control strategy. It is in charge of converting the raw probability
from the detector into a command for an external device. There are two dif-
ferent approaches in the literature [3]. The first one is the discrete strategy
that allows sending discrete commands to the device with some seconds
between two consecutive signals. For instance, in the system based on a
BMI based on 2-class MI in [16], the commands are sent when the control
framework is confident enough about the user’s intention. The second is
the continuous strategy which allows the system to continuously send the
control signals to the robot. Both strategies will be further explained in

Section 3.

The feedback. It is a simple output that the system gives to the user in
order to understand how the task is performed. It can be visual or auditory.
For instance, in [16] the feedback for the MI task corresponds to two filling
bars depending on the detected intent.

Every BMI system is based on a closed-loop architecture where the user and the

machine interact with each other in order to achieve optimal control of the exter-

nal device. A proven approach that allows users to improve their performances

is mutual learning [26]. It claims that not only the machine learns from the user,

but also the subject adapts his/her brain signals according to the provided feed-

3



back. This approach allows the creation of a stable system over time since it

reduces the number of re-calibration of the decoder.

1.2 BMI Paradigms

A classification of non-invasive BMI systems is associated with different mental

tasks the user is asked to perform in order to control the robotic application.

1.2.1 Exogenousm paradigms

FEzxogenous paradigms relay on external stimuli in order to obtain a response in
the users’” EEG. For instance, exogenous BMI paradigms are Steady-State Evoked
Potentials (SSVEPs) or P300 [2, 3]. The main limitation of this type of paradigm

is that it depends on external stimuli.

Steady-State Evoked Potentials (SSVEPs). SSVEP is considered a continu-
ous visual cortical response to constant frequency external stimuli on the retina.
For instance, a flickering of a light-emitting diode (LED) can evoke an SSVEP.

A typical SSVEP-based BMI system uses some LEDs to flicker with a different
frequency, in order to achieve SSVEP associated with different external device ac-
tions [27]. Nowadays, the SSVEP is the most explored by the researchers among

the exogenous paradigm [3], because:
e It allows to have a large number of BMI commands.

e The patterns are clearly distinguishable by the used frequencies. Since the

stimulation frequency also corresponds to the user’s response frequency.
e [t does not require extensive training for the user.

Therefore, BMI systems based on SSVEP are able to decode the evoked response
in the visual cortex elicited by a set of visual stimuli, each flickering at a given
frequency [27]. The commands can be low-level (e.g., go forward, turn left, turn

right, as in Figure 1.2a) or high-level (e.g., go in the kitchen, living room, bedroom
as in Figure 1.2b) [28, 29].

P300. The evoked response in the EEG that is obtained after approximately
300ms due to the presence of stimulus in an oddball paradigm is called P300.
In addition, a P300 signal is Event-Related Potential (ERP) since it measures

4
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(a) The figure is taken from [28], it is the robot-GUI in
drive mode in which the user must select the “go for- (b) The image is taken from [29], the user through SSVEP
ward” command. selects the final destination of the wheelchair.

Figure 1.2: Two different BMI systems based on SSVEP.

the brain’s responses to a specific visual or auditory or somatosensory stimulus
[27, 30]. In detail, a specific stimulus is a rare stimulus that the user must pay
attention to over a sequence of stimuli.

The classical application of P300-based BMIs is for verbal communication [5, 31]
(Figure 1.3a), but it can also be used to control external devices such as a powered
wheelchair (Figure 1.3b) [14, 32, 33, 34].

(b) The user selects the final destination by looking at the
(a) The user interface from which the user selects a letter flashing final position in the computer (in this case the
after a column and then a row are intensified [5]. TV) [34].

Figure 1.3: Example of BMI application with P300.

1.2.2 Endogenous paradigms

Endogenous paradigm does not use external stimuli, it depends on the self-
modulation of brain rhythms. The most studied approach by the researchers

is motor imagery (MI).



Motor imagery (MI). In motor imagery (MI) users voluntarily modulate their
sensorimotor rhythms by imagining the movement of a specific part of their body
(e.g. right/left hand, both hands, or both feet. etc...) [3]. This voluntary modula-
tion can be seen through the combination of event-related synchronization (ERS)
and event-related desynchronization (ERD). Therefore, the phenomena reflecting
sensorimotor brain activity regarding the decrease of amplitude is called ERD,
instead, the increase of oscillatory component is called ERS [35]. In general, with
MI paradigm, ERD and ERS are identified in the p and 8 bands (8-14 Hz and
16-30 Hz) in the sensorimotor cortex. In addition, this modality requires informa-
tion from an entire area, hence it works with a multichannel recording. Therefore
exact locations and frequencies that the subject activates are user-dependent [3].
An example of ERD/ERS for a subject is reported in Figure 1.4.

Brain-machine interface system based on MI, on the one hand, has high ver-
satility since it does not depend on external events. In addition, this modality
allows to deliver commands when the user voluntary executes a modulation in
the EEG signal in order to perform the required mental task [36]. On the other
hand, motor imagery requires continuous training in order to maximize the ca-
pacity of the user to activate the expected patterns. Other limitations of MI are
the low number of degrees of freedom and the reduced number of actions that
can be extracted from the neural modulations. In order to avoid these last two
limitations often BMI systems based on MI are supported by shared intelligence
[17, 37, 38]. For instance, BMI systems based on motor imagery can be used to
drive external devices such as wheelchairs, robotic arms and teleoperation robots

[15, 17, 20, 37, 39, 40].

1.3 BMI applications

BMI system can be used for different applications, including communication and

control, assistive mobility and entertainment [1, 2, 3, 8].

1.3.1 Communication and control

Brain-machine interface system allows users to communicate with the external
environment. In [4, 5, 31] the user can select some symbols from the alphabet in
order to build a word up. More into details, in [4] based on slow cortical potential
(SCP) the user can move a mouse in a screen in order to select a group of letters.

In the beginning, the alphabet is divided into two groups and the user must select

6
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(a) The ERD/ERS of channel C1 is reported in the figure. Additionally, this

channel is selected as features at 12 and 14 Hz. Thus, as we can see in
the image, the pu band provides a good marker to differentiate between
the signal for both hands or both feet, during a motor imagination task.
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(b) In the figure, the ERD/ERS of channel FC3 that is not selected for the
classifier is reported. Therefore, as we can see in the figure, there is not
a huge difference between the two classes in both p and 8 bands.
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(c) In the figure the topoplot that shows the ERD/ERS is reported. As we
can see, subject S8 is more able to modulate the p band rather than the
B band.

Figure 1.4: ERD/ERS of subject S8 for the same run is reported.



one of them subsequently, the selected group is divided into two new groups and
the user must select one of them, this process goes on until a single letter is
chosen. Instead in [5, 31] a BMIs based on P300 uses a grid of 6x6, containing
all symbols from which the user can choose (Figure 1.3a). In this case, each row
and each column, one at a time and randomly, are highlighted in order to solicit
a P300 response. Then, a symbol is selected when the P300 signal for the rows
and one for the columns are detected.

BMIs can be also used to control different types of external robots that act in
the real world or in the virtual world. For example, in [19] a virtual helicopter is
controlled with a 6-classes motor imagery protocol; then this work is extended in
the real world [20]. On the other hand, in [15, 17, 28] telepresence robots must
reach some target points or follow a predetermined path. In addition, the user
must perform a motor imagery task in [15, 17], while in [28] a BMI system based

on steady-state visual evoked potential is used.

1.3.2 Entertainment

BMI systems can be used, also, for entertainment. For instance, in [22] the user,
looking at a screen, can drive a spaceship that should avoid collisions with some
asteroids in Figure 1.5a. Moreover, in [41] many applications of the BMI systems
for video games or virtual reality are reported as the one in Figure 1.5b. For
instance, BMI based on SSVEP can be used to balance an animated 3D character
that walks on a thread (Figure 1.5b). Another example reported in [41], used a
motor imagery BMI system to make an avatar to “walk” in a virtual street and

to stop in front of some avatars to talk with them.

(a) The game asteroids played with a BMI based on MI
where continuous control feedback is provided to the (b) A BMI system based on SSVEP is used in order to
user [22]. allow a 3D character to walk on a tightrope [41].

Figure 1.5: Example of games based on BMI.



1.3.3 Assistive mobility

Brain-machine systems have the potential to assist paralyzed subjects by provid-
ing support with the movements, such as robotic arms or powered wheelchairs,
as shown in Figure 1.6. For example, in [42] users can control external robots
through BMI based on MI by selecting a specific action in a hierarchical menu.
Moreover, they collect all the feasible actions in a central knowledge base that is
continuously updated.

An aspect that influences all assistive mobility scenarios by improving the user’s
ability to use them, is the fusion of the user’s commands and the robot’s per-
ception of the environment. This approach is known as shared control, shared
autonomy and shared intelligence in literature. For instance, in [37] a BMI system
based on MI provides commands, while the robot contextualizes them according
to the current environment. Another example is [43], in which the user selects a
high-level action, like reaching a place, and the robot does the action. An exam-
ple that uses shared control with a robotic arm is [44] in which the robot plans
and executes a path to reach an object detected with a camera, while the user
provides commands, such us left front or right front, to help the robotic arm to

reach as quickly as possible the detected object.

Robotic arms. BMIs can be used to control a robotic arm in order to grasp
objects. For instance, in [44, 45] shared control allows the robotic arm to grasp
an object. It is between the path planned by the robotic arm and the user that
provide commands in order to help the system. In Figure 1.6a the set-up of the
experiment [44] is reported. However, in [45] the user, in an initial phase, can
also select the object to grasp via SSVEP stimulation. An example without the
shared control is [46] where the user performs a MI task to select and grasp the
object. A brain-machine interface can be also used to control a dual-arm robot,
like in [18] where the user via BMIs based on MI makes the robot to lift and drop

a box.

Powered wheelchair. Brain-machine systems can be used to support users’
mobility. For instance, a BMI system based on P300 can be used to select the
final high-level destination as in [34, 43], or in an unknown environment to choose
an action or to pick as destination a calculated point near the actual position of
the wheelchair like in [14, 32]. Furthermore, in [29] it is proved that a BMI

system based on SSVEP can be used to control a powered wheelchair from a
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command representing the final destination or the single action to perform, such
as go forward. It is also possible to drive a wheelchair with a BMI based on MI.
For instance, in [43] MI is used to select the final destination, while in [39] it is
used to select an action that the wheelchair does, like go forward, turn left, turn

right or go diagonally.

