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Abstract

Let X be a projective scheme of dimension n over a an algebraically closed field k and

let OX denote its structure sheaf. Let F be any coherent sheaf of OX -modules. In

this essay, we wish to compute the sheaf cohomology H i(X,F), for i ∈ Z. We will see

the Serre’s duality which asserts that the k-finite dimensional vector space Hn−i is dual

to Exti(F , ωX), for i ≥ 0, where ωX is the canonical sheaf on X. Applying this result

to a smooth projective curves of genus g, we will be able to prove the Riemann–Roch

theorem.
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Chapter 1

Introduction

One of the strongest problem in Algebraic Geometry is to classify all algebraic varieties.

Having a numerical invariant attached to a given space could solve a part of this problem.

One modern technique to define this invariant is by cohomology. The aim of this essay

is to initiate ourself in the utilization of cohomology in Algebraic Geometry . The

first mathematician who brought the notion of cohomology of sheaves into Algebraic

Geometry is J-P. Serre in his paper [Serre, 1955] , where he used Čech cohomology.

Though, there are many ways of defining cohomology. Notably, in this Master thesis, we

will see the approach of Grothendieck [Grothendieck, 1957]. He defined the cohomology

as the right derived functors of the global section: starting from a short exact sequence

of sheaves of abelian groups, 0→ F ′ → F → F ′′ → 0 the global section functor Γ(X,−)

gives a left exact sequence

0→ Γ(X,F ′)→ Γ(X,F)→ Γ(X,F ′′),

As the functor Γ(X,−) is not right exact in general. One may ask, how to continue this

sequence to the right. For that, Grothendieck used the language of homological algebra:

fix a topological space X and consider the cohomology as a functor from Ab(X), the

category of sheaves of abelian groups to Ab, the category of abelian group. From a

standard result in homological algebra, the definition of derived funtors uses injective

resolution, that is, every sheaf of abelian groups is embedded into an injective sheaf I,

and there is an exact sequence

0→ I → I1 → I2 → · · ·

where the Ii are injective sheaves. Despite this definition from derived functor is well

suited for theoretical side, computing cohomology from resolutions is almost impossible

in practice. We should go back to Čech cohomology introduced by Serre: take an open
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affine covering U of the topological X. Define the Čech cohomology as the cohomology

group of the explicit complex of abelian groups with pth group

Cp(U ,F) =
∏

i0<...<ip

F(Ui0 ∩ ... ∩ Uip).

We will see that under some hypotheses on X and on the sheaf F , the resulting coho-

mology group from derived functor and from the Čech coincide.

We give a look carefully on the study of cohomology of particular sheaves, which are

quasi-coherent and coherent sheaves of OX -modules. That is the reason why we will

start our study in Chapter II with quasi-coherent and coherent sheaves on projective

space.

Chapter III is devoted for the introduction of cohomology of sheaves. There we intro-

duce the general notion, then right after, we study a vanishing theorem of Grothendiek.

We proceed with the result about the cohomology of affine noetherian scheme. We end

the chapter with some computation of cohomology of projective space.

In Chapter IV, discussed about the Serre duality theorem for cohomology of coherent

sheaves and the at last but not least we study the famous Riemann-Roch theorem.

The main reference for this essay is the book of [Hartshorne, 1977].



Chapter 2

Sheaf of OX-modules

2.1 Sheaves of Modules

In this section we will see some basic properties of particular sheaves of modules, quasi-

coherent and coherent sheaves.

Definition 2.1. Let (X,OX) be a ringed space. A sheaf of OX-modules or simply an

OX-module is a sheaf F on X, such that for each open set U ⊆ X, the group F(U)

is an OX(U)-module, and if V ⊆ U , then (a · f)|V = a|V · f |V for every a ∈ OX(U)

and f ∈ F(U). A morphism F → G of sheaves of OX -modules is a morphism of sheaves

such that for each open set U ⊆ X, the map F(U) → G(U) is a homomorphism of

OX(U)-modules.

Definition 2.2. Let F and G be two OX -modules we denote the group of morphisms

from F to G by HomOX
(F ,G), or sometimes HomX(F ,G). A sequence of OX -modules

and morphisms is exact if it is exact as a sequence of sheaves of abelian groups.

If U is an open subset of X, and if F is an OX -module, then F|U is an OX |U -module. If

F and G are two OX -modules, the presheaf U 7→ HomOX |U (F|U ,G|U ) is indeed a sheaf

which we call the sheaf Hom and denote by HomOX
(F ,G). It is also an OX -module.

We define the tensor product F ⊗OX
G of two OX -modules to be the sheaf associated

to the presheaf

U 7→ F(U)⊗OX(U) G(U).

Definition 2.3. An OX -module F is free it is isomorphic to a direct sum of copies

of OX . It is locally free if X can be covered by open sets U for which F|U is a free

OX |U -module. In that case the rank of F on such an open is the number of copies of the

structure sheaf needed (finite or infinite). If X is connected, the rank of a locally free

sheaf is the same everywhere. A locally free sheaf of rank 1 is called invertible sheaf.

3



Chapter 2. Sheaf of OX-modules 4

A sheaf of ideals on X is a sheaf of modules I, which is a subsheaf of OX , that is I(U)

is an ideal in OX(U) for any open set U .

Example 2.1. Let A be a ring, and I ⊂ A be an ideal. Let X = Spec A. By definition,

V (I) ⊂ X is a closed subset. We identify V (I) as an affine subscheme Y = Spec A/I,

so that we have a short exact sequence of sheaves of modules

0→ I → OX → OY → 0,

which is the analogue to 0→ I → A→ A/I → 0.

Definition 2.4. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces, let F be

an OX -module and G be an OY -module. Note that the direct image f∗F is an f∗OX -

module. Together with the morphism f ] : OY → f∗OX of sheaves of rings on Y , we

have a natural OY -module structure on f∗OX . We call it the direct image of F or the

pushforward of F by f .

Now let G be a sheaf of OY -modules. Then f−1G is an f−1OY -module. Because of the

adjoint property of f−1 we have a morphism f−1OY → OX of sheaves of rings on X.

We define f∗G to be the tensor product

f−1G ⊗f−1OY
OX .

We call it inverse image of G by the morphism f .

Remark 2.5. For any OX -module F and any OY -module G, there is a natural isomor-

phism of groups

HomOX
(f∗G,F) ∼= HomOY

(G, f∗F)

Definition 2.6. Let (X,OX) be a ringed space. We say that an OX -module F is

generated by its global sections at x ∈ X if the canonical homomorphism F(X) ⊗OX

OX,x → Fx is surjective. We say that it is generated by its global sections if this is true

at every point of X. Let S be a subset of F(X), we say that F is generated by S if

{sx}s∈S generates Fx for every x ∈ X.

Lemma 2.7. Let (X,OX) be a ringed space. Then an OX-module F is a generated by

its global sections if and only if there exist a finite set I and a surjective homomorphism

of OX-modules O(I)
X → F , where O(I)

X is the direct sum of OX indexed by I. Moreover

if F is generated by a set S of global section, then we can take I = S.

Proof. If there exists a surjective homomorphism O(I)
X → F , immediately F is generated

by its global sections since O(I)
X is. Now we suppose that F is generated by its global

sections. Let S be a subset of F(X) which generates F . Let {εs}s∈S be the canonical



Chapter 2. Sheaf of OX-modules 5

basis of O(S)
X . For any open set U of X, the εs|U form a basis of OX(U)(S) over OX(U).

Let us consider the morphism ψ : OX(U)(S) → F which is defined by

ψ(U) :
∑
s∈S

fs · εs|U 7→
∑
s∈S

fs · s|U ,

for any fs ∈ OX(U). Then ψx is surjective for every x ∈ X and therefore ψ is surjective.

2.2 Quasi-coherent Sheaves on an Affine Scheme

Definition 2.8. Let (X,OX) be a ringed space. Let F be an OX -module. We say that

F is quasi-coherent if for every x ∈ X, there is an open neighborhood U of x and an

exact sequence of OX -modules

O(J)
X |U → O

(I)
X |U → F|U → 0

Example 2.2. On any scheme X, the structure sheaf OX is quasi-coherent.

We now want to classify quasi-coherent sheaves on an affine scheme X = Spec A.

Definition 2.9. Let A be a ring and let M be an A-module. We define the sheaf

associated to M on Spec A, denoted M̃ , as follows. For each prime p ⊆ A, let Mp be

the localization of M at p. For any open set U ⊆ X, we define the group M̃(U) to be

the set of functions s : U → qp∈UMp such that for each p ∈ U , s(p) ∈ Mp, and such

that s is locally a fraction m/f , with m ∈M and f ∈ A. To be precise, we require that

for each p ∈ U , there is a neighborhood V of p in U , and there are elements m ∈M and

f ∈ A, such that for each q ∈ V , f /∈ q and s(q) = m/f in Mq. We make M̃ into a sheaf

by using the obvious restriction map.

Proposition 2.10. Let A be a ring, let M be an A-module, and let M̃ be the sheaf on

X = Spec A associated to M . Then :

(a) M̃ is an OX-module;

(b) for each p ∈ X, the stalk (M̃)p of the sheaf M̃ at p is isomorphic to Mp

(c) for any f ∈ A, the Af -module M̃(D(f)) is isomorphic to the localized module Mf .

In particular Γ(M̃,X) = M

Proof. Hartshorne.
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Lemma 2.11. Let M be an A-module. Then M = 0 if and only if Mm = 0 for every

maximal ideal m ⊆ A.

Proof. Let x ∈M . Let us consider the ideal J = {a ∈ A| ax = 0}. Now, if J 6= A, then

there is a maximal ideal m ofA such that J ⊆ A. Since Mm = 0, there exist an s ∈ A\m
such that sx = 0. Hence s ∈ J , which contradicts the assumption J ⊆ m. This implies

that J = A, and 1 ∈ J . Thus x = 0.

Proposition 2.12. Let X = Spec A be an affine scheme. Then the following properties

are true.

(a) Let {Mi} be a family of A-modules. Then (⊕iMi)
∼ ∼= ⊕iM̃i

(b) A sequence of A-module L→M → N is exact if and only if the associated sequence

of OX-modules L̃→ M̃ → Ñ is exact.

(c) For any A-module M , the sheaf M̃ is quasi-coherent.

(d) Let M,N be two A-modules. Then we have a canonical isomorphisms

(M ⊗A N)∼ ∼= M̃ ⊗OX
Ñ

Proof. (a) is true by definition. (b) Suppose the sequence L → M → N is exact. Let

p ∈ Spec A, the sequence Lp →Mp → Np is exact since Ap is flat over A. The sequence

is exact on stalks, hence L̃→ M̃ → Ñ is exact. Conversely, let us suppose that we have

an exact sequence.

L̃
α→ M̃

β→ Ñ . (2.1)

For any prime ideal p ∈ Spec A, we have the following commutative diagram

L M N

Lp Mp Np

α(X) β(X)

Where the vertical arrows are the localization maps. The bottom row is exact since the

sequence of sheaves is exact. We deduce from this that (kerβ(X)/Imα(X))p = 0. In

particular, the latter is true for any maximal ideal p, thus by Lemma kerβ(X) = Imα(X)

and the sequence

(c) follows from (a) and (b).
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(d) Let L = M ⊗A N . For any principal open subset D(f) of X, we have a canonical

isomorphism of OX(D(f))-modules.

L̃(D(f)) = (M ⊗A N)⊗A Af ∼= (M ⊗A Af )⊗Af
(N ⊗A Af )

∼= M̃(D(f))⊗OX(D(f)) Ñ(D(f)).

This is isomorphism is compatible with the restriction homomorphisms. Therefore, it

induces an isomorphism of OX -modules L̃ ∼= M̃ ⊗ Ñ , because the principal open subsets

form a base for the topology of X.

Proposition 2.13. Let F be a quasi-coherent sheaf on a scheme X. We suppose X is

noetherian. Then for any f ∈ OX(X) the canonical homomorphism

F(X)f = F(X)⊗OX(X) OX(Xf )→ F(Xf ),

where Xf := {x ∈ X| fx ∈ O∗X,x}, is an isomorphism.

Proof. We first show that every point x ∈ X has an affine open neighborhood U such that

the canonical homomorphism F(U)∼ → F|U is an isomorphism. By our assumption on

X, there exist an open affine neighborhood U of x and an exact sequence of OX -modules

O(J)
X |U → O

(I)
X |U → F|U → 0.

Let M = Im(α(U)). By Proposition 2.12 we have an exact sequence

O(J)
X |U → O

(I)
X |U → M̃ → 0,

which implies that F|U ∼= M̃ and we have M = M̃(U) = F(U). As X is noetherian, we

can cover X with a finite number of affine open subsets Ui such that F|Ui
∼= F(Ui)

∼.

Let Vi = Ui ∩ Xf = D(f |Ui). Then Xf is the union of the Vi := Ui ∩ Xf = D(f |Ui).

To ease notation we still denote by f its restriction to any open subset of X. With

OX(Ui)f = OX(Vi) and the well known exact sequence which characterizes a sheaf, we

have a commutative diagram

0 F(X)f ⊕iF(Ui)f ⊕i,jF(Ui ∩ Uj)f

0 F(Xf ) ⊕F(Vi) ⊕i,jF(Vi ∩ Vj)

γ

where the horizontals rows are exact. The homomorphism γ is an isomorphism because

F|Ui
∼= F(Ui)

∼. Again we may apply the same reasoning to Ui∩Uj since X is noetherian,
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and get ⊕i,jF(Ui ∩ Uj)f ∼= ⊕i,jF(Vi ∩ Vj). Coming back to our diagram, we have

F(X)f → F(Xf ) is an isomorphism.

Theorem 2.14. Let X be a scheme, and F an OX-module. Then F is quasi-coherent

if and only if for every open affine subset U of X, we have F|U ∼= F(U)∼.

Proof. Suppose F is quasi-coherent and let U be an affine open subset of X. For any

f ∈ OX(U), we have F(U)f ∼= F(D(f)) by Proposition 2.13. Thus F|U ∼= F(U)∼.

Conversely, let X =
⋃
i Ui be an affine open covering of X. By hypothesis, we have

F(Ui)
∼ ∼= F|Ui , for each i, this is nothing else but Proposition 2.12 (c).

Remark 2.15. In the language of category, we may rephrase the above theorem as follows.

If X = Spec A, the functor M 7→ M̃ induces an equivalence of categories between the

category of A-modules and the category of quasi-coherent OX -modules.

Example 2.3. If X = Spec A is an affine scheme, if Y ⊆ X is the closed subscheme

defined by an ideal a ⊆ A, and if i : Y → X is the inclusion morphism, then i∗OY is a

quasi-coherent OX-module, since it is isomorphic to (A/a)∼.

Example 2.4. If U is an open subscheme of a scheme X, with inclusion map j : U → X,

then the ideal sheaf j!(OU ) by extending OU by zero outside of U , is an OX-module, but

it is not in general quasi-coherent. For example, suppose X is integral, and V = Spec A

is any open affine subset of X, not contained in U . Then j!(OU )|V has no global section

over V , and yet it is not a zero sheaf. Hence it cannot be of the form M̃ for any A-module

M .

Proposition 2.16. Let X be an affine scheme. Let 0 → F ′ → F → F ′′ → 0 be an

exact sequence of OX-modules with F quasi-coherent. Then the sequence

0→ F ′(X)→ F(X)→ F ′′(X)→ 0,

is exact.

2.3 Coherent Sheaves

Definition 2.17. Let (X,OX) be a ringed space, and let F be an OX -module. We say

that F is finitely generated if for every x ∈ X, there exist an open neighborhood U of

x, an integer n ≥ 1 and a surjective homomorphism OnX |U → F|U . We say that F is

coherent if it is finitely generated, and if for every every open subset U of X, and for

every homomorphism α : OnX |U → F|U , the kernel Kerα is finitely generated.

For simplicity, we will not mention coherent sheaves unless the scheme is noetherian.
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Proposition 2.18. Let X be a scheme. Let F be a quasi-coherent OX-module. Let us

consider the following properties:

(i) F is coherent

(ii) F is finitely generated

(iii) for every affine open subset U of X, F(U) is finitely generated over OX(U).

Then (i)⇒ (ii)⇒ (iii). Moreover, if X is locally noetherian, then these properties are

equivalent.

