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Abstract

This Thesis develops a new multi-objective heuristic algorithm. The optimum searching
task is performed by a standard genetic algorithm, the Non-dominated Sorting Algo-
rithm II (NSGA-II). Furthermore, it is assisted by the Response Surface Methodology
surrogate model and by two sensitivity analysis methods: the Variance-based, also
known as Sobol’ analysis, and the Elementary Effects. Once built the entire method,
it is compared on several multi-objective problems with some other algorithms, also
these based on evolutionary searching process and on surrogate models. Finally fitting
qualities of Response Surface method is tested on an experimental dataset, to measure
its predicting features on external data. The final results show that this new meta-
heuristic performs well compared to other algorithms and it also seems to be cheap,
talking about the computational costs.

This work deals in the first chapters with theoretical aspects, then it introduces the
developed model and finally it reports the results of tests on multi-objective problems
and of the fitting over the external dataset.

Chapter 2 introduces the mathematical description of a multi-objective optimiza-
tion problem. Then it describes the concepts of Pareto optimality, which involves the
dominance between solutions and the set of best elements. Successively it deals with
the main problems arising working in this framework: the curse of dimensionality and
the No free lunch theorem. Last, the chapter introduces the metrics to evaluate the
performances of the optimization algorithms.

Chapter 3 describes the main features of the evolutionary algorithms and their
typical frame. Then the chapter goes more in detail through the structures of the
most spread algorithms. Here the features and the building blocks of each routine are
explained to highlight the positive aspects and the drawbacks of each model. In the
end of the chapter some non-evolutionary algorithms are introduced. However, these
are widely used or much near to the evolutionary ones.

In chapter 4 the typical frames of surrogate model are described and few of them are
reported in detail. These are the Artificial Neural Network, the Kriging filter and the
Response Surface Method, which it is adopted in the developed model. Finally, there
is a brief section which treats the classification of meta-heuristic hybrid optimization
methods.

Chapter 5 regards the sensitivity analysis in all its features. First, it reports the
main sampling methods with their pros and cons. Successively the most used sensitivity
analysis methods are described, dealing also with the mathematical concepts.

In chapter 6 the building of the developed methods it is explained in details. First
of all, it introduces the general results of sensitivity analysis for the test problems at
hand. Then it treats in each feature the Response Surface Methodology and another
point worth highlighting is the new parameter differing from the literature suggestion.
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Finally, it is described also the genetic algorithm used to perform the optimization
searching process.

Chapter 7 deals with the results of the optimization task, both for two- and three-
objectives test functions. However, before it reports the results, there are introduced
the algorithms which allow the comparison. Then just two problems are reported, one
from two-objectives test and one from the three-objectives. The complete definition of
test functions can be found in appendix A, while the complete results in appendix B.

Finally, chapter 8 analyses the behaviour of the Response Surface on the external
dataset. First, it describes the nature of the dataset and its application. Succes-
sively, the chapter introduces the methods with which will be evaluated the goodness
of predicted data from the Response Surface. Therefore, few results are reported and
commented for each method. Again, the complete results can be found in appendix,
in chapter C.
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Chapter 1

Introduction

1.1 Objective of the Thesis
This work aims to develop a new meta-heuristic evolutionary optimization tool building
together a surrogate model with sensitivity analysis. While the surrogate is a tool quite
diffused in the optimization frameworks, sensitivity analysis is often accounted as a
mere statistical one. The coupling of these two implementations can lead to effective
information and results.

Besides, they could provide some sort of simplification to the optimization at hand.
Building this optimization tool, a further aspect to deal with is the computational
cost. Nowadays many high-fidelity models reach astonishing results, e.g. they manage
to reproduce with computer-based experiments almost exactly the features of real-
based ones, while they also retrieve larger quantity of data than the real experiments.
On the other hand, these high-fidelity models require huge amount of computational
resources and time, which limit often their filed of application. Here the model to
be developed will be a cheap one. It should be able to decrease the computational
requirements with respect to many other algorithms, while returning a controlled level
of accuracy.

Moreover, optimization methods work on an entire process, developing it in all
its features. Anyway, external data could be submitted to the model to perform the
optimization. Often, in this case external data do not present the desired sample
required by the model itself. In fact, most of the times the sampling phase of an
optimization problem is realized through the Design of Experiments [10, 48]. The
latter provides the most useful information possible to the model, so that it will show
better performance. Here the aim is to build a model able to fit also external data.

Thus, the main focus of this thesis is to set up a cheap meta-heuristic model. To
realize such algorithm, both a theoretical analysis of each aspect connected to the
meta-heuristic model and a detailed implementation of the part involved are necessary.
In particular, many parameters can be set in the coding of the response surface model.
Despite it is often accounted for as a method not that much suitable, it can prove to
be a useful and effective tool, as will be shown in the following.

1.2 Summary of the Thesis
To achieve the above objective, the initial feature of this work is a theoretical analysis
of all the involved parts, which are a multi-objective optimization, an evolutionary

1



Chapter 1. Introduction 2

search algorithms, surrogate models and sensitivity analysis. The development of each
argument through the text follows the sequence in which they had been encountered
and studied from the literature.

Once done this, the effective model construction is described. The first step consists
in the coupling of sensitivity analysis with the surrogate model. Between those that
have been red and reported in the bibliography, few articles use and take advantage of
this statistical test to provide further information upon which they base the surrogate.
A profitable tool which can give large amount of information without requiring too
much computational efforts can be obtained. The sensitivity analysis not only describes
to the user which are the main variables influencing the function. It also provides much
useful general data about the behaviour of the problem.

The successive phase to build the meta-heuristic deals with the research of a sur-
rogate model able to retrieve good solutions but at the same time it results cheap,
computationally speaking. To this scope, some algorithms have been studied and the
most suitable was identified in the response surface. This last shows a large simplifica-
tion to the problems, so it allows to perform the choice of the evolutionary algorithm
once again looking to the computational complexity. Finally, the resulting model is
evaluated on the test problems to measure its features and its abilities to perform the
optimization task for which it has been built. Although test problems cannot measure
completely the qualities of the model, they are necessary to realize further tests. In
particular, it is important to evaluate the method’s ability to fit experimental sample
of data coming from a general set up and not based on the required sample set.

At the end of the thesis the results for all these tests are reported, evaluating the
overall performance which the model shows. It is also sided to other evolutionary
algorithms to compare their results on the considered problems.



Chapter 2

Multi-objective optimization

In engineering Optimization is the process which through an algorithm aims at iden-
tifying the combination of variables realizing the best solutions in the problem case
at hand. Multi-objective optimization encloses all the problems handling two or more
objectives which need to be contemporaneously satisfied. In fact, it can be found
variables configurations obtaining good performance only in a single-level or within
few-objectives-level. Thus, multi-objective optimization deals not only with the best
solutions searching phase, but also with their classification and sorting. The entire
process needs to analyse the behaviour of all the variables in their domain to build a
profitable and complete optimum search.

Since optimization task needs to interface with complex and various real applica-
tions, it faces several problems. The first problem at all is the definition of the objective
functions themselves: the mathematical formulation of the case at hand is the intro-
ductory step to start with. Without it, it is impossible to begin an analytic search of
optima. Mathematical formulation requires first the definitions of variables and their
domain. Following this, it is fundamental to identify the proper laws describing the
process and the true objectives to optimize. Constrains of each variable also play a
main role in the framework. This mathematical translation often is not that easy to
set up, because experimental qualitative manner must be reported in a quantitative
setting and therefore they become difficult to handle. This sets several errors in the
model, which need to be highlighted and possibly solved by running repeated tests
before applying the model into practise.

Once the problem is analytically defined, the optimum search sets in. In a multi-
objective frame, seldom it is found a sole optimum configuration, dominating all the
other framework. Objectives are often mutually competitive and if a solution achieves
better values in an objective, it also loses ground on the other sides. Computationally
speaking, multi-objective problems require larger quantity of resources (e.g. time and
memory) as larger is the number of variables or objectives, the precision required or
the sparsity of optima solutions in the domain.

The algorithm chosen to perform the optimum search in this work will be presented
later in chapter 3. It is important to highlight since now that several search routines
exist, each one with its own peculiarity. Moreover, they often are sided by surrogate
models which aim to ease the computational cost. In this optimization framework one
can find also many other analytical searching tools, known as Gradient searching meth-
ods, as the Conjugate Gradient, the Steepest Descent, and many others. Though, they
are seldom used in real-world engineering, where objective functions are too general,

3



Chapter 2. Multi-objective optimization 4

presenting many local optima. Such methods often get stuck in these local optima,
preventing the optimization task to come to a proper end.

Finally, dealing with multi-objective problems it is also necessary to define metrics
to classify and to order the proposed solutions, but also the differences between algo-
rithms. In fact, once realized which one is the right algorithm, one needs also to know
which are its performance with respect to other proposed routines.

This chapter will introduce and describe in detail the mathematical aspects of
multi-objective optimization. It will also treat some of the problems hinted here.

2.1 Mathematical description
Single objective optimization aims to find values for the n decision variables x =
(x1, x2, . . . , xn) in the domain of decision Ω, to minimize the objective function:

y = min
x∈Ω

f(x) (2.1)

Often in this problem the goal is not only to discover the optimum value attained by
the objective (possibly global optimum and not local). The goal is also to find out
the set of decision variables which achieve the optimum value. This because the op-
timization process is related to a real-life problem and the variables describe a real
configuration of the case study. Problems usually are defined as minimization by con-
vention, but nothing changes when dealing with maximisation, since the problems are
equal: max f(x) = min(−f(x)). However, searching for the minimum will help to treat
multiple objective functions.

The decision variables affect the optimization task with their number, their domain
of admissible values and the possible mutual dependencies. Although often decision
variables are considered mutually independent and realize a huge relaxation on prob-
lems, in almost any application they are continuous in the domain and the objective
functions are multi-dimensional. Summing up these features, the single objective opti-
mization can reach a high level of complexity by its own. Therefore, efforts are required
to formulate exactly the problem and retrieve the optimum solutions.

Beside the objective functions, commonly the problem is affected by constraint
expressions. These can be linear or non-linear equations, as well as inequalities, and
they could also involve mixed-integer problem (MIP). In mixed-integer problems some
decision variables are integers within their domain. This kind of optimization requires
specific solvers [48]. For example, a generic problem like this can be written as:

Solve: y = min
x∈Ω

f(x)

Subject to: gi(x) ≤ 0, i = 1, . . . , k

xj ∈ Z, j ∈ 1, . . . , n

Constrains involving integer variables make the optimization much more difficult, since
it becomes a kind of discrete problem. Anyway, the presence of constrains, their de-
velopment and evaluation increase the complexity, affecting the optimization process.
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Dealing with multi-objective optimization, only the number of objective functions
changes tom (withm ≥ 2). The new problem can be written by defining a new function
F(x) = (f1(x), f2(x), . . . , fm(x)), which maps the vector x of the decision variables of
dimension N to the vector y of the objective functions space with dimension m:

y = min
x∈Ω

F(x) (2.2)

Such optimization requires to evaluate simultaneously all the objectives. This implies
increasing complexity and computational cost. Moreover, these objectives represent
several features of a problem, often bringing opposite contributes to each other. So,
as will be analysed in details in the following sections, getting a better value on some
objectives often means worsening some others. As the number of objective functions
increases, the problem becomes more complex and typically 10 objectives are set as
threshold from an easy problem to a harder one. One of the major challenge of multi-
objective optimization is to deal with computationally expensive objective functions.
Such problem shows up often in simulation based models (e.g. FEM, CFD), which
require huge resources to solve even quite simple problems.

2.1.1 Pareto optimality

Mathematical optimization focus on determining the global best solution for a given
problem. Often this is not possible in practice, for several reasons: first of all, opti-
mization works with a model of the real problem. Therefore, the solution obtained
will be affected by errors due to the fact that equations can’t perfectly describe reality.
Second, dealing with complex function in many variables, the function value attained
at its optimum and the optimum point itself is unknown. So, it is not even possible
to understand if it is close to points already evaluated. Finally, it can be proven with
test functions that reach the global optimum it is very time consuming when the num-
ber of variables is large (typically fairly difficult optimization problems has at least 30
decision variables).

Searching for the best solution of a function, it is possible to identify also two other
optimum regions: the local one and the robust one. The former represents usually
a problem because the searching process need to overcome this region and proceed
to the global optimum. The robust region displays a wide area where, changing the
variables, function attains more or less the same value. This could allow to develop
more carefully the analytical model, inserting new variables and searching in this area
for an optimum in the new formulation.

When some functions achieve multiple good solutions, they get called multi-modal.
In these cases, multiple optima provide to the designer a choice, but this multiplicity
always depends on the model developed. On the other hand, dealing with a multi-
objective problem, when the optimization finds out several good solutions, each of
them taking the best value on a different function, these are called Pareto solutions.

The following definition are the fundamental concepts in multi-objective optimiza-
tion, as stated in [61]:

Pareto Dominance Given two vectors u = (v1, v2, . . . , vm) and v = (u1, u2, . . . , um),
u is said to dominate v and denoted as u ≺ v if and only if ∀i ∈ {1, . . . ,m}, ui ≤
vi ∧ ∃j ∈ {1, . . . ,m} : uj < vj. Moreover, u is said to cover v, denoted as u � v,
if and only if u ≺ v or u = v.
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Pareto Optimality A solution x ∈ N is said to be Pareto optimal with respect
to the whole set N if and only if there is no other solution x′ ∈ N for which
F(x′) ≺ F(x).

Pareto Optimal Set For a given multi-objective evaluation function F : N → M
the Pareto Optimal Set is defined as the subset of N of all the Pareto optimal
vectors in the decision variable set:

Pareto Optimal Set
.
= {x ∈ N : @x′ ∈ N : F(x′) ≺ F(x)}

Pareto Front For a given multi-objective evaluation function F : N → M and a
Pareto Optimal Set, the Pareto Front is defined as the set of vectors mapped
from the Pareto Optimal Set to M by the objective function F:

Pareto Front
.
= {y = F(x) = (f1(x), . . . , fm(x)) : x ∈ Pareto Optimal Set}

Many real-world problems involve conflicting objectives which need to be solved
together. This framework requires the use of the above concepts to rank and evaluate
which are the best solutions. A generic example is reported in figure 2.1, that presents
a problem concerning minimization of costs and time delays in a transmission system.
As obvious, increasing the velocity of data broadcasting requires better infrastructures,
though also higher costs and vice versa, lower investments involve worse performance.
The points A, . . . , F on the graph represent the possible solutions individuated, but
only the points A, . . . , E are reasonable solution. This happens because F would realize
higher delays with the same cost of A, while G higher cost with the same delay of D.
Hence solutions F and G are the so called dominated solutions, while the others are
the non-dominated solutions. Each non-dominated solution realizes a couple cost-delay
which is optimal. Finally the Pareto Front encloses all this trade-off solution, which
will be further investigated to find the one that fit better the real application.

Figure 2.1: A problem with 2 objective functions: elements on the Pareto Front rep-
resent the non-dominated solution, in fact their values are a trade-off between the two
objectives [10].
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2.1.2 Curse of dimensionality

During the modelling phase of a problem it is intuitive that, as the number of variables
gets higher, the higher will be also the cost of evaluating objective functions. The
measure of the contribute of each single variable to the final prediction can become hard.
Having lot of variables concurring to a single or few objectives would lead to difficulties
parting the contribute of variables to each objective. Moreover, the striking target is
to obtain the optimum value, hence an accurate prediction of the objective. The
contribute of a single variable inside the domain needs to be understood both locally
and globally, sampling it in n different location. But dealing with a k -dimensional
problem, the sampling requires nk observation to achieve the same sample density as
in the single variable problem.

Another problem that comes up is related to the decision variables domain: in-
creasing their bounds or inserting one more variable raise the volume so fast that the
available data become sparse. Sparsity is an issue in multi-objective, since the already
obtained results lose statistical significance when the domain becomes poorly tested.
To get back significant results, density of the sample needs to be enlarged, but its
dimension grows exponentially with the number of decision variables and with their
bound. In high dimensional problems often the sample appear to be sparse and dis-
similar, so group search methods could be required.

Let’s consider the example in [18], which study the cost of a car tyre design having
complex computational requirements due to its geometrical variables, the range of sim-
ulation, its manufacturing process and others aspects. Let assume also for the sake of
simplicity that analysis and design process takes one hour of computation per decision
variable. Let suppose one requires to study only the diameter of the tyre versus its
cost with ten hours at disposal. Hence the simulation can be run ten times varying
the diameter inside the entire domain. This would yield ten results which can build
reasonable prediction of how the cost varies with the dimension, even if this relation
could be highly non-linear. Assume now that, given the model, one wants to study at
the same time many different variables to gain refined results and tune properly the
model, e.g. introducing tread width, groove spacing, flexing area thickness, shoulder
thickness, bead seat diameter and liner thickness side-wall height. Now the model
must deal with eight parameters, each having a different domain; always considering
to need one hour per computation, to fill the entire design space with ten sample per
each variable, this would lead to 108 runs, hence hours, which are almost 11416 years
of computation.

Trying to evaluate the objective function for all the possible combination of decision
variable and building a full factorial experiment with k sampling for each design, it can
become very expensive and often unrealisable. On the other hand, it is quite evident
that the number of variables has a massive impact to the experiment burdening. It is
always advisable to perform a deep study of the objective function to highlight which
are the most influencing variables and those which do not bring considerable changing
in the objective function. This last often can be kept fixed during the analysis and
reintroduced at the end if a further accurate study is strictly required. Moreover,
studying the objective function one could come out with further constraints to the
problem. They would prevent the analysis of variables configurations which are indeed
unachievable and would burden the computation in vain.
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2.1.3 No free-lunch theorem

As will be described later in chapter 3, there exist many different algorithm which
solves the multi-objective optimization problems. Each of them has its main features
but, as stated by the No Free Lunch theorem, there does not exist a method which
always performs better than all the others.

No Free Lunch Theorem 1. Given a finite set V and a finite set S of real numbers,
assume that f : V → S is chosen at random according to uniform distribution on the
set SV of all possible functions from VtoS. For the problem of optimizing f over the
set V, then no algorithm performs better than blind search [65].

Proof. The proof [23] uses the probabilistic method. We will show that for any learner,
there is some learning task (i.e. hard concept) that it will not learn well. Formally,
take D to be the uniform distribution over (x, f(x)). Our proof strategy will be to
show the following inequality

Q .
= Ef :X→0,1[ES∼Dm [err(A(S))]] ≥ 1

4

as an intermediate step, and then use Markov’s Inequality to conclude.

We proceed by invoking Fubini’s theorem (to swap the order of expectations) and
then conditioning on the event that x ∈ S.

Q = ES [Ef [Ex∈X [A(S)(x) 6= f(x)]]] = ES,x[Ef [A(S)(x) 6= f(x)|x ∈ S]]P(x ∈ S)+
ES,x[Ef [A(S)(x) 6= f(x)|x /∈ S]]P(x /∈ S)

The first term is, in the worst case, at least 0. Also note that P(x /∈ S) ≥ 1
2
. Finally,

observe that P(A(S)(x) 6= f(x)) = 1
2
∀x /∈ S since we are given that the true concept

is chosen uniformly at random. Hence, we get that:

Q ≥ 0 +
1

2
· 1

2
=

1

4

which is the intermediate step we wanted to show. We conclude the proof by a simple
application of the reverse Markov Inequality:

P(Q ≥ 1

10
) ≥

1
4
− 1

10

1− 1
10

≥ 1

10

The theorem in essence state than when all function f are equally likely, then the
chosen algorithm does not influence the probability of observing an arbitrary sequence
of values during the optimization task. Going back to the searching algorithms, what
happens is that on a particular kind of problems an algorithm may outperform all the
others. Although on other problems different algorithms would achieve better results.
Therefore, any two algorithms are equivalent when their performance is averaged over
all the possible problems. However, one can argue that many old search procedures
are overtaken by nowadays implementation at almost all the problems. It happens
because a better knowledge of the optimization tasks and computational implementa-
tion has been achieved. These facts highlight knowledge as a key factor, which enables
to understand the problem at hand and globally gain better optima and improved
performance.
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2.2 Algorithm evaluation metrics
To evaluate the performance of a multi-objective optimization it is necessary to develop
a metric, It is useful to properly compare the results obtained by different algorithms,
taking advantage of the problem features, as could be the Pareto Optimal Set or the
Pareto Front. The metric should also need to consider both convergence and diversity
(or sparsity) of solutions inside the domain.

In fig. 2.2 different metrics are compared: picture 2.2(a) introduces the problem,
which requires the minimization of both the argument along the two axes. The black
dots represent the best-known approximation set, while the grey dots are the current
set of found solutions. Both of them are Pareto Front, since one can easily notice that
all the solutions of the same family identify a non-dominated point of each argument.

Figure 2.2: Different kind of metric: (a) introduces the problem, presenting the best-
known set (black) and the current found solutions (grey), in a minimization problem
of both the arguments; (b) Generational Distance metric; (c) Epsilon Indicator metric;
(d) Hypervolume metric [46].

When evaluating the quality of a search and the progresses in multi-objective opti-
mization, a typical reference point is in the proximity to the best Pareto Front found
so far. In such way it can properly evaluate the full extent of trade-off solutions. Here
the main used metrics are briefly introduced and described. Anyway, many different
types of metrics exist and each focus often only on a particular chosen aspect.
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Generational Distance

It is the easiest metric to realize and measures the Euclidean distance between each
point of the current Pareto Front (PF ′) and the nearest point of the best reference set
(PF). The mathematical definition of this procedure is:

DG(PF ,PF ′) =

√∑
x∈PF

d2
x

P
where dx = min

y∈PF ′

√√√√ M∑
i=1

[fi(x)− fi(y)]2 (2.3)

In eq. 2.3 dx is the minimum Euclidean distance between each objective value in PF ′
and PF . The denominator P is the total number of values in the current Pareto Front,
while fi(x) and fi(y) are the objective values of respectively the current Pareto Front
and the best one. This metric leads to an averaging process which reduces the impact
of single optimal point proximity to the best Pareto set. Furthermore, it does not take
in consideration the diversity of solution along the current PF ′ itself. This method is
often known also as D-metric.

Epsilon Indicator

This metric weight differently the elements in the Pareto Front, considering the worst-
case value. The distance of the current solution set is obtained as the required transla-
tion of the entire set to dominate each nearest neighbour in the optimal Pareto Front.
Hence this depends in particular from the worst solution in the current approximation
set:

Dε(PF ,PF ′) = max
y∈PF ′

min
x∈PF

max
1≤i≤M

(fi(x)− fi(y)) (2.4)

The ε − indicator is very sensitive to gaps in current Pareto Front, highlighting the
consistency of the actual set with the reference one. instead, the additive form of this
metric is more influenced by diversity and gaps inside the PF ′. However it always
focuses on the worst-case distance. Hence this metric is able to measure quite well
either the method convergence and its diversity inside the Pareto Front.

Hyper-volume

Hyper-volume is a more complete metric since equally measures convergence and di-
versity. As in fig. 2.2(d), it evaluates the volume of objective space dominated by
the current Pareto Front. The hyper-volume metric is calculated as the ratio between
volumes of the best Front PF and approximation Front PF ′:

DH(PF ,PF ′) =

∫
V
αPF(x)dx∫

V
αPF ′(x)dx

where αPF(x) =

{
1 if ∃z ∈ PF : z � x
0 otherwise (2.5)

The hyper-volume calculation is performed taking a fixed reference point more or less
distant from the Pareto Front, such that all the results overtake it. The attainment
function αx makes it possible to measure the volume where the best Pareto Front
dominates the current one. Diversity is measured through this method due to the fact
that near solutions on the current Pareto front introduce a gain in the total volume.
Finally, the name of the method is due to the measurement calculation needed when
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the objective functions are more than three. While in 2-dimensional problems hyper-
volume deals with areas and in the 3-dimensional ones it realizes volumes, in presence
of further objectives the dimensional space grows and the hyper-volume concept must
be used.