. _Robotic

(a) A user with BMI based on MI grasps an object.

INTELLIGENT AUTONOMOUS SYSTEMS LAB

(b) The powered wheelchair used by the IAS-Lab of the
University of Padua.

Figure 1.6: Two examples of assistive devices that can be controlled via BMI.

1.4 Brain-actuated robot

To use an external device with a BMI system, there are some aspects that must be
emphasized. Firstly, BMI system provides a noisy channel and therefore there is
a possibility of sending unintended commands, so it is important to contextualize
them to avoid unexpected behaviors of the device. Secondly, the control system
used to generate the control signal for the external device depends on the actions
that the user must perform. All these aspects will be further described in the

following subsections.
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1.4.1 Intentional non-control

Most control system wants to maximize the accuracy and speed of the control
signals. However, it must be taken into account when the user wants to send a
command or when it does not want. These two states are well-known in literature
as Intentional Control (IC) and Intentional non-control (INC) [47]. In the first,
the user is performing the task, while in the second, the user is attentive and not
intending to deliver commands even. However, it might happen that in the INC
state some unintentional commands are sent anyway. To handle the INC state,

the researchers explored two different approaches:

1. multi-class classification. Therefore, a class REST is included in the decoder
classification. However, this solution increases the complexity of the system,

since the resting class is unbounded [19, 20].

2. leaving the user to control the unvolountary commands. Thus, the subject
actively controls the system in order to balance the classes. Nevertheless,
this solution increases the workload for the user, because he/she needs to

be always focused [15].

1.4.2 Discrete and continuous control system in the

literature

As explained in Section 1.1, a control strategy converts the brain signals into
commands for an external device. In the literature, there are two different ap-

proaches: discrete control system, and continuous control system [3].

1.4.2.1 Discrete control system

A discrete control system sends discrete commands. Therefore, two consecutive
commands are separated by some seconds (e.g. 3s or 4s). This strategy improves
the control signal’s stability and reduces its variability. For these reasons, discrete
control is the most applied for driving brain-actuated devices [3].

Looking at the paradigms that can be utilized with a brain-machine interface, we
can notice that exogenous paradigms (like P300 and SSVEP) allow only discrete
control systems since they depend on discrete external stimuli (e.g. flashing light
at a different frequency). On the contrary, endogenous paradigms (e.g. MI) work
with a discrete control system, although their nature since they depend on the

voluntary modulation of brain rhythms. For instance, a BMI system based on MI
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with a discrete control system has a continuous output of the decoder that can
send a discrete command to the robot, only when a given threshold is reached
[48], it will be explained in Section 3.1.

Discrete control systems have some limitations due to the period of time that
the external device waits for a command, the presence of delay if a wrong com-
mand should be corrected and the low information transfer rate (0.3 commands

per second on average) [3].

1.4.2.2 Continuous control system

A continuous control system sends commands to the external device continuously.
Therefore each output of the BMI decoder is processed and it provides a control
signal.

This strategy is more challenging to implement rather than the discrete, for two
reasons, the first is due to the non-stationary nature of the EEG signal and
the second is regarding the uncertainty of the BMI decoder output. However,
continuous control increases the precision and the performance of the controlled
device [15]. Due to its difficulty to be implemented, it is less used than the

discrete approach and there are only few approaches in the literature:

1. The direct mapping of task-related neural signals into continuous driving
commands. This approach uses modulated EEG signals that are less stable
than classified ones. For instance, based on their previous work [19, 20] the
user can control a quadcopter with 4-class motor imagery tasks in the real

world.

2. The use of advanced control techniques to increase the reliability and sta-
bility of the probabilistic output of the BMI decoder. Therefore, a strong
limitation is regarding the high number of required parameters. For exam-
ple, in [22] the user controls a video game with a BMI based on 3-classes
motor imagery, where the postprocessing chain is based on Savitzki—Golay
filters, antibiasing strategy and multiple thresholding as explained also in

21].

3. The use of a dynamic system, which takes into consideration the nature
and the temporal evolution of the BMI output. It will be further explained
in Section 3.2).
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1.4.3 Shared control

Non-invasive BMI systems allow a restricted number of commands that the user
can deliver to the external device. To increase the number of commands and the

stability of the whole system, two different approaches have been proposed:

1. The usage of the BMI to select the final target (as visible in Figure 1.7a)
and the leaving of the planning and execution to the robot. The robot
autonomously plans the best trajectory to reach the target. Typically, in
this modality, the user cannot send any commands until the robot finishes
the movement. For instance, in [14, 34, 42, 43] the user can select the final

destination and the robot plans and follows the best path.

2. The merging of the BMI output with the robot perception. It allows the user
to send high-level commands and it leaves all low-level commands to the
robot. Therefore, each user command is interpreted and contextualised by
the robot with the current surrounding environment. For instance, the user
selects the direction of the robot and robot is in charge of avoiding obstacles
(17,37, 49], as shown in Figure 1.7b. In addition, several studies have proven
that this approach improves the performance for healthy subjects and users

suffering from motor disabilities [50, 51].

9 2 2 2 P

AREA COVERED BY OBSTACLES

obstacle-avoidance _distance
R
user input direction
(a) The GUI map is constructed based on the obstacle u “
map. The user selects the final position (yellow circle)
with a BMI based on P300 (or MI) and the wheelchair (b) Is an example of the fusion of policies (different grid
follows the path in order to reach it avoiding the ob- probabilities maps) for the ”area covered by obstacle”
stacles [43]. situation [17].

fusion

Figure 1.7: Two different approaches to add the robot intelligence in the closed-loop.

1.5 Motivations

The aim of this thesis is strictly correlated to the control system used in the BMI
closed-loop (Figure 1.1). As highlighted in Section 1.4.2, there are two different
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control systems that are available in the literature: the discrete and the continu-
ous control system, further details will be explained in Section 3. In addition, for
continuous control systems it is important that they allow INC status and give
the user the feeling of being in control of the external device. Moreover, in order
to ensure behaviors in line with the user’s intentions, the creation of a control
system must integrate some shared control techniques.

The continuous control system that will be analyzed is the one based on the dy-
namical system, that has higher precision and that the users feel it more natural,
precise and easy to use than the classical discrete control, as proven in [15]. How-
ever, it has some limitations, such as the symmetrical behaviour that the F.
follows and the high number of parameters that must be tuned by the operator.
The first limitation is a strict constraint, especially for naive users that have not

mastered both classes.

1.5.1 Thesis aim

In this thesis, we investigate a continuous control system based on the dynam-
ical system in order to allow asymmetrical behaviour and reduce the number
of required parameters. The last aspect is important for the operator because
it facilitates the tuning. Furthermore, we hypothesise that a BMI based on an
asymmetric dynamic system achieves good results and users perceive more con-
trol, especially for naive users. Therefore, this thesis has a twofold aim: first,
investigate if exists a relation among the parameters used for the dynamical sys-
tem, and second, the implementation and validation of a two-classes MI BMI
based on the asymmetric dynamical system using the relation founded at the

first step.
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Chapter 2
Methodology

This chapter describes the BMI implementation and the ROS-Neuro middleware
exploited in the study.

2.1 The BMI based on motor imagery

To achieve a suitable classifier for a subject, several steps need to be performed.
Firstly, we need to process the electroencephalography (EEG) data in order to
remove noise, and then extract and select the most discriminating features for
the two motor imagery classes. At this point, a classifier can be trained with the
selected features and subsequently can be used by the BMI system.

Initially, the brain signal is filtered with two filters: a bandpass filter between 0.1
and 100 Hz, and a notch filter at 50 Hz. In our case, the filtering is directly com-
puted by the EEG amplifier (g.USBAMP RESEARCH!). In order to increase the
information of the filtered signals, a spatial filter is applied. We adopt a Laplacian
filter that is a filter based on the second-order derivation of a single electrode and
its neighbours. To create the feature vector based on the spectral power of the
EEG signals, after the Laplacian filtering, we compute a power spectral density
(PSD) through Welch’s periodogram algorithm. Therefore, we use an overlap-
ping window of 1 second (62.5 ms sliding) and we compute the PSD with 2 Hz
resolution (from 4 to 48 Hz). For facilitating the creation of the classifier, the
PSD is linearized with a base-ten logarithmic transformation.

At this point, a feature extraction and selection is made. Therefore, given the
linearized PSD, we need to understand which frequencies and channels are more

discriminative. With this aim, a Fisher Score is computed according to the for-

"https://www.gtec.at/product/gusbamp-research/
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mula:

_ ‘:ul(ca f) - MQ(Cv f)l
Voile, )+ o3(c f)

where ¢, f are respectively a channel and a frequency, p is the mean and o is the

FS(c, f) (2.1)

standard deviation of that channel and frequency. Hence, we have a value for
each channel at different frequencies; an example can be seen in Figures 2.1a and
2.1b. Then, these features can be used to train a Gaussian decoder, such as the

one in Figure 2.1c¢, or as input for a classifier.

Then the most discriminative values are taken in order to train a Gaussian

decoder as the one reported in Figure 2.1c.

2.2 Robot Operating System (ROS)

2.2.1 What is ROS?

Robot Operating System (ROS)? is an open-source framework used for develop-
ing robotics software. It provides a collection of tools, libraries, and conventions
that are designed to simplify the process of creating complex and robust robot
applications.

Starting from 2010, several distributions of ROS have been developed?, the latest
are: ROS Melodic Morenis and ROS Noetic Ninjemys that are suggested respec-
tively for ubuntu 18.04 and 20.04; they were released on 2018 and 2020. More
recently, ROS2* has been released, the main difference between ROS and ROS2
is related to the real-time since in ROS2 it is a primary aspect. In this thesis,
ROS Melodic Moreins has been used.

ROS uses an architecture based on packages. With this structure, ROS encour-
ages the developer to subdivide their code into packages that can be reused in
other projects. Moreover, the code can be written in C++ or Python.