Proof. By definition, (i) implies (ii). Let us suppose F is finitely generated. Let U be an

affine open subset of X. Then U can be covered with a finite number of principal open

subsets Ui such that there exists an exact sequence OnX |Ui → F|Ui → 0. It follows that

the sequence of OX(Ui)-modules OnX(Ui) → F(Ui) → 0 is exact. In particular, F(Ui)

is finitely generated over OX(Ui). Since F(Ui) = F(U) ⊗OX(U) OX(Ui), there exists a

finitely generated sub-OX -module M of F(U) such that M ⊗OX(U) OX(Ui) = F(Ui).

Enlarging F , if necessary, we may suppose that this equality holds for every i. Then

the sequence M̃ → F|U → 0 is then exact because it is exact on every Ui, consequently,

M → F(U) is surjective and (ii) implies (iii).

We now suppose (iii) is true and X is locally noetherian. We want to show that F is

coherent. Let V be an open subset of X and α : OnX |V → F|V a homomorphism. We

need to show that Ker(α) is finitely generated. A this is a local property we may assume

that V is affine. Then F|V = Ñ . Then Ker(α) = (Kerα(V ))∼ by Proposition 2.12 (b).

Now Kerα(V ) is finitely generated because OX(V ) is noetherian. Therefore Ker(α) is

finitely generated and F is coherent as desired.

Proposition 2.19. Let X be a scheme, we have the following properties of OX .

(a) A direct sum of quasi-coherent sheaves is quasi-coherent ; a finite direct sum of

finitely generated quasi-coherent sheaves is finitely generated.

(b) If F ,G is are quasi-coherent (resp. finitely generated quasi-coherent) sheaves, then

so is F ⊗OX
G. Moreover for any affine open subsetof X, we have

(F ⊗OX
G)(U) = F(U)⊗OX(U) G(U).

(c) The kernel, cokernel, and image of any morphisms of quasi-coherent sheaves are

quasi-coherent.
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(d) Let 0 → F ′ → F → F ′′ → 0 be an exact sequence of OX-modules if two of them

are quasi-coherent, so is the third.

(e) If X is locally noetherian, then the properties (c) and (d) are true for coherent

sheaves.

Proof. (a)–(c) The question is local, so we may assume X is affine and the results can

be deduced from Remark 2.15.

(d) The only difficult case in is that where F ′ and F ′′ are quasi-coherent. We might

suppose that X is affine by Proposition 2.16, the sequence 0 → F ′(X) → F(X) →
F ′′(X)→ 0. So we have a commutative diagram of exact sequences

0 F(X)∼ F(X)∼ F ′′(X)∼ 0

0 F ′ F F ′′ 0

where the first and the last vertical arrows are isomorphisms since F and F ′′ were

assumed to be quasi-coherent sheaves. Therefore, the five-lemma implies that F(X)∼ →
F is an isomorphism. (e) is trivially true.

Proposition 2.20. Let X → Y be a morphism of schemes.

(a) Let G be an OY . Then for any x ∈ X, se have the canonical isomorphism

(f∗G)x ∼= Gf(x) ⊗OX,x.

(b) Let us suppose G is quasi-coherent. Let U be a affine open subset of X such that

f(U) is contained in an affine open subset V of Y . Then

f∗G|U ∼= (G(V )⊗OY (V ) OX(U)∼.

In paritcular, f∗G is quasi-coherent. It is finitely generated if G is finitely gener-

ated.

(c) Let F be a quasi-coherent sheaf on X. If X is noetherian, or f is separated and

quasi-compact then f∗F is quasi-coherent on Y .

(d) If f is finite and F quasi-coherent and finitely generated, then f∗F is quasi-coherent

and finitely generated on Y .

Proof. (a) We have that f−1G = Gf(x), so on stalks we have (f∗G)∗ ∼= Gf(x) ⊗ OX,x as

desired.
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(b) Let g : U → V be the restriction of f to U . Then f∗G|U = g∗G|V . We may therefore

assume X = U = Spec B and Y = V = Spec A. We note that the property is obvious

if G = O(I)
Y since we have f∗OY = OX and we f∗ commutes direct sums. So we have

f∗O(I)
Y = (f∗OY )(I) = O(I)

X = (B(I))∼. For the general case, we have an exact sequence

K → L→ G(Y )→ 0,

with K,L are free modules over A. We then have exact sequences

K̃ → L̃→ G → 0, and f∗K̃ → f∗L̃→ f∗G → 0.

Since β is associated to αB : K ⊗A B → L⊗B, we have

f∗G = Coker β = ((Coker α)⊗A B)∼ = (G(Y )⊗)B)∼,

and this proves (b).

(c) We may assume that Y is affine since the property wanted is of local nature on Y .

For any g ∈ OY (Y ), let g′ denote its image in OX(X). We have

f∗F(D(g)) = F(f−1D(g)) = F(D(g′))
Prop.2.13∼= F(X)g′ = F(X)⊗OY (Y ) OY (D(g)).

(d) We may assume Y is affine. As f is affine, hence separated and quasi-compact, we

just have seen that f∗F = F(X)∼. Since X is affine and finite over Y , F(X) is finitely

generated over OX(X) and consequently finitely generated over OY (Y ).

Definition 2.21. Let Y be a closed subscheme of X, and let i : Y → X be the inclusion

morphism. We define the ideal sheaf of Y , denoted IY , to be the kernel of the morphism

i] : OX → i∗OY .

Proposition 2.22. Let X be a scheme. For any closed subscheme Y of X, the corre-

sponding ideal sheaf IY is quasi-coherent sheaf of ideals on X. Conversely, any quasi-

coherent sheaf of ideals on X is the ideal sheaf of a uniquely determined closed subscheme

of X.

Proof. If Y is a closed subscheme of X, then the inclusion morphism i : Y → X is quasi-

compact and separated so we apply Proposition 2.20 and thus i∗OY is quasi-coherent on

X. Hence IY , being the kernel of morphism of quasi-coherent sheaves, is quasi-coherent

by Proposition 2.19. Idea of the converse: given a scheme X and a quasi-coherent sheaf

of ideals I, let Y be the support of the quotient sheaf OX/I. Then Y is a subspace of X

and (Y,OX/I) is the unique closed subscheme of X with ideal sheaf I. Need to check
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that Y is unique and (Y,OX/I) is a closed subscheme with. This is a local question,

then we may assume X = Spec A. Since I is quasi-coherent, I = ã, for some ideal a.

Then (Y,OX/I) is just the closed subscheme of X determined by the ideal a.

2.4 Quasi-coherent Sheaves on a Projective Scheme

Definition 2.23. Let S be a graded ring and let M be a graded S-module. We define the

sheaf associated to M on Proj S, denoted by M̃ , as follows. For each p ∈ Proj S, let M(p)

be the group of elements of degree 0 in localization T−1S, where T is the multiplicative

system of homogeneous element of S not in p. For any open subset U ∈ Proj S, we

define M̃(U) to be the set of functions s : U → qp∈UM(p) which are locally fractions.

This means that for every p ∈ U, there is a neighborhood V of p in U , and homogeneous

elements m ∈ M and f ∈ S of the same degree, such that for every q ∈ V , we have

f /∈ q and s(q) = m/f in M(q). We make M̃ into a sheaf with the restriction maps.

Proposition 2.24. Let S be a graded ring, and M a graded S-module. Let X = Proj S.

(a) For any p ∈ X, the stalk M̃(p)

(b) For any homogeneous f ∈ S+, we have M̃ |D+(f)
∼= (M(f))

∼, via the isomorphism

D+(f) with Spec A(f), where M(f) denotes the group of elements of degree 0 in

the localized module Mf .

(c) M̃ is a quasi-coherent OX-module. If S is noetherian and M is finitely generated

, then M̃ is coherent.

If ϕ : M → N is a morphism of graded S-modules then m/s 7→ ϕ(m)/s defines a

morphism of S(p)-modules ϕ(p) : M(p) → N(p). We now give the following result on

homogeneous localization that could be useful later.

Lemma 2.25. Let S be a graded ring, and suppose we have an exact sequence of graded

S-modules M → N → L. Then for any p ∈ Proj S, the sequence M(p) → N(p) → L(p) of

S(p)-module is exact.

Proof. Let ϕ : M → N and ψ : N → L be morphisms of S-modules forming the exact

sequence. Clearly Im ϕ(p) ⊆ kerψ(p). Now suppose n, t are homogeneous of the same

degree k with n ∈ N and t /∈ p such that ψ(n)/t = ψ(p)(n/t) = 0. This implies that

qψ(n) = 0 for some homogeneous q /∈ p say of degree j. Thus ψ(qn) = 0, qn = ϕ(m) for

some m of degree j + k. Then in N(p), we have n/t = qn/qt = ϕ(m)/qt = ϕ(p)(m/qt).

Hence Im ϕ(p) ⊇ kerψ(p) and the sequence of S-modulesM(p) → N(p) → L(p) is exact.
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Definition 2.26. Let S be a graded ring, and let X = Proj S. For any n ∈ Z we define

the sheaf OX(n) to be S(n)∼. We call OX(1) the twisting sheaf of Serre. For any sheaf

of OX -modules, we denote by F(n) the twisted sheaf F ⊗OX
OX(n).

Proposition 2.27. Let S be a graded ring and let X = Proj S. Assume that S is

generated by S1 as S0-algebra.

(a) The sheaf OX(n) is an invertible sheaf on X.

(b) For any graded S-module M , M̃(n) ∼= (M(n))∼. In particular, OX(n) ⊗OX

OX(m) ∼= OX(n+m).

(c) Let T be another graded ring, generated by T1 as T0-algebra, let ϕ : S → T be a

homomorphism preserving degrees and let U ⊆ Y = Proj T and f : U → X be the

morphism determined by ϕ. Then f∗(OX(n)) = OX(n)|U .

Definition 2.28. Let S be graded ring, let X = Proj S and let F be a sheaf of OX -

modules. We define the graded S-module associated to F as a group, to be
⊕

n∈Z Γ(X,F(n)).

We give it a structure of graded S-module as follows. If s ∈ Sd, then s determines in a

natural way a global section s ∈ Γ(X,OX(d)). Then any t ∈ Γ(X,F(n)) we define the

product s · t in Γ(X,F(n+ d)) by taking the tensor product s⊗ t and using the natural

F(n)⊗OX(d) ∼= F(n+ d).

Proposition 2.29. Let A be a ring, let S = A[T0, ..., Tr], r ≥ 1, and let X = Proj S.

Then
⊕

n∈ZOX(n) ∼= S.

Lemma 2.30. Let X be noetherian or separated and quasi-compact scheme, let F be

a quasi-coherent sheaf on X, and let L an invertible sheaf on X. Let us fix a section

f ∈ F(X) and s ∈ L(X).

(a) If f |Xs = 0, then there exists an n ≥ 1 such that f ⊗ sn = 0 in F ⊗ Ln(X).

(b) Let g ∈ F(Xs). Then there exists an n0 ≥ 1 such that g⊗ (sn|Xs) lifts to a section

of F ⊗ Ln(X)

Proposition 2.31. Let A be a ring S = A[T0, ..., Tr]. Let X = Proj S. Then for any

quasi-coherent sheaf F on X, there is a natural isomorphism of graded S-modules

(
⊕
n∈Z

Γ(X,F(n)))∼ ∼= F .

Definition 2.32. For any scheme Y , we define the twisting sheaf OPr
Y

(1) on PrY to

be g∗(O(1)), where g : PrY → PrZ is the natural map coming from the fiber product

PrY = PrZ ×Z Y .
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Definition 2.33. For any scheme Y , we define the twisting sheaf OPr
Y

(1) on PrY to

be g∗(O(1)), where g : PrY → PrZ is the natural map coming from the fiber product

PrY = PrZ ×Z Y .

Definition 2.34. If X is a scheme over Y , an invertible sheaf L is very ample relative

to Y , if there is an immersion i : X → PrY for some r, such that i∗(OPr
Y

(1)) ∼= L. A

morphism i : X → Z is an immersion if it gives an isomorphism of X with an open

subscheme of a closed subscheme of Z. We recall also that an invertible of OX -module

is a locally free sheaf of rank one.

Definition 2.35. Let E be a locally free sheaf of a ringed space (X,OX). The sheaf

Ě := HomOX
(E ,OX) is called the dual of E .

Lemma 2.36. Let (X,OX) be a ringed space, and let E be a locally free OY -module of

finite rank. Let Ě denote the dual of E. Then we have

(a) An isomorphism ˇ̌E ∼= E;

(b) For any OX-module F , HomOX
(E ,F) ∼= Ě ⊗OX

F .

Proof. To prove (a), we define the map ϕ by

ϕ(U) : E(U)→ ˇ̌E(U) = Hom(Hom(E ,OX)|U ,OX |U )

which sends a section e ∈ E(U) the collection of maps

{e(V )}V : Hom(E|U∩V ,OX |U∩V )→ OX |U∩V ,

with e(V )(σ) = σ(U ∩ V )(e|U∩V ), where σ : E|U∩V → OX |U∩V . One checks on stalks,

Hom(E ,OX)P is Hom(EP ,OX,P ), see for example [Serre, 1955]”Faisceaux algébriques

cohérentes”. Then the morphism ϕ induces the stalk morphism EP → Hom(Hom(EP ,OX,P ),OX,P ),

which is given by eP 7→ (σP 7→ σP (eP )). Since E is locally free of finite rank, the stalk

EP is free of finite rank and the stalk map is the canonical isomorphism of free module

of finite rank with its double dual. This shows the required isomorphism ˇ̌E ∼= E .
For (b) we define the map α by α(U) : Hom(E|U ,OX |U )⊗F(U)→ Hom(E|U ,F|U ) such

that ψ ⊗ f 7→ (ψ ⊗ f)(V )(e) = ψ(V )(e) · f |V ∈ F(U ∩ V ), where e ∈ E(U ∩ V ). Now on

stalks, ϕP is the map Hom(EP ,OX,P )⊗FP → Hom(EP ,FP ), given by ψ⊗f 7→ ψ(e) ·f is

an isomorphism of OX,P -modules, since EP is a free OX,P -module. This shows (b).

Lemma 2.37 (Projection formula). Let f : (X,OX)→ (Y,OY ) be a morphism of ringed

spaces. Let F be an OX-module, E be a locally free OY -module of finite rank. Then there
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is a natural isomorphism

f∗(F ⊗OX
f∗E) ∼= f∗F ⊗OY

E .

Proof. From part(a) of the previous lemma, we have the identification

f∗F ⊗OY
E ∼= f∗F ⊗OY

ˇ̌E . (2.2)

On the other hand, we have HomOX
(f∗G,F) ∼= HomOY

(G, f∗F) Hartshorne [1977], for

any OY -module G. We let G = Ě . By patching together over the opens of Y , we obtain

an isomorphism of sheaves of OY -modules.

HomOY
(G, f∗F) ∼= f∗HomOX

(f∗G,F)

Then we get,

f∗F ⊗OY
E ∼= HomOY

(Ě , f∗F)

∼= f∗HomOX
(f∗Ě ,F)

∼= f∗((
ˇf∗Ě)⊗F),

where the first isomorphism follows from the previous Lemma part (b), the second one

comes from relation (2.2) and the last uses again part (b) of the previous lemma. Now,

one can check that ( ˇf∗Ě) ∼= f∗( ˇ̌E), and we have the result as desired.

Theorem 2.38 (Serre). Let X be a projective scheme over a noetherian ring A, let

OX(1) be an ample invertible sheaf on X and let F be a coherent OX-module. Then

there is an integer n0 such that for all n ≥ n0, the sheaf F(n) can be generated by a

finite global sections.

Proof. Since X is a projective scheme, we let i : X → PrA be a closed immersion of X

into a projective space over A, such that i∗(OPn) = OX(1). Then i∗F is a coherent

OX -module on PrA, and moreover i∗(F(n)) = (i∗F)(n), and F(n) is generated by global

sections if and only if i∗(F(n)) is because i∗F(n)(PrA) = F(n)(X). So we reduce to the

case X = PrA =ProjA[T0, ..., Tr].

