
University of Padova

Department ofMathematics “Tullio Levi-Civita”

Master Thesis in Computer Science

Enhancing Image Classification with

Colorization Techniques and Ensemble

Learning

Supervisor Master Candidate
Prof. Loris Nanni HalaMohamedMostafa Abousobh
University of Padova

Student ID
2041590

Academic Year
2023-2024

ii

“I suppose therefore thatall things I see are illusions; I believe thatnoth-
inghas ever existedof everythingmy lyingmemory tellsme. I think I haveno
senses. I believe that body, shape, extension, motion, location are functions.
What is there then that can be taken as true? Perhaps only this one thing,
that nothing at all is certain.”
—Rene Descartes

iv

Abstract

In recent decades, Artificial Intelligence systems have increasingly achieved and surpassed human-level perfor-
mance in a variety of complex tasks. Despite their success, the intricate and non-linear structures of deep learn-
ing models often make them opaque and challenging to interpret. This thesis presents an innovative automated
system for the classification of planktic foraminifera at the species level and extends this methodology to the clas-
sification of satellite images from the EuroSAT dataset. The system leverages advanced deep learning techniques,
including Generative Adversarial Networks (GANs) and U-Net-based autoencoders.

Initially, the foraminifera dataset, comprising 1437 groups of sixteen grayscale images (one group for each
specimen), is converted to RGB images through various processing methods. Similarly, the EuroSAT dataset,
based on Sentinel-2 satellite images and including 13 spectral bands across 10 classes with a total of 27,000 labeled
and geo-referenced images, is also converted to RGB images through diverse processing methods. These newly
colored RGB images from both datasets are then classified using transfer learning.

The RGB images are fed into a set of Convolutional Neural Networks (CNNs) organized in an Ensemble
Learning (EL) environment. The ensemble is built by training different networks using diverse approaches for
creating the RGB images, supporting the classifiers to enhance performance. This study demonstrates that an
ensemble of CNN models trained on the newly colored RGB images from both datasets improves the system’s
performance compared to other state-of-the-art approaches. Themain focus of this thesis is to introducemultiple
colorization methods that differ from current cutting-edge techniques

Keywords: Generative Adversarial Network, Ensemble Learning, Transfer Learning, Plankton Classifi-

cation, EuroSAT Classification, Sentinel-2 Satellite Images.

v

vi

Contents

Abstract v

List of figures ix

List of tables xi

Listing of acronyms xiii

1 Introduction 1

1.1 OVERVIEW . 2

1.2 HISTORICAL BACKGROUND . 3

1.3 RelatedWork . 5

2 DATASETS 7

2.1 Foraminifera dataset . 8

2.2 EUROSATDATASET . 10

3 PRPOSEDALGORITHMS 13

3.1 Supervised Learning for Image Colorization . 14

3.1.1 Colorization Using Supervised Generative Adversarial Networks 15

3.1.2 Auto-encoder withMulti-skip Connections for Image Colorization 29

3.2 image classification using transfer learning . 41

3.2.1 TRANSFER LEARNINGCLASSIFIERS : . 43

3.2.2 Ensemble Learning . 48

3.2.3 K-Fold Cross-Validation . 51

vii

4 EXPERIMENTS ANDANALYSIS : 53

4.1 CLASSIFICATION EXPERIMENTS ANDANALYSIS OF FORAMINIFERADATASET 55

4.2 CLASSIFICATION EXPERIMENTS ANDANALYSIS OF EuroSat DATASE 64

5 Conclusion 71

5.1 Foraminifera Classification . 72

5.2 EuroSATDataset Classification . 72

5.3 Ensemble Learning Effectiveness . 72

5.4 Future Work . 73

References 75

Acknowledgments 81

viii

Listing of figures

2.1 samples of grayscale foraminifera dataset . 9

2.2 samples of grayscale EuroSat dataset . 12

3.1 Sample of Target Images of Foraminfera dataset using DWT techinque 17

3.2 Sample of Target Images of EuroSat dataset using Normalization techinque 18

3.3 The architecture of U-Net . 21

3.4 Discriminator Framework . 23

3.5 Samples of colored Foraminifera images using GAN . 28

3.6 Samples of colored EuroSat images using GAN . 28

3.7 Auto-Encoder with Skip Connections Framework . 29

3.8 Foraminifera Example of Separating Y,U And V Channels 30

3.9 VGG-19 Architecture . 34

3.10 The resulted colored images for EuroSat dataset after applying VGG-19 Auto-Encoder . . . 39

3.11 The resulted colored images for EuroSat dataset after applying U-Net Auto-Encoder 39

3.13 The resulted colored images for Foraminifera after applying VGG-19 Auto-Encoder 40

3.12 The resulted colored images for Foraminifera after applying U-Net Auto-Encoder 40

3.14 Transfer Learning Architecture . 42

3.15 ResNet-50-model Architecture . 44

3.16 ResNet-18 Architecture . 45

3.17 GoogleNet Architecture . 46

3.18 MobileNetV2 . 48

3.19 Ensemble Learning Framework . 49

4.1 ConfusionMatrix for Ensemble Model (Model 1 +Model 3) 57

ix

4.2 ConfusionMatrix for the Best Ensemble Model Using 4-Fold Cross Validation 62

4.3 ConfusionMatrix for Best Ensemble Model Performance on EuroSATDataset 68

x

Listing of tables

3.1 Losses for Discriminator and Generator using 70*70 patch sizewith β1 = 0.6 and β2 = 0.85 25

3.2 Losses for Discriminator and Generator using 100*100 patch sizewith β1 = 0.6 and β2 = 0.85 25

3.3 Losses for Discriminator and Generator losses matching the input size for both dataset with

β1 = 0.5 and β2 = 0.999 . 26

3.4 Losses for Discriminator and Generator using 70x70 Patch Size with β1 = 0.5 and β2 = 0.999 26

3.5 Losses forDiscriminator andGenerator using 100x100 Patch Size with β1 = 0.5 and β2 = 0.999 27

3.6 Losses for Discriminator and Generator using 70x70 Patch Size with β1 = 0.5 and β2 = 0.999 27

3.7 Results After Training Auto-Encoders on Test Dataset using AdamOptimizer 38

3.8 Results After Training Auto-Encoders on Test Dataset using SGDMOptimizer 38

4.1 Results After Training New Colored Images on Test Dataset Using AdamOptimizer 55

4.2 Comparison of Performance Measurements for Test Data Across Foraminifera Categories . . 56

4.3 Results of Forminifera Test Dataset using 4-Fold Cross Validation 58

4.4 Results of our proposed work compared to other ensemble models reported here [1] 59

4.5 Precision, recall, accuracy and F1 score comparison between models reported in [1], [2], and

the best ensemble presented in the paper. 60

4.6 Precision, recall, F1 score, and accuracy of the best ensemble across all classes of the dataset. . 61

4.7 F1 Score Performance for Image Classification Using Combined Various Colorization Meth-

ods and RGB Images . 64

4.8 F1 Score Performance for Image Classification Using Only Various ColorizationMethods . . 64

4.9 F1 Score Performance of Individual and Ensemble Models Using Various Colorization Meth-

ods Combined with RGB Images . 65

xi

4.10 AccuracyMetrics of Individual and EnsembleModels for EuroSATDataset Classification Us-

ing ResNet-50 Architecture . 66

4.11 Precision, recall, F1 score, and accuracy of the best ensemble across all classes of the dataset. . 67

xii

Listing of acronyms

NN Neural Network

ANN Artificial Neural Network

EL Ensembel Learning

GAN Generative Adversarial Network

CNN Convlutional Neural Network

SGDM Stochastic Gradient Gescent withMomentum

DNN Deep Neural Networks

DWT Discrete Wavelet Transform

RMSE Root Mean Square Error

DCT Discrete Cosine Transform

ReLU Rectified Linear Unit

TP True Positives

TN True Negatives

FP False Positive

FN False Negative

xiii

xiv

1
Introduction

1

1.1 OVERVIEW

The landscape of image classification has been revolutionized by rapid advancements in hardware and the deploy-

mentofDeepLearning techniques. These technologies, inherently repetitive andnon-creative, are perfectly suited

for automation. ConvolutionalNeural Networks (CNNs) stand out among deep learningmodels for their excep-

tional efficacy and efficiency in image classification, as demonstrated in numerous studies. However, the stochas-

tic nature of neural networks (NNs) can introduce variability in their results[3]. Ensemble Learning (EL)[4]

effectively addresses this challenge by combining outputs from different heuristic algorithms, thereby enhancing

performance and consistency and reducing individual model variability. This thesis introduces an innovative ap-

plication of EL for the classification of planktic foraminifera and extends this approach to classify images from

the EuroSAT dataset. Planktic foraminifera serve as paleo-environmental bioindicators, with their radiocarbon

measurements providing insights into historical environmental conditions such as global ice volume, temperature,

salinity, pH, and nutrient content . Traditionally, the classification of foraminifera has been a labor-intensive and

time-consuming task performed by large teams of experts. Since the early 1990s [5], efforts have been made to au-

tomate this process. Despite significant advancements, many methods still require considerable human oversight.

The problem with classifying foraminifera images lies in their complexity and variability. Foraminifera come in

numerous species with subtle morphological differences that can be challenging to distinguish even for trained

experts. The images are grayscale and taken from different angles, adding to the difficulty. Accurately classify-

ing these images is crucial for paleoceanography and climate research, as it helps scientists reconstruct past marine

environments and understand historical climate changes. Similarly, the EuroSATdataset poses its own set of chal-

lenges. Based on Sentinel-2 satellite images[6], this dataset includes 13 spectral bands representing various land

cover types such as forests, urban areas, and water bodies. The images are geo-referenced and come in different

resolutions and conditions, making the classification task complex. Themulti-spectral nature of the data adds an-

other layer of complexity, as each spectral band provides unique information that must be effectively integrated.

Accurate classification of these images is essential for environmentalmonitoring, urban planning, and agricultural

management. Understanding land cover changes over time can inform policy decisions and help address environ-

mental issues.Ensemble Learning (EL) plays a crucial role in enhancing the performance of these classification

tasks. EL involves combining multiple models to produce a more robust and accurate prediction than any single

model alone. By aggregating the outputs of differentmodels, EL canmitigate theweaknesses of individualmodels

and exploit their strengths. This approach not only improves accuracy but also provides higher consistency and

2

reliability in predictions. The RGB images from both datasets are fed into a set of CNNs organized within an

Ensemble Learning framework. This ensemble is developed by training various networks with different methods

for creating the RGB images. The findings indicate that an ensemble of CNNmodels trained on differently pro-

cessed RGB images from both datasets significantly improves performance compared to current state-of-the-art

methods. Additionally, the proposed system surpasses human experts in classification accuracy, showcasing the

effectiveness of the employed techniques.

1.2 HISTORICAL BACKGROUND

Image colorization, the process of adding color to grayscale images, has evolved significantly since the inception

of photography. This challenge has existed since the advent of photography, prompting numerous solutions over

time. Initially, manual colorization involved physically inpainting images with watercolors, oils, or dyes and fix-

ing them with heat, a method first popularized by Hippolyte Bayard between 1840-1845 [7]. Despite advance-

ments in monochromatic photography, such as the introduction of Kodachrome color reversal film by Kodak in

1935 [8], hand-colorization remained prevalent even into the digital age. The 1970s saw the emergence of digital

colorization techniques, with notable contributions by Wilson Markle, who colorized the original moon land-

ing footage using a method of assigning and recalibrating color values to grayscale shades [9]. Modern tools like

Adobe Photoshop allow for high-quality digital colorization, though it still requires considerable manual effort.

Hint-based colorizationmethods, such as those proposed by Levin et al. [10], involve adding scribbles to guide

the colorization process, leveraging the idea that neighboring pixels with similar intensities should have similar col-

ors. This approach allows users to see immediate results and adjust as needed, though it still demands careful color

palette selection. Welsh et al. [11] advanced this concept by developing amethod that transfers colors between sim-

ilar images based on luminance and texture information. Example-based colorization [12], introduced by Irony

et al., combines previous techniques, using a reference image segmented into common color areas, which then

informs the colorization of the target image.

Automatic colorization, enabled by deep learning, represents a significant leap forward. Deep neural networks

(DNNs) trained on vast datasets can automatically colorize images by recognizing and applying common color

patterns. One prominent model [7], the Colorful Image Colorization model, uses a convolutional neural net-

work and class rebalancing to ensure vibrant results, demonstrating the ability to colorize a wide variety of scenes

3

and objects. This fully automatic approach, driven by advances in DNNs and substantial training data, high-

lights the progress in achieving realistic and aesthetically pleasing colorized images. Various models, from simple

convolutional networks to complex adversarial networks, illustrate the diverse strategies employed in this field.

Image classificationhas seen tremendous advancements since its early days, evolving throughvarious technolog-

ical breakthroughs andmethodologies. In the early 20th century[13], image classification was primarily a manual

process, relying on human experts to analyze and categorize images based on visual inspection. This process was

time-consuming and prone to human error, limiting its scalability and accuracy.

The advent of digital computers in the mid-20th century marked a significant shift in image classification[14].

Early computer-based methods focused on simple feature extraction techniques, such as edge detection and tex-

ture analysis, to automate parts of the classification process. These methods laid the foundation for more sophis-

ticated algorithms that would emerge later.

In the 1980s, the development of artificial neural networks (ANNs) brought new possibilities to image clas-

sification. Researchers like Yann LeCun pioneered the use of convolutional neural networks (CNNs), which

mimicked the visual processing system of the human brain [15]. These early CNNs demonstrated the potential

of deep learning for image recognition tasks, although their widespread adoption was limited by computational

constraints.

The 1990s and early 2000s saw incremental improvements in both hardware and algorithms[16], allowing for

deeper and more complex neural networks. The introduction of the backpropagation algorithm and advances in

GPUtechnology enabled the trainingof larger networks[17], leading tobetter performanceon image classification

benchmarks.

The advent of deep learning has revolutionized the field of image classification. Early developments in convo-

lutional neural networks (CNNs) demonstrated the potential of deep learning for handling complex visual recog-

nition tasks. The introduction of deeper and more sophisticated neural network architectures has significantly

improved the performance and accuracy of image classification systems.