Maximum Spread

This last method generates a simple measure of the extension of the Pareto Front,
hence it deals only with its diversity and it does not consider the convergence. For
2-dimensional problems the metric evaluates the Euclidean distance between the two
extreme solutions of the current Front PF ′, while in upper dimension cases different
distance measures can be used.
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Chapter 3

Evolutionary Algorithms

In recent years, multi-objective optimization is facing problems getting harder and
harder, which are related to complex real world scenarios. Dealing with them comes
out the so-called hybrid optimization approach. It combines together different heuristic
searching algorithms of various nature with methods from mathematical and statistical
programming, to treat complex objective functions. This combination aims to take
advantages of features of each individual component and often the brand-new algorithm
realized performs better than the single parts alone. Anyway, as stated in section
2.1.3, usually each algorithm performs well only in few problems. So it is possible to
identify many different kinds of meta-heuristic hybrid formulations which best fit each
particular situation.

First of all it is necessary to describe which are these searching algorithms and
mathematical models used in the optimization. In this chapter will be described the
searching methods of evolutionary algorithms, briefly introducing the most used ones.
Then also surrogate models in chapter 4 will be investigated, dealing with their ob-
jectives, their searching process and again there will be introduced some models use
nowadays.

3.1 Evolutionary Algorithms
Evolutionary algorithms are a mechanism inspired by the biological evolution. It
searches for the optimum of the objective function exploiting features of evolution
itself, as reproduction, recombination and mutation.

This kind of algorithm performs quite well on all types of optimization, because its
nature is not related to any particular feature of the problem. This is the main reason
why this tool is powerful in current times, where any real-life task is submitted to a
sort of 1 optimization process.

3.1.1 Main features

As said previously, the fundamental aspect of this kind of algorithms is their strict
relation with the biological evolution theory. First step of any evolutionary algorithm
is to build a population whose individuals will be the candidate solutions for the op-
timization process. Each individual represents a set of decision variables and it gets

1A sort of since often the optimization process gets developed without complete notion on the real
problem at hand and looking for first rough information

13
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evaluated by the fitness function. Once the entire population undergoes the evaluation
process, the reproduction and recombination take place. Two or more individuals of
the starting population give birth to one or several new solutions, called children. The
parents are chosen randomly or with some deterministic picking selection between the
entire population. Afterwards, some children of the offspring are subject to a mutation.
It allows to enhance the domain variables exploration and exploitation, since otherwise
the evolution would be constrained within the combinations of the starting population.
Then the entire offspring gets evaluated and is merged to the old group of individuals.
Since the population size is often kept fixed or at least constrained, the following phase
selects the individuals which will survive as a sort of genetic selection. This process
then is repeated likewise, until a threshold number of generation is reached or the evo-
lution does not lead to a threshold improvement of the objective function (theoretically
this case coincides with the algorithm convergence).

The procedure described is the general development of an evolutionary algorithm.
It is possible to recognize some particular features which directly connect to the opti-
mization problem at hand:

Individuals: each individual of the population identifies a set of decision variables,
which can be encoded in different ways. The values can be simply described by
real-coding, but could also be binary-coded [25]. The former choice is often better
because real coded numbers can provide machine precision, while binary coding
limit the representation capacity. Moreover, real coding uses much less storage
memory since a single number depicts the entire variable. Meanwhile a binary
string is required in the latter formulation. Finally, the binary string decoding
needs to be performed before evaluating the objective function, as real-coded
already yield the desired value. Only in presence on integer variables problems
individuals can be more logically represented by binary coding. So, in general
real-coded should be chosen and individuals would be described by a string of
numbers, each representing a single decision variable.

Population: the population of an evolutionary algorithm is its fundamental base.
This because the individual itself cannot evolve alone, but it needs to interact
with the other and spread its genetic heritage. Different kinds of algorithms treat
population in various ways. Some of them work always on the same starting
population, changing step by step their genetic variables. Some others merge
old population and offspring and they successively reject part of the individuals.
Most of the times a fixed point is the population dimension, which cannot grow
nor decrease.

Fitness function: it is the objective function analogue. Also in this case the presence
of multiple optimization reflects itself to multiple fitness values for each individ-
ual. Dealing with their sorting, which is usually necessary to the reproduction
and selection of best fits, it is a complex task and it can be solved through
mathematical operation of point allocation.

Reproduction, recombination and mutation: these are the classical operations
which chromosomes are subject to. These processes in the algorithm will be ruled
by fixed parameters, managing for example the rate of mutation or recombination.
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Offspring: depending on the algorithm, new generation could be generated either by
new children or by evolution of individuals themselves. In the former case a
contention to fill the new generation would raise up, involving both children and
the old population. In the latter, any improvement in each individual fitness
function would lead to the evolution acceptance, while a worsening would not be
directly accepted.

Algorithm 1: Pseudo code of general evolutionary algorithm
Step 1: Generate the initial population of individuals randomly (starting
generation);
Step 2: Evaluate the fitness function of each individual;
while termination is not reached do

1. Select individuals (parents) for reproduction;
2. Generate new individuals (offspring) through crossover and mutation
operations;
3. Evaluate the offspring fitness;
4. Merge old population and offspring;
5. Delete from the new population least-fit individuals;

end

Despite the typical model of evolutionary algorithms may seems ease, many different
implementation has been realized over the years. Each of them is capable of dealing at
best with a specific kind of problem. So the most spread methods will be described in
detail hereinafter.

3.2 Genetics algorithm
Genetic algorithm is the closest method to the general evolutionary algorithm. Also, it
is the most used searching tool of this kind. In fact, it is quite easy to build, it fits well
on many types of problems and, most important, it is open to a lot of development
and implementation. Its main features are all and only those of a generic evolutionary
algorithm.

First of all the population needs to be initialized. This is usually performed by
a simple random choice inside the domain or inside the search space, when they are
defined differently. Another option is to gather most of the initial individuals in areas
where likely should be found optimal solutions. This could speed up the convergence
but at the same time it would compromise the exploration and exploitation of the
entire design space.

Once the population is generated, it takes place the selection stage to choose the
individuals which will breed the new generation. Such process requires the following
steps:

• Each individual gets evaluated by the fitness function. In presence of a multi-
objective problem, the fitness value would be a vector, hence it will be necessary
to perform a normalization by the sum of all resulting fitness values.
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• The population is sorted by descending fitness values.

• The cumulative normalized fitness is calculated for each individual as the sum
of all the previous individual fitness values (those with a higher fitness) and its
own value. This process leads to a sort of cumulative distribution function of the
population fitness value.

• Finally a random number R uniformly distributed between 0 and 1 is chosen and
all the individuals with cumulative fitness lower than R are selected.

This procedure is quite resource demanding if the population is large, which is common
nowadays.

Different selecting algorithms are almost always used. Among others the main
two are fitness proportionate selection (better known as roulette wheel selection) and
tournament selection.

Roulette wheel selection

In roulette wheel selection the total fitness function gets divided into N parts (with N
the population dimension), each proportionate to the relative individual fitness value.
So, the probability of being selected for a single individual is equal to:

pi =
fi∑N
j=1 fj

This can be imagined as a roulette wheel where each sector is scaled by the relative
fitness value, instead of divide the wheel equally. A development of this algorithm is the
Stochastic Universal sampling, which builds the entire sample set using only a single
random value. It fills the set starting from this fitness value point and advancing in
the cumulative fitness value by a fixed step (usually equal to the total fitness, divided
by the number of desired sample). Such implementation exhibit no bias and, what
is more important, it works well when the population has few individuals with large
fitness value in comparison with the other ones. This further implementation allows
to choose the next candidate from the rest of population, avoiding that these few high
fitting individuals saturate the candidate space.

Tournament selection

Tournament selection, as the name itself suggest, develops several tournaments among
a set of individuals randomly chosen in the population, by using their fitness value as
discriminating parameter. Once the set of players is sorted in each tournament, the
selection sets in. A probability value p gets fixed, then the best individual is chosen
with probability p. The second best with probability p ∗ (1 − p), the third one with
probability p ∗ (1− p)2 and so on. Usually it is p = 1, so simply the best individual is
selected at each tournament phase and the procedure gets repeated. The tournament
set size governs how individuals get chosen: a large set will often present at least a
high fitness individual which will be selected, while a smaller set allows the selection
of lower fitness individuals. Typically tournament procedure works out between only 2
or 3 elements, to speed up the process and avoid burdening computation. Tournament
selection among others benefits can work on parallel architecture and it is independent
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of the genetic algorithm scaling in some systems.

A key factor of both this type of selection is that candidate solutions with low
fitness are less likely to be eliminated. On the other hand high fitness can be avoided,
while on many others algorithms the worst solution get immediately discarded and the
selection occurs only between the best ones. Moreover both methods are quite easy to
implement, they require low computational efforts. Therefore, they perform a better
selection than several other algorithms. Finally they also perform well talking about
the sampling stochasticity noise, since these methods are less dependent on the random
picking procedure. When desired, they allow to perform more than once the selection
of an individual.

Such techniques may seem to contemplate elitism, since they select likely individu-
als with a high fitness values. Although, it will be described later on a method which
considers in a particular frame the best individuals. However also the less fit solutions
are necessary in the selection and evolution process, since they manage to perform
exploitation and exploration of the search space.

The next step consists in performing the recombination (also known as crossover)
to breed the new generation. This process involves the previous selection from which
typically two or more individuals, called parents, at a time get extracted and combined
to generate one or more new generation’s individuals, called children. Some researchers
suggest that combinations which use more than two individuals could increase the
offspring quality. The resultant offspring generation usually shows a better mean fitness
value. However, once again the genetic diversity and exploration of the search space is
kept alive by the presence of low fit individuals.

Different crossover techniques between two parents exist, but only few of them are
quite always used. These reported achieve low cost computational effort and rather
satisfactory results, meanwhile they are easy to implement:

Single-point given the strings of each parent decision variables and chosen a random
point inside both these strings, the children are generated swapping the sub-string
data on either crossover point of the parents (Fig. 3.1a).

Double-point in this case two random crossover points are selected on both the par-
ents, dividing the strings in three part each. So, one child is generated merging
central string of the first parent and side strings of second one and the other child
vice versa (Fig. 3.1b)

Uniform this type of crossover uses a fixed mixing ratio between two parents. A
random number of crossover points is generated over the parent’s strings. Hence
each sub-string is handed down to the children, always swapping between the
parents. In this fashion each child will have more or less half of its genetic
heritage from each parent and the decision variables get treated almost as single
gene (Fig. 3.1c). The swapping between parents sub-string can also be controlled
by a probability which decides when to realize the swap (e.g. in simple uniform
crossover as in relative figure the swapping probability is set to 1, since each
sub-string is allocated to the other child).

The succeeding step consists in introducing the mutation. It is used to maintain
the genetic diversity from one generation to another and provide exploration and ex-
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Figure 3.1: a. Single-point crossover technique (upper left); b. Single-point crossover
(upper right); c. Uniform crossover (bottom) [63].

ploitation. Without these features the searching algorithm would most of the times
get stuck in a local optimum and individuals would become all similar to each other.
The chromosome modification of an individual may completely change its fitness value,
hence mutation occurrence needs to perform also the evaluation of the new element.

This genetic operator alters some children and often this is done fixing a probability
of mutation. Such process needs to happen only few times per generation (on the order
of 1 time per 100 individuals or less) or it could lead the algorithm to become a primitive
random search.

Mutation occurrence works differently depending on the population definition: if
the chromosome is binary or real coded. In the former case each decision variable is
represented by a binary string of fixed length. The change could perform a single bit
flip in randomly chosen genomes, replacing in these bit string a 0 with 1, or vice versa.
Otherwise the mutation can provide an entire sub-string modification. Randomly it is
selected a genome portion and its bits are switched with probability 1

l
, where l is the

sub-string length (if the selection provide a single bit string, a simple flip bit mutation
is performed).

Dealing with real coded chromosomes the easiest mutations are the uniform and
Gaussian one. First the genes which undergo modification need to be selected randomly.
Then, given the upper and lower bound of each decision variable in the case of uniform
distribution, new random values in between the bounds are generated and substituted
to the previous. In the Gaussian case for each decision variable gets evaluated the
mean from the parent entries. Given the mean value a Gaussian distributed number
get extracted and added to the original value. If the final value falls outside the domain
boundaries, a new random value is chosen and substituted to the old one.

More sophisticated approaches have been developed and particular among the oth-
ers is shrink mutation, developed by Da Ronco and Benini in [7]. This implementation
uses the Gaussian mutation but it is constrained by the shrink parameter:

Shrinki,ignr

.
= Shrinki−1,ignr(1−

ignr
ngnr

)

It represents the current mutation range allowed by the i -th decision variable, while
ignr and ngnr represent the current generation index and the total number of genera-
tions. The mutation is built to enhance deeply exploration of the design space during
the first part of the optimization, while it performs better exploitation of the already



19 3.2. Genetics algorithm

founded solutions during the last optimization stages.

Once reproduction and mutation over offspring are performed, the old generation
and all the children are merged. This stage can be developed substantially in two
different ways. The former consists simply in completely substitute the entire old
generation with the new one. This implies that the reproduction phase generates a
number of offspring at least equal to the old population’s dimension. At least since
the crossover could produce clone individuals, which usually should be delete to avoid
useless evaluations of the fitness function and mainly to maintain and preserve the
population diversity. The latter method to merge old and new generation arises when
the designed offspring number is lower than the population dimension. In this scenario,
after mutation stage ends, all the children are evaluated by the fitness function and
added to the old population. Hence, the individuals get sorted by fitness value and from
the entire set n of them get extracted to build the new generation (where n is the orig-
inal population dimension). An alternative is to keep from the merged population set
the best n individuals, but in this case care must be taken to preserve genetic diversity.

Once built the new generation, all the operations starting from the selection to
perform crossovers are repeated until termination criterion is not reached. This hap-
pens when the maximum number of generation is achieved or when the best solution
improvement is below a fixed tolerance. In such case, the algorithm should has theo-
retically converged to the optimum.

Elitism

This feature allows the algorithm to build a list containing some particular individuals
of the population. These are the candidates with the best objective values and they are
carried into the next generation unchanged. These individuals lead to huge impact on
the performance of the genetic algorithm, reducing the time required to the convergence
and hence the computational cost. So, in the following generation these elements enter
again in the tournament selection to develop new generation.

However, in each generation the elements of the elite group get always refreshed and
the entire starting population is sorted by the fitness value to select the best individuals.
The number of elements in this elite list can deeply affect the algorithm itself, depending
on the population’s dimension. In fact, choosing a large elite set it would prevent the
algorithm to explore the entire space, only performing the exploitation around elite
solutions and the algorithm likely would achieve a local optimal solution. On the
other hand a small elite set would affect only slightly the genetic operator and this few
elements would not enhance the convergence.

Hence elitism can be a powerful tool but it needs to be properly tuned by testing
its contribution and analysing the problem at hand.

NSGA

The Non-dominated Sorting Genetic Algorithm is one of the first evolutionary algo-
rithm which spread all over the developing community. It is based also on the elitism
strategy just described in 3.2. It performs quite well on a huge variety of problems,
it is based on simple but effective ideas and it has been updated several times up to
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generating the NGSA-II 2. Besides elitism, NSGA-II takes advantage from population
crowding in the selection phase, to build an offspring which realizes the diversity of
solution through the Pareto front.

Algorithm 2: Pseudo code of NSGA-II
Input: Obtain the optimal value of fitness function
Output: Children
Population← InitializePopulation(Populationsize, P roblemsize);
Evaluate(Population);
FastSort(Population);
Selected← SelectParentByRank(Population, Populationsize);
Children← CrossoverAndMutation(Selected, Pcrossover, Pmutation);
while termination criterion is not reached do

Evaluate(Children);
Union←Merge(Population, Children);
Fronts← FastSort(Union);
Parent← ∅;
FrontL ← ∅;
for Fronti ∈ Fronts do

CrowdingDistanceAssignment(Fronti);
if size(Parents) + size(Fronti) > Populationsize then

FrontL ← Fronti;
Break()

else
Parents←Merge(Parents, Fronti)

end
if size(Parents) < Populationsize then

FrontL ← SortByRankAndDistance(FrontL);
for i = 1, . . . , Populationsize − SizeFrontL do

Parents← Pi;
end

end
Selected← SelectParentsByRankAndDistance(Parents, Populationsize);
Population← Children;
Children← CrossoverAndMutation(Selected, Pcrossover, Pmutation);

end
Return(Children)

3.3 Particle swarm optimization

Particle swam optimization (PSO) is inspired from the behaviour exhibited in swarm of
social insects, big bird flock and fish school. This algorithm turns out to be very efficient
in a large variety of engineering design problem. As the other evolutionary algorithm,

2Further development and personalization are realized and also the NSGA-III has been released.
However usually the community report and compare the results with the second version of the algo-
rithm.
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it is population based, but instead of developing several generations, at every iteration
it modifies the existent candidate solutions, moving them over the entire search space.

Dealing with an n-dimensional PSO, the fundamental constitutive bricks are par-
ticles, which represent the candidate solutions. Each of them is characterized by its
position xi = (xi,1, xi,2, . . . , xi,n) (dealing with the i -th particle), its velocity vi =
(vi,1, vi,2, . . . , vi,n) and its best value pi = (pi,1, pi,2, . . . , pi,n). To complete the set
of information coming with this particle, one finds its local best neighbour parti-
cle and the global best particle, respectively pnb = (pnb,1, pnb,2, . . . , pnb,n) and pgb =
(pgb,1, pgb,2, . . . , pgb,n). The main feature of these particles is their position, which is
the vector containing the n current decision variables required to evaluate the fitness
function. In some code implementation few of this information is discarded: usually
either local or global best value is employed, while some other algorithm completely
neglect the velocity.

During the optimization process these quantities are updated using several funda-
mental parameters. They can be largely modified to better fit the current problem in
analysis: the maximum velocity of the particles Vmax, the total number of iteration3,
the accelerating constants c1 and c2 and the inertia weight ω; a brief description of the
last two elements must be given.

The inertia weight is a parameter required to handle properly the particle velocities.
When ω is large the algorithm performs a global search and the particle velocity increase
steadily up the maximum, but it makes difficult to change the direction of motion,
realizing a divergent population. On the other hand, if ω is small particle velocity
would decrease slowly until it reaches zero. Any little bias from global or local best
would produce a rapid direction shift. So the proper choice for the inertia weight would
lead to the introduction of a changing parameter in relation to surrounding condition.
A first implementation reported from [21] develops an easy equation to properly modify
ω:

ω = ωmax −
ωmax − ωmin
itermax

iter (3.1)

Here in 3.1 terms ωmax and ωmin are fixed parameters that should be appropriately
tuned for any single problem (suggested values are 0.9 and 0.4 respectively). A more
advanced implementation, related also with the fitness value, is reported in [30] and
defines ω as:

ω =

{
ωmin − (ωmax−ωmin)(f−fmin)

favg−fmin
if f ≤ favg

ωmax if f > favg
(3.2)

In 3.2, f identifies current objective function value, while favg and fmin represent re-
spectively average and minimum objective value of all particles. Anyway one of the
handling above is necessary to tune properly the inertia weight and to improve both
particle intelligence during the searching process and convergence rate.

Instead, the accelerating constants reflect how the considered particle motion is
affected by its personal best, the local best or the global best value. Since usually only
two out of these three quantities get used, only two parameters are needed. Under
these updating rules the particle will move toward the best positions found so far.
Also accelerating constants can provide great improvements to the searching abilities

3Number of iteration in PSO is the equivalent of the number of generation in the genetic algorithm.
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and convergence, but again they need to be suitably tuned to obtain the best perfor-
mance (also they have suggested values which are c1 = c2 = 2.05). Often from these
parameters also two other factors get defined and these are: C = c1 + c2 (constrained
to be C > 4) and the constriction factor φ = 2

|2−C−
√
C2−4C| .

The remaining part of the method to describe is the updating of particle position
and speed. These are performed by an iterative approach, in which all the parameters
defined above play a key role to the correct solve of the problem. First, the algorithm
needs to update velocity with equation:

vi,j(t+ 1) = φ{ωvi,j(t) + c1r1[pi,j − xi,j(t)] + c2r2[pgb,j − xi,j(t)]} (3.3)

Note that particle speed has as many entries as the problem’s dimension (indexed with
the j subscript). So each of them needs to be calculated and it is possible to write 3.3
vectorial form without misunderstanding. The quantities r1 and r2 are uniform random
numbers between 0 and 1. As already said, global best and local best can be exchanged
in the formula, while almost always particle personal best is present. Moreover, since
each element has its own fitness value, using equation 3.2 to evaluate inertia weight, it
is necessary to recalculate ω for each particle and every iteration.
Finally it is possible to update position:

xi,j(t+ 1) = xi,j(t) + vi,j(t+ 1) (3.4)

Successively to the motion of all the particles, fitness evaluations are performed, also
to verify the possible update of personal, local and global best values.

Such algorithm has as only criterion of termination the maximum iteration limit.
In fact, convergence cannot be evaluated because particles evolution develops paths
which do not necessary aim to better fitness at each iteration or at most of them.

A final remark should be made dealing with the use of local best value. Definition
of the neighbourhood of each particle can be extremely variable in different situations.
Performing the proper choice of this set can lead to a much more robust and faster
algorithm. As neighbourhood set of elements with which the considered particle com-
municates, it is possible to consider for examples a geometric set, counting its k nearest
particles, or all the elements located in its same portion of the domain (e.g. settling
a grid), or instead a group set, that initializes a certain number of families and inside
them collocate randomly the particles.

3.4 Differential evolution

Differential evolution is an evolutionary algorithm proposed by Storn and Prize in [59]
widely used to solve global optimization problems. As all the others, it includes ini-
tialization of population, crossover, mutation and selection operations. Although, here
they succeed one another differently with respect to classical algorithms as the genetic
ones. Its main advantage is the very simple structure, the little computational costs
for operation between individuals and the ease of use. Instead, as the others evolution-
ary based codes, the major drawback is the requirement of large number of function
evaluations at each generation. This could be worsened by the presence of a complex
objective function, leading to a time-consuming and computationally expensive prob-
lem [19].
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Algorithm 3: Pseudo code of Particle Swarm Optimization
Result: Obtain the optimal value of fitness function
Input: c1, c2, C, φ, itermax
Set pgb = None;
for each particle i = 1, . . . , N do

Initialize particle position: xi ∼ U(blo,bup)4;
Evaluate particle fitness: fiti ← f(xi);
Initialize particle best position to its initial position: pi ← xi;
if f(pi) < f(pgb) thenpgb ← pi
end
Initialize particle velocity: vi ∼ U(−|bup − blo|, |bup − blo|);

end
iter = 0;
while termination criterion is not reached do

for each particle i = 1, . . . , N do
for each dimension j = 1, . . . , n do

Extract random numbers: r1, r2 ∼ U(0, 1);
Evaluate inertial weight: ω = ωmax − ωmax−ωmin

itermax
iter;

Update j -th component of i -th particle velocity:
vi,j(t+ 1)← φ{ωvi,j(t) + c1r1[pi,j − xi,j(t)] + c2r2[pgb,j − xi,j(t)]};
Update particle position: xi,j(t+ 1)← xi,j(t) + vi,j(t+ 1);
Update particle fit: fiti ← f(xi) if f(xi) < f(pi) then

Update particle best position: pi ← xi;
if f(pi) < f(pgb) then

Update global best position: pgb ← pi;
end

end
end

end
iter ← iter + 1;

end

Dealing with the basic algorithm, as always, the first step consists in building the
starting population by randomly sampling Np individuals from the sample space, where
Np is the population dimension. The following operation creates the mutant vector for
each selected individual of the current generation xi,G, i = 1, . . . , Np. Each of them
has n components as the number of decision variables. The mutation operation can
be performed in several ways. It could involve two or three individuals different from
the selected one, individuals randomly chosen in the population or those with the best

4blo and bup values are the lower and upper boundaries of the search space variables, expressed as
vectors.