Now cover X =
⋃
D+(Ti). Since F is coherent, for each i = 0, ..., r there is a finitely

generated module Mi over Bi = A[T0Ti , ...,
Tr
Ti

] such that F|D+(Ti) = M̃i. For each i, take

a finite number of elements sij ∈ Mi which generate this module. By a lemma we

have seen before, there is an integer n such that Tni ⊗ sij extends to a global section

tij of F(n). We can take one n to work for all i, j because they are finite. Now F(n)

corresponds to a Bi-module M ′i on D+(Ti), and the map Tni : F → F(n) induces an
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isomorphism of Mi to M ′i , so the sections Tni ⊗ sij generate M ′i and therefore the global

sections tij ∈ F(n)(X) generate the sheaf F(n) everywhere.

Corollary 2.39. Let X be projective over a noetherian ring A. Then any coherent sheaf

F on X can be written as quotient of sheaf E , where E is a finite direct sum of twisted

structure sheaves OX(ni) for various integers ni.



Chapter 3

Cohomology of Coherent Sheaves

3.1 Derived functors and Cohomology

3.1.1 Derived Functors

We review some techniques of homological algebra in order to be able to define sheaf

cohomology using derived functors of the global section functor.

Definition 3.1. An abelian category is a category A, such that: for each A,B ∈ ObA,

Hom(A,B) has a structure of an abelian group, and the composition law is linear; finite

direct sums exists; every monomorphisms is the kernel of its cokernel, every epimorphism

is the cokernel of its kernel; and every morphism can be factored into an epimorphism

followed by a monomorphism.

Example 3.1. The following are all abelian categories.

• Ab, the category of abelian groups.

• A-Mod, the category of modules over a ring A.

• Ab(X), the category of sheaves of abelian groups.

• Mod(X), the category of sheaves of OX-modules, on a ringed space (X,OX).

Definition 3.2. An object I of a category A is said to be injective if the functor

Hom(−, I) is exact.

Definition 3.3. An abelian category A is said to have enough injectives if each object

of A can be embedded in an injective object.

17
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This is equivalent to saying that each object A of A admits an injective resolution, that

is, a long exact sequence

0→ A→ I0 → I1 → I2 → · · ·

where each Ii is injective. To see this, first embed A in an injective object I0, then

embed the cokernel of the inclusion ε : A→ I0 in an injective I1, and take for I0 → I1

the composite I0 → cokernel ε→ I1, and so on.

Definition 3.4. A complex A• in an abelian category A is a collection of objects Ai of

A, i ∈ Z, together with morphisms di : Ai → Ai+1 such that di+1 ◦ di = 0 for all i. The

maps di are called the differentials of the complex A•.

The i-th cohomology object of the complex A• is defined by

hi(A•) = ker di/Im di−1

A morphism of complexes f : A• → B• is a collection of maps f i : A• → B• which

commutes with the differentials, i.e. that make the following diagram commutative.

· · · Ai−1 Ai Ai+1 · · ·

· · · Bi−1 Bi Bi+1 · · ·

di−1

f i−1

di

f i f i+1

di−1 di

Any such morphism induces a morphism

hi(f) : hi(A•)→ hi(B•)

on the cohomology, defined by hi(f)(a + Im di) := f i(a) + Im di. Thus one may think

of hi as a functor on the category of complexes in A.

Proposition 3.5. Let A be an abelian category and 0 → A• → B• → C• → 0 a short

exact sequence of complexes in A. Then there are natural maps δi : hi(C•)→ hi+1(A•)

giving rise to a long exact sequence

· · · → hi(A•)→ hi(B•)→ hi(C•)
δi→ hi+1(A•)→ · · ·

Proof. [Weibel, 1995] (Th. 1.3.1)

Definition 3.6. A covariant functor F : A → B from one abelian category to another is

additive if for any two objects A,A′ inA, the induced map Hom(A,A′)→ Hom(FA,FA′)
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is a homomorphism of abelian groups. F is left exact functor if it is additive and every

short exact sequence

0→ A′ → A→ A′′ → 0

in A, the sequence

0→ F (A′)→ F (A)→ F (A′′).

is exact in B.

Definition 3.7. Let A be an abelian category with enough injectives, and let F : A → B
be a covariant left exact functor. For each object A of A, choose once and for all an

injective resolution I• of A. Then the right derived functors RiF of F is defined by

RiF (A) = hi(FI•).

Theorem 3.8. Let A be an abelian category with enough injectives, and let F : A → B
be a covariant left exact functor to another abelian category B. Then

(a) For each i ≥ 0, RiF is an additive functor from A to B. Furthermore, it is

independent of the choices of injective resolutions made.

(b) There is a natural isomorphism F ∼= R0F

(c) For each short exact sequence 0→ A′ → A→ A′′ → 0 and for each i ≥ 0 there is

a natural morphism δi : RiF (A′′)→ Ri+1F (A′), such that we obatain a long exact

sequence

· · · → RiF (A′)→ RiF (A)→ RiF (A′′)
δi→ Ri+1F (A′)→ Ri+1F (A)→ · · ·

(d) For each injective object I of A, and for each i > 0, RiF (I) = 0.

Definition 3.9. With F : A → B as in the theorem, an object J is acyclic for F if

RiF (J) = 0 for all i > 0.

In particular, if 0→ A→ B → C → 0 is exact and A is acyclic for F , then 0→ FA→
FB → FC → 0 is exact. The above theorem says that injectives are acyclic for any left

exact functor.

Proposition 3.10. If 0 → A → J• is an F -acyclic resolution of A, i.e., each J i is

acyclic for F , i ≥ 0. Then there is a natural isomorphism RiF (A) ∼= hi(F (J•)) for each

i ≥ 0.

Proof. [Hilton and Stammbach, 1971](IV. Th. 4,4)
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3.1.2 Sheaf Cohomology as Derived Functors

Now we want to define the cohomology groups of a sheaf by taking the the right derived

functors of the global section functor. Then, we must first ensure that the global section

functor Γ(X,−) is left exact and that the category Ab(X) has enough injectives.

Proposition 3.11. The global section functor Γ(X,−) is left exact.

Proof. Let 0 → F α→ G β→ H → 0 be a short sequence of OX -modules. We want to

show that 0 → F(X) → G(X) → H(X) is exact. At first place we have kerβ(X) =

(kerα)(X) = 0 since kerα = 0. In the middle it is clear that Im α(X) ⊆ kerβ(X). Let

s ∈ G(X) which maps to 0 in H, by definition s is local section of F . But F is sheaf on

X, it implies that s is a section of F(X).

Proposition 3.12. If A is a ring, then the category A-Mod of A-modules has enough

injectives.

Proof. [Hilton and Stammbach, 1971] (I.8.3)

Proposition 3.13. If (X,OX) is a ringed space, then the category Mod(X) of OX-

modules has enough injectives.

Proof. Let F be an OX -module. For each point x ∈ X, let Fx denote the stalk of F
at x. Fix an inclusion Fx ↪→ Ix of Fx in an injective OX,x module. For each point, let

jx : {x} → X denote the inclusion. Consider I =
∏
x∈X(jx)∗(Ix), Here we consider Ix

as a sheaf one the single point {x}. Then we have an inclusion F ↪→ I. We have to

show now that HomOX
(−, I) is an exact functor. Let G be an OX -module. Using the

adjointness property, we have

HomOX
(G, I) =

∏
x∈X

HomOX
(G, (jx)∗Ix) =

∏
x∈X

HomOX,x
((jx)∗(G), Ix) =

∏
x∈X

HomOX,x
(Gx, Ix)

This implies that HomOX
(−, I) is exact, as a direct product of the stalk functor followed

by Hom(−, Ix), which is exact because Ix is an injectives OX,x-module. This shows that

I is an injective OX -module.

Corollary 3.14. The category Ab(X) of sheaves of abelian groups has enough injectives.

Definition 3.15. Let X be a topological space. Let Γ(X,−) be the global section

functor from Ab(X) to Ab. We define the cohomology functors H i(X,−) to be the

right derived functors of Γ(X,−). For any sheaf F on X, the groups H i(X,F) are the

cohomology groups of F .
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Definition 3.16. A sheaf of abelian groups F on a topological space X is called flasque

if for any inclusion V ⊆ U , the restriction map F(U)→ F(V ) is surjective.

Proposition 3.17. If 0→ F → G → H → 0 is an exact sequence of sheaves and F ′ is

flasque, then for each open U ⊆ X, the sequence 0 → F(U) → G(U) → H(U) → 0 is

exact.

Lemma 3.18. If (X,OX) is a ringed space, any injective OX-module is flasque.

Proposition 3.19. If F is a flasque sheaf on a topological space X, then H i(X,F) = 0

for all i > 0.

Proof. Since the category of sheaves of abelian groups Ab(X) has enough injectives, we

embed F into an injective I, and let G be the quotient:

0→ F → I → G → 0.

Now F is flasque by hypothesis and I is flasque by Lemma 3.18, it follows from.. that

G is also flasque. Then, from Proposition 3.17 we have an exact sequence

0→ Γ(X,F)→ Γ(X, I)→ Γ(X,G)→ 0.

On the other hand, since I is injective, H i(X, I) = 0 for all i > 0 by Theorem 3.8.(e).

Taking the long exact sequence of cohomology, we have H1(X,F) = 0 and H i(X,F) ∼=
H i(X,G) for each i ≥ 2. But G is also flasque, we continue by induction on i and get

the result.

Proposition 3.20. Let (X,OX) be a ringed space, then the derived functors of Γ(X,−)

coincide with the cohomology functors H i(X,−).

Proof. We consider Γ as a functor from Ab(X) to Ab. To calculate the derived functors

of Γ(X,−) onMod(X), we use the injective resolution. But we saw in Lemma 3.18 that

injective is flasque , and flasques are acyclic for the functor Γ(X,−). So by Proposition

3.10, this resolution will give us the usual cohomology functors. In other words the

following diagram commutes

Mod(X) Mod(X)

Ab Ab

RiΓ

RiΓ

where the vertical arrows are the forgetful functors.



Chapter 3. Chapter Title Here 22

3.2 A Vanishing Theorem of Grothendieck

Theorem 3.21 (Grothendieck). Let X be a noetherian topological space of dimension

n, then for all i > n and all sheaves of abelian groups F on X, we have H i(X,F) = 0.

The proof of this theorem needs some preliminary results, concerning direct limits of

sheaves. We recall that the direct limit of the system {Fi}i denoted lim−→Fi, is the sheaf

associated to the presheaf U 7→ lim−→Fi(U). An exercise in [Hartshorne, 1977] (II, 1.11),

shows that on a noetherian topological space, this presheaf is already a sheaf.

Lemma 3.22. On a noetherian topological space, a direct limit of flasque sheaves is

flasque.

Proof. Let Fα be a direct system of flasque sheaves. Then for any inclusion of open sets,

V ⊆ U , and for each α, we have Fα(U) → Fα(V ) is surjective. Since lim−→ is an exact

functor, we get

lim−→Fα(U)→ lim−→Fα(V )

is also surjective. As we have discussed above, on a noetherian topological space,

lim−→Fα(U) = (lim−→Fα)(V ) for any open set . So we have

(lim−→Fα)(U)→ (lim−→Fα)(V )

is surjective, and so lim−→Fα is flasque.

Proposition 3.23. Let X be a noetherian topological space, and let (Fα)α be a direct

directed system of abelian sheaves. Then there are natural isomorphisms, for each i ≥ 0

lim−→H i(X,Fα)→ H i(X, lim−→Fα).

Lemma 3.24. Let Z be a closed subset of X, let F be a sheaf of abelian groups on Z,

and let j : Z → X be the inclusion. Then H i(Z,F) = H i(X, j∗F), where j∗F is the

extension of F by zero outside Z.

Proof. If I• is a flasque resolution of F on Y , then j∗I• is a flasque resolution of j∗F
on X and for each i,Γ(Z,F) = Γ(X, j∗F), so we get the same cohomology groups.

Remark 3.25. We sometime use an abuse of notation by writing F instead of j∗F . This

lemma shows that there will be no ambiguity about the cohomology groups.

Sketch of the proof of Theorem 3.21. The proof of the theorem is done by induction on

n = dimX, in several steps. We first fix some notation. If Z is a closed subset of X,
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let U = X − Z. For any sheaf F on X we let FZ = j∗(F|Z), where j : Z → X is the

inclusion. The sheaf j∗(F|Z) is then obtained by extending F|Z to zero outside Z. We

let FU = j!(F|U ), where j!(F|U ) is the sheaf associated to the presheaf V 7→ F(V ) if

V ⊆ U and 0 otherwise. It easy to check that we have an exact sequence

0→ FU → F → FZ → 0

Step 1. We reduce to the case X irreducible. If X is reducible, let Z be one of its

irreducible components, and let U = X − Z. Then for any sheaf F on X, we have

an exact sequence, as above. From the long exact sequence of cohomology, it will be

sufficient to prove that H i(X,FZ) = 0 and H i(X,FU ) = 0 for i > n. But Z is irreducible

and beside, FU can be regarded as as a sheaf on the closed subset U , which has one

fewer irreducible components, Lemma 3.24, and induction on the number of irreducible

components, allow us to reduce to the case X irreducible.

Step 2. Suppose X is irreducible of dimension 0. Then the only open subset of X are X

and the empty set. Otherwise, X would admit a proper irreducible closed subset, and

dimX ≥ 1. Thus the functor Γ(X,−) induces an equivalence of categoriesAb(X)→ Ab.

In particular Γ(X,−) is exact so H i(X,F) = RiF (Γ(X,F)) = 0.

Step 3. We now suppose X is irreducible of dimension n ≥ 1. Let F be a sheaf

on X. We want to reduce to the case F is generated by finite local sections. Let

S = qU⊆XF(U), U runs over the quasi-compact open of X. Take any finite subset A of

S, say A = {s1, ..., sd}. Let FA be the subsheaf of F generated by all si ∈ A. Note that

if A′ ⊂ A then FA′ ⊂ FA. Thus {FA} forms a direct system over the set of all finite

subset of S. One can check that lim−→FA = F . It follows that H i(X,F) = lim−→H i(X,FA).

Hence it suffices to prove the vanishing theorem for FA. Suppose that F is generated by

the local sections s1, ..., sd. Let F ′ ⊂ F be a subsheaf generated by s1, ..., sd−1 . Then

we have an exact sequence

0→ F ′ → F → F/F ′ → 0.

From the long exact sequence of cohomology, and by induction on d, we reduce to the

case that F is generated by at most a single section over some open U . In that case F
is a quotient of the sheaf ZU , where the sheaf Z denotes the constant sheaf Z on X. We

denote by K the kernel, it gives an exact sequence

0→ K → ZU → F → 0.
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Again the long exact sequence of cohomology, will imply that it is sufficient to prove

vanishing for K and for ZU .

Step 4. Let U be an open subset of X and let R be a subsheaf of ZU . For each x ∈ U ,

we look on the stalk Rx, then either Rx = 0 or Rx ∼= dZ, d is a positive integer. If the

former case happen, then skip to Step 5. If not there is a nonempty open subset V ⊆ U
such that R|V = d · Z|V . Thus RV ∼= ZV , and we obtain an exact sequence

0→ ZV → R→ R/ZV → 0.

Now the sheaf R/ZV is supported on the closed subset U − V of X which has dimension

< n, since X is irreducible. So using Lemma 3.24 and the induction hypothesis, we have

H i(X,R/ZV ) = 0 for i ≥ 1. Yet by the long exact sequence of cohomology, we need

only to check vanishing for ZV .

Step 5. To complete the proof, we need to show that for any open subset U ⊂ X, we

have H i(X,ZU ) = 0 for i > n. Let Y = X − U . Then we have an exact sequence

0→ ZU → Z→ ZY → 0

Since X is irreducible dimY < dimX, by induction hypothesis H i(X,ZY ) = 0 for i ≥ n.

Also, the constant sheaf Z is flasque, thus H i(X,Z) = 0. So H i(X,ZU ) = 0 for i > 0,

and this completes the proof.

3.3 Cohomology of Noetherian Affine Schemes

This section will provide us a tool which can help to compute the cohomology of sheaves

on a given space. We will prove here that if X = Spec A is a noetherian affine scheme,

then H i(X,F) = 0 for all i > 0 and all quasi-coherent sheaves F of OX -modules.

We first fix some notations. For any ring A, and any ideal a ⊆ A, and any A-module

M , we define the submodule Γa(M) to be {m ∈ M | anm = 0, for some n > 0}. Let us

also recall the definition of the support of a section of a sheaf.