In particular, the use of deep learning has enabled the automatic extraction of high-level features from raw

image data, which has proven to be more effective than traditional handcrafted features. The availability of large-

scale annotateddatasets and advancements in computational power, especially throughGPUs[17], have facilitated

the training of very deep networks, leading to substantial improvements in image recognition benchmarks.

Innovations such as batch normalization[18], residual learning[19], and attention mechanisms [20] have fur-

ther enhanced the training process and efficiency of these deep networks. These techniques help to stabilize the

4

training of deep models, mitigate issues such as the vanishing gradient problem, and allow the networks to focus

on the most relevant parts of the input images.

Deep learningmodels have also benefited from transfer learning, where pre-trainedmodels on large datasets are

fine-tuned for specific tasks, significantly reducing the need for extensive labeled data and computational resources.

This approach has enabled the application of deep learning models to a wide range of image classification tasks

with impressive results.

The success of deep learning in image classification has spurred a surge of interest and research in the field,

leading to continuous advancements and the development of new techniques that push the boundaries of what

is possible in visual recognition.

1.3 RelatedWork

In recent years, significant advancements have been made in the field of Artificial Intelligence (AI) and deep

learning, particularly in the domains of image classification and segmentation. Convolutional Neural Networks

(CNNs) have become the cornerstone for image classification tasks. Krizhevsky et al. [8] demonstrated the

groundbreaking performance of CNNs with their AlexNet model, which won the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) in 2012. Following this, various architectures like VGGNet [21], GoogLeNet

[22], and ResNet [19] have been proposed, each introducing novel ways to enhance the depth and efficiency of

neural networks.

Introduced by Goodfellow et al. [23], Generative Adversarial Networks (GANs) have shown remarkable suc-

cess in generating high-quality images and data augmentation. GANs consist of two neural networks, a generator

and a discriminator, that are trained adversarially. Radford et al. [24] further improved GANs with the introduc-

tion of Deep Convolutional GANs (DCGANs), which leverage convolutional layers to produce more realistic

images.

Autoencoders, particularly the U-Net architecture proposed by Ronneberger et al. [25], have been highly

effective for image segmentation and reconstruction tasks. U-Net’s symmetric encoder-decoder structure with

skip connections allows for precise localization, making it suitable for tasks requiring high-resolution output.

The classification of planktic foraminifera has seen significant progress with the application of machine learn-

ing techniques. Hsiang et al. [26]developed adeep learning-based systemfor automated identificationof foraminifera

5

species, achieving high accuracy and efficiency. Similarly, Nguyen et al. [27] employed a combination of CNNs

and traditional image processing techniques to classify microscopic images of foraminifera.

Satellite image classificationhas been an area of active research, particularlywith the availability of large datasets

like EuroSAT [28]. Basu et al. [29] introduced DeepSat, which utilized deep learning for land cover classification

using satellite images. More recently, Zhou et al. [30] proposed a deep learning approach for remote sensing image

scene classification, emphasizing the importance of multi-spectral data.

Ensemble learning techniques combine multiple models to improve overall performance. The success of en-

semble methods in machine learning was highlighted by Breiman [31] with the introduction of Random Forests.

In the context of deep learning, ensembles of CNNs have been shown to outperform single models in various

tasks, as demonstrated by the works of Szegedy et al. [22] and He et al. [19].

Transfer learning has become a popular technique for improving the performance of deep learning models on

specific taskswith limited data. Yosinski et al. [32] discussed the transferability of features in deepneural networks,

showing that features learned by deep models on large datasets can be effectively transferred to other tasks. This

technique has been particularly useful in satellite image classification, as demonstrated byMarmanis et al. [33].

Beyond these well-known techniques, recent advancements have explored the use of hybrid models that inte-

grate GANs with CNNs for enhanced performance in image classification tasks. For example, Ledig et al. [34]

proposed SRGAN, a GAN-based approach that achieves high-quality image super-resolution, which can be ap-

plied to enhance the resolution of satellite images before classification. Moreover, Liang et al. [35] explored the use

of GANs for enhancing the quality of training data, demonstrating significant improvements in model accuracy.

In the realm of planktic foraminifera classification, automated systems leveraging deep learning have begun to

integrate multi-view approaches. For instance, Liu et al. [36] proposed a multi-view convolutional network that

utilizes images captured fromdifferent angles to improve classification accuracy. This approach aligns closelywith

our method of using diverse image processing techniques to create multiple RGB representations.

Furthermore, the adoption of advanced optimization algorithms has shown promise in refining deep learning

models. Techniques such as Adam [37] andRMSprop [38] optimizers have been instrumental in achieving faster

convergence and better performance in training deep neural networks.

These advancements collectively underscore the potential of integrating multiple deep learning techniques

to enhance the accuracy and efficiency of image classification systems. Our proposed system builds upon these

foundations, aiming topush theboundaries ofwhat is achievable in the classificationofbothplanktic foraminifera

and satellite images.

6

2
DATASETS

7

2.1 Foraminifera dataset

The Foraminifera dataset represents a valuable resource inmarine biology and environmental science, comprising

grayscale images that capture the structural intricacies of foraminifera, microscopic marine organisms essential

for paleoceanography and climate research. Foraminifera are particularly significant due to their role as sensitive

indicators of environmental changes, making their detailed morphological study crucial for understanding past

climates and predicting future environmental trends.

Each image in the dataset ismeticulously labeled according to species, facilitating precise classification tasks and

providing a foundation for biodiversity assessments inmarine ecosystems. The imaging process utilizes a reflected

light binocularmicroscope, specifically theAmScope SE305R-PZ,which operates at amagnification of 30×. This

setup ensures high-resolution imaging of specimens, capturing fine details and variations in morphology across

multiple angles of illumination.

To comprehensively depict each foraminifera specimen, images are captured at intervals of 22.5°, resulting in

sixteen grayscale images per sample. This approach enables the documentation of morphological features from

diverse perspectives, enhancing the dataset’s utility in detailed morphometric analyses and species differentiation

studies.

The images typically exhibit a resolution averaging approximately 520 × 480 pixels, although slight variations

in resolution may be present due to differences in imaging conditions and specimen sizes. This variability in

resolution enriches the dataset, reflecting the natural diversity observed in foraminifera specimens.

In total, the Foraminifera dataset comprises 1,437 samples categorized into seven distinct classes based on

species taxonomy and morphological characteristics. This classification scheme facilitates targeted investigations

into species-specific adaptations, ecological interactions, and responses to environmental stressors, supporting

broader studies on marine biodiversity and ecosystem health.

Byproviding a comprehensive collectionof labeled imageswith detailedmetadata, the Foraminifera dataset not

only serves as a cornerstone for species identification and taxonomic research but also contributes to advancing

our understanding of marine ecosystems’ resilience and adaptation in the face of global environmental changes.

Its accessibility promotes collaborative research efforts and educational initiatives aimed at fostering marine con-

servation and sustainablemanagement practicesworldwide. Thedataset comprises a total of 1,437 samples, which

are categorized into the seven classes as it is provided in the following figure.

8

Figure 2.1: samples of grayscale foraminifera dataset

The following is the number of images for each class in the Foraminifera dataset:

1. 178 images ofG. bulloides

2. 182 images ofG. ruber

3. 150 images ofG. sacculifer

4. 174 images ofN. incompta

5. 152 images ofN. pachyderma

6. 151 images ofN. dutertrei

7. 450 images of “rest of the world,” belonging to other species of planktic foraminifera

The diversity and variability in themorphological characteristics of foraminifera make this dataset particularly

challenging for classification tasks. The subtle differences between species often require high precision in feature

extraction and classification algorithms. Moreover, the use of different illumination angles adds another layer of

complexity, as the same specimen may appear different under varying lighting conditions. A significant problem

9

with this dataset is the imbalance in the number of images per category, particularly the large number of images

in the ”rest of the world” category compared to the other species. This imbalance, known as class imbalance, can

lead to biased model predictions, where the classifier may be more inclined to predict the overrepresented class.

2.2 EUROSATDATASET

The EuroSAT dataset is a multi-spectral dataset that captures a wide range of information across different wave-

lengths, revealing diverse features of the Earth’s surface. This dataset is based on Sentinel-2 satellite images and is

part of the Copernicus Earth observation program, which aims to provide accurate and timely information about

the planet.

The EuroSAT dataset utilizes data from 13 spectral bands captured by the Sentinel-2 satellite, which operates

within the Copernicus Earth observation program. These bands cover a range of wavelengths including visible

light (RGB bands), near-infrared (NIR), and short-wave infrared (SWIR). Each of these spectral bands captures

unique information about the Earth’s surface, which collectively enable a detailed analysis of various land cover

and land use characteristics.

• Visible Bands (Red, Green, Blue):These bands capture the visible spectrum of light that humans can per-

ceive. They provide information about surface properties such as vegetation density, water bodies, and

urban areas based on their reflectance characteristics in these wavelengths.

• Near-Infrared (NIR) Bands:NIR bands are sensitive to vegetation health and structure. Healthy vegeta-

tion reflects NIR light strongly, while stressed or sparse vegetation absorbs more NIR light. This band is

crucial for distinguishing between different types of vegetation and assessing their health.

• Short-Wave Infrared (SWIR) Bands: SWIR bands penetrate through thin clouds and haze, allowing ob-

servation of surface features regardless of atmospheric conditions. These bands are particularly useful

for identifying geological features, soil moisture content, and distinguishing between different materials

based on their unique SWIR reflectance properties.

By combining information from these 13 spectral bands, the EuroSAT dataset provides a comprehensive view

of Earth’s surface. Researchers and practitioners can leverage this dataset for tasks such as:

10

• LandCoverClassification:Usingmachine learning algorithms to classify different types of land cover (e.g.,

forests, urban areas, water bodies) based on the distinctive spectral signatures captured across multiple

bands.

• Land Use Analysis:

Studying how land is utilized based on its spectral characteristics, such as agricultural practices, urban

expansion, and natural resource management.

• Land Use Analysis: Studying how land is utilized based on its spectral characteristics, such as agricultural

practices, urban expansion, and natural resource management.

The classes in the EuroSAT dataset are chosen based on their visibility at a resolution of 10 meters per pixel

and their frequent coverage by the European Urban Atlas. The dataset consists of 27,000 labeled images divided

into the following classes:

1. 3,000 images of annual crop

2. 3,000 images of forest

3. 3,000 images of herbaceous vegetation

4. 2,500 images of highway

5. 2,500 images of industrial

6. 2,000 images of pasture

7. 2,500 images of permanent crop

8. 3,000 images of residential

9. 2,500 images of river

10. 3,000 images of sea and lake

The multi-spectral nature of the EuroSAT dataset presents unique challenges for classification. Integrating

information from 13 spectral bands requires sophisticated preprocessing steps to extract meaningful features for

both grayscale and colored image representations. One primary challenge is normalizing the spectral data to en-

sure consistency and comparability across different bands.the figure below illustrate samples of grayscale images

of Eurosat dataset. Grayscale image extraction is a common approach based on select specific spectral bands that

are most informative for the target classification task.These selected bands are then normalized to a common scale

to create a grayscale representation. Creating RGB images from the 13 spectral bands involves selecting and com-

bining three specific bands that correspond to the red, green, and blue channels. This selection process must

11

consider the unique information each band provides and how it contributes to the overall image representation.

Normalization is crucial here to ensure that the combinedRGB image has balanced color intensity and accurately

represents the spectral information.

Figure 2.2: samples of grayscale EuroSat dataset

12

3
PRPOSEDALGORITHMS

13

As we have previously discussed, the primary objective of this research is to develop a method for image col-

orization, transforming gray-scale images into their colored counterparts. This colorized outputwill subsequently

be utilized for classification tasks, aiming to categorize the images into their respective categories. The process of

image colorization is crucial as it enriches the gray-scale images with additional information, potentially enhanc-

ing the performance of downstream tasks such as classification.Our proposed supervised learning approach for

image colorization not only aims to achieve realistic and accurate colorization but also enhances the subsequent

classification tasks by providing enriched input data. This dual benefit underscores the significance of effective

image colorization in the broader scope of image analysis and classification in deep learning.

3.1 Supervised Learning for Image Colorization

In the context of supervised learning, themodel is trained tomap an input to a known output. For image coloriza-

tion, this involves transforming a grayscale image into its colorized version. Colored images provide the ”ground

truth” or target outputs against which the generator’s outputs are compared. This direct comparison helps in fine-

tuning the generator to produce colorizations that are not only realistic but also accurate with respect to natural

colors as seen in the real world.

A significant challenge arises when the available datasets lack the necessary color information. For instance, the

Foraminifera dataset consists of single-channel grayscale images, capturing only the structural andmorphological

details of the marine organisms without any color information. This limitation poses a challenge for applying

supervised learning techniques such as Generative Adversarial Networks (GANs) andU-Net, which require both

grayscale inputs and their corresponding colored outputs to train the model effectively.

Similarly, the EuroSAT dataset, based on Sentinel-2 satellite images, comprises multi-spectral images stored in

13 bands in TIFF format. These bands capture a wide range of information across different wavelengths but do

not directly provide RGB images. The multi-spectral bands offer comprehensive data on various surface condi-

tions and materials but translating this information into a format suitable for RGB-based colorization presents

an additional challenge. The necessity to convert these multi-spectral bands into RGB images that accurately

represent the scene’s true colors is critical for subsequent classification tasks.

To address these challenges, wemust either source additional color information or employ techniques that can

infer color from context and structure. The ultimate aim is to generate colorized images that are sufficiently accu-

14

rate to be used in classification tasks. According to deep learning principles and supported by numerous studies

indexed in Google Scholar, enhancing grayscale images through colorization can provide additional features that

improve the accuracy of classification algorithms. By leveraging the enriched information from colorized images,

the classification models can better capture and differentiate the nuanced features of different categories, leading

to improved performance.

3.1.1 ColorizationUsingSupervisedGenerativeAdversarialNet-

works

Generative Adversarial Networks (GANs)are a sophisticated neural network architecture designed for generating

synthetic data. GANswere introducedby IanGoodfellow andhis colleagues in 2014[23], revolutionizing the field

of generative models. The basic idea of GANs involves two main elements: the generator and the discriminator,

engaging in an adversarial process.

