
Master Thesis in Control System Engineering

Implementation of adaptive nonlinear model
predictive control on a PX4-enabled quad-rotor

platform

Master Candidate Supervisor

Marco Concetto Bonazza Prof. Angelo Cenedese
Student ID 2027593 University of Padova

Co-supervisor

Dott. Beniamino Pozzan
University of Padova

Academic Year - 2022/2023
Graduation Date - 20/04/2023

Abstract

This thesis aims at developing an adaptive and nonlinear model predictive con-
trol Simulink scheme and interfacing it with the popular PX4 drone system.
PX4-Autopilot is one of the most used drone Real Time Operating System (RTOS)
in the context of research, it has many safety and sensor management features, it is
open source, and has an extensive and active community of developers making it
an excellent platform for Unmanned Aerial Vehicles (UAVs) control development.
The advantages of interfacing it with MATLAB®/Simulink® running on a com-
panion computer are mainly twofold. The first is simplicity: the Simulink block
scheme language is easy to use for complex control schemes, also supported by
a great collection of libraries and by the baked-in management of PX4 of sensor
data that can directly be used as feedback for the controls without additional
estimators. The second is the possibility of moving the computational complexity
away from the onboard embedded platform to a much more powerful ground
station PC. Nonlinear Model Predictive Control (NMPC) is an excellent example
as it makes use of both, there are many implementations available that require
only some setup and the model of the plant, it gives great control performance
but is computationally expensive and therefore not always usable directly on low-
end embedded hardware without some optimizations, which would require a
competent and experienced user. Since model predictive control is susceptible to
modeling errors that are especially common when dealing with low-cost drone
platforms it is paired with a lightweight adaptive scheme that complements the
control action to make up for modeling mismatches. The whole infrastructure is
then validated through Software In the Loop (SITL) simulations across a variety of
tasks and conditions, confirming that the interface between MATLAB/Simulink
works, the NMPC scheme is usable in real-time with good trajectory tracking per-
formance and that adaptive control provides a much greater degree of robustness
to the system.

Keywords: UAV, Quadrotor, Nonlinear Model Predictive Control, L1 Adaptive
Control, Ground Effect, PX4

Contents

List of Figures xi

List of Tables xiii

List of Acronyms xix

1 Introduction 1
1.1 Thesis structure . 2

2 Agent Modelling 5
2.1 Pose representation . 5

2.1.1 Rotation matrices . 6
2.1.2 Unit quaternions . 11

2.2 Quadrotor mathematical model . 15

3 Model Predictive Control 21
3.1 Background . 21

3.1.1 Linear Quadratic Regulator 22
3.1.2 Receding Horizon Control . 23
3.1.3 MPC . 24

3.2 NMPC of a quad-rotor platform . 26
3.2.1 System discretization . 26
3.2.2 Cost function . 28
3.2.3 Constraints and prediction horizon 30
3.2.4 Final problem formulation . 32

4 Adaptive control 33
4.1 Background . 33
4.2 ℒ1 control of a quad-rotor platform 34

v

CONTENTS CONTENTS

5 Complete control system 39
5.1 PX4-Autopilot . 39

5.1.1 Flight stack . 40
5.1.2 Middleware . 42

5.2 QGroundControl© . 42
5.3 ROS 2™ . 43
5.4 Implementation details . 44
5.5 MATLAB®/Simulink® . 45

5.5.1 NMPC block . 45
5.5.2 ℒ1 block . 46
5.5.3 Finite state machine block . 46
5.5.4 Reference frame conversion block 50

6 Simulations 51
6.1 Setup . 51

6.1.1 Ground effect . 54
6.2 Results . 56

6.2.1 Hover with ground effect . 56
6.2.2 Lemniscate . 59
6.2.3 Fast lemniscate . 68

7 Conclusions 73
7.1 Future work . 74

A Time derivatives for rotations 77
A.1 Rotation matrices . 77
A.2 Unit quaternions . 80

References 82

vi

List of Figures

2.1 World and Body fixed frames of reference. 5
2.2 Example of projection of Body rotated frame axes on World fixed

frame axes, where each body axis belongs to the plane formed by
the other two world axes to simplify the drawing. 7

2.3 (a) Rotation of 𝜙 around x, (b) Rotation of 𝜃 around y, (c) Rotation
of 𝜓 around z. 8

2.4 Physical meaning associated with Roll-Pitch-Yaw convention. . . . 10
2.5 Quadrotor X (a) and + (b) configurations. 15
2.6 Forces and moments acting on the quadrotor. 17

3.1 MPC scheme, taken from [4]. 24
3.2 MPC working principle, adapted from [12]. 24
3.3 Rotation matrices metrics: Frobenius (chordal) in blue and Riea-

maniann (geodesic) in red. 29

4.1 Model Reference Adaptive Control (MRAC) block schemes, adapted
from [20]. 33

5.1 Flight stack block representation, taken from [27]. 40
5.2 PX4 cascaded control scheme, taken from [29]. 41
5.3 PX4-ROS 2 communication scheme, taken from [34]. 43
5.4 Complete control scheme used throughout this work. 45
5.5 Options and features available in MATMPC, taken from [35]. 46
5.6 Simplified flow chart of the flight logic. The red connections indi-

cate safety behavior, the blue ones redundancy behavior and the
black ones the normal flow of the program. 49

5.7 (a) PX4 reference frames, (b) MATLAB and ROS 2 reference frames.
The light blue arrows define the front propellers of the vehicle.
Adapted from [37]. 50

xi

LIST OF FIGURES LIST OF FIGURES

6.1 Scheme of the connection between MATLAB/Simulink, PX4 and
Gazebo. Bold dotted lines represent communication through ROS
2, bold lines communication through the MAVLink Application
Programming Interface (API). Adapted from [39]. 51

6.2 Iris model inside the Gazebo environment. Adapted from [40]. . . . 52
6.3 Ground effect vs altitude over propeller size. Adapted from [42]. . 55
6.4 Hover task with ground effect: thrust output with (a)ℒ1 off, (b)ℒ1

on. 57
6.5 Errors With Respect To (w.r.t.) references in hover task with ground

effect and ℒ1 off. 58
6.6 Errors w.r.t. references in hover task with ground effect and ℒ1 on. 58
6.7 Errors w.r.t. references in lemniscate task, nominal conditions and

ℒ1 off. 60
6.8 Errors w.r.t. references in lemniscate task, nominal conditions and

ℒ1 on. 60
6.9 3d view of the trajectory in the upper figures, view from above

in the lower two. Color represents linear speed magnitude. The
reference is reported in red. (a), (c) ℒ1 off; (b), (d) ℒ1 on. 61

6.10 Errors w.r.t. references in lemniscate task, additional payload and
ℒ1 off. 63

6.11 Errors w.r.t. references in lemniscate task, additional payload and
ℒ1 on. 63

6.12 3d view of the trajectory in the upper figures, view from above
in the lower two. Color represents linear speed magnitude. The
reference is reported in red. (a), (c) ℒ1 off; (b), (d) ℒ1 on. 64

6.13 Errors w.r.t. references in lemniscate task, partial motor failure and
ℒ1 off. 66

6.14 Errors w.r.t. references in lemniscate task, partial motor failure and
ℒ1 on. 66

6.15 3d view of the trajectory in the upper figures, view from above
in the lower two. Color represents linear speed magnitude. The
reference is reported in red. (a), (c) ℒ1 off; (b), (d) ℒ1 on. 67

6.16 Fast lemniscate with unmodeled mass task: thrust output with (a)
ℒ1 off, (b) ℒ1 on. 68

6.17 Errors w.r.t. references in lemniscate task, additional payload and
ℒ1 off. 70

xii

LIST OF FIGURES LIST OF FIGURES

6.18 Errors w.r.t. references in lemniscate task, additional payload and
ℒ1 on. 70

6.19 3d view of the trajectory in the upper figures, view from above
in the lower two. Color represents linear speed magnitude. The
reference is reported in red. (a), (c) ℒ1 off; (b), (d) ℒ1 on. 71

7.1 HolyBro QAV250 quad-copter: on a table without the propellers
(a), during flight in the flying arena in the SPARCS lab(b). 75

xiii

List of Tables

6.1 Physical parameters of the Iris quad-rotor model. 52
6.2 Parameters of NMPC and ℒ1 control schemes. 53
6.3 Table with the considered simulation scenarios. 56
6.4 Table with the Euclidean Root Mean Square Error (RMSE) of hov-

ering task. 57
6.5 Table with the Euclidean RMSE of nominal lemniscate task. 59
6.6 Table with the Euclidean RMSE of unmodeled additional payload

lemniscate task. 62
6.7 Table with the Euclidean RMSE of partial motor failure lemniscate

task. 65
6.8 Table with the Euclidean RMSE of unmodeled additional payload

fast lemniscate task. 69

xiii

List of Acronyms

w.r.t. With Respect To

s.t. Such That

i.e. Id Est, that is

MEMS Micro Electro Mechanical Systems

VTOL Vertical TakeOff Landing

DOFs Degrees Of Freedom

CoM Center of Mass

FLU Front-Left-Up

ENU East-North-Up

FRD Front-Right-Down

NED North-East-Down

CCW CounterClockWise

CW ClockWise

LQR Linear Quadratic Regulator

MIMO Multiple-Input Multiple-Output

RHC Receding Horizon Control

MPC Model Predictive Control

NMPC Nonlinear Model Predictive Control

UAVs Unmanned Aerial Vehicles

xix

LIST OF TABLES LIST OF TABLES

ARE Algebraic Riccati Equation

MRAC Model Reference Adaptive Control

APIs Application Programming Interfaces

SDKs Software Development Kits

VTOL Vertical TakeOff and Landing

IMU Inertial Measurement Unit

RC Radio Command

EKF Extended Kalman Filter

ESCs Electronic Speed Controllers

QGC QGround Control

SITL Software In the Loop

HITL Hardware In the Loop

SQP Sequential Quadratic Programming

API Application Programming Interface

RMSE Root Mean Square Error

RTOS Real Time Operating System

xx

1 Introduction

In recent years thanks to the development of microprocessors and Micro Electro
Mechanical Systems (MEMS) the UAVs field has been a very fertile area of research.
In particular, quad-copters are widely studied and used in both consumer and
industrial applications that range from terrain surveying for agriculture, rescue
missions, cinematography and so many more. The main advantage of these
drones are simple mechanical structure, Vertical TakeOff and Landing (VTOL)
and hovering capabilities [1]. There are also some major drawbacks: they suffer
from under actuation and heavy nonlinearities, so much so that classical control
solutions usually are not able to fully utilize their capabilities since they need
linearizations around operating conditions and small-angle-like assumptions for
control design [2], [3].

A particularly interesting research topic on these vehicles that tries to avoid
those problems is nonlinear model predictive control. Even though computa-
tionally expensive, it is a very popular control algorithm since only the model of
the system is necessary, eliminating the need to explicitly design a control law,
shifting the effort to accurate model construction [4]. It provides explicit actuation
and state constraint handling and a direct physical interpretation of the tuning
parameters [5]. Its main drawback is that performance is heavily dependent on
the quality of the model, every approximation could influence the nonlinear dy-
namics such that the forecasted states are not relevant anymore, throwing off the
optimality of the control input.

Due to the low-cost nature of most qua-rotor platforms, the manufacturing
tolerances are not always strict, leading to inaccurate models that would be too
costly or time-consuming to correct. Thus the need for robust control algorithms
[6], [7]. In this thesis to mitigate the modeling problem, NMPC is implemented
alongside an adaptive scheme that provides a purely reactive and systematic
approach for compensating modeling mismatches in real-time called ℒ1. It is an
extension of the state-predictor-based MRAC (Model Reference Adaptive Control)
algorithm that eliminates the sensibility to high-frequency excitations by adding

1

CHAPTER 1. INTRODUCTION 1.1. THESIS STRUCTURE

a low pass filter to the output. This creates an explicit and easily tunable tradeoff
between robustness and performance [8], [9].

Although flight controllers are becoming more and more advanced they still
present a not negligible obstacle when trying to implement more complex control
algorithms and thus the objective of this work is to design, implement and test
a state-of-the-art NMPC algorithm with an additive ℒ1 component that runs in
MATLAB/Simulink on a ground-based PC that is able to interface, send com-
mands and receive vehicle odometry from a PX4-enabled quadrotor. PX4 is one
of the most popular open-source drone RTOS used in research context, it provides
a plethora of safety features, sensor and battery management, great customiza-
tion and thanks to its optimized code-base it can run smoothly on embedded
hardware.

1.1 Thesis structure

This work is organized into the following chapters:

• In Chapter 2 the preliminaries on rotations in 3d space are given, both in
terms of rotation matrices and quaternions. Then the mathematical model
for the quad-rotor is explained and derived using the Newton-Euler algo-
rithm.

• In Chapter 3 the concept of optimal control is presented first since it is the
basis for the development of receding horizon and model predictive control.
The latter is then briefly presented in terms of core ideas. Finally, the main
ingredients of nonlinear model predictive control in the case of a quad-rotor
platform are presented and discussed.

• In Chapter 4 model reference adaptive control is presented and its main
features and drawbacks are discussed together with the reason behind its
combination with NMPC. Then the ℒ1 piece-wise constant adaptation law
is derived in the context of quad-rotors.

• In Chapter 5 there is an overview of the PX4 software features, structure
and means of connection to MATLAB/Simulink. Then there is a high-level
description of the Stateflow machine that manages communication with PX4
and the execution of the Simulink scheme. At the end of the chapter, there
is an important distinction between the different reference frames used in
this work and the standard ones used in PX4.

• In Chapter 6 the simulation environment is briefly presented and then aug-
mented with a ground effect model to simulate the increased thrust phe-
nomenon that happens when a pocket of air forms under a flying vehicle.
Finally, some SITL simulations are carried out using different tasks and

2

CHAPTER 1. INTRODUCTION 1.1. THESIS STRUCTURE

modeling error conditions to validate the effectiveness of the complete ar-
chitecture.

• In chapter 7 the objective and results of this work are summarized, then
suggestions for future work are provided.

3

2 Agent Modelling

This chapter provides a preliminary explanation of how and with which conven-
tions the pose of a rigid body is described in 3D space, then the generic dynamic
model for a quadrotor in x configuration is presented.

2.1 Pose representation

In 3D space, a rigid object has 6 Degrees Of Freedom (DOFs) that describe com-
pletely its pose, three for its position and three for its orientation. To describe
the condition of said system it is necessary to introduce at least two reference
frames, ℱ𝑊 with origin O𝑊 and ℱ𝐵 with origin O𝐵, which are respectively fixed
to the ground (world-frame) and fixed to the Center of Mass (CoM) of the object
(body-frame) so that the latter can be defined in relation to the former, see Fig 2.1.

x

y

z

OW

zB

yB

xB

OB

OWOB

Figure 2.1: World and Body fixed frames of reference.

5

CHAPTER 2. AGENT MODELLING 2.1. POSE REPRESENTATION

The position of the origin of the body-frame w.r.t. the origin of the world frame,
expressed in world frame, is given by the vector

p = O𝑊O𝐵 =



O𝑥
𝐵

O𝑦
𝐵

O𝑧
𝐵


∈ R3 (2.1)

Relative orientation description is much more ambiguous because it can be ex-
pressed with multiple formalisms and conventions, the main ones that are used
throughout this work are presented in the subsections below.

2.1.1 Rotation matrices

3D Rotation matrices, as the name implies are matrices that express the relative
orientation between the fixed reference frame ℱ𝑊 and the body-fixed one ℱ𝐵.
They belong to the Special Orthogonal group SO(3), meaning that some important
properties apply, namely for a matrix R ∈ SO(3) it holds

𝑑𝑒𝑡(R) = 1 (2.2a)

RR> = 𝐼3×3 (2.2b)

R−1 = R> (2.2c)

These properties have particular physical significance, in particular (2.2a) and
(2.2b) indicate that distances, lines, angles and areas are preserved and not mir-
rored.

The easiest conceptual way of constructing the matrix that expresses the rotation
from the body-frame to the world-frame is to express the coordinates of the versors

6

CHAPTER 2. AGENT MODELLING 2.1. POSE REPRESENTATION

of ℱ𝐵 w.r.t. ℱ𝑊 , more formally

R𝑊𝐵 =

[
î𝐵 ĵ𝐵 k̂𝐵

]
=



𝑖̂𝐵𝑥 𝑗̂𝐵𝑥 𝑘̂𝐵𝑥

𝑖̂𝐵𝑦 𝑗̂𝐵𝑦 𝑘̂𝐵𝑦

𝑖̂𝐵𝑧 𝑗̂𝐵𝑧 𝑘̂𝐵𝑧


=



< î𝐵 , î > ĵ𝐵 , î > < k̂𝐵 , î >

< î𝐵 , ĵ > ĵ𝐵 , ĵ > < k̂𝐵 , ĵ >

< î𝐵 , k̂ > ĵ𝐵 , k̂ > < k̂𝐵 , k̂ >



(2.3)

Where, for example, ·̂𝐵𝑥 , ·̂𝐵𝑦 , ·̂𝐵𝑧 are the components of the body axes versors
w.r.t. the fixed frame, î, ĵ, k̂ are the fixed frame versors and < ·, · > is the scalar
product between vectors. A simplified example can be seen in Fig.2.2.

x

y

z

îBx

îBz
ĵBx

ĵBy

By

Bz

B

ĵB

îB

Figure 2.2: Example of projection of Body rotated frame axes on World fixed frame
axes, where each body axis belongs to the plane formed by the other two world
axes to simplify the drawing.

7

CHAPTER 2. AGENT MODELLING 2.1. POSE REPRESENTATION

Finally, a vector P𝐵 expressed in body-frame can be rotated through R𝑊𝐵 to
get the following relations with the same vector expressed in the world-frame P𝑊

P𝑊 = R𝑊𝐵P𝐵 (2.4a)

P𝐵 = R𝐵𝑊P𝑊 = R−1
𝑊𝐵P𝑊 = R>𝑊𝐵P𝑊 (2.4b)

Elementary rotations and Euler angles

Any rotation matrix needs nine parameters to be fully defined but due to the
orthogonality constraints, only three of those are really needed. Euler’s rotation
theorem states that a generic rotation matrix can be obtained by composing a
suitable sequence of three elementary rotations (Fig. 2.3) while guaranteeing that
two successive rotations are not made about parallel axes. Elementary rotations
are thus essential to describe an arbitrary rotation easily.

x = x'

y

z

y'

z'

φ

φ

φ

(a)

x

z

x'

z'

θ

θ

θ

y = y'

(b)

x

y

x'

y'

ψ

ψ

ψ

z = z'

(c)

Figure 2.3: (a) Rotation of 𝜙 around x, (b) Rotation of 𝜃 around y, (c) Rotation of
𝜓 around z.