ROS architecture can be seen as a graph where each node is specialized to a func-
tion and each arch represents the communication between two nodes. In addition,
in ROS there is a ROS Master node that allows peer-to-peer between different

nodes.

’https://www.ros.org/
3http://wiki.ros.org/Distributions
“https://docs.ros.org/en/rolling/Releases.html
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(c) The Gaussian classifier of a subject with the features selected.

Figure 2.1: Features extraction, features selection and the Gaussian classifier a subject.

2.2.2 ROS communication

In ROS all the code is organized into packages, that contain one or more exe-
cutables (nodes). The communication between nodes can be established in three

different ways (an example is reported in Figure 2.2):
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1. Message. It is a structure defined by the developer in a file saved with the
extension .msg in a package. Therefore it is composed of a list of types,
representing the field of the message (for instance: int, float, const, array,

..) and a name.

2. Topic. It allows asynchronous communication between different nodes. A
topic is defined by a name and by the publication of only one type of mes-
sage. In addition, a topic can have more publishers and more subscribers.
Instead, a node can be subscribed to more topics. The idea behind the
topic is a bus with a name, where each node can send or receive a message

according to the publisher and subscriber division.

3. Service. It allows synchronous communication between two nodes with
the request/reply strategy. One node is the client that through a request
message sends a request to the service, that elaborates it and replies with

a response message.

X ROS Master .
updating details of node 1 'a" ".,.updating details of node 2
in ROS master o ‘s, in ROS master
" ...
O"“ ‘...0
.0‘ .'0
‘0' ..0
o client requet message o,
* e e .
/—"'—-—-—-‘ \--.\‘\
- N
S service response message -
Node 1 e e Node 2
Topic name
publish coplc Aibe

Messaﬂe

In the figure there is a representation of the three communications available on ROS. The first type
is with a message that is sent from Node 1 to Node 2. The second is through a topic, where Node
1 publishes some messages (so it is a publisher) and Node 2 read them (so it is a subscriber). The
last is the service, where Node 1 performs a request to Node 2, which elaborates it and replies with
a response message.

Figure 2.2: ROS communication between two nodes
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2.3 ROS-Neuro

ROS-Neuro® is an open-source neurorobotic middleware based on ROS (Figure
2.3). The initial concept of ROS-Neuro was introduced in [24]. The idea of ROS-
Neuro is to achieve a common research framework to facilitate the expansion
of the neurorobotics field. Authors have implemented all the packages for the
acquisition, recording, processing, decision making and feedback for a 2-class
motor imagery BMI [16, 25, 52].

Specifically, ROS-Neuro is composed of different packages in order to implement

the closed-loop presented in Section 1.1:

e rosneuro_acquisition: it provides a ROS node that can communicate with
some commercial amplifiers through the implementation of different plugins
[25]. When the ROS node starts, the brain signals are acquired in chunks of
data. The size of the chunks can be modified and is strictly related to the
frame rate at which the node publishes a message in the topic /neurodata.
For instance, the chunk size is 32 if the data from the amplifier are acquired
with a frequency of 512 Hz and the frame rate to publish them in the topic
is 16 Hz.

e rosneuro_recorder: the related ROS node saves the acquired signals into
BDF or GDF formats [25]. Once the node is launched, it performs a request
with the /acquisition/get_info service in order to set up the structure and to
create the file in which the message published in the topic /neurodata will
be saved. In addition, it saves also events by reading the topic /events/bus if
the file format allows this type of information (GDF files allow this, instead
BDFs do not).

e rosneuro_processing: this ROS node filters the data acquired in tem-
poral, spectral and/or spatial domains [16]. It is subscribed to the topic
/neurodata in order to collect the EEG/EMG signals in a ring buffer, ini-
tially empty. When the buffer is full, the buffered data are processed. The
first step is a spatial filter performed by a Laplacian matrix after computing
a Power Spectral Density (PSD) using Welch’s algorithm, and then an on-
line classification is performed using a previously trained classifier. At this
point the, so-called raw probability is published in the topic /smrbci/neu-

roprediction. Some parameters like the buffer size, the laplacian matrix,

Shttps://github.com/rosneuro
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the classifier and the parameters for Welch’s algorithms can be set by the

operator before the node starts.

e rosneuro_decisionmaking: it provides a ROS node that takes as input
the raw probability read from the topic /smrbci/neuroprediction and pro-
cesses it in order to obtain a control signal [16]. It implements the control
strategies described in Sections 3. This node publishes a message in the
topic /events/bus when a BMI command is been identified and the current
value of the integrated probability in the topic /integrator/neuroprediction.
All the configuration parameters, like the thresholds, can be also set us-
ing ROS parameters. An important aspect to consider using this package
is that the integrated probability must be reset to a uniform distribution
when a command is recognized and published. Hence, the client node needs

to perform it by using the service /integrator/reset.

e rosneuro_feedback: it provides a node that, using OpenCV?®, shows a
visual feedback [16]. This node displays some graphical elements, in a
resizable window, according to the experimental protocol. It takes as input
the message published in the topic /integrator/neuroprediction in order to
return the feedback through filling bars or moving the steering wheel. This
package will be further explained in the Section 2.3.1.1.

In the current implementation of ROS-Neuro, the communication between
different nodes is possible through a topic where a message is published by an-
other node, or with a service where a specific action is asked by the client. For
instance, the decision-making node is subscribed to the topic /smrbci/neuropre-
diction where the processing node writes a NeuroPrediction message. As well,
the decision-making node provides a service that gives the possibility to reset the
control signal to an initial state. This service is useful when a task is finished and

the control signal must be reset to an initial state.

2.3.1 A new feedback in the ROS-Neuro ecosystem

To use the dynamical system asymmetrically, we modify the current version of
the decision-making in the ROS-Neuro repository. Furthermore, to simulate the
control of a wheelchair we implement a digital wheel that turns according to our

control system.

Shttps://opencv.org/
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Figure 2.3: The figure reports the current version of ROS-Neuro available at https://github.com/
rosneuro.

As shown in Figure 2.4, the raw probability is the probability as output from the
processing node, that applies features selection and the decoder in order to have
this initial probability. In addition, the integrated probability is the input for
the feedback provided to the user and, it could also be the input to the external

robotic device.

2.3.1.1 Feedback

In ROS-Neuro the feedback implemented is the one reported in Figure 2.5a. In
this thesis, we implement a new version of the feedback shown in Figure 2.5b
with the shape of a steering wheel.

Every feedback must follow a sequence of periods, composed by fixation, cue,
continuous feedback and hit/miss. During the fization, the user can relax. In
cue, the system shows the mental task to be performed by the subject. During
continuous feedback, the user mentally controls the feedback. In hit/miss the
subject reaches a predefined threshold. As seen in Figure 2.5, the sequence of
actions that the wheel feedback performs is the same of the bar. The main
difference, between the two kinds of feedback, is concerning how the control signal
is mapped because, in the bar version, each class has its own bar (so we can have

more than 2 classes), on the contrary, the wheel feedback allows only 2 classes
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rosneuro__processing rosneuro__decisionmaking

raw__probability

integrator

integrated__probability|

rosneuro__control rosneuro__feedback

feedback

Four packages of ROS-Neuro. The processing package has as input the EEG signal, then it elaborates
the brain signal and it applies to the elaborated signal a features selection and a decoder in order
to obtain the raw probability. The decision-making package instead applies a control system, as
explained in Section 3. The feedback node provides visual feedback to the user as explained in
Section 2.3.1.1. At last, the control node allows the control of the external robotic device.

Figure 2.4: Some packages of ROS-Neuro

and the control signal is mapped from [0.0, 1.0] to [0°, 180°]. Thus, with only
two classes we can use only one probability. For instance, if the raw probability
vector is [0.6,0.4] we read only the first probability, then we translate it into the

motion of the wheel.
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FIXATION CUE CONTINUOUS FEEDBACK HIT/MISS

Ju b g U B

(a) The feedback already implemented in ROS-Neuro for two class motor imagery tasks. In addition, this feedback can be used
for a motor imagery task with more than two classes.

FIXATION CUE CONTINUOUS FEEDBACK HIT/MISS

(b) The feedback that we implemented in order to simulate a steering wheel. Additionally, this feedback works only with two-
classes motor imagery tasks.

In each sub-figure, the first image is regarding the fixation time. Then there is the cue period in which
the user sees what MI task must perform. Then the continuous feedback, in which the user perceives
his/her performance. Lastly, the hit period shows to the user if he/she reaches the threshold. In both
cases, the user performs a motor imagery task of both feet.

Figure 2.5: The two different visual feedback.
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Chapter 3
Evidence accumulation framework

To stabilize the signal output from the classifier and be more sure of the user’s
intention, an accumulation framework is needed. Therefore, the control system

takes the raw probability output from the classifier and integrates it over time.

3.1 Exponential smoothing filter

BMI system based on MI provides a continuous output of the decoder. Therefore,
to reduce system variability and increase signal stability, an integration over time
is performed and compared with a predefined threshold. Typically, to do this,
an exponential smoothing filter is used. It allows BMIs based on the decoding
of voluntary modulations of brain rhythms to send discrete commands and it is

defined by the following formula:
yr=axz+ (1—a)*y (3.1)

where y; is the current control signal, z; is the posterior probability at time t (the
output of the BMI decoder), y;_; is the previously integrated control signal and
« is the integration parameter. In addition, o controls the trade-off between the
reliability of the BMI decoder output (x;) and the importance of the previously
integrated control signal (y;_1). Moreover, with ¢ = 1 the y,_; value is set uni-
formly according to the number of classes (e.g., with BMI system based on MI
with 2 classes yg = 0.5). Therefore, « is the only hyper-parameter that the oper-
ator must tune since it is strictly user-dependent. For instance, a control system
with an high value of a trusts the classifier a lot, on the contrary if « is small.

A signal is sent to the external device only when a predetermined threshold is
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reached, or in other words only when the system is confident enough about the
user’s intent (e.g., v > 0.7) [48, 53].