Chapter 3. Evolutionary Algorithms 24

function value:

DE Rand 1 vi,G = xr1,G + F (xr2,G − xr3,G)
DE Best 1 vi,G = xbest,G + F (xr1,G − xr2,G)
DE Rand to Best 1 vi,G = xr1,G + F (xr2,G − xr3,G) + F (xbest,G − xr1,G)
DE Curr to Best 1 vi,G = xi,G + F (xr2,G − xr3,G) + F (xbest,G − xi,G)
DE Rand 2 vi,G = xr1,G + F (xr2,G − xr3,G + xr4,G − xr5,G)
DE Rand 2 vi,G = xr1,G + F (xr2,G − xr3,G + xr4,G − xr5,G)

(3.5)

In these formulas from [39] several new elements can be seen: r1−5 are integers which
identify the individuals randomly chosen in the population. These differ from the i -th
individual which is the subject of mutation. The subscript G indicates the generation,
so the operation deals always with members of the same generation. Finally here the
most important parameter is F, the (mutation) scaling factor, ranging in [0,2]. It
amplifies the difference between all the selected individuals.

The mutant vector vi,G such defined is then sided to the original selected vector
xi,G. These two generate a trial vector by the following operations:

uj,i,G =

{
vj,i,G if randj(0, 1) ≤ Cr or j = jrand
xj,i,G otherwise (3.6)

Here j = 1, . . . , n and jrand are a random integers and Cr is the crossover control
parameter, again a random number Cr ∈ (0, 1). Due to the use of jrand the trial vector
ui,G always differs from the original one xi,G, since could happens that randj > Cr∀j.
On the other hand Cr controls how much the generated individuals will be altered with
respect to the old one. A small parameter changes few chromosomes, while a big one
would almost build a brand-new individual.

Before completing the crossover phase it is necessary to check the mutation intro-
duced, because the values of ui,G inherited from vi,G could be outside the boundaries.
In those cases the values are reset as follows:

uj,i,G =

{
min{Uj, 2Lj − uj,i,G} if uj,i,G < Lj
max{Lj, 2Uj − uj,i,G} if uj,i,G > Uj

(3.7)

Finally, a simple selection operation is performed, bringing to the next generation
the individuals between xi,G and ui,G which has the best fitness value:

xi,G+1 =

{
ui,G if f(ui,G) < f(xi,G)
xi,G otherwise (3.8)

Once the new population is built, all the operations of mutation, crossover and selection
are repeated until convergence or termination criterion is reached.

In the basic version of this algorithm, the parameters which handle the entire op-
timization are only three. The first encountered is the population size: its typical
value ranges between 5 and 10 times the dimension problem. However, it depends a
lot on the number of decision variables, which could easily exceed a hundred. Dealing
with the scaling factor, its usual range is between 0.4 and 1, but changing this value
could be enhanced exploration or exploitation of the design space. Finally there is
the crossover factor Cr which needs to be optimized in the different situations. Little
values of this parameter are suitable for low coupled functions (e.g. in additive relation
Cr ∈ (0, 0.2)), while larger values for high coupled ones (Cr ∈ (0.9, 1)).
Finally, the suggested mutation strategies are DE Curr to Best 1 and DE Curr to Rand
1 from 3.5.
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Algorithm 4: Pseudo code of differential evolution algorithm
Result: Obtain the optimal value of fitness function
Input: Np, F, Cr
Initialize randomly the population PG = {x1,G, . . . ,xNp,G};
while termination criterion is not satisfied do

for each i in PG do
vi,G = Mutate(xi,G) by eq. 3.5;
ui,G = Crossover(xi,G,vi,G) by eq. 3.6;
Pg+1 = Selection(xi,G,ui,G) by eq. 3.8;

end
G = G+ 1

end

3.5 Shuffled frog leaping
Shuffled frog leaping is an algorithm inspired by the behaviour of frogs searching for the
location which has maximum food. Thought and developed first by Eusuff and Lansey
[15], it has been applied to several engineering problems, exhibiting a fast convergence
speed. It is a genetic-memetic algorithm, which means that it combines population
based approach5, with individual learning and local improvement (as seen in particle
swarm optimization, 3.3). Thus, it takes advantage of a dual-phase evolution: in the
first phase it uses the individual characteristics to find a better solution. In the succes-
sive phase it cooperates with the population to achieve an even better objective value.
This building allows the algorithms to get several benefits from both the structures
used.

Shuffled frog leaping deals with a population of possible solutions which are divided
into sub-groups called memeplexes. Inside the memeplex, each individual performs a
local search and it communicates with all the other candidate solutions inside the group
to gain better values. A special case is the best fit solution, which can communicate
with all the other individuals and not only with those in its group. After a certain
number of evolution steps inside each memeplex, the groups get mixed and new meme-
plexes are generated randomly. In this way each frog performs the local search and it
interfaces cyclically with new set of sub-populations. This process goes on until the
termination criteria gets reach, which could be a stagnation of fitness best value (its
improvement is less than a specified tolerance) or a threshold value of shuffling process
is exceeded6.

Analysing in detail the algorithm structure, once the population is generated and
candidate solutions are evaluated and sorted, individuals are subdivided into memeplex.
It is possible to locate in each group the best and the worst individuals, respectively
xw and xb, and the global best one, xg. Hence, the element having worst fitness value
inside the memeplex is submitted to the improvement process. First the frog leaping
step size gets calculated:

Di = rand(0,1)(xb − xw) (3.9)

The i subscript always indicate the i -th population individual, which has also the
worst fitness in the memeplex. Recall also that each i -th element is a vector which

5typical of classical genetic algorithm, 3.2
6Here the shuffle process can be seen as the number of generations.
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Algorithm 5: Pseudo code of Shuffle Frog Leaping
Result: Obtain the optimal value of fitness function
Input: Np, Nmemeplex, itermax, G = 1
Initialize randomly the population PG = {x1,G, . . . ,xNp,G};
while termination criterion is not reached do

Evaluate and sort the population by fitness function;
Randomly collocate individuals in the memeplexes;
Define xg;
for each memeplex do

Define xb;
for i in range itermax do

Define xw;
Calculate the step size: Di = rand(0,1)(xb − xw);
Calculate the new solution: xnewWorst = xw +Di;
if f(xnewWorst) < f(xw) then

xi = xnewWorst

else
Calculate the step size with global best: Di = rand(0,1)(xg − xw);
Calculate the new solution: xnewWorst2 = xw +Di;
if f(xnewWorst2) < f(xw) then

xi = xnewWorst2

else
xi = rand(blo,bup7)

if f(xi) < f(xb) then
xb → xi

end
if f(xi) < f(xg) then

xg → xi
end

end
end
Replace old population with the evolved individuals;
G = G+ 1

end
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components are the n decision variable: xi = (xi1, xi2, . . . , xin). After this step, the
frog will be located in a position between the best and the worst points:

xnewW = xw +Di (3.10)

If the fitness value of xnewW improves with respect to the old one, then the new point
is accepted. Otherwise the calculation of 3.9 and 3.10 are repeated, using this time
global best individual xg instead of the local one xb. If no improvements are obtained
again, then a new random individual replaces the worst one. Once the new element
is fixed and evaluated, then the process goes on using the new worst individual in the
memeplex. After a fixed number of iteration inside a single memeplex, this procedure
develops on the next group, involving one by one all the memeplexes. Hence the new
individuals generated take the place of the old population and get sorted by their fitness
values. Finally the elements get again divided into new memeplexes and the process
starts all over again, until convergence or the maximum number of shuffle is reached.

3.6 Ant colony optimization

Ant Colony optimization (ACO) is an evolutionary algorithm which deals mainly with
combinatorial problems. It uses approximate approaches, based on the behaviour of
real ant colonies. The first example of this model is the Ant System [14, 41], which
aimed to solve the Travelling Salesman Problem and obtained poor results with re-
spect to other state-of-the-art algorithms. Nevertheless, further developments realize
the so-called ACO algorithm, which is used in several applications as sequential order-
ing, scheduling, assembly line balancing and so on [20, 26] with very good results.

Ant Colony optimization simulates the behaviour of ants searching for food. The
real searching process is based on different types of pheromones released by each ant
itself. These indicate the presence of food in that path or on the other hand its absence.
As the ants pass by, attracted by the food, this signal becomes lower and lower until
it gets completely consumed. However, each ant has also the possibility to explore
new path in search of other source of food. What is fixed almost always is the path
length, hence the number of steps that each ant does during the search, walking away
from the colony. Once reached this maximum number, the ant goes back to the colony
exactly on the same path, releasing the pheromones along the way to indicate the result
of its search. The computational algorithm behaves almost in the same way, making
use of pheromones and fixed number of steps. These allow to exploit carefully the
searching space around the colony location. Though, to introduce the exploration on
the entire domain it is necessary to start the algorithm from different sites. Another
choice could tune the path length, but it has been proven that too much steps inhibit
the exploitation capacity.

s =

{
argmax
u∈Jk(r)

{[τ(r, u)]α[η(r, u)]β} if q ≤ q0

Pk(r, s) otherwise
(3.11)

7blo and bup values are the lower and upper boundaries of the search space variables, expressed as
vectors.
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Pk(r, s) =


[τ(r, s)]α[η(r, s)]β∑

s∈Jk(s)[τ(r, s)]α[η(r, s)]β
s ∈ Jk(r)

0 otherwise
(3.12)

Equation 3.11 builds the path of each ant and the choice between the two possibili-
ties depends on the value of q0 and q. Both of them are real numbers between 0 and 1,
but while q0 is a fixed value working as a threshold, q is chosen randomly and it defines
which part of eq. 3.11 will be used. If q ≤ q0 the ant progresses to the node with largest
quantity of pheromones in its neighbourhood, otherwise the following step is based on
the eq. 3.12. In this case the ant’s move depends on the quantity of pheromones be-
tween the two nodes τ(r, s), on the inverse of their distance µ(r, s) and on the presence
of unexplored adjacent nodes which belongs to Jk(r). Finally, the values α and β are
constants which control the dependence on the pheromone presence, hence the way it
does affect the taken path. The choice of the constant values α, β and q0 needs to the
properly tuned, running the algorithm for several tests and investigating its behaviour.

τ(r, s) = (1− ρ) τ(r, s) + ρ ∆τ(r, s) Local pheromone update (3.13)

τ(r, s) = (1− σ) τ(r, s) + σ ∆τ(r, s) Global pheromone update (3.14)

∆τ(r, s) =


Q

Lk
if the ant move from node r to node s

0 otherwise
(3.15)

The updating process of pheromones prevents the ants from selecting always the
best-known path and it leads the exploration to new regions. The parameters ρ in
eq. 3.13 and σ in 3.14 control the pheromones evaporation rate respectively along
the selected route and on the entire search space, once the paths of all the ants have
been chosen. ∆ρ(r, s) of eq. 3.15 is the reduction of pheromone between nodes (r, s),
controlled by the constant Q and the objective value of the selected route Lk.

Further developments of the algorithm introduce a multi-pheromone procedure,
which allows the ants to communicate, defend and cooperate more effectively. These
features lead to solve complicate problems without too large computational effort, but
it builds a much more complex procedure.

3.7 Other meta-heuristic methods
Simulated annealing

Simulated annealing is another technique to search for the global optimum of a given
function. It cannot be classified within the framework of evolution algorithms, since
it lacks all their main features, but its mechanisms can easily remind to an evolution
process. This algorithm works better with discrete search spaces, since first applications
were related to combinatorial optimization in [36], but it has been generalized to process
also dealing with continuous domain.
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The method’s name derives from the analogue process of physical annealing in
metallurgy. A crystalline body is subjected to a heating process and a successive very
slow cooling down. This allows the crystal lattice to become more regular and the
grains to organize better. The aim is to obtain a solid free of defects. Inside the solid
structure this happens because each atom has the chance to find its optimum position
or to rearrange better if the time of temperature cooling is very long. It means that
the solid reach lower and lower free energy configuration the longer is the annealing
process.

Dealing now with the numerical code applied on a specific function, its objective is
to find the global minimum and this is done always accepting the improving solutions
and debating the non-improving ones. While obviously the former will bring better
and better function values, the latter are fundamentals to prevent the procedure from
getting stuck in a local minimum. Each new solution is in the neighbourhood of
current position, hence the following considered point cannot be far and it jumps out
the local minimum. Providing the escape from local optima through the hill climbing
is a peculiar and key feature which always allows the algorithm to aim at the global
optima, but this depends on the temperature parameter.

Given the search space and the objective function, the algorithm starts to initialize
a solution x = (x1, x2, . . . , xn), which is a vector whose components are the decision
variables values. A neighbour solution x’ is generated randomly changing one or more
component or applying a specified rule. Anyway the new solution x’ is always very
much similar to the old one. Then the two solutions are compared using the Metropolis
acceptance criterion: the new solution is always accepted if it achieves a better fitness
value, otherwise it can be accepted with a probability depending on the temperature
reached:

P{accept x′} =

{
exp[−(f(x′)− f(x))/Tk] if f(x′) > f(x)
1 if f(x′) ≤ f(x)

(3.16)

In this equation Tk is the value of temperature assumed at iteration k. Despite it
never reaches 0 and the hill climbing process is always possible, as the temperature
decrease, the probability of accepting a worsening solution becomes lower. Hence at
the ending phases it is unlikely to perform a climb and exits the local minimum. On
the other hand at the beginning phases temperature is quite high and enables to accept
worst solution with fair probability. This gives to the algorithm exploration capacity,
while exploitation enhances at the end of the process. A further implementation of the
algorithm could allow to test more than one searching step at each temperature level.

While the development of such algorithm is immediate in the discrete case, dealing
with the neighbourhood aspects and treating continuous functions can be much more
complicate. In the former case an optimum choice to fund near solutions to the current
one can be performed simply changing one or more values of the decision variables by
just one unit. Instead, in the latter case no unit values can be identified, so the decision
variables modifications could be done by introducing a distribution function. The new
component value would be randomly extract from a normal distribution centred on the
actual value and with a predefined variance. Similarly, it could be adopted any other
distribution, as a uniform one, with upper and lower bound which are a fixed quantity
away from the actual value.

Talking about the neighbourhood of a general point x in a discrete search space,
it is possible to define a non-negative square matrix Pk filled with all the transition
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Algorithm 6: Pseudo code of simulation annealing
Result: Obtain the optimal value of fitness function
Input: itermax, Restartmax, Tannealing
while termination criterion is not reached or R < Restartmax do

Initialize the starting solution: xR;
Initialize annealing temperature: T0 = Tannelaling;
for i in range itermax do

Pick a neighbour randomly or by a rule: x′R ← neighbour(xR);
Calculate P{accept x′R} using 3.16;
if rand(0,1) ≤ P{accept x′R} then

xR ← x′R
else

xR does not change
Ti ← Tannealing

itermax−i
itermax

;
end
Store final state: xR;
R = R + 1;

end

probabilities. As stated in [20], defined gk(x,x′) the probability of generating candidate
solution x′ from neighbourhood on x, then:∑

x′∈nbb(x)
8

gk(x,x′) = 1 ∀x ∈ Ω, k = 1, 2, . . .

Defined also the difference between two different point as:

∆x,x′ ≡ f(x′)− f(x)

Then it is possible to write the stochastic matrix Pk:

Pk(x,x′) =


gk(x,x′) exp(−∆x,x′ )

Tk
if x′ ∈ nnb(x) x′ 6= x

0 if x′ /∈ nnb(x) x′ 6= x
1−

∑
x′′∈nnb(x), x′′ 6=xPk(x,x′′) if x′ = x

(3.17)

Finally in multi-optimization problems, it gets harder to deal with the acceptance
criteria for new solutions, since it cannot be found a single value to treat any more.
A first choice could be to accept always the non-dominated solutions, storing them in
a separate list, while using an aggregate fitness function (weighting the different ob-
jectives) to evaluate worsening solutions. Another idea introduces in the formulation
multiple annealing temperatures, one for each objective function, building the same
framework as working with a single objective [30].

Nowadays the most spread version of this meta-heuristic is the Adaptive Simulated
Annealing. It builds an algorithm which can properly control and tune the parameters
as the temperature schedule and the random step. These features make the method

8nnb(x) is the set of the neighbour of x
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more robust and efficient, while also less sensitive to the user defined parameters.
Several implementation exist, each one displaying particular features took from real-
experience observation or statistical tools [27].

Tabu search

Tabu search is a meta-heuristic algorithm based on a local search algorithm, originally
proposed by Glover [22] and used for mathematical optimization. Its main application
is in combinatorial problems, which require optimal ordering and selection of options,
as resource planning, scheduling, logistics, energy distribution and many others.

The Tabu search takes advantage of local search improvement techniques. It devel-
ops an iterative procedure from a feasible starting point inside the decision variables
domain. The improvement is characterized by fair modification of the last input, real-
izing only slightly changes to some decision variable of the input vector. Hence most
of the times also the fitness function achieves little gain. The path choice between the
current neighbour points could evaluate all its surrounding point and then it should
select the best one or it could choose at random a point in the neighbourhood that
gives a fitness improvement. The local search terminates when an optimum is found,
whether it is local or global. Unless being extremely lucky, one finds local optimum,
which is often not a good enough solution.

Algorithm 7: Simple Tabu Search pseudo-code
Input: Initialize starting solution S0

SBest ← S0;
TabuList← ∅;
TabuList.push(S0);
while do

Snbb ← getNeighbors(BestnewS);
BestnewS ← Snbb.f irstElement;
for SnewS in Snbb do

if SnewS /∈ TabuList and fitness(SnewS) > fitness(BestnewS) then
BestnewS ← SnewS

end
end
if fitness(BestnewS) > fitness(SBest) then

SBest ← BestnewS
end
TabuList.push(BestnewS);
if TabuList.size > maxTabuSize then

TabuList.removeF irst()
end

end
Result: return SBest

In this framework, Tabu Search allows the path to climb up passing through worse
solutions and to exit the local minimum zone. The basic principle of this method is to
develop local search and whenever local optima are encountered (no more improving
neighbours present), let non-improving moves happen. To prevent the algorithm from
visiting twice the same solutions, a list of recent search step is generated, which gets
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called Tabu List and it gives the name to the method. However, this list does not
contain the entire path followed, but only few entries, whose number depends on the
problem dimension and the available memory to allocate. The list is then managed by
the last in first out rule, when the entire memory has been filled up by visited points
and a new element needs to be inserted. The oldest one located in the list is eliminated,
the entire list scrolls up and the new input is inserted at the last position.

In general, three types of tabu lists exist and these are related to different kind of
categories due to their persistence:

Short term It contains the path just walked, forbidding the searching process to visit
again those solutions. This list alone could build a simple Tabu search, but
usually it cannot satisfy criterion of exploitation and exploration.

Intermediate term This memory drives the search towards promising areas or loca-
tions which satisfy a certain criterion. For example, this list could ban solutions
which present determined attributes and it evaluates as better those individuals
showing some other characteristics, hence performing exploitation of the search
space.

Long term This list defines the diversification and exploration rules. It leads the
searching process to uncharted locations or it drives search out of local optimum
regions.

In this chapter just few meta-heuristic optimization methods were reviewed and
about each of them it had been done a brief description. Further more can be find,
classified by local or global search as well as single versus population based or hybrid
and memetic algorithms. Some of them work better on single objective problems, while
others perform better on multi-objective ones. For example, this latter, beside those
already described, are Social Cognitive Optimization, Artificial Bee Colony, mathemati-
cal programming, machine learning, combinatorial optimization, scatter search, iterated
local search, variable neighbourhood search and many others.



Chapter 4

Surrogate Models

All the optimization methods introduced up to now in chapter 3 can perfectly run on
their own, retrieving a solution. In fact, evolutionary algorithms require several runs
to properly adjust the parameters. Therefore a large number of fitness function eval-
uations for each run are needed to realize proper system settings for the optimization
process. Unfortunately, simulations’ computation is often very expensive and opti-
mization evaluation timing could last up to hours or even days. So the minimization
task becomes usually impractical and also prohibitive, even if it could seem simple and
direct. The searched results often deal with on-line process or with already deeply
simplified models. In these frame, surrogate models set up.

These are the main reasons why optimization requires surrogate models (often iden-
tified by f̂), which are cheap to evaluate and their response values emulate those of the
original function f . This objective function is the starting point not only of the sur-
rogate model which builds itself upon it, but also of the entire optimization task, that
starts with the definition of an analytical model. Dealing with the original function,
it is always much more complex than the surrogate. In fact, its only objective is to
lighten the problem and to evaluate costs, even if it could involve completely different
mathematical relations for the experimental data. Although these models are cheap to
use, the building phase is still expensive because it needs anyway to perform evaluation
of the original function. So surrogates must be used sparingly and their construction
requires the definition of a proper input set. This last is itself the base of the model:
it needs to be the smallest possible but at the same time it must provide the best
prediction possible.

The main phases in building a surrogate model are the definition of a sampling and
testing plan. These could be constrained by the problem at hand and be dependent on
the degree of complexity and accuracy desired. In this section the building blocks of
surrogate models will be treated in detail and a brief description of some widespread
model will be given.

4.1 Main features

The first stage to approach the modelling process and realize the surrogate should start
with the sensitivity analysis, which will be debated in the next chapter 5. It evaluates
the amount of influence to the fitness of each variable taken by its own or interacting
with other variables. This is not always simple to carry out since it requires several
function evaluations. So this process is proportional to the number of decision variables

33
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and hence it is subject to the curse of dimensionality 2.1.2.
Identification of the most significant input variables could lead to huge problem

simplification and mainly to a better knowledge of the fitness function itself. It can
help to provide a more accurate and argued choice of surrogate model and evolutionary
algorithm. This could realize also huge amount of computational savings. Once the
process is done and the critical decision variables are recognized, it is necessary to build
the learning data set. It is the set of points on which the fitness function f gets evaluated
and hence where the surrogate f̂ is built. Depending on the number of parameters
which are needed to describe the problem, the surrogate will require a minimum number
of different points to allow the parameter estimation. Building the learning set with
only such points would save lot of computational time but it would often lead to poor
prediction capacity of the model. On the other hand, building enormous data set does
not enhance the model capacities: in fact, above a given threshold, new learning points
would not improve the surrogate performance, realizing the so called overfitting. This
can grow the amount of evaluation errors and computational efforts, mainly due to the
excessive quantity of points considered.

Let’s take for example the needles in haystack function as in [18]. It takes zero
values everywhere but in specific points of the domain, which ideally represent the
needles. The perfect surrogate model of this function is rather simple:

f̂(x) =


y(1) if x = x(1)

y(2) if x = x(2)

. . . . . . . . .
y(n) if x = x(n)

0 otherwise

(4.1)

The model 4.1 requires only the needles location knowledge to properly define it. Any-
way just few examples of engineering functions behave like this.

Talking about the learning set construction, first of all it is always a good idea to
scale the domain variable as the unit cube [0, 1]k, where k is the number of variables.
Since often the search space is continuous and hence dense, so are the possible learning
points. Once it is necessary to define the set, there are not choices that perform
always better than others. For example, dealing with very flattened function, if one
takes only boundaries points, the set could build a good prediction, but in presence
of wide changing inside the domain it would have bad performance. Anyway, by its
own nature, the model will not ever perfectly fit the original function everywhere, also
because it needs to be simply evaluate. Moreover, the construction should minimize
the error of the surrogate with respect to the real function. This can happen when the
parameters are less than the chosen points, realizing another minimization task which
is the least square problem. In case of the same number of parameters and points, only
one configuration of the parameter is possible and it realizes the exact fitting of the
set1, but often it provides poor results on other points.