The need to obtain colored images for both datasets is crucial for the successful application of supervised learn-

ing in colorization tasks. In the case of the Foraminifera dataset, to produce colored target images for Foraminifera,

the process begins bynormalizing the gray-scale images to ensure consistent processing. Each image I is normalized

using the equation Inormalized =
I−min(I)

max(I)−min(I) . Following normalization, each image undergoes a DiscreteWavelet

Transform (DWT)[39] to decompose it into frequency components, capturing essential details at multiple scales.

This decomposition is represented as

DWT(I) = {(cA, cH, cV, cD)} = dwt2(I,ψ)

where cA, cH, cV, and cD are the approximation, horizontal, vertical, and diagonal coefficients, respectively.

The images are then grouped into batches and reordered based on themean of their 2DDiscrete Cosine Trans-

form (DCT), given by

mean_dct(I) = mean(dct2(I))

After reordering, the images are organized into three sets, each representing one of the RGB channels. For

each group of imagesG = {I1, I2, . . . , I5}, DWT is applied to each image in the group, resulting in

15

DWT(G) = {DWT(I1),DWT(I2), . . . ,DWT(I5)}

TheDWT coefficients are thenmerged to form a single channel for each group. This merging is performed by

averaging the pixel values across the group, expressed as

R(i, j) =
1
5

5∑
k=1

GR(k)(i, j)

G(i, j) =
1
5

5∑
k=1

GG(k)(i, j)

B(i, j) =
1
5

5∑
k=1

GB(k)(i, j)

whereGR,GG, andGB are the groups for the red, green, and blue channels, respectively.

Each merged channel then undergoes inverse DWT to reconstruct the spatial domain images, represented by

Rreconstructed = idwt2(R,ψ)

Greconstructed = idwt2(G,ψ)

Breconstructed = idwt2(B,ψ)

The reconstructed R, G, and B channels are combined to form a composite RGB image,

RGBimage = [Rreconstructed,Greconstructed,Breconstructed]

Finally, an additional image from each batch is used to enhance the final RGB image by averaging its details

with the RGB image, as expressed by

Final_Image(i, j) =
RGBimage(i, j) + Additional_Image(i, j)

2

16

This process results in colored images necessary for supervised learning in colorization tasks for Foraminifera

dataset, while in the case of colorizationEuroSATdataset, normalization is crucial tomanage the 13 spectral bands

effectively. Each band is normalized to the range [0, 255], allowing them to be treated as grayscale images as it is

shown in figure 2. This normalization is accomplished by scaling the pixel values of each band.

Inormalized =

(
Ioriginal −min(Ioriginal)

max(Ioriginal)−min(Ioriginal)

)
× 255

Once normalized, each band can be treated as a grayscale image. To obtain an RGB image, three normalized

bands corresponding to the red, green, and blue wavelengths are selected and combined as it is shown in figure 2:

IRGB = (Inormalized, band1, Inormalized, band2, Inormalized, band3)

By treating each band as a separate grayscale image or combining specific bands for RGB images, the EuroSAT

dataset’s spectral richness can be fully exploited for various image processing and analysis tasks. The following

figure illustrates a sample of colored images that will be used as target image for both dataset.

Figure 3.1: Sample of Target Images of Foraminfera dataset using DWT techinque

17

Figure 3.2: Sample of Target Images of EuroSat dataset using Normalization techinque

In generative adversarial network, the generator’s goal is to produce data that are indistinguishable from gen-

uine data, while the discriminator aims to accurately distinguish between real and generated data. This process is

akin to amin-max game, where the generator tries tominimize its loss by producing realistic data, and the discrim-

inator tries to maximize its accuracy in distinguishing real from fake data. Mathematically, this can be formulated

as:

min
G

max
D

V(D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (3.1)

As mentioned before, in a supervised GAN framework the model uses paired datasets—specifically, grayscale

images alongside their colorized counterparts—providing clear target outcomes for the generator, crucial for tasks

requiring high fidelity like image colorization. The generator receives a grayscale image and predicts its color chan-

nels, transforming a low-dimensional input into a high-dimensional output. It aims to produce an output that

18

closely matches the target color image provided during training. The discriminator assesses the authenticity of

the generated images against real, colored images from a training set. It evaluates both the realism of the generated

images and how closely these images match the target color images.

GANs typically employ convolutional neural networks (CNNs) for both the generator and the discriminator.

CNNs are particularly well-suited for image processing tasks due to their ability to capture spatial hierarchies in

images through the use of convolutional layers. Convolutional layers apply a series of filters to the input image to

detect features such as edges, textures, and patterns. These features are then used to construct a detailed represen-

tation of the image.

The generator in a GAN is designed as a deep convolutional network that takes a low-dimensional input (such

as a noise vector or a grayscale image) and upsamples it through a series of convolutional layers to produce a high-

dimensional output (such as a color image). The discriminator, on the other hand, is a convolutional neural

network that takes an image as input and classifies it as real or fake by downsampling the image through a series

of convolutional layers, ultimately outputting a probability score indicating the likelihood that the image is real.

The versatility of GANs makes them applicable to various tasks beyond image colorization. These include:

• Image Inpainting: Filling in missing parts of an image.

• Style Transfer: Applying the style of one image to the content of another.

• Image Super-Resolution: Enhancing the resolution of an image.

• Semantic Segmentation: Converting an image to a segmentation map and vice versa.

• Object Transfiguration: Changing objects in an image to other types, such as turning horses into zebras.

The ability of GANs to learn the mapping from input to output images, along with a loss function to train

this mapping, makes them a powerful tool for a wide range of applications in computer vision and beyond. The

combination of convolutional neural networks and adversarial training in the GAN framework facilitates the

generation of highly realistic and contextually accurate images, significantly advancing the capabilities ofmachine

learning in visual data processing.

Training involves minimizing adversarial and content losses:

• Generator’s Loss: The generator’s loss combines adversarial loss, aimed at fooling the discriminator, and
content loss[40], which minimizes the difference between the generated and the target images.

LGAN(G) = −E[log(1−D(G(Igray)))] (3.2)

Lcontent = E
[
|G(Igray)− Ireal|2

]
(3.3)

19

• Discriminator’s Loss: The discriminator’s loss is designed to effectively distinguish real images from the
synthetically generated ones.

LGAN(D) = −E[logD(Ireal) + log(1−D(G(Igray)))] (3.4)

Explanation of Parameters

• G: The generator network function, which outputs the colorized image from the input grayscale image
Igray.

• D: The discriminator network function, which evaluates whether images are real or generated by the
generator.

• Igray: The input grayscale image to the generator.

• Ireal: The real colored image corresponding to the grayscale input, serving as the target for the generator’s
output.

• E: The expectationoperator, usedhere todenote the expected value over all samples in the dataset, integral
to computing the average loss across batches of images.

The feedback from the discriminator’s evaluations is used to adjust the generator’s parameters, refining the

output through successive training iterations.The following diagram illustrates the core operation of a Generative

Adversarial Network (GAN), where the Generator starts with a random input and attempts to create images that

mimic real data. These generated images, along with actual images from a dataset, are fed into the Discriminator,

which evaluates each to determine whether they are real or synthetic. The Generator aims to fool the Discrimi-

nator into misclassifying the fake images as real, while the Discriminator learns to better distinguish between the

two. This adversarial process dynamically improves the capabilities of both networks, enhancing the Generator’s

ability to produce realistic images and the Discriminator’s accuracy in classification.

• Generator Architecture (U-Net):

The U-Net generator[41], designed for image colorization tasks, features a symmetric architecture with dis-

tinct encoder and decoder paths connected by a bridge, facilitating precise colorization of grayscale images. The

encoder consists of a series of convolutional blocks, each composed of a 3x3 convolutional layer with stride 1,

ensuring spatial dimensions are preserved while doubling the number of feature channels at each step. These con-

volutional layers are followed by ReLU activation functions which introduce non-linearity, essential for learning

20

complex features in images. After each convolutional operation, max pooling with a 2x2 filter and stride 2 is ap-

plied, successively reducing the spatial dimensions by half and thereby increasing the receptive field, allowing the

network to capture broader image contexts at deeper layers.

At the lowest resolution, the bridge consists of a further 3x3 convolutional layer and ReLU activation, pro-

cessing the most abstract features which carry the highest-level image representations. The decoder mirrors the

encoder’s structure but in reverse, utilizing transposed convolutional layers with a stride of 2 to progressively up-

sample feature maps to higher spatial resolutions. Each upsampling step is followed by a 3x3 convolutional layer

and ReLU activation, refining the upsampled features to recover spatial details. Crucially, the decoder employs

skip connections from corresponding encoder layers, which concatenate feature maps from the encoder to the

decoder, aiding in the restoration of fine details lost during downsampling. This ensures that local and global in-

formation is effectively combined to produce a detailed and accurately colorized output image. The final output

is generated through a 3x3 convolutional layer that adjusts the channel dimension to three, corresponding to the

RGBchannels of the output color image, followed by a tanh activation functionwhich normalizes the pixel values

to the range [-1,1], suitable for image processing tasks.

The architecture of the U-Net generator used for colorizing grayscale images is illustrated in the following

figure, showcasing the detailed configuration of each encoder and decoder layer, along with their respective roles

in the image colorization process.

Figure 3.3: The architecture of U‐Net

• Discriminator Architecture (PatchGAN):

21

The discriminator employs a PatchGAN architecture[41], designed to classify patches of the image as real or

fake, which allows it to focus on fine-grained, local image statistics and is computationally efficient. The input

layer accepts patches of size [256×256×3] from the Foraminifera dataset and [128×128×3] from the EuroSAT

dataset, from both real and generated images. As shown in the following figure, the discriminator comprises mul-

tiple downsampling blocks. The first block consists of a 4x4 convolutional layer with 64 filters, using symmetric

padding to include edge information. This block is followed by batch normalization and a leaky ReLU activation.

The second block doubles the number of filters to 128 and includes a 4x4 convolutional layer, batch normaliza-

tion, and a leaky ReLU activation. The third block further doubles the number of filters to 256, with similar

components: a 4x4 convolutional layer, batch normalization, and a leaky ReLU activation. The fourth block

doubles the filters again to 512, also containing a 4x4 convolutional layer, batch normalization, and a leaky ReLU

activation. For the Foraminifera dataset, an additional block with 512 filters is used, bringing the total number of

blocks to five. This block includes a 4x4 convolutional layer, batch normalization, and a leaky ReLU activation.

The final block is followed by a 4x4 convolutional layer that reduces the number of filters back to 1, using a sig-

moid activation function to output a probability between 0 and 1 for each patch, classifying it as real or fake. The

number of filters in these layers starts at 64 and doubles with each block to capture a broader range of features

at different scales. Batch normalization is applied to stabilize training by normalizing the outputs, while a leaky

ReLU activation allows for a small, non-zero gradient when the unit is less active, preventing the dying ReLU

problem and maintaining gradient flow. The final output is produced through a sigmoid activation layer, which

classifies each image patch as real or fake by outputting a probability between 0 and 1, providing a measure of the

generator’s success at fooling the discriminator.

22

Figure 3.4: Discriminator Framework

• TRAINING STRATEGIES:

In the training of the Generative Adversarial Network (GAN), several strategies are implemented to opti-

mize the performance and ensure stability. The Adam optimizer is utilized for both the generator and the dis-

criminator with a learning rate set at 2 × 10−5 and beta coefficients β1 = 0.6 and β2 = 0.8, β1 = 0.5 and

β2 = 0.999facilitating effective adaptation of the learning process.

The learning rate (α) in the Adam optimizer controls the step size at each iteration while moving toward a

minimum of the loss function. A smaller learning rate like 2 × 10−5 ensures that the model learns slowly and

steadily, reducing the risk of overshooting the minimum and helping to converge to an optimal solution.

The beta coefficients (β1 and β2) are parameters of theAdamoptimizer that control the exponential decay rates

of the moving averages of the gradient and its square, respectively. Specifically, β1 (set to 0.5 and 0.6) is the decay

rate for the first moment estimate, which essentially averages the gradient values to smooth out the updates. β2
(set to 0.8 and 0.999) is the decay rate for the secondmoment estimate, which averages the squared gradient values

to keep track of the variability. These coefficients help in reducing the variance of the parameter updates, leading

to more stable and efficient training.

A key component in training GANs is the patch size used for the discriminator. Patch size refers to the size of

the image patches that the discriminator processes to determine whether they are real or generated. Smaller patch

sizes can help the discriminator focus on local features, while larger patch sizes can providemore global context. In

23

this study, several patch sizes were used: 70x70 for both datasets, 256x256 for Foraminifera (matching the input

size), 128x128 for EuroSAT (matching the input size), and 50x50 for both datasets. These varying patch sizes

allow the discriminator to learn both fine-grained details and broader contextual features.

The model is trained over 10, 25 and 30 epochs, with a batch size of 64 for Foraminifera dataset and 32 for

EuroSat. This setup strikes a balance between efficient computation and memory usage, allowing for detailed

gradient updates over an adequate number of iterations. Both EuroSAT and Foraminifera datasets are divided

into three parts: 80% is used for training, and 10% each is allocated for validation and testing. This distribution

ensures extensive training on a significant volume of data while reserving sufficient examples for validation and

unbiased testing.

During each epoch, images are processed in mini-batches, formatted into arrays, and, when applicable, trans-

ferred to a GPU to enhance computational speed. Losses for both the generator and discriminator are calculated

using tailored loss functions that assess the discriminator’s ability to differentiate real from generated images and

the generator’s success in deceiving the discriminator. These losses guide the updates to the parameters of both

networks using the Adam optimization technique, which adjusts learning rates based on the statistical properties

of the gradients.

Training progress is continuously monitored, with losses averaged after each epoch to evaluate the model’s

performance and detect potential overfitting. Following the training phase, the GAN undergoes rigorous testing

against a separate set of data to assess its generalization capabilities across new, unseen data. The tables below

present the discriminator and generator losses obtained from tests conducted on unseen data, showcasing the

final performance of the model across various datasets with differing epochs and patch sizes.