3.2 Dynamical system

The dynamical system allows the generation of continuous commands for the
external device. It is defined for a BMI based on 2-class motor imagery, as the

combination of two forces:

Ay =X ¢ Fpree(yi—1) + (1 = @) - Fparr(a:)] (3.2)

where 1;_1 is the previous control signal, x; is the current BMI output, ¢ controls
the contribution of the two forces, y determines the velocity of the system. The
last two parameters may be tuned by the operator, for instance, low ¢ means that
there is a confident BMI decoder, instead high y is related to a high reactiveness

of the system. Therefore, the signal at time t is computed as:

Y = Y1+ Ay, (3.3)

Ftyee is designed in order to provide a conservative force when the control signal
is close to 0.5 and a pushing force otherwise (see Figure 3.1a). Therefore, it is
defined as:

—sin (52— - ) if y€10.0,0.5—w)

Fpree(y) =4 - sin [Z - (y—0.5)]  if y€[0.5—w,05+w]  (3.4)
sin ;72— (y—05—-w)] if ye(0.5+w,1.0]

where ¢ > 0 and y is the control signal. Therefore, the Fy,.. divides the control

signal space into many zones:

e [0.0,0.5 —w) and (0.5 + w,1.0]. They are pushing zones. If the control
signal is inside one of these zones, the F,.. pushes to the high value for the

respective class.

e [0.5 —w,0.5+w]. It is conservative zone. In this case, the F. tries to
avoid the sending of unwanted high control signals by keeping the control

signal under the threshold.
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These subdivisions of the control signal space emphasise the different goal that

the authors aimed for this new framework:

1. should manage the inconsistent BMI decoder output;

2. should help users when are actively performing the MI task to deliver the

corresponding commands (IC state);

3. should limit the sending of undesired commands during resting state (INC
state).

Given that, the user can be into two different states, the intentional control (IC)
or the intentional noncontrol (INC), conservative zone is helpful when the user
does not want to send any commands (INC state) but oscillations in the control
signal can be arisen, instead, pushing zone is useful when the user wants to send a

real command (IC state), so when he/she is inclined to perform the task properly.
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Figure 3.1: Design of the Ff,.. and the free force potential.

In the Equation 3.2, the two forces have different aims. Fgy;; perturbs the
system according to the output of the BMI decoder. Instead, Fgyr is designed
in order to strengthen the BMI decoder output with high confidence (close to
-1.0 or 1.0) and to reduce the impact of uncertain decoded signals. The graphical
representation of the shape of Fgy; is shown in Figure 3.2. Therefore it is defined

by the following formula:
Feyr(r) =6.4-(x —0.5)> + 0.4 (x —0.5) (3.5)

where x is the BMI decoder output.
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Figure 3.2: Graphical representation of the function used to generate the BMI force.

The dynamical system has a substantial limitation due to the current F,.
shape that is rotational-symmetrical with respect to 0.5. This means that it has
the same effect for the two classes [15]. Therefore, for a subject, especially for
the naive one, it is a significant limitation because he/she can be strong with
one class and weak with the other. In addition, with this control system, the
operator must tune 4 hyper-parameters: w,, ¢, x for each subject since they
are strictly user-dependent. For instance, a user can require a large conservative
zone in order to stay more in INC, while another user can require a small one
since he/she is good to remain at INC. Further details about the dynamic control

system are in [15].

3.3 Moadified dynamical system

In this thesis, we propose a modification of the FY,.. used in the dynamical system
in order to allow asymmetrical behaviour for the two classes. The asymmetrical
behaviour can be achieved by assigning different values of w and 1. Hence, the

Equation 3.4 becomes:

'—sm (ngl y) if ye0.0,05—w)

Foty) — . sin [WL (y — 0.5)} if yel0.5—w,0.5) 56
)y - sin [w— (y — 0.5)} if yel0.5,0.5+ w]
| sin 55 W= 05—w)| if ye(05+w,10]

A graphical representation of the updated Fi,.. is shown in Figure 3.3a. With

this new formulation of the dynamical system, we introduce new parameters to
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manage the two classes differently, hence the operator must tune more parameters
than before. To deal with this drawback, we have investigated if exists a relation

among the parameters. Please refer to Section 3.3.1 for further details.
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(a) Ff7 ece With w1 = 0.3, wy = 0.2 and ¥ = 0.8,¢2 = (b) Free force potential. It is derived from the Fjyc. in
. The control slgnal space is divided into three a.

spaces: two pushing areas at the extreme and one con-
servative in the middle.

Figure 3.3: Design of the F',... and the free force potential with w; # wa.

3.3.1 Relation between hyper-parameters

As anticipated before, to try to reduce the number of parameters, in this thesis,
we verify if there is a relation among them. We have focused on the FY,.. since

we hyphothesize a strong correlation between w and ¢ in the Equation 3.4:

e w that defines the size of the conservative zone. With highest w a stronger

“resistance” is achieved;

e ¢ that represents the “amount of resistance/help” to escape from the con-
servative zone. With the higher value of v, more difficult is to change
the system state and to climb over the valley presented by the free force

potential in the conservative zone (see Figure 3.3b).

Moreover, we fix the other parameters according to Table 3.1 to avoid introducing
confounding factors.

To find the best values of the two parameters, w and 1, first, we conducted a
data-driven optimization on a pre-collected dataset by optimising a metric that
we design according to the criteria explained in Section 3.3.2. Then, we applied a
regression analysis on the best-achieved values for each subject to find the relation

between w and 1.
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Parameters Values

X 1.00
) 0.60
w from 0.025 to 0.475 with step of 0.025
(0 from 0.05 to 1.0 with step of 0.05
thomin 0.45
thomas 0.55

Table 3.1: The values of the examined parameters, where y, ®, w, ¥ appear in the Equation 3.2 and
3.4, thmin and thmaee are related to the Equation 3.12 used to optimise the parameters
w and .

3.3.2 Evaluation of the relation between parameters

A dataset was used in order to find optimal values for a continuous control strat-
egy based on the dynamical system described above. These data were stored
at the Intelligent Autonomous System Laboratory (IAS-Lab)! at the University
of Padua. The dataset is composed of eleventh different subjects (S1-S11) that
perform a 2-class motor imagery task and it is recorded with ROS-Neuro? frame-
work with a discrete control system based on the exponential smoothing filter
[16]. Such data are composed of 520 trials divided into 260 per class (i.e., both
hands vs. both feet). In addition, three subjects (S4, S5, S7) have no previous
experience with BMI.

It is worth mentioning that this dataset is used to perform posterior analyses.
Therefore, we can have only a general idea about the relation between the pa-

rameters used in the dynamical control system.

As previously explained we want to optimise the w and v of the Equation
3.4. With this purpose, we have proposed a new metric taking into account the

following aspects:

e We want the control signal to be upper or lower than the predefined band
instead of a single threshold. Therefore, we want to limit the oscillation

from up to bottom and vice-versa of the band.

e We want to maximize the time in which the control signal is upper or lower
than the predefined band. Furthermore, we penalise the scoring of the

control signal by attributing zero, when it belongs to the band.

http://robotics.dei.unipd.it/
2https://github.com/rosneuro
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e We want to minimize the time needed to send the command. Moreover, as
demonstrated in the previous studies, it is infeasible that a control signal
is sent before 1 s. Therefore, we minimize the time required to send a

command and we filter the unfeasible values (< 1 s).

In addition, the control signal y is computed according to the Equation 3.3, and
as explained in Section 3.2, the control signal depends on the combination of two
forces: Fyrec and Fppr. Moreover, the F,.. depends on the parameters w and
Y. Since all the other parameters are fixed as shown in Table 3.1, we can directly
refer to the control signal as y(w, V).

From these requirements, we have design a metric that for each combination of

w and v computes a score and it is based on the following three constraints:

1. we compute the signed distance between the current control signal y with
the nearest extreme of the band [thpin, thme| (Figure 3.4a), at each time
t € [0, Tiriq] with Ty.q the duration of the trial. Therefore, we define the

distant function fgistance, at time t as:

0 if yt(wad)) € [thminathmaﬂc]

fdistancet (yt(wa ¢)7 thmma thmax) = yt(w, lp> — thm,m Zf yt(w, w) € [O, thmm)

yt(wa lb) - thmax Z.f yt(wa ¢) € (thmaxa 1]
(3.7)

2. we introduce a function to filter the infeasible commands. Therefore, we
define fyiscara,, which depends on the selected couple [w, ], in order to

reject the control signals before 1 s (Figure 3.4b):

0 Zf El(yt(w7 ¢) S thm'm \ yt(wa 1/}) Z thmax)
fdiscardt (w7 ?/17 thmm; thmam) = U}Zth t e [0, 1]8

1 otherwise

(3.8)

3. we calculate the time that the control signal requires to reach the value 0

or 1 with the function f;,. for each couple of candidates [w, 1]. Therefore,
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it is designed as:

tr if (Y (w,9) =0V yp(w, ) =1)
ftime(waw>thminathmax> = A t* > 1s

Tiviar  Otherwise
(3.9)

An example of the metric with simulated data is reported in Figure 3.4.
The final metric is a combination of the functions previously described. Ini-

tially, we combine the two Equations 3.7 and 3.8:

Ntrials Tipiar t=t*

ffmal ((.U ¢ Z Z Z fdzstancet yt w ¢) mm7 max)'fdiscardt (wa 7707 thmzna thmax))

trial=1 t*=0 t=0

(3.10)
Then, we optimize the Equation 3.10 to search for the combinations of [w, ¢] with

the maximum score:
[wu w] = IS%X ff'mal (311)

Finally, we choose the best w*, )* among the candidates (obtained with the Equa-

tion3.11) using the following formula:

Ntrials Tirial

w', "= min Z Z ftzme Yt Wzﬂ/}z) min; hmar)) (3'12)

wzﬂ/}zG[W,w] tr—1

Furthermore, since the dataset includes online runs previously recorded with
the exponential discrete control system (explained in Section 3.1), for our pseudo-

analysis we use as the ground-of-truth of each trial the predicted class.

3.3.3 Preliminary results

The metric previously described identifies a single combination of w and ). There-

fore, the results are subdivided into two categories:

1. Symmetrical: search for a combination of w and ¢ that is the same for both

classes.

2. Asymmetrical: search for a combination of w and v that can be different

for the two classes.

With these combinations of w, then a regression is applied to find a relation

between w and . Therefore, we search for two different relations, one for the

32



°
o

control signal (y)
o
w

0.4
03+
0.2}
0.1+
oL 4 i A 1 1 e J
0 1 2 3 4 5 6 7

time [s]

(a) Contribution of the fdistcmc&t. ‘Where in the general sum for these 7
seconds the green zone is associated with positive values, the red zone
with negative values and the grey zone with null values.

