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Abstract

Measuring the relationship between the longitudinal response variable

and time-varying covariates is not always trivial in longitudinal studies, and

the use of simple linear mixed models is no longer appropriate, especially

when covariates depend on the prior values of the outcome (endogenous

time-varying covariates). The failure to account for the dependence between

the endogenous variable and the outcome history introduces significant bias.

Moreover, the longitudinal variables can be measured at different points in

time and may contain missing values. All of these motivations led us to use

several multivariate models to assess the association between the response

variable and the endogenous covariates. Some induce the association via

correlated random effects, called Joint Mixed Models; others use a scaling

factor to estimate the association, called Joint Scaled Models. Fitting either

of these models, however, is not straightforward, and their computational

intensity, due to the potentially high-dimensional integration over the ran-

dom effects terms, limits their applicability. A flexible Bayesian estimation

approach, known as INLA, will be used to fill this gap. We will evaluate

its performance and applicability in the context of joint longitudinal mod-

els. In particular, it has been evaluated in a scenario with a low population

dimension, which generally leads to low accuracy and precision of the esti-

mates, small variances and covariaces of the random effects, resulting in a

priors selection problem, and longitudinal variables of different types, one

being normally distributed and the other following a Beta distribution. We

will present analysis results from a simulation study and a clinical study

conducted at the Leiden University Medical Center (LUMC).





Introduction

In longitudinal studies, data from various groups, such as subjects or clus-

ters, are collected over time. Hence, repeated measurements are taken for

each subject/cluster. As a result, the observations are no longer independent,

necessitating the use of a specific statistical model that takes into account the

correlation between them. The most common longitudinal models are Linear

Mixed effects Models (LMM) and Generalized Linear Mixed effects Models

(GLMM). These models’ primary goal is to investigate changes or trends

in the response variable over time, as well as the relationships between the

response variable and one or more predictor variables. However, such an op-

eration is not always straightforward. Everything becomes more challenging

when time-varying independent variables, particularly endogenous variables,

are considered.

Time-varying covariates can be categorized as exogenous or endogenous.

Exogenous variables, such as age or daily climate change, have values that

change over time based solely on their previous values. Endogenous variables,

on the other hand, are influenced not only by their own history but also by

previous values of the response variable. Examples of endogenous variables

include treatment doses and biomarkers. Studying the association between

endogenous variables and the outcome can be challenging. Mixed effect mod-

els may not be appropriate for analyzing the association for several reasons.

For instance, if the outcome and covariate are measured at different time

points or if there are missing values on both variables. Traditional GLMMs

in fact require that the outcome and the time-varying biomarker are mea-

sured simultaneously. Furthermore, the covariate process must be specified



and can not be ignored, otherwise, estimates of the parameters of interest

are biased and inconsistent. Lastly, the functional form of the association is

frequently unknown ahead of time and several options need to be explored.

Multivariate models could be used to model the dependency structure be-

tween the endogenous and response variables. This type of model allows us to

define the two processes separately, while also considering their relationship.

We will examine at two multivariate models with different association struc-

tures. The joint mixed models (JMM) account for the association modelling

the variance-covariance matrix of the random effects. The joint scaled mod-

els (JSM), instead, measure the association by introducing a scaling factor.

However, because neither JMM nor JSM provide a known regression param-

eter, the interpretation of the estimated associations is not always clear; and,

when the types of the two longitudinal variables are different, quantifying the

association becomes especially difficult. Furthermore, their computational

intensity, due to potentially high-dimensional integrations over the random

effects terms, limits their applicability.

In this thesis, we will use a Bayesian method of estimation to try to

overcome these problems: the Integrated Nested Laplace Approximation,

well known as INLA. It is an approach that overcomes the issues coming

from methods such as Markov Chain Monte Carlo (MCMC) and Laplace

approximation, while still preserving the advantages. MCMC can be compu-

tationally intensive and can lead to different results depending on the starting

points. The Laplace approximation, on the other hand, has limitations in

handling complex priors and hierarchical models. The INLA approach, in-

stead, is deterministic and more flexible.

Even though it has already been successfully and efficiently applied in

biostatistics application, one goal of the thesis is to evaluate it under differ-

ent conditions and assumptions. The dataset on which we will work has a

very low population dimension and longitudinal variables that are not nor-

mally distributed. Indeed, we will present analysis results from a clinical

study at Leiden University Medical Center (LUMC) to demonstrate the fea-

tures of the proposed approach in the context of joint models. In particular,
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we will analyze data that comes from a study on children diagnosed with

the rare disorder Duchenne Muscular Dystrophy (DMD). DMD is caused by

mutations in the DMD gene and is characterized by delayed motor develop-

ment, early loss of ambulation, progressive cardiac and respiratory failure,

and premature death. All of these traits are summarized in functional scores,

which are routinely recorded. In particular, we are interested in the PUL 2.0

functional score, which records the upper limb motor performance as the dis-

ease progresses. The goal of the study is to detect the association between

this outcome and some proteins, collected at different time points through-

out the study period. Since the functional score has values limited from 0

to 42, joint models with gaussian and beta likelihoods will be implemented,

which will lead to further complications that will be discussed throughout

the thesis. Furthermore, the performance of INLA will be evaluated in dif-

ferent scenarios, to determine whether the results are reliable, accurate, and

robust.

The thesis is then organized in the following manner. In chapter 1 we

will go over the INLA estimation method in greater detail, presenting its

hierarchical structure as well as the methods of evaluation that can be used

in the context of Bayesian statistics. In chapter 2 a brief description of the

Generalized Linear effects Models is provided, with a special focus on the

Beta Mixed effects Model that will be used in the analysis of the data. We

will present the mathematical form of the two joint models in chapter 3 ,

describing the process of derivation of the association quantities on both.

Moreover, the INLA model formulation of them is described. Finally, some

applications are shown in chapter 4 and chapter 5. First, a simulation study

is reported to assess the performance of both INLA and the joint models.

Secondly, we analyze the LUMC data.
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Chapter 1

Integrated Nested Laplace

Approximation (INLA)

Integrated Nested Laplace Approximation (INLA) is a deterministic Bayesian

approach to statistical inference proposed by Rue, Martino, and Chopin 2009.

As in every Bayesian problem, the main goal of this method is to provide an

approximation to the posterior distribution, which often can not be defined

in a closed-form. In particular, the focus is on the derivation of the univariate

posterior marginal distributions and not on the joint posterior distribution

of the parameters. Thus, it is not necessary to deal with multivariate distri-

butions that are always more difficult to derive.

It is a deterministic method, which means it provides always the same

results given a particular input, without the need to fix a seed in the soft-

ware like in Markov Chain Monte Carlo (MCMC) or other methods used in

Bayesian inference. In addition, it is faster and computationally less expen-

sive than MCMC. Indeed, in order to speed the process some assumptions

have been made by the authors: it should be possible to express the model

as Latent Gaussian models with Gaussian Markov Random Field (GMRF)

latent effects. So, not all the models could be fit in INLA.

In the following sections, everything will be described more in detail.



12 Integrated Nested Laplace Approximation (INLA)

1.1 Latent Gaussian models and GMRF

The Integrated Nested Laplace Approximation works only for a specific

class of model called Latent Gaussian Models. They are a subclass of the

structured additive regression models, in which it is assumed that the re-

sponse variable yi distribution belongs to a distribution family (not neces-

sarily the exponential family) of mean µi. In the general specification, the

mean is linked through a function g(·) to a linear predictor ηi that has the

following form:

ηi = α +

nβ
∑

j=1

βjzji +

nf
∑

k=1

f (k) (uki) + εi. (1.1)

Here, α is the intercept, βj’s are the coefficients that quantify the linear effect

of the covariates zj, j = 1, . . . , nβ, and f (k) are unknown functions, linear or

non-linear transformations of the covariates uk, k = 1, . . . , nf . Finally, the εi

are the error terms, that can be absent depending on the likelihood. Based

on this structure a lot of models can be defined, e.g., GLM, GLMM, GAM,

time series, spatial models, mixed models, and many others.

As for every class of models, it is possible to specify the same structure in

a Bayesian way just defining the prior distribution for each parameter. Based

on this idea the specification of the Latent Gaussian Models is derived, in

which, for each parameter of the structure additive predictor ηi, is assigned

a Gaussian prior with zero mean and a specific precision matrix. Thus, the

vector of the latent effects xi = (ηi, α, βj, f
(k)) would be a multivariate nor-

mal distribution.

Furthermore, supplementary assumptions about the latent structure are

made in the INLA framework. Considering a vector of n observations y =

(y1, . . . , yn), the latent effects vector could be written as follows

x = (x1, . . . , xn) = (η1, . . . , ηn, α, β1, . . . , βnβ
, f (1), . . . , f (nf )).

That vector x is assumed to be a Gaussian Markov Random Field (GMRF),
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means that it is a Gaussian random variable with Markov properties. Hence,

some elements in the vector are conditionally independent; namely, given two

components xi and xj, i 6= j, these are independent conditional on the re-

maining elements x−ij. This property involves the precision matrixQ (inverse

of the covariance matrix) that takes values equal to zero when conditional

independence occurs. So, generally, Q is big (102 − 105) and sparse. This

allows for the use of a quicker and most efficient numerical method, based on

the Cholesky-decomposition, to invert the precision matrix and obtain the

covariance matrix Σ. In order to have a sparse matrix, one might also assume

marginal independence between parameters, but it is a strong and generally

unreasonable assumption. Conditional independence, instead, is a plausible

assumption. For more information about GMRF and the properties used

refer to Rue and Martino 2006.

To recap, the following assumptions are made in the INLA structure and

they must be fulfilled to implement it:

• the model has to be expressed as a Latent Gaussian Model, this means

that for every parameter is assumed a normal distribution with zero

mean and specific precision matrix;

• the latent field has to be a Gaussian Markov Random Field, otherwise

the conditional independence assumption fails and it is no longer pos-

sible to speed up the process of estimation due to the sparsity of the

inverse matrix.

1.2 Model structure

As described above, the models in INLA are Bayesian hierarchical models,

in particular, they are three-stages hierarchical models. In order to present in
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detail the structure is then necessary to define each stage, sorted as followed:

Likelihood : y | x,θ ∼ π (y | x,θ) ,

P rior : x | θ ∼ π (x | θ) ,

Hyperprior : θ ∼ π(θ).

The vectors x and y have already been defined. Notes that from now on,

the vector θ will be used as a simplified notation to indicate the vector of

all the hyperparameters. The latent effects distribution depends on a vector

of some hyperparameters, said θ1, which in turn depends on another vector

of hyperparameters, said θ2. Attaching these two results in the combined

vector θ.

Likelihood

The first stage is the one regarding the vector of observations y = (y1, . . . , yn).

At this level it is necessary to define the likelihood, so the distribution of the

observations given the latent parameters.

Assuming that the components are independent conditionally on the la-

tent effects x and the hyperparameters θ (See Section 1.1), the likelihood

can be written as:

π(y | x,θ) =
∏

i∈I

π (yi | xi,θ) . (1.2)

Here, the set I is a subset of N = 1, . . . , n. It only includes the indexes of

the observations that are detected, the indexes of the missing values of the

response variable are not incorporated (see Section 1.5).

Prior

The second stage consists of delineating the prior distribution of the la-

tent field x. Based on the assumptions describe in Section1.1, the prior

distribution is then a multivariate normal distribution

π(x | θ) = (2π)−n/2|Q(θ)|1/2 exp

{

−
1

2
(x− µ)⊤Q(θ)(x− µ)

}

, (1.3)
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where µ is a zero vector and Q(θ) is the sparse precision matrix with its own

distribution that depends on some hyperparameters defines in the vector θ.

Hyperprior

Lastly, the third stage is the one regarding the unknown hyperparame-

ters. Likely, most of the hyperparameters are independent, such as that the

hyperprior π(θ) could be defined as the product of the univariate hyperpri-

ors.

The hyperprior selection is based on previous knowledge, as the name

suggests. For instance, for the variance parameters, distributions with posi-

tive support are chosen, like Beta or Gamma distributions. Otherwise, when

no information is available, non-informative priors are preferred. The possi-

bility are many and in R-INLA several distributions are available but they

will be described in more detail in Section 2.1.1. The aim of this work is not

to present the Bayesian statistics theory, so to reach more information on

how to select the best prior for a specific problem is recommended to refer

to Nicenboim, Schad, and Vasishth 2022.

Specified the likelihood and the hyperpriors, the joint posterior distribu-

tion can be defined as:

π(x,θ | y) =
π(y | x,θ)π(x,θ)

π(y)
∝ π(y | x,θ)π(x,θ). (1.4)

The latter, considering equation (1.3) and the factorization of the joint pos-

terior π(x,θ) = π(x | θ)π(θ), can be rewritten as follow:

π(x,θ | y) ∝ π(θ)|Q(θ)|1/2 exp

{

−
1

2
x⊤Q(θ)x

}

∏

i∈I

π (yi | xi,θ) . (1.5)

But the main goals of the INLA method is to estimate the univariate pos-

terior marginal distributions of the latent field and the hyperparameters,
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respectively π (xi | y) and π (θj | y), defined as:

π (xi | y) =

∫

π (xi | θ,y)π(θ | y)dθ, (1.6)

π (θj | y) =

∫

π(θ | y)dθ−j, (1.7)

where θ−j is the vector of hyperparameters without the j-th element. In

the next sections, it is described how INLA reaches this goal and which

assumptions are made in order to do so.

1.3 INLA approximations

To compute the univariate marginal distributions (1.6) and (1.7) it is nec-

essary to approximate the joint distribution of θ, π̃(θ | y), and the posterior

marginal π̃ (xi | θ,y). The former is defined as

π̃(θ | y) ∝
π(x,θ,y)

π̃G(x | θ,y)

∣

∣

∣

∣

x=x∗(θ),

(1.8)

where π̃G(x | θ,y) is the Gaussian approximation (see Section 1.3.2) to the

full conditional of the latent field x and x∗(θ) is the corresponding mode, give

θ. For the latter, instead, Rue, Martino, and Chopin 2009 have proposed

three types of approximations: Gaussian, Laplace and simplified Laplace ap-

proximation.

The INLA approach can then be subdivided into three stages. In the

first one, the posterior marginal of θ is estimated, in the second π̃ (xi | θ,y)

is defined and in the third one the previous two results are combined using

numerical integration to obtain (1.6) and (1.7).

1.3.1 Approximation of π̃(θ | y)

First of all, the mode is located optimizing the logarithm of π̃(θ | y)

by respect to θ with quasi-Newton’s method. At the modal configuration,

defined from now on as θ∗, it is then possible to compute the Hessian matrix
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H = Σ−1 using finite differences. Once this is done, to make the density

more regular and to simplify the numerical integration, the vector θ is repa-

rameterized as follows:

θ(z) = θ∗ +Σ1/2z = θ∗ +VΛ1/2z,

where z is the standardized vector of θ and the matrix Σ = VΛV⊤ is defined

via eigenvalue decomposition. In such a way the space of θ is corrected for

scale and rotation, thus it is easier to explore it.

From here it is possible to proceed with the approximation of log(π̃(θ |

y)). Based on the dimension of the hyperparameters vector there are two

ways of proceeding: the grid strategy and the Central Composite Design

(CCD) strategy. The first one explores the probability distribution moving in

the z directions. It starts shifting from the mode, where z = 0, to the positive

direction of the first element z1 with steps of length δz until the distance

between the two points is greater than a threshold δ. So, mathematically

written, as long as

| log(π̃(θ(0) | y))− log(π̃(θ(z) | y))| < δ.

The same process is repeated for each direction of z and, ultimately, also the

combinations between all the points are considered. In such a manner, it is

possible to detect the bulk of the probability mass.

The second strategy, instead, selects the points differently. The main idea

of this approach is to consider the integration problem as a design problem,

in particular as a two-level factorial experiment. From this, other points

are included, called center and axial/star points. The former is the origin

of the z axis, which in this case is the mode θ∗, the latter consists of two

points for each direction at a distance ±α from the central point. This

approach requires less computational power than the other and leads to the

same results. For this reason, Rue, Martino, and Chopin 2009 suggest using

it, especially with a large number of hyperparameters. An example of both

the strategy is shown in Figure1.1.
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Figure 1.1: Exemplification of the grid (a) and the CCD (b) strategy in a

two-dimensional hyperparameters vector. Source: Rue, Thiago, et al. 2013

Once the marginal distribution π̃(θ | y) is approximated, it is possible to

derive the univariate marginal distribution π (θj | y) by integrating θ−j out

using numerical integration.

1.3.2 Approximation of π̃ (xi | θ,y)

As already mentioned above, for the marginals distributions of the latent

effects three different approximations are available. The differences between

them regard the computational expenses and the accuracy. The simplified

Laplace approximation is the fastest computationally but it is less accurate

than the Laplace approximation. This one, in turn, is more computationally

expensive than the Gaussian approximation, but it is better in terms of

accuracy.

Below they are described in more detail.

Gaussian approximation

The Gaussian approximation is generally called Laplace approximation

in Bayesian statistics but it should not be confused with the one described

below. It is based on the second-order Taylor series expansion around the
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mode of the logarithm of the distribution. Given a general distribution g(x)

and its mode x̂, a possible approximation is then

log g(x) ≈ log g(x̂) +
∂ log g(x̂)

∂x
(x− x̂) +

1

2

∂2 log g(x̂)

∂x2
(x− x̂)2.

Since x̂ is the mode, the first-order derivative term is equal to zero. Taking

the exponent and the integral, the formula can be rewritten as
∫

g(x)dx ≈ exp[log g(x̂)] ·

∫

exp

[

−
1

2

∂2 log g(x̂)

∂x2
(x− x̂)2

]

dx,

where exp[log g(x̂)] is a constant. Thus, the distribution g(x) can be ap-

proximated with a Gaussian distribution with mean x̂ and variance σ̂2 =
(

∂2 log g(x̂)
∂x2

)−1

.