24

Table 3.1: Losses for Discriminator and Generator using 70*70 patch sizewith β1 = 0.6 and β2 = 0.85

Dataset Epochs Patch Size Discriminator Loss Generator Loss β1 β2

EuroSat 10 70x70 0.239 0.922 0.6 0.85

EuroSat 25 70x70 0.089 2.163 0.6 0.85

EuroSat 30 70x70 0.117 1.981 0.6 0.85

Foraminifera 10 70x70 0.358 0.886 0.6 0.85

Foraminifera 25 70x70 0.112 1.832 0.6 0.85

Foraminifera 30 70x70 0.222 1.689 0.6 0.85

Table 3.2: Losses for Discriminator and Generator using 100*100 patch sizewith β1 = 0.6 and β2 = 0.85

Dataset Epochs Patch Size Discriminator Loss Generator Loss β1 β2

EuroSat 10 100x100 0.416 0.853 0.6 0.85

EuroSat 25 100x100 0.113 1.003 0.6 0.85

EuroSat 30 100x100 0.455 1.122 0.6 0.85

Foraminifera 10 100x100 0.566 0.886 0.6 0.85

Foraminifera 25 100x100 0.098 1.912 0.6 0.85

Foraminifera 30 100x100 0.369 1.772 0.6 0.85

25

Table 3.3: Losses for Discriminator and Generator losses matching the input size for both dataset with β1 = 0.5 and
β2 = 0.999

Dataset Epochs Patch Size Discriminator Loss Generator Loss β1 β2

EuroSat 10 128x128 0.369 0.935 0.6 0.85

EuroSat 25 128x128 0.272 1.871 0.6 0.85

EuroSat 30 128x128 0.358 2.052 0.6 0.85

Foraminifera 10 256x256 0.328 0.933 0.6 0.85

Foraminifera 25 256x256 0.0875 2.008 0.6 0.85

Foraminifera 30 256x256 0.0964 1.828 0.6 0.85

Table 3.4: Losses for Discriminator and Generator using 70x70 Patch Size with β1 = 0.5 and β2 = 0.999

Dataset Epochs Patch Size Discriminator Loss Generator Loss β1 β2

EuroSat 10 70x70 0.466 0.771 0.5 0.999

EuroSat 25 70x70 0.302 1.023 0.5 0.999

EuroSat 30 70x70 0.383 0.892 0.5 0.999

Foraminifera 10 70x70 0.364 0.779 0.5 0.999

Foraminifera 25 70x70 0.322 0.871 0.5 0.999

Foraminifera 30 70x70 0.355 0.764 0.5 0.999

26

Table 3.5: Losses for Discriminator and Generator using 100x100 Patch Size with β1 = 0.5 and β2 = 0.999

Dataset Epochs Patch Size Discriminator Loss Generator Loss β1 β2

EuroSat 10 100x100 0.523 0.652 0.5 0.999

EuroSat 25 100x100 0.447 0.886 0.5 0.999

EuroSat 30 100x100 0.422 0.611 0.5 0.999

Foraminifera 10 100x100 0.501 0.680 0.5 0.999

Foraminifera 25 100x100 0.432 0.772 0.5 0.999

Foraminifera 30 100x100 0.558 0.718 0.5 0.999

Table 3.6: Losses for Discriminator and Generator using 70x70 Patch Size with β1 = 0.5 and β2 = 0.999

Dataset Epochs Patch Size Discriminator Loss Generator Loss β1 β2

EuroSat 10 128x128 0.479 0.733 0.5 0.999

EuroSat 25 128x128 0.411 0.955 0.5 0.999

EuroSat 30 128x128 0.502 0.877 0.5 0.999

Foraminifera 10 256x256 0.283 0.893 0.5 0.999

Foraminifera 25 256x256 0.258 0.933 0.5 0.999

Foraminifera 30 256x256 0.277 0.904 0.5 0.999

The following figures illustrate sample colorized images generated by the Generative Adversarial Network,

showcasing the network’s ability to produce visually compelling results from grayscale inputs. After experiments,

we found that β1 and β2 = 0.6 and 0.85 perform better than 0.5 and 0.999. The lowest loss function for both

datasets was achieved at 25 epochs. Moreover, for patch size, 70x70 is optimal for the EuroSAT dataset, while

the entire input size for the Foraminifera dataset works best. The lowest discriminator loss for the Foraminifera

dataset was 0.0875 with a generator loss of 2.008 using the entire input size, and the lowest discriminator loss for

the EuroSAT dataset was 0.089 with a generator loss of 2.163 using the 70x70 patch size.

27

Figure 3.5: Samples of colored Foraminifera images using GAN

Figure 3.6: Samples of colored EuroSat images using GAN

28

3.1.2 Auto-encoderwithMulti-skipConnectionsfor ImageCol-

orization

Auto-encoder colorization[7] is a supervised learning process that leverages paired datasets of grayscale and cor-

responding colored images. In this approach illustrated in the below figure, the model learns to map grayscale

images to their colored counterparts by minimizing the difference between the predicted and actual color val-

ues. Supervised learning in image colorization is critical because it provides the model with explicit examples of

how grayscale information translates into color, enabling the auto-encoder to develop a robust understanding of

colorization patterns and nuances.For both Foraminifera and EuroSAT datasets, I employed the same pervious

methods to colorize gray scale images in order to obtain colored images that will be used as target images.

Figure 3.7: Auto‐Encoder with Skip Connections Framework

After obtaining colored images for both the EuroSAT and Foraminifera datasets to be used as target images, we

apply an advanced image colorization method utilizing a deep convolutional auto-encoder that exploits the YUV

color space, in contrast to the traditional RGB space.

The methodology begins by transforming RGB images into YUV, then effectively separating luminance (Y)

fromchrominance (U andV) as it is shown in the following figure. This decomposition simplifies the learning pro-

cess as the model directly utilizes the Y channel, a gray-scale representation, and focuses on accurately predicting

the U and V channels, which embody the color information.

The YUV color space is designed to separate image luminance from color information, which can be beneficial

for various image processing tasks. TheY channel represents the luminance, or brightness, of the image, essentially

29

Figure 3.8: Foraminifera Example of Separating Y,U And V Channels

capturing all the gray-scale information. This channel is crucial because the human eye ismore sensitive to changes

in brightness than to changes in color.

The U and V channels, on the other hand, represent chrominance information. The U channel (also known

as Cb) captures the blue-difference chroma component, while the V channel (also known as Cr) captures the red-

difference chroma component. These channels contain the color information by describing how much blue or

red should be added or subtracted from the luminance to achieve the desired color. The steps steps in ourmethod-

ology are as follows:

1. Transform RGB to YUV:

Each RGB image is converted into the YUV color space. This step decomposes the image into one lumi-

nance channel (Y) and two chrominance channels (U and V).

30

2. Utilize Y Channel: The Y channel, which contains the grayscale representation of the image, is directly

usedby themodel. This simplifies the learningprocess because themodel onlyneeds topredict the chromi-

nance components to generate a color image.

3. Predict U and V Channels: The model focuses on accurately predicting the U and V channels. These

channels are responsible for the color information in the image. By learning the patterns and correlations

between the Y channel and the corresponding U and V channels, the model can effectively generate real-

istic colorizations.

4. Reconstruct RGB Image: After predicting theU andV channels, the Y,U, andV channels are combined

and transformed back into the RGB color space to produce the final colorized image.

This approach[42] leverages the separation of luminance and chrominance to simplify the learning task for the

auto-encoder, enabling it to produce high-quality colorization by focusing on the color information in the U and

V channels while relying on the Y channel for structural details.

The encoder is a critical component of the auto-encoder model. It consists of multiple convolutional neural

network (CNN) layers designed to extract high-level features from the input gray-scale image. Each convolu-

tional layer applies filters to the input image, capturing spatial hierarchies of patterns[8]. The encoder works by

progressively reducing the spatial dimensions of the input image (down-sampling) while increasing the depth of

the feature maps. This process, often involving convolutional and max-pooling layers [43] , compresses the infor-

mation into a lower-dimensional representation, making it easier for the network to learn the essential features

necessary for colorization [44]

The decoder in the auto-encodermodel is responsible for reconstructing the color information (U andV chan-

nels) from the encoded feature representation. It consists of up-sampling layers, typically implemented using

transposed convolutional layers, which increase the spatial dimensions of the feature maps. The decoder works

by gradually restoring the spatial dimensions of the image (up-sampling) while reducing the depth of the feature

maps, reversing the compression performed by the encoder. This up-sampling process restores the image to its

original resolution, synthesizing fine details and enabling the generation of detailed and accurate color images.

The decoder combines these upsampled features with the corresponding high-resolution features from the en-

coder (via skip connections in U-Net), enhancing the accuracy and detail of the colorization.

31

The U-Net model[7], initially developed for biomedical image segmentation, has proven to be highly versatile

and effective for various image processing tasks, including image colorization.

In the context of image colorization, the U-Net architecture’s unique U-shape plays a crucial role in its perfor-

mance. The symmetric structure, comprising an encoder (contracting path) and a decoder (expanding path) with

skip connections, helps in effectively capturing and preserving both global and local features of the image.

The U-Net model is named after its distinctive U-shaped architecture, which is designed to perform well on

image-to-image tasks. This architecture includes an encoder (contractingpath) that reduces the spatial dimensions

of the input image through convolutional and max-pooling layers, capturing the context and essential features at

multiple scales. The decoder (expanding path) increases the spatial dimensions back to the original size, using

transposed convolutions (or up-sampling) and convolutional layers to reconstruct the image. Skip connections

are the direct links between corresponding layers of the encoder and decoder, which help in preserving spatial

information and fine details by allowing the model to reuse features from earlier layers. These connections are

vital for tasks like colorization, where maintaining the structure and details of the original image is crucial.

For image colorization, the U-Net architecture is particularly beneficial because the skip connections ensure

that thefinedetails and spatial informationof the input gray-scale image are retained,which is essential for accurate

colorization. The bottleneck captures abstract features, which helps the model understand the high-level content

of the image, aiding in applying the correct colors. The decoder reconstructs the image by combining high-level

abstract features with fine details, resulting in a colorized image that is both accurate and visually pleasing.

The idea is to replace the traditional U-Net encoder (the contracting path) with the convolutional layers of

VGG19. This means using the pre-trained VGG19 model up to a certain depth, typically excluding the fully

connected layers, as the feature extractor. The output from these convolutional layers is then passed through the

U-Net decoder (the expanding path) to reconstruct the image and predict the U and V color channels.

To replace the traditional U-Net encoder with the VGG19 model, we load the pre-trained VGG19 model,

specifically its convolutional layers, whichwill serve as the encoder. The convolutional layers ofVGG19 are known

for their ability to capture intricate details and hierarchical features from images, making themwell-suited for the

task of feature extraction in image colorization.

Incorporating VGG19 into the U-Net architecture involves using the output from the VGG19 convolutional

layers as input to theU-Net decoder. The decoder, responsible for upsampling and reconstructing the image, uses

transposed convolutions and convolutional layers to predict the U and V color channels.

A key component of the U-Net architecture is the skip connections, which help preserve spatial information

32

that might be lost during the downsampling process in the encoder. In the modified architecture, these skip

connections aremaintained by linking the output of intermediate convolutional blocks from theVGG19 encoder

to the corresponding layers in the U-Net decoder. This approach ensures that fine-grained details and spatial

context from the input image are retained and effectively utilized during the upsampling process.

Architecture Overview :

•

U-Net Auto-Encoder Architecture:

This encoder comprises four distinct blocks, each equipped with specific convolutional layer arrangements:

• Each block contains three convolutional layers with 3x3 filters, applying strides of 1 and 2 alternately to

reduce spatial dimensions while increasing feature depth. The first layer typically has 64 filters, doubling

in each subsequent block, culminating at 512 filters in the fourth block.

• Batch normalization is employed post each convolution to standardize inputs, helping to accelerate the

training process and stabilize the network.

• ReLU activations follow each convolutional layer, introducing non-linearities that enable the network to

learn more complex patterns.

The output of each block is formulated as:

Y(i)
encoded = σ(BN(Conv(Y(i−1)

encoded)))

where Y(0)
encoded = Ygray, and σ denotes the ReLU activation.

VGG19 Auto-Encoder Architecture:

I experiment with the VGG19 model up to different depths, to analyze the impact of feature abstraction on the

performance of the image colorization task. Using shallower layers might preservemore local details, while deeper

layers could provide more abstract and semantic features. Maintaining skip connections ensures that critical spa-

tial information is retained, enhancing the overall quality of the colorized images.

*Depth 3 Configuration

33

• The first three blocks of VGG19 are adapted, each consisting of two to three convolutional layers with
increasingly complex structures. The number of filters starts at 64 in the first block and increases to 256
by the third block.

• Each convolutional layer uses 3x3 filters with a stride of 1, and padding is included to maintain the size of
the feature maps.

• Following each block, amax-pooling layer with a 2x2 filter and a stride of 2 reduces the spatial dimensions,
focusing on the most significant features.

*Depth 5 Configuration

• The first five blocks of VGG19 are adapted, each consisting of two to four convolutional layers with in-
creasingly complex structures. The number of filters starts at 64 in the first block and increases to 512 by
the fifth block.

• Each convolutional layer uses 3x3 filters with a stride of 1, and padding is included to maintain the size of
the feature maps.

• Following each block, amax-pooling layer with a 2x2 filter and a stride of 2 reduces the spatial dimensions,
focusing on the most significant features.

Figure 3.9: VGG‐19 Architecture

Mathematically, the operations in each block of the encoder can be represented as:

Y(i)
encoded = σ(BN(Conv(Y(i−1)

encoded)))

34

where Y(0)
encoded = Ygray, σ denotes the ReLU activation, BN represents batch normalization, and Conv denotes

convolution operations.

Decoder: The decoder mirrors the encoder’s structure with four corresponding blocks, utilizing transposed

convolutional layers to progressively upscale the encoded features and reconstruct the U and V channels. The

decoder:

• Uses transposed convolutions to increase spatial dimensions,

• Applies batch normalization and ReLU activation after each transposed convolution,

• Ensures detailed chrominance information is restored by the final layer.

UV(i)
predicted = σ(BN(TransConv(UV(i−1)

predicted)))

withUV(0)
predicted = Y(4)

encoded.