1 1
0.9 :
1
0.8
0.7

=
:
N

control signal (y)
1N
I
B
4

0.3
0.2
0.1
1
o ' ! . . L " 1
0 1 2 3 4 5 6 7
time [s]
(b) fdiscard function.
v
(
1 I
0.9 :
I

o
®

°
~

°
o

control signal (y)
o o
> w0

o o o
=N W

o
el ——————— -

time [s]

(¢) The sum of the previous conditions.

Figure 3.4: Application of our metric with 7 seconds simulated trial and with w = 0.2,1 = 0.1.

33



symmetrical case and the other for the asymmetrical one. The founded relations
then need to be tested and validated with a following experiment, since we used
prerecorded data to find them. Furthermore, in a real-time experiment, there is

the influence of mutual learning between the system and the user.

3.3.3.1 Symmetrical case

In the symmetrical case the metric explained in Section 3.3.2 provides the same
value of w and ¢ for both classes. To clarify, Figure 3.5 shows an example of
our metric for a trial where the user performs a both-hands task (upper case).
We report the control signal associated with three combinations of w and 1,
specifically, lines in green, cyan and orange are tied to the continuous control
modality (dynamical system) and the red dashed is related to the discrete control
modality (exponential smoothing system). In the figure, the best combination of
w and 1), calculated by our metric, is in orange (w = 0.2,¢ = 0.05). The other
combinations are discarded by the optimization. Table 3.2 reports the best w
and 1 for each subject. In addition, in the same table, there are also reported
the accuracy associated with a discrete approach (exponential smoothing filter)

and the accuracy of a continuous control system (dynamical system). Given these

Accuracy
. Accuracy continuous case,
Subject w ¥ discrete case with discrete prediction
as ground truth
S1 0.2 0.05 67.5% 96.25%
S2 0.025 1.00 72.5% 92.5%
S3 0.025 0.95 73.75% 85%
S4 0.475 0.05 92.5% 97.5%
SH 0.425 0.05 95% 90%
S6 0.025 1.00 92.5% 80%
S7 0.35 0.05 65% 76.67%
S8 0.175 0.20 66.67% 68.33%
S9 0.25 0.60 80% 83.33%
S10 0.4 0.05 81.11% 93.33%
S11 0.325 0.05 96.67% 91.67%

Comparison of the accuracy in the discrete case (e.g., via the exponential smoothing) vs. continuous
case (e.g., via the optimised dynamical control framework).

Table 3.2: The best w and v derived from the optimisation for each subject.

values, we apply a regression analysis in order to find a correlation between w and
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The signal is related to the subject S5 while he/she is performing a MI task of both hands (the control
signal is 1 if the signal decode is both hands, and 0 if it is both feet). The figure reports in light grey
the band selected according to the value of thy,in and thmaes in Table 3.1, in dark grey the Equation
3.8, in dashed light blue the control threshold used with the discrete control system, in bashed red
the control signal compute with the exponential smoothing filter, in black dots the output of the
classifier, and in green, light green, orange the control signal compute with the dynamical system.
Moreover, the difference between the signal associated with green, orange and cyan is related to the
different w and v used. In detail, orange used w = 0.05,1 = 0.05, green w = 0.425,1 = 0.05 and light
green w = 0.45,% = 0.05. The optimization returns as the best combination of w and ¢ the one used
for the control signal reported in green. In this trial, the green is better than the light green because
it reaches 1, and it is better than the orange because it follows better the raw probability (and also
the classification is correct).

Figure 3.5: Example of our metric (symmetric behaviour) with real data.

1 intending to verify our hypothesis. In Figure 3.6 we report the achieved results.
We found a second-degree polynomial function 1) = 6.6652-w? —5.2772-w+1.0884.
In addition, we use R? which measures the percentage of the dependent variable

variation that our model can explain. Our metric reaches R? = 0.8167, which

confirms that a relation between w and ) exists.

3.3.3.2 Asymmetrical case

In the asymmetrical case, it is possible to have different values between ws and
s per class. An example is reported in Figure 3.7, where the same subject (S5)
and the same trial reported in Figure 3.5 are evaluated in the asymmetrical case.

In this case, the optimal solution is the one in orange with w; = 0.2, wy =

0.45, ¥ = 0.6, ¥ = 0.05.
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The black dots represent the optimal values for each subject. The curve in cyan represents the relation
found from data and it is described with the equation: 1 = 6.6652 - w? — 5.2772 - w + 1.0884.

Figure 3.6: Dependency between w and % in the symmetric case.

In Table 3.3 all the combinations for all eleven subjects are reported. In this case,
our metric is used to find the best combination of wi, ws, 11, 1 without the
constraint that w; = wy. Furthermore, ranges for wq,ws and 1,1 are reported
in Table 3.1.

Accuracy
continuous case,
with discrete prediction
as ground truth

Accuracy

Subject  wy w2 U 2 discrete case

S1 0.275 0.475 0.10 0.05 67.5% 96.25%
S2 0.025 0.025 1.00 0.95 72.5% 87.5%
S3 0.025 0.025 0.85 1.00 73.75% 83.75%
S4 0.35 0.05 0.50 0.05 92.5% 95%

S5 0.20 0.45 0.60 0.05 95% 97.5%
S6 0.025 0.025 1.00 1.00 92.5% 80%

S7 0.375 0.10 0.30 0.10 65% 76.67%
S8 0.425 0.025 0.50 0.90 66.67% 73.33%
S9 045 025 0.05 0.95 80% 95%

510 045 0.40 0.10 0.05 81.11% 92.22%
S11 0.075 0.275 0.05 0.05 96.67% 91.67%

Comparison of the accuracy in the discrete case (e.g., via the exponential smoothing) vs. continuous

case (e.g., via the optimised dynamical control framework).

Table 3.3: The best wi, wa and 1, Y2 derived from the optimisation for each subject.
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The signal is related to the subject S5 while he/she is performing a MI task of both hands (the
control signal is 1 if the signal decode is both hands, and 0 if it is both feet). The figure reports in
light grey the band selected according to the value of thy,in and thmae in table 3.1, in dark grey
the function 3.8, dashed light blue the control threshold used with the discrete control system, in
bashed red the control signal compute with the exponential smoothing filter, in black dots the output
of the classifier, and in green, brown, blue the control signal compute with the dynamical system.
Moreover, the difference between the signal associated with green, brown and blue is related to the
different w and @ used. In detail, brown used w; = 0.2, wa = 0.45, ¥1 = 0.60, 12 = 0.05, green
w1 = 0.375, wy = 0.475, ¢ = 0.80, 2 = 0.3 and blue w1 = 0.05, wy = 0.25, 1 = 0.05, ¥ = 0.5.
The optimization returns that the best combination of ws and s is the one used for the control
signal reported in brown. In this trial, the brown is better than the green because it reaches 1, and
it is better than the blue because it follows better the raw probability (and also the classification is
correct).

Figure 3.7: Example of our metric (asymmetric behaviour) with real data.

Given these values, we apply a regression analysis in order to find a correlation
between w and . In this case, for each subject, we have two w and two .
Therefore, the points plotted in Figure 3.8 are divided into the two classes. In
this case, we found a linear relation ¢ = —1.4742 - w + 0.7836 with R? = 0.4078.
We selected this relation since it has a higher R? value and since it is more

manageable than a cubic or quadratic one as represented in Figure 3.8.
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The black dots represent the optimal values of w and @ for each subject, divided into two classes:
both hands (< subject >.1) and both feet (< subject >.2). The curve in blue represents the relation
found from data and it is described with the equation: ¥ = —1.4742 - w + 0.7836.

Figure 3.8: Dependency between w and v in the symmetric case.
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Chapter 4
Experimental design

The users are required to perform MI tasks of both hands versus both feet. Since
the dynamic system provides better results for the INC state (at least for the
symmetrical case as demonstrated in [15]) than the exponential, we add the rest
task in the evaluation, in which the user must relax without thinking about hands
or feet. In addition, users signed informed consent after the experiment was
explained to them. Furthermore, the experiments were conducted in accordance
with the Declaration of Helsinki.

Remembering the hypothesis and the aim of this thesis exposed in Section 1.5.1,
we want to validate the relations between the parameters used in the dynamic
system that we introduced in Section 3.3.3 through this experiment. In addition,

we compare the dynamic system with the exponential one.

4.1 Protocol

The sessions of the experiment were distributed over three days in one month
and the duration of each of them is about two hours and a half. Figure 4.1
schematically reports the pipeline followed in the experiment. The first session
was dedicated to the calibration, with three runs, and to the evaluation with six
shuffled runs. The aim of the evaluation runs was to compare the exponential
and the dynamic system in the symmetrical modality. This means that for the
exponential the thresholds that the user must reach are the same for both classes
and for the dynamic that the same w is chosen for both classes. Additionally, we
fixed the thresholds to 0.7 and w to 0.2, in this way we have the peaks of the
potential free force that coincide with the thresholds used with the exponential

system (Figure 3.1b). However, it is already proven that the dynamic system
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| 3 Calibration runs I

|3 Evaluation runs exponential system|

SYM

|3 Evaluation runs dynamic system|

2 Session

|2/3 Evaluation runs exponential systeml

|3 Evaluation runs exponential systeml

ASYM

I3 Evaluation runs dynamic systeml

3 Session

|2/3 Evaluation runs exponential systeml

s |3 Evaluation runs exponential system|

> - -
»n |3 Evaluation runs dynamic system|

The experiment is split into three days. On the first day, with the calibration runs, we create the
decoder that can be updated in the following days by checking with the first two or three runs if the
user has control of the feedback. Moreover, in the first session, we test the relation for the dynamic
parameters reported in Figure 3.6. In the second session, we use the asymmetrical relation shown in
Figure 3.8 for the dynamic system; instead for the exponential one we use thresholds with different
values for both classes. Lastly, in the third session, we use the symmetrical relation between w and
1 with the asymmetrical dynamic system and we compare it with the asymmetric exponential.