They can be found by keeping one of the three axes fixed and rotating the other
two around it

R𝑥(𝜙) =



1 0 0

0 𝑐𝑜𝑠(𝜙) −𝑠𝑖𝑛(𝜙)

0 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜙)


(2.5a)

8

CHAPTER 2. AGENT MODELLING 2.1. POSE REPRESENTATION

R𝑦(𝜃) =



𝑐𝑜𝑠(𝜃) 0 𝑠𝑖𝑛(𝜃)

0 1 0

−𝑠𝑖𝑛(𝜃) 0 𝑐𝑜𝑠(𝜃)


(2.5b)

R𝑧(𝜓) =



𝑐𝑜𝑠(𝜓) −𝑠𝑖𝑛(𝜓) 0

𝑠𝑖𝑛(𝜓) 𝑐𝑜𝑠(𝜓) 0

0 0 1


(2.5c)

The second part of the theorem limits the combinations of the three rotations
to 12 possible conventions, of which the Euler ZYX, or equivalently but with a
different name convention roll-pitch-yaw XYZ is used throughout this work and
is presented below. The difference in naming convention stems from the fact that
the final rotation matrix is obtained by pre-multiplication of the elementary ones
so the order of multiplication is Z then Y then X, while the order of rotation is X
then Y then Z. To simplify notation 𝑐𝑜𝑠(·) ≡ 𝑐· and 𝑠𝑖𝑛(·) ≡ 𝑠·

R𝑊𝐵(𝜙, 𝜃,𝜓) = R𝑧(𝜓)R𝑦(𝜃)R𝑥(𝜙)

=



𝑐𝜓𝑐𝜃 −𝑠𝜓𝑐𝜙 + 𝑐𝜓𝑠𝜃𝑠𝜙 𝑠𝜓𝑠𝜙 + 𝑐𝜓𝑠𝜃𝑐𝜙

𝑠𝜓𝑐𝜃 𝑐𝜓𝑐𝜙 + 𝑠𝜓𝑠𝜃𝑠𝜙 −𝑐𝜓𝑠𝜙 + 𝑠𝜓𝑠𝜃𝑐𝜙

−𝑠𝜃 𝑐𝜃𝑠𝜙 𝑐𝜃𝑐𝜙


(2.6)

If not in a condition called gymbal-lock (𝜃 ≠ ±𝜋
2) the angles can be retrieved

from the final rotation matrix using

𝜙 = 𝑎𝑡𝑎𝑛2(𝑟32, 𝑟33) (2.7a)

𝜃 = 𝑎𝑠𝑖𝑛(−𝑟31) (2.7b)

𝜓 = 𝑎𝑡𝑎𝑛2(𝑟21, 𝑟11) (2.7c)

Where 𝑟𝑎𝑏 represents the element of the rotation matrix in position (a, b). It is
important to note that if in gymbal lock only 𝜙 ± 𝜓 can be retrieved.

9

CHAPTER 2. AGENT MODELLING 2.1. POSE REPRESENTATION

This convention is often used in relation to air or seaborne vehicles because it
allows an easy understanding of the changes in orientation that each angle causes
(Fig. 2.4); specifically the rotation about the x-axis (roll) indicates how inclined
the sides of the vehicle are w.r.t. the horizontal plane, the one about the y axis
(pitch) indicates how much the front of the vehicle is inclined up or down w.r.t.
the horizontal plane and finally the rotation about the z-axis (yaw) indicates the
direction in which the front of the vehicle is pointed in the xy plane.

Roll

Pitch

Yaw

x

y

z

Figure 2.4: Physical meaning associated with Roll-Pitch-Yaw convention.

10

CHAPTER 2. AGENT MODELLING 2.1. POSE REPRESENTATION

2.1.2 Unit quaternions

Quaternions are hyper-complex numbers proposed by William Rowan Hamilton
in 1843 as a higher dimensional extension of complex numbers.

Today quaternions with unitary norm, or unit-quaternions, see great use as
an alternative representation for SO(3) rotations since, unlike Euler angles, they
do not suffer from gymbal lock, provide a more computationally efficient way of
computing rotations (fewer operations are needed to rotate a vector w.r.t. rotation
matrices) and if during calculations rounding errors pile up they can be normal-
ized and still represent rotations, while rotation matrices could lose orthogonality.

Unit quaternions are composed by a real part 𝜂 and a complex vector part 𝝐
so that

q =



𝜂

𝜖𝑖

𝜖 𝑗

𝜖𝑘


=


𝜂

𝝐


(2.8a)

‖q‖2 = 𝜂2 + 𝝐>𝝐 = 1 (2.8b)

Where (𝑖, 𝑗 , 𝑘) is a coordinate frame that follows Hamilton’s rules

𝑖2 = 𝑗2 = 𝑘2 = 𝑖 𝑗𝑘 = −1 (2.9a)

𝑖 𝑗 = 𝑘, 𝑗𝑘 = 𝑖, 𝑘𝑖 = 𝑗 (2.9b)

𝑗𝑖 = −𝑘, 𝑘 𝑗 = −𝑖 , 𝑖𝑘 = −𝑗 (2.9c)

Unit quaternions have a physical interpretation if considering a rotation of an
angle 𝛼 around an axis represented by the unit vector e ∈ R(3) in the following
way

q =


𝜂

𝝐


=


𝑐𝑜𝑠(𝛼2)

e𝑠𝑖𝑛(𝛼2)


(2.10)

11

CHAPTER 2. AGENT MODELLING 2.1. POSE REPRESENTATION

It is evident from (2.10) that the same rotation can be represented also by −q: this
property is called double coverage.

Quaternion conjugate is defined as

q =


𝜂

−𝝐


(2.11)

This allows to introduce the quaternion inverse that, in the case of unit quater-
nions, corresponds to a rotation around the same axis with opposite angle and
thus can be defined as

q−1 = q (2.12)

Before defining the relation between a vector and its rotated representations
some preliminary definitions must be given on quaternion products:

q1 · q2 = 𝜂1𝜂2 + 𝝐1 · 𝝐2 = 𝜂1𝜂2 + 𝝐>1 𝝐2 ∈ R (2.13a)

q1 × q2 = 𝜂1𝝐2 + 𝜂2𝝐1 + 𝝐1 × 𝝐2 = 𝜂1𝝐2 + 𝜂2𝝐1 + 𝝐1 × 𝝐2 ∈ R3 (2.13b)

Where (2.13a) and (2.13b) represent quaternion inner and outer products respec-
tively.

Rotation combination is defined by quaternion composition or Hamilton prod-
uct as

q𝑡𝑜𝑡 = q1 ◦ q2 =


𝜂1

𝝐1


◦


𝜂2

𝝐2


=


𝜂1𝜂2 − 𝝐>1 𝝐2

𝜂1𝝐2 + 𝜂2𝝐1 + 𝝐1 × 𝝐2


=


𝜂2𝜂1 − 𝝐>2 𝝐1

𝜂2𝝐1 + 𝜂1𝝐2 − 𝝐2 × 𝝐1


=


𝜂1 −𝝐>1

𝝐1 𝜂1𝐼3×3 + [𝝐1]×



𝜂2

𝝐2


=


𝜂2 −𝝐>2

𝝐2 𝜂2𝐼3×3 − [𝝐2]×



𝜂1

𝝐1


= M(q1)q2 = N(q2)q1

(2.14)

12

CHAPTER 2. AGENT MODELLING 2.1. POSE REPRESENTATION

Where [·]× is the skew-symmetric operator defined in (A.4).
Finally, to rotate a vector P𝐵 expressed in body-frame it has to be first written

as a purely imaginary quaternion P̂𝐵 =

[
0 P>𝐵

]>
, then to get the same vector

expressed in the world-frame P̂𝑊 =

[
0 P>𝑊

]>
the following composition has to

be computed

P̂𝑊 = q𝑊𝐵 ◦ P̂𝐵 ◦ q𝐵𝑊 = q𝑊𝐵 ◦ P̂𝐵 ◦ q𝑊𝐵

= q𝑊𝐵 ◦


0

P𝐵


◦ q𝑊𝐵

= M(q𝑊𝐵)N(q𝑊𝐵)


0

P𝐵



(2.15a)

P̂𝐵 = q𝐵𝑊 ◦ P̂𝑊 ◦ q𝑊𝐵 = q𝑊𝐵 ◦ P̂𝑊 ◦ q𝑊𝐵

= M(q𝑊𝐵)N(q𝑊𝐵)


0

P𝑊


(2.15b)

Where q𝑊𝐵 and q𝐵𝑊 are respectively the quaternions that encode the rotation
from body-frame ℱ𝐵 to ℱ𝑊 and vice-versa.

13

CHAPTER 2. AGENT MODELLING 2.1. POSE REPRESENTATION

Relationship with rotation matrices and Euler angles

Since unit quaternions and rotation matrices both represent rotations it is possible
to go from the first to the second using Rodrigues formula, trigonometric half-
angle formulas and recalling (2.10)

R(q) = 𝐼3×3 + 2𝜂[𝝐]× + 2[𝝐]2×

=



𝜂2 + 𝜖2
𝑖 − 𝜖2

𝑗 − 𝜖2
𝑘 2𝜖𝑖𝜖 𝑗 − 2𝜂𝜖𝑘 2𝜖𝑖𝜖𝑘 + 2𝜂𝜖 𝑗

2𝜖𝑖𝜖 𝑗 + 2𝜂𝜖𝑘 𝜂2 − 𝜖2
𝑖 + 𝜖2

𝑗 − 𝜖2
𝑘 2𝜖 𝑗𝜖𝑘 − 2𝜂𝜖𝑖

2𝜖𝑖𝜖𝑘 − 2𝜂𝜖 𝑗 2𝜖 𝑗𝜖𝑘 + 2𝜂𝜖𝑖 𝜂2 − 𝜖2
𝑖 − 𝜖2

𝑗 + 𝜖2
𝑘


(2.16)

Finally Euler angles can be retrieved by using (2.7) and thus

𝜙 = 𝑎𝑡𝑎𝑛2(2𝜖 𝑗𝜖𝑘 + 2𝜂𝜖𝑖 , 𝜂2 − 𝜖2
𝑖 − 𝜖2

𝑗 + 𝜖2
𝑘) (2.17a)

𝜃 = 𝑎𝑠𝑖𝑛(−2𝜖𝑖𝜖𝑘 + 2𝜂𝜖 𝑗) (2.17b)

𝜓 = 𝑎𝑡𝑎𝑛2(2𝜖𝑖𝜖 𝑗 + 2𝜂𝜖𝑘 , 𝜂2 + 𝜖2
𝑖 − 𝜖2

𝑗 − 𝜖2
𝑘) (2.17c)

14

CHAPTER 2. AGENT MODELLING 2.2. QUADROTOR MATHEMATICAL MODEL

2.2 Quadrotor mathematical model

In this section, the kinematic and dynamic models of a quadrotor that will be
used to develop control schemes in the following chapters are given.

x

y

1

2 3

4

(a)

x

y

1

2

3

4

(b)

Figure 2.5: Quadrotor X (a) and + (b) configurations.

The standard quadrotor is composed of a rigid frame with four propellers
spinning about their own axis. The main configurations are represented in Fig.2.5:
the first is called X configuration because the quadrotor’s arms form 45◦ angles
with the body frame and the second is called + configuration because the arms
are aligned with the body axes. In this work, only the one in Fig.2.5a is considered
because in contrast with the plus configuration, for the same desired motion, the
cross-style provides higher momentum, which can increase the maneuverability
performance as each move requires all four blades to vary their rotation speed
[10].

To describe its model let’s introduce (as done in Sec.2.1, Fig.2.1) the body
frame ℱ𝐵, whose origin O𝐵 coincides with the CoM of the platform, and the
inertial world frame ℱ𝑊 . It will be discussed in more detail in a following chapter
in subsec.5.5.4 but it is worth mentioning that the model derived here uses the
Front-Left-Up (FLU) or East-North-Up (ENU) conventions for its reference frames,
whereas the PX4 environment uses the North-East-Down (NED) or Front-Right-
Down (FRD) ones.

15

CHAPTER 2. AGENT MODELLING 2.2. QUADROTOR MATHEMATICAL MODEL

The pose of ℱ𝐵 w.r.t. ℱ𝑊 is fully defined by the pair (p,R𝐵) ∈ R3 ×SO(3)where
the vector p ∈ R3 and the rotation matrix R𝑊𝐵 ∈ SO(3) represent respectively the
position of O𝐵 and the orientation of ℱ𝐵 w.r.t. ℱ𝑊 .

By introducing the linear velocity v ∈ R3 of O𝐵 w.r.t. ℱ𝑊 and expressed in ℱ𝑊
and the angular velocity 𝝎𝑊𝐵 ∈ R3 of ℱ𝐵 w.r.t. ℱ𝑊 but expressed in ℱ𝐵, also the
twist of the quad-rotor platform can be fully defined by the pair (v,𝝎𝐵).

Thus the kinematic model of the quad-rotor is governed by the relations

p¤ = v (2.18a)

R¤𝑊𝐵 = R𝑊𝐵[𝝎𝐵]× (2.18b)

where the second relation is derived in sec.A.1, equation (A.11).

The dynamic model can be derived using two main formalisms: Euler-Lagrange,
which is energy-based and more compact but less intuitive, and the Newton-Euler
which is based directly on the forces and moments acting on the system. In this
thesis, only the latter is considered for the model derivation since it is easier to
understand and more commonly found in the literature. A visual representation
of all forces and moments acting on the system is reported in Fig.2.6 and explained
one by one below.

The main forces (apart from gravity) and torques acting on the quadrotor are
generated by each of its propellers, spun by their respective motors. The 𝑖-th
propeller, with 𝑖 = 1, 2, 3, 4, rotates around its own spinning axis passing through
its centerO𝑃𝑖 and parallel to the z body-frame axis, with a controllable angular rate
𝜔𝑖 ∈ R. Depending on the direction in which the propeller is spinning the angular
velocity vector changes direction, it is directed along the positive direction of the
spinning axis if the rotation is CounterClockWise (CCW), in the negative if the
rotation is ClockWise (CW). The thrust generated by the spinning propellers is
proportional to the squared angular velocity of the motor so the control input can
be defined as 𝑢𝑖 = 𝜔2

𝑖 ∈ R.
Thus each propeller with its rotation creates several effects:

A thrust force, expressed in ℱ𝐵, equal to

f𝑖 = 𝑐 𝑓𝑖𝑢𝑖k̂𝐵𝑖 ∈ R3 (2.19)

Where 𝑐 𝑓𝑖 ∈ R+ is a constant aerodynamic parameter that expresses the relation-
ship between the squared spinning rate and upward thrust of the 𝑖-th propeller.

16

CHAPTER 2. AGENT MODELLING 2.2. QUADROTOR MATHEMATICAL MODEL

k̂𝐵𝑖 is a versor parallel to the z body-frame axis that passes through O𝑃𝑖 .

A force moment, expressed in ℱ𝐵, generated by the thrust force on the body equal
to

𝝉𝑡𝑖 = p𝑖 × f𝑖 = p𝑖 × 𝑐 𝑓𝑖𝑢𝑖k̂𝐵𝑖 ∈ R3 (2.20)

where p𝑖 ∈ R3 is the vector that encodes the position of O𝑃𝑖 w.r.t. the origin of the
body frame, expressed in body frame.

A drag torque, expressed in ℱ𝐵, generated by air friction, which is opposite to the
angular velocity of each propeller and is equal to

𝝉𝑑𝑖 = 𝑐𝜏𝑖𝑢𝑖k̂𝐵𝑖 ∈ R3 (2.21)

where 𝑐𝜏𝑖 ∈ R is a constant aerodynamic parameter that expresses the relationship
between squared spinning rate and rotational air drag; it is positive if the rotor is
spinning clockwise, negative otherwise.

Finally by using (2.19), (2.20), (2.21) the expression in body-frame of the total
force f𝑐 ∈ R3 and total torque 𝝉𝑐 ∈ R3 that act on O𝐵, which is the CoM of the

x

y

z OWOB

zB

yB

xB

mg1

2

3

4

Thrust Drag torque Thrust torque

L

45°

45°

Figure 2.6: Forces and moments acting on the quadrotor.

17

CHAPTER 2. AGENT MODELLING 2.2. QUADROTOR MATHEMATICAL MODEL

quadrotor, can be found as

f𝑐 =
4∑
𝑖=1

f𝑖 =
4∑
𝑖=1

𝑐 𝑓𝑖𝑢𝑖k̂𝐵𝑖 (2.22a)

𝝉𝑐 =
4∑
𝑖=1
(𝝉𝑡𝑖 + 𝝉𝑑𝑖) =

4∑
𝑖=1
(𝑐 𝑓𝑖p𝑖 × k̂𝐵𝑖 + 𝑐𝜏𝑖 k̂𝐵𝑖)𝑢𝑖 (2.22b)

These equations can be shortened by introducing the matrices F ∈ R3×4 and

M ∈ R3×4, which are called respectively control force and control moment input

matrices, and the input vector u =

[
𝑢1 𝑢2 𝑢3 𝑢4

]>
∈ R4

f𝑐 = Fu (2.23a)

𝝉𝑐 = Mu (2.23b)

where, assuming for simplicity’s sake that all arms of the quadrotor have the same
length 𝐿 and they form angles of 45◦ with each other, the position of each rotor

w.r.t. ℱ𝐵 can be expressed as

[
±𝐿𝑐𝑜𝑠(45◦) ±𝐿𝑠𝑖𝑛(45◦) 0

]>
=

[
±𝐿𝑥 ±𝐿𝑦 0

]>
so

that F and M assume the following expressions

F =



0 0 0 0

0 0 0 0

𝑐 𝑓1 𝑐 𝑓2 𝑐 𝑓3 𝑐 𝑓4


(2.24a)

M =



−𝑐 𝑓1𝐿𝑦 𝑐 𝑓2𝐿𝑦 𝑐 𝑓3𝐿𝑦 −𝑐 𝑓4𝐿𝑦

−𝑐 𝑓1𝐿𝑥 𝑐 𝑓2𝐿𝑥 −𝑐 𝑓3𝐿𝑥 𝑐 𝑓4𝐿𝑥

−|𝑐𝜏1 | −|𝑐𝜏2 | |𝑐𝜏3 | |𝑐𝜏4 |


(2.24b)

Again, for simplicity, all second-order effects such as the gyroscopic and inertial

effects and also some aerodynamic phenomena like propeller blade flapping are
neglected. The dynamics of the quadrotor, expressed w.r.t. ℱ𝑊 , is given by the

18

CHAPTER 2. AGENT MODELLING 2.2. QUADROTOR MATHEMATICAL MODEL

following system of Newton-Euler equations (2.25)

𝑚p¥ = −𝑚𝑔k̂ + R𝑊𝐵f𝑐 = −𝑚𝑔k̂ + R𝑊𝐵Fu (2.25a)

J𝝎¤ 𝐵 = −𝝎𝐵 × J𝝎𝐵 + 𝝉𝑐 = −𝝎𝐵 × J𝝎𝐵 +Mu (2.25b)

where 𝑔 > 0, 𝑚 > 0 ∈ R and J ∈ R3×3 are respectively the gravitational accelera-
tion, the mass of the quadrotor and its positive definite inertia matrix.