In INLA inference, the distribution of interest is the full conditional of

the latent fields. The idea is to start from the Gaussian distribution of

π̃G(x | θ,y) = N (µ,Σ) and then to derive the univariate distributions

π̃ (xi | θ,y) by marginalizing. In order to do that it is necessary to specify

the marginal means µi and variances σi. The only extra cost derives from

the fact that the variances need to be determined from the sparse precision

matrix, but this is easily done by taking advantage of the GMRF properties.

See Rue, Martino, and Chopin 2009 and Rue and Martino 2006 for the

technicality.

Laplace approximation

The Laplace approximation has the same structure of the joint distribu-

tion of θ (1.8). It is denoted as follows:

πLA (xi | θ,y) ∝
π(x,θ,y)

π̃GG (x−i | xi,θ,y)

∣

∣

∣

∣

xi=x∗

−i(xi,θ),

(1.9)

where π̃GG (x−i | xi,θ,y) is the Gaussian approximation to the vector x with-

out the i-th element and x∗
−i(xi,θ) is the corresponding mode. This approx-

imation takes longer because needs to be computed for each value of xi.
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Simplified Laplace approximation

Lastly, the Simplified Laplace approximation is proposed to both correct

the Gaussian approximation and to speed the process. It is defined as the

product between a Gaussian approximation and a cubic splines:

πLA (xi | θ,y) ∝ N
(

xi | µi(θ), σ
2
i (θ)

)

exp (spline (xi)) . (1.10)

This is a compromise between the previous two approximations in terms of

accuracy and speed time.

1.4 Methods of evaluation

In INLA there are a few ways used to evaluate the model assessment and

to compare models and select the best one. In the frequentist framework,

depending on whether the models are nested or not, different methods of

evaluation are used. The method describe below, instead, can be utilized for

every occasion.

1.4.1 Bayes Factor

The Bayes Factor compares the predictive performance of two models, i.e.,

M1 and M2, and it evaluates which model is more likely to have generated

the data. It is defined as the ratio of Marginal Likelihood of the models

fitted:

BF =
π (y | M1)

π (y | M2)
=

π (M1 | y) π (M2)

π (M2 | y) π (M1)
. (1.11)

Here, π (y | M1) is the probability of the observed data under M1, and

π (M1) and π (M1 | y) are the corresponding prior and posterior distribu-

tions. The Marginal Likelihood is determined in INLA through a Gaussian

approximation:

π̃(y) =

∫

π(θ,x,y)

π̃G(x | θ,y)

∣

∣

∣

∣

x=x∗(θ)

dθ, (1.12)

where π(θ,x,y) = π(θ)π(θ|x)π(y|x,θ). In the case of equal priors in the

two models, the Bayes Factor is simply equal to the ratio of the posterior
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distribution. If it is greater than one, the model in the numerator is better.

On the contrary, if it is smaller than one, there is evidence in favor of the

denominator. A Bayes Factor close to one, instead, means that there is no

significant difference between the predictive performance of the two models.

Generally, the logarithm of the Bayes Factor is considered:

log(BF ) = log[π (y | M1)]− log[π (y | M2)]. (1.13)

This implies that when (1.13) is equal to zero, there is no evidence against

or in favor of the models. When it is positive, M1 is the best one, when is

negative, the opposite. However, a more specific interpretation has been pro-

posed for both scales. See Table 1.1 and for more details refer to Nicenboim,

Schad, and Vasishth 2022.

Table 1.1: Interpretation of the Bayes Factor

BF log(BF) Interpretation

¡ 0.10 ¡ -2.30 Strong evidence for M2

[0.10, 0.33) [−2.30,−1.10) Moderate evidence for M2

[0.33, 1) [−1.10, 0) Weak evidence for M2

1 0 No evidence

(1, 3] (0, 1.10] Weak evidence for M1

(3, 10] (1.10, 2.30] Moderate evidence for M1

¿ 10 ¿ 2.30 Strong evidence for M1

1.4.2 Information-based criteria

Similar to AIC and BIC in the frequentist framework, in Bayesian statis-

tics the Deviance Information Criteria (DIC) and the Watanabe-Akaike In-

formation Criteria (WAIC) are often utilized.

The idea of these criteria is to penalize the deviance in order to compare

different models taking into consideration their complexity. The general for-

mula is then

IC = D(x̂, θ̂) + 2pD.
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Here D(x̂, θ̂) is the deviance evaluated on the posterior mean of the latent

effects and the posterior mode of the hyperparameters. For the second one

the mode is considered because of the probable high skewness of the poste-

rior marginals. The effective number of parameter 2pD is different for each

Information Criteria. For instance, for the DIC criterion, they are defined

as the mean of the deviance minus the deviance of the mean. In particular,

they are approximated as

pD(θ) ≈ n− tr
{

Q(θ)Q(θ)−1
}

,

where n is the number of observations and Q(θ) is the precision matrix of the

latent field (defined in Section 1.2). These methods are used for the model

choice, in which the model with the lowest value is the best one.

For more information see Spiegelhalter et al. 2002.

1.4.3 Predictive measures

The predictive measures are leave-one-out cross-validatory criteria used

to both evaluate the good-of-fit of the models and select the best ones. More-

over, since they depend on single observations, they are useful in detecting

outliers or the level of importance of the observations. However, it could still

be dangerous to make final statements if one observation masks another.

In INLA two predictive measures are available: Conditional Predictive

Ordinates (CPO) and Predictive Integral Transform (PIT). Both are evalu-

ated for each observation.

The Conditional Predictive Ordinates are the posterior probabilities of

observing the i-th measurements when the model is fitting on all the data

except yi. Thus, they are defined as

CPOi = π (yi | y−i) ,

in which high values indicate the presence of outliers. The CPOs can be

summarized across the data in the following way:

CPO = −
n

∑

i=1

log (CPOi) .
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A smaller value of CPO means a better fitting of the model.

The Predictive Integral Transforms, instead, measure the probability for

a new observation to be lower than the actually observed one when the model

is fitted using all data except yi. Hence, for continuous observations, it is

defined as

PITi = π (ynewi ≤ yi | y−i) ,

and, for discrete observations, it is adjusted in the following way:

PIT adjusted
i = PITi − 0.5 ∗ CPOi,

in which 0.5 is the probability to have ynewi equal to yi. In this case, unusually

large or small values indicate possible outliers. Furthermore, there is not

summary value. The only way to evaluate the model assessment over all the

observations is by studying the PITs distribution. This one is expected to

follow a Standard Uniform distribution.

To see how both are computed in INLA refers to Held, Schrödle, and Rue

2010, in which a comparison with MCMC is provided too.

Leave-one-out cross-validation is designed for models in which there is

an assumption of independence between the observations. It generally leads

to too optimistic results when this assumption does not apply. Thus, in

this thesis in which we will study longitudinal data, CPO and PIT imple-

mented as described above, are not really reliable since the information from

the same subject is used for prediction. It would be better to consider a

subject-wise cross-validation (Rue and Liu 2022) to estimate the posterior

probabilities of observing the i-th subject when the model is fitting on all

the data except the subject i (1.14). In this situation, all the measurements

from a specific subject are used as a set to test the model trained on all the

other observations. However, in R-INLA this kind of predictive measure is

not available for everyone yet and it is still in progress. The computation
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itself is an approximation to nested integrals:

π (yi | y−Ii) =

∫

θ

π (yi | θ,y−Ii) π (θ | y−Ii) dθ, (1.14)

π (yi | θ,y−Ii) =

∫

π (yi | xi,θ) π (xi | θ,y−Ii) dxi. (1.15)

The process of approximation of these distributions is similar to the one

described in Section 1.3. The posterior probability (1.14) has to be computed

by numerical integration and the integral (1.15) needs to be approximated

by Gauss-Hermite quadratures. Hence, the calculation is not trivial and it

will be not developed in this thesis since it is not the major focus of this

work.

1.5 Predictive distribution

As we already mentioned in Section 1.2, in INLA the likelihood is based

only on the observations that are detected. It is possible to estimate the

missing values by using the Bayesian predictive distribution:

π (ym | yobs) =

∫

π (ym,θ | yobs) dθ =

∫

π (ym | yobs,θ) π (θ | yobs) dθ.

(1.16)

The predictive distribution of the missing value ym is then derived given all

the observed values of the response variable. As with any other distribu-

tion, from this one as well we can simply get summary statistics like means,

standard deviations and quantiles.



Chapter 2

Mixed Effects Models

Mixed models are regression techniques used with longitudinal, hierarchi-

cal and cluster data, i.e., medical data, social data, space data, and others.

Such, the outcome of interest is repeatedly measured on the same individ-

ual or cluster, so the assumption of independence between the observations,

which is usually made on models for cross-sectional data, does not apply

anymore. In the mixed models, new unknown parameters, called random

effects, are introduced to take into consideration the correlation between the

repeated measurements. Thus, the unobservable features common to all ob-

servations related to the same unit are described as a realization of a random

variable. Thanks to this, it is possible to make both predictions for a spe-

cific individual/cluster and marginal predictions, as well. Everything will be

described more in detail in the following section.

There are different types of Mixed Models (see Wu 2019), but only the

Linear Mixed Model (LMM) and Generalized Linear Mixed Model (GLMM)

will be described below. Both are extensions of the corresponding models for

cross-sectional data, Linear regression Models (LM) and Generalized Linear

Models (GLM).
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2.1 Linear Mixed Effects model

A general Linear regression Model for a subject i, where i = 1, . . . , N ,

can be written as

yi = β0 + β1xi1 + . . .+ βpxip + εi, εi ∼ N (0, σ2), (2.1)

where yi is the response variable for the i-th subject and βj’s, j = 1, · · · , p,

are the regression coefficients that quantify the effect of the p independent

variables xj and are considered fixed over all the individuals. The εi’s are

the error terms assumed to be independent and to be normally distributed,

with zero mean and variance σ2. The model may be also be written in the

following matrix-form:

y = Xβ + ε, y ∼ N (Xβ, σ2IN).

For longitudinal or hierarchical data, these types of models are not appropri-

ate. Indeed, the observations are no longer independent because they belong

to the same e.g., subject or cluster. To take into consideration the correla-

tion between them, new parameters are added to the Linear regression form

(2.1). Random effects are introduced, assuming that each individual has his

own profile which deviates from the population mean profile X⊤β:

yi = Xiβ + Zibi + εi, bi ∼ N (0,D), εi ∼ N (0,Σi). (2.2)

Here, yi = (yi1, . . . , yni
) is the vector of the ni repeated observations of the

i-th subject, bi = (bi1, . . . , biq) is the vector of the q random effects and Zi

is the corresponding design matrix. The random effects are assumed nor-

mally distributed, with a variance-covariance matrix D that gives informa-

tion about the between-subjects variance. Thus, it quantifies the difference

among the subject’s trajectories. The bigger the variances (diagonal values

of the matrix) are, the more considerable the difference between the individu-

als/clusters is. We can assume, for example, a model with random intercepts

and random slopes. The variance of the former indicates how much difference

there is between the subjects’ response levels around the population mean.
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The variance of the random slopes, on the other hand, provides information

on the progression of the subjects’ response over time. The variance increases

if the progressions are significantly different, implying that the trajectories

are not parallel and thus the slopes are disparate.

The vector of the error terms εi = (εi1, . . . , εini
), instead, gives informa-

tion about the within-subject variation. The bigger Σi = σ2Ini
is, the higher

the disparity among the repeated measurements of the subject i is. Random

effects and error terms are assumed independent. In the above formulation,

the Conditional Independence assumption is made, which means that the

random effects capture all the correlations. So Σi is a scalar matrix with

scale factor σ2 positive. This suggests that the observations from the same

subject are conditionally independent, given the random effects.

With LMM it is possible to provide both marginal and subject-specific

information. The fixed-effect parameters β are assumed the same for all

the individuals and measure the mean change of the response variable for a

unit increase of the covariate, given that all the other independent variables

are kept fixed. Thus, they have a population-averaged interpretation and

describe the overall mean of the units’ profile. The random-effect parameters

bi have instead a subject-specific interpretation. They measure the deviation

of the profile of each individual/cluster i from the population mean.

2.1.1 INLA model formulation

Estimation of the LMM can be done using Maximum Likelihood approach

(e.g., using the established R packages nlme or lme4) or Bayesian methods

(e.g., using the R package MCMCglmm). In this thesis, we consider an

alternative estimation approach, the INLA method (using the R package

INLA), presented in chapter 1. Estimation with INLA requires that the

model can be written as a Latent Gaussian Model. To show that this is the

case for the GLMM in general, we consider a simple LMM with a single time

fixed covariate x and two correlated random effects i.e., random intercept



28 Mixed Effects Models

and random slope terms. The form of the model is then:

yij = β0 + bi0 + β1 · xij + (βt + bit) · tij + εij, (2.3)

where
[

bi0

bit

]

∼ N2

(

0,

[

σ2
0 σ(0,t)

σ(t,0) σ2
1

])

, εij ∼ N (0, σ2).

Thus, random intercepts bi0 and random slopes bi1 are considered and they

followed a bivariate normal distribution. Up to here, the distributions for

the random effects and the error terms are defined using a parametrization

based on the variances. However, in INLA the internal representation of all

the parameters of the model is based on the precisions.

In the Bayesian framework, the latent field and the hyperparameters,

which in this case are the precisions, are also assigned a distribution. By

default, a non-informative prior is assigned to all the parameters. However,

the type of the priors and the respective parameters can be changed using a

specific option in R-INLA. Based on the INLA structure, described in Section

1.2, only one distribution cannot be changed: for the regression coefficients, a

Gaussian distribution is assumed (see equation 1.3). The intercept β0 follows

a Normal distribution with zero mean and zero precision. The x’s coefficient

β1 and the t’s parameter βt are normally distributed with zero mean and pre-

cision 1/σ2
1 = 0.001. With more than two covariates the prior distribution

for each coefficient is the same.

Let’s now focus on the random effects. The hyperprior for the precision

matrix W is a 2-dimensional Wishart with r degree of freedom and scale

matrix R−1, defined as R =

[

R11 R12

R21 R22

]

and with R12 = R21. By de-

fault, r = 4 and R is a diagonal matrix. In Bayesian statistics, the Wishart

distribution is the conjugate prior of the precision matrix of a multivariate

normal vector. It is a generalization to multiple dimensions of the gamma

distribution. Given N subjects, the total number of random effects is 2N ,

because, for each individual, one random intercept and one random slope
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are defined. In R-INLA they are internally represented into a single vector

(b0,1, . . . , b0,N , bt,1, . . . , ut,N) of length 2N .

Lastly, we define the vector of independent and identically distributed

error terms εi with zero mean and general precision matrix τΣ. The hyper-

parameter τ = 1/σ2 has a Gamma distribution, but in INLA the internal

parameterization θ = log(τ) is used. A variable u is log-Gamma distributed

if u = log(x) and x is Gamma(a, b) - distributed. Thus, θ is assigned by

default a log-Gamma distribution with shape a = 1 and rate b = 0.00005.

The matrix Σ is a diagonal matrix of scaling factors s = (s1, · · · , sni
), which

are all equal to one by default (Conditional Independence assumption). It is

also possible to assume a different vector of scaled factors s, for example, to

consider a different precision for different groups of observations.

To recap, the default hierarchical structure (see Section 1.2) of the Linear

Mixed Model (2.3) with random intercepts and random slopes, is as follows:

yi | bi ∼ Nni
(Xiβ + Zibi,Σi),









β0

β1

βt









∼ N3









0,









0

0.001

0.001









−1







,

[

bi0

bit

]

∼ N2

(

0,W−1
)

, εi ∼ N
(

0, τ−1Ini

)

,

W ∼ Wishart2 (4, I2) , θ = log(τ) ∼ LogGamma (1, 0.00005) .

For more information about the structure of the models in INLA see Gómez-

Rubio 2020. Code A.1 details coding of the Linear Mixed Model (2.3) in

R-INLA.

2.2 Generalized Linear Mixed Model

In Generalized Linear Models the response variables can come from dif-

ferent distributions of the exponential family besides the Gaussian. So what
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is modeled here it is no longer the outcome but its expectation. In addi-

tion, they allow non-linear relationships between the expectation and the

independent variables.

Generally, these types of models are defined by

g(µ) = η, η = Xβ = β0 + β1xi1 + . . .+ βpxip

where the linear predictor η is linked to the mean µ = E (y) through the linear

or non-linear function g(·). Depending on the selected likelihood, there are

several options for the link functions g(·). For instance, with binary data,

the response variable is assumed to follow a Bernoulli distribution and the

link functions used more often are the logit or the probit.

The form described above is for cross-sectional data but can be easily

extended to longitudinal or cluster data. The idea is the same as with the

Linear Mixed Models. Introducing random effects we can incorporate the

correlation between repeated measurements within each individual or cluster.

Defining as yi = (yi1, . . . , yni
) the vector of observations of the subject i, the

Generalized Linear Mixed Model has the following form:

g (µi) = Xiβ + Zibi, bi ∼ N (0,D), (2.4)

where µi = E (yi | β,bi) is the mean conditional on the random effects.

Therefore, it is possible to consider the Linear Mixed Model as a special

case of GLMMs with a normal likelihood and as a link function the identity

function. Similar to the LMM, each subject has his own profile in time.

As we can see from (2.4), the conditional model, i.e., the distribution of

the outcome given the random effects f (yi | β,bi), is the distribution of the

data with predictive mean µi (for instance, a Beta distribution 2.8). However,

the marginal model, obtained by integrating out the random effects, is not

as simple as in the LMM to derive. The marginal likelihood is defined as

follows:

L(y;β,D) =
N
∏

i=1

f (yi;β,D)

=
N
∏

i=1

∫ ni
∏

j=1

f (yij | bi,β) f (bi | D) dbi.