Differently from experimental design of real processes, a surrogate model does not
exhibit noise in the observed responses. Once retrieved the model features, its be-
haviour and the fitness values resulting from its evaluation will be always the same,
even if an input is submitted twice, by the analytical nature of the surrogate.

1When the numbers of points in the fitting set and of parameter in the surrogate are the same, the
model predictions take the exact values of the original test function on the sample set by construction.
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The main problems arising from this building are the lack of fitting and the overfit-
ting. The latter happens when the model is too flexible and it tries to fit all the given
point. When there are further points than those needed and the fitting process goes
on, the mean error of the entire fitting set increases, but the code does not recognize
it. Instead, the former happens when the learning set does not cover uniformly the
search space. Adding to this set new points, it could improve its prediction perfor-
mance. However both of them depend on the surrogate model defined. If one tries
to fit a linear function by using a second order model, this model would never reach
an adequate error level both increasing or decreasing the learning data set, since is
the model itself wrong. Hence the most important part is first of all comprehend and
mimic the objective function. So also this framework needs proper choices of different
aspects, which can be made only by testing several parameters tuning, because each
problem has its own features.

Once identified the critical variables, defined the proper shape of surrogate model
and generated the learning data set, the following phase also the model parameters w
need to be identified. Usually this is done using methods as:

Maximum likelihood estimation This method estimates the model parameter given
some observations, through looking for the parameters’ values which maximize
the likelihood of retrieving the observation. For example, assuming that a chosen
property of a sample has a normal distribution, maximum likelihood estimation
selects mean and variance as parameters and it tunes them to build a prediction
as closer to the observation as possible.

Bayesian estimation It minimizes the posterior expected value of a loss function or
equivalently it maximizes the posterior expectation of a utility function. Also
here a parameter tuning is required, but in this case the performance depends
on the chosen loss or utility function. Mean square error and median-unbiased
estimators are example of loss functions.

Cross validation As the name suggests, this method focuses on the validation tech-
nique to estimate how accurately a model performs. Once defined the model
parameters to search for, the observed data are divided into complementary sub-
sets, performing the analysis on one subset and validating the analysis on the
other subset.

These search for the best configuration of values for w to realize the most truthful
model possible. It could be also introduced a weighting vector to highlight which are
the most important data to fit, but this is seldom done.

The most applied and common fitting criterion is the least squares, which minimizes
the sum of squared errors: considering each data point as x(i), the objective writes as:

min
w

n∑
i=1

[
y(i) − f̂(x(i),w)

]2

(4.2)

This approach however can be simply solved using matrix formulation, since the min-
imization problem can be analytically translated in mathematical formulas. Consider
y = (y1, y2, . . . , yn) the vector of data output, w = (w1, w2, . . . , wk) the vector of un-
known parameters and X = f̂(x,w) the matrix whose rows are related with the input
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data and columns represent the respective parameters. Then, eq. 4.2 can be written
and developed as:

min
w

[y−Xw] [y−Xw]T

This happens because in matrix notation the sum of the squares can be simply trans-
lated into the scalar product. Deriving the previous expression with respect to w and
setting it equal to zero, one performs the optimization task and obtains:

−X [y−Xw]T − [y−Xw]XT = 0
2XT [y−Xw] = 0
XTy−XTXw = 0
XTXw = XTy

Therefore, the final solution is:

w =
(
XTX

)−1 XTy (4.3)

This phase is often called the model training. Dealing with particular surrogate
as the artificial neural network (4.3), instead of using the least squares method, one
by one the data gets fitted by the model and parameters are properly tuned. The
fitting process stops when the entire data set has been used. Otherwise after a given
threshold, it stops if an input generates a decay in the estimation.

The final stage consists in testing the model to evaluate its error. Typically the
starting data set gets divided into 2 part, the training and testing one. The latter is
much smaller than the former: often less than 20% of the total set is allocated to the
testing phase. The sole purpose of the test is to measure the error once the entire
model has been built. The most spread error evaluations are root mean square error
(RMSE) and correlation coefficient.

This phase is not always performed, in particular dealing with initial testing model,
when different surrogates are compared to measure their computational requirements.
The reason why the testing set is taken from the original one and it is not built
brand new, is because such construction fixes a maximum number of fitness function
evaluation. Therefore it is possible to avoid too many burdening evaluations and it
allocates a relative amount of time to this phase.

Let’s now take a look to some models used nowadays.

4.2 Kriging

Kriging is a spatial statistical technique developed by Danie Gerhardus Krige. Initially
it was applied in geological settings and later it became used widely in engineering after
deep reviews, modifications and improvements. Kriging is a Gaussian process2 based
modelling method, alternative to the conventional response surface or regression. It
fits data obtained from large experimental areas. It builds global interpolation rather
than local one, successively used for the prediction phase.

2A Gaussian process is statistical model where the observations occur in the domain space dis-
tributed as a normal random variable [18].
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There exist two different types of Kriging [40]. The mainly adopted is the Ordi-
nary Kriging, which takes advantage of a constant drift function to develop a simple
construction of the model. On the other hand, it limits the fitting capacity to complex
data. Other references use the Universal Kriging, which adopts as drift function a
polynomial generated by base functions. This is much harder to deal with, since the
choice of appropriate basis functions is not easy and it burdens the entire computational
process.

Anyway, Kriging has been widely applied in optimization problems, exploiting its
interpolation accuracy. It develops an optimization that can be used to approximate
complicate fitness functions and to assist evolutionary algorithms. However Kriging
can also work on its own, as an optimum searching tool per se, called Sequential Krig-
ing Optimization [40].

The basic idea of Kriging is to predict the function value at a given point by
computing a weighted average of its neighbour point values, similarly to regression
analysis. Let’s consider a stochastic process y(x) of the form:

y(x) = µ(x) + ε(x) (4.4)

In 4.4 the x vector is the k -dimensional point representing the decision variables. µ(x)
is a mean function called drift function, which describes the average behaviour of y(x).
Finally ε(x) is a white noise stochastic error function, therefore distributed as a Gaus-
sian variable with zero mean and unknown variance.

A typical basis function used to fit the data is of the form:

ψ(i) = exp

(
−

k∑
j=1

θj|x(i)
j − xj|pj

)
(4.5)

The relation with this last formula and the equation 4.4 will be explained in the fol-
lowing.

Analysing formula 4.5, its similarities with a Gaussian distribution are evident.
Here, instead of the the variance as denominator at the exponential, Kriging basis has
the vector θ = θ1, . . . , θk

T , which allows to fit each variable. Furthermore, instead of
squaring the numerator, Kriging has another vectorial exponent p = p1, . . . , pk

T which
again varies with each single variable. This parameter often takes values pj ∈ [1, 2],
but nothing forbids to widen the range. This kind of basis let the model fit the data
remarkably well, but on the other hand it requires a careful building to its proper
functioning.

Let’s now see how the Kriging interpolation works. Given a set of sample data
X = {x1,x2, . . . ,xn} and the relative observed responses, y = {y1, y2, . . . , yn}, the
objective of Kriging is to find a prediction value at a new point x. In this framework,
the responses Y are considered as results of a stochastic process and they are denoted
as:

Y =

 y(x1)
...

y(xn)
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Figure 4.1: Correlation of the basis function by varying the distance between sample
points. The figure on the left describes the correlation with varying p, while the figure
on the right with varying θ [20].

From the output vector Y can be defined a mean vector 1µ which is an n-dimensional
column vector3. Each response variable can be related to the others by a correlation,
which is expressed using the basis function:

Cor[y(x(m)), y(x(n))] = exp

(
−

k∑
j=1

θj|x(m)
j − x(n)

j |pj
)

(4.6)

Consequently it is possible to build the n× n correlation matrix of the observed data,
denoted as Ψ, written explicitly in 4.7.

Ψ =

 Cor
[
Y (x(1)), Y (x(1))

]
· · · Cor

[
Y (x(1)), Y (x(n))

]
... . . . ...

Cor
[
Y (x(n)), Y (x(1))

]
· · · Cor

[
Y (x(n)), Y (x(n))

]
 (4.7)

From this matrix it is possible to define the covariance matrix4:

Cov(Y,Y) = σ2Ψ (4.8)

All the entries of this last matrix depend on the distance between the sample points
|x(m)
j −xnj | and on the parameters pj and θj, which need to be properly evaluated. Figure

4.1 shows how the basis function varies as the points’ separation increases or decreases.
It highlights the correlation behaviour, in particular, as the pj parameter gets lower,
the correlation decreases much rapidly and it is almost discontinuous as the points
distance approaches zero. Instead, the θ parameter affects the width of the correlation
curve, thus how far the mutual influence between variables extents. A low value of θ

31 is an n× 1 column vector of ones.
4The covariance is a measure of the correlation between a set of two or more random variables:

Cov(X,Y ) = E[(X − µX)(Y − µY )] = E[XY ]− µXµY

This gives rise to the relation between covariance and correlation:

Cor(X,Y ) =
Cov(X,Y )

σXσY
=⇒ Cov(Y,Y) = σ2

YCor(Y,Y)
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means a high correlation even for distant points, while a larger value realizes higher
correlation for nearer points. Using this parameter, sometimes it is possible to rank
and order the importance of variables. Even if this parameter does not say anything
about the interaction, in some ways it can provide a brief order of importance.

The most used way to build this model is the maximum likelihood method, fitting
the θ and p parameters to resemble y. Building the model it is possible to assume
that it will interpolate the data which is completely determined, so no error affects the
Y values. The likelihood problem aims to minimize the mean square error and it can
be written as:

L(Y(1), . . . ,Y(n)|µ, σ) =
1

(2πσ2)n/2
exp

[
−
∑

(Y(i) − µ)2

2σ2

]
(4.9)

It can be expressed in terms of the sampling data and the correlation matrix,
obtaining:

L(Y(1), . . . ,Y(n)|µ, σ) =
1

(2πσ2)n/2|Ψ|1/2
exp

[
−(Y− 1µ)TΨ−1(Y− 1µ)

2σ2

]
(4.10)

Finally the maximum likelihood estimate gives the following values, through the dif-
ferentiation and minimization process:

µ̂ =
1TΨ−1Y
1TΨ−11

(4.11)

σ̂2 =
(Y− 1µ)TΨ−1(Y− 1µ)

n
(4.12)

Further explanations on the calculations above can be found in [18] and they work with
matrix differentiation and minimization tasks.

However, the maximum likelihood estimation of eq. 4.10 can be substituted with
the concentrated ln-likelihood function [18]:

ln(L) ≈ −n
2
ln(σ̂2)− 1

2
ln|Ψ| (4.13)

This formulation leads to retrieve the parameters θ and p more simply. It takes ad-
vantage from the logarithmic function, since the results variation between θ = 0.1 and
θ = 1 or between θ = 1 and θ = 10 is strongly enlarged. Then it becomes easier to
search for θ̂ in this scale. It is advisable to scale the search space between [0, 1], in
order to obtain values of the parameter θj which are more or less of the same degree
varying the problem.

Dealing with p̂, in many problems it is suggested to fix this parameter as p̂ = 2
and tune only the θ entry. This because the problem already presents a large number
of variables to control. Anyway, taking p̂ ∈ [1, 2] or without any constrain enhances
the resulting fit and therefore the model qualities. However, this implies a higher
computational cost.

Once the model has been built by the fitting process, it can be used to provide
prediction on the function at hand. The estimation generated is of the form:

ŷ(x) = µ̂+ψTΨ−1(y− 1µ̂) (4.14)
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Algorithm 8: Pseudo-code of Kriging filter from [62]
Input: offPop, offPop1, offPop2

Define: Dmin1(offPop)
.
= minimum genotype Euclidean distance between each

individual in offPop and all the remaining individuals;
Define: Dmin2(offPop1, offPop2)

.
= minimum genotype Euclidean distance

between each individual in offPop1 and individuals in offPop2;
Set: strPop = population evaluated so far from beginning;
Set: dToll = 10−3;
Set: M = number of objectives;
Set: I = number of offspring required;
Set: strF it = population fitness evaluated so far from beginning;
for i = 1, . . . ,M do

Build Kriging model on database (strPop, strF it(:, i))
end
Set: offEHVI = individual selected by EHVI5criterion;
Set: dmin2 = Dmin2(offPop, [strPop; offEHVI]);
Find: index vector i for dmin2(i) < dToll;
Delete offPop(i, :);
Set: dmin = Dmin1(offPop);
while dmin < dToll do

Find: index vector i for dmin(i) < dToll;
Set: popX = offPop(i, :);
Set: dmin2 = Dmin2(popX, strPop);
Set: dmin2,sort = sort dmin2 in ascending order; index vector
j
.
= dmin2,sort = dmin2(j);

Delete offPop(i(j[1 : end− 1]), :);
Set: dmin = Dmin1(offPop);

end
for i = 1, . . . ,M do

Set: offFit(:, i) = prediction Kriging model of offPop;
end
Set: rankPF = Pareto ranking of offFit;
Set: rankPFsort = sort rankPF in ascending order; index vector
j
.
= rankPFsort = rankPF (j);

Set: nPF = number of individuals on the Pareto Front;
if size(offFit) > I − 1 and nPF > I − 1 then

Set: dmin2 = Dmin2(offPop, strPop);
Set: dmin2,sort = sort dmin2 in descending order; index vector
k
.
= dmin2,sort = dmin2(k);

Set: vector index iSel = j(k(1 : I − 1));
else

Set: vector index iSel = j(1 : I − 1);
Set: selPop = [offPop(iSel, :); offEHVI];

Eq. 4.14 contains the vector ψ, which is the vector of correlation between observed
data and new prediction. Since correlation does not depend on the estimation, its



41 4.3. Artificial Neural Networks

evaluation is simple:

ψ =

 Cor[Y (x(1)), Y (x)]
...

Cor[Y (x(n)), Y (x)]

 =

 ψ(1)

...
ψ(n)

 (4.15)

Thus, the estimation depends on all data points used in building the model. So its
interpolation takes advantage of all the data available and expanding the relation it
is possible to retrieve the contribution of each of those points. In [18] the entire
construction is deeply explained in all its parts.

4.3 Artificial Neural Networks
Artificial neural networks (ANN) are processing systems that can be considered as a
rough approximation of the biological neural networks. ANN nowadays are applied in
the most different subjects. They are used to solve complex problems which requires
algorithms able to identifies solutions without a specific rule-based approach. The
building blocks of a network are the information processing units or neurons and the
connections between layers of neurons. Each neuron realizes the operational structure,
while the connection represents the synapses, characterized by scalar weights. These
structures organize in three types of layers:

Input layer This layer receives the input decision variables of the fitness function to
be approximated. Each input is associated to a neuron, so the number of nodes
in this level is the same of the decision variables.

Hidden layer This layer receives the information from the input layer or another
hidden layer. There could be more than one hidden layer in a single network.
This layer elaborates the information through the connection weights and the
transfer function and it sends them to the output layer or another hidden layer.
The number of neurons in each hidden layer and the number of hidden layers
themselves are chosen arbitrary. However, depending on the problem at hand
many suggestion are present in literature.

Output layer It contains the output node, again one for each objective function. It
receives the information from the last hidden layer or directly from the input one
and it processes them by the transfer function and the connection weights.

As just seen, each ANN can be built arbitrarily and its classification is based on the
number of layers. A single-layer network connects directly inputs with outputs, while
multi-layer networks own one or more hidden layer and these realize greater processing
of the information. Both are represented in fig. 4.2.

5EHVI is the Expected Hyper-Volume Improvement function, constructed as:

EHV I(x) = E
[
HV

(
Y
(
x(1)

)
, . . . , Y

(
x(n)

)
, Y (x)

)
−HV

(
Y
(
x(1)

)
, . . . , Y

(
x(np)

))
|Y
(
x(i)
)
= f

(
x(i)
)]

Here Y is a vector-valued objective function and HV (Y (1), . . . , Y (np)) if hyper-volume of the set
dominated by the point Y (1), . . . , Y (np). In any hyper-volume calculation, there has to be a reference
point selected [62].
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Figure 4.2: Classification of artificial neural network: (a) single-layer network, (b)
multi-layer network [17].

In the layer’s descriptions a transfer function was introduced. It is the function
that process the information coming from the previous layer and it can take any shape.
This function is made of two parts: the propagation function and the activation one.
The propagation function regroups all the inputs in a single value before their use, so
it computes the input pj(t) to the j -th neuron from the outputs qi(t) from the previous
neurons. Typically, it has the following form:

pj(t) =
∑
i

qi(t)wij + bj (4.16)

In 4.16, pj(t) is the information elaborated in the j -th neuron by the activation function.
It depends on time since the neural network undergoes a learning process and in each
phase the transmission sequence could change. On the other hand, qi(t) is the input
coming from the i -th node of the former level. The value wij represents the weight
between the neurons of the two different levels and it is the objective of the learning
process. In fact, during the fitting procedure only these weights and the bias term
(b) are subject to the tuning procedure. Finally, the information retrieved in the
propagation function gets further processed in the neuron by the activation function,
which ensures that the neuron’s response is bounded and it allows to turn on or off the
neuron. Despite in real neural network the perception is linear, usually the activation
function has a non-linear shape to compute non-trivial problems with a small number
of neurons. It takes the following shape:

zj = φj(pj(t)) (4.17)

This equation generates the actual neural response and its arguments are the outputs
of the propagation function. The same procedure happens in the biological neurons to
either large or small stimuli [38].
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A first typical non-linear relation describing eq. 4.17 is the sigmoid or logistic
function:

zj =
1

1 + e−apk
, (4.18)

Here the parameter a controls the amount of non-linearity and hence the curve slope.
Another used function is the hyperbolic tangent, which yields the response:

zj =
eapk − e−apk
eapk + e−apk

(4.19)

Again, the parameter a tunes the curve slope, so the non-linearity. Both the functions,
as already said, are bounded, although the respective co-domain is different. The
sigmoid maps the input to [0, 1], the hyperbolic tangent maps it to [−1, 1] and are
reported in fig. 4.3. In applications this aspect could imply better fit using one function
instead of the other. The result of propagation function pj(t) works also as activation
parameter. The set-up of neurons could provide particular fixed responses (or the
shut-down of the neuron in particular implementation, when a given threshold is not
exceeded), which depend on the value taken by the activation function.

Figure 4.3: Most popular activation functions. a): sigmoid or logistic function. b):
hyperbolic tangent function [38].

Such framework realizes an easy-to-develop method and it requires simple math-
ematical objects. Artificial Neural Network can profitably substitute statistical and
other empirical methods that involve polynomials and regression based systems. More-
over it can be further simplified without using the activation function and, if necessary,
mapping linearly the propagation output to a fixed bounded interval.

Once built the Neural Network, the following step consists in its training and testing.
During the learning process, the ANN adapts itself to the various inputs to fit the
outputs. It tunes the weights of synapses and the bias factors until it produces the best
response possible. Different learning process exists to suit various applications. The
latest ones allow also the network to change its own topology to realize the best model
possible [9]. Adaptation could remove and generate neurons and synaptic connection to
further simulate biological networks. The training develops a new optimization tasks,
which can be solved by several methods, as quasi-Newton, conjugate-gradient, and
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back-propagation. This last is nowadays one of the most common learning techniques.
Given a configuration of the network and an input vector, the fitness function and the
prediction is evaluated. Therefore, loss function is measured, as the distance between
correct fitness y and prediction y′:

E(y,y′) =
1

2
||y− y′||2 (4.20)

The standard choice to evaluate their distance is the Euclidean distance as in eq. 4.20.
However, several other metrics can be used depending on the data at hand [9, 25]. The
error function over n training input data will be simply the sum of the single errors
E = 1

2n

∑
x ||y(x)−y′(x)||2. The objective of the training phase is to minimize or reach

a threshold value before testing the built network and starting its use as a surrogate.
The back-propagation optimization task is a two-steps procedure. Each input propa-
gates through the network and it realizes the prediction. Successively this is compared
with the correct value as in 4.20, obtaining the error. Thus, the error propagates back-
ward in the network, giving the name to the method. So, each neuron gets attached
with an error value. Last, the synapses weights and the bias factors are recalculated
minimizing the error to the following nodes, for example using the least squares method.
The aim is to minimize the loss function and to generate the best prediction possible.
Typically to refresh the weights values a gradient method is used [38]. It evaluates a
delta parameter related to the gradient of the weight and it gets partially removed or
add to the current weight to gain a better performance.

Many others learning processes exist, as supervised or unsupervised techniques,
knowledge based, competitive learning, each of them coming with its own main fea-
tures. Also different ideas on the data set can be used, developing long-short-term
memory, group methods and other variants.

Finally there is the testing phase which rates the network capacity to produce
correct prediction. The training part of the starting data set is used in this step.
Again each correct and predicted values are compared, but this time just to evaluate
the error ratio. If this value is under a given threshold, for example 5% or 1%, the
network can be used to the forecasting task for which it has been built. Otherwise the
training phase must be performed again, modifying its frameworks, e.g. changing the
learning data set, the network’s topology or the learning process of the parameters.

4.4 Response Surface Methodology

Response Surface Methodology is a statistical technique which builds approximate and
relative simple models. It takes advantage from design and analysis of experiments
[3, 33, 34, 43]. Using output data related to chosen input variables of a certain problem,
it is possible to mimic the behave of the original function and to obtain a cheap method
to perform prediction. Depending on the number of modelled variables, the response
surface can build different searching space, as lines, for 1-dimensional surface, surfaces
themselves, in 2-dimensions, volumes and hyper-volumes when the design involves 3 or
more parameters. However, as one draws the graph of the surface, k+1 dimensions are
necessary. This happens because the k value represents the number of decision variables
and the further dimension displays the values taken by the surface itself point by point.
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Each variable can represent different aspects but in the mathematical framework any
kind of problem is written as:

η = f(ξ1, ξ2, . . . , ξk) = f(ξ) (4.21)

Observing eq. 4.21, η represents the surface, while ξ1, . . . , ξk are the k natural variables.
These describe the surface and they are expressed in the local frame. Each decision
variable (written as xi) has often its own domain and usually it gets translated through
an opportune mapping to the local reference frame, where its domain becomes [−1, 1]
(or sometimes [0, 1]). Another typical feature of the variables is their independence in
the surface model, despite this is often not true in the associated real application. This
simplification is necessary, otherwise dealing with the problem would become much
more difficult. It would involve further expensive tasks, as it could be correlation
analysis [11], Principal Component Analysis [1], Cross-correlation [66] or Canonical
Correlation [55].

The actual relationship between response surface and exact results can be written
as:

y = f(ξ1, . . . , ξk) + ε (4.22)

In eq. 4.22, beside the response surface f(ξ), the ε term represents other source of
variability not accounted for in the surface and so the error. Dealing with a pure com-
putational model the error is only due to the approximation realized during the model
fitting. Instead, treating a real problem, error would account also for measurement
deviations, due to background noise or experimental variation, effects of uncontrolled
or unknown variables and so on.

Now, analysing the response surface function, it can be defined as k -th order poly-
nomial in a specific region of the domain space. The general expression of the surface
is:

η = β0 +
k∑
i=1

βixi +
k∑
i=1

k∑
j≥i6

βijxixj +
k∑
i=1

k∑
j≥i

k∑
l≥j

βijlxixjxl + . . . (4.23)

It is evident in equation 4.23 that the surface involves the k selected decision variables
xi. These can be opportunely substituted with the ξi natural variables by performing a
reference frame changing. Furthermore, the expression presents some new parameters
β, which represent the coefficients that properly model the surface. These are always
coupled with the relative decision variable, with exception for β0:

β0: it is the known term of the surface and it is not related to any model variables.
However, dealing with a k dimensional surface which fits a function having n
decision variables, not all the factors will be directly described in the model.
Therefore their contributes is counted in the value of other parameters, as also
this one.

βi: it represents the first order term coefficient of the relative i -th decision variable.
The model up to the first order term involves simple linear relation. So the first
order response surface does not present any kind of curvature.