Let F be a sheaf on X, and let s ∈ F(U) be a section over an open set U . Then the

support of s, is the set

Supp s := {x ∈ U | sx 6= 0},

where sx denotes the germ of s in the stalk Fx.
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Lemma 3.26. Let A be a ring, and M an A-module. Let X = Spec A, and let F be

the sheaf M̃ . Then Supp m = V (Ann m), for any m ∈ Γ(X,F), where Ann m is the

annihilator of m.

Proof. Let p ∈ V (Ann m), then p ⊇ V (Ann m), so localizing at p means everything in

Ann m is localized as well. So mp 6= 0. Conversely, let p ∈ Supp m, then mp 6= 0, which

is equivalent to am 6= 0 for a /∈ p, Then a /∈ Ann m. So Ann m ⊆ p. This shows the

lemma.

Lemma 3.27. Let A be a noetherian ring, let I be an injective A-module. Then the

submodule Γa(I) is also an injective A-module.

Proof. [Hartshorne, 1977] (III, Lem. 3.2)

Lemma 3.28. Let A be a noetherian ring, let M be an A-module. Let X = Spec A and

let F be the sheaf M̃ . Let Z = V (a) for some ideal a ⊆ A. Then Γa(M) = ΓZ(X,F),

where ΓZ denotes sections with support in Z.

Proof. We will use the fact that Supp m = V (Ann m) from Lemma 3.26. Now by

definition,

m ∈ ΓZ(X,F) ⇔ Supp m ⊆ Z

⇔ V (Ann m) ⊆ V (a)

⇔ an ⊆ Ann m

⇔ m ∈ Γa(M)

Lemma 3.29. Let I be an injective module over a noetherian ring A. Then for any

f ∈ A, the natural map of I to its localization If is surjective.

Proof. Let θ : I → If be the natural map, and let x ∈ If be any element. Then by

definition of localization, there is a y ∈ I, and an n ≥ 0 such that x = θ(y)/fn. For each

i > 0, let bi be the annihilator of f i in A. Then b1 ⊆ b2 ⊆ ..., and since A is noetherian,

there is an r such that br = br+1 = .... We define a map ϕ from the ideal (fn+r) of A to

I by sending fn+r to f ry. This is possible, because if fn+rb = fn+rc, so (b−c)fn+r = 0,

then b − c ∈ bn+r. As the annihilator of fn+r is bn+r = br and br annihilates f ry, it

follows that (b − c)f ry = 0 and ϕ is well defined . Since I is injective, ϕ extends to a

map ψ : A → I. Let ψ(1) = z. Then fn+rz = fn+rψ(1) = ψ(fn+r) = ϕ(fn+r) = f ry.

But this implies that θ(z) = θ(y)/fn. Hence θ is surjective.
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Proposition 3.30. Let I be an injective module over a noetherian ring A. Then the

sheaf Ĩ on X = Spec A is flasque.

Proof. We will use noetherian induction on Y = Supp Ĩ. If Y consists of a single point

of X. Then Ĩ is a skyscraper sheaf which is obviously flasque. In the general case, as

X is affine, then to show that Ĩ is flasque, it will be sufficient to show for any open

U ⊆ X, that Γ(X, Ĩ)→ Γ(U, Ĩ) is surjective. If Y ∩ U = ∅, there is nothing to prove. If

Y ∩ U 6= ∅, we can find and open set Xf := D(f) contained in U and Xf ∩ Y 6= ∅. Let

Z = X −Xf and consider the following diagram:

Γ(X, Ĩ) Γ(U, Ĩ) Γ(Xf , Ĩ)

ΓZ(X, Ĩ) ΓZ(U, Ĩ)

where ΓZ denotes the sections with support in Z. Now given a section s ∈ Γ(U, Ĩ), we

consider its image s′ in Γ(Xf , Ĩ). But Γ(Xf , Ĩ) = If , so using Lemma 3.29, there is a

t ∈ Γ(X, Ĩ) such that t|Xf
= s′. Then s−t|U goes to 0 in Γ(Xf , Ĩ). So it has a support in

Z. Hence, to complete the proof, it will be sufficient to show that ΓZ(X, Ĩ)→ ΓZ(U, Ĩ)

is surjective.

Let J = ΓZ(X, Ĩ). If a = (f) ⊆ A, then J = Γa(I), by Lemma 3.28, J is also injective A-

module according to Lemma 3.27. Furthermore, the support of Ĩ is contained in Y ∩Z,

which is strictly smaller than Y . Hence by our induction hypothesis, J̃ is flasque. But

ΓZ(U, Ĩ) = Γ(U, J̃), we conclude that ΓZ(X, Ĩ)→ ΓZ(U, Ĩ) is surjective.

Theorem 3.31. Let X = Spec A, with A a noetherian ring. Then for all quasi-coherent

sheaves F on X, and for all i > 0, we have, H i(X,F) = 0.

Proof. Given a quasi-coherent sheaf F , let M = Γ(X,F), and take an injective resolution

0 → M → I ˙ of M in the category of A-modules. Then we obtain an exact sequence

of sheaves 0 → M̃ → Ĩ ˙ on X. Now F = M̃ and each Ĩi is flasque, we can use this

resolution to compute the cohomology. Applying the functor Γ(X,−), we recover the

exact sequence of A-modules 0→M → I ˙. Hence, H0(X,F) = 0 and H i(X,F) = 0 for

all i > 0.

Corollary 3.32. Let X be a noetherian scheme, and let F be a quasi-coherent sheaf on

X. Then F can be embedded in a flasque quasi-coherent sheaf G.

Proof. Since X is noetherian, we may cover it with a finite number open affines Ui =

Spec Ai. As F is quasi-coherent, we have F|Ui = M̃i for each i. Let us embed Mi in
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an injective Ai-module Ii. For each, i let fi : Ui → X be the inclusion map, and let

G =
⊕

(fi)∗Ĩi. Hence we obtain a map F → (fi)∗(Ĩi). Taking the direct sum over i gives

a map F → G which is clearly injective. On the other hand Ĩi is flasque by Proposition

and quasi-coherent on Ui, for each i. Hence (fi)∗ is also quasi-coherent [Hartshorne,

1977](II, Ex. 1.16) and quasi-coherent. Taking the direct sum, we see that G is flasque

and quasi-coherent.

3.4 Čech Cohomology

We will study here the Čech cohomology groups for a sheaf of abelian groups on a

topological spaceX. The aim of this section is to show that ifX is a noetherian separated

scheme, the sheaf is quasi-coherent, and the covering is an open affine covering, then

these Čech cohomology groups coincide with the cohomology groups we have defined

before. At first glance, one might be scared computing cohomology with resolutions,

but thanks to this result, we could have a practical way of computing cohomology of

quasi-coherent sheaves on a scheme.

Let X be topological space, and let U = (Ui)i∈I be an open covering of X. Fix, once

and for all, a well-ordering of the index set I. For any finite set of indices i1, ..., ip ∈ I
we let

Ui0...ip = Ui0 ∩ ... ∩ Uip .

Now let F be a sheaf of abelian groups on X. We define a complex of abelian groups.

For each p ≥ 1

C•(U ,F) =
∏

i0<...<ip

F(Ui0...ip).

Thus an element α ∈ Cp(U ,F) is determined by giving an element αi0,...,ip ∈ F(Ui0,...,ip),

for each (p + 1)-tuple i0 < ... < ip. We define the differential map d : Cp(U ,F) →
Cp+1(U ,F), by setting

(dα)i0...ip =

p+1∑
k=0

(−1)kαi0,...,̂ik,...,ip+1
|Ui0,...,ip+1

,

where îk means we omit the index ik. For example, if p = 1, then

(dα)i0,i1,i2 = αi1,i2 |Ui0,i1,i2
− αi0,i2 |Ui0,i1,i2

+ αi0,i1 |Ui0,i1,i2

A direct computation shows that d2 = 0, so we have indeed a complex of abelian groups.
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Definition 3.33. Let X be a topological space and let U be an open covering of X.

For any sheaf of abelian groups F on X, we define the p-th Čech cohomology group of

F , with respect to the covering U , to be

Ȟp(U ,F) = hp(C•(U ,F)).

Remark 3.34. In general, Čech cohomology does not take short exact sequences of

sheaves to long exact sequences of cohomology groups. For instance, if we take on X the

open covering U containing only the open set X, then we will have Ȟp(U ,F) = Γ(X,F)

if p = 0 and Ȟp(U ,F) = 0 for p > 0. So the existence of long exact sequence in Čech

cohomology would imply that the global section functor Γ(X,−) is exact, which is not

always the case.

Example 3.2. Let X = P1
k. We consider the covering U = {U0, U1} of X with U0 =

D+(T0) = Spec k[T1/T0], and U1 = D+(T1) = Spec k[T0/T1]. Let us set x = T1/T0. We

have

C0(U ,F) = OX(U0)⊕OX(U0) = k[x]⊕ k[1/x] and C1(U ,F) = OX(U01) = k[x, 1/x]

. We therefore get the differential

k[x]⊕ k[1/x] → k[x, 1/x]

(f, g) 7→ f − g

This is map is clearly surjective, so Ȟ1(U ,OX) = C1(U ,F)/Im d = 0. We conclude

that Ȟp(U ,OX) = 0 for p ≥ 1.

Lemma 3.35. For any X,U , and F as above, we have Ȟ0(U ,F) = Γ(X,F).

Proof. By definition, Ȟ0(U ,F) is the kernel of d : C0(U ,F) → C1(U ,F), which is the

map

∏
i∈I
F(Ui) →

∏
i,j

F(Ui ∩ Uj)

(f)i∈I 7→ (fj |Ui∩Uj − fi|Ui∩Uj )i,j .

So df = 0 says the sections fi and fj agree on Ui∩Uj . Hence it follows from the definition

of a sheaf that ker d = F(X).

Proposition 3.36. Let X be topological space, let U be an open covering, and let F be

a flasque sheaf of abelian groups on X. Then for all p > 0 we have Ȟp(U ,F) = 0.
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Before proving this proposition, let us define a ”sheafified ” version of the Čech complex,

and afterward we give a statement of a lemma using this sheafified version, which is the

key point of the proof of our proposition.

For any open set V ⊆ X, let f : V → X denote the inclusion map. Now given X,U ,F
as above we define a complex as follows. For each p ≥ 0

C•(U ,F) =
∏

i0<...<ip

f∗F|Ui0...ip
,

we define as well a morphism of sheaves dp : Cp(U ,F)→ Cp+1(U ,F), by setting

(dp(V )α)i0,...,ip+1 =

p+1∑
k=0

(−1)kαi0,...,̂ik,...,ip+1
|V ∩Ui0,...,ip

.

Lemma 3.37. For any sheaf of abelian groups F on X, the complex Cp(U ,F) is a

resolution of F , i.e., there is a natural map ε : F → C0(U ,F) such that the sequence of

sheaves

0→ F ε→ C0(U ,F)→ C1(U ,F)→ · · ·

is exact.

Proof of Proposition 3.36. Let us consider the resolution 0 → F → C•(U ,F) given by

Lemma 3.37. Since F is flasque, for any i0, ..., ip, F|Ui0,...,ip
is flasque on Ui0,...,ip and

f∗ preserves flasque sheaves. The product of flasque sheaves is flasque. It follows that

Cp(U ,F) is flasque for each p ≥ 0. So we can use this flasque resolution to compute the

usual cohomology groups of F . But F is flasque, then Hp(X,F) = 0 for p > 0. On the

other hand, the answer given by this resolution is

hp(Γ(X, C•(U ,F))) = hp(C•(U ,F)) = Ȟp(U ,F).

So we conclude that Ȟp(U ,F) = 0 for p > 0.

Lemma 3.38. Let X be a topological space, and U an open covering. Then for each

p ≥ 0 there is a natural map, functorial in F ,

Ȟp(U ,F)→ Hp(X,F).

Proof. [Hilton and Stammbach, 1971](IV, Th. 4.4)

Theorem 3.39. Let X be a noetherian separated scheme, let U be an open affine cov-

ering of X, and let F be a quasi-coherent sheaf on X. Then for all p ≥ 0, the natural
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maps of Lemma 3.38 give isomorphisms

Ȟp(U ,F)
∼→ Hp(X,F).

Proof. For p = 0, we have by Lemma 3.35, Ȟp(U ,F) = Γ(X,F). On the other hand

by definition we have H0(X,F) = Γ(X,F). Therefore, Ȟp(U ,F) = Hp(X,F). For the

general case, we embed F in a flasque, quasi-coherent sheaf G, and let R be the quotient:

0→ F → G → R→ 0

For each i0 < ... < ip, the open set Ui0...ip is affine, since it is an intersection of affine

open subsets of a separated scheme. Since F is quasi-coherent, the sequence of abelian

groups

0→ F(Ui0...ip)→ G(Ui0...ip)→ R(Ui0...ip)→ 0

is exact by Theorem 3.31. Taking the products, we obtain the corresponding sequence

of Čech complexes

0→ C•(U ,F)→ C•(U ,G)→ C•(U ,R)→ 0,

which is exact. From this we get a long exact sequence of Čech cohomology groups.

Since G is flasque, its cohomology vanishes for p ≥ 1, by Proposition 3.36, so we have

an exact sequence

0→ Ȟ0(U ,F)→ Ȟ0(U ,G)→ Ȟ0(U ,R)→ Ȟ1(U ,F)→ 0,

and isomorphisms

Ȟp(U ,R) ∼= Ȟp+1(U ,F),

for each p ≥ 1. Now we draw the following diagram,

0 Ȟ0(U ,F) Ȟ0(U ,G) Ȟ0(U ,R) Ȟ1(U ,F) 0

0 H0(X,F) H0(X,G) H0(X,R) H1(X,F) 0

∼= ∼= ∼=

and conclude that the map Ȟ1(U ,F) → H1(X,F), is an isomorphism. But R is also

quasi-coherent, since it is the kernel of a morphism of quasi-coherent sheaves, we obtain

the result by induction on p.
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3.5 The Cohomology of Projective space

In this section we make explicit calculation of the cohomology of the sheaves O(n) on a

projective space, by using Čech cohomology for a suitable open affine covering.

Let A be a noetherian ring, let S = A[T0, ..., Tr], and let X = Proj S be the projective

space PrA over A. Let OX(1) be the twisting sheaf of Serre. For any OX -modules F we

denote by Γ∗(F) the graded S-module
⊕

n∈Z Γ(X,F(n)).

Theorem 3.40. Let A be a noetherian ring, let X = PrA, with r ≥ 1. Then:

(a) The natural map S →
⊕

n∈ZH
0(X,OX(n)) is an isomorphism of graded S-modules;

(b) H i(X,OX(n)) = 0 for 0 < i < r and all n ∈ Z;

(c) Hr(X,OX(−r − 1)) ∼= A;

(d) The natural map H0(X,OX(n))×Hr(X,OX(−r−1))→ Hr(X,OX(−r−1)) ∼= A

is a perfect pairing of finitely generated free A-modules, for each n ∈ Z.

Proof. Let F be the quasi-coherent sheaf
⊕

n∈ZOX(n). Since cohomology commutes

with arbitrary direct sums on a noetherian topological space, then the cohomology of F
will be the direct sum of the cohomology of the sheaves OX(n). We note also that all

the cohomology groups in question have the natural structure of A-module.

For each i = 1, ..., r, let Ui = D+(Ti). Then each Ui is an open affine subset of X, and the

Ui cover X, so we can compute the cohomology of F by using Čech cohomology for the

covering U = (Ui)i. As we already saw that we have isomorphisms Ȟp(U ,F) ∼= Hp(X,F)

for p ≥ 0. For any indices i0, ..., ip, the open set Ui0,...,ip is just D+(Ti0 · · ·Tip), so we

have

F(Ui0,...,ip) ∼=
⊕
n∈Z

S(n)(Ti0 ···Tip ) = STi0 ···Tip .

Furthermore, the grading on F corresponds to the natural grading of STi0 ···Tip under

this isomorphism. Thus the Čech complex of F is given by

C ·(U ,F) :
r∏
i=0

STi →
∏

0≤i<j≤r
STiTj → · · · → ST0···Tr ,

and the modules all have a natural grading compatible with the grading on F .

Since H0(X,F) is the kernel of the first map in the Čech complex, which is just S. This

proves (a).



Chapter 3. Chapter Title Here 32

We now prove (c). We consider Hr(X,F). It is the cokernel of the last map in the Čech

complex, which is

dr−1 :

r∏
k=0

ST0···T̂k···Tr → ST0···Tr .