(2.5)
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The data distribution f (yij | bi,β) is not conjugate with the normal distri-

bution of the random effects anymore, so the integrals do not have a closed-

form solution. In order to have the marginal model then, it is necessary to

approximate the integrals using numerical integration techniques. But, the

complexity of the integral and the computational cost increase as the number

of random effects increases. And, base on the method used, we can obtain

different estimations of the parameters.

Furthermore, the use of a non-linear link function g(·) implies some com-

plications in the interpretation of the parameters too. The covariates are

related to the mean response non-linearly, so the mean of the average subject

is different from the average of the means of all the subjects. The fixed-effect

parameters now describe the mean of the average individual, the one with

random effects equal to zero. Thus, they do not have a marginal interpre-

tation anymore. Their interpretation is more complicated and cannot be

simply generalized. It depends on the chosen likelihood and link function.

Instead, the random effects have the same role as in the LMM. Each random

effect represents the influence of each subject/cluster on the repeated mea-

surements, information not captured by the fixed effect. Given the random

effect, the observations are assumed independent. Hence, in the GLMM we

typically assume the Conditional Independence assumption as well.

2.2.1 Beta Mixed Model

Motivated by the data example which is briefly introduced in the Intro-

duction and presented in detail inchapter 5, a special case of a GLMM will

be used: the Beta Mixed Model. Beta regression models are a suitable choice

for continuous response variables defined on a specific interval. Indeed, in

such situations, the Gaussian likelihood with support in R is not appropriate.

The beta distribution is defined in a unit range (0, 1). However, it is also

used in the presence of a dependent variable y limited in different intervals

(a, b). In order to do that, the support of the y variable has to be changed.

There are several possible transformations but the most widely used is the
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Min-Max transformation h(y) = y−min
max−min

.

The beta distribution with shape parameters α and β, has density

f(y | α, β) =
1

B(α, β)
yα−1(1− y)β−1, 0 < y < 1, α, β > 0, (2.6)

where the normalization constant B(α, β) = Γ(α)Γ(β)
Γ(α+β)

is the Beta-function

and Γ(x) is the Gamma-function. But, in Beta regression models, another

parameterization is used:

f(y | µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−y)φ−1, 0 < µ < 1. (2.7)

Here, µ = E (y) = α
α+β

is the mean and φ = α+β is the precision parameter

of (2.6) such that φ > 0 is positive. From this it follows that the variance

of the Beta distribution (2.7) is Var(y) = µ(1−µ)
1+φ

. It is possible to derive

one parameterization from the other by simply computing α = µφ and β =

−µφ+ φ.

Following the GLMM form (2.4), the Beta Mixed Model is then specified

by

yi | bi ∼ Beta(µi, φ), g (µi) = Xiβ + Zibi, bi ∼ N (0,D), (2.8)

where φ is assuming constant and the link function g(·) can be chosen as

either logit, cauchit, probit, complementary loglog and log-log.

For more information see Bonat, Ribeiro, and Zeviani 2015.

As mentioned in Section 2.2, parameters in the Beta Mixed Models have

an interpretation in terms of µi = E (yi | β,bi), so conditional on the random

effects, which is not always desirable. Having parameters with population-

averaged interpretation would be preferable. A way to proceed is by applying

the marginalization idea of Hedeker et al. 2017. Let’s consider the marginal

mean µM
i for the i-th subject and the vector of the regression parameters

with marginal interpretation βM . The marginal model of (2.8) is defined as

g
(

µM
i

)

= Xiβ
M , from which it follows the matrix form g

(

µM
)

= XβM ,
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where g
(

µM
)

is a vector of length equal to the number of observations Nobs.

Multiplying both sides of this last equation by
(

X⊤X
)−1

X⊤:

(

X⊤X
)−1

X⊤g
(

µM
)

=
(

X⊤X
)−1

X⊤X⊤βM ,

and solving for βM , the population-averaged regression coefficients can be

express as:

βM =
(

X⊤X
)−1

X⊤g
(

µM
)

. (2.9)

Following this logic, we only need to compute µM . The marginal mean is

expressed as the integral over the random effects of the inverse link-function

of the linear predictor:

µM
ij =

∫

b

g−1
(

x⊤

ijβ + z⊤ijbi

)

f(bi)dbi, (2.10)

where β are the subject-specific regression coefficients. The integration can

be approximated by a summation derived by the Gauss-Hermite quadrature.

From here, it is also possible to obtain an approximation of the marginalized

standard errors, simply using the Delta method.

2.2.2 INLA model formulation

Also in GLMM, parameter estimation can be performed using the Maxi-

mum Likelihood approach, implemented through the R packages lme4, MASS

or GLMMadaptive. However, in this thesis we will consider the Bayesian es-

timation approach INLA, which helps us overcome problems related to the

marginal integration. Each GLMM can be expressed as a Latent Gaussian

Model, so as the Beta Mixed Model. The priors of the random and fixed

effects are the same described in Section 2.1.1. However, in this case, the

linear predictor η is associated with the mean µ using a link function. By

default, the logit-link is adopted.

The likelihood associated with the observations changes from the LMM.

The outcome does not have support in R anymore but it is limited in the
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interval (0, 1). Thus, the Gaussian distribution is replaced by a Beta distribu-

tion written in the (2.7) reparameterization and with the precision parameter

φ no longer constant. In some applications, observations close to 0 or 1 are

censored and represented as exactly 0 and 1. For this, it is introduced a cen-

sor parameter 0 < δ < 1
2
and all y ≤ δ or y ≥ 1 − δ are treated as censored

observations. By default, no censoring is applied (δ = 0).

The hyperparameters in the GLMM have the same priors as the LMM’s

hyperparameters. However, a new one is introduced in the context of Beta

Mixed Models: the precision parameter φ. In R-INLA it is represented as

φ = si exp(θ) where s = (si) > 0 is a fixed scaling parameter by default equal

to 1. It is also possible to select a vector of scaled factors s, for example, to

consider a different precision for different groups of observations. The prior

is defined on θ. It is assumed to follow by default a log-Gamma distribution

with shape 1 and rate 0.1.

So, given only the time variable and one independent time-fixed variable

x as in (2.3), the linear predictor would be:

ηij = β0 + bi0 + β1 · xij + (βt + bit) · tij + εij

and the default R-INLA hierarchical structure of a Beta Mixed Model with

random intercepts and slopes can be written as:

yi | bi ∼ Beta(µi, φ), µi =
exp(ηi)

1 + exp(ηi)
, φ = exp(θ),









β0

β1

βt









∼ N3









0,









0

0.001

0.001









−1







,

[

bi0

bit

]

∼ N2

(

0,W−1
)

,

W ∼ Wishart2 (4, I2) , θ ∼ LogGamma (1, 0.1) .

From this, the structure can simply be generalized for a model with more

than two independent variables. The R-code to define the Beta Mixed Models

is shown in the Code A.2.



Chapter 3

Joint Models

In longitudinal studies, the covariates can be divided into two big groups:

time-invariant and time-varying covariates. The former are constant over

time, for example, sex or race; the latter instead are measured repeatedly

during the trial and their values change over time, for instance, biomarkers or

treatment doses. With this last type of covariates, measuring the association

between the longitudinal response variable and the independent variables is

not always trivial. Especially, in mixed models, the standard specification

requires that time-varying covariates and outcomes be measured at the same

time points. Although, this is not often the case (Wu 2019). Additionally,

there are different types of time-varying covariates, called exogenous and

endogenous covariates, and based on their nature further problems arise. In

the following sections, we will then discuss more in detail the issues related

to each type of time-dependent variable and we will introduce two types of

joint models used to overcome these problems. In particular, the Joint Mixed

Models (JMM) and the Joint Scaled Models (JSM) will be defined (Verbeke

et al. 2014).

3.1 Time-varying covariates

As already mention, two types of time-dependent covariates exist: exoge-

nous and endogenous covariates. It is important to be able to distinguish
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between them in order to understand which method is most appropriate for

the data analysis.

To define both, the following notation will be used:

• yi(t) is the value of the response for the i-th subject at time t. It is an

observation of the outcome’s vector yi;

• vi(t) is the value of the time-varying covariate for the i-th subject at

time t. It is an observation of the covariate’s vector vi;

• HY
i (t) is the history of the response process until time t:

HY
i (t) = {yi (ti1) , yi (ti2) , . . . , yi (tik) ; tik ≤ t} ;

• HV
i (t) is the history of the time-varying covariate process until time t:

HV
i (t) = {vi (ti1) , vi (ti2) , . . . , vi (tik) ; tik ≤ t} ;

• wi the vector of time-independent covariates;

• θ = (θ1, θ2) the vector of all the parameters, where θ1 is the vector of

parameters in the likelihood of the response variable and θ2 the vector

of parameters in the likelihood of the time-varying covariate.

3.1.1 Exogenous covariates

A time-varying covariate is exogenous if its current value at a specific time

is only associated with its previous values, but is not further associated with

previous values of the outcome. Mathematically speaking, vi(t) is exogenous

if the exposure value at time t is conditionally independent of the history of

the response variable, given the history of the exposure process:

f
(

vi(t) | H
Y
i (t),H

V
i (t− 1),wi

)

= f
(

vi(t) | H
V
i (t− 1),wi

)

.

Or, even simpler, v is exogenous with respect the outcome process y if

vi(t) ⊥ ȳi(t) | v̄i(t − 1) (See Qian, Klasnja, and Murphy 2020). Exam-

ples of these kinds of variables are age and the time itself, or daily climate
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changes. For instance, we can consider a study in which the goal is to eval-

uate how much air pollution can affect the presence of asthma in patients

of different generations. In this case the quantity of air pollution changes in

time but it does not depend on the outcome.

For exogenous covariate holds that the joint likelihood f (yi,vi | wi,θ)

can be factorized:

f (yi,vi | wi,θ) =

[

T
∏

t=1

f
(

yi(t) | H
Y
i (t− 1),HV

i (t),wi,θ1

)

]

·

[

T
∏

t=1

f
(

vi(t) | H
V
i (t− 1),wi, θ2

)

]

=

= LY (θ1) · LV (θ2) .

(3.1)

Hence, the two processes can be modeled separately. It is not necessary

to model the covariate process in order to make inference about the outcome.

In the context of LMM, exogeneity implies that vi does not depend on

the random effects bi, therefore it is possible to have both a conditional and

marginal interpretation. In a linear mixed model defined as in equation 2.2,

the relationship between the covariates at time t and the response variable

at time t+ 1 is:

yit+1 = Xitβ + Zitbi + εit+1, bi ∼ N (0,D), εit+1 ∼ N (0, σ) ,

in which all the covariates Xit = (wit, vit) are fixed or at least exogenous. We

can simply obtain the conditional and the marginal distribution of yit+1 from

this model. In particular, the conditional distribution of yit+1 given Xit and

the random effects bi is a Gaussian distribution with mean

E (yit+1 | Xit,bi) = Xitβ + Zitbi.

Otherwise, the mean of the marginal distribution can be expressed as

E (yit+1 | Xit) = Xitβ,
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because E (β | Xit) = 0 under the assumption of exogenous and fixed inde-

pendent variables. Thus, the hierarchical model implies the marginal model.

In the generalized linear mixed model, instead, this relation does not occur

due to the nonlinear link function, even when all the covariates are exogenous.

3.1.2 Endogenous covariates

A time-varying covariate is endogenous if its value at a specific time

is associated with its previous values and with values of the outcome at

previous time points. Thus, vi(t) is endogenous if the exposure at time t is

conditionally dependent on the history of the response variable, given the

history of the exposure process:

f
(

vi(t) | H
Y
i (t),H

V
i (t− 1),wi

)

6= f
(

vi(t) | H
V
i (t− 1),wi

)

.

Examples of these kinds of variables are the biomarkers or the treatment reg-

imen. Let’s for example consider again a study on patients with asthma. We

want to define how much the use of inhalers affects the severity of symptoms.

It may be then that the amount of inhaler use depends at the same time on

the course of the disease during the observation period. So, the treatment

regimen changes in time and it depends on the outcome.

Since the exposure and the response variable are not conditionally in-

dependent, the likelihood can not be factorized as in equation 3.1. The

covariate’s process can no longer be ignored and the two variables must be

modeled jointly. Furthermore, the marginal distribution of yit+1 in a linear

mixed model can no be defined easily:

E (yit+1 | Xit) = Xitβ + ZitE (bi | Xit) .

Dependence on the outcome implies dependence on random effects, so E (bi | Xit)

is usually not equal to zero. Hence, when the covariates are endogenous, the

regression coefficients have only conditional interpretation, and the LMMs

are not valid anymore. In order to obtain the marginal interpretation of the
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coefficient and to quantify correctly the association between the endogenous

variable and the outcome, we will use two types of joint models. These kinds

of models allow us to estimate the association even when the outcome and

the time-varying variable are measured on different time points and there are

missing values on both.

Notice that in the following sections, for the sake of simplicity, with v

we will refer to exogenous covariates, and with x we will denote endogenous

covariates.

3.2 Joint Mixed Model

The first type of joint model we examined is the Joint Mixed Model

(see Weiss 2005, Fieuws and Verbeke 2006 and Fieuws and Verbeke 2004).

Here the association between the endogenous time-varying variable x and the

outcomes y is measured via the random effects variance-covariance matrix D.

The mathematical form of the joint model assuming only one time-varying

covariate and one outcome is:
{

xi (sij) = w⊤
xi ·αx + v⊤

xi (sij)βx + z⊤xi (sij)bxi + εxi (sij)

yi (tij) = w⊤
yi ·αy + v⊤

yi (tij)βy + z⊤yi (tij)byi + εyi (tij)
(3.2)

where
[

bxi

byi

]

∼ N

(

0,

[

Dxx Dxy

Dyx Dyy

])

;

[

εyi

εxi

]

∼ N2ni
(0,Σi) .

Here, α’s are the fixed-effects vectors and β’s are the vector of the regression

coefficients of the exogenous variables. The indexes sij and tij are the time

points of the covariate and the outcome respectively, and they can be differ-

ent. xi (sij) is the value of the endogenous variable x for the i-th subject,

i = 1, . . . , N , at time sij, j = 1, . . . , ni. The value of the response variable

y for the individual i at the time point tij is yi (tij). There are two sets of

error terms, εyi and εxi, both vectors of length equal to ni, whose variance-

covariance matrix is generally assumed Σi = σ2
εI implying Conditional Inde-
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pendence Assumption (see Chapter 2). They are independent of the random

effects. We assume that the random effects follow a joint multivariate Gaus-

sian distribution with zero mean and an unstructured variance-covariance

matrix. If each process has both random intercepts and random slopes, D

is a block matrix with as submatrices the variance-covariance matrix of the

random effects of the covariate Dxx, the variance-covariance matrix of the

random effects of the outcome Dyy and the covariance matrix Dyx = Dxy

between them. If Dyx is null, the random effects are not correlated and there

is no association between the response and the endogenous variables.

It is important to stress the fact that if the two time vectors are different

only the Conditional Independence Assumption is possible. The correlation

between residual errors is allowed only for outcome and time-varying variable

assessed at the same time. With non-simultaneously observations, the pair

of residual errors are not measured at the same time, so it is not possible to

evaluate the correlation between them. Thus, the association between x and

y is only computed by the variance-covariance matrix of the random effects.

Here it is assumed a normal likelihood for both the outcome and the

endogenous variable and the same model structure, but in general, they can

have different distributions. We will see a particular case in Chapter 5 in

which a beta mixed model and a linear mixed model will be joined.

3.2.1 Association between outcome and endogenous

covariate

So far, the only way to evaluate the association between the endogenous

and the response variables is by studying the covariance parameters in the

variance-covariance matrix D. If these values are not significantly different

from zero, the model can be reduced to a LMM without the time-varying

covariate, and the two processes can be modelled separately. In the context

of Bayesian inference, credible intervals are used to evaluate the significance

of the parameters. However, the covariance parameters can not be easily

interpreted. They can give information about the order of magnitude of
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the association (big covariance leads to strong association), but they can

not provide any information about the direction. What we would like to

have is an association coefficient with a similar interpretation of the other

regression coefficients, i.e., a parameter that estimates the change in mean

outcome for a unitary increase in the endogenous covariate, given that all

other covariates are fixed (Gomon 2022). To obtain an estimation of this

association parameter, we need to define the conditional distribution of the

outcome given the endogenous variable. Let’s assume for now that both the

outcome and the time-varying covariate are continuous in R and they can be

modeled with two LMMs. The joint distribution of the two processes is then

a bivariate Gaussian:

f (xi(t), yi(t)) = N2

([

µx,i(t)

µy,i(t)

]

,

[

σ2
x,i(t) ρi(t)σx,i(t)σy,i(t)

ρi(t)σy,i(t)σx,i(t) σ2
y,i(t)

])

where

µx,i(t) = w⊤

xi ·αy + v⊤
xi(t)βx, σ2

x,i(t) = z⊤xi(t)Dxxzxi(t) + σ2
ε,x

µy,i(t) = w⊤
yi ·αy + v⊤

yi(t)βy, σ2
y,i(t) = z⊤yi(t)Dyyzyi(t) + σ2

ε,y.

Here, the variances σ2
x,i(t) and σ2

y,i(t) and the correlation ρi(t) all depend on

the random effects and error terms variance-covariance matrices D and Σi.

The specific form of the correlation parameter can not be specified because

depends on how many random effects are assumed for each equation and

on the structure of D. Note that all the elements just described are time-

dependent.

From the bivariate normal, the conditional distribution of the response

variable y given the time-varying covariate x can be simply derived:

f (yi(t) | xi(t) = a) = N

(

µy,i(t) +
σy,i(t)

σx,i(t)
ρi(t) (a− µx,i(t)) ,

(

1− ρ2i (t)
)

σ2
y,i(t)

)

.