6In the second and third summation symbols the subscript j is always greater or equal to the
subscript i to avoid the repetition of combination of decision variables already considered.
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Figure 4.4: (a) Response surface for a second order model. (b) Contour plot of the
same surface [43].

βij: it is the interaction model coefficient, describing the relation between the i -th
and j -th variables. Looking at eq. 4.23, this parameter is attached also with
the self-interaction terms: it models the behave of any combination of quadratic
variables. It introduces in the response surface the curvature. A second order
model realizes often a much more complex adaptive surface than the first order
one.

βijl: it describes the third order interaction behaviour between variables i, j and l. It
works just as the second order coefficient βij

Dealing with computational aspects and given a response surface with k variables,
the first order model would have at most k+ 1 coefficients, representing the k different
variables and the known term. Introducing the interaction it requires k further coeffi-
cient to model the self-interaction contribute and

(
k
2

)
coefficients due to the interaction

of different variables between each other. Considering instead the third order model,
it would involve k+ k

(
k
2

)
+
(
k
3

)
ulterior coefficient and so on, always realizing a greater

augmenting of the complexity.
The typical representation of a response surface displays the so called main effects.

In fact most of the times it includes only those variables which deeply affect the func-
tion. The most used graph for response surface is the contour plot. It has as axis the
main variables and it connects by lines the points which display the same response
value, as in fig. 4.4(b). When the main effects are just one or two, it is possible to plot
the surface against the selected variables fig. 4.4(a), obtaining the real surface model.

The use of response surface methodology to build a simple but effective model of
the problem can be summarised in few reasons:

1. The surface model is very flexible: second or higher order model can take wide
variety of functional forms. So it can approximate quite well many different
functions.

2. The parameter estimation β can be done with Least Square method. Hence the
required calculations for most of the models does not burden the system, until
the surface order and the number of variables grow too much.
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3. The use of surfaces to perform local searching of an optimum is easier than the
search through complicate functional forms.

4.4.1 Local reference frame and sampling

To build the surface it is first necessary the definition of local reference frame in the
chosen region to model. This is a necessary step that comes before the sampling phase.
In fact, depending on the chosen surface domain region, points outside it could be
selected, if possible, to realize a better model.

The change of reference to natural variables ξ = (ξ1, . . . , ξk) ∈ [−1, 1]k it is quite
immediate. Let’s consider the decision variables x = (x1, . . . , xk), while the selected
region to model is defined as [Li, Ui]

7 ∀i = 1, . . . , k. There can be defined the mean
value and the spread of the design region for each variable:

µi =
Ui + Li

2

δi =
Ui − Li

2

∀i = 1, . . . , k (4.24)

Now it is outright the definition in natural reference [13], using the parameters defined
in eq. 4.24:

ξi =
xi − µi
δi

∀i = 1, . . . , k (4.25)

Once defined the change of reference, points on the initial design frame can be
selected to build up the sample. Various methods exist and often they are mixed up
to interlace benefits and to limit the weaknesses. However, before investigating these
methods, one needs to select the chosen variables which enter in model and those which
are kept fixed. Objective function can be defined by a huge number of variables and
using all of them would burden the surrogate. These fixed variables need anyway to take
a value, since they give a contribution in the objective function. As stated in [3, 43],
the suggested value8 for each of them is the midpoint of the respective domain’s region.
This way of dealing with the secondary variables make the surrogate much simpler than
many other models. However it gives also little control on the taken choice.

Instead, talking about the chosen variables, their sampling is one of the most impor-
tant features to realize a well-defined model looking forward to perform useful predic-
tion. Almost all surface models start the sample set taking a full or fractional factorial
(or tri-factorial) sampling, which is described in detail in section 5.2.2, the axis sam-
pling and the origin of the surface domain region. The first sample gives important
information about the boundary behaviour of objective function. The axis sample
takes two opposite values for each chosen variable, while all the other are set to zero.
If it is possible, the values can be outside, if it is possible, the surface domain region,
or inside this last. Knowledge of the outer behave could help the surface to better fit
the objective function. An example of this is reported in tab. 4.1. Finally, the centre
point gives a brief knowledge of what happens inside. Some models are developed to
build a surface which fits exactly the sampling points, so they take as many sample
point as it is the number of parameters of the surface. However the resulting model
often shows large lack of fitting for points not present in the sample set.

7Li and Ui represent the lower and upper bound of the chosen region for the i -th variable.
8These texts only report this way of modelling, but successively treating the problems at hand, the

model works differently with the fixed variables; this is explained in detail in chapter 6.
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Observation ξ1 ξ2 ξ3 . . . ξk

1 −
√

2 0 0 . . . 0
2

√
2 0 0 . . . 0

3 0 −
√

2 0 . . . 0
4 0

√
2 0 . . . 0

. . . . . . . . . . . . . . . . . .
2k − 1 0 0 0 . . . −

√
2

2k 0 0 0 . . .
√

2

Table 4.1: Axis sample for k variables in natural reference frame. The chosen axis
point is outside the selected region.

Further points can be selected using different techniques, as random, pseudo-random,
Latin-hypercube and many other sampling, described in the following chapter 5.2. Se-
lection of a larger sampling quite often leads to better result. Although, a too wide
sample could bring over-fitting of the parameters and useless computational costs. So
this building phase of the model needs always to be treated carefully.

4.4.2 Surface fitting

The final step in Response Surface Methodology consists in performing the evaluation
of model parameters β, through a statistical regression. Once defined the sample set,
it is possible to evaluate it and to obtain the fitting data. Recall that only the chosen
variables x1, . . . , xk are changing, while the secondary ones xk+1, . . . , xn have a fixed
value for all the sampling points. So, their contribute to the objective function is
constant. Since the coefficients β are scalar quantity, the fitting procedure can be done
using statistical tools. The relation between real objective and predicted value can be
written as: 

y1

y2
...
yp

 =


ξ1,1 ξ2,1 . . . ξr,1
ξ1,2 ξ2,2 . . . ξr,2
...

... . . . ...
ξ1,p ξ2,p . . . ξr,p




β1

β2
...
βr

+


ε1

ε2
...
εr

 (4.26)

In eq. 4.26 the matrixX represents the value of chosen variables. Each row is one of the
p sample points, while each column refers to a chosen variable in natural reference frame
or a combination of different chosen variables, as table 4.2 reports. In fact, selecting
a second or upper order model, also the interaction terms need to be described. To
retrieve their β coefficients they need to enter in the X matrix. Finally, the ε is the
error, due to the deviation of the predicted value from the exact objective y.

Since the model aims to the best possible fit of the data, one wishes to minimize
the error of the following function:

min

(
p∑
i=1

ε2
i

)
= min(ε′ε) = min[(y −Xβ)′(y −Xβ)] (4.27)

Eq. 4.27 is the Least-Square estimation procedure. It yields the coefficients β mini-
mizing the square error. Simply developing the algebra and the minimization problem,
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Observation ξ1 ξ2 . . . ξk ξ1ξ1 ξ1ξ2 . . . ξkξk−1 ξkξk

ξ1 ξ2 . . . ξk ξk+1 ξk+2 . . . ξr−1 ξr

1 -1 -1 . . . 1 1 -1 . . . -1 1
2 -0.5 0.6 . . . -0.9 0.25 -0.3 . . . -0.7 0.81
3 0.2 -0.4 . . . 0.6 0.04 -0.08 . . . 0.6 0.36
...

...
... . . . ...

...
... . . . ...

...
p -1 -0.45 . . . 0.5 1 0.45 . . . -0.4 0.25

Table 4.2: X matrix for a second-order surface, with k chosen variables and all the
interaction terms.

the above relation gives:
β = (X′X)−1X′y (4.28)

The dimension of the sampling set can build a surface that pass exactly through
the selected point. Such sample would give the exact solutions over its point. On the
other hand, most of the surfaces are low-order and they are described by few number
of variables, so the sampling set built would be quite small and it would realize a huge
lack of fitting in the not-sampled points.

Several methods of fitting exist and the most recent ones develop an on-line tuning of
the parameters, just as happens in Artificial Neural Networks 4.3. A new point is added
to the sample if it gives better prediction over the testing set. This process is much
more expensive dealing with computational costs. However it is often more accurate
in terms of final prediction. Other fitting strategy that can be adopted are similar to
the least square but they work on different aspects, as the Bayesian estimation, the
maximum likelihood estimation.

The reported algorithm 9 will be explained in detail later in the chapter 6, dealing
to the implementation of the model.

4.5 Meta-heuristic hybrid optimization

A hybrid optimization algorithm takes advantage of a meta-heuristic built, e.g. evo-
lutionary approach and surrogate models. The motivation behind its development is
to obtain better performance in solving hard optimization problems. The combination
of various optimization methods, such as genetic algorithms or Tabu search, with also
surrogate model, as branch-and-bound, simplex method or neural network, realizes hy-
brid models. This often can lead to great advantages and they gain better performance
then each search algorithm alone.

Nowadays it is quite recognized the improvement brought by this hybrid model.
Although, years ago researchers based their development just focusing on a specific
or favourite class of models, considering this superior to the others. Such behaviour
led to different and specialized ways of thinking, which built up their own model,
bounded and isolated in its properties. Later, the coming of no free lunch theorem
2.1.3 broke down this class separation. It proved that on a wide variety of problems
all these different algorithms would perform similarly. What came after was a deep
study of each problem, to provide the best way to treat it, and each model, to define
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Algorithm 9: Pseudo-code of the Response Surface Methodology
Input: Problem, chosenFactor, surfOrder
Define: k = size(chosenFactor) dimension of the Response Surface;
Define: kProblem = dimSize(Problem) number of variables in the Problem;
Define: Nobj = objNum(Problem) number of objective function;
Define: Domain = bounds(Problem) bounds of the problem’s variables;
Define: SurfBound = defineSurfBound() selects the bounds of Response
Surface;
FactSample = factorialDesing(k) build factorial design sample;
FactSample,2 = TriFactorialDesing(k) build tri-factorial design sample;
AxisSample = axisDesign(k) build axis design sample;
RandomSample = addRandPoint(k,Npoint) create a k-dimensional
pseudo-random sample of Npoint points;
sampledim ← Insert the desired dimension of the sample set, knowing the
number of parameter to model;
DesignSample =
mergeDel(k, FactSample, FactSample,2, AxisSample, RandomSample, sampledim)
builds the complete sample array merging all the above and selecting
randomly sampledim of them;
GlobalSample =
convert2bound(DesignSample, SurfBound, Domain, chosenFactor) change the
point definitions reference frame to the global one;
InputSample = buildInput(k, kproblem, Domain, chosenFactor) constructs the
sample to submit to objective function;
y = Problem(Inputsample) return the objective functions output;
X = buildSurfInp(k,GlobalSample, SurfOrder) define the X matrix of the
inputs to retrieve the surface coefficients;
β = (X ′X)−1X ′y;
Output: β

the main features that are needed. The knowledge on the specific problem leads to the
development of adaptive and customize optimization algorithms.

Below will be reported a brief classification of the hybrid meta-heuristic algorithms
[20], based on four criteria, summarized in Fig. 4.6: the kinds of algorithms that are
hybridized together, the level of hybridization, the order of execution of the searching
process and the part playing the control strategy.

Hybridized Algorithms: the combination of different algorithms could involve var-
ious kind of strategies. First, one might combine part or entire meta-heuristic
optimization process, siding an Ant Colony algorithm, to realize a first search,
and then it might introduce the Particle Swarm to exploit the found solutions.
Secondly, a simulation algorithm could take advantage of a meta-heuristic rou-
tine to converge faster to the desired results (e.g. this happens in fluid dynamics
or finite elements simulations, which both require huge quantity of time and
computational resources9). As third class, one could develop combination of

9These simulations can be coupled with evolutionary algorithms to reduce the problem complexity
during the resolution [17].
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Figure 4.5: Flow diagram of a Meta-heuristic hybrid strategy involving Artificial Neural
Network and Genetic Algorithm [9]

meta-heuristics with surrogate models as in fig. 4.5. These could be general
techniques coming from other research fields. They could build accurate but
simplified model to submit to the optimization task (it is the case of this work,
as will be explained later on). As fourth class, some human guided search pro-
cesses exist, which are combined with meta-heuristics. This happens when the
solution quality is difficult to evaluate mathematically. Here it sets in the human
contribute and intuition, building an interactive system which is often highly
effective.

Level of hybridization: this classification differentiates the level at which the algo-
rithms collaborate and are coupled. High-level hybridization makes use of two or
more algorithms just by siding them. So each one develops all its iterations just
as it would be working alone. The collaboration is not much highlighted and the
involved parts often just share result to proceed in the analysis. On the other
hand, low-level hybridization combines deeply the structure of the algorithms and
the routine of each heuristic gets completely modified. The components of dif-
ferent algorithms are connected and exchanged around a share structure, which
let them work all together.

Order of execution: the order with which the algorithms are executed can be batch,
intertwined and parallel. In the first case different algorithms are performed in
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sequential order and the results of the former are used as input to its follower.
Second and third cases develop several sharing and exchanging of information
from all the involved parts. Intertwined structure often follows a sort of sequen-
tiality. It does not run the algorithms separately but chooses at each phase the
most proper one to run. Instead, Parallel meta-heuristics realize independent
runs of the algorithms. However, these exchange information and results, so
each part in the game can take advantage of the others. Each one investigates
promising region either performs exploration, due to its design properties.

Control strategy: the way of control a meta-heuristic can be either integrative or
collaborative. The first case includes all those codes in which an algorithm is
submitted to another one. The subordinate algorithm works as source of infor-
mation, decoder, or local searching help, while the outer one realizes the main
computational aspects, e.g. the global search. In contrast, collaborative approach
builds separately the algorithms. These work on their own but they provide in-
formation exchanging, as happens in the Island model for parallel evolutionary
algorithms [6].
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Figure 4.6: Classification of meta-heuristic hybrid [20].
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Chapter 5

Sensitivity Analysis

As stated in [51] and [54], a possible definition of sensitivity analysis is:

The study of how uncertainty in the output of a model (numerical or oth-
erwise) can be apportioned to different sources of uncertainty in the model
input.

A first important element in this citation is the idea of model, which has been
already used in this text. However here, dealing with the sensitivity analysis and a
more statistical framework, it gets a little different accent. Often one refers to a model
as an analytical and mathematical description of an observed event, which has its own
causality. Usually a model is made up of differential equations that rule the entire
system. They are typically dictated by the physics of the process in study, but nothing
keeps it from being based on completely different expressions, if these can properly
describe the events. Then it is completely accepted that many different models can
describe accurately the same set of data and evidence. Moreover, even if relating a
process with its physical laws could already seem a simplifying idea, often it brings
cumbersome mathematics and burdening numerical aspects that can be avoid building
a physical-detached model.

The other key term is uncertainty : it is the substance of the scientific method. In
fact anything real can be measured or evaluated exactly, without errors. Any built
model will never be proven really true, since it cannot fit the relative process without
errors. These are just inside the own definition of the model, as the measurement
themselves bring loss of information for example. A model can only be accepted within
certain threshold, arbitrary chosen. It means that its result or prediction will always
differ from the observation at least by an unknown quantity. Evaluate the uncertainty,
being able to understand and to predict the process at hand it is a fundamental goal,
often even more than developing the model itself.

5.1 Purpose of the sensitivity analysis
Sensitivity analysis is an indispensable tool to evaluate the quality of inference based
on mathematical models [50]. It allows a third part to concretely understand and
judge the model at hand, to obtain the substance of its behaviour. Dealing with the
construction of a model and looking for positive results, the involved parties deal with
information and data in a selective or even manipulating way. Therefore, the model
realized would be erroneous and biased. Performing a sensitivity analysis, this approach
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can be detected and avoided, because often it is not intention of the research to prove
untruth results.

Another application of the sensitivity is related to the risk assessment analysis. This
tool studies the variability of objective function and the contribute of each variable to
the problem. So it allows to analyse how the model is affected by fixing a parameter.
It evaluates the reduction of variability attached with each factor and this can be very
useful in many issues.

5.2 Sampling technique

A key phase to perform a sensitivity or uncertainty analysis passes through the genera-
tion of a sequence of input to study the objective function at hand. The sampling, even
if could seems a trivial matter, can lead to large computational savings or to better
performance of the analysis. The correct sampling definition has always been one of
the main features of statistical tests. Choosing properly specific individuals inside the
population affects later the whole estimated characteristics of the population itself.

All problems at hand deal with multi-variables functions, where each parameter
describes a certain feature of the test. For the sake of simplicity let’s consider as do-
main space the interval [0, 1]k, such that each variable is bounded between 0 and 1.
For a general problem this is not true, but it is always possible to retrieve this frame
simply performing an easy change of variable1. Let’s also assume that all the variables
are independent and their distribution unknown. Typically the former assumption can
be satisfied properly modelling the experimental test and it is an important property
in most part of sensitivity analysis. Despite this, it is often possible to relax problem
features and suppose independence, this introduces in the model a first error. About
latter assumption, usually it is preferable to work with uniform distribution. This is
done to avoid assumptions that could reveal false2 and to treat easily all the vari-
ables. However, passing to a given specific distribution often requires quite immediate
calculation, related to probability distribution function.

5.2.1 Random sampling

Random sampling is the most common and known method to build a sequence of
simulation points. Despite the random word, the numbers generated with the relative
computational routine are not truly random. In fact these numbers are all determined
by a starting initial value and by the hardware features of the machine realizing the
sequence. The initial value can be taken from a so-called seed of pseudo-random number
generator (which contains real random numbers), or it may be based on hardware
features. This method is commonly used because of its speed and reproducibility and
it is implemented in any programming language.

Random sampling exhibits several aspects that could prevent its usage in specific
applications, as in sensitivity analysis. It has been proven [51] that the sequences
generated by a random sampling routine, can highly influence the results of researches

1In any case each factor domain needs at least to be finite to be able to perform a computational
analysis.

2This is anyway an assumption, but it builds a well-defined and singular roadmap to tackle all the
possible test problems.
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Figure 5.1: Two level factorial design for 3 parameter problem [51].

and studies as well as practical applications. The main erroneous feature individuated
are:

• Repetition periods shorter than expected for some seed sates;

• Lack of uniformity for large sequence of generated numbers;

• Correlation of successive values and poor dimensional distribution;

These features lead to random sequences showing clusters and gaps, because the
points are not evenly distributed across the domain space [51]. Clusters show several
points quite close together, gaps are region without samples. Dealing with a function
analysis, when a cluster occurs the function properties coming out from there are
emphasized. On the other hand in presence of a gap the features within the gap are
not sampled and so the analysis does not account these. Measuring the net effect that
this problem generates on the sample, to reduce an estimate uncertainty by a factor of
10, the random sampling must increase the starting sample N by a factor of 102 = 100
[31, 51]. Other models achieve the same results with much less effort: the uncertainty
of Sobol’ Quasi-random sequences (5.2.5) decreases with the sample size N.

5.2.2 Factorial sampling

This kind of sampling contains all the possible combination of low and high values
for each variable. This model does not require to reshape to [0, 1]k, since it uses as
characteristic values -1 and 1. These represent a low and a high value of each variable
respectively. Usually and for practical reasons these two are exactly the lower and upper
bound of the domain variables. Considering for example a 3-dimensional problem, the
eight points individuated are the corners of a cube as in fig. 5.1.

The sampling built is known as full factorial, since all the possible combinations
are considered. Dealing with a generic k -dimensional problem, this would require 2k

evaluation points. This sample would represent all the corners of a k -dimensional
hypercube, hence it grows fast. The growth can be reduced by developing a fractional
factorial sampling. First of all, it requires the choice of the variables which will build
the full factorial design. Let assume that in a k -dimensional problem n parameters are
chosen, which build a full factorial design. The others k − n are sampled by selecting
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two or more of the previous variables and then multiplying their factorial design values
in the relative sample. Table 5.1 presents an example of fractional factorial design
problem with 7 variables and a 3-dimensional full factorial development.

X1 X2 X3 = X4 X5 = X6 = X7 =
X1X2 X1X4 X2X4 X1X2X4

1 1 1 1 1 1 1
–1 1 –1 1 –1 1 –1
1 –1 –1 1 1 –1 –1
–1 –1 1 1 –1 –1 1
1 1 1 –1 –1 –1 –1
–1 1 –1 –1 1 –1 1
1 –1 –1 –1 –1 1 1
–1 –1 1 –1 1 1 –1

Table 5.1: Fractional factorial design of a 7 -dimensional problem starting from a 3-
dimensional full factorial [51].

All the above examples deal with 2-levels factorial design, but also this parameter
can be modified, developing the s-levels design. Instead of taking 2 sample points for
each variable, s points are picked. Often these are selected realizing s − 1 step of
fixed size starting from the lower bound of each domain variable (the step size in such
frame would be the domain length divided by s − 1). Considering for example the
standard factorial set [−1, 1], a 3-levels design would select {−1, 0, 1}, a 4-level design
{−1,−1

3
, 1

3
, 1} and so on.

5.2.3 Latin hypercube sampling

Latin Hypercube sampling is a method which enhances the s-levels factorial design.
Again it divides the search space in different levels, but it takes in each subset more
than one point if desired. Here the sample space gets separated by s, generating N sub-
sample spaces3. The key objective in Latin Hypercube is to ensure that each variable is
individually stratified over the s levels. It means that each level must contain exactly
the same number of points. All this building is typically developed by integer number
and discrete spaces, but it can be translated to continuous variables as later will be
described. Supposing now to deal with a k -dimensional model, divided in s levels and
with n picks, each level presents n sampling, divided between the k factors. The final
sequence will have n × k points. The possibility of taking n picks in each level could
be also performed by repeating n time the Latin Hypercube sampling with only 1
sample per level. This would build n independent sequence that can generate separate
estimates of the objective function.

Now, dealing with the transition from discrete sampling to continuous variables,
different choices can be made. First, recall that the domain of each variable is divided
into s levels. However it does not imply that the interval dimension of different factors
is equal, since one be larger or smaller in length. Anyway, let’s consider for simplicity
[0, 1]k the domain space, therefore a function described by continuous variables.

3often the model requires s and N to be equal
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X1 X2 X3 X4 X5 X6 X7 X8 X9

0 4 5 0 5 4 0 2 0
4 3 1 1 4 3 5 1 4
2 2 5 4 1 0 2 0 2
5 0 0 3 0 5 3 3 5
3 1 3 2 2 2 1 4 3
1 5 2 4 3 1 4 5 1
2 3 3 3 3 4 1 5 5
5 1 0 2 1 3 2 0 4
1 5 4 1 4 2 5 4 2
0 2 1 0 5 1 3 3 1
3 0 2 5 2 0 0 1 0
4 4 5 4 0 5 4 2 3

Table 5.2: Doubled Latin Hypercube sampling with 9 factors (X1−X9), 6 levels (0−5)
and 12 simulation [51].

Two simple transition to continuous domain can be introduce. The first identifies
through discrete sampling the picked interval and the chosen value is a fixed location
inside the interval (e.g. its middle point). A second way could perform a pick with
s + 1 levels and then it selects as value the relative grid line4. A further model could
consider a uniform distribution: once chosen the discrete interval, a random value is
generated with uniform distribution and it locates the relative point.

Latin Hypercube has attractive properties, because it leads to good estimate of
mean features of a population without large samples. It rapidly converges to the
true value as the number of simulation N increases. Moreover, when the number of
samplings N is much larger than the factor k, Latin Hypercube can be very effective
for the sensitivity analysis. On the other hand, when these values are more or less the
same, the model cannot properly give information on the factor. It happens because
there are not enough points to perform the estimates and the correlation between data
is excessive and persistent.

An improvement to general Latin Hypercube deals with orthogonal arrays, which
has particular properties. These are used to add further design requirement to the
sampling sequence. The Orthogonal Latin Hypercube has the additional property that
each couple of variables contains all the combination of the s-levels parameters. So
each sample space is divided in equally probable subspaces and each of them is filled
with equal probability. So it gives very good representation of the input variability.