We think of ST0···Tr as a free A-module with basis T l00 · · ·T lrr , with li ∈ Z. The image of

dr−1 is the free submodule generated by those elements for which at least one li ≥ 0, i.e

of the form

r∑
i=0

(−1)i
Pi

(T0 · · · T̂k · · ·Tr)m
=

r∑
i=0

(−1)i
Xm
i Pi

(T0 · · ·Tr)m
.

Thus Hr(X,F) is a free A-module with basis consisting of the monomials

{T l00 · · ·T
lr
r | li < 0 for each i}.

Furthermore the grading is given by
∑
li. But there is only one such monomial of degree

−r − 1, namely T−1
0 · · ·T−1

r , so we see that Hr(X,OX(−r − 1)) is a free A-module of

rank 1. This shows (c).

Now we prove (b), by induction on r. If r = 1, there is nothing to prove. So let r > 1. If

we localize the complex C ·(U ,F) with respect to Tr, as graded S-modules, we get the

Čech complex for the sheaf F|Ur on the space Ur, with respect to the open affine covering

{Ui∩Ur| i = 0, ..., r}. This complex gives the cohomology of F|Ur on Ur, which is 0 since

Ur is affine. Since localization is an exact functor, we conclude that H i(X,F)Tr = 0 for

i > 0. In other words, every element of H i(X,F) for i > 0 is annihilated by some power

of Tr. To complete the proof of (b), we will show that for 0 < i < r, multiplication by

Tr induces a bijective map of H i(X,F) into itself. Then in this case, the module is 0.

For this consider the exact sequence of graded S-modules

0→ S(−1)→ S → S/(Tr)→ 0.

This gives the exact sequence of sheaves.

0→ OX(−1)→ OX → OH → 0,

on X, where H = V+(Tr). Twisting by all n ∈ Z and taking the direct sum, we have

0→ F(−1)→ F → FH → 0,
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where FH =
⊕

n∈ZOH(n). The sequences remains exact since we tensor with invertible

sheaf OX(n). Taking the long exact sequence of cohomology, we get

· · · → H i−1(X,FH)→ H i(X,F(−1))→ H i(X,F)→ H i(X,FH)→ · · ·

Considered as S-modules, H i(X,F(−1)) is just H i(X,F) shifted one place, and the map

H i(X,F(−1))→ H i(X,F) is the exact multiplication by Tr.

Now H is isomorphic to Pr−1
A , we know also that H i(X,FH) = H i(H,

⊕
OH(n)). So we

apply our induction hypothesis to F|H , and find that H i(X,FH) = 0 for 0 < i < r − 1.

Furthermore, for i = 0 we have an exact sequence

0→ H0(X,F(−1))→ H0(X,F)→ H0(X,FH)→ 0

by part (a), since H0(X,FH) is just S/(Tr). At the other end of the exact sequence of

cohomology, we have

0→ Hr−1(X,FH)→ Hr(X,F(−1))
·Tr→ Hr(X,F)→ 0,

indeed, we have described Hr(X,F) above as the free A-module with basis formed by

negative monomials in T0, ..., Tr. So we have ·Tr is surjective. On the other hand, the

kernel of ·Tr is the free submodule generated by those negative monomials T l00 · · ·T lrr
with lr = −1. Since Hr−1(X,FH) is the free A-module with basis consisting of the

negative monomials in T0, ..., Tr−1, and δ is division by Tr, the sequence is exact. Putting

these results all together, the long exact sequence of cohomology shows that the map

multiplication by Tr : H i(X,F(−1))→ H i(X,F) is bijective for 0 < i < r, as required.

Theorem 3.41. Let X be a projective scheme over a noetherian ring A, and let OX(1)

be a very ample invertible sheaf on X over Spec A. Let F be a coherent sheaf on X.

Then:

(a) for each i ≥ 0, H i(X,F) is a finitely generated A-module;

(b) there is an integer n0, depending on F , such that for each i > 0 and each n ≥
n0, H

i(X,F(n)) = 0.

Proof. Since OX(1) is a very ample sheaf on X over SpecA, there is a closed immersion

i : X → PrA of schemes over A, for some r, such that OX(1) = i∗OPr(1). If F is coherent

on X then we saw in Proposition 2.20, that i∗F is coherent on PrA, and the cohomology

is the same, by Lemma 3.24. Thus we reduce to the case X = PrA.
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For X = PrA, we observe that (a) and (b) are true for any sheaf of the form OX(q), q ∈ Z.

This follows straight away from Theorem 3.40. Hence the same is true for any finite

direct sum of such sheaves.

To prove the theorem for arbitrary coherent sheaves, we use descending induction on i.

For i > r, we have H i(X,F) = 0, since X can be covered by r+ 1 open affines, so using

Čech cohomology, we get the result in this case.

Now, given a coherent sheaf F on X, we can write F as a quotient of a sheaf E , which

is a direct sum of sheaves OX(qi), for various integers qi. Let R be the kernel,

0→ R→ E → F → 0 (3.1)

Then R is also coherent. From the long exact sequence of cohomology, we get an exact

sequence of A-modules

· · ·H i(X, E)→ H i(X,F)→ H i+1(X,R)→ · · ·

Now the module on left is finitely generated because E is a finite direct some of OX(qi),

as we discussed above. The module on the right is finitely generated by our induction

hypothesis. Since A is a noetherian ring, we conclude that the module on the middle is

also finitely generated. This proves (a).

To prove part (b), we twist the short exact sequence (3.1). Since OX(n) is invertible

and therefore flat over OX , the sequence

0→ R(n)→ E(n)→ F(n)→ 0,

is exact for n ∈ Z. We write down a piece of the long exact sequence

· · ·H i(X, E(n))→ H i(X,F(n))→ H i+1(X,R(n))→ · · ·

Now for n� 0 , the module on the left vanishes because E is a sum of OX(qi). The mod-

ule on the right also vanishes for n� 0 by induction hypothesis. Hence H i(X,F(n)) = 0

for n � 0. Note that since there are only finitely many i involved in statement (b),

namely 0 < i ≤ r, it is sufficient to determine n0 separately for each i. This prove part

(b).



Chapter 4

Serre’s Duality and

Riemann-Roch Theorem

This chapter is devoted for the study of Serre’s duality and the Riemann-Roch theorem.

The first section consists of gathering few algebraic results about differentials, defining

the sheaf of differentials on a scheme X, which leads to the definition of a coherent

sheaf, called canonical sheaf. The duality for the cohomology of this sheaf forms the

main part of Serre’s duality. The last section brings us to the Riemann-Roch theorem

for projective curves. Its proof uses the result in the first section. We will see also the

notion of divisors along the way. This algebraic concept holds an important role in the

study of Riemann-Roch.

4.1 Serre’s Duality

In this section we will study the Serre duality theorem for the cohomology of coherent

sheaves on a projective scheme. We will pay more attention to the case of projective

space Pnk over an algebraically closed field k. We present its proof which is a direct

the computations we have made in the next section. Then afterwards, we will give the

statement for a projective scheme over k. We start by giving some algebraic results

about Khäler differentials and then use them to define the canonical sheaf which plays

an important role in the duality.

4.1.1 Khäler Differentials

Let A be a commutative ring with identity, let B be an A-algebra, and let M be an

A-module. In this subsection we refer to [Matsumura and Algebra, 1980] for proofs.

35
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Definition 4.1. An A-derivation of B into M is a map d : B →M such that

(1) d is additive,

(2) d(bb′) = bdb′ + b′db,

(3) da = 0 for all a ∈ A.

Definition 4.2. We define the module of relative differential forms of B over A to

be a B-module ΩB/A, together with an A-derivation d : B → ΩB/A which satisfies the

following universal property: for any B-module M and for any A-derivation d′ : B →M ,

there exists a unique B-module homomorphism f : ΩB/A →M such that d′ = f ◦ d.

Proposition 4.3. Let B be an A-algebra. Let f : B ⊗A B → B be the homomor-

phism defined by f(b ⊗ b′) = bb′, and let I = ker f. Consider B ⊗ B as a B-module by

multiplication on the left. Then I/I2 inherits a structure of B-module. Define a map

d : B → I/I2 by db = 1⊗ b− b⊗ 1 (modulo I2). Then 〈I/I2, d〉 is a module of relative

differentials for B over A.

Proposition 4.4. If A′ and B are A-algebras, let B′ = B⊗A′. Then ΩB′/A′
∼= ΩB/A⊗B

B′. Furthermore, if S is a multiplicative set in B, then ΩS−1B/A
∼= S−1ΩB/A.

Example 4.1. The following example is fundamental for computation of modules of

differentials. If B = A[T1, ..., Tn] is a polynomial ring over A, then ΩB/A is free B-

module of rank n generated by dT1, ..., dTn.

Indeed, if F ∈ B and let d′ : B → M be an A-derivation into a B-module M . By

the definition of derivation, we have that d′F =
∑n

i
∂F
∂Ti

d′Ti, where ∂F
∂Ti

is the partial

derivative in the usual sense. Therefore d′ is entirely defined by the images of the Ti.

Now, let Ω be the free module generated by the symbols dTi, ..., dTn. We let d : B → Ω be

the map defined by dF =
∑

i

∂F

∂Ti
dTi. It is easy to check that (Ω, d) fulfills the conditions

of the universal property of the module ΩB/A. Therefore ΩB/A
∼= Ω.

Example 4.2. Let B be a localization or a quotient of A, then ΩB/A = 0. Indeed, if

A → B is surjective, d(b) = ad(1) = 0 for some preimage a ∈ A of b. Let us suppose

that B = S−1A is a localization of A. For any b = B, there exists an s ∈ S such that

sb ∈ A, and hence sdb = d(sb) = 0. But s is invertible in B, it follows that db = 0.

Proposition 4.5. (First Exact Sequence). Let A → B → C be rings and homomor-

phisms. Then there is a natural exact sequence of C-modules

ΩB/A ⊗B C → ΩC/A → ΩC/B → 0.
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Proposition 4.6. (Second Exact sequence). Let B an A-algebra, let I be an ideal of B,

and let C = B/I. Then there is a natural exact sequence of C-modules

I/I2 δ→ ΩB/A ⊗B C → ΩC/A → 0,

where for any b ∈ I, if b̄ is its image in I/I2, then δb̄ = db⊗ 1. Note in particular that

I/I2 has a natural structure of of C-module, and that δ is a C-linear map, even though

it is defined via the derivation d.

Corollary 4.7. If B is a finitely generated A-algebra, or if B is localization of finitely

generated A-algebra, then ΩB/A is a finitely generated B-module.

Proof. If B is a finitely generated A-algebra, then it is quotient of a polynomial ring so

the result follows from Proposition 4.6 and Example 4.2.

Example 4.3. Let B = A[T1, ..., Tn], and let F ∈ B. We let C = B/(F ), then by

Example 4.1 and Proposition 4.6 we have

ΩC/A = (⊕ni=0CdTi)/CdF,

with dF =
∑

i=0
∂F
∂Ti

dTi.

Proposition 4.8. Let (B,m) be a local ring which contains a field k isomorphic to its

residue field B/m. Then the map δ : m/m2 → ΩB/k ⊗B k of Proposition 4.6 is an

isomorphism.

Proof. From the Second Exact Sequence of Proposition 4.6, the cokernel of δ is Ωk/k = 0,

so δ is surjective. To show that δ is injective, we show that the map

δ′ : Homk(ΩB/k ⊗ k, k)→ Hom(m/m2, k)

of dual vector space is surjective. The term on the left is isomorphic to HomB(ΩB/k, k),

which by definition can be identified with the set Derk(B, k) of k-derivation of B into

k. If d : B → k is a derivation, then δ′(d) is obtained by restricting to m, and noting

that d(m2) = 0. To show that δ′ is surjective, let h ∈ Homk(m/m
2, k). For any b ∈ B,

we can write b = λ + c, with λ ∈ k, c ∈ m, in a unique way. Define db = h(c̄), where

c̄ ∈ m/m2 is the image of c. One can check easily that d is a derivation of B to k, and

that δ′(d) = h. Thus δ′ is surjective as desired.



Chapter 4. Serre’s Duality and Riemann-Roch 38

4.1.2 Sheaves of Differentials

We now carry the definition of the module of differentials over to schemes. Let f : X → Y

be a morphism of schemes. We consider the diagonal morphism ∆ : X → X ×Y X. We

know that ∆ is locally closed immersion, and hence ∆(X) is closed in an open subset

W of X ×Y X.

Definition 4.9. Let I be the sheaf of ideals of ∆(X) in W . Then we define the sheaf

of relative differentials of X over Y to be the sheaf ΩX/Y = ∆∗(I/I2) on X.

Remark 4.10. We first note that I/I2 has a natural structure of O∆(X)-module. Then

since ∆ induces an isomorphism of X to ∆(X), ΩX/Y has a natural structure of OX -

module. Furthermore, ΩX/Y is a quasi-coherent since I is. If Y is a noetherian scheme

and f is a morphism of finite type, then X ×Y X is also noetherian and so ΩX/Y is

coherent.

Remark 4.11. Now if U = Spec A is an open affine subset of Y and V = Spec B is

an open affine of X, such that f(V ) ⊆ U , then V ⊗U V is an open affine of X ×Y X
isomorphic to Spec (B ⊗A B) and ∆(X) ∩ (V ⊗U V ) is the closed subscheme defined

by the kernel of the diagonal homomorphism B ⊗A B → B. Thus I/I2 is the sheaf

associated to the module I/I2 of Proposition 4.3. It follows that ΩV/U
∼= (ΩB/A)̃ . So

our definition of the sheaf of differentials of X over Y is compatible, in the affine case,

with the module of differentials defined above, via the functor ∼. This also tells us that

we could have defined ΩX/Y by covering X and Y with open affine subsets V and U as

above, and glueing the corresponding sheaves (ΩB/A)̃ . The derivation B → ΩB/A glue

together to give a map d : OX → ΩX/Y of sheaves of abelian groups on X, which is a

derivation of the local ring at each point. Therefore we can carry our algebraic results

to schemes, and obtain the following results.

Proposition 4.12. Let f : X → Y and g : Y → Z be morphisms of schemes. Then

there is an exact sequence of sheaves on X,

f∗ΩY/Z → ΩX/Z → ΩX/Y → 0.

Proof. Follows from Propostion 4.5 and the definition of f∗.

Proposition 4.13. Let f : X → Y be a morphism, and let Z be a closed subscheme of

X, with ideal sheaf I. Then there is an exact sequence of sheaves on Z,

I/I2 δ→ ΩX/Y ⊗OZ → ΩZ/Y → 0.

Proof. Follows from Propostion 4.5.
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We will give an exact sequence relating the sheaf of differentials on a projective space

to sheaves we already now. This results is fundamental, upon which we will have a tool

for computations involving differentials on projective varieties.

Theorem 4.14. Let A be a ring, let Y = Spec A, and let X = PnA. Then there is an

exact sequence of sheaves on X,

0→ ΩX/Y → OX(−1)(n+1) → OX → 0.

(The exponent (n+ 1) in the middle means a direct sum of n+ 1 copies of OX(−1).)

Before proving our theorem, let us give some few tools that will be used in the proof.

Definition 4.15. Let S be a graded ring and M a graded S-module. For d ∈ Z, we

define M{d} to be the S-module
⊕

n≥dM with the grading M{d}l = Ml+d for l ≥ 0 and

M{d}l = 0 for l < 0. This is a the graded S-submodule of M(d) obtained by removing

all negative grades.

If φ : M → N is a morphism of graded S-modules then φ restricts to give a morphism

of graded S-modules φ{d} : M{d} → N{d}.

Definition 4.16. We say that two graded S-modules M and N are quasi-isomorphic

and write M ∼ N if there exists an integer d ≥ 0 such that M{d} ∼= N{d}. It is clear

that if M and N are isomorphic as graded S-modules, they are quasi-isomorphic.

We say that φ : M → N is a quasi-epimorphism if there exists d ≥ 0 such that Ml → Nl

is surjective for all l ≥ d.

Lemma 4.17. Let S be a graded ring and φ : M → N a morphism of graded S-module.

Then φ is a quasi-epimorphism if and only if cokerφ ∼ 0.