Using the conditional distribution we can answer different questions regard-

ing the relationship between the two variables. We can measure the param-

eter that estimate the cross-sectional effect, so the change in mean outcome
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for a unitary increase in the endogenous covariate given the same time point:

E [f (yi(t) | xi(t) = a+ 1)]− E [f (yi(t) | xi(t) = a)] =

=

(

µy,i(t) +
σy,i(t)

σx,i(t)
ρi(t) (a+ 1− µx,i(t))

)

−

(

µy,i(t) +
σy,i(t)

σx,i(t)
ρi(t) (a− µx,i(t))

)

=

=
σy,i(t)

σx,i(t)
ρi(t) =

Cov(y, x)(t)

σ2
x,i(t)

.

But we can also estimate a coefficient for the lag-effect, which indicates how

the covariate at the previous time points affects the response variable in the

present. It is calculated following the same idea:

E [f (yi(t) | xi(t− k) = a+ 1)]− E [f (yi(t) | xi(t− k) = a)] =

=
σy,i(t)

σx,i(t− k)
ρi(t, t− k) =

Cov(y, x)(t, t− k)

σ2
x,i(t− k)

.

In conclusion, the cross-sectional association coefficient and the lag-effect

association coefficient are respectively:

βjmm
x (t) =

Cov(y, x)(t)

σ2
x,i(t)

, (3.3)

βjmm
x (t, t− k) =

Cov(y, x)(t, t− k)

σ2
x,i(t− k)

. (3.4)

Note that equations 3.3 and 3.4 are valid only when we have one outcome

and one endogenous covariate and they do not apply with a higher number

of variables. The conditional distribution of more than two variables is less

easy to get. In the context of normal likelihoods with three variables already

the derivation process is more complex. Moreover, it is not possible to obtain

a closed-form estimation of the association coefficient when variables are of

different types (binary, count, ...). An example is provided in chapter 5,

with further discussions too, in which a joint mixed model with a Beta and

a normal likelihood is implemented.
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3.2.2 INLA model formulation

In the following section, we will show how to rewrite the JMM as Latent

Gaussian Model. In order to provide a better explanation, for both the

process only one fixed covariate w and random intercepts and slopes are

assumed:







xi (sij) =
(

β
(x)
0 + b

(x)
0,i

)

+ β
(x)
w · wi +

(

β
(x)
s + b

(x)
t,i

)

· sij + ε
(x)
i (sij)

yi (tij) =
(

β
(y)
0 + b

(y)
0,i

)

+ β
(y)
w · wi +

(

β
(y)
t + b

(y)
t,i

)

· tij + ε
(y)
i (tij)

(3.5)

where













b
(x)
0

b
(y)
0

b
(x)
t

b
(y)
t













∼ N4(0,D);

[

ε
(x)
i

ε
(y)
i

]

∼ N2ni

(

0,

[

σ2
ε,xIni

0

0 σ2
ε,yIni

])

.

Note that the vector of random effects is defined differently from before. Here,

the order is determined by the type of random effects and not by the variable

to which they belong. The first two elements are the random intercepts of

the endogenous covariate and the outcome, and the second ones are the

corresponding random slopes. Their variance-covariance matrix D can have

different structures. The two forms that we have used are the unstructured

matrix and the pairwise-correlated matrix. The former assumes correlation

between all the random effects:

D =













σ2
x,0 σ(x,0),(y,0) σ(x,0),(x,t) σ(x,0),(y,t)

σ(y,0),(x,0) σ2
y,0 σ(y,0),(x,t) σ(y,0),(y,t)

σ(x,t),(x,0) σ(x,t),(y,0) σ2
x,t σ(x,t),(y,t)

σ(y,t),(x,0) σ(y,t),(y,0) σ(y,t),(x,t) σ2
y,t













. (3.6)

The latter, instead, assume correlation only between pair of random effects.

This implies that the number of parameters to be estimated is lower, and

could be a useful property in some cases. The matrix D is a block-diagonal
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matrix that has the following form:

D =













σ2
x,0 σ(x,0),(y,0) 0 0

σ(y,0),(x,0) σ2
y,0 0 0

0 0 σ2
x,t σ(x,t),(y,t)

0 0 σ(y,t),(x,t) σ2
y,t













. (3.7)

Other structures for the variance-covariance matrix are possible, for instance

assuming auto-regressive or random-walk random effects. In this thesis

though, we only use the two forms described above. In R-INLA, indeed,

there are some limitations. In particular, it is not possible to estimate more

than five correlated random effects (for more see Gómez-Rubio 2020).

The joint model presented is a two-likelihood model. The first likelihood

for the endogenous covariate, while the second one will be of the types used

to model the outcome. In order to fit multiple likelihoods in R-INLA, the

data must be adapted to a specific structure. The response variable of the

joint model is a matrix with a number of columns equal to the number of

likelihoods considered, and with as many rows as total observations for each

variable. In our case, it is a matrix of dimension (2Nobs × 2). The first Nobs

rows are related to the endogenous variable, the remaining rows correspond

to the outcome. Note that we are assuming the same number of observations

Nobs per variable. It is also possible to have a different number of observa-

tions, hence to have missing values in the response and the covariate process.

However, INLA automatically omits the missing values and estimates the

models on the observed ones, so, for simplicity of notation, we can assume

the same number of measurements. Even if the input is a matrix, the in-

ner representation of R-INLA response variable output is a vector of length

2Nobs:

(x1,1, . . . , xN,nN
, y1,1, . . . , yN,nN

)

The same idea applies to store the joint linear predictor. It is a block-diagonal

matrix in which each block corresponds to the model matrix of every variable.

All blocks outside the main diagonal contain missing values. For the joint
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model described above the linear predictor is a matrix with six columns, one

for each fixed effect, and 2Nobs rows. This concept is illustrated below based

on the model (3.5).

Response variables: Linear predictor:

(x,y) (Interceptx, wx, tx, Intercepty, wy, ty)



































x1,1 NA

x1,2 NA
...

...

xN,nN
NA

NA y1,1

NA y1,2
...

...

NA yN,nN



































,



































1 w1,1 t1,1 NA NA NA

1 w1,2 t1,2 NA NA NA
...

...

1 wN,nN
tN,nN

NA NA NA

NA NA NA 1 w1,1 t1,1

NA NA NA 1 w1,2 t1,2
...

...

NA NA NA 1 wN,nN
tN,nN



































For the random effects, the specification is based on the form of the variance-

covariance matrix. If an unstructured variance-covariance matrix (3.6) is

assumed, the random effects must be defined as a vector as in equation (3.5).

If we consider a pairwise variance-covariance matrix, instead, the random

effects need to be stored as a matrix with as many columns as random effects

and 2N rows:


































b
(x)
0,1 b

(y)
0,1 NA NA

b
(x)
0,2 b

(y)
0,2 NA NA

...
...

b
(x)
0,N b

(y)
0,N NA NA

NA NA b
(x)
1,1 b

(y)
1,1

NA NA b
(x)
1,2 b

(y)
1,2

...
...

NA NA b
(x)
1,N b

(y)
1,N



































.

Note that with both the specification the random effects output vector is

represented internally as one vector of length 4N :

(b
(x)
0,1 , . . . , b

(x)
0,N , b

(y)
0,1, . . . , b

(y)
0,N , b

(x)
1,1 , . . . , b

(x)
1,N , b

(y)
1,1, . . . , b

(y)
1,N).
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The R-code used to define the Joint Mixed Models with unstructured and

pairwise variance-covariance matrices are respectively shown in Code A.3 and

Code A.4. See also Niekerk et al. 2022.

Once the data are prepared, INLA implements the model assuming for

each parameter a prior distribution. We have already described the default

choices of R-INLA in Section 2.1.1 and they are valid for joint models as well.

3.3 Joint Scaled Model

The second type of joint model we present is the Joint Scaled Model.

Usually, they are used to combine a longitudinal model and a survival model

(D. Rizopoulos 2017). In these types of models the association between the

endogenous time-varying variable x and the outcomes y is measured via a

scaling factor γ. The mathematical notation is:

{

xi (sij) = mi (sij) + εxi (sij)

yi (tij) = w⊤
yiαy + γmi (tij) + v⊤

yi (tij) βy + z⊤yi (tij)byi + εyi (tij)
(3.8)

where

mi (sij) = wT
xiαx + vT

xi (sij) βx + zTxi (sij)bxi

and

bxi ∼ N (0,Dx) , εxi (sij) ∼ Nni

(

0, σ2
ε,x

)

byi ∼ N (0,Dy) , εyi (tij) ∼ Nni

(

0, σ2
ε,y

)

Here, the random effects and the error terms of x and y are independent.

Thus, εxi (sij) ⊥ bxi and εyi (tij) ⊥ byi and εxi (sij) ⊥ εyi (tij) and bxi ⊥ byi.

The association between the response and the time-varying variables derives

only from the linear predictor mi (sij) of the endogenous variable x at time

sij, and the associated scaling factor γ. Note that the time points sij and tij

can be different in this model as well.

Assuming identical covariates for the two processes, therefore also the

same time vector tij = sij ∀i, j, the expression for the outcome can be rewrit-
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ten in the following way:

yi (sij) = γmi (sij) +w⊤

yiαy + v⊤

yi (sij) βy + z⊤yi (sij)byi + εyi (sij) =

= (γαx + αy)w
⊤

yi + (γβx + βy)v
⊤

yi (sij) + (γbxi + byi) z
⊤

yi (sij) + εyi (sij) =

= α′

yw
⊤

yi + β′

yv
⊤

yi (sij) + b′

yiz
⊤

yi (sij) + εyi (sij) .

(3.9)

Here, the random effects b′
yi = γbxi + byi follow a Gaussian distribution

with zero mean and variance-covariance matrix γ2Dx +Dy. The benefit of

the combined coefficients is that they more closely resemble the coefficients

obtained fitting the JMM. We will especially use this reparameterization in

the simulation described in chapter 4.

3.3.1 Association between outcome and endogenous

covariate

In the Joint Scaled Models the first way to evaluate and quantify the

association between the endogenous covariate and the outcome it is by the

scaling factor γ. Another possibility is to estimate the association coefficient

following the same process as in Section 3.2.1. To measure the change in

mean outcome y with a unitary increase in time-varying covariate x, we need

to determine the expectation of the difference of the conditional distributions

for a i-th subject:

E (f [yi(t) | xi(t) = a+ 1])− E (f [yi(t) | xi(t) = a]) =

= E
(

w⊤

yiαy + γmi(t) + v⊤

yi(t)βy + z⊤yi(t)byi + εyi(t) | xi(t) = a+ 1
)

+

− E
(

w⊤

yiαy + γmi(t) + v⊤

yi(t)βy + z⊤yi(t)byi + εyi(t) | xi(t) = a
)

=

= γE (mi(t) | xi(t) = a+ 1)− γE (mi(t) | xi(t) = a) .

(3.10)

The only element in the linear predictor of y that depend on the values of

the endogenous variable x, is the linear predictor mi(t). Therefore, all the

other components can be taken out of the conditional expectation. Since we
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know the marginal distributions of all the members:

mi(t) = N
(

w⊤

xiαx + v⊤

xi(t)βx, z
⊤

xi(t)Dxzxi(t)
)

,

εi(t) = N
(

0, σ2
x

)

,

xi(t) = N
(

w⊤

xiαx + v⊤

xi(t)βx, z
⊤

xi(t)Dxzxi(t) + σ2
ε,x

)

,

the joint distribution of mi(t) and xi(t) is a bivariate normal, with as mean

the vector of the two means and as variance the matrix
[

σ2
x,i(t) ρi(t)σx,i(t)σy,i(t)

ρi(t)σy,i(t)σx,i(t) σ2
y,i(t)

]

.

Once again, the mean of the conditional distribution is simply derived and

corresponds to:

E (mi(t) | xi(t) = a) = µmi
(t) +

Cov (mi(t), xi(t))

σ2
x,i(t)

(a− µx,i(t))

where
µx,i(t) = w⊤

i ·αy + v⊤
xi(t)βx,

µy,i(t) = w⊤
i ·αx + v⊤

yi(s)βy,

Cov (mi(t), xi(t)) = Var (mi(t)) = z⊤xi(t)Dxzxi(t).

In conclusion, replacing all the above elements in equation (3.10), the asso-

ciation coefficient is estimated:

βjsm
x (t) = γ

[

z⊤xi(t)Dxzxi(t)

z⊤xi(t)Dxzxi(t) + σ2
x

]

= γ

[

1−
σ2
ε,x

z⊤xi(t)Dxzxi(t) + σ2
ε,x

]

(3.11)

This parameter has the same interpretation of the association coefficient

βjmm
x (t) in the JMM (3.3) and the fixed effect regression coefficients in any

LMM. To evaluate the significance of these coefficients no tests are avail-

able. We shall construct credible intervals. Since we are working under a

Bayesian structure, a marginal posterior distribution for each parameter and

hyperparameter is automatically obtained. When the posterior marginal of

a non-linear transformation of the hyperparameter or functions that depend

on several hyperparameters are required, it is suggested to sample from their

approximate joint posterior distribution (see Gómez-Rubio 2020). Once the
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posterior marginal distribution of expressions (3.3) and (3.11) is derived, the

credible intervals are available too.

However, the closed-form (3.11) applies only with normal likelihoods.

When we want to model jointly two variables of different types, the estimation

is more complicated. In this last scenario, the mathematical convenience of

multivariate normal is lost and the following integration needs to be evaluated

numerically:

f (yij, xij) =

∫

f (yij | mij,byi) f (xij | bxi) f (byi) f (bxi) dbyidbxi.

This integral can be solve by numerical integration or Monte Carlo sampling

but we tried to find an approximation of the closed-form formula using as best

we could the Bayesian output provided by R-INLA. For further discussion

about this issue refers to Section 5.4.3, in which an example with Beta mixed

model is shown.

3.3.2 INLA model formulation

Let us consider for simplicity the following model:















mi (sij) =
(

β
(x)
0 + b

(x)
0,i

)

+ β
(x)
w · wi +

(

β
(x)
t + b

(x)
t,i

)

· sij

xi (sij) = mi (sij) + ε
(x)
i (sij)

yi (tij) = γ ·mi (tij) +
(

β
(y)
0 + b

(y)
0,i

)

+ β
(y)
w · wi +

(

β
(y)
t + b

(y)
t,i

)

· tij + ε
(y)
i (tij)

where
[

b
(x)
0

b
(x)
t

]

∼ N2

(

0,

[

σ2
x,0 σx,(0,t)

σx,(t,0) σ2
x,t

])

,

[

b
(y)
0

b
(y)
t

]

∼ N2

(

0,

[

σ2
y,0 σy,(0,t)

σy,(t,0) σ2
y,t

])

,

[

ε
(x)
i

ε
(y)
i

]

∼ N2ni

(

0,

[

σ2
ε,xIni

0

0 σ2
ε,yIni

])

.

As we have already explained in Section 3.2.2, in order to implement joint

models in R-INLA it is required to rewrite the dataset in a specific way.

The idea is the same as before: everything has to be stored in matrices in
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which the first block of rows is related to the endogenous variable, and the

second block to the outcome. What changes in the specification of the JSM

is the classification between fixed and random effects. In R-INLA only the

random effects are allowed to be scaled by a factor γ and be copied into a

different likelihood. Thus, the exclusive way to copy and scaled the linear

predictor m(sij) in the linear predictor of y is by treating the fixed effects as

independent random effects. Their priors are then the same as the error terms

described in Section 2.1.1. During the estimation process, they are copied

with the same scaling factor plus some tiny noise in the linear predictor of

y. More formally, let’s assume a latent effect u = (u1, . . . , up). The copied

effect u∗ is defined as:

u∗

j = γuj + εj, j = 1, . . . , n

where n is the number of observations. The error εj has a Gaussian prior,

with a very large precision equal to exp(14) by default (for computational

reason). The scale factor γ can be estimated or set as fixed. It the context

of JSM it is considered as a hyperparameter with as default prior a gaussian

distribution with mean 1 and precision 10. So, the fixed effects are written

as random effects in the endogenous variable linear predictor and then are

copied in the linear predictor of the outcome rescaled by γ.

This way of proceeding is legitimate because within the Bayesian frame-

work the difference between fixed and random effects is more subtle than in

a frequentist approach. Both fixed and random effects, indeed, are random

variables with a certain prior probability.

The R-code used to implement this trick is shown in Code A.5 and Niekerk

et al. 2022.



Chapter 4

Simulation

The main goal of the thesis is to evaluate the performance of the joint

models estimated by R-INLA. Thus, the problem questions are especially

two: how accurate are the results obtained using INLA as a method of esti-

mation, and if there are any differences between the performances of JMM,

JSM and LMM. We are interested in understanding how good the JMM and

the JSM are when we have an endogenous covariate, compared to the LMM,

and if the INLA results are more or less accurate under different conditions.

In particular, we shall investigate how is the performance when the variances

of the random effects and the error terms are really small, thus near the

boundary. In the context of the joint models, are parameters indeed very

relevant for a good estimation because of their connection with the associa-

tion coefficients (see equations 3.3 and 3.11). When they are not correctly

estimated, the association coefficient estimates are in turn affected.

To accomplish this, we will simulate 2M = 2000 samples, M = 1000

generated according to a JMM and the other M = 1000 simulated from a

JSM. For each sample, the three models (LMM, JMM and JSM) are fitted

and the M results are then summarized and compared. Once we have done

this in datasets in which large variances and covariances of the random effects

are assumed, we repeat the same simulation study in samples with smaller

values.
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In the following sections, we will describe in more detail the data gener-

ation process and how the simulation was performed.

4.1 Data generation process

In longitudinal studies, the data should be in a long format, which means

that every row of the dataset refers to a specific subject and to only one of

his repeated measurements. For each row then, we have a different value

for the time variable, as well as a different value for the longitudinal out-

come and the time-varying covariates. Generally, the number of repeated

measurements for each subject is different and the data are not collected at

the same time point for all the units, which means that the data are un-

balanced. Furthermore, it is possible that also the time-varying covariate

and the outcome are measured at different moments. In order to reproduce

this design, two variables are introduced in the simulated dataset: y obs and

x obs. They are vectors of zeros and ones, randomly sampled from Bernoulli

distributions with probabilities px = 0.72 and py = 0.55. When an element of

the vector y obs is equal to zero, the respective value of the response variable

is considered missing. The same idea applies to x obs and the endogenous

variable.