Figure 4.1: Schematic representation of the experimental structure.

provides better results than the exponential with a symmetrical behaviour [15].
Nevertheless, we want to validate the founded relationship between w and

(Figure 3.6), so we use it to calculate the value of ¢ with w = 0.2.

The second session starts with two or three evaluation runs with the expo-
nential system with the same threshold used in the first session, in order to check
if is necessary to update the decoder because the user activates different channels
than the ones selected in the first session. After this preliminary step, the user
performs six evaluation runs, divided into three for the asymmetrical dynamic
system and three for the asymmetrical exponential system. In this case, we man-
ually select the thresholds used with the exponential system considering that the
two thresholds must have different values. Instead, the values for the dynamical
system are chosen considering the same transformation used in the first session,
so: w1 = thy — 0.5 and wy = thy — 0.5, subsequently, the values of 1,1, are
calculated with the relation founded for the asymmetrical case shown in Figure

3.8.

In the third session, as in the second one, the first two or three evaluation runs
use the exponential system so that we can understand if it is necessary to update

the decoder. Then three evaluation runs with an asymmetrical behaviour of the
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exponential system and three with the dynamic asymmetric system are shuffled
and tested. In addition, the relation used to calculate the relative 1,1, for the
dynamic system is the one in Figure 3.6. Moreover, the operator chooses the
thresholds for the exponential system and the value of w; and w, for the dynamic
system. Therefore, there are two significant differences between this session and
the second one. Firstly, the relation used to calculate ¢y and 1, is the one used
also for the symmetrical case, shown in Figure 3.6. Secondly, the operator chooses

manually the values for w; and wsy, like the threshold used for the exponential case.

In all the sessions, the evaluation runs that test the dynamic or the expo-
nential system are shuffled, in this way, there is no learning effect. Additionally,
each run is composed of 30 trials: 10 for both hands, 10 for both feet and 10
for rest (5 fixed feedback, which provide no feedback to the user, and 5 moving
feedback, where the user moves the wheel). Since in the experiments we use the
exponential and the dynamic control system, we add to the feedback some lines,

as we can see in Figure 4.2. In this way, the user can understand which control

system is been used. This is useful for the questionnaire administrated to the

N,

users at the end of each session.

(a) The steering wheel feedback with the exponential con- (b) The steering wheel feedback with the dynamic control
trol system. In this feedback, only the thresholds that system. This feedback shows the thresholds that the
the user must reach with his/her brain signals are user must reach and two more black lines that repre-
shown. sent the pick of the potential free force (explained in

Section 3.2).

Figure 4.2: The two different visual feedback with the steering wheel.

For instance, Figure 4.3 shows a user that is performing the first session.
Moreover, Figure 4.3a is a calibration run, where the user performs both hands
task; Figure 4.3b is an evaluation run of the exponential control system where
the user performs a both feet task; instead Figure 4.3c is an evaluation run of
the dynamic control system where the user performs a rest task. Therefore we

associate each colour with a motor imagery task: purple means both hands, green
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means both feet and blue means rest.

4.2 Users

For this study, 12 voluntary subjects take place in the experiment. All users
were healthy and not affected by any pathologies. Additionally, the average age
is 24 + 3 years and all the users except for S12, have no experience with a BMI
system. The participants dedicate three days in the month for the experiment,
unfortunately, not all twelve have this possibility. Therefore, we allow some
subjects to take part only in two of the three sessions in order to better validate
our new possible outcome hypothesis between two different sessions.

Users were informed of the session’s goals and the process for recording data
before each session began. Furthermore, participants at each session, sign a
consent document that has a full explanation of how recorded data will be used
and how privacy will be treated.

Tables 4.1, 4.2 and 4.3 report the parameters used for the exponential control
system and the dynamic one for each section and each subject.

Lastly, these users are not the same involved in the data collection used for the

searching of the relation between w and v reported in Section 3.3.2.

Session 1
Subject Exponential Dynamic
parameters parameters
S1 bh=0.7, bf=0.7 | w = 0.20, ¢ = 0.60
S2 bh=0.7, bf=0.7 | w = 0.20, ¢ = 0.60
S3 bh=0.7, bf=0.7 | w = 0.20, ¢ = 0.60
S4 bh=0.7, bf=0.7 | w = 0.20, ¢ = 0.60
S5 bh=0.7, bf=0.7 | w = 0.20, ¢ = 0.60
S6 bh=0.7, bf=0.7 | w = 0.20, ¢ = 0.60
ST bh=0.7, bf=0.7 | w = 0.20, ¢ = 0.60
S8 bh=0.7, bf=0.7 | w = 0.20, ¢ = 0.60
S9 bh=0.7, bf=0.7 | w = 0.20, ¢ = 0.60
S10 bh=0.7, bf=0.7 | w = 0.20, ¢ = 0.60
S11 bh=0.7, bf=0.7 | w = 0.20, ¢ = 0.60
S12 bh=0.7, bf=0.7 | w = 0.20, ¢ = 0.60

Table 4.1: The table reports all the values used for the exponential and dynamical systems in the
first session for each subject.
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(a) User doing the calibration. The subject performs both hands motor im-

agery task.

(b) User doing the evaluation of the symmetrical exponential control system.
The subject performs both feet motor imagery task.

(c) User doing the evaluation of the symmetrical dynamic control system.
The subject performs rest motor imagery task.

Figure 4.3: A user performing the first session.
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Session 2
Exponential Dynamic
parameters parameters
S1 bh=0.65, bf=0.70 | wy, = 0.15, wyy = 0.20, ¢ = 0.60
S2 bh=0.65, bf=0.70 | wen, = 0.15, wpy = 0.20, ¢ = 0.60
S3 bh=0.75, bf=0.85 | wyp, = 0.25, wyr = 0.35, ¢ = 0.60
S4 bh=0.65, bf=0.70 | wyp, = 0.15, wpy = 0.20, ¢ = 0.60
SH bh=0.70, bf=0.75 | wpp, = 0.20, wpy = 0.25, ¢ = 0.60
S6 bh=0.65, bf=0.75 | wy, = 0.15, wyy = 0.25, ¢ = 0.60
ST bh=0.75, bf=0.65 | wyp, = 0.25, wyy = 0.15, ¢ = 0.60
S8 bh=0.65, bf=0.70 | wyp, = 0.15, wyr = 0.20, ¢ = 0.60
S9 - -
S10 - =
S11 - -
S12 - =

Subject

Table 4.2: The table reports all the values used for the exponential and dynamical systems in the
second session for each subject. Additionally, some subjects have no value since they did
not participate in this session.

Session 3
Exponential Dynamic
parameters parameters
S1 bh=0.65, bf=0.70 | wy, = 0.325, wpy = 0.250, ¢ = 0.40
S2 bh=0.70, bf=0.65 | wy, = 0.280, wyy = 0.315, ¢ = 0.46
S3 bh=0.80, bf=0.75 | wy, = 0.100, wys = 0.150, ¢ = 0.60
S4 bh=0.70, bf=0.60 | wy, = 0.300, wyy = 0.400, ¢ = 0.40
S5 - -
S6 - -
S7 -
S8 bh=0.65, bf=0.70 | wy, = 0.315, wyy = 0.275, ¢ = 0.59
S9 bh=0.80, bf=0.85 | wy, = 0.215, wyy = 0.190, ¢ = 0.60
S10 bh=0.65, bf=0.70 | wy, = 0.380, wyy = 0.330, ¢ = 0.59
S11 bh=0.70, bf=0.75 | wy, = 0.400, wyr = 0.300, ¢ = 0.60
S12 bh=0.65, bf=0.75 | wy, = 0.400, wpy = 0.150, ¢ = 0.60

Subject

Table 4.3: The table reports all the values used for the exponential and dynamical systems in the
third session for each subject. Additionally, some subjects have no value since they did
not participate in this session.
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Chapter 5
Results

This chapter exposes all the results obtained in the three sessions. The first
analysis is regarding the features selected for the decoder. Figure 5.1 shows the
spatial and spectral consistency of the features exploited in the BMI decoder
across participants. The most frequent activated channel is C4 in the p band (20
times respectively versus 5 times for Cz), instead in the § band are Cz and C4

(27 and 28 times respectively).

(a) Most selected features for p bands. (b) Most selected features for 8 bands..

Figure 5.1: Topographic representation of the most selected features during the calibration phase
for p and 8 bands.

Then, for each subject and for each session we analyze:

e general accuracy. It is expressed as:

Number of hit correct (5.1)

accs = .
Number of trials

where s is the subject taken into consideration. Additionally, only the two

classes, hands and feet, are considered for this accuracy. Therefore, the
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number of trials for each subject is fixed at 20, with 10 trials for both
hands and 10 for both feet.

e accuracy with rejection. For each trial, we impose a timeout at 21 s in order
to finish the trial in at most 21 s to not stress too much the user. Therefore,
some trials can reach this time without reaching the hit threshold. Hence

the formula is:
Number of hit correct

(5.2)

accs = -
Number of sent signals

where s is the subject considered and, as before, the trials taken into account
are the ones for both hands or both feet.

e time at rest. It is when the user can stay in the INC state and we analyze
it when the system asks the user to perform the resting. Additionally, we
use two different rests, one that provides feedback to the user and another

that does not, respectively time rest move and time rest fized.

e the results of a questionnaire. Each user at the end of the session must
answer a questionnaire to analyze the workload they perceived during the
experiment with both control systems. Additionally, we choose the NASA
Task Load Index (NASA-TLX) since it has been already validated to assess

the user’s perceived workload [54, 55].

5.1 Experimental results: first session

In the first session, the user performs three evaluation runs with the exponen-
tial smoothing filter reported in Section 3.1 and three with the dynamic system
explained in Section 3.2. All twelve participants took part in this session. Further-
more, the values used for the exponential and the dynamic system are reported
in Table 4.1. In this session, as reported in Section 4.1 only a symmetrical be-
haviour is allowed for both control systems. Moreover, the thresholds used for
each subject are fixed at 0.7, while the omega is fixed at 0.2, which is computed
as th — 0.5 where th is 0.7 for both classes. In addition, for the dynamic control
system, we use the relation reported in Figure 3.6 to compute the values for ¢
given w.