Then combining both kinematic (2.18) and dynamic (2.25) models the final math-
ematical model of the quadrotor is given by

p¤ = v (2.26a)

R¤𝑊𝐵 = R𝑊𝐵[𝝎𝐵]× (2.26b)

v¤ = −𝑔k̂ + 1
𝑚

R𝑊𝐵Fu (2.26c)

𝝎¤ 𝐵 = J−1(−𝝎𝐵 × J𝝎𝐵 +Mu) (2.26d)

Since part of the control scheme illustrated in the next chapters uses an equiva-
lent representation of the dynamic model based on quaternion rotation it is useful
to report it here

p¤ = v (2.27a)

q¤𝑊𝐵 =
1
2q𝑊𝐵 ◦ 𝝎𝐵 =

1
2M(q𝑊𝐵)


0

𝝎𝐵


(2.27b)

v¤ = p¥ = −𝑔k̂ + 1
𝑚

R(q𝑊𝐵)Fu (2.27c)

𝝎¤ 𝐵 = J−1(−𝝎𝐵 × J𝝎𝐵 +Mu) (2.27d)

where (2.27b) is derived in A.2, equation (B.19).
It is interesting to note that the system is underactuated since to have full

actuation each of the 6 DOFs must be accessible through the input but

𝑟𝑎𝑛𝑘


𝑚−1R𝑊𝐵F

J−1M


= 𝑟𝑎𝑛𝑘

©­­­­­«

𝑚−1R𝑊𝐵 03×1

01×3 J−1




F

M


ª®®®®®¬
= 𝑟𝑎𝑛𝑘


F

M


= 4 < 6 (2.28)

19

CHAPTER 2. AGENT MODELLING 2.2. QUADROTOR MATHEMATICAL MODEL

In this case since 𝑟𝑎𝑛𝑘(M) = 3 the rotational DOFs are all controllable inde-
pendently, while 𝑟𝑎𝑛𝑘(F) = 1 meaning that only the body-z component of the
translational DOFs can be controlled. To create an acceleration in the world-x and
world-y directions there must be a change in the orientation of the quadrotor so
that the direction of body-z changes, pointing towards the direction of the desired
world-frame acceleration. Moreover, some of the dynamics of the system are
partially coupled, as can be seen from (2.26), equation (2.26b) influences (2.26c).

20

3 Model Predictive Control

Model Predictive Control (MPC) is a set of control methods that, for each time
instant, use the estimation of the state of a system at that moment, together with its
mathematical model to predict its evolution over a finite time horizon, optimizing
the potentially constrained control output to achieve a given goal.

In this chapter are given brief explanations of the concepts of optimal control
and Receding Horizon Control (RHC) together with their respective problem
formulations, then the specific application of NMPC on UAVs is detailed.

3.1 Background

One of the greatest results in control theory during the 1960s is the birth of the
Linear Quadratic Regulator (LQR) which represented the optimal state feedback
controller for a linear time-invariant Multiple-Input Multiple-Output (MIMO)
system using a quadratic performance measure. It was very popular due to some
properties: guarantee of existence, uniqueness and asymptotic stability under
simple assumptions and finally easy to compute an explicit formula for the state
feedback gain matrix.

In this section, the main ideas behind this type of control are presented since
they are the basis on which the RHC principle and later its implementations
MPC/NMPC were created.

Let equation (3.1) represent a generic continuous time dynamical system described
by the following equation

x¤(𝑡) = f(x(𝑡), u(𝑡))
x(0) = x0

(3.1)

where x, x0 ∈ R𝑛 , u ∈ R𝑚 are respectively the state, initial state and the input of the
system. The objective of infinite horizon optimal control is to find the sequence
of u∗(𝑡) with 𝑡 ∈ [0,+∞[Such That (s.t.) the following cost function (3.2), defined

21

CHAPTER 3. MODEL PREDICTIVE CONTROL 3.1. BACKGROUND

on the same infinite interval, is minimized.

𝐽∞(x, u) =
∫ ∞

0
𝑉(x(𝑡), u(𝑡)) 𝑑𝑡 (3.2)

Although the problem is not easy to solve in general, it is possible to prove that if
𝑉(·) is positive definite and both f(·) and 𝑉(·) are regular enough, then u∗(𝑡), the
control output that minimizes (3.2), stabilizes the origin of the system for initial
conditions in a neighborhood of x0 [11].

3.1.1 Linear Quadratic Regulator

In particular in the case of the LQR, as the name suggests, for a linear time-
invariant system, characterized by the matrices A ∈ R𝑛×𝑛 and B ∈ R𝑛×𝑚 the
minimization problem takes the following form

min
u(·)

∫ ∞

0
x>(𝑡)Qx(𝑡) + u>(𝑡)Ru(𝑡) 𝑑𝑡

s.t. x¤(𝑡) = Ax(𝑡) + Bu(𝑡)
x(0) = x0

(3.3)

where the symmetric matrices Q � 0 ∈ R𝑛 and R � 0 ∈ R𝑚 are respectively the
weight matrices assigned to state and control output costs.
Let Q

1
2 ∈ R𝑛 be a matrix s.t. Q = Q

1
2>Q

1
2 , if and only if (A,B) is stabilizable and

(A,Q
1
2) is detectable it holds that the Algebraic Riccati Equation (ARE)

A>P +Q + PA − PBR−1B>P = 0 (3.4)

Has a unique solution P∞ ≥ 0 and if the pair (A,Q
1
2) is observable then P∞ > 0.

The static state feedback law that solves the problem (3.3) and makes the system
asymptotically stable can be then found as

u∗(𝑡) = −Kx(𝑡) with K = R−1B>P∞ (3.5)

This approach has several drawbacks: it relies heavily on the accuracy of the
model’s dynamics, if the true evolution of the system differs ever so slightly from
the predicted one the computed open-loop control law loses optimality. It does not
generalize well in the context of nonlinear systems and/or cost functions, which
could make the problem impossible to solve in closed form and since the solution

22

CHAPTER 3. MODEL PREDICTIVE CONTROL 3.1. BACKGROUND

space is infinite-dimensional it would make it also numerically intractable. Finally
even when used with linear models this type of control needs ad hoc management
of state/control output constraints, which is not always easy to implement.

3.1.2 Receding Horizon Control

To tackle these problems a new approach called RHC was devised. To counteract
computation difficulties, dynamical systems are considered in the discrete-time
domain and the optimal control problem over a finite control horizon so that nu-
merical approximate solutions are possible. The new problem can be formulated
as

min
u(·)

𝑁−1∑
𝑘=0

𝐽(x(𝑘), u(𝑘)) + 𝐽𝑁 (x(𝑁))

s.t. x(𝑡 + 1) = f(x(𝑡), u(𝑡))
x(0) = x(𝑡𝑠𝑡𝑎𝑟𝑡)
x(𝑘) ∈ X
u(𝑘) ∈ U

(3.6)

where x(0) = x(𝑡𝑠𝑡𝑎𝑟𝑡)means that the initial condition of the problem is the system’s
condition at the beginning of each control horizon. 𝐽(x(·), u(·)) is the cost function
at each time instant, 𝐽𝑁 (x(𝑁)) is the terminal cost function and X ⊆ R𝑛 , U ⊆ R𝑚

are the acceptable state and control output spaces.
The solution to this problem, Id Est, that is (i.e.) the control sequence u∗(1), u∗(2),
..., u∗(𝑁) is discarded apart from the first term u∗(1) that is applied to the system
and the problem is solved again with 𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡 + 1.

This approach basically combines finite horizon LQR control with a recur-
sive procedure to reduce the impact of model uncertainties and introduces the
possibility for numerical approximation, the main idea is summarized by Alg.1.

Algorithm 1 Receding Horizon Control.
Require: Control horizon length 𝑁 > 0

1: loop
2: x0← x(𝑡𝑠𝑡𝑎𝑟𝑡)
3: Re-compute optimal u∗(·) over [𝑡 , 𝑡 + 𝑁]with the new x0
4: Apply only the first element of u∗(𝑡)
5: 𝑡𝑠𝑡𝑎𝑟𝑡 ← 𝑡𝑠𝑡𝑎𝑟𝑡 + 1
6: end loop

23

CHAPTER 3. MODEL PREDICTIVE CONTROL 3.1. BACKGROUND

3.1.3 MPC

Figure 3.1: MPC scheme, taken from [4].

MPC is an implementation of RHC, in which the optimal control law is iteratively
computed over the prediction horizon, online and at each time step, all while im-
plicitly enforcing state/control output constraints. To achieve closed-loop control
for each instant only the first element of the series of u∗ is applied and the rest is
discarded. The main working principle is illustrated in Fig.3.2.

Tt t+1 t+N

futurepast

actual state

predicted state

predicted optimal control output from t to t+N

control output at time t

prediction horizon

Figure 3.2: MPC working principle, adapted from [12].

This type of control has several pros: great performance, systematic constraint
handling, greater attention towards the modeling of the system [4] instead of the
control law and the tuning process retains a direct connection to physical parame-
ters [5]. It also has some negative aspects, such as stability and robustness are not
guaranteed, great dependence on the system model which could be inaccurate
and therefore hinder the performance [7], the constraints can make the problem
unfeasible at some future step [13] and finally since the optimization problem
has to be solved in real-time particular attention on the processing power of the
chosen hardware is needed.

24

CHAPTER 3. MODEL PREDICTIVE CONTROL 3.1. BACKGROUND

NMPC

NMPC is a particular extension of the MPC framework, it is conceptually simi-
lar but it uses the nonlinear dynamic model of the system to make predictions
and optimizations instead of the usual linear (or linearized) one [14], leading to
significant performance improvements. Historically, due to the computational
complexities, NMPC has been successfully used in industry only on systems with
slow dynamics. In recent years thanks to algorithm and software optimizations,
together with hardware improvements the research on its application to faster,
highly nonlinear systems has been vibrant [15].

25

CHAPTER 3. MODEL PREDICTIVE CONTROL 3.2. NMPC OF A QUAD-ROTOR PLATFORM

3.2 NMPC of a quad-rotor platform

Quad-rotors are a perfect, albeit challenging platform to test the limitations of a
NMPC scheme since they are highly nonlinear, underactuated and have important
bounds on motor output, so much so that classical control schemes based on
models linearized around some working condition (like hovering) often fail to
fully exploit their capabilities [2][3].

As can be seen in (3.6), three main ingredients are necessary to define a RHC
problem: the discretized system, the cost and terminal cost functions, the con-
straints on states and control outputs and the length of the prediction horizon.
These objects are defined in order below.

3.2.1 System discretization

To discretize the quad-rotor dynamical system (2.27), due to its high nonlinearity,
the widely adopted explicit Runge-Kutta algorithm is applied since with it, accu-
rate high-order numerical approximations of the functions can be constructed.

To explain its basic working principle first some preliminaries must be given:
let the following be a first-order initial value problem

y¤ = f(𝑡 , y(𝑡)), 𝑎 ≤ 𝑡 ≤ 𝑏

y(𝑡0) = y0

(3.7)

It holds by the mean value theorem for integrals that if f(t, y(t)) is continuous
over a generic closed interval [𝑐, 𝑒] then there is at least one point 𝑑 ∈ [𝑐, 𝑒] such
that (𝑒 − 𝑐) 𝑓 (𝑑) = ∫ 𝑒

𝑐 f(𝑡 , y(𝑡)) 𝑑𝑡. With the same conditions, it also holds by the
Fundamental Theorem of Calculus that y(𝑒) − y(𝑐) = ∫ 𝑒

𝑐 f(𝑡 , y(𝑡)) 𝑑𝑡.
Now if the interval [𝑎, 𝑏] is divided in 𝑁 sub-intervals [𝑡𝑛 , 𝑡𝑛+1] where 𝑛 =

0, 1, ..., 𝑁 − 1 of fixed amplitude ℎ, one gets that

y(𝑡𝑛+1) − y(𝑡𝑛) =
∫ 𝑡𝑛+1

𝑡𝑛
f(𝑡 , y(𝑡)) 𝑑𝑡 = ℎf(𝜖, y(𝜖)) (3.8)

where 𝜖 ∈ [𝑡𝑛 , 𝑡𝑛+1]. The function f(𝜖, y(𝜖)) can be approximated by the linear
combinations of the evaluation of its expression for 𝑚 different values of 𝜖 so that

26

CHAPTER 3. MODEL PREDICTIVE CONTROL 3.2. NMPC OF A QUAD-ROTOR PLATFORM

the general expression of the explicit Runge-Kutta approximation for y(𝑡𝑛+1) is

y(𝑡𝑛+1) = y(𝑡𝑛) + ℎ
𝑚∑
𝑖=1

𝑐𝑖f(𝜖𝑖 , y(𝜖𝑖)) (3.9)

where different values for 𝑚 and 𝑐𝑖 are used to obtain higher or lower order
approximations. In this work the fourth order one is considered and its general
expression is given below

y(𝑡𝑛+1) = y(𝑡𝑛) + 1
6(k1 + 2k2 + 2k3 + k4)

k1 = ℎf(𝑡𝑛 , y(𝑡𝑛))
k2 = ℎf(𝑡𝑛 + 1

2 ℎ, y(𝑡𝑛) + 1
2k1)

k3 = ℎf(𝑡𝑛 + 1
2 ℎ, y(𝑡𝑛) + 1

2k2)
k4 = ℎf(𝑡𝑛 + ℎ, y(𝑡𝑛) + k3)

(3.10)

For more details refer to [16].

So the system (2.27) is considered in the following in its discretized form

𝝃(𝑘 + 1) = f𝑘 (𝝃(𝑘), u(𝑘)) (3.11)

where 𝝃(·) ∈ R13 is the state of the system (3 components for the position, 4 for the
orientation quaternion, 3 for speed and 3 for angular speed) and 𝑘 = 𝑛𝑇𝑠 , 𝑛 ∈ N

is the time step and 𝑇𝑠 > 0 ∈ R is the length of the time sample. Great attention
must be paid to this parameter since a value too big could lead to precision loss
and thus the new system could fail to represent the whole dynamics. A value
too small on the other hand leads to a heavy computational burden and thus the
possible violation of the real-time constraint.

27

CHAPTER 3. MODEL PREDICTIVE CONTROL 3.2. NMPC OF A QUAD-ROTOR PLATFORM

3.2.2 Cost function

A crucial part of defining a cost function is the design of the state error term

e(𝑘) =



e𝑝(𝑘)

e𝑞(𝑘)

e𝑣(𝑘)

e𝜔(𝑘)

eu(𝑘)



(3.12)

where e𝑝(𝑘), e𝑣(𝑘), e𝜔(𝑘) ∈ R3, eu(𝑘) ∈ R4 are simply the difference between posi-
tion, velocity, angular velocity states, control output and the respective references
at time step 𝑘. The definition of e𝑞(𝑘) is a bit more involved since a subtraction
between quaternions would not make immediate physical sense.

The distance between quaternions can be measured by different metrics, such
as the Frobenius or chordal metric (3.13a) and the Riemannian or geodesic one.
In this case the geodesic metric is replaced by the equivalent deviation from the
identity metric (3.13b) for better computational efficiency [17]. Apart from the
actual formulas the main conceptual difference between the two, considering
rotation matrices R, R𝑟𝑒 𝑓 ∈ SO(3), is that the first measures the length of the
minimum curve that connects R to R𝑟𝑒 𝑓 while the second measures the same
length but the curve is restricted to belong to SO(3). A better visual example is
reported in Fig.3.3. It is outside the scope of this work to give a more detailed
look at rotation distance metrics but, since in the following only quaternions are
used, it is important to note that in this context the Frobenius metric has a different
interpretation, it does not represent the chord but rather the scaled-down measure
of the arc length that connects q and q𝑟𝑒 𝑓 .

𝑑𝐹(q, q𝑟𝑒 𝑓) =
√

min
(
(1 − q · q𝑟𝑒 𝑓), (1 + q · q𝑟𝑒 𝑓)

)
(3.13a)

𝑑𝐼(q, q𝑟𝑒 𝑓) = 𝑑𝑅(q1 , q
−1 ◦ q𝑟𝑒 𝑓) = 2𝑐𝑜𝑠−1

(
𝑅𝑒(q−1 ◦ q𝑟𝑒 𝑓)

)
(3.13b)

28

CHAPTER 3. MODEL PREDICTIVE CONTROL 3.2. NMPC OF A QUAD-ROTOR PLATFORM

Where q1 =

[
1 0 0 0

]>
is the quaternion that expresses a null rotation.

dF(R1, R2)

dR(R1, R2)

Figure 3.3: Rotation matrices metrics: Frobenius (chordal) in blue and Rieamani-
ann (geodesic) in red.