Proposition 4.18. Let S be a graded ring generated by S1 as S0-algebra. If M,N are

quasi-isomorphic graded S-modules then there is a canonical isomorphism of sheaves of

modules M̃ ∼= Ñ . In particular if M ∼ 0 then M̃ = 0.

Proof of Theorem 4.14. Let S = A[T0, ..., Tn] be the homogeneous coordinate ring of X.

Let E be the graded S-module S(−1)(n+1) with basis e0, ..., en in degree 1. Define a

degree 0 homomorphism of graded S-modules E → S by sending ei 7→ Ti, and let M be

the kernel. Then the exact sequence

0→M → E → S,
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of graded S-modules gives rise to an exact sequence of sheaves on X,

0→ M̃ → OX(−1)(n+1) → OX → 0.

Note that θ : E → S is not surjective, but it is surjective in all degree ≥ 1 by Proposition

4.18, so the corresponding map of sheaves is surjective. We will now show that M̃ ∼=
ΩX/Y . Let Ui = D+(Ti) be the canonical affine open subset of X. Now θ(Ti) : E(Ti) →
S(Ti) is a surjective homomorphism of S-modules and E(Ti) is a free S(Ti)-module with

basis {ei/T0, ..., ei/Tn}.
Claim: the module M(Ti) is free with basis { 1

T 2 (Tiej − Tjei)| i 6= j}. Indeed, let us take

t ∈M(Ti) = ker θ(Ti), we may write

t =
s0

Tmi

e0

Ti
+ · · ·+ sn

Tmi

en
Ti
,

Where each sk ∈ Sm,m ≥ 1. Since θ(Ti)(t) = 0, it follows that s0T0 + · · · snTn = 0 in S.

Therefore,

s0

Tmi

(
e0

Ti
− T0

Ti

ei
Ti

)
+ · · ·+ sn

Tmi

(
en
Ti
− Tn
Ti

ei
Ti

)
= t− s0T0 + · · ·+ snTn

Tm+2
i

= t.

So the elements ei
Ti
− Tj
Ti

ei
Ti

for i 6= j at least generate ker θ(Ti) as S(Ti)-module. One checks

also that they are linearly independent. Thus M̃ |Ui
∼= (M(Ti))

∼ is a free OUi-module

generated by the sections ei
Ti
− Tj

Ti
ei
Ti

for i 6= j.

We define a map ϕi : ΩX/Y |Ui → M̃ |Ui as follows. As Ui ∼= Spec A[T0Ti , ...,
Tn
Ti

], ΩX/Y |Ui

is a free OUi-module generated by d
(
T0
Ti

)
, ..., d

(
Tn
Ti

)
. So we define ϕi by sending

d
(
Tj
Ti

)
7→ 1

T 2
i

(Tiej − Tjei). Thus ϕi is an isomorphism. It remains for us to check

that ϕi glue together to give an isomorphism ϕ : ΩX/Y 7→ M̃ on all of X. Let us check

the compatibility of these isomorphisms. On Ui ∩ Uj , we have Tk
Ti

= Tk
Tj

Tj
Ti

, for any k;

hence we have, using properties of derivation,

z := d

(
Tk
Ti

)
=

Tk
Ti
d

(
Tk
Ti

)
+
Tk
Ti

(
Tk
Ti

)
=
−TjTk
T 2
i

d

(
Ti
Tj

)
+
Tj
Ti
d

(
Tk
Ti

)
.
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Now ϕi(z) = 1
T 2
i

(Tiek − Tkei), and on the other hand applying ϕj , we have

ϕj(z) =
−TjTk
T 2
i

[
1

T 2
j

(Tjei − Tiej)

]
+
Tj
Ti

[
1

T 2
j

(Tjek − Tkej)

]

= −Tkei
T 2
i

+
Tkej
TiTj

+
Tjek
TiTj

− Tkej
TiTj

=
1

T 2
i

(Tiek − Tkei)

= ϕi(z).

Thus the isomorphisms ϕi glue and give the desired isomorphism ϕ : ΩX/Y → M̃.

Corollary 4.19. Let A be a ring, Y = Spec A and X = PnA, then ΩX/Y is locally free

of rank n.

Proof. We cover X with the open sets Ui = D+(Ti), and in the proof of Theorem 4.14, we

showed that ΩX/Y
∼= M̃ |Ui for each i. Since M̃ |Ui = (M(Ti))

∼, this shows the result.

We will study an application of the sheaf of differentials, to nonsingular varieties.

Definition 4.20. An (abstract) variety X over an algebraically closed field k is non-

singular if all its local rings are regular local rings.

The following result gives a connection between non-singularity and differentials.

Theorem 4.21. Let X be an irreducible separated scheme of finite type over an alge-

braically closed field k. Then ΩX/k is a locally free sheaf of rank n = dimX if and only

if X is a nonsingular variety.

Definition 4.22. Let X be a nonsingular variety over k. We define the tangent sheaf

of X to be TX = Hom(ΩX/k,OX). It is locally free sheaf of rank n = dimX. We define

the canonical sheaf of X to be ωX =
∧n ΩX/k, the n-th exterior power (we refer to

Exercise 5.16 of ) of the sheaf of differentials.

Example 4.4. Let X = Pnk . Taking the dual of the exact sequence of Theorem 4.14

gives us this exact sequence involving the tangent sheaf of Pnk :

0→ OX → OX(1)(n+1) → TX → 0.

To obtain the canonical sheaf of Pnk , we take the highest exterior powers of the exact

sequence of Theorem 4.14, and find that ωX ∼= OX(−n− 1).

ωX =

n∧
ΩX/Y

∼=
n∧

ΩX/Y ⊗OX ∼=
n+1∧
OX(−1)(n+1) ∼= OX(−1)⊗(n+1) ∼= OX(−n− 1).
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The second and third isomorphisms come from Exercise 5.16 in Hartshorne.

4.1.3 Ext Groups and Sheaves

We develop here some properties of Ext groups and sheaves, which we will need for the

duality theorem. We work on a ringed space (X,OX), and all sheaves will be sheaves

of OX -modules. We recall that if F and G are OX -modules, Hom(F ,G) is the group

of OX -module homomorphisms, and Hom(F ,G) is the sheaf associated to the presheaf

U 7→ HomOX |U (F|U ,G|U ).

For a fixed F ,

Hom(F ,−) :Mod(X)→ Ab and Hom(F ,−) :Mod(X)→Mod(X)

are left exact covariant functors. SinceMod(X) has enough injectives, we can make the

following definition.

Definition 4.23. Let (X,OX) be a ringed space, and let F be anOX -module. We define

the functor Exti(F ,−) as the right derived functors of Hom(F ,−), and Exti(F ,−) as

the right derived functor of Hom(F ,−).

Consequently, according to the general properties of derived functors, we have Ext0 =

Hom, a long exact sequence for a short exact sequence in the second variable, Exti(F ,G) =

0 for i > 0, G injective in Mod(X), and similarly for the Ext sheaves.

Lemma 4.24. If I is an injective object of Mod(X), then for any open subset U ⊆
X, I|U is an injective object of Mod(U).

Proposition 4.25. For any open subset U ⊆ X we have

ExtiX(F ,G)|U ∼= ExtiU (F|U ,G|U ).

Proof. Both sides give δ-functors in G fromMod(X) toMod(U). They agree for i = 0,

both side vanish for i > 0 and G injective, by previous lemma, so they are equal.

Proposition 4.26. For any G ∈ Mod(X), we have:

(a) Ext0(OX ,G) = G;

(b) Exti(OX ,G) = 0 for i > 0;

(c) Exti(OX ,G) = H i(X,G) for all i ≥ 0.
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Proof. The functor Hom(OX ,−) is the identity functor so its derived functors are 0 for

i > 0. This proves (a) and (b). The functors Hom(OX ,−) and Γ(X,−) are equal, so

their derived functors (as functors from Mod(X) to Ab) are the same.

Proposition 4.27. If 0 → F ′ → F → F ′′ → 0 is a short exact sequence in Mod(X),

then for any G we have a long exact sequence

0→ Hom(F ′′,G)→ Hom(F ,G)→ Hom(F ′,G)→ · · · → Ext1(F ′′,G)→ Ext1(F ,G)→ · · · ,

and similarly for Ext sheaves.

Proof. Let 0 → G → I•) be an injective resolution of G. For any injective sheaf I, the

functor Hom(−, I) is exact, so we get a short exact sequence of complexes

0→ Hom(F ′′, I•)→ Hom(F , I•)→ Hom(F ′, I•)→ 0

Taking the associated long exact sequence of cohomology groups hi gives the sequence

of Exti.

Similarly using Lemma 4.25, we see that Hom(−, I) is an exact functor from Mod(X)

to Mod(X). The same argument gives the exact sequence of Exti.

Proposition 4.28. Suppose there is an exact sequence

· · · → L1 → L0 → F → 0

in Mod(X), where the Li are locally free sheaves of finite rank (in this case we say L•
is a free resolution of F). Then for any G ∈Mod(X), we have

Exti(F ,G) ∼= hi(Hom(L•,G)).

Proof. Both sides are δ-functors in G from Mod(X) to Mod(X). For i = 0 they are

equal, because Hom(−,G) is contravariant and left exact. Both sides vanishes for i > 0

and G injective, because then Hom(−,G) is exact so by universality of δ-functors, they

are equal.

Example 4.5. If X is a scheme, which is quasi-projective over Spec A, where A is

a noetherian ring, then any coherent sheaf F on X is quotient of a locally free sheaf.

Thus any coherent sheaf on X has locally free resolution L• → F → 0. So the previous

proposition tells us that we can calculate Ext by taking locally free resolutions in the first

variable.
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Lemma 4.29. If L ∈ Mod(X) is locally free of finite rank, and I is injective, then

L ⊗ I is also injective.

Proof. We must show that the functor Hom(−,L⊗I) is exact. But it is the same functor

as Hom(−⊗ Ľ, I) , which is exact because −⊗ Ľ is exact and I is injective.

Proposition 4.30. Let L be a locally free sheaf of finite rank, and let Ľ = Hom(L,OX)

be its dual. Then for any F ,G ∈ Mod(X) we have

Exti(F ⊗ L,G) ∼= Exti(F , Ľ ⊗ G),

and for the sheaf Ext we have

Exti(F ⊗ L,G) ∼= Exti(F , Ľ ⊗ G) ∼= Ext(F ,G)⊗ Ľ.

Proof. The case i = 0, is already proved. For the general case, note that all of them

are δ-functors in G from Mod(X) to Ab (respectively, Mod(X)), since tensoring with

Ľ is an exact functor. For i > 0 and G injective they all vanish, by Lemma 4.29, so by

universality they are equal.

We now give some properties which are more particular to the case of schemes.

Proposition 4.31. Let X be a notherian scheme, let F be a coherent sheaf on X, let

G be any OX-module, and let x ∈ X be a point. Then we have

Exti(F ,G)x ∼= ExtiOx
(Fx,Gx)

for any i ≥ 0, where the right-hand side is Ext over the local ring Ox.

Proof. The Ext over a ring A is defined as the right derived functor of Hom(M,−) for

any A-module M , considered as a functor from AMod to AMod.

Our question is local, by Proposition 4.25, we may assume that X is affine. Then F
has a free resolution L• → F → 0 which on stalks at x gives a free resolution (L•)x →
Fx → 0. So by Proposition 4.28, we can calculate both sides by these resolutions. Since

Hom(L,G)x = HomOx(Lx,Gx) for a locally free sheaf L, and since the stalk functor is

exact, we get the result.

Note that even the case i = 0 is not true without some special hypothesis on F , such as

F is coherent.
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Lemma 4.32. Let X be a projective scheme over a noetherian ring A and let F → G
be a surjective morphism of coherent sheaves, then there exists N > 0 such that for all

n ≥ N the morphism of A-modules Γ(X,F(n))→ Γ(X,G(n)) is surjective.

Proof. Let K be the kernel of F → G. Then we have a short exact sequence

0→ K → F → G → 0.

Now tensoring with the flat sheaf OX(n) gives us, 0→ K(n)→ F(n)→ G(n)→ 0. The

long exact sequence of cohomology,

0→ Γ(X,K(n))→ Γ(X,F(n))→ Γ(X,G(n))→ H1(X,K(n))→ · · · ,

By Serre’s theorem 2.38, there is an N > 0 such that H1(X,K(n)) = 0 for all n ≥ N .

Therefore it follows that for all n ≥ N , Γ(X,F(n))→ Γ(X,G(n)) is surjective.

Lemma 4.33. Let X be a projective scheme over a noetherian ring A and suppose we

have an exact sequence of coherent sheaves for some r ≥ 3

F1 → F2 → · · · → Fr.

Then there exists N such that for all n ≥ N the following sequence is exact.

Γ(X,F1(n))→ Γ(X,F2(n))→ · · · → Γ(X,Fr(n))

Proof. Follows from the lemma above.

Lemma 4.34. Let f : (X,OX) → (Y,OY ) be an isomorphism of ringed spaces. For

F ,G ∈Mod(X), there is a canonical isomorphism of sheaves of modules

θ : f∗(ExtiX(F ,G))→ ExtiY (f∗F , f∗G)

Proof. (III, Ex. 6.10)

Lemma 4.35. Let X = Spec A be an affine scheme and let M,N be A-modules. Then

for i ≥ 0, there is a canonical morphism of sheaves of modules

λi : ExtiA(M,N )̃ → ExtiX(M̃, Ñ)

Moreover, if A is a noetherian ring and M finitely generated, then this is an isomor-

phism.
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Proof. (III, Ex. 6.7)

Lemma 4.36. Let X be a noetherian scheme, and let F ,G ∈ Mod(X).

(a) If F is coherent and G is quasi-coherent, then Exti(F ,G) is quasi-coherent for

i ≥ 0.

(b) If F ,G are both coherent then Exti(F ,G) is coherent for i ≥ 0.

Proof. (a) Given a point x ∈ X, let U be an open affine neighborhood of x with the

canonical isomorphism f : U → Spec OX(U). Since F is coherent, F(U) is finitely gen-

erated module and we have the following canonical isomorphism for i ≥ 0, by combining

Proposition 4.25, Lemma 4.34 and Lemma 4.35 together

f∗Exti(F ,G)|U ∼= f∗(Exti(F|U ,G|U ))

∼= Exti(f∗F|U , f∗G|U )

∼= Exti(F(U )̃ ,G(U )̃ )

∼= ExtiOX(U)(F(U),G(U )̃ .

Which shows that Exti(F ,G) is a quasi-coherent sheaf of modules.

For (b), if G is coherent, G(U) is finitely generated, then the module ExtiOX(U)(F(U),G(U))

is also finitely generated. Hence Exti(F ,G) is coherent.

Proposition 4.37. Let X be a projective scheme over a noetherian ring A, let OX(1)

be a very ample invertible sheaf, and let F ,G be coherent sheaves on X. Then there is

an integer n0 > 0, depending on F ,G and i, such that for every n ≥ n0 we have

Exti(F ,G(n)) ∼= Γ(X, Exti(F ,G(n))).

Proof. The statement is true for i = 0 for any F ,G and n. If F = OX , then the left hand

side is H i(X,G(n)) by Proposition 4.26. So for n� 0 and i > 0 it is 0 by Serre’s theorem

2.38. On the other hand, the right-hand side is always 0 for i � 0 by Proposition 4.26

(b), so we have the result for F = OX .

If F is a locally free sheaf, we reduce to the case F = OX by Proposition 4.30. We have in

the LHS, Exti(F ,G(n)) = Exti(OX ,G(n)⊗ F̌). On the RHS, Γ(X, Exti(OX ,G(n))⊗ F̌).

Finally, if F is an arbitrary coherent sheaf, write it as a quotient of a locally free sheaf

E (Corollary 2.39), and let R be the kernel:

0→ R→ E → F → 0.
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Since E is locally free, by the early results, for n� 0, we have an exact sequence

0→ Hom(F ,G(n))→ Hom(E ,G(n))→ Hom(R,G(n))→ Ext1(F ,G(n))→ 0

and isomorphisms, for all i > 0

Exti(R,G(n)) ∼= Exti+1(F ,G(n)).

In similar way, for the sheaves Hom and Ext, we use Lemma 4.36 and Proposition 4.30,

then we obtain an exact sequence of coherent sheaves of modules

0→ Hom(F ,G)→ Hom(E ,G)→ Hom(R,G)→ Ext1(F ,G)→ 0.