A continuous time variable t is simulated, in order to reproduce e.g., the

variable age. For each patient, a sequence of 12 values, generated between 3.0

and 27.0, is randomly selected. Finally, the id variable is created to indicate

the subjects. We considered only N = 65 subjects, so as to reproduce as

accurately as possible the data used in Section 5.

In this simulation study, we will consider one endogenous variable x and

one response variable y, which we will generate several times according to the

JMM (Section 4.1.1) and the JSM (Section 4.1.2). So then the final datasets

will have Nobs rows and six columns, with shape as in Table 4.1. To simulate

the random effects and the error terms for x and y, it is necessary to define

the variance-covariance matrices, respectively denoted asDx and Σx, Dy and

Σy. As said before, one of the goals is to study the performance of INLA
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Table 4.1: Shape of the simulated datasets

id t y obs x obs y x

1 4.4 1 1 y1,1 x1,1

...
...

...
...

...
...

1 25.8 1 0 y1,12 NA

2 3.0 0 0 NA NA
...

...
...

...
...

...

2 23.1 0 1 NA x2,12

...
...

...
...

...
...

N 4.8 1 1 yN,1 xN,1

...
...

...
...

...
...

N 25.3 0 1 NA xN,12

and joint models in the presence or absence of small values of variance and

covariance. Thus, for each matrix, two different values are assumed and the

results coming from them are compared in Section 4.2. Defining Σx = σ2
xI

and Σy = σ2
yI, the following matrices will be used for the two cases:

(a) Large values: (b) Small values:

Dx =

[

2 1.5

1.5 3

]

Dx =

[

0.14 −0.013

−0.013 0.017

]

Dy =

[

3 2.5

2.5 4

]

Dy =

[

0.12 −0.006

−0.006 0.34

]

σx = 0.5

σy = 0.5

σx = 0.32

σy = 3.58

(4.1)

Notice that in the following sections, for the sake of simplicity, with the

expression ”Large values” we will refer to the simulation study in which we

assume great values for the variances and covariances. Otherwise, we will

use the expression ”Small values”.



54 Simulation

4.1.1 Simulating data from a JMM

We simulated data from a JMM having the simplest form:






xi (tij) =
(

β
(x)
0 + b

(x)
0,i

)

+
(

β
(x)
t + b

(x)
t,i

)

· tij + ε
(x)
i (tij)

yi (tij) =
(

β
(y)
0 + b

(y)
0,i

)

+
(

β
(y)
t + b

(y)
t,i

)

· tij + ε
(y)
i (tij)

(4.2)

The independent error terms ε(x) and ε(y) are simulated separately from

a normal distribution with zero mean and variance-covariance matrices as

indicated in (4.1a) and (4.1b), depending on the case being considered.

The correlated random effects are simulated from a multivariate normal

distribution with zero mean and unstructured variance-covariance matrix

D =

[

Dx Dxy

Dyx Dy

]

, where Dxy = Dyx is another matrix of dimension 4× 4

that has the following values based on the case of study under consideration:

Large values: Dxy = Dyx =

[

1.75 1.6

2 2.5

]

; (4.3)

Small values: Dxy = Dyx =

[

0.012 −0.108

−0.0005 0.021

]

. (4.4)

Even the coefficients of the fixed effects change depending on which case is

being examined. Whit large values of variances and covariances, e.i., matrices

(4.1a) and (4.3), the vector β = (β
(x)
0 , β

(x)
t , β

(y)
0 , β

(y)
t ) of the fixed parameters

is assumed of the form (4.5a). In contrast, when small variances and covari-

ances are assumed, as in (4.1b) and (4.4), the fixed effects coefficients are

equal to (4.5b):

(a) Large values: (b) Small values:

β =













5

1

6

2.2













β =













10.086

−0.128

53.240

−1.974













(4.5)

Based on all this information, it is also possible to derive the actual value

of the association coefficient over time (see Section 3.2.1), between the en-

dogenous variable x and the outcome y. Considering the model (4.2), it is
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defined as:

βjmm
x (t) =

σ(x,0),(y,0) + tσ(y,t),(x,0) + tσ(y,0),(x,t) + t2σ(x,t),(y,t)

σ2
x,0 + t2σ2

x,t + 2tσ(x,t),(x,0) + σ2
ε,x

. (4.6)

As is simple to notice, the value of βjmm
x (t) is closely related to the vari-

ance and covariance values. Thus, we expect that the worse the estimation

of the elements of variance-covariance matrix D is, the less the estimated

association coefficients will approach the actual values (4.6).

4.1.2 Simulating data from a JSM

Simulating data according to the JSM proceeds in a very similar manner.

Here too, we consider the simplest structure for the model:































mi (tij) =
(

β
(x)
0 + b

(x)
0,i

)

+
(

β
(x)
t + b

(x)
t,i

)

· tij

xi (tij) = mi (tij) + ε
(x)
i (tij)

yi (tij) = γ ·mi (tij) +
(

β
(y)
0 + b

(y)
0,i

)

+
(

β
(y)
t + b

(y)
t,i

)

· tij + ε
(y)
i (tij) =

=
(

β
(y′)
0 + b

(y′)
0,i

)

+
(

β
(y′)
t + b

(y′)
t,i

)

· tij + ε
(y)
i (tij)

(4.7)

Notes that the vector time t is assumed to be the same in both the lin-

ear predictors, so the expression for the outcome is rewritten based on the

reparametrization (3.9) described in Section 3.3. By doing this, the compar-

ison with the data simulated according to the JMM is easier. The new fixed

effects coefficients for the outcome are explicated as β
(y′)
0 = γβ

(x)
0 + β

(y)
0 and

β
(y′)
t = γβ

(x)
t + β

(y)
t . The vector β = (β

(x)
0 , β

(x)
t , β

(y)
0 , β

(y)
t ) in the JSM is then

defined by replacing the reparametrized parameter β
(y′)
0 and β

(y′)
t with the

value in (4.5). Moreover, the scaled parameter γ is assumed to be equal to

1.2 when the variances are supposed big, and equal to 1.30 otherwise. Thus,

the fixed effects coefficients, in the scenario with small and big variances and
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covariances, are:

(a) Large values: (b) Small values:

β =













5

1

0

1













β =













10.086

−0.128

40.1282

−1.8076













(4.8)

The independent error terms ε(x) and ε(y) are simulated separately from

a normal distribution with zero mean and variance-covariance matrices as

indicated in (4.1a) and (4.1b), depending on the case being considered. The

correlated random effects are simulated from two bivariate normal distribu-

tions, one for the random effects of x and the other one for the random effects

of y, both with zero mean and variance-covariance matrix respectively equal

to Dx and Dy.

Finally, the association coefficient is simply derived according to equation

(3.11):

βjsm
x (t) = γ

[

σ2
x,0 + t2σ2

x,t + 2tσ(x,t),(x,0)

σ2
x,0 + t2σ2

x,t + 2tσ(x,t),(x,0) + σ2
ε,x

]

. (4.9)

4.2 Results

We performed the same analysis twice, one with datasets having large

variances of the random effects, the other one with the same amount of sam-

ples but having data with small variances and covariances. In the following

sections, we will discuss the results of the two scenarios, presenting also pos-

sible solutions to overcome the issues encountered.

4.2.1 Comparison between models with large variances

For every simulated dataset, we compute the association coefficients and

the methods of evaluation as the marginal likelihood, the information-based

quantities WAIC and DIC (see Section 1.4.2) or the predictive measures CPO
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and PIT (see Section 1.4.3). We will use them to compare the results and

evaluate the performance of the different models.

Evaluation of the association coefficient estimates

We examined the relationship between the endogenous covariate and the

outcome, evaluating the estimation of the association coefficient over time.

In Figure 4.1, are shown the time trajectories of the association coefficients

calculated in either the LMM, the JMM and the JSM. For each time point,

the mean of the M association coefficients is plotted, with the corresponding

credible intervals.

Figure 4.1: Trajectories of the estimated association coefficients and the

actual values (black dotted line) when data are simulated according to either

JMM and JSM.

On the left, are shown the results from the data simulated according to

the JMM. We observed that the values of the JMM association coefficient

are perfectly following the actual value of βjmm
x (black dotted line), as we
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expect. The JSM seems to perform quite well too. Even though the mean

values of the association coefficients over time are not exactly equal to the

actual values, the credible intervals include them. The LMM, instead, fails

to show any association.

The plot on the right in Figure 4.1, show the coefficient trajectories es-

timated from data simulated according to the JSM. The LMM, again, is

not able to reach the actual value βjsm
x (black dotted line): although the

mean values are not far off from the actual values, the credible intervals

are extremely narrow and do not include sample estimates of the associa-

tion coefficient. Even here, both JSM and JMM fit quite well. However, in

both plots, we notice that the JMM is less robust. The credible intervals,

especially in the second plot, are indeed wider than the JSM credible inter-

vals. This suggests that the M values estimated by the JMMs are pretty

different from each other and are not actually always near the mean value.

This may be due to the fact that in the JMM the number of parameters to

be estimated is greater than in the JSM. In the JMM with an unstructured

variance-covariance matrix D we have to estimate 12 parameters, besides the

fixed effects coefficients. In the JSM, instead, only 8. This may not seem like

such a big difference, but for INLA it is relevant, especially with a very low

number of observations in which there is not enough information. We will

explore this topic in more detail in the next Section 4.2.2.

Thus, INLA seems to be a good method of estimation and the joint mod-

els lead to reasonable conclusions. However, it seems that the estimations

obtained by the JSM are quite accurate in every situation, unlike the JMM

which is not robust and seems that its results are extremely sensitive to small

departures from the model’s assumption.

Notice that in the two joint models, the association coefficient tends to

increase or decrease over time till it reaches a limit value:

lim
t→∞

βjmm
x (t) =

σ(y,t),(x,t)

σ2
x,t

= 0.83 (4.10)

lim
t→∞

βjsm
x (t) = γ = 1.2 (4.11)

In this simulation study, the association coefficients reach the limits soon.
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Evaluation of the goodness of fit

The goodness of fit of the three models is evaluated too. In order to

compare them, we compute quantities described in Section 1.4. The mean of

the quantities CPO, WAIC, and DIC over theM datasets simulated using the

JMM are shown in Table 4.2. In Table 4.3 are reported the same measures

but with data generated from JSM. Notice that with measures of goodness,

we arrive at the same conclusions as above. In both situations seem that

the best model in terms of fitting and predictive performance is the joint

scaled model. The worst, as we expected, is the linear mixed model. The

marginal log-likelihood (ML) is also added to derive the Bayes Factor (1.4.1)

and compare the two joint models. Because linear mixed models only have

one likelihood, they cannot be compared, based on ML, to the other two

models, which include outcome and covariate likelihoods. Indeed, the values

of the marginal log-likelihood of the LMM are way smaller than the other.

From values on Table 4.2, the logarithm of the Bayes Factor (see equation

1.13) is 14.62, indicating strong evidence for JSM even though the data are

generated from the JMM. We arrive at the same conclusion in Table 4.3,

where the logarithm of the Bayes Factor is 68.86. The results in this case are

consistent with the simulation study.

LMM JMM JSM

ML -721.28 -1562.83 -1548.20

DIC 757.19 749.42 741.42

WAIC 759.27 752.25 743.05

CPO 394.11 389.01 386.29

Table 4.2: Goodness of fit measures

with data from JMM

LMM JMM JSM

ML -770.45 -1648.02 -1579.16

DIC 769.41 778.98 742.48

WAIC 770.89 783.71 744.30

CPO 403.05 406.70 387.88

Table 4.3: Goodness of fit measures

with data from JSM

4.2.2 Comparison between models with small variances

The simulation study described so far has also been applied to data in

which the variances and covariances of the random effects are really small
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(data matrices are 4.1b and 4.4). Below the results are discussed.

Evaluation of the association coefficient estimates

In Figure 4.2 we show the trajectories of the association coefficients over

time. Differently from before, here, the estimates are not so good. In the

simulation where data are generated according to the JMM, not even the

mean values of the JMM estimates reach the actual value βjmm
x (black dotted

line). The trajectory seems good in the early time points, but already after

time 5 the values start to be way smaller than the real ones. The trend

is similar but it seems that after 30 time points the coefficient estimations

have not yet reached a limit and still tend to increase. The credible intervals

contain the actual values throughout the timeline expect for the end, in

which the estimated values coincide with the upper limit of the interval.

The time trend of the JSM estimates is really different from the actual one.

It rises slightly at first, but quickly reaches a limit, starting to include the

actual values of the coefficient in the credible intervals from the middle of

the timeline. Thus, for the first half of the timeline, the JMM provides the

best estimates; for the second half, we rely more on the JSM values.

In the simulation where data are generated according to the JSM (plot on

the right of Figure 4.2), the results are not better. The association coefficient

estimates from the JMM do not reach the real values and also do not include

them in the credible intervals. The JSM estimates are nearest to the actual

values but are still biased.

In the scenario that we are considering, with small variances and covari-

ances, the LMM estimate is nearest to the values of the other two models

than before. This is probably because the small variances also indicate a less

strong dependence between the endogenous variable and the outcome and a

minor need to model the association through joint models. However, they

all lead us to biased results. Finally, notice that, unlike in Section 4.2.1, the

credible intervals of either LMM and JMM estimates are wide, suggesting

that these models are not robust and their results are sensitive to modifica-
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Figure 4.2: Trajectories of the estimated association coefficients and the

actual values (black dotted line) when data are simulated according to either

JMM and JSM.

tions of the data.

Evaluation of the variance and covariance estimates

Both the association coefficient estimates βjmm
x (3.3) and βjsm

x (3.11) are

functions of the variances and covariances. Therefore, biased coefficient esti-

mations are certainly due to poor estimation of variance-covariance matrices.

Let’s then study a little further the estimation provided by INLA. When the

estimations of the variances are near the boundary, thus basically zero, it

can happen that INLA fails to estimate correctly the posterior precisions. In

Figure 4.3 we show two examples of poor estimation of the precision. The

two posterior densities are not continuous, for values near zero, they go to

infinity and the probability to observe all the others is practically zero. This

situation does not allow us to calculate the distribution of the inverse func-
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tion, i.e., of the variances. Even if we decide to work in terms of precisions,

the mean value of these distributions does not give us proper information

about them. Note that this happens in both the JSM and JMM, thus, the

estimations of the association coefficients are not very good anyway (see Fig-

ure 4.2). We tried a few methods to overcome the inability of INLA to fit

Figure 4.3: Posterior densities of two precisions estimated by INLA.

correctly the variance and covariance elements. Since we are working in a

Bayesian framework, the issues may be caused by the prior selection. So

far, we have simply used the default options, thus the uninformative priors.

Although, in presence of small variances, may be better to choose a more

informative prior for the hyperparameters. From the above sections, we saw

that the worst performance is in the joint mixed model. Hence, in the follow-

ing, we will describe the process of selection of a prior only for a JMM having

an unstructured variance-covariance matrix of the random effects. Regard-
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less, the methods described here can also be applied in the case of different

structures of the variance-covariance matrix or with JSM.

Let’s remember that INLA works with the precision matrix, and not with

the variance-covariance matrix. As usual in Bayesian statistics, the prior used

for the precision matrix is a Wishart distribution (Zhang 2021). It is very

popular because it is the conjugate to multivariate normal data, thus, we will

not select another distribution but we will try to work on its parameter. The

Wishart distribution of a precision matrix W, with r degrees of freedom and

scale matrix R, is defined as:

fW(W) =
1

2rp/2|R|r/2Γp

(

r
2

) |W|(r−p−1)/2e−
1

2
tr(R−1W),

where p is the dimension of the multivariate normal. The mean and the

variance of this distribution are:

E[W] = rR, V ar(wij) = r(r2ij + riirjj), (4.12)

where rij is the element of position (i, j) in the scaled matrix.

Following the Bayes theorem, the posterior distribution will be again a

Wishart distribution having as a new number of degrees of freedom r1 =

n+ r, where n is the sample size, and new scale matrix R1 = (nS+R−1)−1,

where S is the sample variance-covariance matrix. Using equations (4.12),

the posterior mean and variance are simply derived. Notice that assuming

a prior Wishart distribution for the precision matrix W is equivalent to

assuming an Inverse-Wishart prior distribution for the variance-covariance

matrix D, with inverse scaling matrix: D ∼ IW (r,R−1). From this follows

that the posterior means are:

E(W | y) = (n+ r)
(

nS+R−1
)−1

,

E(D | y) =
nS+R−1

n+ r − p− 1
=

=
n

n+ r − p− 1
S+

(

1−
n

n+ r − p− 1

)

R−1

r − p− 1
.

(4.13)

This relation between the two posterior means can be useful to understand

better how to select the best Wishart prior. Note in fact that the posterior
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mean of the variance-covariance matrix can be rewritten as the weighted av-

erage of the sample covariance matrix D and the prior mean R−1/(r−p−1).

Thus, when the sample size is large, the posterior mean tends to be closer to

the sample mean given fixed r and p. In our case, the sample size is small,

so the choice of prior has a greater influence on the posterior because there

is not enough information from the data.

Considering 4 random effects, two random intercepts and two random

slopes, all correlated with each other, the INLA default prior distribution

for the precision matrix is W ∼ Wishart4(r = 11,R = I4). Based on this

information, the parameters can be changed in the following way:

• changing the scale matrix while the degrees of freedom are assuming

always equal to 11. With R as the identity matrix, the mean prior

is equal to an identity scaled matrix 11I4 and the variance prior is an

identity scaled matrix 22I4. The latest is too wide and often leads

to biased estimation of the precision parameters (see Figure 4.3). An

alternative idea could be to replace the scale matrix with a matrix that

allows us to obtain a prior mean closer to the sample precision matrix

S−1. However, the scale matrix choice affects the variance prior as well.