To retain more information on the direction of the axis of rotation of the quadrotor
w.r.t. the reference, instead of just the scalar value for distance 𝑑𝐼(q, q𝑟𝑒 𝑓), e𝑞(𝑘) is
defined as

e𝑞(𝑘) = 𝐼𝑚
(
q(𝑘) ◦ q−1

𝑟𝑒 𝑓 (𝑘)
)
= 𝐼𝑚

©­­­­­«
q ◦


𝜂𝑟𝑒 𝑓 (𝑘)

−𝝐𝑟𝑒 𝑓 (𝑘)


ª®®®®®¬

(3.14)

So that the error vector can be defined as

e(𝑘) =



p(𝑘) − p𝑟𝑒 𝑓 (𝑘)

𝐼𝑚
(
q ◦ q−1

𝑟𝑒 𝑓

)
v(𝑘) − v𝑟𝑒 𝑓 (𝑘)

𝝎(𝑘) − 𝝎𝑟𝑒 𝑓 (𝑘)

u(𝑘) − u𝑟𝑒 𝑓 (𝑘)



∈ R16 (3.15)

29

CHAPTER 3. MODEL PREDICTIVE CONTROL 3.2. NMPC OF A QUAD-ROTOR PLATFORM

The chosen cost function for this problem is quadratic and has form

𝐽(e(𝑘)) = e>(𝑘)Qe(𝑘) (3.16)

where 𝑄 > 0 ∈ R16×16 is the state and control output error weight diagonal
matrix. Its entries quantities mediate the relative importance of each state and
control output error term in the cost function and require extensive tuning to
achieve satisfactory performance.
The terminal error vector e𝑁 , i.e. the error vector considered at the last time step
of the prediction horizon, is defined similarly to the normal one but it ignores the
final control output error

e𝑁 =



p(𝑁) − p𝑟𝑒 𝑓 (𝑁)

𝐼𝑚
(
q ◦ q−1

𝑟𝑒 𝑓

)
v(𝑁) − v𝑟𝑒 𝑓 (𝑁)

𝝎(𝑁) − 𝝎𝑟𝑒 𝑓 (𝑁)


∈ R12 (3.17)

Thus the terminal cost function is similar to the normal one and is defined as

𝐽(e𝑁) = e>𝑁Q𝑁e𝑁 (3.18)

where Q𝑁 ∈ R12×12 is the terminal state error weight diagonal matrix.

3.2.3 Constraints and prediction horizon

As every actuator has limits on its outputs it is very important, especially in the
case of systems with fast dynamics such as quad-rotors, to correctly estimate and
set them as bounds on the control output of every control scheme. In the case of
MPC/NMPC schemes one of the key advantages is explicit constraint handling
of not only control outputs but also of states and it is sufficient to specify which
ones are limited and their respective lower and upper bounds.

As in [18] some limits on the orientation of the quadrotor are imposed to
improve stability because otherwise some dangerous maneuvers (such as 180◦

flips) could be commanded due to the optimization process. The orientation

30

CHAPTER 3. MODEL PREDICTIVE CONTROL 3.2. NMPC OF A QUAD-ROTOR PLATFORM

bounds are given only on roll and pitch angles, since in the case of a rotor failure
it is impossible to fully control the attitude of the vehicle [3]. To simplify notation
in the following paragraphs time dependence on 𝜃, 𝜙, q and u is omitted.

The chosen constraints are in the form
−𝛼 ≤ 𝜃 ≤ 𝛼

−𝛽 ≤ 𝜙 ≤ 𝛽
(3.19)

These bounds on the roll and pitch angles must be translated in terms of quater-
nions to be correctly imposed on the state variable q: the elementary rotation
quaternions around x (roll) and y (pitch) of 𝛼 and 𝛽 are given by

q𝑥 =



𝑐𝑜𝑠(𝛼2)

±𝑠𝑖𝑛(𝛼2)

0

0


(3.20a)

q𝑦 =



𝑐𝑜𝑠(𝛽2)

0

±𝑠𝑖𝑛(𝛽2)

0


(3.20b)

And thus the constraints can be imposed respectively on the second and third

components of q =

[
𝜂 𝜖𝑥 𝜖𝑦 𝜖𝑧

]>
so that


−𝑠𝑖𝑛(𝛼2) ≤ 𝜖𝑥 ≤ 𝑠𝑖𝑛(𝛼2)
−𝑠𝑖𝑛(𝛽2) ≤ 𝜖𝑦 ≤ 𝑠𝑖𝑛(𝛽2)

(3.21)

31

CHAPTER 3. MODEL PREDICTIVE CONTROL 3.2. NMPC OF A QUAD-ROTOR PLATFORM

The constraints on the thrust commanded to the motor are straightforward

0 ≤ u ≤ u𝑚𝑎𝑥 (3.22)

where u𝑚𝑎𝑥 is the maximum output thrust vector that contains the maximum
thrusts of each motor.

The final key parameter to consider is the number of steps in the prediction
horizon 𝑁 , since the system is discretized using a constant time step size of 𝑇𝑠
seconds one has

𝑁 =
𝑇ℎ
𝑇𝑠

(3.23)

where 𝑇ℎ is the length in seconds of the prediction horizon. This parameter must
be tuned correctly to have a good trade-off between computational burden and
the capability of predicting enough evolution of the dynamics of the system to
understand if a control output is good or not.

3.2.4 Final problem formulation

By combining (3.11), (3.16), (3.18), (3.21), (3.22) and (3.23) the final formulation of
the NMPC optimization problem applied to a quadrotor platform can be defined

min
u(·)

𝑁−1∑
𝑘=0

(
e>(𝑘)Qe(𝑘)) + e>𝑁Q𝑁e𝑁

s.t. 𝝃(𝑘 + 1) = f𝑘 (𝝃(𝑘), u(𝑘))
𝝃(0) = 𝝃(𝑡)
|𝜖𝑥 | ≤ 𝑠𝑖𝑛(𝛼2)

|𝜖𝑦 | ≤ 𝑠𝑖𝑛(𝛽2)
0 ≤ u ≤ u𝑚𝑎𝑥

(3.24)

All the numerical values of the parameters are given in the results Chp.6.

32

4 Adaptive control

Since MPC schemes performance degrades without an accurate model of the
system, which is often too difficult or costly to estimate [7], in [19] the planning
advantage of NMPC is augmented via control output addition with a purely
reactive adaptive control scheme called ℒ1. In this chapter its formulation is
derived and explained together with the basic principle of MRAC.

4.1 Background

MRAC is a set of control methods that, for each time instant, use the mathematical
model of a system to characterize the desired closed-loop performance. When it
strays from the ideal one, depending on the magnitude of the difference, some
modifications to the parameters in the main controller are introduced (Fig.4.1a)
or an extra control output is provided (Fig.4.1b).

ref u output

(a)

ref u1

u2

output

(b)

Figure 4.1: MRAC block schemes, adapted from [20].

This type of control although very useful has some drawbacks: it is sensitive
to adaptive gains, which proved difficult to tune experimentally, resulting in
high-frequency oscillations in the control output, large transient errors or slow
convergence rates[21].

For these reasons, a new control architecture has been developed called ℒ1. It

33

CHAPTER 4. ADAPTIVE CONTROL 4.2. ℒ1 CONTROL OF A QUAD-ROTOR PLATFORM

brings some important advantages w.r.t. the classical MRAC such as easy tuning
and reduction of the control output high-frequency components. The main dif-
ferences between the two are that in MRAC the control signals depend directly
on parameter estimates, while in ℒ1 they are also filtered by a low pass filter that
cuts off the frequencies that could excite unstable modes, regulating the trade-off
between robustness and adaptation. This means that large gains are more easily
tunable by accurately selecting the filter. Theℒ1 also uses state predictions which
provide the reference to follow when the tracking/estimation errors are small
enough. Its name derives from the fact that the bounds on the adaptation errors
depend on the adaptation gains, on the largest values of the unknown parameters
and on the L1 norm of the filter’s transfer function [22].

Due to the nature of NMPC, which plans according to a model to achieve opti-
mal tracking, ℒ1 represents a great addition to the control scheme since it purely
reacts to model uncertainties trying to compensate for them while accounting for
the dynamics of the system [8]. By combining the two one gets a system that is
capable of long-term planning and fast adaptation to disturbances and modeling
errors.

4.2 ℒ1 control of a quad-rotor platform

Even though quad-rotors are becoming more and more common in the consumer
and industrial markets huge variability in components and manufacturing toler-
ances make it very hard to obtain precise physical characteristics from the data
sheets of the parts, which often are not even available. Moreover, they are usually
designed to survive crashes and ungraceful landings but there could be defor-
mations in the parts that can impact the aerodynamic and inertial properties of
the frame and propellers [6]. Also external disturbances like wind are difficult
to predict in real-time, therefore the inclusion of an adaptive control contribution
when dealing with small UAVs like quad-rotors is very important to compensate
for unaccounted model mismatches and environmental challenges without prior
assumptions, while pushing the systems to their dynamical limits.

The control law formulation starts by manipulating a bit the dynamic model
of the quadrotor (2.25) and adding some terms that contain the uncertainties.
Note that to reduce clutter in the notation time dependence is omitted but it is
important to keep in mind that the pose, forces, torques and uncertainties are all

34

CHAPTER 4. ADAPTIVE CONTROL 4.2. ℒ1 CONTROL OF A QUAD-ROTOR PLATFORM

time-varying.

v¤ = −𝑔k̂ + 1
𝑚

R𝑊𝐵f𝑐 + 1
𝑚

R𝑊𝐵f𝑐𝜹 (4.1a)

𝝎¤ 𝐵 = J−1 (−𝝎𝐵 × J𝝎𝐵 + 𝝉𝑐 + 𝝔)
(4.1b)

Where 𝜹 =

[
𝛿𝑥 𝛿𝑦 𝛿𝑧

]>
∈ R3, 𝝔 =

[
𝜚𝑥 𝜚𝑦 𝜚𝑧

]>
∈ R3 are respectively the

uncertainties appearing in the linear and angular accelerations. Remember also
that R𝑊𝐵 can be found from the quaternion representation of pose using Rodrigues
formula (2.16).

Since a quad-rotor is underactuated (see the end of chapter 2), only the z compo-
nent of 𝜹 and all of 𝝔 can be directly compensated for and thus the matched
uncertainty vector (i.e. the vector that contains the uncertainties that can be
compensated directly through the controlled input of the system) is defined as

𝝈𝑚 =

[
𝛿𝑧 𝜚𝑥 𝜚𝑦 𝜚𝑧

]>
. The uncertainties in acceleration in the x and y directions

cannot be directly countered, therefore they make up the unmatched uncertainty

vector 𝝈𝑢𝑚 =

[
𝛿𝑥 𝛿𝑦

]>
.

Now consider a reduced state variable z =

[
v> 𝝎>𝐵

]>
∈ R6, its derivative can

be rewritten as

z¤ = f(R𝑊𝐵) + g(R𝑊𝐵)(uℒ1 + 𝝈𝑚) + g⊥(R𝑊𝐵)𝝈𝑢𝑚 (4.2)

where uℒ1 is the control output of the ℒ1 controller, f(R𝑊𝐵) ∈ R6 represents the
desired dynamics, g(R𝑊𝐵) ∈ R6×4 the uncertainty in the matched component of
the dynamics and g⊥(R𝑊𝐵) ∈ R6×4 the unmatched one. They are defined as

f(R𝑊𝐵) =


−𝑔k̂ + 1

𝑚R𝑊𝐵f𝑐

J−1 (−𝝎𝐵 × J + 𝝉𝑐)


(4.3a)

g(R𝑊𝐵) =


k̂
𝑚11×4

J−1M


(4.3b)

35

CHAPTER 4. ADAPTIVE CONTROL 4.2. ℒ1 CONTROL OF A QUAD-ROTOR PLATFORM

g⊥(R𝑊𝐵) =


î
𝑚

ĵ
𝑚

03×1 03×1


(4.3c)

where f𝑐 = Fu𝑁𝑀𝑃𝐶 and 𝝉𝑐 = Mu𝑁𝑀𝑃𝐶 are the thrust and torque defined in (2.23)
generated by the NMPC control output, 11×4 is a row vector of ones with four
columns, 03×1 is a column vector of zeros with three rows and î, ĵ and k̂ are the
usual canonical versors of the world reference frame.

The ℒ1 observer is defined as

ẑ¤ = f(R𝑊𝐵) + g(R𝑊𝐵)(uℒ1 + 𝝈̂𝑚) + g⊥(R𝑊𝐵)𝝈̂𝑢𝑚 +A𝑠 z̃ (4.4)

where ẑ is the state predicted by the ℒ1 observer, z is the state obtained by an
estimator that outputs the state of the quad-copter (some implementation details
on this are given in sec.5.1) and z̃ = ẑ− z. The derivative of the observer error can
thus be found as

z̃¤ = A𝑠 z̃ +
[
g(R𝑊𝐵) g⊥(R𝑊𝐵)

] ©­­­­­«

𝝈̂𝑚

𝝈̂𝑢𝑚


−


𝝈𝑚

𝝈𝑢𝑚


ª®®®®®¬

= A𝑠 z̃ +G(R𝑊𝐵)(𝝈̂ − 𝝈)

(4.5)

The analytical solution of this differential equation is the usual convolution

z̃(𝑡) = 𝑒A𝑠 𝑡 z̃(0) +
∫ 𝑡

0
𝑒A𝑠(𝑡−𝜏)G(R𝑊𝐵(𝜏))[𝝈̂(𝜏) − 𝝈(𝜏)] 𝑑𝜏 (4.6)

Here only the main points of this demonstration are summarized, for the full
derivation refer to [23].

To discretize this equation let z̃(𝑘) = z̃(𝑛𝑇𝑠) where 𝑛 ∈ N and 𝑇𝑠 ∈ R+ is the
length of the time step. it follows that

z̃(𝑘) = 𝑒A𝑠 𝑘𝑇𝑠 z̃(0) +
∫ 𝑘𝑇𝑠

0
𝑒A𝑠(𝑘𝑇𝑠−𝜏)G(R𝑊𝐵(𝜏))[𝝈̂(𝜏) − 𝝈(𝜏)] 𝑑𝜏

z̃(𝑘 + 1) = 𝑒A𝑠(𝑘+1)𝑇𝑠 z̃(0) +
∫ (𝑘+1)𝑇𝑠

0
𝑒A𝑠((𝑘+1)𝑇𝑠−𝜏)G(R𝑊𝐵(𝜏))[𝝈̂(𝜏) − 𝝈(𝜏)] 𝑑𝜏

z̃(𝑘 + 1) = 𝑒A𝑠𝑇𝑠 z̃(𝑘) +
∫ (𝑘+1)𝑇𝑠

𝑘𝑇𝑠
𝑒A𝑠((𝑘+1)𝑇𝑠−𝜏)G(R𝑊𝐵(𝜏))[𝝈̂(𝜏) − 𝝈(𝜏)] 𝑑𝜏

(4.7)

36

CHAPTER 4. ADAPTIVE CONTROL 4.2. ℒ1 CONTROL OF A QUAD-ROTOR PLATFORM

Now, let 𝜈(𝜏) = (𝑘+1)𝑇𝑠−𝜏 and assume that G(R𝑊𝐵(𝜏))[𝝈̂(𝜏)−𝝈(𝜏)] to be constant
during the interval during a time step, (4.7) becomes

z̃(𝑘 + 1) = 𝑒A𝑠𝑇𝑠 z̃(𝑘) −
(∫ 𝜈((𝑘+1)𝑇𝑠)

𝜈(𝑘𝑇𝑠)
𝑒A𝑠𝜈 𝑑𝜈

)
G(R𝑊𝐵(𝑘))[𝝈̂(𝑘) − 𝝈(𝑘)]

= 𝑒A𝑠𝑇𝑠 z̃(𝑘) −
(∫ 0

𝑇𝑠
𝑒A𝑠𝜈 𝑑𝜈

)
G(R𝑊𝐵(𝑘))[𝝈̂(𝑘) − 𝝈(𝑘)]

= 𝑒A𝑠𝑇𝑠 z̃(𝑘) +A−1
𝑠

(
𝑒A𝑠𝑇𝑠 − 𝐼6×6

)
G(R𝑊𝐵(𝑘))[𝝈̂(𝑘) − 𝝈(𝑘)]

(4.8)

It can be proven that theℒ1 control is stable and that all outputs, states and estima-
tion errors remain bounded so the terms z̃(𝑘+1) and A−1

𝑠
(
𝑒A𝑠𝑇𝑠 − 𝐼6×6

)
G(R𝑊𝐵(𝑘))𝝈(𝑘)

can be ignored and thus

−𝑒A𝑠𝑇𝑠 z̃(𝑘) = A−1
𝑠

(
𝑒A𝑠𝑇𝑠 − 𝐼6×6

)
G(R𝑊𝐵(𝑘))𝝈̂(𝑘) (4.9)

By inverting the last equation and grouping some terms one gets an expression
for the estimated uncertainties

𝝈̂𝑚(𝑘)

𝝈̂𝑢𝑚(𝑘)


= 𝝈̂(𝑘) = −G−1(R𝑊𝐵(𝑘))𝚽−1𝝁 (4.10)

where 𝚽 = A−1
𝑠

(
𝑒A𝑠𝑇𝑠 − 𝐼6×6

)
and 𝝁 = 𝑒A𝑠𝑇𝑠 z̃(𝑘).

One of the main characteristics of the ℒ1 control is the filtering that allows a
trade-off between robustness and adaptation so the control law is given by

uℒ1 = C(𝑠)𝝈̂𝑚 (4.11)

where C(𝑠) is a first order strictly proper continuous-time low pass filter with
cutoff frequency 𝜔𝑐𝑜 .

37

CHAPTER 4. ADAPTIVE CONTROL 4.2. ℒ1 CONTROL OF A QUAD-ROTOR PLATFORM

In practice, since the control is implemented in discrete time both state estima-
tion and control action are propagated forward in time using discretized versions
of their expressions where the dependence of f, g and g⊥ on R𝑊𝐵 is omitted to
simplify notation and the 𝑘 in the subscripts indicates the time step at which the
quantities are calculated

uℒ1 ,𝑘 = uℒ1 ,𝑘−1𝑒−𝜔𝑐𝑜𝑇𝑠 − 𝝈̂𝑚,𝑘(1 − 𝑒−𝜔𝑐𝑜𝑇𝑠) (4.12)

ẑ(𝑘 + 1) = ẑ(𝑘) + [f𝑘 + g𝑘(uℒ1 ,𝑘 + 𝝈̂𝑚,𝑘) + g⊥𝑘 𝝈̂𝑢𝑚,𝑘 +A𝑠 z̃(𝑘)]𝑇𝑠 (4.13)

38

5 Complete control system

This chapter provides a complete overview of the implementation of the control
schemes discussed in the previous chapters. It starts with a brief summary of
PX4’s main features and strengths, then there is an explanation of how it is
connected to MATLAB/Simulink through ROS 2™ and then finally the complete
control architecture used is provided and illustrated.