5.2.4 Multivariate stratified sampling

Multivariate stratified sampling couples the fractional factorial and Latin Hypercube
design to obtain advantage from both the models. The first stage consists in applying
the fractional factorization which divides each dimension in s sub-levels (often a simple
2-levels factorial is performed as in Fig. 5.2). Then, fixed the total number of points,
Latin Hypercube samples the sequence in each part of the grid. In the meanwhile it

4The division of the domain variable in s levels locates two values at the boundary and s−1 values
inside the variable domain.
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takes care that in each column and in each row the constrains are satisfied and the
total number of samples per row and column is met. This method could seem quite
similar to the Latin Hypercube construction with continuous variables and uniform
distribution, but, anyway these two are quite different.

Figure 5.2: Combined fractional factorial and Latin Hypercube design in 2 and 3
dimensions, with a 2-levels FF and a further 2-levels LH [51].

5.2.5 Quasi-random sampling

Quasi-random sampling develops a much more complex computational structure to
build a random sequence of points. However, it is far more accurate than the similar
pseudo-random sampling. Its first property, that only quasi-random numbers have, is
the low discrepancy : discrepancy is the measure of lumpiness of a sequence of point
in a multidimensional space. Considering an interval [a, b] and a sequence of N values
{s1, s2, . . . , sN}, the discrepancy is defined as:

DN = sup
a≤c≤d≤b

∣∣∣∣{s1, . . . , sN} ∩ [c, d]

N
− d− c
b− a

∣∣∣∣ (5.1)

Therefore, the lower DN is as N tends to infinity, the more equidistributed is the se-
quence. However, the concept of equidistribution itself is weak. As said for random
sequence, even if the distribution is quite uniform in a given interval, large gaps can be
present, compared to the rest of the sequence generated, but the results of equidistri-
bution would be fair. Back to the discrepancy, the further concept realized is that each
part of the sampling sequence has quite the same gap between all points, using it as a
criterion to contract the sequence. In fact it is from these concept that quasi-random
sampling is known also as low-discrepancy sequence. The attribute quasi means that
the sequences such built are neither random nor pseudo-random, but they follow cer-
tain rules that lead to very good samplings. They are not completely unpredictable,
in fact to simultaneously maintain an even spread, avoid clustering and gaps, the al-
gorithm which generates the sequence of points need to bias the prediction and they
fill with properly samples the space.
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Figure 5.3: Discrepancy is the maximum absolute difference between the fraction of
the area a square occupies and the fraction of the points it contains [51].

Considering now k -dimensional cases, these sequences still work well, but they need
a very large sequence length N to show their properties and to reach the theoretical op-
timal rate of discrepancy. As already hinted in section 5.2.1, this sequence provides best
convergence characteristics. To estimate the mean features of a multidimensional func-
tion f(X1, . . . , Xk) which is evaluated on points of coordinates {Xi1, . . . , Xi,k}i=1,...,N ,
it is required a much little sample dimension N with low-discrepancy sequences than
with random sampling to obtain similar accurate results.

In any case, the properties of quasi-random numbers are effective and reach low-
discrepancy levels only when a large sample size comes into play. Until the analysis
works with small sequences, the properties may not be evident. Instead, when the
sample overtakes a threshold dimension, its discrepancy decreases rapidly. However,
the required size of the sample is strictly connected with the function dimension: as
the problem is described by more decision variables, as the required sample gets bigger
and bigger to achieve the low discrepancy.

Figure 5.4: Coverage of the unit square for different sample: starting from the left, the
samples has 10, 100, 1000 and 10000 points; the top boxes are filled with quasi-random
number, while those below with random numbers [64].
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A simple test to evaluate the performance and uniformity of a quasi-random se-
quence with N sample points is the following: it calculates the average value of each
variable sequence independently and the cross-product value between two chosen se-
quences. Because of the properties of quasi-random sequences, these should give:∫ 1

0

XjdXj = 0.5 ∼=
1

N

N∑
i=1

Xij (5.2)

∫ 1

0

(XjXk)dXjdXi = 0.25 ∼=
1

N

N∑
i=1

XijXik (5.3)

Here the subscript j and k indicate the chosen variables. If the sequences cannot
approximately take this value, probably they would not perform well in sensitivity
analysis. Let’s treat now briefly the most spread quasi-random sequences, which are
the Halton and the Sobol’ sequences.

Halton sequence

The Halton sequence is a well-known low-discrepancy sequence quite simple to generate.
The principle under this kind of sample exploits the change of bases of floating numbers
between a general base and the classical base-10. The first step consists in generating
k different sequences of N consecutive numbers starting from an arbitrary one, with
N the size of the sample. The k sequences sample the values for the relative problem
variables. So a specific base, arbitrary chosen between prime numbers, is uniquely
associated to a single variable. The following phase translates the integer values into
decimal numbers, inverting their writing5 and placing before them the floating-point
separator (e.g. the base-10 value 11 in base2 is written as 1011 and after the translation
it becomes 0.1101; this is the radical inverse transformation and for further example
see table 5.3).

The main implementations develop Halton sequence up to 100 variables, so they
require each prime number up to the 100th one, which is 541. Furthermore, as table
reports, observing the sequences resulting from base 2, 3 and 5, it is possible to notice
that all of them approximatively realize a first coverage of the entire domain with only
a sample of 12 numbers. On the other hand the sequence generated from base 541 is
still far from covering the domain (it covers little more than 2% of the entire domain
and the final value is in fact equal to 12

541
). This fact highlights the necessity of realize

sequences of proper size, related not only to the dimension of the problem at hand, but
also to the arbitrarily chosen base.

Sobol’ sequence

Sobol’ sequence was first introduced by the Russian mathematician Ilya M. Sobol,
which tried to develop a sequence that converges faster than all the other methods.
However, later theorems proved that all the quasi-random sequence has the same con-
vergence rate and they differ only for few aspects. These few particular features are
the numbers of required inputs, the complexity of introducing further dimension and
the implementation difficulties.

5Writing the new number copying the old one from the right to the left.
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Index base Parameter value

10 2 3 5 . . . 541 X1 X2 X3 . . .X100

1 1 1 1 1 0.12 = 0.5 0.13 = 0.333 0.15 = 0.2 0.1541 = 0.002
2 10 2 2 2 0.012 = 0.25 0.23 = 0.667 0.25 = 0.4 0.2541 = 0.004
3 11 10 3 3 0.112 = 0.75 0.013 = 0.111 0.35 = 0.6 0.3541 = 0.006
4 100 11 4 4 0.0012 = 0.125 0.113 = 0.444 0.45 = 0.8 0.4541 = 0.007
5 101 12 10 5 0.1012 = 0.625 0.213 = 0.778 0.015 = 0.04 0.5541 = 0.009
6 110 20 11 6 0.0112 = 0.375 0.023 = 0.222 0.115 = 0.24 0.6541 = 0.011
7 111 21 12 7 0.1112 = 0.875 0.123 = 0.556 0.215 = 0.44 0.7541 = 0.013
8 1000 22 13 8 0.00012 = 0.062 0.223 = 0.889 0.315 = 0.64 0.8541 = 0.015
9 1001 100 14 9 0.10012 = 0.562 0.0013 = 0.037 0.415 = 0.84 0.9541 = 0.017
10 1010 101 20 A 0.01012 = 0.312 0.1013 = 0.370 0.025 = 0 08 0.A541 = 0.018
11 1011 102 21 B 0.11012 = 0.812 0.2013 = 0.704 0.125 = 0.28 0.B541 = 0.020
12 1100 110 22 C 0.00112 = 0.188 0.0113 = 0.148 0.225 = 0.48 0.C541 = 0.022

Table 5.3: Generating coordinates of points in a Halton sequence using the radical
inverse transform

The algorithm that generates Sobol’ sequence makes use of a primitive polynomial
of fixed degree s in the integer field Z2:

xsj + a1,jx
sj−1 + a2,jx

sj−2 + . . .+ asj−1,jx+ 1 (5.4)

In eq. 5.4 the j parameter indicates the points component in the sequence, while
coefficients a1,j, a2,j, . . . are either 0 or 1. Then it is defined a sequence of positive
integers {m1,j,m2,j, . . .} by recurrence relation:

mk,j
.
= 2a1,jmk−1,j⊕22a2,jmk−2,j⊕. . .⊕2sj−1asj−1,jmk−sj+1,j⊕2sjmk−sj ,j⊕mk−sj ,j (5.5)

The ⊕ operator is the exclusive or operator, which works in bit strings. Each mk,j can
be arbitrary chosen within the constraints that 1 ≤ k ≤ sj, it is odd and it is less than
2k. Finally the direction numbers {v1,j, v2,j, . . .} are required and are defined as:

vk,j
.
=
mk,j

2k
(5.6)

Once retrieved all these parts, it is possible to define xij, the j -th component of the
i -th point of the Sobol’ sequence:

xij
.
= i1v1,j ⊕ i2v2,j ⊕ . . . (5.7)

Here in eq. 5.7 the index ik is the k -th digit from the right when i is written in binary
coding: i = (. . . i3i3i1)2 [31].

The above steps represent the original implementation of Sobol, but later more effi-
cient codes were released, based on new operator definition. Nowadays the generation
of Sobol’ sequences relies often on precomputed direction numbers arrays and primitive
polynomials,. Both these are obtained from various search criteria for the sequences
and they yield the parameter for several problem dimensions. In fact each direction
numbers array refers to its relative dimensional problem.
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A final aspect to briefly discuss is the skip of initial entries of the sequence to obtain
a better sampling. This recommendation was given by Sobol himself but later studies
do not confirm neither deny this advice. Anyway seldom the first points are skipped
because the algorithm would require almost the doubling of the sampling dimension6.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
0.2500 0.7500 0.2500 0.7500 0.2500 0.7500 0.2500 0.7500 0.7500 0.2500
0.7500 0.2500 0.7500 0.2500 0.7500 0.2500 0.7500 0.2500 0.2500 0.7500
0.1250 0.6250 0.8750 0.8750 0.6250 0.1250 0.3750 0.3750 0.8750 0.6250
0.6250 0.1250 0.3750 0.3750 0.1250 0.6250 0.8750 0.8750 0.3750 0.1250
0.3750 0.3750 0.6250 0.1250 0.8750 0.8750 0.1250 0.6250 0.1250 0.8750
0.8750 0.8750 0.1250 0.6250 0.3750 0.3750 0.6250 0.1250 0.6250 0.3750
0.0625 0.9375 0.6875 0.3125 0.1875 0.0625 0.4375 0.5625 0.8125 0.6875

Table 5.4: First eight points of 10-dimensional Sobol quasi-random sequence

5.3 Sensitivity analysis methods

5.3.1 One at a time

One-at-a-time (OAT) is the most simple and basic sensitivity analysis method. As
the name suggests, it changes one factor at a time, while all the other variables are
kept fixed. It evaluates the result produced measuring the objective function variation.
This first method is generally considered as a local one, because the changing of the
factor starts always from the same chosen point. Hence this model can give sensitivity
results only in the neighbourhood of the starting point. To obtain a wider analysis of
the function many different points need to be picked, but again the results cannot be
extended to the entire domain until the density of the observation set reaches great
values. For the relative computational cost, this sensitivity technique is seldom used
to analyse functions globally, but is rather common to localized and brief studies.

The first step requires the factor changing and the evaluation of the function at
hand at the entire point set. Then the differences with the original function values
are performed and the sensitivity of the considered variable gets evaluated by partial
derivatives or linear regression. Typically the factor step value is fixed for all the
variables and all the points, but nothing forbids to change the step size for some
factors or around some points.

Another weak point of this method is that it cannot evaluate the simultaneous vari-
ation of different variables, so it is not able to measure interaction between factor. On
the other hand it is frequently used because of practical reasons, since its results are
easy to understand, Moreover, if during the analysis the model crash, it is extremely
simple to retrieve the input factor causing the failure due to the its sequential be-
haviour. Finally, the implementing phase is immediate and it is quite cheap in terms
of computational costs, until the point set does not become too large.

6Sobol advised to skip the largest power of 2, smaller than the number of points to be used. For a
sample set of 500 points, it should be generated 256 more points.
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5.3.2 Elementary Effects

Elementary Effects method (EE) is one of the most used screening technique in sensi-
tivity analysis. It develops the idea of Morris method, which in turn is based on the
OAT method. Elementary Effects determine which input factors have larger effect on
the objective functions, measuring their type of contribution (e.g. linear, non-linear,
interactive or negligible) by few simple indicators. Originally only two measures were
computed. The most important is µ, which describes the overall influence of the se-
lected variable to the objective functions. Then it comes σ, estimating how the variable
contributes inside the entire domain and how it interacts with other variables. Later
reviews of the model introduced a new parameter µ∗. It estimates the mean contribute
of the absolute value of the chosen decision variable. This last parameter allows to
highlight factors whose contributes take opposite sign in the domain, realizing a null
µ value and a non-zero σ one. However, this information could be already understood
from the previous two parameters, but the evaluation of µ∗ is done with no extra com-
putational cost. In alternative to the absolute value it could be considered the squared
effects, which has been proven to be a less robust measure.

The Elementary Effect procedure develops a randomized OAT experiment, requiring
the following entries: a random starting point in the domain space x = (x1, . . . , xk), a
number of step p, the grid division of the k -dimensional region of experiment in p-levels
and a step size. Moreover all the input factors of the objective function are considered
uniformly distributed, so any value inside the domain space is equally probable. In [5],
the EE of the i -th input factor associated to the point x is defined as:

di(x) =

(
y(x1, . . . , xi−1, xi + ∆, xi+1, . . . , xk)− y(x)

∆

)
(5.8)

In eq. 5.8 the argument of the first function evaluation y(x1, . . .) is the vector x+ei∆ ∈
Ω ∀i = 1, . . . , k, with Ω domain space and ei the vector, having all components null
but the i -th one. ∆ is the step size and it takes value in { 1

p−1
, . . . , 1 − 1

p−1
}. The

elementary effect of the i -th input factor is obtained by randomly sampling different
point x in the domain and building its final distribution Fi, such as dix ∼ Fi. Suggested
values for the parameter p and ∆ are respectively a general even value for p and
∆ = p

2(p−1)
. These allow the method to realize a sampling which guarantee more or

less an equal-probability for each Fi.
Finally to properly obtain the distribution of each elementary effect, Morris in [42]

suggested to build r trajectories each with k + 1 points. These provide k elementary
effects, for a total cost of the experiment of r(k + 1) evaluation runs. Saltelli later
proved that the performance of such sensitivity analysis was quite satisfying, however
they are still liable to statistical error of Type II7 while quite robust against Type

7Typically three types of error are reported (different authors introduce others of them):

Type I Rejecting the null hypothesis when it is true. It occurs when a non-influential factor is wrongly
identified as so.

Type II Accepting the null hypothesis when it is false. This occurs when the analysis fails in highlight
a factor which has considerable influence.

Type III correctly rejecting the null hypothesis for the wrong reason. Type III errors are difficult
to identifies and can be translated as a researcher providing the right answer to the wrong
question.
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I error. It happens because with a non-monotonic objective function, negative and
positive contribution can cancel out each other, thus producing a low µ value. Anyway
one could still identify this factor by the associated σ value. In fact, in this case it
would be rather large, if the factor is non-negligible but it cancels out itself. The
introduction of µ∗ leads to a simpler treating of this question.

A further improvement of the method was presented in [5]. The article introduces a
sort of modification on the trajectory, since the original one often leads to non-optimal
coverage of the input set. The idea consists in generating much more trajectories than
those necessary (10–50 times the parameter r) and then chose those with the highest
spread over the search space. Classification of the best trajectories is performed using
a distance metric dml between two of them:

dml =


k+1∑
i=1

k+1∑
j=1

√√√√ k∑
z=1

[
xmi (z)− xlj(z)

]2 for m 6= l

0 otherwise

(5.9)

Here xmi (z) identifies the z -coordinate of the i -th point of the m-th trajectory. Then
dml evaluates the geometric distance between each couple of point of the trajectories.
Obviously one needs to define a 0 in this metric, therefore a reference trajectory which
allows the distances evaluation. Finally the choice of the r trajectories is done evalu-
ating the distance covered by each possible combination of an r sample of trajectories
over M possibilities. The total covered distance is defined as:

Dcomb =
√
d2

1 + d2
2 + . . .+ d2

r

where each di is a different path dml. Literature suggests to prefer always this kind of
sampling strategy, since it provides much better performance than he Morris sampling.
This happens mainly due to its improved ability in scanning the design space without
further model evaluation.

The Elementary Effect has also the possibility to work with groups of variables,
thanks to the parameter µ∗. This gives to the model an advantage over many others,
since it can deal quite easily with problems with a great number of factors. EE can
evaluate the contribution of a group of factors, despite in such frame it loses information
on the single variables. The idea consists in realizing a step which involves all the factors
in the same group, considering it as a single variable. However in this formulation the
step size keep on being fixed, but its direction varies for each factor, e.g. the step could
increase or decrease by ∆ each factor randomly. To properly measure the contribute
and the effect of this different jump, only the parameter µ∗ can be used. In fact it
has been observed that µ can hardly obtain correct results. The elementary effect for
groups is evaluated by:

|dui
(x)| =

∣∣∣∣y(x̃)− y(x)

∆

∣∣∣∣ (5.10)

In eq. 5.10 subscript u identifies the vector of variables ui = (xi1, xi2, . . .), which
enumerates all the variables inside the i -th group. The x̃ represents the vector having
ui entries moved by a ±∆ quantity.

In conclusion, improved Morris method can gather quite good sensitivity analysis
results without a too wide number of function evaluations. This is a key point of all
the screening techniques. Comparing it to the Variance-based method 5.3.3, it can
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obtain good results with a smaller number of evaluation, although it lacks in accuracy
with respect to this other cited. On the other hand it can easily perform group analysis
which are very useful in first testing. If the grouping is properly designed, it can retrieve
results similar to those achieved in simple Morris model.

5.3.3 Variance-based method

This model, as its name suggests, studies how the variance of the output depends
due to the uncertainty of the input and how this last can be decomposed accordingly.
The method develops the use of variance, since it is the expression of the uncertainty
itself and it can properly describe which are the main variables that rule the objective
function. Here one puts interest on how the fitness can vary inside each variable domain
and what causes this variation. The target of this test is no more the best objective
value of the function, as happens in the optimization process, or the mean of fitness
[51].

Variance-based is a global sensitivity analysis method which is able to gain infor-
mation not only on the single variable, but also on its interaction with detailed results.
Let’s consider an objective function as Y = f(X1, X2, . . . , Xk), where Y is a scalar ob-
jective and Xi are the k variables. The variance-based first order effect for the generic
variable Xi is defined as:

Si =
VXi

(EX∼i
(Y |Xi))

V (Y )
(5.11)

Here Xi is the i -th factor and X∼i identifies the matrix containing all the variables but
Xi. The numerator of eq. 5.11 evaluates the variance associated with the factor Xi.
The expectation of Y is performed over all the possible values X∼i, so with Xi as a
fixed factor. Therefore, to evaluate the fixed factor variance, the expectation is taken
over all the possible value associated to Xi. This builds a set of values generated by
varying only the Xi [53]. Due to the identity:

VXi
(EX∼i

(Y |Xi)) + EXi
(VX∼i

(Y |Xi)) = V (Y ), (5.12)

the sensitivity index Si is also normalized with respect to the total objective function
variance and it varies in [0, 1]. This sensitivity index highlights how the factor influences
by its own the objective, so its additive effect on the output. A constrain to the first
order sensitivity coefficient is:

k∑
i=1

Si ≤ 1 (5.13)

Taking for example a pure additive objective function, each factor affects only by its
own the function. Since no interaction is present, the entire variance of the objective
needs to be described by first order index and their sum will take value 1. On the other
hand, considering a function such as:

f(x) = x1x2 +
∑
i

xi, (5.14)

it shows a simple product relation between two variables and it introduces an inter-
action in the system. The interaction cannot be described by the first order indexes
alone. Their sum won’t be any more equal to 1, because the coefficients Si lack in
describe the interaction and cannot capture its contribute to the variance.
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A second fundamental measure which the variance-based method performs is the
total effect index ST i. This quantity describes the total variance introduced in the
function due to the i -th variable and all its interactions:

ST i =
EX∼i

(VXi
(Y |X∼i))

V (Y )
= 1− VX∼i

(EXi
(Y |X∼i))

V (Y )
(5.15)

This index measures the total effect of Xi, which is given by all the order of interactions
up to the greatest one. Instead of let varies all the other variable and successively the
one under study as it happens in the first order index 5.21, now the model makes
first vary the chosen variable and takes its expectation and successively let all the
other factors vary. So it can evaluate all the variable interactions. However, in this
case it does not exist a constrain to the sum of the total effects. In fact, observing a
function which presents interactions, as eq. 5.14, the sensitivity gain of total indexes
of the interacting variables is added to all the factors which are related. So in the
previous function both x1 and x2 present the interaction shared. Summing all the total
sensitivity index this contribution would appear doubled, even if again the indexes are
normalized by the total variance V (Y ). However here a further inequality holds true:

0 ≤ Si ≤ §T i ≤ 1 (5.16)

Eq. 5.16 states that the total sensitivity index is always greater than the first order
one. This holds true because the total index incorporates all the interaction orders.

A further index can be analytically calculated and it is the second order effect of
each variable [52]. This value, similarly to the former two, describes the second order
moment of each variable, which is the interaction between two of them. It is described
by the equation:

Vij = VXiXj
(EX∼ij

(Y |Xi, Xj))− VXi
(EX∼i

(Y |Xi))− VXj
(EX∼j

(Y |Xj)) (5.17)

As can be seen, instead of accounting also for the first order sensitivity as happen in
the total order index, the second order evaluates only the contribute of coupled factors.
Observing once again eq. 5.14 and using only the introduced indexes, it is possible to
completely retrieve the entire objective function variance.

Later the numerical and computational aspects will be treated in detail. Therefore
analytically the indexes obtained by 5.11 and 5.17 completely assign to each factor the
relative amount of variance up to a second order equation. On the other hand the total
order index from 5.15 gives a quite good view on any general function. This, sided
to first and second order indexes, would achieve a deep knowledge of the function at
hand. From a theoretical point of view all the higher order terms can be calculated.
Dealing with a general function f of k variables, from functional the decomposition
scheme:

f = f0 +
k∑
i=1

fi +
k∑
i=1

k∑
j>i

fij + . . .+ f12...k (5.18)

All the terms in former equation can be obtained by proper decomposition, and this
can be translated to the variance of the objective function, giving:

V (Y ) =
k∑
i=1

Vi +
k∑
i=1

k∑
j>i

Vij + . . .+ V12...k (5.19)
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Diving both sides the eq. 5.19 by the total variance V (Y ), it becomes:

k∑
i=1

Si +
k∑
i=1

k∑
j>i

Sij + . . .+ S12...k = 1 (5.20)

This last equation proves the constraint previously introduced by eq. 5.13. Each S
term represents exactly an i -th sensitivity order index and all together they give the
total function variance.

Dealing now with the computation of these indexes, several implementations have
been proposed since the first introduction of variance-based model. Anyway, the most
common of them can be found in the articles [56], [52], [53], [45] and books [51], [4],
[54]. The first step consists in generating two independent sampling matrices A and B,
with the respective elements aij and bij. The j identifies the number of factor, from 1
to k for each sample, which is the domain dimension. Instead i represents the number
of total simulation points, N. Once done this sampling, the following step builds the
matricesA(j)

B (or equivalently B(j)
A ). Each of them combines both matrixA and B. The

j -th A(j)
B matrix has all the columns from A, but the j -th one which is taken from B.