Especially when we have small variances, i.e., big precisions, we risk

imposing a prior with a mean closer to the true value but a variance

even wider than the default option of INLA.

• changing the degree of freedom r while we are assuming the scale matrix

is fixed as R = I4. Smaller are the degrees of freedom, smaller are

the prior means and variances, as well as the posterior means, given

all the other elements fixed. Indeed, both are defined as the product

between the degrees of freedom and a quantity that depends on the

scaled matrix. Furthermore, the smaller the degrees of freedom, the

more information from the data is relevant and the posterior means

are close to the sample precision matrix 1/S.

• changing both the degree of freedom r and the scaled matrix R, main-
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taining the same prior mean, as suggested by Zhang 2021. Let’s con-

sider a generic choice for R. To keep the prior mean equal to R, we

need to assume a Wishart distribution with scaled matrix R/r and r

degree of freedom. This is the best option but also the most difficult to

apply. Even if we choose to put the scaled matrix equal to the sample

precision matrix R = S−1, the selection of the degrees of freedom is

substantial to keep control of the prior variance too.

In our simulations, it seems that none of these changes really improved the

fitting of the models. However, only a few values have been tried, so the next

research development could be to try new values. But the implementation

is not straightforward and the only way to proceed is by doing a sensitivity

analysis.

Notice that for all these tests is required to know the sample variance-

covariance matrix S. Although, with real data, we do not know the variance-

covariance matrix of random variables as the random effects. Thus, we need

to derive a priori the sample estimation of the matrix. An option may be

to start with simpler models in order to obtain some information about the

values of the variances and covariances. We can estimate a linear mixed

model separately for the endogenous variable x and the outcome y, just

to have an idea of the values of the variances of the random effects and

their correlation. In the case of JSM, we can simply use the two outputs as

the sample estimation of the variance-covariance matrices Dx and Dy, and

change the Wishart distribution based on them. What is missing for the

JSM, instead, are the values of the covariances between the random effects

of the two variables. We can start by assigning very small values, and then

gradually increasing them. Finally, as the assigned values change, we change

the parameters of the Wishart distribution.

However, this evaluation process takes time and is not the main goal of

the thesis. Thus, another easier possible solution to derive a better estima-

tion of the association coefficient could be to simply reduce the number of

parameters in the JMM. Especially when the number of observations is small,

this simple operation can reduce the bias and improve the goodness of fit.
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For instance, instead of assuming an unstructured correlation matrix between

the random effects, a pairwise variance-covariance matrix can be selected, or

either considering only random intercepts, or only random intercepts for the

endogenous variable and both random intercepts and random slopes for the

outcome, or other combinations. For more discussion about these options

sees chapter 5. Due to time limitations, these additional models were not

applied to the simulated data.



Chapter 5

Application

In this chapter, we shall apply on real dataset all the models described

above. The data comes from a study on children diagnosed with the rare dis-

order Duchenne Muscular Dystrophy, who have visited the Leiden University

Medical Center (LUMC) in the last decades. The analysis was performed

anonymously, i.e., without releasing crucial information about the exposures

measured.

5.1 Presentation of the dataset

Duchenne Muscular Dystrophy (DMD) is the most frequent and best

known of the childhood muscular dystrophies. It is a genetic disorder char-

acterized by progressive muscle degeneration and weakness due to the alter-

ations of a protein called dystrophin that helps keep muscle cells intact. The

pathology is localized on the X chromosome, therefore, it affects males more

often. The first symptoms start to appear at early ages, when the children are

two or three years old. Then a degenerative progression begins. The shoul-

ders and hip and thigh muscles begin to lose strength as early as five to seven

years old, and this continues until the early teens, when the teenager starts

to use full-time a wheelchair. Respiratory problems appear in their teens and

twenties as well. More often ventilation support is required, till the increase

of cardiac dysfunction leads to heart failure and death. So generally patients



68 Application

with DMD usually do not survive beyond their teen years.

There is not yet a cure or treatment to stop muscle degeneration, so

monitoring disease progression is crucial for developing and assessing novel

therapies. The disease progression, in every study of the DMD, is monitored

via function scores, for instance, the number of meters the children can walk

during a six minutes walk test. These scores are collected at each patient

visit and provide the doctor with information about the patient’s longitu-

dinal progression. However, the goal of most recent research is to identify

biomarkers that rely on blood and urine samples. They are easier and faster

to collect and are non-invasive. To do so, it is necessary to determine which

blood biomarkers are associated with the functional scores, so as to replace

them.

In particular, in the dataset available, the aim is to study the association

between seven thousand proteins and the PUL 2.0 functional score. It is

the total score of the performance of the upper limb test (see Mayhew et

al. 2019). It collects information on several shoulder and hand movement

tests, each of which is assigned a score. If a patient is able to properly move

the upper body, the total score is equal to 42. PUL 2.0 is thus a numerical

variable, with a range [0, 42]. The proteins are in turn collected over time, not

always at the same time points of the response variable, and depend on the

history of the outcome. Thus, they are endogenous time-varying covariates

(see Section 3.1).

The dataset contains information about a very low number of patients

due to the fact that DMD is a rare disease. We will work on data from only

65 patients, each of them with a very different number of observations (see

Figure 5.1). Some patients were visited only two times, others 13 times, with

an average number of observations for each patient equals to 8. There are

patients from 3 to 27 years old, with a mean age equal to 12.

The primary goal of this thesis is to use Joint Models to assess the re-

lationship between endogenous time-varying proteins and functional score
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Figure 5.1: Visiting process for each patient

(described in Chapter 3). We will not estimate the association between the

outcome and more than one protein at the time, as this leads to new issues

that are beyond the scope of the thesis. In the following sections, we will not

consider all seven thousand proteins, but rather only two of them to describe

the estimation process. For issues regarding privacy, we will refer to them as

protein1 and protein2 without mentioning their names.

5.2 Exploring the mean structure

Before proceeding with the model estimation, we examined the time pro-

gression of each variable (the outcome and the two proteins) in order to de-

termine which form of the linear predictor was the most appropriate. First of

all, spaghetti plots were used to examine each patient’s longitudinal progres-

sion. The graphs for every variable are shown in Figure 5.2. The patients’

trajectories appear to be very different from one another, especially for the

outcome, and the between-subject variability is considerable. They differ

not only in terms of variable level, but also in terms of line steepness. Based

on that, for all the trends considered, a mixed model was implemented. In
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particular, at each step, a model with only random intercepts was compared

to a model with both random intercepts and random slopes. In the end, the

best of all the trends were selected and used on the Joint Mixed models.

The trend options used are:

• Linear trend over time. The general form of the linear predictor is:

ηij = β0 + β1 · xij + β2 · tij + εij,

where other fixed and random effects and interactions can be added.

It is the simplest mean structure, but it makes very strict assumptions

about the progression in time;

• Quadratic trend over time, used when the form of the trajectories is

more similar to a parabola. Mathematically speaking:

ηij = β0 + β1 · xij + β2 · tij + β3 · t
2
ij + εij;

• Cubic trend over time. In this case, the trend of the mean is described

by a third-degree polynomial:

ηij = β0 + β1 · xij + β2 · tij + β3 · t
2
ij + β4 · t

3
ij + εij.

These last two mean structures relax the assumption of the linear trend

but increase the complexity of the model and its interpretation. Addi-

tionally, they are quite sensitive to outliers;

• Piecewise linear trend over time. The idea is to subdivide the time axis

into intervals, on which a linear progression is assumed:

ηij = β0 + β1 · xij + β2 · tij + β3 · (tij − t∗)+ + εij,

where (tij − t∗)+ = tij − t∗ when tij > t∗ and it is equal to 0 other-

wise. The choice of the number and the location of the breakpoints

t∗, generally called knots, can be done following different strategies.

Here we used the information obtained by estimating a Multivariate
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Adaptive Regression Splines (MARS), in which the piecewise linear

basis functions are selected in a similar way as a forward stepwise lin-

ear regression (Hastie, Tibshirani, and Friedman 2009). Compared to

polynomial trends, piecewise linear functions are more flexible and eas-

ier to interpret;

• Natural cubic splines trend over time. They are less sensitive to out-

liers and are smooth alternatives to the piecewise linear trend, so they

estimate pretty well any kind of function. Here too, the time axis is

divided into intervals. Beyond the boundary knots, a linear trend is as-

sumed. In the internal intervals, instead, a cubic trend is presupposed.

Although we obtain a more flexible model, we lose in interpretabil-

ity. The model is in fact defined as a linear combination of K basis

functions:

ηij =

p
∑

j=1

Mj
∑

m=1

βjmhjm (xj) ,

where hm are the basis functions defined as follows:

h1(t) = 1, h2(t) = t, hk+2(t) = dk(t)− dk−1(t)

dk(X) =
(t− ξk)

3
+ − (t− ξK)

3
+

ξK − ξk
.

However, in this study, the only parameters that we need to interpret are the

association coefficients between the endogenous variable and the outcome,

and they are derived analytically using variances and covariances. Hence, no

fixed effects are really taken into consideration for the final comments.

Note that not all the trends were used for every variable, but only those

deemed most appropriate based on the plots in Figure 5.2. The pink line

represents the loess curve. Even if it is a local approximation, it may be

useful to provide a starting point for the analysis. The further it deviates

from a linear trend, the more likely it is that the best mean trend over time

is not linear.

In conclusion, we chose a natural cubic splines trend over time for the PUL
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Figure 5.2: Trajectories per patient of the three variables over time.

2.0 variable and protein1. For the PUL 2.0 outcome, we selected a cubic

spline with two knots at age 8 and 18.5. For the protein1 a cubic spline

with only one knot at age 14. For protein2, instead, we chose a linear trend.

Furthermore, for all of them, we preferred the models with both random

intercepts and random slopes only on the linear effect of time. The selection

was made based on the values of the information criteria WAIC and DIC

(described in Section 1.4.2) and the marginal likelihoods. The predictive

measures CPO and PIT (see Section 1.4.3) were considered too, but they

provide a less accurate evaluation of the goodness of fit of the model due to

the dependence between the observations.

5.3 Modelling

Once the trend over time was defined for each variable, we estimated the

association between the proteins and the PUL functional score through the



5.3 Modelling 73

joint mixed model (JMM) and the joint scaled model (JSM). As has already

been specified, hereafter the two proteins are studied separately. Hence, for

each type of joint model, two models were estimated.

5.3.1 Joint Mixed Model

The joint mixed models measure the association between the endogenous

variable selected and the functional score via the random effects variance-

covariance matrix D. As we already have selected the best mean trend over

time for each variable, the second step of the model building is to choose the

appropriate structure of the matrix D. The strategy that we followed is:

• consider the most elaborate form for the matrix, the unstructured ma-

trix (3.6), in which all the random effects are correlated;

• evaluate the significance of covariance values on the estimated matrix.

The matrix form is simplified if the null hypothesis of values equal to

zero is not rejected, which means that their credible intervals contain

zero. For instance, a pairwise correlation matrix (3.7) is estimated or

a new random effect structure is considered e.g., only random inter-

cepts, one random slope instead of two, etc.; Furthermore, the model

is evaluated on the basis of the measures described in Section 1.4;

• once again, in the newly selected matrix, the significance of the element

outside the main diagonal is assessed. If they are still not significant,

the protein’s model and the outcome’s model are estimated separately.

Note that if the variance and covariance values are still significant but really

near zero, it is suggested to simplify the matrix form anyway in order to

reduce the number of parameters to estimate.

In the end, for both the JMM, a pairwise correlation matrix was used.
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The two models can be defined, with the same general structure, as follows:















xi (sij) = Xiβ + b
(x)
0,i + b

(x)
t,i · sij + ε
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.

The fixed effect part of the endogenous covariateXiβ is differently defined

for protein1 (5.2) and protein2 (5.3):

Xiβ
(p1) = β

(x)
0 + β

(x)
1 · h1(sij) + β

(x)
2 · h2(sij) (5.2)

Xiβ
(p2) = β

(x)
0 + β

(x)
1 · sij (5.3)

Based on this model, the association coefficient can be then derived as follows:

βjmm
x (t) =

Cov(y, x)(t)

Var(x)(t)
=

σ(x,0),(y,0) + t2σ(x,t),(y,t)

σ2
x,0 + t2σ2

x,t + σ2
ε,x

. (5.4)

Note that this structure of βjmm
x applies for both the proteins independently

on the mean structure of the models. The association coefficient in the JMM

depends only on the structure of the random effects and on the form of their

variance-covariance matrix.

5.3.2 Joint Scaled Model

In the joint scaled model, the association between the endogenous variable

selected and the functional score is measured via a scaled factor γ. No pro-

cedure is therefore required for the selection of the best variance-covariance
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matrices for the random effects, which are directly defined as:


























mi (sij) = Xiβ + b
(x)
0,i + b

(x)
t,i · sij + ε

(x)
i (sij)

xi (sij) = mi (sij) + εxi (sij)

yi (tij) = γmi (tij) + β
(y)
0 +β

(y)
1 · h1(tij) + β

(y)
2 · h2(tij) + β

(y)
3 · h3(tij)+

+ b
(y)
0,i + b

(y)
t,i · tij + ε

(y)
i (tij)

(5.5)

whit
bxi ∼ N (0,Dx) , εxi (sij) ∼ Nni

(

0, σ2
ε,x

)

byi ∼ N (0,Dy) , εyi (tij) ∼ Nni

(

0, σ2
ε,y

)

where Xiβ correspond to (5.2) for protein1 and to (5.3) for protein2. Here,

the association coefficient βjmm
x is computed as in equation 4.6.

5.4 Results

5.4.1 Analyzing protein1

To understand if there is an association between the functional score PUL

2.0 and the endogenous variable protein1, we have to evaluate the association

coefficient. Additionally, in the JMM we need to inspect the covariances be-

tween the random effect and the corresponding credible intervals. σ(x,0),(y,0)

and σ(x,t),(y,t) are particular of interest, since they are responsible for the as-

sociation between the two variables. Instead, in the JSM, the significance

of the scaling factor γ must be assessed. It is the element with which the

joint scaled model considers the association, as well as the limit reached

by the coefficient when time goes to infinity (see equation 5.4). In Figure

5.3 the results of the models (5.1) and (5.5) are shown. Also the credible

intervals of the random effects’ hyperparameters in JSM are reported, in or-

der to understand if it is possible to consider a more parsimonious model.

The association coefficients in both models increase over time following the

same pattern. At low ages, the JMM provides an association fairly close to

zero, but with increasing age, the coefficient tends to approach one. How-

ever, the credible intervals of the JMM estimates include zero, indicating a
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Figure 5.3: Trajectories of the estimated association coefficients and credible

intervals of the hyperparameters of the random effects for both JMM and

JSM models between the functional score and the endogenous variable pro-

tein1.

non-significant association, unlike the JSM estimates, which are significantly

above zero. Remember that the JMM appeared to be not robust in the sim-

ulation study, hence the association coefficient estimate might be distorted.

Furthermore, we are dealing with low variances and correlations. Thus, we

can not fully trust the results, but the plot can still provide insight into the

general behavior of the association.

On the plot in the right top corner of Figure 5.3, the credible intervals (CI)

of variances and correlations of the random effects in JMM are shown. It’s

worth noting that the CIs for both correlations (correlation between random

intercepts and correlation between random slopes) have zero inside. Having

followed the strategy described in Section 5.3.1, the best way to proceed

would be to consider a new model that does not include these terms. Indeed,
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as shown in Table Table 5.1, the best model is the one that assumes no

correlation between random effects of different variables. This conclusion is

consistent with the behavior of the association coefficient estimates. Only the

marginal likelihood favors the model with an unstructured correlation matrix,

which was excluded at the outset in order to simplify the model as much

as possible. However, the differences between the measures are negligible.

Thus, because our initial goal was to estimate the association between the

endogenous covariate and the response variable, we still consider the model

with a pairwise variance-covariance matrix to be reliable.

Table 5.1: Comparison between JMM model for protein1 with an unstruc-

tured correlation matrix of the random effects, pairwise correlation matrix

and no correlation.

Unstructured Pairwise None

Marginal Likelihood -1129.68 -1133.65 -1136.95

DIC 1509.97 1508.05 1506.92

WAIC 1506.57 1504.47 1503.62

CPO 760.90 759.94 759.72

Finally, on the plot in the right bottom corner of Figure 5.3 the credible

intervals of variances and correlations of the random effects in JSM are shown.

In this type of model, the correlations between the random effects of x and

y are not used to evaluate the association between the protein1 and the

PUL 2.0 outcome. Anyway, the association coefficient still depends on the

covariances between the random effects of the endogenous variable, so the

estimations are affected by the choice of different forms for the random effects

of x. Moreover, removing non-significant elements can be relevant to obtain

a better model. From our data, it appears that the covariance between

the random intercepts and random slopes of the response variable is not

significant. However, based on the measures of fitting in Table 5.2, the best

model is the one that assumes a correlation between the random effects of

the response variable.
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Table 5.2: Comparison between a JSM with covariance between random in-

tercepts and slopes of the response variable (covariances), and a JSM without

(no-covariances).

Covariances No-covariances

Marginal Likelihood -1152.51 -1188.18

DIC 1504.79 1556.21

WAIC 1502.05 1556.80

CPO 758.84 787.37

5.4.2 Analyzing protein2

The same analysis done for protein1 now is reproduced for protein2. In

Figure 5.4 the trajectories of the JMM and JSM estimated coefficients are

shown with the corresponding credible intervals. This time, the estimated as-

sociation coefficient of JMM is very close to zero across all ages. In contrast,

the JSM values are all around one and the credible intervals do not include

zero. Thus, JSM estimates are all significant, unlike the JMM estimates.