5.1 PX4-Autopilot

PX4 is an open-source project that aims at providing a development environment
and a flexible set of tools for drones and other unmanned vehicles research. It
effectively creates a scalable ecosystem both in software and hardware. Here are
reported some of its main features and strengths [24][25]:

• Modularity: PX4 can be enhanced by adding sensors, components and new
software modules which do not influence the base system functionality and
new features can be built without compromising stability or performance
of the extended system.

• Open-source license (BSD 3-clause license): the PX4 ecosystem is being
constantly developed by an active community all around the world, meaning
that it is not specialized on any particular commercial solution, therefore it
remains a general toolkit that can be adapted by both industry and academic
research.

• Configurability: every feature is encapsulated in a self-contained module
that can be changed without modifying the core codebase. This, together
with the provided optimized Application Programming Interfaces (APIs)
and Software Development Kits (SDKs) allow easy creation, testing and
deployment of new modules.

• Autonomy Stack: PX4 is designed to provide a low barrier of entry for
developers interested in autonomous and/or vision capabilities.

• Validated hardware: there are several pre-configured UAVs kits available
that provide every component needed with assembly and configuration
instructions to provide a mostly seamless experience and fast first setups.

39

CHAPTER 5. COMPLETE CONTROL SYSTEM 5.1. PX4-AUTOPILOT

• Safety: PX4 has several configurable and automated safety features already
built-in such as parachute deployment, different return modes battery and
actuator monitoring, etc...

• Extensive testing: since PX4 software is at the base of many commercial and
non-commercial projects it is constantly tested by a lot of users with lots of
different use cases that can contribute to debugging.

• Standardization: thanks to its wide user base there is a constant effort
toward standardization of communication protocols, peripheral integration
and power management between different platforms.

• Documentation: being a widely adopted open-source environment there is
a good focus on the production of easy-to-understand and effective docu-
mentation.

The version used in this work is available on GitHub at [26].

PX4 software is mainly divided into two layers: the flight stack and the mid-
dleware. Both are briefly presented below.

5.1.1 Flight stack

The flight stack is the collection of control and guidance algorithms that allow the
drones different levels of autonomy and flight modes. It includes state estimators
for position and attitude, different controllers for n-copters, VTOL and fixed-wing
airframes, Radio Command (RC) input processing and actuator low-level control.
The main components of the flight stack are illustrated in Fig.5.1 and explained
below.

Sensors
Position & Attitude

Estimastor

Position ControllerNavigator
Attitude & Rate

Controller
Mixer

RC

Actuator

Figure 5.1: Flight stack block representation, taken from [27].

• Sensors: everything that collects data about the environment or the drone
itself, such as vision systems, magnetometers, Inertial Measurement Unit
(IMU), barometers, etc...

40

CHAPTER 5. COMPLETE CONTROL SYSTEM 5.1. PX4-AUTOPILOT

• Estimator: algorithm that takes as input sensor data from different sources,
combines them and outputs an estimation of the vehicle state. Specifically
PX4 uses an Extended Kalman Filter (EKF) which is a complex but very
powerful algorithm, for more details see [28].

• Navigator: algorithm that sets high-level goal states for the drone depending
on state estimation and general mission objectives.

• Controller: algorithm that takes as input a setpoint given by the navigator
and using state estimate information produces an output for the motors to
get to achieve said setpoint.

• RC: Device used to manually give setpoints to the drone

• Mixer: algorithm that takes force commands given by the controller and
transforms them into individual motor commands, while checking for actu-
ator limits. Its operation depends on the motor arrangement, vehicle type
and other factors. The outputs of the mixer are sent to the actuator driver
(such as Electronic Speed Controllers (ESCs)) which translates it to the right
communication protocol to be understood by the actuator.

• Actuators: Devices that translate an input signal in a physical effect such
as rotation and thus thrust for motors with propellers or pan and tilt for a
servo-mounted camera.

Figure 5.2: PX4 cascaded control scheme, taken from [29].

In this work the importance of the stock PX4 controllers, presented in Fig.5.2,
is greatly reduced since the developed control scheme is acting directly at the
motor thrust level at the mixer, effectively disabling the upstream blocks.

41

CHAPTER 5. COMPLETE CONTROL SYSTEM 5.2. QGROUNDCONTROL©

5.1.2 Middleware

The middleware is the code infrastructure that provides parallelized communica-
tion between every module and between the flight stack and the external world.
Its main functions are summarized below

• Device drivers: the middleware houses all component drivers and is there-
fore responsible for their correct functioning and correct communication
with the rest of the software.

• Inter-module communication: using the uORB message bus [30], an asyn-
chronous publish-subscribe messaging API every module can safely publish
some messages that some other module can subscribe to and thus read.

• External communication: using the MAVLink protocol [31], uORB messages
can be sent to external software/hardware that is outside of the flight stack
such as QGround Control (QGC) (more on this application in sec.5.2).

• ROS 2 communication: using the XRCE-DDS middleware uORB topics can
be published/subscribed to as they were ROS 2 topics (more on this in
sec.5.3).

• Simulation: the middleware provides a SITL/Hardware In the Loop (HITL)
simulation layer that allows PX4 flight code to run on a simulated PX4 board
on a companion computer/real PX4 hardware to control a simulated drone.
This is crucial for the simulation and controller validation more on this is
discussed in chapter 6.

5.2 QGroundControl©

QGC is an extremely useful application that provides easy access to the features
of PX4 through an intuitive graphic interface. Its main functions are:

• Full configuration of PX4 enabled vehicles, from the shape of the frame to
the motor limits, RC mappings, failsafe behavior, and much more. It allows
to basically check and change every parameter of the drone’s firmware.

• Access to macro commands like automated takeoff, path and mission plan-
ning/following with waypoints for autonomous flight.

• Display the flight map that shows vehicle position, flight track, waypoints
and vehicle instruments.

• Video streaming from the drone’s camera if it has one. Instrument displays
can be overlayed on the stream.

42

CHAPTER 5. COMPLETE CONTROL SYSTEM 5.3. ROS 2™

• Download flight logs that can be later analyzed using the Flight Review web
app [32].

• Access to the MAVLink console running on the vehicle to inspect messages
and send commands.

• Compatibility with every major operative system, from Windows, Linux
and macOS to Android and iOS.

In this work QGC is mainly used to ensure that the connection between the
quad-copter and companion PC is stable and working and to tune some of PX4’s
parameters. For a more in-depth look refer to [33].

5.3 ROS 2™

ROS 2 or Robot Operating System 2 is a set of libraries hugely popular in robotic
applications. In this work it is used merely as a communication layer between PX4
software and MATLAB/Simulink, in which the control architecture was actually
implemented.

ROS 2 communicates with PX4 through the XRCE-DDS middleware, clearly
illustrated in Fig.5.3, there is a client on PX4 that packages and formats uORB
messages to be compatible with the ROS network and an agent on a companion
PC that collects the messages published by ROS topics to be sent out. Client and
agent communicate bi-directionally over a serial or UDP link.

Figure 5.3: PX4-ROS 2 communication scheme, taken from [34].

43

CHAPTER 5. COMPLETE CONTROL SYSTEM 5.4. IMPLEMENTATION DETAILS

5.4 Implementation details

First of all, because it is constantly developing and changing, it is important to
specify that the PX4-Autopilot version used in this work is the v1.14.0-beta1.
Since the control scheme in this thesis uses control inputs at the rotor thrust level
and as state feedback the estimation provided by the PX4 Kalman estimator fed
by a vision system, some minor modifications to the default PX4 software are
required in order to make everything work correctly.

Starting from the Kalman filter settings, a single drone parameter has to be
changed and can be easily done using QGC

1 EKF2_HGT_REF 3

This tells the Kalman filter that the vision data is the reference source of informa-
tion for altitude estimation.

By default the part of the middleware that publishes uORB topics on the ROS
2 network (a module called microdds_client) is receiving and publishing to only
a subset of the available topics. To access the ones needed for this work’s control
scheme some modifications to PX4-Autopilot/src/modules/microdds_client/
dds_topics.yaml have to be made.
At the end of the subscriptions section add the following lines

1 - topic: /fmu/in/actuator_motors

2 type: px4_msgs::msg::ActuatorMotors

This is needed to allow sending direct motor controls to the drone through ROS
2.
At the end of the publications section add the following lines

1 - topic: /fmu/out/vehicle_visual_odometry

2 type: px4_msgs::msg::VehicleOdometry

3

4 - topic: /fmu/out/actuator_motors

5 type: px4_msgs::msg::ActuatorMotors

6

7 - topic: /fmu/out/vehicle_rates_setpoint

8 type: px4_msgs::msg::VehicleRatesSetpoint

These modifications are useful for debugging purposes. They enable the external
monitoring of several important messages: outputs of the vision system before it
is processed by the Kalman estimator (to verify that the final estimation is close
enough to the true values) and motor commands (to verify that the ones sent are
received correctly).

44

CHAPTER 5. COMPLETE CONTROL SYSTEM 5.5. MATLAB®/SIMULINK®

5.5 MATLAB®/Simulink®

The complete control structure is reported in Fig.5.4 where in blue are represented
the blocks implemented in Simulink, in yellow are the ones that belong to PX4
software, in green is the vision system and in red is the drone. Instead, the line
width and pattern indicate the data transmission medium, the normal ones are
Simulink signals, the bold ones are communications inside the PX4 flight stack
and the bold dotted ones are transmissions through the ROS 2 network. Finally,
the fine dotted lines represent the physical link between quad-rotor dynamics and
sensor/vision measurements.

Vision system

NMPC L1 Quad-rotor
+

+

On-board sensors

Extended Kalman
Estimator

Ref. frame
conversion

Finite state machine
logic

PX4
ξref TNMPC TL1 T ωmot

ξ

Figure 5.4: Complete control scheme used throughout this work.

Now from left to right and top to bottom the Simulink blocks are explained in
more detail one at a time.

5.5.1 NMPC block

This block contains an implementation of the NMPC algorithm developed at
the University of Padova called MATMPC [35]. This tool is open source and
aims at providing an easy-to-use and very optimized NMPC implementation
with lots of possible options (Fig.5.5). The optimal control problem is discretized
by multiple shooting with support for the fixed step (explicit/implicit) Runge-
Kutta method presented in sec.3.2.1 and the resulting nonlinear program is solved
by Sequential Quadratic Programming (SQP) method. The derivatives that are
needed to perform optimization are obtained by CasADi [36], the state-of-the-art
automatic/algorithmic differentiation toolbox. All of the functions of this toolbox
are written in the MATLAB API for C so that both the readability of MATLAB
functions and the great performance of the C language are mostly preserved.

45

CHAPTER 5. COMPLETE CONTROL SYSTEM 5.5. MATLAB®/SIMULINK®

The model used for prediction is created with a simple MATLAB script that
contains the definition of states, control outputs, error metrics, output/state con-
straints and dynamic equations. It is then compiled separately before the execu-
tion of the scheme. This enables fast swapping between models since once ready
it is sufficient to compile the desired one.

Figure 5.5: Options and features available in MATMPC, taken from [35].

5.5.2 ℒ1 block

This block receives as input the control output of the NMPC block and implements
with a MATLAB functions the equations (4.8), (4.12) and (4.13) presented in sec.4.2.

5.5.3 Finite state machine block

This block is fundamental to this work’s application, it coordinates the activities
of all the ROS 2 publishers and subscribers, communicates with PX4 to check
diagnostic signals and manages the flow of the program.

It receives several inputs:

• From the user, simulation settings and takeoff height.

• From PX4 message definition, constants that represent specific commands
for the PX4 software (arm motors, change to offboard mode and land).

• Position and attitude feedback.

• From ROS 2 network, flags used for failsafe behavior.

And has several outputs:

• Boolean flags that set which control mode is being used depending on the
execution phase.

• Signal that controls the activation of the subsystems for publishing vehicle
commands, trajectory setpoints and motor commands depending on the
execution phase.

46

CHAPTER 5. COMPLETE CONTROL SYSTEM 5.5. MATLAB®/SIMULINK®

• Vehicle command to be sent to the PX4 software (arm, land, etc...)

• The faultState and faultFlags variables which contain the fault state (a num-
ber different from zero, depending on the flight phase) and the status of some
of the safety flags published by PX4, together with a check on the publica-
tion frequency of the vehicle odometry since frequently updated feedback
is crucial when dealing with agile nonlinear systems. These output vari-
ables are stored in memory after every execution and used for debugging
purposes.

Fig.5.6 illustrates the composition and connections between states of the flow
chart. There are 4 distinct phases in the nominal working condition:

1. pre-flight in which PX4 is put into off-board position control mode and the
motors are armed.

2. position-mode takeoff in which using a fixed position set-point reference is
given to get to a user-given starting position.

3. actuator-mode tracking in which the quad-copter is controlled with direct
single motor thrust commands given by the sum of the NMPC and ℒ1
blocks. The objective in this phase is to follow the reference trajectory as
closely as possible.

4. position-mode landing in which the control is switched back to position
mode and the PX4 macro command to land is issued then, once on the
ground, the motors are disarmed.

Given the potential danger of working with spinning propellers and fast aerial
vehicles, some failsafes are put in place to ensure correct and safe operation. These
are mainly represented by the fail flags published by PX4 since a lot of checks on
hardware (on motors, batteries, sensors, etc...) and on the pose estimations are
already baked into the flight stack.
Also because vision information is crucial in this application, a new flag is intro-
duced to check on the frequency of publication of new messages on the vision
subsystem topic.
In the Simulink scheme, these flags trigger different behaviors depending on the
flight phase. Specifically, execution stops if the drone is still on the ground and
the immediate landing command is given if it is flying.
Other nice to have redundancy checks are put in place to avoid possible blocks
in execution, such as if the drone is stuck in the takeoff or in the follow trajectory
states after some time set by the user the landing command is automatically given,
or if PX4’s landing detector doesn’t recognize correctly that the drone has stopped
after another timer set by the user it automatically disarms the motors.

47

CHAPTER 5. COMPLETE CONTROL SYSTEM 5.5. MATLAB®/SIMULINK®

For obvious reasons the only failure mode that cannot be addressed by Simulink
is when the connection between the ground station and the drone is lost, in this
case PX4 software automatically goes into a mode (hold, land, etc...) that can be
set in several parameters via QGC.

As last comment, it is important to understand that since PX4 position control
is just a proportional gain controller (see Fig.5.2) therefore some error in the initial
condition, before tracking the reference, is to be expected. The function that tells if
the drone is at the desired height is just used to check if the height and yaw angle
reported by the vision topic are inside fairly large acceptable ranges (±30𝑐𝑚).

48

CHAPTER 5. COMPLETE CONTROL SYSTEM 5.5. MATLAB®/SIMULINK®

Start execution

Offboard Position
control mode

Arm motors

Takeoff

Offboard actuator
control mode

Follow reference

Land

Disarm motors

Stop execution

Offboard flag
confirms?

Arm flag
confirms?

At desired
height?

Reference
trajectory

over?

Landing
confirmed?

Over
trajectory

time?

Any safety flag
raised?

Phase 1: pre-flight

Phase 2: position-mode takeoff

Phase 3: actuator-mode tracking

Phase 4: position-mode landing

Yes

No

Yes

YesYes

Yes

Yes

No

Yes

No

Yes

No

Yes

No

Any safety flag
raised?

Over
landing
time?

Figure 5.6: Simplified flow chart of the flight logic. The red connections indicate
safety behavior, the blue ones redundancy behavior and the black ones the normal
flow of the program.

49

CHAPTER 5. COMPLETE CONTROL SYSTEM 5.5. MATLAB®/SIMULINK®

5.5.4 Reference frame conversion block

PX4 and the classic dynamical models for quad-rotors, such as the one derived
here, use different conventions to define their reference frames, both body and
world-fixed and are presented in Fig.5.7. In the PX4 context, FRD for the body
frame and NED/FRD for the fixed frame and in MATLAB/ROS 2 context FLU for
the body frame and FLU/ENU for the fixed frame.

y

x

z

OWOB

zB

yB

xB

1

2

3

4
FRD

NED

(a)
x

y

z OWOB

zB

yB

xB

1

2

3

4
FLU

ENU

(b)

Figure 5.7: (a) PX4 reference frames, (b) MATLAB and ROS 2 reference frames.
The light blue arrows define the front propellers of the vehicle. Adapted from
[37].

The last block that is illustrated in this subsection is the one that converts all
odometry data from the PX4 frames to the model ones. This conversion is a simple
application of vector rotation and rotation combination using quaternions like in
(2.15) and (2.14). The quaternions that encode the change between conventions
can be derived from the intuitive XYZ Euler angles. The displacement to go from
world NED to world ENU is given by (𝜋, 0,−𝜋

2) and to go from body FRD to body
FLU is given by (𝜋, 0, 0).

50

6 Simulations

This chapter provides a description of the simulation environment then the setups
and control parameters used for all tests are given. Finally, the results are reported
and commented on.

6.1 Setup

PX4 software supports out-of-the-box both SITL and HITL simulations, for the
first stage of this work the former is preferred to validate the control scheme
without risks.

The natural choice for the simulation environment is Gazebo™ [38] since it
is widely used in robotics applications because of its great customizability, open
source code-base, good graphics and efficient physics engine. The communication
scheme between Simulink, PX4 and the simulator is illustrated in Fig.6.1.

Simulink

Flight stack

Simulator

Actuator outputsOdometry, safety flags

Motor commandsVision and sensor data

Figure 6.1: Scheme of the connection between MATLAB/Simulink, PX4 and
Gazebo. Bold dotted lines represent communication through ROS 2, bold lines
communication through the MAVLink API. Adapted from [39].

PX4 provides some ready-made Gazebo models for quad-copters, here the one
named Iris (Fig.6.2) is used. Its main physical parameters are reported in Tab.6.1.

51

CHAPTER 6. SIMULATIONS 6.1. SETUP

Figure 6.2: Iris model inside the Gazebo environment. Adapted from [40].