This allows to calculate the sensitivity index of each factor. Recall that their variance
is evaluated first fixing the selected factor, letting all the others vary and then changing
only this variable. The next phase requires to evaluate with the objective function the
samples generated. Since the problem has k dimensions and the starting sample size
is N, the total evaluations required are N(k + 2)8. The last phase calculates the total
variance of the objective function V (Y ) and its mean value f0, before computing the
sensitivity indexes. To retrieve this value all the sampled points could be used, but
since often N is pretty large, just the entries of matrix A typically are used.

Finally it is possible to compute first and total order sensitivity indexes. These two
require the same computational effort and data, so they can be calculated without any
further burden of the system:

Sj =

1

N

N∑
i=1

f(A)i

(
f(B(j)

A )i − f(B)i

)
V (Y )

(5.21)

STj =

1

2N

N∑
i=1

(
f(A)i − f(A(j)

B )i

)2

V (Y )
(5.22)

Equation 5.22 was first proposed by Jansen in [28] and later it was proved to perform
better than the others.

Dealing with second order index, it requires more computational efforts. It needs
to perform N(2k + 2) function evaluations, which are almost doubled with respect to
the former case. This happens since treating two indexes simultaneously, both of them
need to first be fixed and later vary, but each on its own. Hence in this case both
matrices A(j)

B and B(j)
A are needed. From the theoretical equation 5.17 to calculate

second order index, one needs also the first order indices Sj and Sk. However it comes

8The A(j)
B matrices are k, one for each column changing, and then there are obviously also A and

B. Each matrix then has N lines, which are the sampling points.
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with no further cost or burden since it has been already calculated or it requires a
simple evaluation:

Sjk =

1

N

N∑
i=1

(
f(B(j)

A )if(A(k)
B )i − f(A)if(B)i

)
V (Y )

− Sj − Sk (5.23)

A last comment is about variance-based method dealing with the sampling strategy
to build matrices A and B. Literature suggests to choose Quasi Random sequences of
N points in a 2k -dimensional space and then to build the matrices cutting in half the
sample, dividing the starting one in the (N × k) desired structures. The A matrix
is the left half of the sequence, while B is the right part. Moreover Sobol’ sequence
gets usually suggested and performed, since it is the most common one. The matrices
A, A(

Bj) and B contain higher number of good points. These namely cover uniformly
the domain space and they are best equidistributed, which are the properties of Quasi
Random sampling 5.2.5.

5.3.4 Derivative-based method

This model deals with square-integrable functions f(x1, . . . , xk) defined in the unit
hypercube with associated the Lebesgue measure dx = dx1 . . . dxk [57]. As described
for variance and sensitivity indexes, such functions can be decomposed due to the
ANOVA decomposition9:

f(x) = f0 +
k∑
s=1

∑
i1<i2<...<is

fi1,...,is(xi1,...,is) (5.24)

Thanks to this equation it is possible to rewrite the function as in equation 5.18. It is
possible to define also partial variance constants:

Di1,...,is =

∫
[0,1]k

f 2
i1,...,is

(xi1 , . . . , xis)dx (5.25)

Summing up them all, one obtains the total variance:

D =

∫
[0,1]k

f 2(x)dx− f 2
0 or D =

k∑
s=1

∑
i1<i2<...<is

Di1,...,is (5.26)

From this last equation it is possible to calculate the sensitivity indexes, as Si1,...,is =
Di1,...,is

D
, which are all possible combination of order. In particular to retrieve the first

and total order indexes defined in 5.3.3, the required calculation are Si = Di

D
and

ST i =
∑
〈i〉Di1,...,is

D
.

Dealing with partial derivatives, it can be found a connection between Morris anal-
ysis (or Elementary Effect, 5.3.2) and Variance-based method (5.3.3). Proofs of the
following theorems can be found in the original paper of Sobol [57]. These theorems
set the fundamentals estimation to build the derivative sensitivity measures.

9ANOVA stands for Analysis of Variance, which analyse the contribute of each single variable and
all the possible grouping of the same variable, obtaining the contribute of each factor
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Theorem 1. Assume that c ≤
∣∣∣ ∂f∂xi ≤ C

∣∣∣. Then:

c2

12D
≤ ST i ≤

C2

12D
(5.27)

The constant factor 12 in 5.27 cannot be improved.

This first theorem and the relative proof yield a good approximation formula for
the total order sensitivity index:

ST i ≈
1

12D

∫
[0,1]k

(
∂f

∂xi

)2

dx (5.28)

The second theorem states:

Theorem 2. Assume that ∂f
∂xi
∈ L2. Then:

ST i ≤
1

π2D

∫
[0,1]k

(
∂f

∂xi

)2

dx (5.29)

Theorem 2 gives further knowledge on the sensitivity index. However, the relation
does not bring any error estimate, so there is not strong reliability in the formula.
A recommended test to evaluate the approximation suggests to analyse the second
derivative ∂2f

∂x2i
and it validates the estimate if it is negligible with respect to the first

order derivative.
Now it is possible to introduce a new set of parameters, νi, . . . , νk, which are the

sensitive values in derivative-based analysis. Each one takes value:

νi =

∫
[0,1]k

(
∂f

∂xi

)2

dx with 1 ≤ i ≤ k (5.30)

The calculation of this parameter is quite similar to that of µ∗ in Elementary Effect.
There, instead of the square, the operator was the absolute value. These two criteria
are equivalent from the practical point of view (in fact the development of Morris
analysis took in consideration also the square operator) and they are evaluated by the
same numerical computation, giving rise to the relation:

νi ≤ Cµi
µi ≤

√
νi

(5.31)

The only difference between these parameters is the further inequality that holds true
only for the derivative factors:

ST i ≤
νi
π2D

(5.32)

Eq. 5.32 provides an estimate of ST i, even without knowledge on the upper bound C
of the partial derivative.

So, such method can evaluate quite well a factor analogue to the total sensitivity
index and to µ with less computation than those required in variance-based method.
Although Sobol’ method leads to further knowledge of the factors, which are the first
sensitivity indexes. Moreover derivative-based method requires also less computational
cost than elementary effect method. This last results to be also inaccurate sometimes,
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in particular for non-monotonic functions, even if this problem is solved with the use
of µ∗. On the other hand this former method computes also the variance of each
parameter by σ, if it is able to retrieve further aspects of the objective function in its
computational time.

Although, also derivative-based method does not always perform well: dealing with
strong non-linear terms it often obtains an higher prediction value than the real total
sensitivity index, so it falls in a Type-I error.



Chapter 6

Model Implementation and
Application

The model that has been developed in this study involves a genetic algorithm 3.2 and
a surrogate model of Response Surface methodology 4.4. This choice has been done
trying to realize a model which could side pretty satisfying optimization ability with
quite cheap computational costs.

The first step of this work dealt with the investigation of the most spread evolu-
tionary algorithms and surrogate models, to analyse their pro and cons. The following
phase worked on statistical and mathematical models to catch the main features of
the objective functions: this leads in particular to readings about correlation and sen-
sitivity analysis, between which the second one has been selected as it seemed more
suitable for the task. Hence, reviewing surrogate models knowing the abilities of sensi-
tivity analysis, Response Surface Method appeared the proper choice, as it works well
with relative small dimensional problems and it is very much adaptive to various situ-
ations. The final analysis treated the best optimization algorithm to use among those
met in literature. However, due to the relative large lightening of the problems at hand
thanks to the surrogate model, this choice fell on a quite basic genetic algorithm, as
the NSGA-II. Moreover, this choice was taken after a brief literature analysis of some
articles [8, 16, 35, 44, 47, 49], which describe the resulting performance of collaboration
between Response Surface and Evolutionary Algorithms.

The development of such model includes aspects from statistics and numerical com-
putation and it gives the chance to deepen and enlarge the knowledge of these subjects.
On the other hand, this kind of models are nowadays widely applied in engineering fields
and proper adjustments could lead to interesting applications.

Let’s now study step by step the features of the implemented method, analysing at
each phase the resulting information and their following uses.

6.1 Sensitivity analysis application

The sensitivity analysis methods chosen are the Sobol’ 5.3.3 and Morris analysis 5.3.2.
The first choice is due to the fact that Variance Based Method can capture with
good accuracy first and total order variances and it gives ready-to-use results. On
the other hand, the Elementary Effects method requires less computational costs and
provide anyway sensitivity data with a fair accuracy. Furthermore, this method needs
elaboration of the results to proper realize which is their true meaning, while it provides

73
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directly only the total order sensitivity. However, it has an important pro, which is the
possibility to work by groups of variables. Since the objective functions that will be
used in the model testing, reported in appendix A, present a large number of variables,
this kind of analysis could help to reduce computational costs.

6.1.1 Sobol’ sensitivity analysis

Let’s first deal with the variance-based method and its results. As stated above, it gives
to the final users the first and total order sensitivity index with quite fair computational
costs. At higher costs, it gives also the second order index, referred to each possible
couple of variables. Recalling eq. 5.20, that constrains the sum of all the sensitivity
index to be equal to 1. Though, this is not true for the total sensitivity parameter, since
it includes for each variable all its interactions with the other ones1; it is important to
remember these facts to properly understand and read the result of the analysis.

Variable S1 S1,Confidence Lev. STot S
Tot,Confidence Lev.2

x1 0.3980 0.0320 0.5485 0.0384
x2 0.3919 0.0371 0.5527 0.0423
x3 0.0037 0.0040 0.0063 0.0006
x4 0.0028 0.0044 0.0059 0.0006
x5 0.0060 0.0045 0.0064 0.0005
x6 0.0039 0.0041 0.0063 0.0005
x7 0.0013 0.0036 0.0063 0.0005
x8 0.0032 0.0039 0.0062 0.0006
x9 0.0044 0.0040 0.0063 0.0006
x10 0.0049 0.0044 0.0067 0.0005
. . . . . . . . . . . . . . .

Table 6.1: Results of Sobol’ sensitivity analysis for DTLZ1, from appendix A.2 on test
function. It reports the values of the variables from the first to the tenth and for the
first objective function only.

From table 6.1 it can be seen the result given by sensitivity analysis. Here are
reported just 10 out of the 14 variables of problem DTLZ1, however it is quite evident
which are the most influential variables: x1 and x2. In fact, observing just the first two
order indexes, they contribute for almost 80% of the total objective function variance,
while dealing with the total sensitivity, each one contributes for about 55%, hence
considering their interaction, one would almost completely get the behaviour of the
real test function. Table reports also the confidence level of each index evaluation:
here with confidence level it is denoted the maximum deviation from the mean value of
a given prediction, which is calculated with a confidence parameter of 95%. Hence to
properly measure the goodness of given results it is necessary to analyse at the same
time both the sensitivity index and its confidence level. Running several times the code

1Hence, summing up all of the total order sensitivity index will give a value larger than one, until
the function is a linear relation

2The Confidence Level is the maximum deviation possible from the mean value of a given prediction,
calculated with a selected confidence parameter.



75 6.1. Sensitivity analysis application

Figure 6.1: Histogram of Sobol’ sensitivity analysis referred to data in tab. 6.1.

with different parameter inputs, as described in section 5.3.3, just modifying the sample
dimension3 to perform the analysis, this value can drastically change. Selecting a small
sample, all the confidence levels increase a lot, therefore taking away the meaning of
the analysis. On the other hand, choosing a much larger number of points would not
realize better and better sensitivity evaluation: depending on the number of function
variables one needs to choose properly the dimension sample.

Figure 6.2: Variability of Confidence Level and computational time versus sample
dimension for DTLZ2 problem. Black symbols refer to the Confidence Level left axis,
while the blue ones refer to the Computational Time right axis. Average values for the
indexes are: S1 = 0.4491 and STot = 0.5558.

Dealing with the test function DTLZ2, as reported in fig. 6.2, it is evident how
much steep is the variation of confidence for adding points in small samples than in

3The sample dimension (N) term indicates the points selected for evaluating each variable variance.
Dealing with a k -dimensional test function, the total number of points in the sample will be k(N +2),
as already seen.
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bigger ones. Doubling the sample size does not improve the estimation over the sen-
sitivity index. On the other hand the computational time grows almost linearly with
the sample dimension. Then it is better to choose a trade-off value to perform a good
sensitivity estimation, without unnecessarily burden on the model, also depending on
the complexity of evaluating objective functions.

Typically for the problems at hand this parameter has been set from 5 to 15 times
the number of variables defining the function: as reported in A.2, DTLZ2 has 22
variables and a value of N = 250 ÷ 350 gives a good trade-off between accuracy and
costs.

Interaction variables S2 S2,Confidence Lev.

x1 x2 0.1483 0.0700
x1 x3 0.0157 0.0546
x1 x4 0.0187 0.0556
x1 x5 0.0172 0.0553
. . . . . . . . . . . .
x2 x3 -0.0021 0.0515
x2 x4 -0.0020 0.0519
x2 x5 -0.0010 0.0513
. . . . . . . . . . . .
x3 x4 -0.0003 0.0066
x3 x5 -0.0012 0.0066
. . . . . . . . . . . .

Table 6.2: Results on second-order Sobol’ sensitivity analysis for the first objective
function of DTLZ1, from ch. A.2 on test function; just few interaction terms are
reported here.

Figure 6.3: Histogram of second order Sobol’ sensitivity analysis referred to data in
tab. 6.2.

A further result can be obtained by the variance-based method of sensitivity analysis
and it is the second-order index of the interaction between different variables by eq.
5.23, as reported in table 6.2. Also higher levels of interaction could be evaluated with
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further equations, but these would require much more computational efforts for kind of
later useless knowledge: in fact, the higher is the interaction the lower the contribute
to the objective function variance. Moreover, higher level of interactions needs much
larger sample set to provide fairly acceptable results: data reported on second-order
table is generated with a sample size N = 1500, and it presents a confidence level more
or less doubled with respect to data in table 6.1, based on a sample size of N = 300.
This happens because the eq. 5.23 brings with itself the errors of first order indexes,
leading to larger deviation.

However, observing first, second and total-order sensitivity indexes of the variables
x1 and x2 and summing up the first two, the resulting value is, with quite good ap-
proximation, the total index. All the second order indexes have much lower values
with respect to the first one, even if this could be not always true for other kind of
functions. Although it can be found in table 6.2 negative values, these are results of
numerical and approximation errors, again due to the second-order indexes equation;
all of them can be view as null, considering also the relative confidence level.

All the Sobol’ analysis performed on the test function described in appendix did
not really required the second-order indexes calculation, or because their contribution
is negligible and it does not bring useful knowledge to the behaviour of the chosen
function, due to their definitions.

6.1.2 Morris sensitivity analysis

Morris analysis was first taken in consideration as sensitivity method to perform group
analysis, on all those test functions with a large number of variables. Successive testing
of variance-based and Elementary Effects methods, to compare their performance on
the test functions, highlighted a little gain using the second one in terms of compu-
tational cost, both in the grouped and in single variables analysis, due to the simple
process of evaluation. However, the first method can give further and more accurate
information and so was chosen to describe all the test functions. Thus application of
Morris method is only as mere comparison with results of the variance-based method
to test group sensitivity analysis and concretely gets in touch with a screening method.

Variable µ∗ µ µ∗Conf. Lev. σ

x1 307.35 307.35 16.91 194.18
x2 294.45 294.45 15.53 181.17
x3 15.84 0.83 1.72 25.45
x4 15.65 -1.33 1.65 24.62
x5 14.70 0.25 1.73 24.44
x6 16.20 0.13 1.60 24.57
x7 17.16 0.74 1.94 27.99
x8 16.30 0.59 1.66 24.92
x9 15.58 0.57 1.70 24.74
x10 15.49 0.10 1.82 25.37
. . . . . . . . . . . . . . .

Table 6.3: Results of Morris sensitivity analysis for the first objective of DTLZ1, from
appendix A.2 on test function. Only the first ten variables are reported here.
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Figure 6.4: Histogram of Elementary Effects analysis referred to data in tab. 6.3.

Grouping 1 Grouping 2

Group Variables in
the group

µ∗ µ∗Conf. L. Group Variables in
the group

µ∗ µ∗Conf. L.

G1 x1, x2 398.76 11.35 G1 x1, x8 336.97 6.74
G2 x3, x4 21.70 1.30 G2 x2, x9 332.75 6.73
G3 x5, x6 20.17 0.94 G3 x3, x10 19.44 0.80
G4 x7, x8 20.11 0.96 G4 x4, x11 20.40 0.86
G5 x9, x10 20.39 1.00 G5 x5, x12 20.00 0.80
G6 x11, x12 20.25 0.96 G6 x6, x13 20.75 0.87
G7 x13, x14 19.72 0.96 G7 x7, x14 20.70 0.83

Table 6.4: Results of Morris sensitivity analysis by groups for the first objective of
DTLZ1, from appendix A.2 on test function. Here there is a simple sequential coupling
of the variables, but it is quite evident the difference on µ∗ value with respect to the
previous table 6.3 in the first group.

The reported table 6.3 and 6.4 describe Elementary Effects results for DTLZ1
test function, defined by 14 variables, respectively considering each variable alone and
grouping them in couples. Let’s briefly recall from section 5.3.2 the meaning of the
calculated parameters: µ and µ∗ describe the overall mean influence of the selected
decision variable on the objective function variation, respectively summing up each
contribute with it sign and considering its absolute value; σ instead describe the vari-
ance of the parameter µ, while µ∗Conf. Lev. measure the confidence level of µ∗. Dealing
with group sampling, it is useless measure each single influence with its sign and the
relative variance, because it is function of two or more variables which has unknown
behaviour taken singularly.

Looking at the analysis results and considering DTLZ1 test function A.2, in which
the variables x1 and x2 brings always a positive contribute, it is quite outright find
this behave on the first table: both variables in fact present equal values of µ∗ and
µ. Dealing instead with the other variables, one would immediately notice how µ
parameter sets around zero and this, again, could be guessed a priori from the test
function. Analysing finally the variability introduced in the objective function by
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Figure 6.5: Histogram of Elementary Effects analysis by groups referred to data in tab.
6.4.

each single variable it is clear from µ∗ values that first and second variables play a
dominant role, as resulted also from the previous Sobol’ analysis. The σ parameter
then describes how much it is the variance of each variable; it could further help to
recognize the influence of the relative variable on the objective function, since variance
of x1 and x2 introduce in the system much more fluctuation than the whole contributes
of the other variables.

Regarding the group analysis results, they confirm and strengthen the observation
just made, though not bringing that much information by its own. However, looking
at a single group analysis alone, Grouping 1, one would immediately obtain the most
important information, which is the almost complete dependence of objective function
from variables x1 and x2.

Moreover, in table 6.4 are reported two different grouping sample, both generated
by couple of variables. This example well describes which are the main features of
the screening method coupled with groups: first of all, this gives a fair view over
the contribution of variables to the objective function as said above; furthermore,
performing rearrangement of variables in the groups it is possible to deeply investigate
the contribution of each single variable with lower computational costs. Here, with the
first grouping, one would not know if just one or both variables x1 and x2 have large
influence on the function, but would immediately get that all the other variables are
quite negligible. A second run with a new grouping is very important, because it is
now possible to realize that both x1 and x2 are influential variables and with a similar
weight, matching the results. Developing a reasoned grouping sample for much larger
and complex problem, e.g. with 500 or more variables and computational demanding
objective functions, can provide a complete overview on the behave of the function,
without requiring too much resources. Note finally that in this method does not need
to realize groups of the same size necessary: once identified which could be the main
variables, some groups could contain just each of them and a further group contains
all the other negligible factors.

Figure 6.6 reports, as for the variance-based method, the change on computational
time and confidence interval versus the sample dimension. However, in this case per-
forming the analysis for single variables and grouping them would bias the results,
because also the µ∗ value considered changes, therefore the relative mean value is re-
ported in the figure description. As one could expect, the two behaviours obtained are
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Figure 6.6: Variability of Confidence Level (upper) and computational time (lower)
versus sample dimension for DTLZ6 problem. Average values of µ∗ for single variable
analysis, group of 5 and 20 variables are respectively: µ∗1 = 6.22, µ∗3 = 0.11, µ∗group 1−5 =
8.38, µ∗group 1−20 = 8.64 and µ∗group 21−40 = 0.48.

very much similar to those observed above in the Sobol’ analysis, even if here the test
problem used is the first objective function of DTLZ6 A.2, defined by 100 variables, be-
cause it is much more suitable to several different grouping sizes. Observing the picture
it is possible to notice a pretty large step in confidence level between singular variable
and group analysis, which is present due to the chosen group selected: while groups
which contain variables x1 and x2 grab also their large variable behaviour, groups that
involve only negligible factors would show their limited variability and therefore a con-
fidence level almost null, as happen to the confidence level of a single variable alone x3.
Finally, observing grouping of the first 5 and 20 variables, the differences are almost null
just because the factors, which are not x1 and x2, would bring an almost null contribute.

Dealing with the coding aspects, this part of the implemented model has been
realized using the Sensitivity Analysis Library (SALib) available in the open source
programming language Python [24]. Previously the use of this library, several routines
dealings with Variance-based sensitivity methods were written, based on the articles
of Sobol’ and Saltelli [52, 53, 56] as the library itself. Although, lacking the complete
knowledge to evaluate the confidence level and some notion to realize the Sobol’ se-
quence, briefly explained in [31], it has been chosen to use the library. On the other
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hand, this makes possible to introduce and apply also the Elementary Effects method,
which is quite more difficult to code, in particular dealing with the grouping aspects.
Anyway, before its use, the entire library was studied and tested deeply to ensure the
utility of all the routines and functions. Moreover, to properly take advantage of the
information returned by the Morris and Sobol’ methods it has been necessary to under-
stand and store the analysis at each code run, which just displays on the local console
the sensitivity indexes, without saving that information somewhere.

6.2 Response Surface modelling
Once realized the sensitivity analysis and obtained a good knowledge of the test func-
tion to model, it is possible to introduce the response surface method. Let’s now
describe in detail all the steps of algorithm 9, investigating deeply all its functions and
how the arisen problems have been treated.

The first parameter to model the surface is the choice of the variables, their number
and which one between all the objective function factors. To take this decision the
sensitivity analysis sets in: the proper choice came out to be exactly the variables,
which play a large role in the variability of the objective function. In this way, when
calculating the surface coefficients, each of them can highly resemble the true behaviour
of the original relation. On the other hand, generating surfaces including the variables
which realize a negligible variation, would affect the proper estimation of important
factors. Anyway, augmenting or decreasing the number of selected variables deeply
affects the surrogate model: response surface is a method which works very well in low
dimensional frame, because its fitting phase is almost never computed on-line, but it
is rather developed by simple linear algebra 4.28, highly dependent on the number of
coefficients to calculate and on the chosen sample points; introducing a further variable
in the design would mean calculate all over again the entire response surface.

Even if the surface is often built with a little number of variables, it allows first of
all to perform and realize a huge amount of test, varying the other parameters, hence
obtaining a complete knowledge of the model behave over different settings: it is one
of the key features to properly understand how the model works, before apply much
more complex and computational expensive reality-based methods, requiring hours or
even days of execution. Moreover, despite being a quite light surrogate with respect to
many others, as the described Artificial Neural Network and Kriging filter are, it had
proven to perform pretty well on the test problems, providing acceptable prediction
compared with more sophisticated methods, as will be reported in the next chapter 7.

The second input in the surface building is the order of the polynomial surface:
the implemented models realize first, second and third order complete surfaces and
a partial third-order one, this last calculating only the mixed third order interaction
coefficients (e.g. β123). Set apart the first order model, which can properly realize sur-
faces describing only linear or quasi-linear relations and hence without alluring fitting
capacities, the others provide good predictions. Once again, the tool helping this choice
is the sensitivity analysis, in particular the Sobol’ analysis in this case: even if it does
not compute third order indexes, knowing first, second and total order sensitivity, one
can easily cross them and select the proper desired order.