Once again, in the JMM, the correlations between the random intercepts

ρ(x,0),(y,0) and the one between the random slopes ρ(x,t),(y,t), are non-significant

since their credible intervals have zero inside (plot on the right up corner of

Figure 5.4). This leads us to the same conclusion of the association coef-

ficient. Also the results in Table 5.3 confirm that the best LMM model is

the one that assumes no association between protein2 and PUL 2.0. How-

ever, the differences in goodness of fit measures are even smaller than before,

allowing us to continue to use the pairwise model to estimate and provide

information about the association over time. The correlations between the

random effects of both the protein and the functional score in the JSM con-

sidered are pretty close to zero, and their credible intervals include it as well.

Moreover, even the value of the random slopes of x is really near zero, and

since we delete the correlation between the random effects of the endogenous

variable, the random slopes can be removed too. The new model then has

only random intercepts for the covariate and both the random effects for
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Figure 5.4: Trajectories of the estimated association coefficients and credible

intervals of the hyperparameters of the random effects for both JMM and

JSM models between the functional score and the endogenous variable pro-

tein2.

the functional score. Note that this implicates having an JSM association

coefficient (3.11) that is no longer time dependent. The variance of the en-

dogenous process is simply defined as the sum of the variance of the random

intercept σ2
x,0 and the variance of the error terms σ2

ε,x. Instead, the variance

of the linear predictor m(tij) coincides with only the variance of the random

intercept σ2
x,0. Thus, the association coefficient is:

βjsm
x = γ

[

Var(m)

Var(x)

]

= γ

[

σ2
x,0

σ2
x,0 + σ2

ε,x

]

= 0.66

Once again we compare the models based on the measures of goodness de-

scribed in Section 1.4 and the results are shown in Table 5.4. All of them

suggest that the best model is the one that assumes random slopes for the

endogenous variable and covariance between the random effects for both the
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Table 5.3: Comparison between JMM model for protein2 with an unstruc-

tured correlation matrix of the random effects, pairwise correlation matrix

and none correlation.

Ustructure Pairwise None

Marginal Likelihood -1073.44 -1079.64 -1077.49

DIC 1510.28 1509.14 1506.65

WAIC 1506.70 1505.63 1503.00

CPO 761.20 760.67 759.44

variables, except for the Bayes Factor which is in favor of the model without.

Table 5.4: Comparison between a JSM with covariance between random

effects for both the variables (covariance), and a JSM without covariances

and random slopes for x (no-covariance).

Covariances No-covariances

Marginal Likelihood -1086.20 -1029.05

DIC 1507.38 1563.62

WAIC 1504.21 1563.71

CPO 759.86 790.75

5.4.3 Comments

We presented results of models in which we assumed a normal likeli-

hood for both the functional score and the endogenous variable. However,

the outcome PUL 2.0 is a score that can assume values only between 0 to

42. Assuming a Gaussian distribution for this variable is therefore formally

wrong. The predictions obtained from such a model could, in fact, be pro-

jected out of the support [0, 42]. To overcome this problem we decide to use a

Beta distribution, as described in Section 2.2.1. The beta distribution is gen-

erally defined in a range (0, 1), but it is also used in the presence of a variable
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limited in different intervals. In order to do that, the support of the variable

of interest has to be changed. There are several possible transformations but

the one that we used is the Min-Max transformation h(y) = y−min
max−min

.

On the transformed functional score then, we implemented a JMM and

a JSM having a Beta likelihood for the dependent variable and a Gaussian

likelihood for the endogenous variable. According to Table 5.5 and Table 5.6,

the best models are those that assume a Beta distribution. The differences

in goodness of fit measures are indeed substantial. The only quantities that

strongly disagree are the CPOs, but as we have already stated, in the context

of mixed models we cannot completely trust them (see Section 1.4.3).

Table 5.5: Comparison between JMM and JSM models for protein1 with

Gaussian and Beta likelihood.

JMM JSM

Gaussian Beta Gaussian Beta

Marginal Likelihood -1133.65 -27.07 -1152.51 -37.00

DIC 1508.05 -780.35 1504.79 -843.28

WAIC 1504.47 -779.06 1502.05 -846.05

CPO 759.94 1639.37 758.84 3664.29

Table 5.6: Comparison between JMM and JSM models for protein2 with

Gaussian and Beta likelihood.

JMM JSM

Gaussian Beta Gaussian Beta

Marginal Likelihood -1079.64 27.45 -1086.20 26.00

DIC 1509.14 -779.62 1507.38 -841.83

WAIC 1505.63 -778.26 1504.21 -848.63

CPO 760.67 1729.36 759.86 3702.65

However, there are some issues with these new models. First of all, the

interpretation is not simple. The regression parameters can only be inter-
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preted in terms of E[yij] and not in terms of yij. This leads to a second

problem concerning the association coefficient. As we have already discussed

in Section 3.2.1 and 3.3.1, it is no longer possible to obtain a closed-form

solution for the coefficient when one of the likelihoods is not normal. It is

quite challenging to find the joint distribution and then the conditional on x

as for the case with two Gaussian likelihoods. What we tried to do then, was

to find an approximation of the closed-form formula using as best we could

the Bayesian output provided by R-INLA. We need to derive the conditional

posterior distribution of y given x and its mean E(yij | xij), defined as:

E(yij | xij) =

∫

b

exp
(

x⊤

ijβ + z⊤ijbi

)

f (bi) dbi,

that in the context of mixed models is the mean of the marginal distribution

(see equation 2.10), in which the random effects are integrated out. Once

we have it, the idea is to compare the marginal means for a unit change

of x, thus E(yij | xij + 1) − E(yij | xij), as we did when we derive the

analytical form of the association coefficient in chapter 3. However, this

software furnishes as output only univariate marginal posterior distributions

of the latent field (1.6) and the hyperparameters (1.7). The only conditional

distribution provides are the predictive distributions (1.16). For each record

of the dataset, they furnish the preditive distribution of the response variable

given all the parameters, hence, given the fixed and the random effects.

Even if we cannot obtain any information at the marginal level, using the

predictive distribution (1.16), it is then possible to derive the subject-specific

predictive mean E(yij | xij,bi), so the mean of the conditional distribution

on the random effects. By calculating the E(yij | xij + 1,bi) − E(yij |

xij,bi) quantity, in fact, we obtain a subject-specific parameter that provides

information on the mean change of the outcome for a unitary increase in the

endogenous covariate for the i-th subject, given that all the other covariate

are fixed. Some examples are shown in Table 5.7.

The values are obtained from the JSM, since is the model that has the best

fitting. We select random rows of the dataset trying to understand if overall

there is a pattern in the behavior of the association. First, we pick records of
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Table 5.7: Values of the subject-specific parameters calculated on JSM for

protein1 and protein2.

Subject Age Protein1 Protein2

35 7.1 -0.000017 -0.000019

65 7.1 0.0017 0.0039

4 14.5 0.0031 -0.0066

15 14.5 -0.000029 0.000015

33 14.5 -0.00098 0.00044

6 17.1 -0.00025 -0.0050

34 17.1 0.00031 0.00014

14 7.0 0.0057 -0.0074

14 10.0 0.0066 -0.0176

14 14.1 0.0058 -0.0063

14 18.5 -0.000017 0.000013

subjects at the same ages to see if there is a possible relationship with time.

Secondly, we select rows from the same subject but at different time points,

to realize if the mean change of the outcome for a unitary increase in the

protein1 or protein2 for the subject i depends on time. We reported only

the values of patient 14 as an example because he/she is one of the few for

which it is possible to select quite different age values. Seems that for both

the variables, the quantities E(yij | xij + 1,bi)−E(yij | xij,bi) are all quite

small, but this is not strange since we are studying the mean change at the

subject-level. Between the results of the two proteins, there are no major

differences. For each subject and age considered, the values show the same

orders of magnitude, except for the row relating to subject 14 at age 10. For

such a record, the unitary increase in protein1 results in a 0.0066 increase in

the mean of the outcome, whereas a unitary increase in protein2 entails to

a decrease in the mean equal to 0.0176. When comparing the values of the

same subject 14 at different time points, it appears that the values are very

similar for the first three ages, but there is no change in the mean outcome for
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the unitary increase of the two proteins for the last one. When we consider

different subjects at the same time, we cannot draw firm conclusions. The

results are all very small, but when we compare the order of magnitude, they

are quite different from one another, so appears to be no pattern.

In conclusion, we do not have information about the marginal mean yet,

what we can evaluate the association between the endogenous variable and

the outcome for a specific subject at a specific time point. In our case,

the subjects do not have very long trajectories because the patient’s life

expectancy is low. However, for longitudinal studies with large number of

subjects and a longer period of observation, the association at the subject

level can provide useful information as well. It may be especially useful in

the medical field for identifying differences between subjects and applying

appropriate treatments.



Conclusion

In this thesis, we focused on the use of joint models to model the associa-

tion between longitudinal outcomes and endogenous time-varying covariates.

We began by discussing endogeneity and how it affects the estimation of

popular methods such as Linear Mixed Effects Models and Generalized Lin-

ear Mixed Models. We presented two types of joint models, Joint Mixed

Models (JMM) and Joint Scaled Models (JSM), and their advantages over

traditional methods. The joint models can produce more efficient and ac-

curate estimates of the underlying relationships between the two correlated

longitudinal variables by modeling their processes separately and combin-

ing them into a single model. We then introduced the Integrated Nested

Laplace Approximation (INLA) methodology as a computationally efficient

way of fitting joint models. We applied joint modeling in INLA to vari-

ous examples, including analyzing the relationship between proteins and the

performance of the upper limb test in patients having Duchenne Muscular

Dystrophy. But first, we evaluated the performance of joint models in INLA

through simulation studies.

The joint models that we used, provide information about the association

between longitudinal outcomes and endogenous time-varying covariates only

through the covariance among the random effects of the two processes (JMM)

or a scaling factor (JSM). To more accurately measure the relationship, we

also developed an association coefficient with the same interpretation as a

generic regression parameter, i.e., a parameter that estimates the change in

mean outcome for a unitary increase in the endogenous covariate, given that

all other covariates are fixed. This makes the interpretation of the associa-



86 Application

tion easier and more practical to explain to doctors or scholars from outside

the statistical field. However, a closed-form for it could only be defined when

the outcome and the covariate are both normally distributed. To obtain an

estimation of this parameter, in fact, the conditional distribution of the out-

come given the endogenous covariate is required, which with both Gaussian

variables, is itself a normal distribution. When they are of different types,

though, we cannot exploit the property of normal distributions and we had to

find another way to measure the association coefficient. The solution is not

straightforward but using the output of INLA it has been possible to define

an approximation. In particular, we provided an estimation of the change

in mean outcome for a unitary increase in the endogenous covariate for a

specific subject. Therefore, a parameter of association that has a subject-

specific interpretation. The derivation of the coefficient of association with

the marginal interpretation is left to future research because it necessitates

a separate, more in-depth investigation.

We have introduced INLA in its Bayesian framework and show how,

thanks to that, was possible to perform the joint models overcoming the

problem of high-dimensional integration over the random effects. Overall,

INLA is a powerful and flexible approach that can be used to address a wide

range of research questions. It provided a computationally efficient way of

fitting the joint models, allowing most of the time for quick inference. How-

ever, the implementation of the joint model in R-INLA is quite limited with

the standard options, e.g., no more than five correlation random effects can

be assumed. Furthermore, in order to implement joint models in R-INLA,

the data required to be manually rewritten in a specific structure, which

slows down the preparation process and leaves more room for possible care-

less mistakes and oversight. In the future, it would be interesting to develop

a new R package that automates the generation of the dataset of interest and

the estimation of the joint models.

Through simulation studies, we have shown INLA and the joint models

in action and made recommendations on their use. First, we realized that

whenever there are time-varying covariates, the JSM is the best choice to es-
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timate the association. Unlike JMM, it is robust and leads to very accurate

estimations. However, INLA does not always provide accurate estimations.

In the presence of a small number of observations and small variances, INLA

does not perfectly estimate the hyperparameters, such as the precision and

the correlation parameters. In this thesis, this issue is especially relevant

since the closed-form of the association coefficient is defined as a function

of variances. Thus, poor precision estimations lead to poor variance estima-

tions, which leads to poor estimation of the association coefficients. To solve

this problem, we tried to change the prior distribution from the default un-

informative one, but nothing seemed to improve the results. Future research

could be conducted on the search for an optimal prior. Moreover, we would

recommend simplifying the structure of the JMM random effects as much as

possible, especially when the number of observations is low and not much

information from the data is provided for the estimation.

In conclusion, we have demonstrated the importance of joint modeling

of the outcome and endogenous time-varying covariates in longitudinal data

analysis. Both are relevant, even though the JSM appeared to be more often

accurate based on the simulation study results. They model the associa-

tion in two different ways, which can lead to different conclusions, but it is

crucial to use both to obtain more complete information about the associa-

tion. We have implemented the joint mixed and joint scaled models within

the Bayesian setting with INLA, and we have evaluated their performance.

Although INLA occasionally results in biased estimations of the hyperparam-

eter, overall it was proven to be an efficient and quick method of estimating

the joint models.
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Gómez-Rubio, V. Bayesian Inference with INLA. Boca Raton, FL: Chapman

& Hall/CRC Press, 2020. url: https://becarioprecario.bitbucket.io/inla-

gitbook/index.html.

Gomon, G. Joint Models: Implementation in INLA and Applications. Leiden

University, 2022.

Hadfield, Jarrod D. “MCMCMethods for Multi-Response Generalized Linear

Mixed Models: The MCMCglmm R Package”. In: Journal of Statistical

Software 33.2 (2010), pp. 1–22. url: https://www.jstatsoft.org/v33/i02/.

Hastie, T., R. Tibshirani, and J. Friedman. The elements of statistical learn-

ing: data mining, inference and prediction. Heidelberg and New York:

Springer-Verlag, 2009. url: http : / / www - stat . stanford . edu / ∼tibs /

ElemStatLearn/.



90 BIBLIOGRAPHY

Hedeker, D. et al. “A note on marginalization of regression parameters from

mixed models of binary outcomes”. In: Biometrics (2017), 74(1):354–361.

Held, L., B. Schrödle, and H. Rue. Statistical Modelling and Regression Struc-

tures. Berlin: Springer Verlag, 2010. Chap. Posterior and Cross-Validatory

Predictive Checks: A Comparison of MCMC and INLA, pp. 91–110.

Mayhew, A.G. et al. “Performance of Upper Limb module for Duchenne mus-

cular dystrophy”. In: Developmental medicine & child neurology (2019).

Muscular Dystrophy Association, About Duchenne Muscular Dystrophy. url:

https://www.mda.org/disease/duchenne-muscular-dystrophy.

Nicenboim, B., D. Schad, and S. Vasishth. An Introduction to Bayesian Data

Analysis for Cognitive Science. 2022. url: https://vasishth.github.io/

bayescogsci/book/.

Niekerk, J. V. et al. “New frontiers in Bayesian modeling using the INLA

package in R”. In: (2022).

Pinheiro, Jose et al. nlme: Linear and Nonlinear Mixed Effects Models. R

package version 3.1-155. 2022. url: https : / /CRAN .R - project . org /

package=nlme.

Qian, T., P. Klasnja, and S. A. Murphy. “Linear Mixed Models with Endoge-

nous Covariates: Modeling Sequential Treatment Effects with Application

to a Mobile Health Study”. In: Statistical science (2020), Vol. 35, No. 3,

375–390.

R-INLA Manual. 2020. url: http://www.r-inla.org/home.

Rizopoulos, D. An Introduction to the Joint Modeling of Longitudinal and

Survival Data, with Applications in R. Department of Biostatistics, Eras-

mus University Medical Center, 2017.

Rizopoulos, Dimitris. GLMMadaptive: Generalized Linear Mixed Models us-

ing Adaptive Gaussian Quadrature. R package version 0.8-5. 2022. url:

https://CRAN.R-project.org/package=GLMMadaptive.

Rue, H. and Z. Liu. “Leave-group-out cross-validation for latent gaussian

models”. In: (2022).



BIBLIOGRAPHY 91

Rue, H. and S. Martino. Approximate Bayesian Inference for Hierarchical

Gaussian Markov Random Fields Models. Department of Mathematical

Sciences NTNU, Norway, 2006.

Rue, H., S. Martino, and N. Chopin. “Approximate Bayesian inference for

latent Gaussian models by using integrated nested Laplace approxima-

tions”. In: Journal of the Royal Statistical Society (2009), pp. 319–392.

Rue, H., G. M. Thiago, et al. Bayesian computing with INLA: new features.

Department of Mathematical Sciences Norwegian University of Science

and Technology, 2013.

Spiegelhalter, D. et al. “Bayesian measures of model complexity and fit.” In:

Journal of the Royal Statistical Society: Series B (Statistical Methodology)

(2002), 64(4):583–639.

Venables, W. N. and B. D. Ripley. Modern Applied Statistics with S. Fourth.

ISBN 0-387-95457-0. New York: Springer, 2002. url: https://www.stats.

ox.ac.uk/pub/MASS4/.

Verbeke, G. et al. “The analysis of multivariate longitudinal data: A review”.

In: National Institute of Health (2014), 23(1): 42–59.

Weiss, R. E. Modeling longitudinal data. Springer, 2005.

Wu, L.Mixed Effects Models for Complex Data. University of British Columbia:

Chapman & Hall/CRC Press, 2019.

Zhang, Z. “A Note on Wishart and Inverse Wishart Priors for Covariance

Matrix”. In: Journal of Behavioral Data Science (2021), 1 (2), 119–126.