Replacing G by G(n), we get isomorphisms

Exti(R,G(n)) ∼= Exti+1(F ,G(n)).

Now Lemma 4.33 says that we can find an integer N > 0 such that for all n ≥ N the

rows of the following diagram are exact,

Hom(E ,G(n)) Hom(R,G(n)) Hom(F ,G(n)) 0

Γ(X,Hom(E ,G(n))) Γ(X,Hom(R,G(n))) Γ(X,Hom(F ,G(n))) 0

∼= ∼=

Then there is an induced isomorphism of abelian groups Hom(F ,G(n))→ Γ(X,Hom(F ,G(n)))

for every n ≥ N and this prove the result for i = 1. But R is also coherent, so by in-

duction we get the general result.

4.2 The Serre Duality Theorem

We present here the Serre duality theorem for the cohomology of coherent sheaves on a

projective space and the proof. Next we will see that on a projective scheme over a field

k there is for a will see that there is coherent sheaf ω◦X , the so-called dualizing sheaf.

We end this section with the statement of Serre’s duality for projective scheme over a

field k = k.

Theorem 4.38 (Duality for Pnk). Let k be a field, let X = Pnk be the n-dimensional

projective space over k, and let ωX be the canonical sheaf on X.

(a) Hn(X,ωX) ∼= k. Fix one isomorphism;
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(b) for any coherent sheaf F on X, the natural pairing

Hom(F , ωX)×Hn(X,F)→ Hn(X,ωX) ∼= k,

is a perfect pairing of finite dimensional k-vector space;

(c) for every i ≥ 0 there is a natural functorial isomorphism

Ext(F , ωX → Hn−i(X,F)∨,

where ∨ denotes the dual vector space, which for i = 0 is the one induced by the

pairing of (b).

Proof. Part (a) follows from Example 4.4, which asserts that ωX ∼= OX(−n− 1). Thus

the result follows from a computation we have made before.

(b) We first note that the paring in (b) is natural, since any morphism F → ωX induces

a map of cohomology groups H i(X,F)→ H i(X,ωX) for each i. If F = OX(q) for some

q ∈ Z, then by the Ext property,

Hom(F , ωX) = Ext0(OX(q), ωX) ∼= Ext0(OX ,OX(−q)⊗ ωX)

∼= H0(X,ωX(−q)).

So the result follows from Theorem 2.38. Hence (b) holds also for a finite direct sum of

sheaves of the form OX(qi). Now if F is an arbitrary coherent sheaf, we can write it as

a cokernel E1 → E0 → F → 0 of a map of sheaves E1 → E0 where each Ei being a finite

direct sum of sheaves of the form OX(qi) (Corollary 2.39). Now both Hom(−, ωX) and

Hn(X,−)∨ are both left-exact contravariant functors, so we have the following diagram

0 Hom(F , ωX) Hom(E0, ωX) Hom(E1, ωX)

0 Hn(X,F)∨ Hn(X, E0)∨ Hn(X, E1)∨

∼= ∼=

Using five-lemma, it implies that Hom(F , ωX) → Hn(X,F)∨ is an isomorphism, and

the statement (b) is proved.

(c) We sketch the main idea. One may check that both sides are contravariant δ-functors,

for any F a coherent sheaf on X, indexed by i ≥ 0. For i = 0 we have an isomorphism

by (b). To show that they are isomorphic it will be sufficient to show that both sides

are coeffaceable for i > 0, therefore the functors {Exti(−, ωX}i and {Hn(X,−)∨}i are

universal: given F coherent, it follows from Cor1.1 (Report3/19) that we can write F
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as a quotient of a sheaf E =
⊕N

i OX(−q), with q � 0. Then

Exti(E , ωX) ∼=
N⊕
i=1

Exti(OX(−q), ωX) ∼=
N⊕
i=1

Exti(OX , ωX(q)) ∼=
⊕

H i(X,ωX(q)) = 0,

the last isomorphism comes from (Report3/19 Th.2). on the other hand, for 0 < i ≤ n

Hn−i(X, E)∨ =
⊕

Hn−i(X,OX(−q))∨ = 0,

again from Theorem 2.38. Thus both δ-functor are coeffaceable for i > 0 so they are

universal. This shows (c).

Definition 4.39. Let X be a proper scheme of dimension n over a field k. A du-

alizing sheaf for X is a coherent sheaf ω◦X on X, together with a trace morphism

t : Hn(X,ω◦X)→ k, such that for all coherent sheaf F on X, the natural pairing

Hom(F , ω◦X)×Hn(X,F)→ Hn(X,ω◦X)

followed by t gives an isomorphism

Hom(F , ω◦X)
∼→ Hn(X,F)∨

Proposition 4.40. Let X be a proper scheme over a field k. Then a dualizing sheaf or

X if it exits, is unique.

Lemma 4.41. Let X be a closed subscheme of codimension r of Y = PNk . Then

ExtiY (OX , ωY ) = 0 for all i < r.

Lemma 4.42. With the same hypotheses as Lemma 4.41, let ω◦Y = ExtrY (OX , ωY ).

Then for any OX-module F , there is a functorial isomorphism

HomX(F , ω◦X) ∼= ExtrY (F , ωY ).

Proposition 4.43. Let X be a projective scheme over a field k. Then X has a dualizing

sheaf.

Proof. Embed X as a closed subscheme of Y = PNk for some N , let r be its codimension,

and let ω◦X = ExtrY (OX , ωY ). Then by Lemma 4.42, we have an isomorphism for any

OX -module F ,

HomX(F , ω◦X) ∼= ExtrY (F , ωY ).

On the other hand, when F is coherent, the duality theorem for Y gives us an isomor-

phism,

ExtrX(i∗F , ω◦X) ∼= HN−r(PNk , i∗F)∨.
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But N − r = n, the dimension of X, so we obtain a functorial isomorphism, for any

coherent sheaf F on X,

HomX(F , ω◦X) ∼= Hn(PNk , i∗F)∨ ∼= Hn(X,F)∨.

In particular, taking F = ω◦X , the element Id ∈ HomX(ω◦X , ω
◦
X) gives us a homomor-

phism t : Hn(X,F)∨) → k, which we take as our trace map. Then it is clear from the

definition that the pair (ω◦X , t) is our dualizing sheaf for X.

Before stating the Serre duality for projective schemes, we will gather some results

concerning Cohen-Macaulay rings, which are useful in the statement.

Definition 4.44. Let A be a ring, M an A-module and a1, ..., ar a sequence of elements

of A. We say that a1, ..., ar is an M -regular sequence if a1 is not a zero divisor in M ,

and for all i = 2, ..., r, ai is not a zero divisor in M/(a1, ..., ar−1)M.

If A is a local ring with maximal ideal m, we define the depth of M to be the maximum

length of an M -regular sequence with all ai ∈ m.

These definitions apply to the ring A itself, and we say that a local noetherian ring A is

Cohen-Macaulay if depth A = dimA

Now we enumerate some properties of Cohen-Macaulay rings.

Theorem 4.45. Let A be a local noetherian ring with maximal ideal m.

(a) If A is regular, then it is Cohen-Macaulay.

(b) If A is Cohen-Macaulay, then any localization of A at a prime ideal is also Cohen-

Macaulay.

(c) If A is Cohen-Macaulay, then a set of elements x1, ..., xr ∈ m forms an A-regular

sequence if and only if dimA/(x1, ..., xr) = dimA− r

Definition 4.46. We say that a scheme is Cohen-Macaulay if all its local rings are

Cohen-Macaulay.

Now we are ready to state the duality theorem for a projective scheme X.

Theorem 4.47 (Duality for a Projective Scheme). Let X be a projective scheme of

dimension n over an algebraically closed field k. Let ω◦X be a dualizing sheaf for X, and

let OX(1) be a very ample sheaf on X. Then:
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(a) for all i ≥ 0 and F coherent on X, there are natural functorial maps

θi : Exti(F , ω◦X)→ Hn−i(X,F)∨,

such that θ0 is the map given in the definition of dualizing sheaf;

(b) the following conditions are equivalent:

(i) X is Cohen-Macaulay and equidimensional(i.e all irreducible components have

the same dimension);

(ii) for any F locally fre on X, we have H i(X,F(−q)) = 0 for i < n and q � 0;

(iii) the map θi of (a) are isomorphisms for all i ≥ 0 and all F coherent on X.

Proposition 4.48. If X is a projective nonsingular variety over an algebraically closed

field k, then the dualizing sheaf ω◦X is isomorphic to the canonical sheaf ωX .

Proof. [Hartshorne, 1977](III, Cor. 7.12)

Remark 4.49. If X is a projective nonsingular curve, we find that H1(X,OX) and

H0(X,ωX) are dual vector spaces. Indeed, X is a Cohen-Macaulay scheme by The-

orem 4.45 (a), so we know from Serre duality in Theorem 4.47, that Ext0(OX , ω◦X) and

H1(X,OX) are dual vector spaces. On the other hand, using the above proposition, we

have ω◦X
∼= ωX . Thus the claim follows from the Ext property, and we come up with

Ext0(OX , ωX) ∼= H0(X,ωX) ∼= H1(X,OX)∨.

4.3 Riemann-Roch Theorem

In this section we will see an application of Serre duality in the proof of Riemann-Roch

theorem for projective curves. We begin with an excursion on elementary results about

divisors on a scheme, illustrating the notion to the case of smooth curves and we end

up with the statement of the main theorem of this section and its proof.

4.3.1 Weil Divisors

Definition 4.50. We say a scheme X is regular in codimension one (or sometimes

nonsingular in codimension one) if every local ring OX,x of X dimension one is regular.

In this section we will consider schemes satisfying the following property: (∗) X is a

noetherian integral separated scheme which is regular in codimension one.
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Definition 4.51. Let X satisfy (∗). A prime divisor on X is a closed integral subscheme

Y of codimension one. A Weil divisor is an element of the free abelian group Div(X)

generated by the prime divisors. We write a divisor as D =
∑
niYi, where the Yi are

prime divisors, the ni are integers, and only finitely many are different from zero. If all

the ni ≥ 0, we say that D is effective.

If Y is a prime divisor on X, let η be its generic point.Then the local ring OX,η is a

discrete valuation ring with quotient field K(X) of X. We call the corresponding discrete

valuation vY the valuation of Y . Now let f ∈ K(X)∗ be any nonzero rational function

on X. Then vY is an integer. If it is positive, we say f has zero along Y , of that order;

if it is negative, we say f has a pole along Y of order −vY (f).

Lemma 4.52. Let X satisfy (∗) and let f ∈ K(X)∗ be a nonzero function on X. Then

vY (f) = 0 for all except finitely many prime divisors Y .

Definition 4.53. Let X satisfy (∗) and let f ∈ K(X)∗. We define the divisor of f ,

denoted div(f), by

div(f) =
∑

vY (f) · Y,

where the sum is taken over all prime divisor of X. By Lemma 4.52, this is a finite sum,

hence it is a divisor. Any divisor which is equal to the divisor of a function is called

principal divisor.

Remark 4.54. Because of the properties of valuations, we note that if f, g ∈ K(X)∗, then

div(f/g) = div(f) − div(g). Therefore sending a function f to its divisor div(f) gives

us a homomorphism of the multiplicative group K(X)∗ to the additive group Div(X),

and the image, which consists of the principal divisors, is a subgroup of Div(X).

Definition 4.55. Let X satisfy (∗). Two divisors D and D′ are said to be linearly

equivalent, written D ∼ D′, if D − D′ = div(f), for some f ∈ K(X)∗. The group

Div(X) of all divisors divided by the subgroup of principal divisors is called the divisor

class group of X, and is denoted by Cl(X).

We will see a few special cases of calculation of divisor class group.

Proposition 4.56. Let A be a noetherian domain. Then A is a unique factorization

domain if and only if X = Spec A is normal and Cl(X) = 0.

Example 4.6. If X is affine n-space Ank over a field k, then Cl(X) = 0. Indeed, X =

Spec k[T1, ..., Tn], and the polynomial ring is a unique factorization domain.

Proposition 4.57. Let X be a projective space Pnk over a field k. For any divisor

D =
∑
niYi, define the degree of D by degD =

∑
ni deg Yi, where deg Yi is the degree

of the hypersurface Yi. Let H be the hyperplane T0 = 0. Then:
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(a) if D is any divisor of degree d, then D ∼ dH

(b) for any f ∈ K(X)×, deg div(f) = 0;

(c) the degree function gives an isomorphism deg : Cl(X)→ Z

Proposition 4.58. Let X satisfy (∗), let Z be a proper closed subset of X, and let

U = X \ Z. Then:

(a) there is a surjective homomorphism Cl(X)→ Cl(U) defined by

D =
∑

niYi 7→
∑

ni(Yi ∩ U),

where we ignore those Yi ∩ U which are empty;

(b) if codim(Z,X) ≥ 2, then Cl(X)→ Cl(U) is an isomorphism;

(c) if Z is an irreducible subset of codimension 1, then there is an exact sequence

Z→ Cl(X)→ Cl(U)→ 0,

where the first map is defined by 1 7→ 1 · Z.

Proof. (a) If Y is a prime divisor on X, then Y ∩ U is either empty or a prime divisor

on U . If [D1] = [D2] in Cl(X), then there exists an f ∈ K(X)×, such that div(f) =

D1 −D2, Considering f as a rational function on U , and if div(f) =
∑
niYi , with Yi a

prime divisor on X. We have div(f)|U =
∑
ni(Yi ∩ U), so we obtain a homomorphism

Cl(X) → Cl(U). To show that it is surjective, let D′ =
∑
niY

′
i ∈ Div(U) with Y ′i a

prime divisor on U . The closure Y ′i of Y ′i in X is a prime divisor on X, and D =
∑
niY ′i

satisfies D|U = D′. Hence Cl(X)→ Cl(U) is surjective.

(b) The group Div(X) and Cl(X) depend only on subsets of codimension 1, so removing

a closed subset of codimension ≥ 2 doesn’t change anything.

(c) For the proof of exactness, suppose that [D] ∈ Cl(X) restricts to 0 in Cl(U). This

means that D is a divisor of some f ∈ K(U)×. Since K(U) = K(X) and the divisor of

f in Div(X) restricts to the divisor of f in Div(U), it follows that we have f ∈ K(X)×

such that D|U = div(f)|U . This implies that the difference D|U − div(f)|U is supported

in X \ U = Z. So, if Z is irreducible D − div(f) ∈ Z, and the kernel of Cl(X)→ Cl(U)

is just the subgroup of Cl(X) generated by 1 · Z.
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Example 4.7. Let Y be an irreducible curve of degree d in X = P2
k. For any divisor

[D] ∈ Cl(X), write [D] =
∑
niZi, with Zi irreducible. Then Cl(X \ Y ) = Z/dZ. Let

U = X \ Y . From Proposition 4.58, [D] is in the kernel of Cl(X) → Cl(U) if and only

if
∑
ni(Zi ∩U) = div(f)|U for some rational function f on P2

k. This means that on P2
k,

we have D−div(f) =
∑
niZi−div(f) = k ·Y, for some k ∈ Z. It follows that the kernel

is generated by Y . On the other hand the isomorphism of Proposition 4.57 deg : P2
k → Z

gives the structure of Cl(U).

4.3.2 Divisors on Curves

We will illustrate here the notion of divisors by paying special attention to the case of

divisors on curves. We begin with some preliminaries about curves and morphisms of

curves.

Definition 4.59. Let k be an algebraically closed field. A curve is a nonsingular integral

scheme X of dimension 1, proper over k.

Lemma 4.60. Let f : X → Y be a morphism of separated schemes over a noetherian

schemes S. Let Z be a closed subscheme of X which is proper over S. Then f(Z) is

closed in Y and proper over S with its image subscheme structure.

Proof. Ex 4.4 Hartshorne.

Proposition 4.61. Let X be a proper nonsingular curve over k, let Y be any curve over

k, and let f : X → Y be a morphism. Then either (1) f(X) is a point, or (2) f(X) = Y .

In case (2), K(X) is a finite extension field of K(Y ), f is a finite morphism, and Y is

also proper.