Multi-Skip Connections: Critical for preserving high-frequency details, multi-skip connections link each

block of the encoder to the corresponding block of the decoder. These connections directly convey gradients

and detailed information, enhancing the fidelity of the reconstructed colors. The network employs an L1 loss

function, focusing on the chrominance channels:

L =
1
N

N∑
i=1

∥UV(i)
predicted − UV(i)

real∥

Post-training, the predictedUandVchannels are combinedwith theY channel to forma complete YUV image.

This image is then converted back to RGB using the following transformation matrix:

R

G

B

 =

1 0 1.13983

1 −0.39465 −0.58060

1 2.03211 0

Y

U

V

The following figure displays our proposed framework illustrating the encoder and decoder blocks withmulti-

skip connections.

35

TRAINING STRATEGIES :

This section details the training strategy adopted for two deep learning models designed for image colorization: a

custom autoencoder and a modified VGG19-based encoder. Both models utilize the YUV color space and share

a consistent training approach to ensure comparability and optimal performance.

When training neural networks, evaluating the model’s performance and understanding its learning process

involves using variousmetrics. Two criticalmetrics in this context are themini-batch loss andRootMean Squared

Error (RMSE).

Mini-batch Loss :

The mini-batch loss represents the average error computed over a subset of the training data, known as a mini-

batch. This subset is used during each iteration of the training process. The primary goal of using mini-batches is

tomake the trainingprocessmore efficient and toprovide a regularizing effect, which canhelp themodel generalize

better.

Definition: Mini-batch loss is typically computed using a loss function such as Mean Squared Error (MSE).

For a given mini-batch {(xi, yi)}mi=1, where xi are the input samples and yi are the corresponding ground truth

values, the MSE loss is calculated as:

MSE =
1
m

m∑
i=1

(ŷi − yi)2 (3.5)

where ŷi are the predicted values, andm is the number of samples in the mini-batch.

RootMean Squared Error (RMSE)

RMSE is a standard performance metric for regression tasks, providing an aggregate measure of the model’s pre-

diction error.

36

Definition: RMSE is the square root of the average of the squared differences between predicted values and

actual values. For a set of predictions ŷ and true values y, the RMSE is calculated as:

RMSE =

√√√√ 1
n

n∑
i=1

(ŷi − yi)2 (3.6)

where n is the total number of predictions.

Training Parameters:

• Data Splitting: The datasets for both models are divided with 80% allocated for training, 10% for valida-
tion, and 10% for testing. This distribution ensures that a substantial portion of the data is used formodel
training while still providing adequate data for validation and testing to gauge model generalization and
performance effectively.

• Optimizer: The training of both models is conducted using both stochastic gradient descent and Adam
optimizer, known for their effectiveness in handling sparse gradients and adapting the learning rates dur-
ing training.

• Learning Rate: An initial learning rate of 1.1 × 10−4 is set for both architectures, providing a balanced
approach that allows for precise adjustments in weight updates necessary for the models’ convergence.

• Epochs: Each model undergoes training for 50 ,100 and finally 200 epochs which turns out that 200 is
the best duration chosen to sufficiently expose the models to the training enough.

• Batch Size: The custom autoe-ncoder processes mini-batches of 16, while the VGG19-based model han-
dles smaller batches of 4.

• Image Size: The autoencoder is trained on images resized to 128 × 128 pixels, suitable for its network
structure, whereas the VGG19 model uses larger 224 × 224 pixel images, aligning with its requirement
for a higher resolution to effectively leverage pre-trained weights.

By standardizing the training parameters across bothmodels, including data splitting, loss function, and specif-

ically tailored batch sizes and image dimensions, the strategy ensures that any observed differences in performance

are attributable to themodels’ architectural variations rather than disparities in their training configurations. This

unified approach facilitates a fair assessment of each model’s effectiveness in image colorization tasks, paving the

way for further optimizations based on empirical performance data. The final performance of the network was

measured using the test dataset.The tables below describe the results after training using test data.

After training the dataset using both VGG19 and the U-Net auto-encoder,we compared the performance of

different auto-encoder models (U-Net, VGG19 with depths 3 and 5) on two datasets (Foraminifera and EuroSat)

using two different optimizers (Adam and SGDM). The key metrics used for comparison were the loss function

and RMSE (Root Mean Squared Error).

37

Table 3.7: Results After Training Auto‐Encoders on Test Dataset using Adam Optimizer

Dataset Encoder Loss Function RMSE
Foraminifera U-Net 1.4 1.6
Foraminifera VGG19 depth(3) 1.1 1.3
Foraminifera VGG19 depth(5) 2.3 4.2
EuroSat U-Net 3.3 2.4
EuroSat VGG19 dpeth(3) 2.5 3.01
EuroSat VGG19 depth(5) 4.8 5.2

Table 3.8: Results After Training Auto‐Encoders on Test Dataset using SGDM Optimizer

Dataset Encoder Loss Function RMSE
Foraminifera U-Net 3.22 5.3
Foraminifera VGG19 depth(3) 2.8 4.8
Foraminifera VGG19 depth(5) 3.3 6.6
EuroSat U-Net 3.4 5.6
EuroSat VGG19 depth(3) 5.6 4.2
EuroSat VGG19 depth(5) 6.1 5.3

For bothdatasets, theAdamoptimizer consistently provides better performance in terms of lower loss function

and RMSE compared to the SGDMoptimizer for both U-Net and VGG19 depth(3). This suggests that Adam’s

adaptive learning rate capabilities help achieve more effective training and better generalization for these models.

Additionally, VGG19depth(5)was excluded fromthe colorization taskdue to its relatively poorer performance

compared to VGG19 depth(3) for both datasets. This indicates that increasing the depth beyond a certain point

does not necessarily improve performance and may even hinder it due to overfitting or increased complexity.

The following Figures showing the resulted colored image performed by VGG19 and U-Net Autoencoder for

both datasets.

38

Figure 3.10: The resulted colored images for EuroSat dataset after applying VGG‐19 Auto‐Encoder

Figure 3.11: The resulted colored images for EuroSat dataset after applying U‐Net Auto‐Encoder

39

Figure 3.13: The resulted colored images for Foraminifera after applying VGG‐19 Auto‐Encoder

Figure 3.12: The resulted colored images for Foraminifera after applying U‐Net Auto‐Encoder

40

3.2 image classification using transfer learning

Convolutional Neural Networks (CNNs) are designed for image classification tasks. They consist of several key

layers that are essential for learning and extracting features from images.These layers apply filters to the input

image, detecting features such as edges, textures, and patterns. The convolution operation is defined as:

(I ∗ K)(i, j) =
∑
m

∑
n

I(i−m, j− n) · K(m, n)

where I is the input image,K is the kernel, and (i, j) are the coordinates of the output feature map.

TheReLU (RectifiedLinearUnit) function introduces non-linearity into the network, which allows it to learn

from complex data:

f(x) = max(0, x)

Pooling layers reduce the spatial dimensions of the feature maps, retaining the most important information.

This process helps to control overfitting and reduces computational load. The most common pooling operation

is max pooling, defined as:

P(i, j) = max
m,n

{I(i+m, j+ n)}

where P(i, j) is the pooled feature map.

These layers are used at the end of the network to make predictions based on the extracted features. Each

neuron in a fully connected layer is connected to all neurons in the previous layer. The softmax function is often

used in the output layer for classification tasks:

σ(z)j =
ezj∑K
k=1 ezk

where z is the input vector and σ(z)j is the j-th component of the output probability distribution.

Transfer learning involves using a pre-trained model and fine-tuning it for a new, often smaller, task-specific

dataset. This approach showed in the belwo figure leverages the knowledge gained from the initial training task,

making it possible to achieve better performance with less data and computational resources.Pre-trained Mod-

els such as VGG, ResNet, and Inception are commonly used for transfer learning due to their robust architec-

tures and extensive training on large datasets like ImageNet.Fine-tuning involves adjusting the pre-trainedmodel’s

41

Figure 3.14: Transfer Learning Architecture

weights on the new dataset. Typically, the initial layers (which capture general features) are frozen, and only the

final layers (task-specific features) are retrained. The process can be mathematically represented by updating the

weights using gradient descent:

θ = θ− η∇θJ(θ)

where θ represents the model parameters, η is the learning rate, and J(θ) is the loss function.

The softmax function is often used in the output layer for classification tasks:

σ(z)j =
ezj∑K
k=1 ezk

where z is the input vector and σ(z)j is the j-th component of the output probability distribution.

Advantages of Transfer Learning

• Reduced Training Time: Since the model is already partially trained, it requires less time to converge.

42

• Improved Performance: Leveraging learned features from large datasets can enhance performance, espe-

cially when the new dataset is small.

• Less Data Required: Effective even with limited data, making it suitable for tasks where data collection

is challenging.

3.2.1 TRANSFER LEARNINGCLASSIFIERS :

This section provides an in-depth overview of several prominent CNN architectures used for classifying the re-

sulted colored images for both Foraminifera and EuroSat datasets.

• ResNet50

ResNet50 is a deep residual network architecture designed to address the vanishing gradient problem in deep

neural networks by introducing residual connections. As it is shown in the below figure the architecture is com-

posed of 50 layers, including 49 convolutional layers and a single fully connected layer. The primary innovation in

ResNet50 lies in its use of residual blocks, which incorporate identity and convolution shortcuts to facilitatemore

efficient training of deeper networks. In traditional deep networks, as the number of layers increases, the gradient

of the loss function can become extremely small, causing the network to stop learning or learn very slowly—a phe-

nomenon known as the vanishing gradient problem. ResNet50mitigates this issue through residual connections.

These connections allow the gradient to bypass certain layers, ensuring that it remains strong and the network

can continue to learn effectively even as it becomes deeper. The architecture’s fundamental building block is the

residual block, which comes in two varieties: identity blocks and convolutional blocks. Identity blocks preserve

the original dimensions of the input, allowing the input to be added directly to the output. Convolutional blocks,

on the other hand, alter the dimensions of the input to match the dimensions of the output, using convolutional

layers to perform this transformation before addition.

Mathematically, the operation of a residual block can be described by the following equations. For an identity

block:

y = F(x, {Wi}) + x (3.7)

43

Here, x is the input, F(x, {Wi}) represents the residual mapping to be learned, and y is the output of the

residual block. The function F typically consists of a series of convolutional, batch normalization, and ReLU

layers.

For a convolutional block, the equation is slightly modified to include a convolutional layer in the shortcut

path to match the dimensions:

y = F(x, {Wi}) +Wsx (3.8)

whereWs is a convolutional weight matrix that aligns the dimensions of the input x with the output of the

residual functionF .

Figure 3.15: ResNet‐50‐model Architecture

• ResNet18

ResNet18 architecture provided in the following fi is a smaller version of the ResNet architecture, suitable for

tasks with less complexity or limited computational resources. The architecture of ResNet18 consists of 18 layers,

including 17 convolutional layers and a single fully connected layer. It uses basic residual blocks, which are simpler

and contain fewer layers than the residual blocks in ResNet50.

44

The basic residual block in ResNet18 can be described by the following equation:

y = F(x, {Wi}) + x (3.9)

where the structure ofF(x, {Wi}) is simpler compared toResNet50, typically containing fewer convolutional

layers.

Figure 3.16: ResNet‐18 Architecture

• GoogLeNet

GoogLeNet, also known as Inception v1, introduces the Inception module as it is illustrated in the below fig-

ure,this inceptio allows thenetwork to capture features atmultiple scales. The architecture ofGoogLeNet consists

of 22 layers; however, the complexity is managed using Inception modules. These modules are the core innova-

tion of GoogLeNet, enabling the network to perform multiple operations, such as convolutions and pooling, in

parallel.

An Inception module performs 1x1 convolutions to reduce the dimensionality of feature maps, thereby en-

hancing computational efficiency. It then applies 3x3 and 5x5 convolutions to extract features at different scales,

providing a diverse array of spatial information. Pooling operations within the module aid in down-sampling

and capturing dominant features. The parallel pathways within the Inception module execute these operations

concurrently, and their outputs are concatenated to form the final output of the module.

Mathematically, the operations within an Inception module can be described as follows:

Output = Concat (Conv1×1(x),Conv3×3(x),Conv5×5(x), Pooling(x)) (3.10)

y = Concat (F1×1(x,W1×1),F3×3(x,W3×3),F5×5(x,W5×5),P(x)) (3.11)

45

Here, x represents the input to the Inception module. F1×1(x,W1×1),F3×3(x,W3×3), andF5×5(x,W5×5)

represent the 1x1, 3x3, and 5x5 convolutions respectively, with their correspondingweightmatricesW1×1,W3×3,

andW5×5. P(x) represents the pooling operation. The outputs of these operations are concatenated to form the

final output y of the Inception module.

The use of 1x1 convolutions before larger convolutions is particularly significant. These smaller convolutions

reduce the number of parameters and the computational cost, which increases efficiency and helps in reducing

overfitting. By combining these various operations within a single module, GoogLeNet can effectively capture

and process information at multiple scales while maintaining computational efficiency.

Figure 3.17: GoogleNet Architecture

• MobileNetV2

MobileNetV2 is designed formobile and embedded vision applications, emphasizing efficiency and speedwith-

out significant loss in accuracy. The architecture ofMobileNetV2 provided in the below figure primarily consists

of depthwise separable convolutions followed by pointwise convolutions. A key innovation in MobileNetV2 is

the use of inverted residuals with linear bottlenecks to enhance computational efficiency.

Depthwise separable convolutions split the convolution operation into two parts: depthwise convolutions

and pointwise convolutions. The depthwise convolution applies a single filter per input channel, and the point-

wise convolution applies a 1x1 filter to combine the outputs. Mathematically, these operations are represented as

follows:

46

Convdepthwise(x) = x ∗ Kdepthwise (3.12)

Convpointwise(x) = x ∗ Kpointwise (3.13)

where x is the input, ∗ denotes the convolution operation, Kdepthwise is the depthwise convolution filter, and

Kpointwise is the pointwise convolution filter.