92 BIBLIOGRAPHY



Appendix A

R Code

Code A.1: Linear Mixed Model in INLA

lmm ¡ - func t i on ( data , N) –

# random s l op e s p o s i t i o n in the random e f f e c t s vec to r

data $ time ˙ random ¡ - data $ id+N

INLA˙ formula ¡ - y ˜ x + t +

f ( id , model = ” i i d2d ” , n=2*N) + # random i n t e r c e p t s

f ( time ˙ random , t , copy = ” id ” ) # random s l op e s

LMM˙ INLA ¡ - i n l a (INLA ˙ formula , fami ly = ” gauss ian ” , #

l i k e l i h o o d

data = data , c on t r o l . compute = l i s t

( cpo = TRUE, d i c = TRUE, waic =

TRUE) ) # eva lua t i on methods

re turn ( l i s t (lmm˙ i n l a = summary(LMM˙ INLA) ,

CPO = -sum( log (LMM˙ INLA$ cpo$ cpo ) , na . rm = TRUE) ,

WAIC = LMM˙ INLA$waic $waic ,

DIC = LMM˙ INLA$ d i c $ d i c ) )

˝
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Code A.2: Beta Mixed Model in INLA

bmm ¡ - func t i on ( data , N) –

# random s l op e s p o s i t i o n in the random e f f e c t s vec to r

data $ time ˙ random ¡ - data $ id+N

INLA˙ formula ¡ - y ˜ x + t +

f ( id , model = ” i i d2d ” , n=2*N) + # random i n t e r c e p t s

f ( time ˙ random , t , copy = ” id ” ) # random s l op e s

BMM˙ INLA ¡ - i n l a (INLA ˙ formula , fami ly = ”beta ” , #

l i k e l i h o o d

data = data , c on t r o l . compute = l i s t

( cpo = TRUE, d i c = TRUE, waic =

TRUE) , # eva lua t i on methods

c on t r o l . p r ed i c t o r = l i s t ( compute =

TRUE, l i n k = 1) , # l i n k func t i on

f o r p r e d i c t i o n s

c on t r o l . f ami ly = l i s t ( beta . censor .

va lue = 0) ) # de f au l t censor

va lue

re turn ( l i s t (bmm˙ i n l a = summary(BMM˙ INLA) ,

CPO = -sum( log (BMM˙ INLA$ cpo$ cpo ) , na . rm =

TRUE) ,

WAIC = BMM˙ INLA$waic $waic ,

DIC = BMM˙ INLA$ d i c $ d i c ) )

˝
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Code A.3: Joint Mixed Model in INLA with unstructure matrix

jmm ¡ - func t i on ( data , N, time , i , f a i l e d ) –

N˙ obs ¡ - nrow ( data )

f i x e d . e f f e c t s ¡ - l i s t ( I n t e r c ep t ˙ x = c ( rep (1 , N˙ obs ) , rep (

NA, N˙ obs ) ) ,

w˙ x = c ( data $w, rep (NA, N˙ obs ) ) ,

t ˙ x = c ( data $ t , rep (NA, N˙ obs ) ) , #

f i x ed e f f e c t s f o r x

In t e r c ep t ˙ y = c ( rep (NA, N˙ obs ) , rep

(1 , N˙ obs ) ) ,

w˙ y = c ( rep (NA, N˙ obs ) , data $w) ,

t ˙ y = c ( rep (NA, N˙ obs ) , data $ t ) , #

f i x ed e f f e c t s f o r y

t = c ( data $ t , data $ t ) )

# Assuming unst ruc ture var iance - covar iance matrix between

random e f f e c t s

random . e f f e c t s ¡ - l i s t (Random ˙ In t e r c ep t = c ( data $ id , data

$ id+N) ,

Random ˙ Slope = c ( data $ id+2*N, data

$ id+3*N) )

INLA ˙ data ¡ - c ( f i x e d . e f f e c t s , random . e f f e c t s )

INLA ˙ data $Y ¡ - l i s t ( c ( data $x , rep (NA, N˙ obs ) ) ,

c ( rep (NA, N˙ obs ) , data $y ) )

INLA ˙ formula ¡ - Y ˜ -1 +

# f i x ed e f f e c t s f o r x

In t e r c ep t ˙ x + w˙ x + t ˙ x +

# f i x ed e f f e c t s f o r y

In t e r c ep t ˙ y + w˙ y + t ˙ y +
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# random e f f e c t s

f (Random ˙ Inte r cept , model = ” i i d4d ” , n = 4*N) + f (

Random ˙ Slope , t , copy = ”Random ˙ In t e r c ep t ” )

p r i n t ( paste ( ”Model number” , i ) )

tryCatch (JMM˙ INLA ¡ - i n l a (INLA ˙ formula , f ami ly = c ( ”

gauss ian ” , ” gauss ian ” ) ,

data = INLA˙ data , c on t r o l . compute =

l i s t ( cpo = TRUE, d i c = TRUE,

waic = TRUE, c on f i g=TRUE) ) ,

e r r o r = func t i on ( e ) – p r i n t ( ”INLA f a i l e d : Model

JMM”) ; a s s i gn ( ’ f a i l e d ’ , 1 , env i r=g loba l env ( ) ) ;

f a i l e d ¡ ¡ - 1˝)

i f ( f a i l e d==1)–

p r i n t ( ”Returning NA’ s ” )

re turn ( l i s t ( cbind ( time , matrix (NA, nrow = length ( time ) ,

nco l=3) ) ,

mlik = NA, o v e r a l l ˙ d i c = NA, y ˙ d i c = NA,

o v e r a l l ˙ waic = NA, y ˙ waic = NA,

o v e r a l l ˙ cpo = NA, y ˙ cpo = NA) )

˝

re turn ( l i s t ( mlik = JMM˙ INLA$mlik [ 1 ] ,

o v e r a l l ˙ d i c = JMM˙ INLA$ d i c $dic ,

y ˙ d i c = sum(JMM˙ INLA$ d i c $ l o c a l . d i c [ (N˙ obs+1)

: ( 2 *N˙ obs ) ] , na . rm=TRUE) ,

o v e r a l l ˙ waic = JMM˙ INLA$waic $waic ,

y ˙ waic = sum(JMM˙ INLA$waic $ l o c a l . waic [ (N˙ obs

+1) : ( 2 *N˙ obs ) ] , na . rm = TRUE) ,

o v e r a l l ˙ cpo = -sum( log (JMM˙ INLA$ cpo$ cpo ) , na .

rm=TRUE) ,

y ˙ cpo = -sum( log (JMM˙ INLA$ cpo$ cpo [ (N˙ obs+1)

: ( 2 *N˙ obs ) ] ) , na . rm=TRUE) ) )
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˝

Code A.4: Joint Mixed Model in INLA with pairwise-correlation matrix

jmm ¡ - func t i on ( data , N, time , i , f a i l e d ) –

N˙ obs ¡ - nrow ( data )

f i x e d . e f f e c t s ¡ - l i s t ( I n t e r c ep t ˙ x = c ( rep (1 , N˙ obs ) , rep (

NA, N˙ obs ) ) ,

w˙ x = c ( data $w, rep (NA, N˙ obs ) ) ,

t ˙ x = c ( data $ t , rep (NA, N˙ obs ) ) , #

f i x ed e f f e c t s f o r x

In t e r c ep t ˙ y = c ( rep (NA, N˙ obs ) , rep

(1 , N˙ obs ) ) ,

w˙ y = c ( rep (NA, N˙ obs ) , data $w) ,

t ˙ y = c ( rep (NA, N˙ obs ) , data $ t ) , #

f i x ed e f f e c t s f o r y

t = c ( data $ t , data $ t ) )

# Assuming pa i rw i s e var iance - covar iance matrix between

random e f f e c t s

random . e f f e c t s ¡ - l i s t (Random ˙ Int ˙ x = c ( data $ id , rep (NA,

N˙ obs ) ) ,

Random ˙ s l o ˙ x = c ( data $ id , rep (NA,

N˙ obs ) ) ,

Random ˙ Int ˙ y = c ( rep (NA, N˙ obs ) ,

data $ id+N) ,

Random ˙ s l o ˙ y = c ( rep (NA, N˙ obs ) ,

data $ id+N) )

INLA ˙ data ¡ - c ( f i x e d . e f f e c t s , random . e f f e c t s )

INLA ˙ data $Y ¡ - l i s t ( c ( data $x , rep (NA, N˙ obs ) ) ,

c ( rep (NA, N˙ obs ) , data $y ) )
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INLA ˙ formula ¡ - Y ˜ -1 +

# f i x ed e f f e c t s f o r x

In t e r c ep t ˙ x + w˙ x + t ˙ x +

# f i x ed e f f e c t s f o r y

In t e r c ep t ˙ y + w˙ y + t ˙ y +

# random e f f e c t s

f (Random ˙ Int ˙ x , model=” i i d2d ” , n=2*N) + f (Random ˙ Int ˙ y ,

copy = ”Random ˙ Int ˙ x” ) +

f (Random ˙ s l o ˙ x , t , model=” i i d2d ” , n=2*N) +

f (Random ˙ s l o ˙ y , t , copy = ”Random ˙ s l o ˙ x”

)

p r i n t ( paste ( ”Model number” , i ) )

tryCatch (JMM˙ INLA ¡ - i n l a (INLA ˙ formula , f ami ly = c ( ”

gauss ian ” , ” gauss ian ” ) ,

data = INLA˙ data , c on t r o l . compute =

l i s t ( cpo = TRUE, d i c = TRUE,

waic = TRUE, c on f i g=TRUE) ) ,

e r r o r = func t i on ( e ) – p r i n t ( ”INLA f a i l e d : Model

JMM”) ; a s s i gn ( ’ f a i l e d ’ , 1 , env i r=g loba l env ( ) ) ;

f a i l e d ¡ ¡ - 1˝)

i f ( f a i l e d==1)–

p r i n t ( ”Returning NA’ s ” )

re turn ( l i s t ( cbind ( time , matrix (NA, nrow = length ( time ) ,

nco l=3) ) ,

mlik = NA, o v e r a l l ˙ d i c = NA, y ˙ d i c = NA,

o v e r a l l ˙ waic = NA, y ˙ waic = NA,

o v e r a l l ˙ cpo = NA, y ˙ cpo = NA) )

˝

re turn ( l i s t ( mlik = JMM˙ INLA$mlik [ 1 ] ,

o v e r a l l ˙ d i c = JMM˙ INLA$ d i c $dic ,
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y ˙ d i c = sum(JMM˙ INLA$ d i c $ l o c a l . d i c [ (N˙ obs+1)

: ( 2 *N˙ obs ) ] , na . rm=TRUE) ,

o v e r a l l ˙ waic = JMM˙ INLA$waic $waic ,

y ˙ waic = sum(JMM˙ INLA$waic $ l o c a l . waic [ (N˙ obs

+1) : ( 2 *N˙ obs ) ] , na . rm = TRUE) ,

o v e r a l l ˙ cpo = -sum( log (JMM˙ INLA$ cpo$ cpo ) , na .

rm=TRUE) ,

y ˙ cpo = -sum( log (JMM˙ INLA$ cpo$ cpo [ (N˙ obs+1)

: ( 2 *N˙ obs ) ] ) , na . rm=TRUE) ) )

˝
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Code A.5: Joint Scaled Model in INLA

jsm ¡ - f unc t i on ( data , N, time , i , f a i l e d ) –

N˙ obs ¡ - nrow ( data )

# Fixed e f f e c t part only f o r the y

f i x e d . e f f e c t s ¡ - l i s t ( I n t e r c ep t ˙ y = c ( rep (NA, N˙ obs ) , rep

(1 , N˙ obs ) ) ,

w˙ y=c ( rep (

NA, N˙

obs ) ,

data $w) ,

t ˙ y = c ( rep (NA, N˙ obs ) , data $ t ) ,

w =c ( data $w, data $w) ,

t = c ( data $ t , data $ t ) )

# Fixed e f f e c t s o f the endogenous cova r i a t e x + random

e f f e c t s

random . e f f e c t s ¡ - l i s t ( I n t e r c ep t ˙ x = c ( rep (1 , N˙ obs ) , rep

(NA, N˙ obs ) ) ,

w˙ x =c ( rep (1 , N˙ obs ) , rep (NA, N˙ obs ) ) ,

t ˙ x = c ( rep (1 , N˙ obs ) , rep (NA, N˙

obs ) ) ,

I n t e r c ep t ˙ x ˙ s c a l ed = c ( rep (NA, N˙

obs ) , rep (1 , N˙ obs ) ) ,

w˙ x ˙ s c a l ed=rep (NA, N˙ obs ) , rep (1 ,

N˙ obs ) ,

t ˙ x ˙ s c a l ed = c ( rep (NA, N˙ obs ) ,

rep (1 , N˙ obs ) ) ,

Random ˙ i n t e r c e p t ˙ x = c ( data $ id ,

rep (NA, N˙ obs ) ) ,

Random ˙ s l ope ˙ x = c ( data $ id+N, rep
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(NA, N˙ obs ) ) ,

Random ˙ i n t e r c e p t ˙ x ˙ s c a l ed = c ( rep

(NA, N˙ obs ) , data $ id ) ,

Random ˙ s l ope ˙ x ˙ s c a l ed = c ( rep (NA,

N˙ obs ) , data $ id+N) ,

Random ˙ i n t e r c e p t ˙ y = c ( rep (NA, N˙

obs ) , data $ id ) ,

Random ˙ s l ope ˙ y = c ( rep (NA, N˙ obs )

, data $ id+N) )

INLA ˙ data ¡ - c ( f i x e d . e f f e c t s , random . e f f e c t s )

INLA ˙ data $Y ¡ - l i s t ( c ( data $x , rep (NA, N˙ obs ) ) ,

c ( rep (NA, N˙ obs ) , data $y ) )

INLA ˙ formula = Y ˜ -1 +

# f i x ed e f f e c t s o f x ( d e f i n e as i i d random a f f e c t s )

f ( I n t e r c ep t ˙ x ) + f (w˙ x , w) + f ( t ˙ x , t ) +

# sca l ed f i x e d e f f e c t s o f x

f ( I n t e r c ep t ˙ x ˙ s ca l ed , copy = ” In t e r c ep t ˙ x” , hyper =

l i s t ( beta = l i s t ( f i x e d=FALSE) ) ) +

f (w˙ x ˙ sca l ed , copy = ”w˙ x” , same . as=’ In t e r c ep t ˙ x ˙ s c a l ed

’ , hyper = l i s t ( beta = l i s t ( f i x e d=FALSE) ) ) +

f ( t ˙ x ˙ s ca l ed , t , copy = ” t ˙ x” , same . as = ’ In t e r c ep t ˙ x ˙

s c a l ed ’ , hyper = l i s t ( beta = l i s t ( f i x e d=FALSE) ) ) +

# f i x ed e f f e c t s o f y

In t e r c ep t ˙ y + w˙ y + t ˙ y +

# random e f f e c t s f o r x

f (Random ˙ i n t e r c e p t ˙ x , model = ” i i d2d ” , n = 2*N) + f (

Random ˙ s l ope ˙ x , t , copy = ”Random ˙ i n t e r c e p t ˙ x” ) +

# sca l ed random e f f e c t s

f (Random ˙ i n t e r c e p t ˙ x ˙ s ca l ed , copy = ’Random ˙ i n t e r c e p t ˙ x
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’ , same . as = ’ In t e r c ep t ˙ x ˙ s c a l ed ’ , f i x e d = FALSE) +

f (Random ˙ s l ope ˙ x ˙ sca l ed , t , copy = ’Random ˙ i n t e r c e p t ˙ x ’

, same . as = ’ In t e r c ep t ˙ x ˙ s c a l ed ’ , f i x e d = FALSE) +

# random e f f e c t s o f y

f (Random ˙ i n t e r c e p t ˙ y , model = ” i i d2d ” , n = 2*N) + f (

Random ˙ s l ope ˙ y , t , copy = ”Random ˙ i n t e r c e p t ˙ y” )

p r i n t ( paste ( ”Model number” , i ) )

tryCatch (JSM˙ INLA ¡ - i n l a (INLA ˙ formula , f ami ly = c ( ”

gauss ian ” , ” gauss ian ” ) ,

data = INLA˙ data , c on t r o l .

compute = l i s t ( cpo =

TRUE, d i c = TRUE, waic =

TRUE, c on f i g=TRUE) ) ,

e r r o r = func t i on ( e ) – p r i n t ( ”INLA f a i l e d : Model 3

” ) ; a s s i gn ( ’ f a i l e d ’ , 1 , env i r=g loba l env ( ) ) ;

f a i l e d ¡ ¡ - 1˝)

i f ( f a i l e d==1)–

p r i n t ( ”Returning NA’ s ” )

re turn ( l i s t ( c o e f f ˙ jsm = cbind ( time , matrix (NA, nrow =

length ( time ) , nco l=3) ) ,

mlik = NA, o v e r a l l ˙ d i c = NA, y ˙ d i c = NA,

o v e r a l l ˙ waic = NA, y ˙ waic = NA,

o v e r a l l ˙ cpo = NA, y ˙ cpo = NA) )

˝

re turn ( l i s t ( mlik = JSM˙ INLA$mlik [ 1 ] ,

o v e r a l l ˙ d i c = JSM˙ INLA$ d i c $dic ,

y ˙ d i c = sum(JSM˙ INLA$ d i c $ l o c a l . d i c [ (N˙ obs+1)

: ( 2 *N˙ obs ) ] , na . rm=TRUE) ,

o v e r a l l ˙ waic = JSM˙ INLA$waic $waic ,

y ˙ waic = sum(JSM˙ INLA$waic $ l o c a l . waic [ (N˙ obs

+1) : ( 2 *N˙ obs ) ] , na . rm = TRUE) ,
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o v e r a l l ˙ cpo = -sum( log (JSM˙ INLA$ cpo$ cpo ) , na .

rm=TRUE) ,

y ˙ cpo = -sum( log (JSM˙ INLA$ cpo$ cpo [ (N˙ obs+1)

: ( 2 *N˙ obs ) ] ) , na . rm=TRUE) ) )

˝