Proof. Since X is proper over k, f(X) must be closed in Y , and proper over k, by Lemma

4.60. On the other hand, f(X) is irreducible. Thus either f(X) = pt or f(X) = Y, and in

case Y is also proper. In case (2), f is dominant, it induces an inclusion K(Y ) ⊆ K(X)

of function fields. Since both fields are finitely generated extension fields transcendence

degree 1 of k, K(X) must be a finite algebraic extension of K(Y ). It remains for us to

show that f is a finite morphism, to do so, let V = Spec B be any open affine subset of

Y . Let A be the integral closure of B in K(X). Then A is a finite B-module (see for

e.g [Samuel and Zariski, 1975] V, Th. 9), and Spec A is isomorphic to an open subset

U of X. One can check that U = f−1V , and this shows that f is finite morphism.

The above proposition allows us to define the following.
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Definition 4.62. Let f : X → Y be a finite morphism of curves, we define the degree

of f to be the degree of the field extension [K(X) : K(Y )].

Now we come to study of divisors on curves. If X is a curve, then X satisfies the property

(∗) used above, so it makes sense to talk about divisors on X. A prime divisor is just

a closed point, so an arbitrary divisor can be written D =
∑
niPi, where Pi are closed

points, and ni ∈ Z. We define the degree of D to be
∑
ni.

Definition 4.63. Let φ : X → Y be a morphism of singular curves and φ∗ : K(Y ) →
K(X) be the corresponding morphism of function fields. The ramification index of φ at

a closed point P of X is

eφ(P ) = vP (φ∗tQ),

where tQ ∈ OY,Q is a uniformizer at Q = φ(P ).

Remark 4.64. Note that φ∗Q is independent of the choice of the uniformizer tQ. Indeed if

t′Q is another uniformizer at Q, then tQ = ut′Q, where u is a unit in OY,Q. For any point

P ∈ X with φ(P ) = Q, φ∗u will be a unit in OX,P , so vP (φ∗tQ) = vP (φ∗t′Q) = eφ(P ).

Definition 4.65. Let φ : X → Y be a morphism of nonsingular curves, we define the

pullback map φ∗ on divisors, to be the homomorphism φ∗ : DivY → DivX defined by

φ∗(Q) =
∑

P∈φ−1(Q)

eφ(P ) · P

We extend the definition by linearity to all divisors on Y.

Remark 4.66. Using φ∗ to denote both the pullback map Div(Y ) → Div(X) and the

dual morphism K(Y )→ K(X) might seem like an unfortunate collision of notation, but

it is standard an intentional. Noting that the kernel of the map k(X)× → Div(X) is

just k×, so up to scalars we can identify a function f ∈ K(X) with the corresponding

divisor div(f) ∈ Div(X).

Proposition 4.67. Let f : X → Y be a finite morphism of nonsingular curves. Then

for any divisor D on Y we have deg f∗D = deg f. degD

Corollary 4.68. A principal divisor on a complete nonsingular curve X has degree 0.

Consequently the degree map induces a surjective homomorphism deg : ClX → Z

Proof. Let f ∈ K(X). If f ∈ k then div(f) = 0, so there is nothing to prove. Assume

f /∈ k. Then the inclusion of fields k(f) ⊆ K(X) induces a finite morphism ϕ : X → P1
k

as follows: if ϕ = g/h, with g, h ∈ K[X], represented by homogeneous functions of the

same degree, and h nonzero, then ϕ is given by (g : h).
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Now let (x : y) be a homogeneous coordinate for P1
k and define 0 = (0 : 1) and ∞ = (1 :

0). Note that 0 and ∞ are both rational point on P1
k, then we may identify them with

the closed the corresponding closed points. Let t0 = x
y and t∞ = y

x be the respective

uniformizers at 0 and ∞. The images of these uniformizers under the field embedding

ϕ∗ : K(P1
k)→ K(X), induced by φ are by definition

ϕ∗t0 = t ◦ ϕ =
g

h
= f and ϕ∗t∞ = t∞ ◦ ϕ =

h

g
= 1/f.

Let us consider a closed point P ∈ X for which ϕ(P ) = 0. The ramification index of ϕ

at P is by definition

eϕ(P ) = vP (ϕ∗t0) = vP (f).

The same way if we consider a closed point P ∈ X for which ϕ(P ) =∞, we have

eϕ(P ) = vP (ϕ∗t∞) = vP (1/f) = −vP (f).

Applying the pullback map ϕ∗ : Div(P1
k)→ Div(X) to the divisor [0] yields

ϕ∗[0] =
∑

P∈ϕ−1(0)

vP (f)P.

Similarly,

ϕ∗[∞] =
∑

P∈ϕ−1(∞)

−vP (f)P.

It follows that

ϕ∗([0]− [∞]) = ϕ∗[0]− ϕ∗[∞] =
∑

P∈ϕ−1(0)

vP (f)P −
∑

P∈ϕ−1(∞)

vP (f)P = div(f).

Using Proposition 4.67, degϕ∗([0] − [∞]) = 0 since [0] − [∞] has degree 0. Hence

deg div(f) = 0 on X.

Thus the degree of a divisor on X depends only on its linear equivalence class, and we

obtain a homomorphism as stated. It is surjective because the degree of a single point

is 1.

4.3.3 Cartier Divisors

Definition 4.69. Let X be a scheme. For each open affine subset U = Spec A, let S

be the set of element of A which are not zero divisors, and let K(U) be the localization

of A by the multiplicative closed set S. We call K(U) the total quotient ring of A. For

each open set U , let S(U) denote the set of elements of Γ(U,OX) which are not zero



Chapter 4. Serre’s Duality and Riemann-Roch 57

divisors in each local ring OX,x for each x ∈ U . Then the rings S(U)−1Γ(U,OX) form

a presheaf, whose associated sheaf of rings K we call the sheaf of total quotient rings of

O.

We denote by K× the sheaf (of multiplicative groups) of invertible elements in K, simi-

larly we denote by O× the sheaf of invertible element in OX .

Since all regular functions are rational, we have the following short exact sequence

0→ O× → K× → K×/O× → 0.

Definition 4.70. A Cartier divisor on a scheme X is a global section of the sheaf

K×/O×. Hence a Cartier divisor can be represented by a collection of pair (Ui, fi),

where {Ui} is an open cover of X and fi ∈ Γ(Ui,K×). In other words, it is ”locally”

defined by a single rational function, and the ratio of such rational functions on the

intersection is regular.

A Cartier divisor is principal if it is in the image of Γ(X,K×), in other words, it is

globally defined by a single rational function. Two Cartier divisors are equivalent if

their ratio is principal.

Proposition 4.71. Let X be an integral, separated noetherian scheme, all of whose local

rings are unique factorization domains. Then the group Div(X) of Weil divisors on X is

isomorphic to the group of Cartier divisors Γ(X,K×/O×), and furthermore, the principal

Weil divisors correspond to the principal Cartier divisors under this isomorphism.

We will see now that invertible sheaves on a scheme are closely related to divisor classes

modulo linear equivalence.

Proposition 4.72. If L andM are invertible sheaves on a ringed space X, so is L⊗M.

If L is any invertible sheaf on X, then there exists an invertible sheaf L−1 on X such

that L ⊗ L−1 ∼= OX .

Proof. If L and M are invertible sheaves, then both are locally free of rank 1. And

using OX ⊗ OX ∼= OX , the first statement is true. For the second statement, let L be

any invertible sheaf, and take L−1 = Lˇ = Hom(L,OX). Then Lˇ⊗ L ∼= Hom(L,L) ∼=
OX .

Definition 4.73. For any ringed space X, we define the Picard group of X denoted by

Pic(X), to be the group of invertible sheaves on X, under the operation ⊗. The previous

proposition shows that in fact it is a group.

Definition 4.74. Let D be a Cartier divisor on a scheme X, represented by {(Ui, fi)}
as above. We define a subsheaf L(D) of the sheaf of total quotient rings K by taking



Chapter 4. Serre’s Duality and Riemann-Roch 58

L(D) to be the sub-OX -module of K generated by f−1
i on Ui. This is well-defined, since

fi/fj is invertible on Ui ∩ Uj , so f−1
i and f−1

j generate the same OX -module. We call

L(D) the sheaf associated to D.

Proposition 4.75. Let X be a scheme. Then:

(a) for any Cartier divisor D, L(D) is an invertible sheaf on X. The map D 7→ L(D)

gives a 1-1 correspondence between Cartier divisors on X and invertible subsheaves

of K;

(b) L(D1 −D2) ∼= L(D1)⊗ L(D2)−1

(c) D1 ∼ D2 if and only if L(D1) ∼= L(D2) as abstract invertible sheaves (i.e., disre-

garding the embedding in K).

Corollary 4.76. On any scheme X, the map D 7→ L(D) gives an injective homomor-

phism of the group CaCl(X) of Cartier divisors modulo linear equivalence to Pic(X).

Proposition 4.77. If X is an integral scheme, the homomorphism CaCl(X)→ Pic(X)

of Corollary 4.76 is an isomorphism.

Corollary 4.78. If X is a noetherian, integral, separated scheme, all of whose local

rings are unique fatorization domains, then there is a natural isomorphism CaCl(X) ∼=
Pic(X).

Definition 4.79. A Cartier divisor on a scheme is effective if it can be represented by

{(Ui, fi)}, where all the fi ∈ Γ(Ui,OUi).In that case we define the associated subscheme

of codimension 1, Y , to be the closed subscheme defined by the sheaf of ideal I which

is locally generated by fi.

Remark 4.80. This definition gives a 1-1 correspondence between effective Cartier di-

visors on X and locally principal closed subschemes Y , i.e., subschemes whose sheaf of

ideals is locally generated by a single element.

Proposition 4.81. Let D be an effective Cartier divisor on a scheme X, and let Y be

associated locally principal closed subscheme. Then IY ∼= L(−D).

4.4 Riemann-Roch Theorem

Definition 4.82. Let X be a projective scheme over a field k, and let F be a coherent

sheaf on X. We define the Euler Characteristic of F by

χ(F) =
∑
i

(−1)i dimkH
i(X,F).
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Definition 4.83. Let X be a projective scheme of dimension r over a field k. We define

the arithmetic genus pa of X by

pa(X) = −(1)r(χ(OX − 1)).

We define the geometric genus of X to be pg(X) := dimkH
0(X,ωX). We note that if X

is a curve, by Remark 4.49, we have pa(X) = pg(X), so we may call it simply the genus

of X, and denote it by g.

Proposition 4.84. Let X be an integral scheme of dimension r over an algebraically

closed field k. If X is integral then

pa(X) =

r−1∑
i=0

(−1)i dimkH
r−i(X,OX).

Proof. By definition of the arithmetic genus, and noting that H0(X,OX) ∼= k if X is

integral, we obtain

pa(X) = (−1)r(χ(OX − 1))

= −(−1)r +
r∑
j=0

(−1)j+r dimkH
j(X,OX)

=

r−1∑
i=0

(−1)i dimkH
i(X,OX)

Remark 4.85. Let X be a curve over k. Let D =
∑

P∈X np · P.

L(D) := H0(X,L(D)) and l(D) := dimL(D)

From [Liu et al., 2002], L(D) could be described as

L(D) = {f ∈ K(X)×| vP (f) + nP ≥ 0, ∀P} ∪ {0}.

Lemma 4.86. Let D be a divisor on a curve X. If degD = 0, then l(D) 6= 0 if and

only if D ∼ 0. If degD < 0, then l(D) = 0.

Proof. Suppose l(D) 6= 0. Take f ∈ L(D) \ {0} . Then div(f) +D ≥ 0. As is D linearly

equivalent to div(f) +D. We conclude that degD ≥ 0. If degD = 0, then D is linearly

equivalent to an effective divisor of degree 0. But there is only one such, namely the

zero divisor.
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Lemma 4.87. Let k be a field. Let X be a proper scheme over k. Let 0→ F ′ → F →
F ′′ → 0 be a short exact sequence of coherent sheaves on X. Then

χ(F) = χ(F ′) + χ(F ′′).

Proof. From the short exact sequence of the statement we obtain the associated long

exact sequence of cohomology

0→ H0(X,F ′)→ H0(X,F)→ H0(X,F ′′)→ H1(X,F ′)→ · · · .

The rank-nullity theorem says that

0 = dimkH
0(X,F ′)− dimkH

0(X,F) + dimkH
0(X,F ′′)− dimkH

1(X,F ′) + · · ·

Pulling all the terms with F to the left hand side gives us the result as required.

Since X has dimension 1, the sheaf of relative differential ΩX/k of X is an invertible

sheaf on X, and so is equal to the canonical sheaf ωX on X. We call any divisor in the

corresponding linear equivalence class a canonical divisor and denote it by KX . We are

ready to state the Riemann-Roch.

Theorem 4.88 (Riemann-Roch). Let D be a divisor on a curve X of genus g. Then

l(D)− l(KX −D) = degD + 1− g.

Proof. We have the correspondence between the divisor KX−D and the invertible sheaf

ωX ⊗ L(D)̌ , by Proposition 4.75. Since X is projective, we may apply Serre duality

and, Ext properties, and find that

H1(X,L(D))∨ ∼= Ext0(L(D), ωX)

∼= Ext0(OX ,L(D)̌ ⊗ ωX)

∼= H0(X,L(D)̌ ⊗ ωX)

This computation tells us that H0(X,ωX⊗L(D)̌ ) is dual to H1(X,L(D)). By definition,

l(D) − l(KX −D) = dimkH
0(X,L(D)) − dimkH

0(X,L(KX −D)). Thus we came up

with

l(D)− l(KX −D) = dimkH
0(X,L(D))− dimkH

1(X,L(D)) = χ(L(D)).
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Hence showing the theorem amounts to proving that for any divisor D

χ(L(D)) = degD + 1− g.

First we consider the case D = 0. Then L(D) ∼= OX , and our formula says

dimkH
0(X,OX)− dimkH

1(X,OX) = 1− g = 0 + 1− g.

Since H0(X,OX) = k and dimkH
1(X,OX) = g, by the definition of genus, the formula

holds.

Now, let D be any divisor, and let P be any point. Since any divisor can be reached

from 0 in a finite number steps by adding or subtracting a point each time, it will be

sufficient to show that the formula is true for D if and only if it is true for D + P .

We can view P as a closed subscheme of X, and let κ(P ) denote the skyscraper sheaf

OX/IP , where IP is the ideal sheaf of the closed subset {P}. From Proposition 4.81,

IP is isomorphic to L(−P ). Therefore we have an exact sequence

0→ L(−P )→ OX → κ(P )→ 0.

Tensoring with the locally free sheaf or rank one L(D + P ), we get

0→ L(D)→ L(D + P )→ κ(P )→ 0.

Now, taking the Euler characteristic on this short exact sequence, and noting χ(κ(P )) =

1, we have

χ(L(D + P )) = χ(L(D)) + 1.

On the other hand, deg(D + P ) = deg(D) + 1, so our formula is true for D if and only

if it is true for D + P , as required. And the theorem is proved.

Example 4.8. On a curve X of genus g, the canonical divisor KX has degree 2g − 2.

Indeed, applying Riemann-Roch theorem to D = KX yields,

l(K)− l(0) = degKX + 1− g.

Since l(KX) = dimkH
0(X,ωX) = g and l(0) = 1, it implies that degKX = 2g − 2.

Example 4.9. An curve X is elliptic if its genus is 1. On an elliptic curve, the canonical

divisor KX has degree 0, by the previous example. Moreover, l(KX) = g = 1, then from

Lemma 4.86 we conclude that KX ∼ 0.
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Example 4.10. Let E be an elliptic curve, let OE be a point of E, and let Pic◦(E)

denote the subgroup of Pic(E) corresponding to divisors of degree 0. We show here that

the map P 7→ L(P −OE) gives the a one-to-one correspondence between the set of points

of E and the element of Pic◦(E). Therefore we get a group structure with OE as identity,

on the set of points of E.

To do so, we will show that if D is any divisor of degree 0 on E, then there exists a

unique point P ∈ E such that D ∼ P − OE. We apply Riemann-Roch to D + OE,and

obtain

l(D +OE)− l(KE −D −OE) = deg(D +OE) + 1− g

= 1 + 1− 1.

By the previous example, degKE = 0, so deg(KE − D − OE) = −1, and Lemma 4.86

implies that l(KE − D − OE) = 0. Therefore l(D + OE) = 1. This means there is a

unique effective divisor linearly equivalent to D +OE. As the degree of D +OE is 1, it

must be a single point P . Thus we have shown that there is a unique point P ∼ D+OE.
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