Inverted residuals in MobileNetV2 use linear bottlenecks to reduce the number of channels before applying

depthwise separable convolutions, thus enhancing computational efficiency. This structure inverts the traditional

residual block by first expanding the number of channels with a pointwise convolution, then applying the depth-

wise convolution, and finally reducing the number of channels back with another pointwise convolution. This

methodmaintains rich feature representation while minimizing computational cost. Themathematical represen-

tation of the inverted residual block is given by:

y = x+ Convinverted residual(x) (3.14)

where the inverted residual block expands the input x to a higher dimension, performs depthwise convolution,

and then projects it back to a lower dimension.

47

Figure 3.18: MobileNetV2

3.2.2 Ensemble Learning

After training each classifier individually, we can use ensemble learning to combine their predictions, enhancing

the overall model performance. Ensemble learning is a machine learning paradigm where multiple models, often

referred to as ”weak learners,” are trained to solve the same problem and then combined to obtain better perfor-

mance than any of the individual models. The underlying principle is that a group of models can make more

robust and accurate predictions than a single model due to the diversity and complementarity of the models’ pre-

dictions.

Motivation for Using Ensemble Learning

• Improved Accuracy: By combining the outputs of several models, ensemble methods can achieve higher
predictive accuracy. Different models may capture different aspects of the data or make different errors,
and these differences can be averaged out, leading to better performance.

• Reduced Overfitting: Ensembles can reduce the risk of overfitting compared to individual models, espe-
cially if the individual models are diverse. Overfitting occurs when amodel learns the noise in the training
data rather than the underlying pattern.

• Increased Robustness: The combined output of multiple models is typically more robust to variations
in the training data and to the peculiarities of individual models. This is particularly valuable in complex
classification tasks where a single model might be prone to specific weaknesses.

48

Types of Ensemble Methods

There are various methods for combining the predictions of multiple models, including:

• Boosting: Sequentially trainsmodels, each attempting to correct the errors of the previous one. Examples
include AdaBoost and Gradient Boosting.

• Bagging (Bootstrap Aggregating): Trains models on different subsets of the training data and averages
their predictions. Random Forests are a common example.

• Voting: Aggregates the predictions of multiple models by majority vote (for classification) or averaging
(for regression).

• Stacking: Combines the outputs of several base models using a meta-model, which learns to make the
final prediction based on the outputs of the base models.

Figure 3.19: Ensemble Learning Framework

Weighted Averaging Ensemble Model.

Ensemble methods are powerful techniques in machine learning that combine the predictions of multiple

models to improve accuracy and robustness. One such method is the weighted averaging ensemble model, a

type of voting mechanism where different models contribute to the final prediction based on their individual

performances.

Mathematical Formulation:

49

In a weighted averaging ensemble, each modelMi is assigned a weight wi reflecting its reliability or accuracy.

GivenNmodels, the final prediction ŷ for a data point is computed as aweighted sumof the individual predictions

ŷi:

ŷ =
N∑
i=1

wiŷi, (3.15)

where:

• ŷ is the final prediction,

• ŷi is the prediction from the i-th model,

• wi is the weight assigned to the i-th model, with wi ≥ 0 and
∑N

i=1 wi = 1.

For classification problems where models output probability distributions over classes, the weighted average

of probabilities pij (the probability of class j frommodel i) is used:

pj =
N∑
i=1

wipij. (3.16)

The final class prediction ŷ is the class with the highest combined probability:

ŷ = argmax
j

(N∑
i=1

wipij

)
. (3.17)

Determining Weights

The weights wi can be determined based on various criteria, such as:

• Validation Accuracy: Using the accuracy of each model on a validation set as its weight.

• Inverse Error Rate: Assigning weights inversely proportional to the error rates of the models.

• Other Performance Metrics: Using metrics like precision, recall, or F1 score to determine weights.

For example, if the accuracy of model i on a validation set is acci, the weights can be normalized as:

wi =
acci∑N
i=1 acci

. (3.18)

Suitability of Weighted Averaging

Weighted averaging is particularly suitable when:

• Model Diversity: The individual models are diverse and capture different aspects of the data.

50

• Varying Model Performance: Models have different levels of accuracy, and it is beneficial to give more
weight to better-performing models.

• Robustness Requirement: There is a need to improve the robustness and generalization of the final
prediction by leveraging multiple models.

This method can mitigate the risk of overfitting by ensuring that no single model overly influences the final

prediction, especially if that model performs poorly on certain subsets of the data.

3.2.3 K-Fold Cross-Validation

K-fold cross-validation is a robust method used for evaluating the performance of machine learning models, par-

ticularly in classification tasks. It helps in assessing how well the model generalizes to an independent dataset and

is essential for preventing overfitting.In k-fold cross-validation, the dataset is randomly partitioned into k equal-

sized folds. The model is trained and validated k times, each time using a different fold as the validation set and

the remaining k− 1 folds as the training set. The performance metric is averaged over the k iterations to provide

a comprehensive evaluation.

Formally, let D be the dataset with n samples. The dataset is divided into k folds, D1,D2, . . . ,Dk, each con-

taining n
k samples. For each iteration i from 1 to k, themodel is trained onD\Di (all data exceptDi) and validated

onDi.

The general procedure is as follows:

1. Divide the datasetD into k folds.

2. For each fold i = 1 to k:

(a) Train the model onD \Di.

(b) Validate the model onDi.

(c) Compute the performance metric (e.g., accuracy, precision, recall).

3. Average the performance metrics across all k folds.

Mathematical Formulation

LetM be the performance metric (e.g., accuracy). The metric for the i-th fold is denoted asMi. The overall

performance metric M̄ is computed as:

M̄ =
1
k

k∑
i=1

Mi (3.19)

51

Where:

Mi = Performance metric for the i-th fold

Importance in Classification Tasks:

K-fold cross-validation is crucial for several reasons:

• Generalization: It provides a reliable estimate of the model’s performance on unseen data by ensuring

that every data point is used for both training and validation.

• Bias-Variance Tradeoff : By training and validating the model multiple times, k-fold cross-validation

helps in finding a balance between bias and variance, thus improving the model’s ability to generalize.

• Efficient Use of Data: Especially in scenarios with limited data, k-fold cross-validation makes efficient

use of the available dataset, as every data point is used for both training and validation.

• Robust PerformanceMetrics: Averaging the performancemetric over k folds provides amore stable and

robust estimate than a single train-test split, reducing the impact of data variability.

52

4
EXPERIMENTS ANDANALYSIS :

53

In this chapter, we present experiments conducted using newly generated colored images obtained from super-

vised learning algorithms. The primary objective of these experiments is to utilize these colored images to perform

classification tasks via transfer learning.

To compare the performance of themodels, we will use metrics such as F1 score, which is the weighted average

of Precision and Recall, providing a balance between them:

F1 Score =
2× TP

2× TP+ FP+ FN
(4.1)

In these equations:

• TP (True Positives) are instances correctly predicted as positive.

• TN (True Negatives) are instances correctly predicted as negative.

• FP (False Positives) are instances incorrectly predicted as positive.

• FN (False Negatives) are instances incorrectly predicted as negative.

In addition to the F1 Score, we also use other performance metrics such as Recall, Precision, and Accuracy to

evaluate the models:

• Recall (Sensitivity) is the ratio of correctly predicted positive observations to all the actual positives. It is
defined as:

Recall =
TP

TP+ FN
(4.1)

• Precision (Positive Predictive Value) is the ratio of correctly predicted positive observations to the total
predicted positives. It is defined as:

Precision =
TP

TP+ FP
(4.2)

• Accuracy is the ratio of correctly predicted observations to the total observations. It is defined as:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(4.3)

• ConfusionMatrix allows visualization of the performance of classifier. Each rowof thematrix represents
the instances in an actual class, while each column represents the instances in a predicted class. For amulti-
class classification problem, the ConfusionMatrix C is defined as:

C =

C1,1 C1,2 · · · C1,N
C2,1 C2,2 · · · C2,N
...

...
. . .

...
CN,1 CN,2 · · · CN,N

where Ci,j is the number of instances of class i that were predicted as class j. The diagonal elements Ci,i
represent the counts of correctly classified instances for each class.

54

The Confusion Matrix provides insight into the types of errors being made by the classifier and can be
used to calculate other performance metrics such as Precision, Recall, and Accuracy for each class, as well
as overall performance metrics.

4.1 CLASSIFICATION EXPERIMENTS AND ANALYSIS

OF FORAMINIFERADATASET

All networks were pre-trained with the open-source image dataset ImageNet, which contains millions of labelled

images. Hyperparameters for all networks were set as follows:

• Mini Batch Size: 30

• Max Epochs: 15

• Learning Rate: 10−4

• Optimizer: adam

”The table below presents the F1 scores for the test data after training the pre-trainedmodels using augmented

data, which involved random reflections of the images top-bottom and left-right to create two additional images,

and a third transformation that linearly scaled the original image along both axes with factors randomly extracted

from the uniform distribution.

Table 4.1: Results After Training New Colored Images on Test Dataset Using Adam Optimizer

Colorization Model ResNet-50 ResNet-18 GoogleNet MobileNetV2
GAN 94% 96% 86% 94%
U-Net Auto-Encoder 83% 77% 75% 66%
VGG19 Auto-Encoder 87% 79% 79% 74%
VGG19+U-Net ELModel 88% 87% 85% 86%
U-Net+GAN ELModel 94% 93% 90% 91%
VGG19+GAN ELModel 96% 95% 92% 93%
VGG19+U-Net+GAN ELModel 95% 91% 84% 90%

The Foraminifera dataset was split into 80% for training, 10% for validation, and 10% for testing. As shown

in Table 4.10, the GANmodel is the best among individual models, achieving accuracies of 94%, 96%, 86%, and

94% on ResNet-50, ResNet-18, GoogleNet, andMobileNetV2, respectively.

55

For ensemble models, the VGG19+GAN ELmodel outperformed others, achieving the highest accuracies of

96%, 95%, 92%, and 93% on the respective network architectures. Thus, the VGG19+GANELmodel is themost

effective overall, providing superior classification performance across the test dataset.

By using best ensemblemodel (VGG19)+(GAN),the following table presents a comparative analysis of perfor-

mance measurements with using for the test data across different categories of Foraminifera. The performance

metrics include precision, recall, F1 score, and accuracy for each class. These metrics provide a comprehensive

evaluation of the classification model’s effectiveness in accurately identifying each Foraminifera category.

Table 4.2: Comparison of Performance Measurements for Test Data Across Foraminifera Categories

Class Precision Recall F1 Score Accuracy
Bulloides %94 %94 %94 %98
Dutertrei 1 %73 %84 %97
Incompta 1 1 1 1
Others %97 1 %99 %99
Pachyderma 1 1 1 1
Ruber %94 %94 %94 %98
Sacculifer %83 1 %90 %97

The table compares the precision, recall, F1 score, and accuracy for various Foraminifera categories. Incompta,

Others, and Pachyderma achieve perfect scores across all metrics, indicating excellent model performance in iden-

tifying these categories. Bulloides and Ruber also show high performance with precision, recall, F1 score, and

accuracy all above 94%. Sacculifer has a high recall and accuracy (100% and 97% respectively) but lower preci-

sion (83%) and F1 score (90%). Dutertrei, however, presents a unique case with a high accuracy of 97% despite a

lower recall of 73%, which suggests that while themodel correctly identifies a large portion of the overall instances,

it struggles to identify all true Dutertrei instances, likely due to a higher rate of false negatives. This discrepancy

highlights the importance of consideringmultiplemetrics to fully understandmodel performance across different

categories.

The confusion matrix below provides a detailed breakdown of the performance of the ensemble model that

combines Model 1 andModel 3 in classifying various Foraminifera species.

56

Figure 4.1: Confusion Matrix for Ensemble Model (Model 1 + Model 3)

57

Themodel correctly classified 17 instances ofBulloides, butmisclassified 1 instance asDutertrei and1 asRuber.

For Dutertrei, out of 16 instances, the model correctly identified 11, misclassifying 1 as Incompta and 3 as Ruber.

This lower recall (73%) forDutertrei indicates difficulty indistinguishingDutertrei fromother species, particularly

Ruber, likely due to similarities in their features causing confusion. In contrast, the model accurately classified

all 18 instances of Incompta, demonstrating high accuracy. It also showed high performance for the ’Others’

category, correctly classifying all 45 instances. For Pachyderma, the model achieved perfect classification with all

15 instances correctly identified. The Ruber category had 17 correctly classified instances, with 1 misclassified as

Bulloides, indicating minor confusion between these species. Lastly, Sacculifer was perfectly classified with all 15

instances correctly identified.

To enhance the comparison of our workwithmethods discussed in the literature on foraminifera classification

[1], [2], we adopt a rigorous scientific approach. Initially, we employ a 4-fold cross-validation technique to ensure

robust evaluation of our model. Subsequently, we extend our analysis by using 5-fold cross-validation to assess

the impact of different k-fold values on model performance.

After training and evaluating our model using both k-fold strategies, we compare the results of ensemble mod-

els from our study with those presented in the referenced papers. This comprehensive comparison highlights the

effectiveness of our approach relative to existing studies in the field.

The table below illustrates the results of our study using 4-fold cross validation.

Table 4.3: Results of Forminifera Test Dataset using 4‐Fold Cross Validation

Colorization Model ResNet-50 ResNet-18 GoogleNet MobileNetV2

GAN 90% 85% 76% 76%

U-Net Auto-Encoder 80% 78% 70% 68%

VGG19 Auto-Encoder 81% 79% 74% 70%

VGG19+U-Net EL model 85% 84% 79% 78%

U-Net+GAN ELmodel 91% 90% 81% 83%

VGG19+GAN ELmodel 90% 90% 84% 85%

VGG19+U-Net+GAN ELmodel 95% 94% 90% 89%

58

It can be shown that the GANmodel shows solid performance with ResNet-50 (90%) and ResNet-18 (85%)

but performs less well with GoogleNet (76%) and MobileNetV2 (76%). The U-Net Auto-Encoder and VGG19

Auto-Encodermodels also showmoderate performance across all architectures, withU-NetAuto-Encoder achiev-

ing a notable 80% with ResNet-50 and VGG19 Auto-Encoder reaching 81% with ResNet-50.Comparing the en-

semble learning (EL) models, the VGG19+U-Net EL model and the U-Net+GAN ELmodel both demonstrate

enhanced performance, outperforming the single models. The U-Net+GANELmodel achieves high scores with

ResNet-50 (91%) and ResNet-18 (90%), and also performs strongly with GoogleNet (81%) and MobileNetV2

(83%). The VGG19+GAN EL model similarly shows improved performance, especially with ResNet-50 (90%)

and ResNet-18 (90%).However, the VGG19+U-Net+GAN ELmodel emerges as the best performing ensemble

learning model, achieving the highest scores across all architectures: 95% with ResNet-50, 94% with ResNet-18,

90% with GoogleNet, and 89% with MobileNetV2. This indicates that combining the strengths of VGG19, U-

Net, and GAN into a single ensemble model provides the most robust and consistent performance across various

neural network architectures.