Iris parameters

Name Symbol [Unit] Value

Mass 𝑚 [kg] 1.5

Arm length (front) 𝐿 𝑓 [m] 0.255

Arm length (back) 𝐿𝑏 [m] 0.238

Propeller radius 𝑟 [m] 0.127

Moment of inertia J [kg·m2]3×3 diag[0.029, 0.029, 0.055]

Maximum thrust (per
motor) 𝑇𝑚𝑎𝑥 [N] 5.25

Thrust coefficient 𝑐𝑡 [kg·m] 4.28 · 10−6

Moment coefficient 𝑐𝜏 [m] 0.06

Table 6.1: Physical parameters of the Iris quad-rotor model.

The weight and parameters of the control system are kept constant across all
simulations and are presented in Tab.6.2. Note that the main objective of this
thesis is to validate the feasibility of the control scheme when paired with the PX4

52

CHAPTER 6. SIMULATIONS 6.1. SETUP

system and not to tune both controllers for optimal performance.

Control scheme parameters

Name Symbol [Unit] Value

Time step 𝑇𝑠 [s] 0.01

Step size 𝑁 30

Position error weight 𝑄𝑝 [35, 30, 30]

Orientation error
weight 𝑄𝑞 [1, 1, 15]

Speed error weight 𝑄𝑣 [5, 5, 5]

Angular speed error
weight 𝑄𝜔 [1.1, 1.1, 1.1]

Control output error
weight 𝑄𝑢 [0.8, 0.8, 0.8, 0.8]

Roll constraint 𝜖𝑥𝑚𝑖𝑛 , 𝜖𝑥𝑚𝑎𝑥 −0.7071, 0.7071 (±45◦)

Pitch constraint 𝜖𝑦𝑚𝑖𝑛 , 𝜖𝑦𝑚𝑎𝑥 −0.7071, 0.7071 (±45◦)

Control output
constraints 𝑇𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥 [N] 0, 5.25

Adaptive gain matrix 𝐴𝑠
−diag[20, 20, 10, 30, 30,

40]

Low-pass filter cut-off
frequency 𝜔𝑐0 [Hz] 0.628

Table 6.2: Parameters of NMPC and ℒ1 control schemes.

53

CHAPTER 6. SIMULATIONS 6.1. SETUP

6.1.1 Ground effect

Gazebo does not provide by default complex aerodynamics interactions so to
make the simulation more realistic, without introducing a complex system that
would be outside the scope of this work, a simple model for ground effect is
considered and detailed below.

Ground effect is an aerodynamic phenomenon that happens when rotors spin
parallel and at a close distance to the ground, the generated air pressure reduces
the induced drag of the vehicle and therefore increases its lift-to-drag ratio, mean-
ing that for the same motor output more thrust is generated by the propellers.
This creates lots of problems in scenarios that require precise taking off and land-
ing and has been studied for many years, particularly in the context of helicopters
[41], and later adapted to quadrotors by introducing a correction factor to account
for complex interactions between the air pressure generated by all four propellers
working in tandem [42].
This model, reported below, provides an expression for the relation between

upward thrust input T𝐼𝑁 =

[
0 0 𝑇𝐼𝑁

]>
and real output T𝑂𝑈𝑇 =

[
0 0 𝑇𝑂𝑈𝑇

]>
,

both expressed w.r.t. the world-frame

𝑇𝑂𝑈𝑇 =
𝑇𝐼𝑁(

1 − 𝜌(𝑟
4𝑝𝑧)2

) (6.1)

Where 𝜌 ∈ R+ is the correction factor, 𝑟 is the radius of the propellers and 𝑝𝑧 is
the altitude of the quad-rotor. As can be seen from the formula and from Fig.6.3
as the altitude increases the ground effect disappears and T𝑂𝑈𝑇 = T𝐼𝑁 .

The inclusion of the ground effect in this work is made to add another condition
in which the system is subjected to unmodeled disturbances to demonstrate the
effects of adaptive control, so a precise representation of this phenomenon is of
secondary importance.

The correction factor used in [42] was found by fitting a curve over experimen-
tal data and since in this section none is available the same 𝜌 = 8.6 as the paper is
used. Moreover, ground effect is considered significant only in the altitude range
0.5 <

𝑝𝑧
𝑟 < 3.

Finally, since in the model (6.3) only a hovering task is considered, a more
general formulation is adopted, where the x and y components of T𝐼𝑁 and of
T𝑂𝑈𝑇 are not always zero. Therefore, the implemented model instead of the full
commanded thrust T𝐼𝑁 uses its projection on the world-z axis. This is motivated

54

CHAPTER 6. SIMULATIONS 6.1. SETUP

Figure 6.3: Ground effect vs altitude over propeller size. Adapted from [42].

by the fact that because ground effect is generated by a pocket of air pressure
under the drone, it makes intuitive sense that it should get smaller if the drone is
pushing air in another direction so that ideally, it is at its maximum and minimum
respectively when the quad-copter is parallel and at 90◦ w.r.t. the ground.
The new model is

T𝑂𝑈𝑇 =



T𝐼𝑁 · î

T𝐼𝑁 · ĵ

1(
1−𝜌(𝑟

4𝑝𝑧)2
) T𝐼𝑁 · k̂


(6.2)

Where î, ĵ, k̂ are the usual versors of the world-frame axes and · represent the
standard scalar product between vectors.

To include this model in the calculations that gazebo makes to update mo-
tor thrust and torques it is sufficient to modify PX4-SITL_gazebo-classic/src/
gazebo_motor_model.cpp to add a new positive force in the world-z axis applied
at the drone’s CoM.

55

CHAPTER 6. SIMULATIONS 6.2. RESULTS

6.2 Results

In this section, several scenarios are considered with combinations of both dif-
ferent trajectories and modeling errors. All tasks start after takeoff and last 20s
and it is very important to note that since there is a switch between PX4 position
control and this work’s control scheme, the only part of the graphs that is relevant
starts after the switch and ends 20s later when the control is switched back to
PX4 for landing. In the error graphs the whole simulation time frame is reported
since the error calculations by definition involve only the measurements during
the Simulink control period.

The considered tasks are illustrated in Tab.6.3. Every trajectory has a null
rotation reference, meaning that the drone has to always be aligned with Gazebo’s
fixed reference frame. Every modeling error is applied when the control switches
to Simulink.

Simulation scenarios

Trajectory Condition

Hover Ground effect

ℒ1 off ℒ1 on

Lemniscate Nominal Additional Payload Damaged motor

ℒ1 off ℒ1 on ℒ1 off ℒ1 on ℒ1 off ℒ1 on

Fast lemniscate Additional Payload

ℒ1 off ℒ1 on

Table 6.3: Table with the considered simulation scenarios.

6.2.1 Hover with ground effect

The trajectory considered in this subsection is a simple hovering task at a constant
altitude of 0.3m above the origin. At this altitude, ground effect is still relevant
and disturbs the output of the NMPC controller, as illustrated in Fig.6.4.

56

CHAPTER 6. SIMULATIONS 6.2. RESULTS

5 10 15 20
Time [s]

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2
[N

]

Total Thrust

Motor 1
Motor 2
Motor 3
Motor 4

(a)

5 10 15 20
Time [s]

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

[N
]

Total Thrust

Motor 1
Motor 2
Motor 3
Motor 4

(b)

Figure 6.4: Hover task with ground effect: thrust output with (a) ℒ1 off, (b) ℒ1
on.

It can be seen from the Fig.6.4a that NMPC output oscillates because given a
thrust command, it gets combined to ground effect creating peaks in the total force
on the quadrotor, thus throwing off the predicted state and overshooting the alti-
tude target. Then the controller tries to compensate by lowering the commanded
thrust and thus going below the target. At a lower altitude, the ground effect gets
stronger and therefore the cycle repeats. With the addition of ℒ1 control Fig.6.4b
this behavior is mitigated and the commanded thrust output is smoother.

Hover position tracking error [m]

Nominal ℒ1 off ℒ1 on

RMSE 0.0553 0.0577

Table 6.4: Table with the Euclidean RMSE of hovering task.

Comparing the top-right graph in Fig.6.5 to the top-right graph in Fig.6.6 one
can clearly see the effect of adaptive control on the speed error graph, where the
z component still presents oscillations but with much-reduced amplitude. This
behavior is reflected in the altitude error in the top-left graphs. Even though
the total Euclidean tracking RMSE (Tab.6.4) is slightly higher, the values remain
acceptable in a hovering task and the improved stability represents a valid point
in favor of adaptive control.

57

CHAPTER 6. SIMULATIONS 6.2. RESULTS

0 10 20 30
Time [s]

-0.1

-0.05

0

0.05

0.1

[m
]

Position Error

X
Y
Z

0 10 20 30
Time [s]

-0.2

-0.1

0

0.1

0.2

0.3

[m
/s

]

Speed Error

X
Y
Z

0 10 20 30
Time [s]

-1

-0.5

0

0.5

1

[d
eg

]

Rotation Error

Roll (X)
Pitch (Y)
Yaw (Z)

0 10 20 30
Time [s]

-4

-2

0

2

4

[d
eg

/s
]

Angular Speed Error

X
Y
Z

Figure 6.5: Errors w.r.t. references in hover task with ground effect and ℒ1 off.

0 10 20
Time [s]

-0.1

-0.05

0

0.05

0.1

[m
]

Position Error

X
Y
Z

0 10 20
Time [s]

-0.2

-0.1

0

0.1

0.2

0.3

[m
/s

]

Speed Error

X
Y
Z

0 10 20
Time [s]

-1

-0.5

0

0.5

1

[d
eg

]

Rotation Error

Roll (X)
Pitch (Y)
Yaw (Z)

0 10 20
Time [s]

-4

-2

0

2

4

[d
eg

/s
]

Angular Speed Error

X
Y
Z

Figure 6.6: Errors w.r.t. references in hover task with ground effect and ℒ1 on.

58

CHAPTER 6. SIMULATIONS 6.2. RESULTS

6.2.2 Lemniscate

In this subsection, the chosen trajectory is basically an eight-shaped curve called
lemniscate. It was chosen because it allows the evaluation of both curvilinear
and rectilinear movements, it is easy to derivate to get the reference speeds and
accelerations and it is also often used as a benchmark in the literature. The one
used in these simulations has a maximum linear velocity of 2m/s and has the
following form

p𝑟𝑒 𝑓 (𝑡) =



4𝑠𝑖𝑛(0.3535𝑡)

2𝑠𝑖𝑛(0.707𝑡)

5


Nominal case

Below is presented the simulation that represents the nominal case, i.e. both
simulated and modeled systems coincide.

Lemniscate position tracking error [m]

Nominal ℒ1 off ℒ1 on

RMSE 0.2379 0.2215

Table 6.5: Table with the Euclidean RMSE of nominal lemniscate task.

Reference tracking errors in the ℒ1 off and on cases are reported respectively
in Fig.6.7 and 6.8. Note also that some tracking errors on orientation and angular
speed in the roll and pitch directions are inevitable since the drone cannot create
accelerations in the x and y directions without inclining itself w.r.t. the ground.
Because this simulation is carried out with nominal conditions, it is expected
that the adaptive control should not modify significantly the NMPC output since
there are no unmodeled disturbances, and therefore the error trajectories should
remain the same. This assumption is verified by the similar RMSE and by looking
at the above two figures: every graph between Fig.6.7 and Fig.6.8 present mostly
the same evolution.
This can also be seen more intuitively by looking at Fig.6.9a and Fig.6.9b, the
colored paths are almost indistinguishable.

59

CHAPTER 6. SIMULATIONS 6.2. RESULTS

0 10 20 30 40
Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

[m
]

Position Error

X
Y
Z

0 10 20 30 40
Time [s]

-1.5

-1

-0.5

0

0.5

1

[m
/s

]

Speed Error

X
Y
Z

0 10 20 30 40
Time [s]

-20

-10

0

10

20

[d
eg

]

Rotation Error

Roll (X)
Pitch (Y)
Yaw (Z)

0 10 20 30 40
Time [s]

-200

-100

0

100

[d
eg

/s
]

Angular Speed Error

X
Y
Z

Figure 6.7: Errors w.r.t. references in lemniscate task, nominal conditions and ℒ1
off.

0 10 20 30 40
Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

[m
]

Position Error

X
Y
Z

0 10 20 30 40
Time [s]

-1.5

-1

-0.5

0

0.5

1

[m
/s

]

Speed Error

X
Y
Z

0 10 20 30 40
Time [s]

-20

-10

0

10

20

[d
eg

]

Rotation Error

Roll (X)
Pitch (Y)
Yaw (Z)

0 10 20 30 40
Time [s]

-200

-100

0

100

[d
eg

/s
]

Angular Speed Error

X
Y
Z

Figure 6.8: Errors w.r.t. references in lemniscate task, nominal conditions and ℒ1
on.

60

CHAPTER 6. SIMULATIONS 6.2. RESULTS

(a) (b)

(c) (d)

Figure 6.9: 3d view of the trajectory in the upper figures, view from above in the
lower two. Color represents linear speed magnitude. The reference is reported in
red. (a), (c) ℒ1 off; (b), (d) ℒ1 on.

61

CHAPTER 6. SIMULATIONS 6.2. RESULTS

Additional payload case

This simulation represents the case in which an un-modeled payload is added
to the drone right after the automated PX4 takeoff phase. The chosen additional
mass is 0.5kg, which represents a 33% increase in the total mass of the quad-rotor.
This is almost at the carrying limit of the vehicle since the motors can generate
thrust to hover with a maximum additional mass of 0.67kg.

Lemniscate position tracking error [m]

Additional payload ℒ1 off ℒ1 on

RMSE 0.6453 0.2403

Table 6.6: Table with the Euclidean RMSE of unmodeled additional payload
lemniscate task.

Reference tracking errors in the ℒ1 off and on cases are reported respectively
in Fig.6.10 and Fig.6.11. In these graphs, it is evident that the big modeling error
has a great impact on tracking performance, and the adaptive control contributes
to the reduction of both tracking errors and vibrations due to the angular speed
errors. Thanks to ℒ1 control, tracking RMSE (reported in Tab.6.6) is comparable
to the nominal case. It manages also to reduce the big oscillations around the
body-x axis but the positions of the peaks remain the same, perhaps indicating
some resonance in the drone’s dynamics.
Looking at the 3d view of the trajectories (Fig.6.12) one can see that the main
corrections given by adaptive contributions are, as expected, in the z direction to
compensate for the higher weight.

62

CHAPTER 6. SIMULATIONS 6.2. RESULTS

0 10 20 30 40
Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

[m
]

Position Error

X
Y
Z

0 10 20 30 40
Time [s]

-1.5

-1

-0.5

0

0.5

1

[m
/s

]

Speed Error

X
Y
Z

0 10 20 30 40
Time [s]

-20

-10

0

10

20

[d
eg

]

Rotation Error

Roll (X)
Pitch (Y)
Yaw (Z)

0 10 20 30 40
Time [s]

-200

-100

0

100

200

[d
eg

/s
]

Angular Speed Error

X
Y
Z

Figure 6.10: Errors w.r.t. references in lemniscate task, additional payload and ℒ1
off.

0 10 20 30 40
Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

[m
]

Position Error

X
Y
Z

0 10 20 30 40
Time [s]

-1.5

-1

-0.5

0

0.5

1

[m
/s

]

Speed Error

X
Y
Z

0 10 20 30 40
Time [s]

-20

-10

0

10

20

[d
eg

]

Rotation Error

Roll (X)
Pitch (Y)
Yaw (Z)

0 10 20 30 40
Time [s]

-200

-100

0

100

200

[d
eg

/s
]

Angular Speed Error

X
Y
Z

Figure 6.11: Errors w.r.t. references in lemniscate task, additional payload and ℒ1
on.

63

CHAPTER 6. SIMULATIONS 6.2. RESULTS

(a) (b)

(c) (d)

Figure 6.12: 3d view of the trajectory in the upper figures, view from above in the
lower two. Color represents linear speed magnitude. The reference is reported in
red. (a), (c) ℒ1 off; (b), (d) ℒ1 on.

64

CHAPTER 6. SIMULATIONS 6.2. RESULTS

Partial motor failure

This simulation represents the case in which one of the motors is partially broken
or, more realistically, partially blocked by dirt or other particulates that can get
stuck in the rotor and the motor casing and thus reduce the torque output. Here
the output thrust of one of the motors is limited to 70% of its original capabilities.
This particular number was chosen since in the model of this drone actuator
capabilities were already fairly limited and a greater reduction would result in an
immediate crash. The motor limitation is applied only after the PX4 automated
takeoff phase.

Lemniscate position tracking error [m]

Partial rotor failure ℒ1 off ℒ1 on

RMSE 3.7034 0.5464

Table 6.7: Table with the Euclidean RMSE of partial motor failure lemniscate task.

Reference tracking errors in the ℒ1 off and on cases are reported respectively
in Fig.6.10 and Fig.6.11. From the graphs in the first figure, one can already see
that they represent a critical situation, the drone is at less than 4

5 of the target
altitude and it is both vibrating and spinning violently while still trying to track
the reference. When the simulation is repeated activating the adaptive control
component the system is able to successfully recover from the failure while only
retaining an offset in the orientation error. Nevertheless, it is able to track the
trajectory with an RMSE (reported in Tab.6.7) that is more or less double w.r.t. the
nominal case.
Looking at the 3d view of the trajectories (Fig.6.12) one can see clearly that without
theℒ1 contribution the quad-copter almost crashes and spins around while trying
to follow the prescribed path (6.15a-6.15c), notice also the great variation in speed
during the spinning movement. Instead, with the additional contribution the
drone is able to follow the lemniscate trajectory, albeit with some offset in the x
direction.

65

CHAPTER 6. SIMULATIONS 6.2. RESULTS

0 10 20 30 40
Time [s]

-6

-4

-2

0

2

[m
]

Position Error

X
Y
Z

0 10 20 30 40
Time [s]

-2

-1

0

1

2

3

[m
/s

]

Speed Error

X
Y
Z

0 10 20 30 40
Time [s]

-200

-100

0

100

200

[d
eg

]

Rotation Error

Roll (X)
Pitch (Y)
Yaw (Z)

0 10 20 30 40
Time [s]

-400

-300

-200

-100

0

100

[d
eg

/s
]

Angular Speed Error

X
Y
Z

Figure 6.13: Errors w.r.t. references in lemniscate task, partial motor failure and
ℒ1 off.