Figure 5.2 reports the general accuracy. In detail, Figure 5.2a shows the accu-
racy for all the subjects with the exponential smoothing filter. As we can see, only

five participants reach an accuracy greater than 70% in at least one run. Instead,
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Figure 5.2b shows the accuracy for all the users with the dynamical system. In
this case, four subjects reached an accuracy greater than 70%. Additionally, a
subject may have an accuracy of 0%, as for S4 with both control systems and S2
with the dynamic. Figure 5.2c confirms that only three subjects obtain, in mean,

better results with the dynamical system than with the exponential.

Exponential Dynamic
100 General accuracy for each subject for all the runs 100 General accuracy for each subject for all the runs
90 EEunz| A 90
Cruns
80 il 80
70 H 70
E w0 g w0
> >
3 50 g s0
g 2
5 5
o 40 o 40
< <
30 H 30
20 H 20
10 H 10
0 - 0 -
§1 S2 S3 sS4 S5 S6 S7 S8 S9 S10 S11 S12 S§1 S2 S3 S4 S5 S6 S7 S8 SO S10 S11 S12
Subject Subject
(a) The figure shows the general accuracy of all three runs (b) The figure shows the general accuracy of all three runs
made by each subject with the exponential control sys- made by each subject with the dynamic control system
tem and the parameters reported in Table 4.1. and the parameters reported in Table 4.1.

G I f h subject
100 - eneral accuracy for each subjec 53

059
90+
80+ o3

70 58
60

o511
50 -

40 - '5155
30+

20+ 886

10 -

General accuracy dynamic system [%]

54

0 . . . .
0 20 40 60 80 100

General accuracy exponential system [%]

(c) In the figure, each subject is represented by the mean accuracy obtained
for both control systems. In addition, a bisector divides the plane into two
areas, the upper represents the zone in which the dynamic control system
is better than the exponential one, in the lower zone is the contrary.

Figure 5.2: The general accuracy computed with also the trials that reach the timeout in session 1.

Figure 5.3 reports the mean between the three runs of the accuracy with
rejection for each subject. As we can see, the dynamic control system provides
better results for all the users except for three users: S2, S8, and S11. This is an
important factor because it means that the dynamic control system sends fewer
wrong signals than the exponential.

To show better the result of the two typologies of accuracy, Figure 5.4 shows
that the exponential system provides, in mean, better results if we are talking

about general accuracy, instead the dynamic system is better if we look at the
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The figure shows the accuracy with rejection for each subject. In addition, each bar is the mean of
the three runs of the respective user and control system.

Figure 5.3: accuracy with rejection in session 1.

correctness of the sent signals. Moreover, the exponential system has general
accuracy of 61.25%, while removing the trials in which the system reaches the
timeout, which corresponds to 18% of the total trials, the accuracy becomes
71.99%. Instead, the dynamic system has a general accuracy of 51.81% and an
accuracy with rejection of 76.53% by removing the trials that reach the timeout
which is 35.56% of all the trials.

Additionally, we consider the time in which the user can stay in an INC
state. Therefore, we analyze the period of the rest trials. In other words, we
analyze the time in which the user can maintain rest when the system asked
to he/she to perform the resting. Furthermore, we can see in Figure 5.5 that
for both feedback used (the fixed and the moving), the dynamic control system
provides better results. In order to show better the time results we report them
in Figure 5.6, in which the exponential filter reaches a time of 6.37s with the fixed
feedback and 7.89s with the moving feedback, indeed the dynamic system 7.46s
and 10.86s respectively. Therefore, the dynamic control system is better than the
exponential one, especially for moving feedback.

The last aspect we analyze is user-perceived workload. Therefore, Figure
5.7 reports the results of the NASA-TLX questionnaire for each subject. In
general, seven subjects perceived the dynamic to be heavier than the exponential
and six the opposite. One interesting aspect is that users who achieve better

performance with dynamic perceive less workload with this control system than
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The image shows that the dynamical system provides better results for the accuracy with rejection
while the exponential is better if we consider the general accuracy. Therefore, the exponential system
obtains 61.25% and 71.99%. Indeed, the dynamical system reaches 51.18% and 76.53%, respectively
for general accuracy and accuracy with rejection.

Figure 5.4: The figure reports both the accuracies calculated in session 1.
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(a) The figure is reported for each subject the mean time (b) The figure is reported for each subject the mean time
in which a user can stay at rest. Moreover, it considers in which a user can stay at rest. Moreover, it considers
only fixed feedback. Furthermore, the results show only moving feedback. Furthermore, the results show
that the dynamic control system is better than the that the dynamic control system is better than the
exponential for all subjects except S1, S3 and S11. exponential for all subjects except S1 and S2.

Figure 5.5: Time at rest for each subject in session 1.

with exponential.

5.2 Experimental results: second session

In the second session, the user performs three evaluation runs with the exponential
smoothing filter and three with the dynamic system, for both with asymmetrical
behaviour, as reported in Section 4.1. Moreover, in this session, we manually

select the thresholds used for the exponential control system, on the contrary,
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The exponential control system reaches 6.37s with the fixed feedback and 7.89s with the moving
feedback. Instead, the dynamic system reaches 7.46s and 10.86s. Therefore, the dynamic control
system allows the users to remain for more time in the INC state than the exponential one.

Figure 5.6: The timing results over all subjects for fixed and moving feedback in session 1.

00 Nasa TLX: User's perceived workload first session
1 T T T T T T T T T T T
I £ ponential

90 + [ Dynamic R

80 1

70 1

60 - 1

50 1

Workload

30 1

200+ 1

S1 52 53 54 S5 S6 S7 S8 S9 510 511 512
Subject

Figure 5.7: NASA-TLX for each subject for the first session

the value of w; and ws are computed according to the relation:
w=1th—0.5 (5.3)

where th is the threshold used in the exponential control system. In addition, for
the dynamic control system we use the relation reported in Figure 3.8 to compute
the values of ¢, and 1 given w; and ws.

Eight subjects participated in this session and the values used are reported in

50



Table 4.2.

The general accuracy is reported in Figure 5.8. Minutely, Figure 5.8a shows
the accuracy for all the subjects with the exponential smoothing filter. In this
case, five subjects reach an accuracy greater than 70% in at least one run. On the
contrary, Figure 5.8b reports the accuracy obtained with the dynamical system,
in this case, only two subjects reach at least 70%. Moreover, subjects S4, S7
and S8 have an accuracy of 0% in at least one trial. Figure 5.8¢c shows that no
subjects obtain, on average, better results with the dynamical system than with

the exponential control system. In Section 6 we will discuss these results.

Exponential Dynamic
General accuracy for each subject for all the runs General accuracy for each subject for all the runs
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(a) The figure shows the general accuracy of all three runs (b) The figure shows the general accuracy of all three runs
made by each subject with the exponential control sys- made by each subject with the dynamic control system
tem and the parameters reported in Table 4.2. and the parameters reported in Table 4.2.
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(c) In the figure, each subject is represented by the mean accuracy obtained
for both control systems. In addition, a bisector divides the plane into two
areas, the upper represents the zone in which the dynamic control system
is better than the exponential one, in the lower zone is the contrary.

Figure 5.8: The general accuracy computed with also the trials that reach the timeout in session 2.

Figure 5.9 shows the accuracy with rejection. In this case, only S2 and S6
reach better results with the dynamic control system.
Both accuracies are summarized in Figure 5.10 in which the exponential

smoothing filter obtains 69.38% for the general accuracy and 74.27% for the
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The figure shows the accuracy with rejection for the dynamical system and the exponential system
for all the subjects. Additionally, each bar is the mean of the three runs of the respective user and
control system.

Figure 5.9: Accuracy with rejection in session 2.

accuracy with rejection. On the contrary, the dynamic control system reaches
31.88% and 64.99%. Therefore, in this case, the exponential control system has

better results than the dynamic for both accuracies.

Accuracy
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I Accuracy general
90 I Accuracy with rejection | -

Accuracy [%]

Exponential Dynamic
Control system

The exponential has obtained a general accuracy of 69.38% while the accuracy with rejection is
74.27%. On the contrary, the dynamic system has 31.88% and 64.99% respectively. Therefore, the
exponential control system has better results than the dynamic with both accuracies.

Figure 5.10: The figure reports both the accuracies calculated in session 2.

In addition, we also consider the time in which the user can stay in an INC
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state. In other words, we analyze the time in which the user can stay at rest
when the system asked to he/she to perform the resting. Furthermore, we can
see in Figure 5.11 that for both feedback used (the fixed and the moving), the
dynamic control system provides better results. Only S3 have better results with

the exponential control system for both the feedback. Figure 5.12 shows better
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(a) The figure is reported for each subject the mean time (b) The figure is reported for each subject the mean time
in which a user can stay at rest. Moreover, it considers in which a user can stay at rest. Moreover, it considers
only fixed feedback. Furthermore, the results show only moving feedback. Furthermore, the results show
that the dynamic control system is better than the that the dynamic control system is better than the
exponential for all subjects except S3. exponential for all subjects except S3 and S5.

Figure 5.11: Time at rest for each subject in session 2.

the comparison between the exponential and dynamic systems for the fixed and
moving feedback. Therefore the users with the exponential control system can
stay at rest for 6.42s and 10.74s with fixed and moving feedback respectively.
Instead, subjects using the dynamic control system can stay in INC for 8.58s and
15.44s. Therefore, we can see that the dynamic control system is better than the
exponential one, especially for the moving feedback.

The last aspect we analyze is user-perceived workload. Figure 5.13 reports
the results of the NASA-TLX questionnaire for each subject. In general, all the
subjects, except S3, perceive more workload with the dynamic than the expo-
nential. Moreover, S3 reaches better general accuracy with the dynamic control

system and he/she feels the same workload with both control systems.

5.3 Experimental results: third session

In the third session, the user performs three evaluation runs with the exponential
smoothing filter and three with the dynamic system, for both with asymmetrical
behaviour, as reported in Section 4.1. Moreover, in this session, we manually
select the thresholds used for the exponential control system and the values of

w1, wy and ¢ for the dynamic control system. In addition, for the dynamic control
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The exponential control system reaches 6.42s with the fixed feedback and 10.74s with the moving
feedback. Instead, the dynamic system reaches 8.58s and 15.44s. Therefore, the dynamic control
system allows the users to remain more time in the INC state with respect to the exponential.