Table 4.4: Results of our proposed work compared to other ensemble models reported here [1]

Colorization Model ResNet-50 ResNet-18 GoogleNet MobileNetV2

Percentile(3)+Luma Scal-

ing(3)+Means Reconstruction(3)

87.7% 86.8% 82.1% 88.1%

Gaussian(3)+Luma Scal-

ing(3)+Means Reconstruction(3)

87.9% 85.9% 79.8% 87.2%

Percentile(2)+Gaussian(2)+Luma

Scaling(2)+Means Reconstruc-

tion(2)+HSVPP(2)

88.5% 88.0% 84.0% 88.8%

Percentile(1)+Gaussian(1)+Luma

Scaling(1)+Means Reconstruc-

tion(1)+HSVPP(1)+GraySet(5)

90.6% 86.5% 84.1% 89.7%

VGG19+U-Net+GAN 95.0% 94.0% 90.0% 89.0%

59

The table above presents a performance comparison of various colorization models using different neural net-

work architectures: ResNet-50, ResNet-18, GoogleNet, and MobileNetV2. The models include several config-

urations involving Percentile, Gaussian, Luma Scaling, Means Reconstruction, and HSVPP methods, compared

against our ensemble learning model, VGG19+U-Net+GAN.

The Percentile(3)+Luma Scaling(3)+Means Reconstruction(3) model shows good performance across the

board,withnotable scores such as 87.7% forResNet-50 and88.1% forMobileNetV2. Similarly, theGaussian(3)+Luma

Scaling(3)+MeansReconstruction(3)model achieves comparable results, with its highest scoreof 87.9%onResNet-

50.

Acombined approachofPercentile(2)+Gaussian(2)+LumaScaling(2)+MeansReconstruction(2)+HSVPP(2)

improves the performance, particularly for ResNet-50 (88.5%) and MobileNetV2 (88.8%). The most advanced

configuration among thenon-ensemblemodels, Percentile(1)+Gaussian(1)+LumaScaling(1)+MeansReconstruc-

tion(1)+HSVPP(1)+GraySet(5), achieves the highest performance among these models with a score of 90.6% on

ResNet-50, although it shows variability across other architectures, such as 86.5% for ResNet-18 and 89.7% for

MobileNetV2.

In contrast, our ensemble learning model, VGG19+U-Net+GAN, demonstrates superior and consistent per-

formance across all architectures, outperforming all other models. It achieves remarkable scores of 95.0% for

ResNet-50, 94.0% for ResNet-18, 90.0% for GoogleNet, and 89.0% for MobileNetV2. These results indicate

the robustness and effectiveness of our ensemble model, leveraging the combined strengths of VGG19, U-Net,

and GAN to provide the highest accuracy and reliability in colorization tasks.

Model Precision (%) Recall (%) F1 Score (%) Accuracy (%)

Novices (max) 65% 64% 63% 63%

Experts (max) 83% 83% 83% 83%

ResNet50 + Vgg16 [2] 84% 86% 85% 85%

Vgg16 [2] 80% 82% 81% 81%

Best Ensemble model [1] 90.9% 90.6% 90.6% 90.7%

Proposed Ensemble 96% 95% 95% 95%

Table 4.5: Precision, recall, accuracy and F1 score comparison between models reported in [1], [2], and the best ensemble
presented in the paper.

60

The above table shows that our proposed ensemble model significantly outperforms novices, experts, and pre-

vious ensemble models. Novices exhibit the lowest performance, with precision, recall, F1 score, and accuracy

around 63-65(%). Experts perform better, achieving 83(%) across these metrics. The ResNet50 + Vgg16 ensem-

ble model further improves these scores to 84-86(%), while Vgg16 alone scores slightly lower at 80-82(%). The

best ensemble model prior to the proposed one achieves around 90.6-90.9(%). In contrast, the proposed ensem-

ble model achieves the highest scores, with precision, recall, F1 score, and accuracy all reaching 95-96(%).

Class Precision (%) Recall (%) F1 Score (%) Accuracy (%)

Bulloides 96% 93% 94% 98%

Ruber 96% 94% 95% 98%

Sacculifer 100% 95% 97% 99%

Dutertrei 96% 94% 95% 99%

Incompta 95% 94% 95% 98%

Pachyderma 96% 97% 97% 99%

Other 93% 98% 95% 97%

Table 4.6: Precision, recall, F1 score, and accuracy of the best ensemble across all classes of the dataset.

The performancemeasurements presented in the table above highlight that G. sacculifer exhibits perfect preci-

sion (100%), indicating no false positives, followed closely by other classes with precision values ranging from 95%

to 96%, and the ”Other” category at 93%. In terms of recall, the ”Other” category and N. pachyderma stand out

with the highest values at 98% and 97%, respectively, suggesting they effectively identify nearly all true positive

instances. The remaining classes demonstrate recall values between 93% and 95%. The F1 scores, which balance

precision and recall, range from 94% to 97% across all classes, signifying a well-rounded performance. Accuracy

metrics are uniformly high, ranging from 97% to 99%, indicating consistent overall effectiveness of the ensemble

model.

Overall, G. sacculifer andN. pachyderma show the strongest performance across themetrics, while the ”Other”

category excels in recall despite having slightly lower precision. All classes exhibit high overall performance, sug-

gesting that the ensemble model is effective across different categories.

61

The confusionmatrix below reveals the best ensemblemodel’s performance across Foraminifera species using 4-

fold cross-validation. Themodel correctly classifiedmost instances, particularly forOthers (88/91), but had some

misclassifications. Specifically, Bulloides was misclassified as Incompta (2 instances) and as Others and Ruber (1

instance each). Dutertrei was misclassified as Bulloides, Others, and Sacculifer (1 instance each). Incompta had

high accuracy with only 1 misclassification as Others. Pachyderma and Ruber also had a few misclassifications.

The model demonstrates robustness but shows some confusion between closely related classes such as Bulloides

and Incompta, and Ruber and Sacculifer.

Figure 4.2: Confusion Matrix for the Best Ensemble Model Using 4‐Fold Cross Validation

The confusionmatrix above demonstrates that the ensemble model performs well across most classes, particu-

larly for Others, which had the highest number of correct classifications. For Bulloides, the model correctly clas-

sified 33 instances, but misclassified 2 instances as Incompta and 1 instance each as Others and Ruber. Dutertrei

had 32 true instances, with 29 correctly identified. Misclassifications for Dutertrei included 1 instance each as

62

Bulloides, Others, and Sacculifer. Incompta showed high accuracy, with 33 correct classifications and only 1 mis-

classified as Others. The Others category had the highest number of correct classifications, with 88 out of 91

instances correctly identified, but 2 instances were misclassified as Bulloides and 1 as Incompta. For Pachyderma,

themodel correctly classified 30 instances, with 1misclassification asDutertrei. Ruber, with 38 true instances, had

35 correctly identified, and 1 instance eachmisclassified as Bulloides, Others, and Sacculifer. Lastly, Sacculifer was

accurately classified in 29 instances, with only 1 misclassification as Ruber. This analysis indicates that while the

model demonstrates robust performance overall, there is still some confusion between closely related classes such

as Bulloides and Incompta, and Ruber and Sacculifer.

63

4.2 CLASSIFICATION EXPERIMENTS AND ANALYSIS

OF EuroSat DATASE

All networks were pre-trained with the open-source image dataset ImageNet, which contains millions of labeled

images. Additionally, the EuroSat dataset was split into 60% for training, 20% for validation, and 20% for testing.

• Mini Batch Size: 80

• Max Epochs: 15

• Learning Rate: 10−4

• Optimizer: adam

Firstly, we conducted a comparative analysis using two sets of F1 score performance data. The first set, pre-

sented inTable 1, displays theF1 scores for image classification tasks that utilized colored images generated through

supervised learning colorization in combination with RGB images. The second set, shown in Table 2, contains

the F1 scores for image classification tasks that employed only the colored images without integrating them with

RGB images. This comparison aims to determine which method yields better performance, thereby informing

the selection of the most effective approach for ensemble methods in image classification.

Table 4.7: F1 Score Performance for Image Classification Using Combined Various Colorization Methods and RGB Images

Colorization Model ResNet-50 ResNet-18 GoogleNet MobileNetV2

GAN 98.6% 96.1 % %92.4 %95.3

U-Net Auto-Encoder %95.0 %95.5 %94.4 %95.7

VGG19 Auto-Encoder %98.1 %97.7 %96.1 %96.9

Table 4.8: F1 Score Performance for Image Classification Using Only Various Colorization Methods

Colorization Model ResNet-50 ResNet-18 GoogleNet MobileNetV2

GAN 95.1% 94.2% %92.0 %94.0

U-Net Auto-Encoder 93.1% %92.5 %90.0 %91.3

VGG19 Auto-Encoder %95.2 %94.1 %93.4 %93.2

64

The comparison between the twomodels indicates that the image classification performance is generally higher

when using a combination of colorized and RGB images, as shown in Table 4.6. Specifically, the F1 scores for

all models (GAN, U-Net Auto-Encoder, and VGG19 Auto-Encoder) are consistently higher across all classifiers

(ResNet-50, ResNet-18, GoogleNet, andMobileNetV2) when using the combined approach. In contrast, Table

4.7 shows lower F1 scores when only colorized images are used. Therefore, the best approach for performing an

ensemble model is to use a combination of colorized and RGB images, as this yields superior classification perfor-

mance.

Table 4.9: F1 Score Performance of Individual and Ensemble Models Using Various Colorization Methods Combined with
RGB Images

Colorization Model ResNet-50 (%) ResNet-18 (%) GoogleNet (%) MobileNetV2 (%)

GAN 98.6% 96.1% 92.4% 95.3%

U-Net Auto-Encoder 95.0% 95.5% 94.4% 95.7%

VGG19 Auto-Encoder 98.1% 97.7% 96.1% 96.9%

VGG19+U-Net EL

model

98.6% 97.2% 95.8% 96.1%

U-Net+GAN ELmodel 98.8% 96.2% 94.4% 95.7%

VGG19+GAN EL

model

99.5% 98.5% 96.0% 97.3%

VGG19+U-Net+GAN

ELmodel

99.1% 98.6% 96.6% 97.2%

The table above compares several individual and ensemble colorizationmodels across four different evaluation

metrics: ResNet-50, ResNet-18, GoogleNet, andMobileNetV2. Among the individualmodels, theGANmodel

shows strong performance onResNet-50 (98.6%) andResNet-18 (96.1%) but lower scores onGoogleNet (92.4%).

TheU-NetAuto-Encoder performs consistently across allmetrics, with scores like 95.0%onResNet-50 and95.5%

on ResNet-18, but it does not achieve the highest scores overall. The VGG19 Auto-Encoder model exhibits high

65

performance across all metrics, particularly on GoogleNet (96.1%) andMobileNetV2 (96.9%).

The ensemble models show improved performance over individual models. The VGG19+U-Net EL model

performs well, especially on ResNet-50 (98.6%) and ResNet-18 (97.2%), but does not significantly outperform

the best individual models. The U-Net+GANELmodel shows a slight improvement, particularly on ResNet-50

(98.8%). The VGG19+GAN EL model demonstrates significant improvements across all metrics, achieving the

highest scores onResNet-50 (99.5%) andResNet-18 (98.5%). TheVGG19+U-Net+GANELmodel exhibits the

best overall performance, achieving the highest or near-highest scores across all metrics, with scores like 99.1% on

ResNet-50, 98.6% on ResNet-18, 96.6% on GoogleNet, and 97.2% onMobileNetV2.

In conclusion, the VGG19+U-Net+GANELmodel is the best ensemblemodel, achieving the highest or near-

highest scores across all evaluation metrics, making it the most robust and effective colorization model in this

comparison.

Table 4.10: Accuracy Metrics of Individual and Ensemble Models for EuroSAT Dataset Classification Using ResNet‐50
Architecture

Colorization Model ResNet-50 (%)

GAN 98.7%

U-Net Auto-Encoder 95.0%

VGG19 Auto-Encoder 98.1%

VGG19+U-Net EL model 98.6%

U-Net+GAN ELmodel 98.8%

VGG19+GAN ELmodel 99.5%

VGG19+U-Net+GAN ELmodel 99.1%

Best Model[45] 98.5%

To rigorously compare our work with similar EuroSAT dataset classification methods proposed in previous

studies[45].In the following table, we computed the accuracy metrics for both individual models and ensemble

models. By conducting this comparison, we aim to contextualize our findings within the existing body of research

and highlight the performance improvements achieved through our methodologies. Specifically, we evaluate the

accuracies of various models, including Generative Adversarial Network, U-Net Auto-Encoder, and VGG19

66

Auto-Encoder, as well as ensemble models such as VGG19 combined with U-Net Encoder-Decoder Learning

model, U-Net combined with Generative Adversarial Network Encoder-Decoder Learning model, and VGG19

combined with U-Net and Generative Adversarial Network Encoder-Decoder Learning model. These compar-

isons are crucial for validating the robustness and efficacy of our proposedmodels against established benchmarks.

Among themodels, theVGG19+GANELmodel achieves thehighest accuracy at 99.5%, surpassing theVGG19+U-

Net+GAN EL model, which scores 99.1%. The previous best model cited in the last row has an accuracy of

98.5%. Therefore, the VGG19+GAN EL model outperforms the previous best model[45] by a significant mar-

gin, demonstrating an improvement of 1.0% in accuracy.