0 10 20 30 40
Time [s]

-6

-4

-2

0

2

[m
]

Position Error

X
Y
Z

0 10 20 30 40
Time [s]

-2

-1

0

1

2

3

[m
/s

]

Speed Error

X
Y
Z

0 10 20 30 40
Time [s]

-200

-100

0

100

200

[d
eg

]

Rotation Error

Roll (X)
Pitch (Y)
Yaw (Z)

0 10 20 30 40
Time [s]

-400

-300

-200

-100

0

100

[d
eg

/s
]

Angular Speed Error

X
Y
Z

Figure 6.14: Errors w.r.t. references in lemniscate task, partial motor failure and
ℒ1 on.

66

CHAPTER 6. SIMULATIONS 6.2. RESULTS

(a) (b)

(c) (d)

Figure 6.15: 3d view of the trajectory in the upper figures, view from above in the
lower two. Color represents linear speed magnitude. The reference is reported in
red. (a), (c) ℒ1 off; (b), (d) ℒ1 on.

67

CHAPTER 6. SIMULATIONS 6.2. RESULTS

6.2.3 Fast lemniscate

To test the limits of the system another simulation with increased payload is done
with the difference being that this time the lemniscate trajectory has 2.5 times the
maximum speed, for a total of 5m/s. This simulation is helpful in demonstrating
the capability and usefulness of setting explicit hard control output limits in the
model predictive control environment.

The new equation for the trajectory is

p𝑟𝑒 𝑓 (𝑡) =



4𝑠𝑖𝑛(0.8838𝑡)

2𝑠𝑖𝑛(1.7676𝑡)

5


The additional mass parameters are the same as in the normal lemniscate case.

The motor limits can be clearly seen in Fig.6.16, in Fig.6.16a the NMPC is trying
to optimize the output depending on the weights of the states and thrust reference
errors while staying away from the limits as much as possible. In Fig.6.16b the ℒ1

controller is ignoring the trade-off between output cost and state tracking errors,
trying to only to minimize the latter and thus pushes the motor outputs right to
their hard limits.

8 10 12 14 16 18 20 22 24 26
Time [s]

0

1

2

3

4

5

6

[N
]

Total Thrust

Motor 1
Motor 2
Motor 3
Motor 4

(a)

8 10 12 14 16 18 20 22 24 26
Time [s]

0

1

2

3

4

5

6

[N
]

Total Thrust

Motor 1
Motor 2
Motor 3
Motor 4

(b)

Figure 6.16: Fast lemniscate with unmodeled mass task: thrust output with (a)
ℒ1 off, (b) ℒ1 on.

68

CHAPTER 6. SIMULATIONS 6.2. RESULTS

Fast lemniscate position tracking error [m]

Additional payload ℒ1 off ℒ1 on

RMSE 1.9004 1.2927

Table 6.8: Table with the Euclidean RMSE of unmodeled additional payload fast
lemniscate task.

Reference tracking errors in theℒ1 off and on cases are reported respectively in
Fig.6.17 and Fig.6.18 together with the RMSE in Tab.6.8. Once again looking at the
graphs one can see that, although some fairly strong oscillations are introduced
by ℒ1 control, the adaptive scheme manages to lessen the error considerably.
Even more so than the last additional mass scenario, the drone is faced with the
limits of its motors and being incapable of generating a high enough thrust to di-
rectly follow the trajectory it has to take a slight detour with both adaptive control
off and on. After that initial dip in altitude, it is able to track the trajectory fairly
well when adaptive control is activated, even though some significant vibrations
around the body-x axis are introduced.
Looking at Fig.6.19, especially at Fig.6.19b and Fig.6.19d, it can be seen that the
drone manages a good enough tracking after the initial undershoot in the z-
component of the position. This would appear to be in contrast to the high RMSE
reported in Tab.6.8, highlighting the problem with the metrics that keep track of
the whole evolution of the error trajectory and not just of the steady-state error.
In this case, the RMSE is swayed by the huge and rather lengthy initial dip in
altitude.

69

CHAPTER 6. SIMULATIONS 6.2. RESULTS

0 10 20 30
Time [s]

-6

-4

-2

0

2

[m
]

Position Error

X
Y
Z

0 10 20 30
Time [s]

-4

-2

0

2

[m
/s

]

Speed Error

X
Y
Z

0 10 20 30
Time [s]

-200

-100

0

100

[d
eg

]

Rotation Error

Roll (X)
Pitch (Y)
Yaw (Z)

0 10 20 30
Time [s]

-200

-100

0

100

200

[d
eg

/s
]

Angular Speed Error

X
Y
Z

Figure 6.17: Errors w.r.t. references in lemniscate task, additional payload and ℒ1
off.

0 10 20 30
Time [s]

-6

-4

-2

0

2

[m
]

Position Error

X
Y
Z

0 10 20 30
Time [s]

-4

-2

0

2

[m
/s

]

Speed Error

X
Y
Z

0 10 20 30
Time [s]

-200

-100

0

100

[d
eg

]

Rotation Error

Roll (X)
Pitch (Y)
Yaw (Z)

0 10 20 30
Time [s]

-200

-100

0

100

200

[d
eg

/s
]

Angular Speed Error

X
Y
Z

Figure 6.18: Errors w.r.t. references in lemniscate task, additional payload and ℒ1
on.

70

CHAPTER 6. SIMULATIONS 6.2. RESULTS

(a) (b)

(c) (d)

Figure 6.19: 3d view of the trajectory in the upper figures, view from above in the
lower two. Color represents linear speed magnitude. The reference is reported in
red. (a), (c) ℒ1 off; (b), (d) ℒ1 on.

71

7 Conclusions

The main contribution of this work is the creation of a Simulink scheme that al-
lows the connection, through ROS2, of a PX4-enabled quad-copter and MATLAB.
This expands enormously the capabilities of the drone, allowing much more func-
tions and complex control algorithms to be effectively used, thanks to the greater
computing power of a ground-based PC. This, coupled with the ease of use of the
Simulink block scheme programming language allows the creation of a flexible
yet powerful and easy-to-approach development environment. To demonstrate
some of the possibilities given by this approach, in this work it is developed an
implementation of nonlinear model predictive control then augmented with an
independent adaptive contribution, since although very performant, the former
is very susceptible to model inaccuracies that are inevitable in real-world appli-
cations. The control scheme is created using MATLAB/Simulink and then tested
in real-time SITL simulation with various tasks and un-modeled conditions.

In Chp.2 starting from some considerations on the forces acting on a generic
quad-copter its dynamical model is constructed using the Newton-Euler formal-
ism. In Chp.3-4 there is a brief overview of the main ideas behind the concepts
of adaptive and model predictive control, along with the specific modifications
and adaptations needed in the UAVs framework. The complete infrastructure is
then illustrated in Chp.5, starting from a recap of the main features and com-
ponents of the PX4 software and of the other tools used. Then some comments
on the NMPC, ℒ1 and PX4 to ROS2 reference frame conversion Simulink blocks
are made. Finally, the flowchart of the state machine that controls the commu-
nication between MATLAB and PX4 is given and explained. In Chp.6 all of the
system physical and control parameters are presented; after a few comments on
the Gazebo software the simulation environment is enriched with a ground effect
model and the system is tested with several tasks. Every condition and trajectory
is simulated both with and without the adaptive action to clearly understand its
effects. The chosen conditions all represent important phenomena that are fairly
common in real-world applications:

73

CHAPTER 7. CONCLUSIONS 7.1. FUTURE WORK

• Hovering is an important behavior for all UAVs and can give a lot of informa-
tion regarding their stability, in this work the hovering task is carried out at
a very low altitude to simulate the presence of ground effect, a disturbance
that often causes problems in the takeoff, landing phases.

• Trajectory tracking is obviously the main objective of a vehicle that doesn’t
plan its own course and therefore is investigated using a lemniscate trajectory
that enables the evaluation of both rectilinear and curvilinear movements.
This trajectory is tested in two of the most important and frequent model-
ing error conditions: additional payloads and a partially broken rotor. A
final test is carried out using a fast trajectory with additional mass to push
the quad-rotor to its limits and showcase the explicit actuation constraint
handling of the NMPC control.

The simulation results clearly demonstrate the effectiveness of the proposed
control infrastructure. NMPC is able to predict future states and control the
system such that the tracking results are satisfactory while in nominal conditions.
When there are relevant modeling errors the adaptive component plays a major
role in ensuring system stability and keeping the tracking performance at an
acceptable level.

7.1 Future work

In this work the performance of the control scheme is assessed only in simula-
tion, the connection infrastructure has been tested also in the lab with a HolyBro
QAV250 quad-copter (Fig.7.1) and Vicon cameras as vision system but, due to
time constraints, the physical parameters of its dynamical model could not be
estimated and therefore the control scheme was highly unstable and the tests re-
sulted in unusable data. In future works, this could be remedied thanks to simple
and accurate enough estimation procedures, such as using a bifilar pendulum
to estimate the drone’s moments of inertia like in [43]. Finally, the combination
of MATLAB/Simulink, ROS2 and PX4 software provides a very powerful and
flexible environment that could open the doors to a much more vast set of appli-
cations. It could be used to control other types of vehicles and even more than one
at the same time thanks to the networking capabilities of ROS2 and the baked-in
safety and sensor management features of PX4, or it could be used in conjunc-
tion with the numerous autonomous guidance or machine learning toolboxes that
MATLAB provides.

74

CHAPTER 7. CONCLUSIONS 7.1. FUTURE WORK

(a) (b)

Figure 7.1: HolyBro QAV250 quad-copter: on a table without the propellers (a),
during flight in the flying arena in the SPARCS lab(b).

To facilitate future research and development the schemes and all code used
in this thesis, along with a detailed written guide on installation and basic usage
are made available on the SPARCS lab Gitlab page to future students.

75

https://gitlab.dei.unipd.it/sparcs/ths-bonazza/DSPARCS-user_guide

A Time derivatives for rotations

A.1 Rotation matrices

Let R(t) ∈ SO(3) be a rotation matrix. It holds that:

𝑑𝑒𝑡(R(𝑡)) = 1 (A.1a)

R(𝑡)R>(𝑡) = 𝐼3×3 (A.1b)

Deriving (A.1b) with respect to time one gets

R¤ (𝑡)R>(𝑡) + R(𝑡)R¤ >(𝑡) = 03×3 (A.2)

Which indicates that S(𝑡) ≜ R¤ (𝑡)R>(𝑡) is a skew-symmetric matrix. Consequently
it holds that

R¤ (𝑡) = S(𝑡)R(𝑡) (A.3)

In this formulation the physical meaning of S(𝑡) and how it contains information
on angular velocity is not clear so a different derivation is preferred and given
below.

Let [·]× be an operator called skew-symmetric operator that takes a vector

𝝎 =

[
𝜔1 𝜔2 𝜔3

]>
∈ R3 and constructs a skew-symmetric matrix:

[𝝎]× ≜



0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0


∈ R3×3 (A.4)

77

APPENDIX A. TIME DERIVATIVES FOR ROTATIONS A.1. ROTATION MATRICES

This operator is useful because it allows to compute a cross product between
vectors as a matrix product so that ∀𝝎, x ∈ R3, 𝝎 × x = [𝝎]×x. A particular
property of rotation matrices, since they satisfy (A.1a) and (A.1b), is that

[R(𝑡)𝝎]× = R(𝑡)[𝝎]×R>(𝑡) (A.5)

Now consider two reference framesℱ𝑊 andℱ𝐵, respectively fixed to the ground
(world-frame) and fixed to a movable object (body-frame). In the following time
dependence of all the vectors and matrices is omitted to simplify notation. Let
R𝑊𝐵 = R>𝐵𝑊 be the rotation matrix that encodes the rotation from frameℱ𝐵 toℱ𝑊 so
that given any point, its description in body-frame P𝐵 ∈ R3 and the corresponding
one in world-frame P𝑊 ∈ R3 can be found using

P𝑊 = R𝑊𝐵P𝐵 (A.6a)

P𝐵 = R𝐵𝑊P𝑊 = R>𝑊𝐵P𝑊 (A.6b)

Now let 𝝎𝐵 ∈ R3 be the angular velocity vector of ℱ𝐵 with respect to ℱ𝑊
expressed in ℱ𝐵, it represents the rate of rotation of the body frame (‖𝝎𝐵‖) and
the direction along which it is rotating (𝝎𝐵

‖𝝎𝐵‖). Being a vector it can also be
expressed in ℱ𝑊 using 𝝎𝑊 = R𝑊𝐵𝝎𝐵.

From a physical point of view the relationship between linear and angular
speeds of an arbitrary point, described by the previously defined vectors P𝑊 and
P𝐵 is given by

P¤𝑊 = 𝝎𝑊 × P𝑊 = [𝝎𝑊]×P𝑊 (A.7)

While from a purely mathematical standpoint, since P𝐵 is fixed in the body-
frame and thus P¤ 𝐵 = 0 it holds that

P¤𝑊 = R¤𝑊𝐵P𝐵 (A.8)

By putting (A.7) in (A.8) it follows

R¤𝑊𝐵P𝐵 = [𝝎𝑊]×P𝑊 = [𝝎𝑊]×R𝑊𝐵P𝐵 (A.9)

It is clear that ∀P𝐵

R¤𝑊𝐵 = [𝝎𝑊]×R𝑊𝐵 (A.10)

78

APPENDIX A. TIME DERIVATIVES FOR ROTATIONS A.1. ROTATION MATRICES

Finally in the context of robotics an IMU is often used to directly measure 𝝎𝐵 and
thus a more useful version of (A.10) can be derived by using property (A.5)

R¤𝑊𝐵 = [𝝎𝑊]×R𝑊𝐵

= [R𝑊𝐵𝝎𝐵]×R𝑊𝐵

= R𝑊𝐵[𝝎𝐵]×R𝑊𝐵
>R𝑊𝐵

= R𝑊𝐵[𝝎𝐵]×

(A.11)

For a more detailed explanation see [44].

79

APPENDIX A. TIME DERIVATIVES FOR ROTATIONS A.2. UNIT QUATERNIONS

A.2 Unit quaternions

Let q(𝑡) be a unit quaternion composed by a real value 𝜂 and a vector 𝝐 ∈ R3 so

that q(𝑡) =
[
𝜂(𝑡) 𝝐>(𝑡)

]>
with ‖q(𝑡)‖ = 1, used to encode a rotation between the

same two reference frames ℱ𝑊 and ℱ𝐵 defined in the previous section. To simplify
notation from now on time dependence will be omitted.

Let q𝑊𝐵 be the unit quaternion that represents the rotation from ℱ𝐵 to ℱ𝑊 ,

P̂𝐵 =

[
0 P>𝐵

]>
and P̂𝑊 =

[
0 P>𝑊

]>
with P𝐵 , P𝑊 ∈ R3 the descriptions of the

same arbitrary body-frame fixed point seen from ℱ𝐵 and ℱ𝑊 respectively. The
two representations are related by

P̂𝑊 = q𝑊𝐵 ◦ P̂𝐵 ◦ q𝐵𝑊

= q𝑊𝐵 ◦ P̂𝐵 ◦ q𝑊𝐵

(B.12a)

P̂𝐵 = q𝐵𝑊 ◦ P̂𝑊 ◦ q𝑊𝐵

= q𝑊𝐵 ◦ P̂𝑊 ◦ q𝑊𝐵

(B.12b)

Where · ◦ · is the Hamilton product or quaternion composition operator and ·
indicates a quaternion conjugate. Taking the derivative with respect to time of
P̂𝑊 in (B.12a) and substituting to P̂𝐵 its expression in terms of P̂𝑊 and knowing
that P̂𝐵 is fixed with respect to ℱ𝐵 one gets

P̂𝑊
¤ = q¤𝑊𝐵 ◦ q𝑊𝐵 ◦ P̂𝑊 ◦ q𝑊𝐵 ◦ q𝑊𝐵 + q𝑊𝐵 ◦ q𝑊𝐵 ◦ P̂𝑊 ◦ q𝑊𝐵 ◦ q¤𝑊𝐵

= q¤𝑊𝐵 ◦ q𝑊𝐵 ◦ P̂𝑊 + P̂𝑊 ◦ q𝑊𝐵 ◦ q¤𝑊𝐵

(B.13)

It holds that 𝑑
𝑑𝑡 (q𝑊𝐵 ◦ q𝑊𝐵) = q¤𝑊𝐵 ◦ q𝑊𝐵 + q𝑊𝐵 ◦ q¤𝑊𝐵 = 0.

Developing the calculations for the first term of the sum and remembering that
the norm is equal to one it follows that

q¤𝑊𝐵 ◦ q𝑊𝐵 =

[
0 −𝜂¤𝑊𝐵𝝐𝑊𝐵 + 𝜂𝑊𝐵𝝐¤𝑊𝐵 − 𝝐¤𝑊𝐵 × 𝝐𝑊𝐵

]>
=

[
0 𝝂>

]>
(B.14)

Therefore it also holds that q𝑊𝐵 ◦ q¤𝑊𝐵 = −q¤𝑊𝐵 ◦ q𝑊𝐵 =

[
0 −𝝂>

]>
.

80

APPENDIX A. TIME DERIVATIVES FOR ROTATIONS A.2. UNIT QUATERNIONS

Using these facts in (B.13) yelds

P̂𝑊
¤ =


0

𝝂


◦ P̂𝑊 + P̂𝑊 ◦


0

−𝝂


=


0

𝝂 × P𝑊


+


0

P𝑊 × (−𝝂)


=


0

𝝂 × P𝑊


−


0

−𝝂 × P𝑊


=


0

2𝝂 × P𝑊



(B.15)

Knowing from the previous section that from a physical standpoint (A.7) is
true it immediately follows that

𝝎𝑊 =


0

𝝎𝑊


=


0

2𝝂


= 2q¤𝑊𝐵 ◦ q𝑊𝐵 (B.16)

Finally the derivative with respect to time of the quaternion that expresses a
rotation from ℱ𝐵 to ℱ𝑊 is found with a right multiplication by q𝑊𝐵

𝝎𝑊 ◦ q𝑊𝐵 = 2q¤𝑊𝐵 ⇒ q¤𝑊𝐵 =
1
2𝝎𝑊 ◦ q𝑊𝐵 (B.17)

As said at the end of the previous section it is more useful in the context of
robotics to define rotation derivatives in terms of body-frame angular velocity. To
do that it is sufficient to rotate 𝝎𝑊 following the same reasoning as in (B.12) and
substitute the expression (B.16)

𝝎𝐵 = q𝑊𝐵 ◦ 𝝎𝑊 ◦ q𝑊𝐵

= 2q𝑊𝐵 ◦ q¤𝑊𝐵

(B.18)

81

APPENDIX A. TIME DERIVATIVES FOR ROTATIONS A.2. UNIT QUATERNIONS

And thus with a left multiplication by q𝑊𝐵 one gets the final expression for q¤𝑊𝐵

q¤𝑊𝐵 =
1
2q𝑊𝐵 ◦ 𝝎𝐵 =

1
2q𝑊𝐵 ◦


0

𝝎𝐵


(B.19)

For a more detailed explanation see [45].