Figure 5.12: The timing results over all subjects for fixed and moving feedback in session 2.
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Figure 5.13: NASA-TLX for each subject for the second session

system, we use the relation reported in Figure 3.6 to compute the values of
and 1, given w; and ws.

Nine subjects participated in this session and the values used are reported in
Table 4.3.

Figure 5.14 reports the general accuracy. In detail, Figure 5.14a shows the
general accuracy for all the subjects with the exponential smoothing filter. In

this case, seven subjects reach an accuracy greater than 70% in at least one run.
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Additionally, the lowest accuracy is reached by S4 and it is 35%. On the contrary,
Figure 5.14b reports the accuracy obtained with the dynamical system, in this
case, eight subjects reach at least 70%. A big improvement is reached by S2.
Figure 5.14c shows that four subjects (S2, S3, S9 and S11) obtain better results
with the dynamical system, three (S1, S4, S10) with the exponential system and

the last two have the same results with both control systems.
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(a) The figure shows the accuracy of all three runs made (b) The figure shows the accuracy of all three runs made
by each subject with the exponential control system by each subject with the dynamic control system and
and the parameters reported in Table 4.3. the parameters reported in Table 4.3.

General accuracy for each subject

50 -

20

General accuracy dynamic system [%]

10+

0 . . . .
0 20 40 60 80 100
General accuracy exponential system [%]

(c) In the figure, each subject is represented by the mean accuracy obtained
for both control systems. In addition, a bisector divides the plane into two
areas, the upper represents the zone in which the dynamic control system
is better than the exponential one, in the lower zone is the contrary.

Figure 5.14: The general accuracy computed with also the trials that reach the timeout in session
3.

Figure 5.15 shows the accuracy over the sent signals. In this case, all subjects
reach better results with the dynamic control system except for S9 and S12.

To show better the accuracy results we report them in Figure 5.16. The
exponential smoothing filter obtains 73.70% for the general accuracy and 81.46%
for the accuracy over all sent signals. On the contrary, the dynamic control system

reaches 75.37% and 86.72%. Therefore, in this case, the dynamic control system

55



Accuracy with rejection

100 T T T T
I £ xponential
90 | I Dynamic 1
80 b
70 b b

60 - 1

a0 1

Accuracy [%]
un
(=]

20 ¢ 1

51 52 53 54 58 59 510 511 512
Subject

The figure shows the accuracy over sent signals for the dynamical system and the exponential system.
In addition, each bar is the mean of the three runs of the respective user and control system.

Figure 5.15: Accuracy over the sent signals in session 3.

has better results than the exponential system for both accuracies.
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The exponential control system has obtained a general accuracy of 73.70% and an accuracy over all
sent signals of 81.46%. On the contrary, the dynamic system reaches 75.37% and 86.72% respectively.
Therefore, the dynamic system has better results than the exponential system with both accuracies.

Figure 5.16: The figure reports both the accuracies calculated in session 3.

Additionally, we also consider the time in which the user can stay in an INC
state. In other words, we analyze the time in which the user can stay at rest
when the system asked to he/she to perform the resting. Furthermore, we can
see in Figure 5.17 that for both feedback used (the fixed and the moving) that
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the dynamic control system provides better results. In detail, Figure 5.17a, which
represents the time for the fixed feedback, shows that the dynamic control system
is better than the exponential for all the subjects except S1 and S9. In addition,
the moving feedback, reported in Figure 5.17b, shows that five subjects perform

better with the dynamic control system and four with the exponential one. Figure
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(a) The figure reports for each subject the mean time in (b) The figure reports for each subject the mean time in
which a user can stay at rest. Moreover, it considers which a user can stay at rest. Moreover, it considers
only fixed feedback. Furthermore, the results show only moving feedback. Furthermore, the results show
that the dynamic control system is better than the that S1, S3, S9 and S11 can stay more time at rest
exponential for all subjects except S1 and S9. with the exponential control system, while S2, S4, S8,

S10 and S12 with the dynamic control system.

Figure 5.17: Time at rest for each subject in session 3.

5.18 shows better the comparison between the exponential and dynamic systems
for the fixed and moving feedback. Therefore the users with the exponential
control system can stay at rest for 6.68s and 8.21s with fixed and moving feedback
respectively. Instead, subjects using the dynamic control system can stay in INC
for 7.00s and 10.00s. Therefore, we can see that the dynamic control system is
better than the exponential one.

The last aspect we analyze is user-perceived workload. Figure 5.19 reports
the results of the NASA-TLX questionnaire for each subject. In general, all the
subjects, except S4, perceive less workload with the dynamic than the exponen-
tial. This confirms our hypothesis that an asymmetric dynamic control system

provides less workload to the user.

57



1o Mean time resting

Exponential
Dynamic

Time [s]

Fix Move
Feedback

The exponential control system reaches 6.68s with the fixed feedback and 8.21s with the moving
feedback. On the contrary, the dynamic system reaches 7.00s and 10.00s. Therefore, the dynamic

control system provides better results than the exponential one.

Figure 5.18: The timing results over all subjects for fixed and moving feedback in session 3.
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Figure 5.19: NASA-TLX for each subject for the third session
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Chapter 6
Discussion

In this chapter, we will analyze the results reported in Chapter 5. As highlighted
in Section 1.5.1 these experiments are performed to validate our initial hypothe-
ses: there is a relation between w and 1, and the validation of the asymmetrical
dynamic system. In addition, we need to perform these three experiment sessions
because the BMI system is strictly user depend, so we need to validate our hy-

potheses through real experiments and not with simulated ones.

In the first session, we use both control systems symmetrically. Therefore, for
all the subjects, the same thresholds are used for both hands and both feet and
are at 0.7. Also, the dynamic control system works symmetrically with the same
w that is fixed at w = 0.2 because we follow the relation w = threshold — 0.5.
In this way, the valley’s peaks shown in Figure 3.6b are at 0.7 and 0.3 which
are the thresholds used for the exponential control system, using only one raw
probability since we have only two classes.

The results reported in Section 5.1 show that the exponential is more accurate
in the general case since it reaches 61.25% while the dynamic obtains 51.18%.
Instead, the dynamic control system has better accuracy over sent signals 76.53%
over the 71.99% obtained by the exponential one. This shows that the dynamic
control system allows users to send fewer wrong control signals.

Looking at the time in INC, the dynamic control system is higher for fixed and
moving feedback than the exponential one.

Therefore, with this experiment, we confirm what was reported also in [15] be-
cause the accuracy is pretty similar for both cases and the time in INC is better

for the dynamic control system.
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In the second session, we use both control systems asymmetrically. In this
case, we manually select the thresholds used for the exponential control sys-
tem, while keeping the same reasoning used in the previous session, we compute
wy =threshold both hands — 0.5 and wy = threshold both feet —0.5; for all sub-
ject the parameters are reported in Table 4.2. In addition, we use the relation in
Figure 3.8 to calculate the other parameters for the dynamic control system.
The results reported in Section 5.2 show that the exponential control system
is more accurate than the dynamic for both accuracies calculated. In addition,
looking at the time the dynamic is better than the exponential by more or less 2
s for the fixed feedback and 5 s for the moving feedback.

These results do not provide that the dynamic control system is better than the

exponential one especially, for accuracy. Therefore, we hypothesise:

e The asymmetric relation is wrong. This is because with a too-high 1 the
subject cannot overtake the potential valley (Figure 3.3b), therefore for the
user is too difficult to send a command. This is also visible in the huge

difference in the timing of rest with both feedback.

e The relation that we hypothesize exists between w;, wy and the respective

threshold of the exponential control system is wrong.

e We manually select the best parameter for the exponential control system,
but not for the dynamic. Therefore, we favour exponential control over
dynamic control because we found pseudo-optimum values for it and not
for the other.

Therefore we proposed some corrections for the third session:

e Use the symmetrical relation also for the asymmetrical dynamic system.

Since it allows having smaller s values.

e Manually select the value of wy, ws and ¢ for the dynamic control system
as for the thresholds of the exponential control system, based on the user’s

perception of controlling the BMI.

In order to validate our hypotheses we perform a third session.

In the third session, we use both control systems asymmetrically, we select
manually all the required values for the parameters, which are reported in Table
4.3.
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Figure 6.1: NASA-TLX in general for each session

The results reported in Section 5.3 confirm our hypothesis. Also, the hypotheses
formulated to understand the second session are correct since following them we
have that the dynamic control system allows users to stay more in INC state for
both feedback, as reported in Figure 5.18 and to be more accurate as shown in
Figure 5.16.

Therefore, this experiment proves that the relation exposed in Figure 3.6 can be
used also for the asymmetric dynamic control system and that this control system
is better than the exponential one.

In general, looking at the workload perceived by the users in each session,
as reported in Figure 6.1, it can be seen that the assumptions made are correct.
Moreover, in the first session, the workload perceived with the dynamic system is
very close to the one perceived with the exponential system. On the contrary, in
the second session, there is a huge difference between the two systems due to the
wrong relations used. Instead, with the corrections made in the third session the
users perceived less workload with the dynamic system than with the exponential

one.
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Chapter 7
Conclusion

The main concepts of this thesis are regarding a relation between parameters
used in the Fl.. formulation and the asymmetrical implementation of the dy-
namic system for a BMI system based on 2-class motor imagery.
The results of the first and third sessions confirm that a relation between w and 1)
can be the one in Figure 3.6 for the symmetrical and asymmetrical case. On the
contrary, the second session demonstrates that the relation reported in Figure 3.8
provides too high s and the user cannot overtake the potential valley created
by the free force (Figure 3.3b). Therefore, this correlation was discarded.
The main contribution of this thesis to the state-of-art is regarding the implemen-
tation and validation, through some experiments, of an asymmetrical dynamic
system with a relation that allows the reduction of the number of required pa-
rameters for a brain-machine interface system based on 2-class motor imagery.
However, some observations about this work can be done. First of all, the
validation is limited since we have a small number of subjects, hence future work
can increase the number of people involved. Secondly, the dynamical control
system provides better results, especially when the user is in control of an external
device, as reported in [15]. Therefore, we can further validate this asymmetric

control system for driving a telepresence robot or a powered wheelchair.
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