Class Precision Recall F1 Score Accuracy

AnnualCrop 99.6% 99.8% 99.7% 99.9%

Forest 99.3% 99.8% 99.5% 99.9%

HerbaceousVegtation 96.4% 99.3% 97.8% 99.5%

Highway 99.3% 98.7% 99.0% 99.8

Industrial 100% 98.6% 99.2% 99.8%

Pasture 100% 96.9% 98.4% 99.7%

PermanentCrop 98.6% 97.9% 98.3% 99.6%

Residential 98.5% 99.6% 99.1% 99.8%

River 99.8% 99.6% 99.7% 99.9%

SeaLake 99.8% 99.8% 99.8% 99.9%

Table 4.11: Precision, recall, F1 score, and accuracy of the best ensemble across all classes of the dataset.

The performance of themodel across various classes has been evaluated based on precision, recall, F1 score, and

accuracy, revealing strong predictive capabilities with some variability between classes using best ensembel model.

The table above show that themodel demonstrates high performance acrossmost classes, with precision, recall, F1

score, and accuracy generally exceeding 97%. The Industrial and Pasture classes achieve perfect precision (100%),

whileAnnualCrop, Forest, River, and SeaLake exhibit the highest recall (99.8%). AnnualCrop andRiver also have

the topF1 scores (99.7%). Accuracy is uniformlyhigh, around99.8%-99.9%,withAnnualCrop, Forest, River, and

67

SeaLake reaching 99.9%. Conversely, HerbaceousVegetation shows the lowest metrics, with a precision of 96.4%,

recall of 98.7%, F1 score of 97.6%, and accuracy of 99.3%, indicating it is the most challenging class for the model.

Overall, the model performs exceptionally well, with slight room for improvement in HerbaceousVegetation and

Pasture classes.

Figure 4.3: Confusion Matrix for Best Ensemble Model Performance on EuroSAT Dataset

The confusionmatrix illustrates the performance of the best ensemblemodel, combining two pre-trained neu-

ral networks, on the EuroSAT dataset, which classifies various land use and land cover types.From the matrix, we

observe high classification accuracy for most classes, with the diagonal values (correct classifications) being signif-

icantly higher than the off-diagonal values (misclassifications). For example, the classes ”Forest,” ”AnnualCrop,”

and ”SeaLake” show very high accuracy, with 607, 595, and 608 correctly classified instances, respectively, and

very few misclassifications. The ”PermanentCrop” and ”HerbaceousVegetation” classes also demonstrate strong

performance, with 527 and 569 correct classifications.

However, there are some notable misclassifications. The ”Pasture” class has a few instances misclassified as

68

”Forest” (8 instances) and ”PermanentCrop” (3 instances), indicating some confusion between these classes, po-

tentially due to similar spectral or textural features. Similarly, ”Industrial” and ”Highway” classes show minor

misclassifications, with ”Highway” being confused with ”Industrial” (2 instances).

69

70

5
Conclusion

71

The study demonstrates the efficacy of integrating multiple colorization techniques with Convolutional Neu-

ralNetworks (CNNs)within an Ensemble Learning (EL) framework to enhance image classification tasks. Specif-

ically, the innovative use of Generative Adversarial Networks (GANs) and U-Net-based autoencoders for the col-

orization of grayscale images has significantly improved classification performance for both the foraminifera and

EuroSAT datasets.

5.1 Foraminifera Classification

The classification of planktic foraminifera, microscopic marine organisms critical for paleoceanographic studies,

was notably enhanced through the use of advanced deep learning techniques. The application of various coloriza-

tion methods to grayscale images, combined with the power of ensemble CNNs, resulted in superior accuracy

and reliability. This approach not only facilitated the detailed morphological analysis of foraminifera but also

demonstrated potential for automating traditionally labor-intensive classification tasks, thus accelerating research

in marine biology and environmental science.

5.2 EuroSATDataset Classification

Similarly, the classification of the EuroSAT dataset, which comprises Sentinel-2 satellite images across 13 spec-

tral bands, benefited greatly from the proposed methodologies. The conversion of multi-spectral data into RGB

images using sophisticated colorization techniques allowed for effective utilization of CNN-based models. The

ensemble models, trained on these enhanced RGB images, consistently outperformed state-of-the-art methods,

highlighting the robustness and versatility of the proposed system. This has significant implications for environ-

mental monitoring, urban planning, and agricultural management, where accurate land cover classification is

essential.

5.3 Ensemble Learning Effectiveness

The ensemble learning strategy proved to be particularly effective in mitigating the limitations of individual mod-

els, resulting in improved consistency and accuracy. By combining outputs from multiple models trained on

72

differently processed images, the ensemble approach leveraged the strengths of each model while compensating

for their weaknesses. This was evident in the high precision, recall, and F1 scores achieved across various models

and datasets.

5.4 FutureWork

Future research could explore the integration of additional colorization techniques and the application of this

framework to other domains requiring detailed image analysis. Additionally, enhancing the training process with

larger and more diverse datasets could further improve model performance and generalization capabilities.

73

74

References

[1] L. Nanni, G. Faldani, S. Brahnam, R. Bravin, and E. Feltrin, “Improving foraminifera classification using

convolutional neural networks with ensemble learning,” 2023.

[2] R. Mitra, T. Marchitto, Q. Ge, B. Zhong, B. Kanakiya, M. Cook, J. Fehrenbacher, J. Ortiz, A. Tripati,

and E. Lobaton, “Automated species-level identification of planktic foraminifera using convolutional neu-

ral networks, with comparison to human performance,”Marine Micropaleontology, vol. 147, pp. 16–24,

2019.

[3] F. Y. W. P. S. Z. J. Li, Z.; Liu, “A survey of convolutional neural networks: Analysis, applications, and

prospects,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 12, pp. 6999–7019,

Dec 2022.

[4] Z.-H. Zhou, EnsembleMethods: Foundations and Algorithms. Chapman and Hall/CRC, 2012.

[5] J. A. Cushman, Foraminifera: Their Classification and Economic Use, 4th Revised and Enlarged Edition.

Harvard University Press, 1948.

[6] K. Segl, L. Guanter, F. Gascon, T. Kuester, C. Rogass, and C. Mielke, “S2etes: An end-to-end modeling

tool for the simulation of sentinel-2 image products,”Remote Sensing of Environment, vol. 255, p. 112300,

2022.

[7] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” https://arxiv.org/abs/1603.08511,

2016, accessed: 2024-06-23.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural

networks,” in Advances in Neural Information Processing Systems (NIPS), vol. 25, 2012, pp. 1097–1105,

[Google Scholar] [CrossRef].

[9] “How (and why) are black and white films colorized?” https://www.mentalfloss.com/article/26956/

how-and-why-are-black-and-white-films-colorized, 2011, accessed: 2024-06-23.

75

https://arxiv.org/abs/1603.08511
https://www.mentalfloss.com/article/26956/how-and-why-are-black-and-white-films-colorized
https://www.mentalfloss.com/article/26956/how-and-why-are-black-and-white-films-colorized

[10] A. Levin, D. Lischinski, and Y. Weiss, “Colorization using optimization,” ACMTransactions on Graphics,

vol. 23, no. 3, pp. 689–694, 2004.

[11] T. Welsh, M. Ashikhmin, and K. Mueller, “Transferring color to greyscale images,” ACMTransactions on

Graphics, vol. 21, no. 3, pp. 277–280, 2002.

[12] R. Ironi,D.Cohen-Or, andD.Lischinski, “Colorizationby example,”ComputerGraphics Forum, pp. 201–

210, 2005.

[13] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis. JohnWiley & Sons, 1973.

[14] R. C. Gonzalez and R. E. Woods,Digital Image Processing. Prentice Hall, 2002.

[15] Y. LeCun, B. Boser, J. S. Denker, D.Henderson, R. E.Howard,W.Hubbard, and L.D. Jackel, “Backprop-

agation applied to handwritten zip code recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551,

1989.

[16] D. E.Rumelhart, G. E.Hinton, andR. J.Williams, “Learning representations by back-propagating errors,”

Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[17] J. D. Owens,M.Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, “Gpu computing,” Proceed-

ings of the IEEE, vol. 96, no. 5, pp. 879–899, 2008.

[18] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal

covariate shift,” in International Conference onMachine Learning. PMLR, 2015, pp. 448–456.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin,

“Attention is all you need,” in Advances in Neural Information Processing Systems, 2017, pp. 5998–6008.

[21] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,”

arXiv preprint arXiv:1409.1556, 2014, [Google Scholar] [CrossRef].

[22] C. Szegedy,W. Liu, Y. Jia, P. Sermanet, S. Reed, D.Anguelov, D. Erhan, V. Vanhoucke, andA.Rabinovich,

“Going deeper with convolutions,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2015, pp. 1–9.

76

[23] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-

gio, “Generative adversarial nets,” inAdvances inNeural Information Processing Systems, vol. 27, 2014, pp.

2672–2680.

[24] A.Radford, L.Metz, and S.Chintala, “Unsupervised representation learningwith deep convolutional gen-

erative adversarial networks,” in Proceedings of the International Conference on Learning Representations

(ICLR), 2016.

[25] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmen-

tation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.

Springer, 2015, pp. 234–241.

[26] A. Y.Hsiang, A. Brombacher, A. L. Johnson, P.W.Wilson,M.C.Rillo, and P.M.Hull, “The digital evolu-

tion of macroevolutionary theory: developing, deploying, and interpreting machine-learning approaches

for studying the fossil record,” Paleobiology, vol. 45, no. 4, pp. 520–536, 2019.

[27] F. Nguyen and Others, “A novel approach for foraminifera classification using a combination of con-

volutional neural networks and traditional image processing techniques,” Journal of Micropaleontology,

vol. XX, no. X, pp. XX–XX, 2020.

[28] P. Helber, B. Bischke, A. Dengel, and D. Borth, “Eurosat: Land use and land cover classification with

sentinel-2,” available at https://github.com/phelber/eurosat.

[29] S. Basu, S. Ganguly, S. Mukhopadhyay, R. DiBiano, M. Karki, and R. Nemani, “Deepsat: A learning

framework for satellite imagery,” in Proceedings of the 23rd SIGSPATIAL International Conference on Ad-

vances in Geographic Information Systems, 2015, pp. 1–10.

[30] W. Zhou, S. Newsam, C. Li, and Z. Shao, “Learning deep features for remote sensing image scene classifi-

cation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 8, pp. 4489–4501, 2017.

[31] L. Breiman, “Random forests,”Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[32] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep neural networks?”

in Advances in Neural Information Processing Systems, vol. 27, 2014, pp. 3320–3328.

[33] D. Marmanis, K. Schindler, J. D. Wegner, S. Galliani, M. Datcu, and U. Stilla, “Classification and seg-

mentation of urban areas using remote sensing data and pretrained convolutional neural networks,” in

International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2016, pp. 5073–5077.

77

https://github.com/phelber/eurosat

[34] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz,

Z. Wang et al., “Photo-realistic single image super-resolution using a generative adversarial network,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4681–4690.

[35] Z. Liang, L. Zheng, M. Tan, S. Venkatesh, and S. Zhang, “Gan-based synthetic data generation for small

sample size classification,”Proceedings of the IEEEConference onComputerVision andPatternRecognition,

pp. 2804–2814, 2018.

[36] W. Liu, C. Gao, Z. Han, S. Gong, J. Chen, and H. Xu, “Multi-view convolutional neural networks for

3d shape recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2017, pp. 3650–3659.

[37] D. P. Kingma and J. Ba, “Adam: Amethod for stochastic optimization,” arXiv preprint arXiv:1412.6980,

2014.

[38] T. Tieleman and G. Hinton, “Lecture 6.5 - rmsprop, coursera: Neural networks for machine learning,”

2012, available at https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

[39] S. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Trans-

actions on Pattern Analysis andMachine Intelligence, vol. 11, no. 7, pp. 674–693, 1989.

[40] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-resolution,” in

European Conference on Computer Vision. Springer, 2016, pp. 694–711.

[41] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial

networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2017, pp. 5967–5976.

[42] A. Name, “Image colorization using deep convolutional auto-encoder with multi-skip connections,” Ap-

plication of Soft Computing, vol. 27, pp. 3037–3052, 2023.

[43] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recogni-

tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[44] I. Goodfellow, Y. Bengio, and A. Courville,Deep learning. MIT press, 2016.

78

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

[45] P. Helber, B. Bischke, A. Dengel, and D. Borth, “Eurosat: A novel dataset and deep learning benchmark

for land use and land cover classification,” IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing, vol. 12, no. 7, pp. 2217–2226, 2019.

79

80

Acknowledgments

81

I wish to express my deepest gratitude to Professor Loris Nanni, my supervisor, for his invaluable guidance,

scholarly insights, and unwavering support throughout the entirety of this thesis. His expertise has greatly en-

riched this research endeavor and shaped its scholarly rigor.

Tomy family, especiallymymother andmyhusband , I owe an immense debt of gratitude. Their unconditional

love, encouragement, and understanding have sustained me through the challenges of academic pursuit. Their

unwavering belief in my abilities has been a constant source of strength.

I am also indebted to my friends, Farah, Zinab, and Lama, whose friendship and support have been invalu-

able. Their encouragement, thoughtful discussions, and shared academic interests have provided much-needed

inspiration and camaraderie during this journey.

82

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	OVERVIEW
	HISTORICAL BACKGROUND
	Related Work

	DATASETS
	Foraminifera dataset
	EUROSAT DATASET

	PRPOSED ALGORITHMS
	Supervised Learning for Image Colorization
	Colorization Using Supervised Generative Adversarial Networks
	Auto-encoder with Multi-skip Connections for Image Colorization

	image classification using transfer learning
	TRANSFER LEARNING CLASSIFIERS :
	Ensemble Learning
	K-Fold Cross-Validation

	EXPERIMENTS AND ANALYSIS :
	CLASSIFICATION EXPERIMENTS AND ANALYSIS OF FORAMINIFERA DATASET
	CLASSIFICATION EXPERIMENTS AND ANALYSIS OF EuroSat DATASE

	Conclusion
	Foraminifera Classification
	EuroSAT Dataset Classification
	Ensemble Learning Effectiveness
	Future Work

	References
	Acknowledgments