82

References

[1] D. Barcelos, A. Kolaei, and G. Bramesfeld, “Aerodynamic Interactions of
Quadrotor Configurations,” Journal of Aircraft, vol. 57, no. 6, pp. 1074–1090,
Nov. 2020, Publisher: American Institute of Aeronautics and Astronautics,
issn: 0021-8669. doi: 10.2514/1.C035614. [Online]. Available: https://
arc.aiaa.org/doi/10.2514/1.C035614.

[2] B. B. Carlos, T. Sartor, A. Zanelli, G. Frison, W. Burgard, M. Diehl, and
G. Oriolo, An Efficient Real-Time NMPC for Quadrotor Position Control under
Communication Time-Delay, arXiv:2010.11264 [cs, eess, math], Oct. 2020. doi:
10.48550/arXiv.2010.11264. [Online]. Available: http://arxiv.org/
abs/2010.11264.

[3] F. Nan, S. Sun, P. Foehn, and D. Scaramuzza, Nonlinear MPC for Quadro-
tor Fault-Tolerant Control, arXiv:2109.12886 [cs], Feb. 2022. doi: 10.48550/
arXiv.2109.12886. [Online]. Available: http://arxiv.org/abs/2109.
12886.

[4] M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predictive
control: An engineering perspective,” en, The International Journal of Ad-
vanced Manufacturing Technology, vol. 117, no. 5, pp. 1327–1349, Nov. 2021,
issn: 1433-3015. doi: 10.1007/s00170-021-07682-3. [Online]. Available:
https://doi.org/10.1007/s00170-021-07682-3.

[5] J. Richalet, “Industrial applications of model based predictive control,” en,
Automatica, vol. 29, no. 5, pp. 1251–1274, Sep. 1993, issn: 0005-1098. doi:
10.1016/0005- 1098(93)90049- Y. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/000510989390049Y.

[6] R. Beard, N. Knoebel, C. Cao, N. Hovakimyan, and J. Matthews, “An L1
Adaptive Pitch Controller for Miniature Air Vehicles,” vol. 8, Aug. 2006.
doi: 10.2514/6.2006-6777.

83

https://doi.org/10.2514/1.C035614
https://arc.aiaa.org/doi/10.2514/1.C035614
https://arc.aiaa.org/doi/10.2514/1.C035614
https://doi.org/10.48550/arXiv.2010.11264
http://arxiv.org/abs/2010.11264
http://arxiv.org/abs/2010.11264
https://doi.org/10.48550/arXiv.2109.12886
https://doi.org/10.48550/arXiv.2109.12886
http://arxiv.org/abs/2109.12886
http://arxiv.org/abs/2109.12886
https://doi.org/10.1007/s00170-021-07682-3
https://doi.org/10.1007/s00170-021-07682-3
https://doi.org/10.1016/0005-1098(93)90049-Y
https://www.sciencedirect.com/science/article/pii/000510989390049Y
https://www.sciencedirect.com/science/article/pii/000510989390049Y
https://doi.org/10.2514/6.2006-6777

REFERENCES REFERENCES

[7] M. Liu, F. Zhang, and S. Lang, “The Quadrotor Position Control Based
on MPC with Adaptation,” in 2021 40th Chinese Control Conference (CCC),
ISSN: 1934-1768, Jul. 2021, pp. 2639–2644. doi: 10.23919/CCC52363.2021.
9549626.

[8] J. Pravitra, K. A. Ackerman, C. Cao, N. Hovakimyan, and E. A. Theodorou,
L1-Adaptive MPPI Architecture for Robust and Agile Control of Multirotors,
arXiv:2004.00152 [cs, eess], Mar. 2020. doi: 10.48550/arXiv.2004.00152.
[Online]. Available: http://arxiv.org/abs/2004.00152.

[9] P. De Monte and B. Lohmann, “Position Trajectory Tracking of a Quadrotor
based on L1 Adaptive Control,” vol. 62, Apr. 2013, pp. 3346–3353. doi:
10.1515/auto-2013-1035.

[10] X. Zhang, X. Li, K. Wang, and Y. Lu, “A Survey of Modelling and Iden-
tification of Quadrotor Robot,” en, Abstract and Applied Analysis, vol. 2014,
e320526, Oct. 2014, Publisher: Hindawi, issn: 1085-3375. doi: 10.1155/2014/
320526. [Online]. Available: https://www.hindawi.com/journals/aaa/
2014/320526/.

[11] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model Predictive Control: Theory,
Computation, and Design, en. Nob Hill Publishing, 2017, Google-Books-ID:
MrJctAEACAAJ, isbn: 978-0-9759377-3-0.

[12] F. Alasali, S. Haben, H. Foudeh, and W. Holderbaum, “A Comparative Study
of Optimal Energy Management Strategies for Energy Storage with Stochas-
tic Loads,” Energies, vol. 13, p. 2596, May 2020. doi: 10.3390/en13102596.

[13] M. Morari and J. H. Lee, “Model predictive control: Past, present and fu-
ture,” en, Computers & Chemical Engineering, vol. 23, no. 4, pp. 667–682, May
1999, issn: 0098-1354. doi: 10.1016/S0098-1354(98)00301-9. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0098135498003019.

[14] M. A. Henson, “Nonlinear model predictive control: Current status and fu-
ture directions,” en, Computers & Chemical Engineering, vol. 23, no. 2, pp. 187–
202, Dec. 1998, issn: 0098-1354. doi: 10.1016/S0098-1354(98)00260-9.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0098135498002609.

[15] A. Zanelli, G. Horn, G. Frison, and M. Diehl, “Nonlinear Model Predictive
Control of a Human-Sized Quadrotor,” Jun. 2018. doi: 10.23919/ECC.2018.
8550530.

84

https://doi.org/10.23919/CCC52363.2021.9549626
https://doi.org/10.23919/CCC52363.2021.9549626
https://doi.org/10.48550/arXiv.2004.00152
http://arxiv.org/abs/2004.00152
https://doi.org/10.1515/auto-2013-1035
https://doi.org/10.1155/2014/320526
https://doi.org/10.1155/2014/320526
https://www.hindawi.com/journals/aaa/2014/320526/
https://www.hindawi.com/journals/aaa/2014/320526/
https://doi.org/10.3390/en13102596
https://doi.org/10.1016/S0098-1354(98)00301-9
https://www.sciencedirect.com/science/article/pii/S0098135498003019
https://www.sciencedirect.com/science/article/pii/S0098135498003019
https://doi.org/10.1016/S0098-1354(98)00260-9
https://www.sciencedirect.com/science/article/pii/S0098135498002609
https://www.sciencedirect.com/science/article/pii/S0098135498002609
https://doi.org/10.23919/ECC.2018.8550530
https://doi.org/10.23919/ECC.2018.8550530

REFERENCES REFERENCES

[16] E. Hairer and G. Wanner, “RungeKutta Methods, Explicit, Implicit,” en,
in Encyclopedia of Applied and Computational Mathematics, B. Engquist, Ed.,
Berlin, Heidelberg: Springer, 2015, pp. 1282–1285, isbn: 978-3-540-70529-1.
doi: 10.1007 /978 - 3- 540 - 70529- 1_ 144. [Online]. Available: https:
//doi.org/10.1007/978-3-540-70529-1_144.

[17] D. Q. Huynh, “Metrics for 3D Rotations: Comparison and Analysis,” en,
Journal of Mathematical Imaging and Vision, vol. 35, no. 2, pp. 155–164, Oct.
2009, issn: 1573-7683. doi: 10.1007/s10851-009-0161-2. [Online]. Avail-
able: https://doi.org/10.1007/s10851-009-0161-2.

[18] Y. Wang, A. Ramirez-Jaime, F. Xu, and V. Puig, “Nonlinear Model Predictive
Control with Constraint Satisfactions for a Quadcopter,” vol. 783, Nov. 2016.
doi: 10.1088/1742-6596/783/1/012025.

[19] D. Hanover, P. Foehn, S. Sun, E. Kaufmann, and D. Scaramuzza, “Perfor-
mance, Precision, and Payloads: Adaptive Nonlinear MPC for Quadrotors,”
IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 690–697, Apr. 2022,
arXiv:2109.04210 [cs], issn: 2377-3766, 2377-3774. doi: 10.1109/LRA.2021.
3131690. [Online]. Available: http://arxiv.org/abs/2109.04210.

[20] J. Van Amerongen, “Intelligent Control (part 1)-MRAS,” Lecture notes, Uni-
versity of Twente, The Netherlands, 2004.

[21] C. Cao and N. Hovakimyan, “Design and Analysis of a Novel L1 Adaptive
Controller, Part I: Control Signal and Asymptotic Stability,” in 2006 American
Control Conference, ISSN: 2378-5861, Jun. 2006, pp. 3397–3402. doi: 10.1109/
ACC.2006.1657243.

[22] F. L. Lewis, “L1 Adaptive Control Theory: Guaranteed Robustness with Fast
Adaptation (Hovakimyan, N. and Cao, C.; 2010 [Bookshelf],” IEEE Control
Systems Magazine, vol. 31, no. 5, pp. 112–114, Oct. 2011, Conference Name:
IEEE Control Systems Magazine, issn: 1941-000X. doi: 10.1109/MCS.2011.
941837.

[23] E. Xargay, N. Hovakimyan, and C. Cao, “L1 adaptive controller for multi-
input multi-output systems in the presence of nonlinear unmatched un-
certainties,” in Proceedings of the 2010 American Control Conference, ISSN:
2378-5861, Jun. 2010, pp. 874–879. doi: 10.1109/ACC.2010.5530686.

[24] Basic Concepts | PX4 User Guide. [Online]. Available: https://docs.px4.
io/main/en/getting_started/px4_basic_concepts.html.

85

https://doi.org/10.1007/978-3-540-70529-1_144
https://doi.org/10.1007/978-3-540-70529-1_144
https://doi.org/10.1007/978-3-540-70529-1_144
https://doi.org/10.1007/s10851-009-0161-2
https://doi.org/10.1007/s10851-009-0161-2
https://doi.org/10.1088/1742-6596/783/1/012025
https://doi.org/10.1109/LRA.2021.3131690
https://doi.org/10.1109/LRA.2021.3131690
http://arxiv.org/abs/2109.04210
https://doi.org/10.1109/ACC.2006.1657243
https://doi.org/10.1109/ACC.2006.1657243
https://doi.org/10.1109/MCS.2011.941837
https://doi.org/10.1109/MCS.2011.941837
https://doi.org/10.1109/ACC.2010.5530686
https://docs.px4.io/main/en/getting_started/px4_basic_concepts.html
https://docs.px4.io/main/en/getting_started/px4_basic_concepts.html

REFERENCES REFERENCES

[25] Software Overview, en-US. [Online]. Available: https://px4.io/software/
software-overview/.

[26] PX4/PX4-Autopilot at v1.14.0-beta1. [Online]. Available: https://github.
com/PX4/PX4-Autopilot/tree/v1.14.0-beta1.

[27] PX4 Architectural Overview | PX4 User Guide. [Online]. Available: https:
//docs.px4.io/main/en/concept/architecture.html.

[28] ECL/EKF Overview & Tuning ů PX4 v1.9.0 User Guide. [Online]. Available:
https://docs.px4.io/v1.9.0/en/advanced_config/tuning_the_ecl_

ekf.html.

[29] Controller Diagrams | PX4 User Guide. [Online]. Available: https://docs.
px4.io/main/en/flight_stack/controller_diagrams.html.

[30] uORB Messaging | PX4 User Guide. [Online]. Available: https://docs.px4.
io/main/en/middleware/uorb.html.

[31] MAVLink Messaging | PX4 User Guide. [Online]. Available: https://docs.
px4.io/main/en/middleware/mavlink.html.

[32] Flight Review. [Online]. Available: https://review.px4.io/upload.

[33] Overview ů QGroundControl User Guide. [Online]. Available: https://docs.
qgroundcontrol.com/master/en/index.html.

[34] XRCE-DDS (PX4-FastDDS Bridge) | PX4 User Guide. [Online]. Available:
https://docs.px4.io/main/en/middleware/xrce_dds.html.

[35] Y. Chen, M. Bruschetta, E. Picotti, and A. Beghi, “MATMPC - A MATLAB
Based Toolbox for Real-time Nonlinear Model Predictive Control,” in 2019
18th European Control Conference (ECC), Jun. 2019, pp. 3365–3370. doi: 10.
23919/ECC.2019.8795788.

[36] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi:
A software framework for nonlinear optimization and optimal control,” en,
Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36, Mar. 2019,
issn: 1867-2957. doi: 10.1007/s12532-018-0139-4. [Online]. Available:
https://doi.org/10.1007/s12532-018-0139-4.

[37] Using Vision or Motion Capture Systems for Position Estimation | PX4 User
Guide. [Online]. Available:https://docs.px4.io/main/en/ros/external_
position_estimation.html#reference-frames-and-ros.

[38] Gazebo. [Online]. Available: https://classic.gazebosim.org/.

86

https://px4.io/software/software-overview/
https://px4.io/software/software-overview/
https://github.com/PX4/PX4-Autopilot/tree/v1.14.0-beta1
https://github.com/PX4/PX4-Autopilot/tree/v1.14.0-beta1
https://docs.px4.io/main/en/concept/architecture.html
https://docs.px4.io/main/en/concept/architecture.html
https://docs.px4.io/v1.9.0/en/advanced_config/tuning_the_ecl_ekf.html
https://docs.px4.io/v1.9.0/en/advanced_config/tuning_the_ecl_ekf.html
https://docs.px4.io/main/en/flight_stack/controller_diagrams.html
https://docs.px4.io/main/en/flight_stack/controller_diagrams.html
https://docs.px4.io/main/en/middleware/uorb.html
https://docs.px4.io/main/en/middleware/uorb.html
https://docs.px4.io/main/en/middleware/mavlink.html
https://docs.px4.io/main/en/middleware/mavlink.html
https://review.px4.io/upload
https://docs.qgroundcontrol.com/master/en/index.html
https://docs.qgroundcontrol.com/master/en/index.html
https://docs.px4.io/main/en/middleware/xrce_dds.html
https://doi.org/10.23919/ECC.2019.8795788
https://doi.org/10.23919/ECC.2019.8795788
https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1007/s12532-018-0139-4
https://docs.px4.io/main/en/ros/external_position_estimation.html#reference-frames-and-ros
https://docs.px4.io/main/en/ros/external_position_estimation.html#reference-frames-and-ros
https://classic.gazebosim.org/

REFERENCES REFERENCES

[39] Simulation | PX4 User Guide. [Online]. Available: https://docs.px4.io/
main/en/simulation/.

[40] Gazebo Simulation ů PX4 Developer Guide. [Online]. Available: https://dev.
px4.io/v1.10_noredirect/en/simulation/gazebo.html.

[41] I. C. Cheeseman and W. E. Bennett, “The effect of the ground on a helicopter
rotor in forward flight,” en, 1955, Accepted: 2014-10-21T15:54:14Z. [Online].
Available: https://reports.aerade.cranfield.ac.uk/handle/1826.2/
3590.

[42] L. Danjun, Z. Yan, S. Zongying, and L. Geng, “Autonomous landing of
quadrotor based on ground effect modelling,” in 2015 34th Chinese Control
Conference (CCC), ISSN: 1934-1768, Jul. 2015, pp. 5647–5652. doi: 10.1109/
ChiCC.2015.7260521.

[43] J. Habeck and P. Seiler, “Moment of Inertia Estimation Using a Bifilar Pen-
dulum,” en, Apr. 2016, Accepted: 2016-10-03T13:15:46Z. [Online]. Available:
http://conservancy.umn.edu/handle/11299/182514.

[44] S. Zhao, Time Derivative of Rotation Matrices: A Tutorial, arXiv:1609.06088
[cs], Sep. 2016. doi: 10.48550/arXiv.1609.06088. [Online]. Available:
http://arxiv.org/abs/1609.06088.

[45] B. Graf, Quaternions and dynamics, arXiv:0811.2889 [math-ph], Nov. 2008.
doi: 10.48550/arXiv.0811.2889. [Online]. Available: http://arxiv.org/
abs/0811.2889.

87

https://docs.px4.io/main/en/simulation/
https://docs.px4.io/main/en/simulation/
https://dev.px4.io/v1.10_noredirect/en/simulation/gazebo.html
https://dev.px4.io/v1.10_noredirect/en/simulation/gazebo.html
https://reports.aerade.cranfield.ac.uk/handle/1826.2/3590
https://reports.aerade.cranfield.ac.uk/handle/1826.2/3590
https://doi.org/10.1109/ChiCC.2015.7260521
https://doi.org/10.1109/ChiCC.2015.7260521
http://conservancy.umn.edu/handle/11299/182514
https://doi.org/10.48550/arXiv.1609.06088
http://arxiv.org/abs/1609.06088
https://doi.org/10.48550/arXiv.0811.2889
http://arxiv.org/abs/0811.2889
http://arxiv.org/abs/0811.2889

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Thesis structure

	Agent Modelling
	Pose representation
	Rotation matrices
	Unit quaternions

	Quadrotor mathematical model

	Model Predictive Control
	Background
	Linear Quadratic Regulator
	Receding Horizon Control
	MPC

	NMPC of a quad-rotor platform
	System discretization
	Cost function
	Constraints and prediction horizon
	Final problem formulation

	Adaptive control
	Background
	L1 control of a quad-rotor platform

	Complete control system
	PX4-Autopilot
	Flight stack
	Middleware

	QGroundControl
	ROS 2
	Implementation details
	MATLAB/Simulink
	NMPC block
	L1 block
	Finite state machine block
	Reference frame conversion block

	Simulations
	Setup
	Ground effect

	Results
	Hover with ground effect
	Lemniscate
	Fast lemniscate

	Conclusions
	Future work

	Time derivatives for rotations
	Rotation matrices
	Unit quaternions

	References