Given this input, the method starts to build the response surface: first of all it
retrieves from the problem at hand the domain and the surface bounds of each variable,
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the second one providing information about the region in which will be built the surface.
This last parameter could be user defined, but for all the test functions of this work
it had been chosen to realize a single surface over the entire domain space; while for
complex function this could provide low quality results, dealing with the problem at
hand the fitting resulted quite good and hence for all the tests the setting had been
accepted.

Now it is possible to define the sample points: in previous chapter 5.2 and in sec-
tion of response surface method 4.4 has been named and described several sampling
techniques and just few of them were adopted. To provide a good description of the
border region factorial design combined with axis sample and tri-factorial design in-
terchange: since p-factorial design in k variables build a sample of pk points, which
becomes rapidly large just when p = 3, the tri-factorial design gets used only when
the chosen variables to describe the surface are less or equal than 4. In the other cases
the two-factorial design is used, assisted by the axis sample, adding just 2k points; the
axis sample assists only the factorial design simply because in tri-factorial it introduces
points that are already sampled, thanks to its features. The following choice consists
in choosing a method between random, quasi-random and Latin Hypercube sampling.
The random sample 5.2.1 can be straight away discarded for the quasi-random one,
because as described in the comparison in 5.2.5: while the first method realizes clus-
ter and empty spots in the domain and so fails in filling it uniformly, quasi-random
sampling manages to do it with no further computational costs. Instead, dealing with
Latin Hypercube sampling, it builds easily good samples for discrete random variables,
while in presence of continuous ones it needs to be sided with the random sampling
inside the selected interval.

Few tests had been run to investigating the behave of surface with quasi random
and Latin Hypercube sampling, proving that for little samples they give similar re-
sults. However, enlarging the sample dimension the quasi-random technique realizes
better performance because all the points are more or less at the same distance, while
Latin Hypercube shows some clustering effect, due to the randomness inserted in the
intervals. Then the tests had been repeated, this time selecting the mid-point of each
interval, realizing better samples which could be compared with the quasi-random ones.
Anyway, the method selected to define the samples was the quasi-random technique
realizing Sobol’ sequences due to its light computational costs, since it just requires
the starting parameter list and few further details to perform the sample.

Once generated all the samples and merged them together, the users can select
the number of points which will realize the surface settings. The first choice available
is an exact fitting over the sample points, which requires to have the same number
of surface coefficients and sample points; this fit could provide good results when the
designed surface is a second or third-order one and the number of factors defining it is
large. Another choice is to input the total desired number of points defining the fitting
sample set, knowing the number of β parameters to calculate. Finally the simplest
choice select all the sampled points to define the fitting set. When this is not the user’s
choice, one by one the points in the sample set are randomly selected and moved to
the fitting set, until it does not reach the required dimension.

The successive step in the Response Surface method deals with the building of
the sample for the original test function, starting from the one just realized. This
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step requires to introduce for each vector of sample point the values taken by the non-
modelled variables. As described above in 4.4.1, all the literature [3, 33, 34, 43] and the
articles [13, 58] treats this variables fixing their values in the mid-point of the relative
domain. However, this setting had revealed to be misleading: the surfaces such built
in different test problems shown opposite fitting behaviours. Several three objective
functions in A.2 presented amusing results, quite near to those obtained with more
complex methods and to the true Pareto Front. On the other hand two objective test
problems in A.1 was far from the true Pareto Front and most of the others algorithms;
trying to modify the parameters such as number of surface variables and surface order
did not realize any valuable improvement. Later, accurate analysis of the objective
functions shown that the key problem was related to the non-modelled (later called also
secondary) variables setting and the definition of test problems: several three objective
tests’ Pareto Fronts occur when all the secondary factors take value 0.5, which is exactly
the mid-point of their domain, while two objective ones behave differently.

Figure 6.7: Surface Responses for different values of secondary factors fixed parameter
in ZDT2 test problem. Left: all surfaces. Right: zoom over the best surfaces.

Then it was necessary to use a strategy to tackle this problem and improve the
performance in this different scenarios. A first idea let the secondary variables behave
randomly, however this setting lead to even worse result: in this way one loses the little
control on those non-modelled variable; moreover, introducing large variability into the
output data by these secondary variables, since the fitting phase does not involve at
all these factors, this variability would be spread over the surface variables and hence
augments the fitting error in most of the cases. The second idea was much more
successful and in line with the literature. It consists in covering the entire domain of
secondary variables changing the fixed factor at each surface building, hence generating
various surfaces, as those in figures 6.7 and 6.8: starting the fixed parameter value from
the lower bound of each non-modelled variable and augmenting it at each iteration by
a set quantity defined from the user and by the delta between its upper and lower
bound (e.g. in the figures this quantity is equal to 0.1 of the entire domain), one finds
out several surfaces and hence the relative Pareto Front. Analysing their positions, it
is possible to identify which fixed value performs better than the others and so focus
around that value to further investigate, iterating the procedure and decreasing the size
of fixed parameter admitted. For example, in the three objective test this procedure



Chapter 6. Model Implementation and Application 84

Figure 6.8: Surface Responses for different values of secondary factors fixed parameter
in DTLZ2 test problem. Left: all surfaces. Right: zoom over the best surfaces.

lead to the best surface at fixed value 0.5, so a further analysis could involve values in
a restricted interval as [0.45, 0.55]. Anyway, it is always necessary to observe carefully
the results, because the features of the surface could realize prediction values outside
the co-domain of the original function due to numerical approximation and the errors
of fitting procedure. It could also occur that the Pareto Front of the response surface
overcome the true one, but this is again due to this causes and it should not be seen
as an error; this also because often the real Pareto Front it is not even known, so the
Response Surface could lead to cheap but useful information on where to search more
accuracy or with different model.

Before realizing the fit of the β parameters it is necessary to translate the entire
sample from the natural reference frame, in which it has been built, to the global
reference frame. This procedure let display all the successive results in the original
reference, in which will be calculated also the surface parameter. Even if this could
seem quite simple, obvious and needless, it helps making the final results easier to read
and compare, dealing with other kind of surrogate models or optimization procedures.

Finally, built the surface sample and the test function sample and once calculated
the output response, the β coefficient get evaluated with the least square method.
The resulting vector values need to be associated with each relative coefficient of first,
second and third order term and known term. This can be done value by value, or
building the matrices of each order, which can be easier used later in evaluating the
surface on a given point; dealing with the matrices of second and third order (since first
order matrix results to be a column vector), it is necessary to highlight that elements
outside the diagonal are coupled and hence need to modified before entering in the
matrix. (

x1

x2

)T [
β11 β12

β21 β22

](
x1

x2

)
= β11x

2
1 + 2β12x1x2 + β22x

2
2 (6.1)

Thus in the second order matrix, entries outside the diagonal coefficients as β12

and β21 lead to the same contribute, hence they need to be divided by two. Similarly,
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in the third order matrix, which is a 3-dimensional matrix, entries which characterize
second order self-interactions (e.g. β112) will be divided by 3, since appears three times,
meanwhile terms which deal with mixed interactions (e.g. β123), need to be divided
by 6; instead, entries of pure self-interaction (e.g. β111) appear only once in the main
diagonal.

Contrary to the sensitivity analysis, the coding relative of Response Surface method-
ology has been entirely developed in all its routines and functions, with the only ex-
ception of the quasi-random Sobol’ sequence used to perform the random sampling.
The main feature that this code achieves and that differentiates it from the literature
ones is the treating of non-modelled variables; it does not enhance the surface fitting
but let the surrogate model reach much better optimization results in certain cases, as
described later on in chapter 7.

6.3 Genetic algorithm application
As stated in the introduction of this chapter, the choice of the evolutionary algorithm
performing the optimum searching process on the response surface fell upon the second
version of Non-dominated Sorting Genetic Algorithm (NSGA-II, 3.2), hence involving
elitism. This choice was done due to the huge simplicity achieved through the previous
phase of the model: response surfaces are often described by few decision variables and
do not requires specific features, so the optimum search become much easier than origi-
nal functions and does not involve particular problems. NSGA-II displays good behave
on various kind of functions and moreover it is recognized as a standard approach in
the scientific community.

The parameter settings for the algorithm are quite similar to those realized in
[7, 62], excluding the coefficients of recombination, mutation and so on, which have
not been modified from those set in the chosen algorithm. Population size is set to
100 individuals and the maximum number of generations depends problem by problem
and it is reported in the table 6.5 below. The function tolerance, which checks the
objective function values through consecutive generation, to stop the algorithm when
it does not realize further improvements, is set to 10−4.

The method built often gets to the Pareto Front before reaching the maximum num-
ber of generations and hence stops due to function tolerance; this fact further highlights
the model capabilities, which manage to build an extremely simple surrogate, though
still effective and suitable to the optimum searching task.

Dealing with the implementation of this last step of the model, it was realized in
MATLAB R© and it uses either developed and already written routines. The main
code, which is the Genetic Algorithm NSGA-II, was already implemented in the soft-
ware and did not need any further development. Anyway, its code had been carefully
studied to verify the described properties and analogies with the descriptive section of
NSGA and elitism 3.2, as well as to get how to define population size and the other
parameters. Moreover, it was necessary to let MATLAB software read the Python’s
results: it required the translation of stored outcomes, which were the β coefficients.
Once defined them, the surface function has been built, independently on the number
of factors involved, number of objective functions and surface order; the chosen method
to organize the β values was the matrix one, because it realizes the simplest possible
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Problem Max. number of generations

ZDT1 20
ZDT2 20
ZDT3 40
ZDT4 40
ZDT6 20
DTLZ1 100
DTLZ2 70
DTLZ3 80
DTLZ5 80
DTLZ6 50
DTLZ7 100

Table 6.5: Maximum number of generations for each test problem.

behaviour related with the input vector. To perform the successive metric analysis of
the results and to retrieve the Pareto Fronts, it was used functions developed by authors
of article [62]. Instead, to compare the obtained results, it was available the datasets
resulting again from the above article; once retrieved the useful data, it was developed
the routines realizing several analyses, as the information to build the box-plot and
further more.



Chapter 7

Result and comparison on Test
Function

The analysis of results on test functions reported in A is described in the following.
First thing to notice and already mentioned, both the two- and three-objective problems
present a peculiar behaviour dealing with variables from the second and third one
respectively. In fact these problems reach the Pareto front when all the so-called
secondary variables assume the same values. These are 0 in most of the two-objective
test functions and 0.5, the mid-point of the domain, for three-objective tests. With the
response surface built, the optima conditions can be reached quite effectively, obtaining
good fits of the functions at lower costs. Therefore, these test problems do not evaluate
completely the performance of the surrogate model realized. Another analysis of the
literature to search for further test functions has been done, though it does not find
any better problem. Several tests were found grouped in the PlatEMO package for
MATLAB [60]1. However, none of those proved to provide different characteristics
and specific behaviours with the Response Surface Methodology developed. So, only
the aforementioned problems had been used to test the realized surrogate, despite the
highlighted issues.

Using these functions it is possible to study the behaviour of the response surface
submitted to the evolutionary search process of the genetic algorithm. But to further
investigate the true fitting qualities of this method, in the following chapter 8 an
analysis which deals with a real dataset will be run.

Dealing with results on test functions, let’s describe step by step all the choice
taken, from the sensitivity analysis to the genetic algorithm.

7.1 Sensitivity analysis results

Sensitivity analysis, in particular Variance-based method, highlights that almost the
entire variability of the test functions is produced by the first decision variable alone in
two-objective problems and by the combination of first and second decision variables in
three-objective problems. Moreover, most of the first test functions for two objective
problems are defined involving just one variable, as in A.1. So their expressions often
can be neglected in the sensitivity analysis due to their obvious results. Instead, three-

1PlatEMO is an open source platform developed in MATLAB including several evolutionary multi-
objective algorithms and test problems [2]

87
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objective tests present functions which often involve several factors contemporaneously,
but in DTLZ7 A.2.

ZDT3 DTLZ2

Variable S1 STot Variable S1 STot

x1 0.9109 0.9050 x1 0.4549 0.5775
x2 0.0007 0.0011 x2 0.4245 0.5492
x3 0.0011 0.0011 x3 -0.0015 0.0022
x4 0.0011 0.0011 x4 -0.0046 0.0022
x5 0.0011 0.0011 x5 -0.0014 0.0022
x6 0.0010 0.0011 x6 0.0011 0.0024
x7 0.0012 0.0011 x7 -0.0059 0.0022
x8 0.0011 0.0011 x8 -0.0004 0.0023
x9 0.0009 0.0011 x9 -0.0013 0.0026
x10 0.0004 0.0011 x10 0.0041 0.0022
. . . . . . . . . . . . . . . . . .

Table 7.1: Results of Sobol’ sensitivity analysis for second objective function of ZDT3
and first one of DTLZ2

Observing table 7.1, it is possible to notice this behaviour observing the variables
from the second one and third one in the respective test problems. These factors do
not introduce in the respective functions any influential variability compared to the
previous variables.

Taking advantage of these results in building the response surfaces, they lead to
realize surrogate models which are described by just one and two factors respectively
for two and three objective test functions. In fact, attempts in realizing the surfaces
with larger or lower number of factors produced models quite far from the original ones.
Introduction of further variables in the surface model leads the most important factors
to share part of their variability with other variables within the fitting procedure. Such
models produce anyway quite good prediction. However they do not perform as well
as those using only the main variable(s) found by sensitivity analysis. On the other
hand, as it can be simply deduced, a smaller number of factors in the surface cannot
properly describe the true behaviour of test function at all.

7.2 Response Surface configuration

Once identified the main factors defining the function at hand, one should decide the
surface order. As explained in the previous chapter, in this choice sensitivity analysis
plays again a central role: observing first and total sensitivity indexes, one can directly
evaluate the contributes of interactions. So, without requiring second order indexes,
which introduce high computational cost, it is quite simple to choose between a first
order model or an upper order one. Later, to select between second or third order it had
resulted more convenient to realize and to study the surfaces than performing second
order Sobol’ analysis. In fact the cost of realizing a surface parameter estimation is
quite lower than those required by the sensitivity analysis. This until it does not get
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much higher the involved order or the number of factors. Therefore, looking at the
error estimation on a random generated sample, it is possible to discern which is the
better choice between different order of surfaces. Dealing with test problems at hand,
all of them had been modelled by third order surface, either using 3full and 3simple
order, described in 6.2. In fact they require similar computational cost (little higher
than a second order model), but they also provide very effective results, independently
of the non-modelled fixed factor chosen.

ZDT2 ZDT4
Surface Order f1 f2 f1 f2

First 4.100E-15 -2.344E-04 3.642E-15 -2.044E+00
Second -2.726E-15 3.888E-15 -1.578E-15 1.267E+00
Third Simple -1.579E-15 7.443E-14 -4.692E-15 -1.835E-01
Third Full 1.710E-14 1.383E-15 -1.801E-14 -3.727E-03

Table 7.2: Relative errors for response surfaces of different orders in two-objective test
functions ZDT2 and ZDT4.

DTLZ2 DTLZ6
Surface Order f1 f2 f3 f1 f2 f3

First 1.97E+00 1.97E+00 8.54E-02 4.57E-01 4.57E-01 2.32E-02
Second -5.14E-01 -5.14E-01 -1.65E-02 -1.73E-01 -1.73E-01 -5.63E-03
Third Simple -7.48E-02 -7.48E-02 -7.61E-04 -7.20E-02 -7.20E-02 -3.16E-04
Third Full -1.04E-01 -1.04E-01 -5.22E-04 -1.02E-02 -1.02E-02 -4.37E-04

Table 7.3: Relative errors for response surfaces of different orders in three-objective
test functions DTLZ2 and DTLZ6.

As it can be seen in tables 7.2 and 7.3 which report the fitting errors on tests
functions, these last are best fitted by both third order simple and full models. Both
f1 functions of two-objective tests present for example a larger error in third order
full model. It happens because the full model involves third order self-interactions,
which are not present in the simple one. However the test function just involves the
simple x1 variable alone, in fact the first order model in this case provides the best
performance. Anyway, all the errors in f1 functions set around the machine error and
these predictions can be considered almost exact.

Dealing with errors on test functions, the problem DTLZ4 A.2 has been omitted
from any further analysis. This problem introduces a parameter α = 100 in the ob-
jective functions as exponent of the two main variables x1 and x2. Since these factors
enter in the test functions as arguments of sine and cosine, the parameter α leads to a
huge variability of results for little different inputs. The response surface method is not
able to reproduce such large discrepancy on results, generating completely erroneous
predicting values. So the DTLZ4 problem has been rejected from the set of test func-
tions. Anyway, it highlights a limit in the model built and in particular in its fitting
ability.
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7.3 Final results

The objective of this work is to build up a meta-heuristic model to perform the op-
timization process, then the final step consists in evaluating its overall performances.
Due to the problem at hand, the optimization deals with locating the Pareto front
through the searching features of NSGA-II, exploiting the Response Surface previously
built.

In this section will be reported just 2 example of the data collected during the
analysis, but all the plots of results can be found in the appendix B. Instead, a complete
comment of all the test functions will be done, dealing with the pros and cons of the
developed method.

Since this model realizes an optimization process, to evaluate its qualities it is
necessary to compare the resulting data against other methods. The algorithms chosen
as comparison are those used in article [62], algorithms which work also on the same
test problems. Before the presentation of results, let’s give a brief description of the
other meta-heuristic models involved:

ASEMOO: it is based on evolutionary genetic optimization [29, 32]. It initializes a set
of starting solutions using a Latin Hypercube Sampling, which gets completely
evaluated by objective function. Successively, a Kriging model based on this set
is realized and it is then used to perform evolutionary optimization. Then, when
more points are needed, the algorithm evaluates in the original function those
just found by the optimization of the Kriging model and it adds them to the
database. Finally the Kriging model is once again created from the new dataset
and the process continues in loop.

GeDEA-II: it is a multi-objective real-coded evolutionary algorithm, developed in [7]
as an upgrade of GeDEA [61]. It is based on basic steps of evolutionary strat-
egy, but it takes advantage of genetic diversity between individuals to improve
later generation fitness values. GeDEA-II exploits simplex-crossover, shrink mu-
tation and other typical characteristic of evolutionary algorithm, which combined
together work extremely well.

GeDEA-II-K: this is a further development of GeDEA-II, realized in [62]. It combines
the previous two algorithms, ASEMOO and GeDEA-II, matching Kriging filter
and genetic diversity. The resulting algorithm outperforms on all test functions
the other two, obtaining towering features, however at a higher computational
cost.

ParEGO2: it is again an evolutionary genetic optimization, developed in [37]. It does
not take advantage of any surrogate model, so it evaluates directly the objective
function.

Article [62], which uses these models, introduces the Adimentional Direct Evaluation
Number (ADEN ). As the name suggests, it limits the number of direct evaluation of the
test functions and it is defined as the ratio between the direct evaluation number and

2This algorithm is described and reported to the completeness of the analysis. Despite its compar-
ison with the other algorithms is always performed, just few pictures show its results. This happens
due to the fact that it worsen the clearness of the other results.
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the design space dimension. So, given a model with k -decision variables, the maximum
number of direct evaluation will be equal to k · ADEN .

Also the data collected to perform comparison come from authors of article [62].
However, the tests performed in the cited article were based on different numbers of
decision variables and ADEN. On the other hand, optimization using the response
surface does not require any direct evaluation of the test function. In fact, once the
surface is built, the original function does not appear any more. Indeed, during the
fitting procedure also the surface requires the evaluation of sample points obviously.
So the sample set has been bounded in size to 400 points, letting the users to decide
if there will be used the maximum number of point generated or less. The bound has
been set to this value because 400 is also the maximum direct evaluation number in
the tests of the article. There data were recorded at ADEN equals to 6 and 10 and the
design space dimension was set to 6, 25, 40. Finally, the data selected to be compared
with response surface results are the best available for each meta-heuristic model and
in each test problem.

7.3.1 Analysis of two-objective test functions

The problem reported here is ZDT1. The response surface shows a good accuracy in
fitting the true Pareto front, however it cannot overlap this last, as ASEMOO, GeDEA-
II and Ge-DEA-II-K manage to do. Comparing in fig. 7.1 all the runs and the single
run (respectively plots (a) and (b)), it is possible to highlight that each single run
stands on the same line and does not vary a lot, as it happens for the previous three
algorithms and not for the ParEGO. So the variability of results is pretty limited, as
it can be seen both from the box-plots in fig. 7.2 and from the relative data in tab.
7.4 of normalized Hyper-Volume and D-metric. The D-metric box-plots show also that
all the algorithms but the Response Surface have a little variability on results. This
fact can be likely associated to the evolution searching process. Response surface is
quite a deterministic algorithm and moreover in two-objective test functions the model
involves just one variable to better fit the data. So its results cannot vary that much.
Meanwhile, the other algorithms are much more based on the genetic optimization,
which can produce quite different results at each run. This could lead a Pareto front
always with a good Hyper-Volume value, but which presents also some element far from
the true front. So its presence would make the D-metric change more than the HV at
each run. In this case such behaviour is not evident because the best three algorithms
always reach the true Pareto front without issues.

Let’s now give the results description for the other two-objective test functions,
whose plots and data can be found in appendix B.

ZDT2 It presents a much higher accuracy of the results for the response surface
method, as it can be seen in fig. B.1. This statement is even strengthened
by the box-plots in fig. B.2. It shows that Hyper-Volume of the response surface
as the other best ones approaches 1, while the D-metric measure is the lowest
and so the best one, since it describes the overall proximity to the true Pareto
front.

ZDT3 Conversely to the previous test, this problem shows a higher variability of the
Pareto front. The response surface defined by a single variable cannot repro-
duce faithfully this behaviour, but neither a response surface with more factors
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Figure 7.1: Test function ZDT1: Pareto fronts for all runs (a) and single run (b) and
for all the optimization algorithms.
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Figure 7.2: Test function ZDT1: box-convergence history of D-metric and normalized
Hyper-Volume (with reference point at (1, 4)).

does. The figure B.1 and data reported displays the best parameter configuration
possible, as it happens in the other cases. Even if comparison with the best algo-
rithms shows a pretty worse result, the response surface performs anyway quite
better than the ParEGO and it is quite near to the true Pareto Front. This fact
is measured also in the normalized Hyper-Volume box-plot B.2, while dealing
with D-metric it is evident the better results obtained by both ASEMOO and
GeDEA-II-K.

ZDT4 In this successive problem there are reported two response surface curves in
figure B.5. The best one (the lower, in yellow) refers to response surface with
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D metric

ASEMOO GeDEA-II GeDEAII-K ParEGO RespSurf

Mean value 0.2177 0.2113 0.1197 34.7358 1.6148
Median 0.2043 0.1613 0.1212 35.3521 1.6140
Perc. 25% 0.1932 0.1284 0.1126 32.9628 1.6135
Perc. 75% 0.2410 0.1954 0.1243 36.2711 1.6157
Whisker low 0.1863 0.0994 0.0999 31.0943 1.6128
Whisker up 0.2769 0.9776 0.1439 38.4544 1.6224

HV normalized

ASEMOO GeDEA-II GeDEAII-K ParEGO RespSurf

Mean value 0.9942 0.9967 0.9981 0.2274 0.9616
Median 0.9953 0.9979 0.9980 0.2268 0.9622
Perc. 25% 0.9945 0.9972 0.9979 0.2196 0.9617
Perc. 75% 0.9955 0.9986 0.9983 0.2341 0.9623
Whisker low 0.9888 0.9781 0.9973 0.2036 0.9578
Whisker up 0.9955 0.9992 0.9986 0.2496 0.9624

Table 7.4: Test function ZDT1: box-plot statistics of D-metric and normalized Hyper-
Volume (with reference point at (1, 4)).

fixed parameter value= 0.5, while in the other one it takes value 0.45, as the leg-
end reports. Dealing with data in the ZDT4 box-plot and table, they refer only
to the best curve. This comparison it is done because the best curve outperforms
the true Pareto front, due to fitting error. These are not due to the fitting data
set, but likely due to the fact that only one factor defines the surface and so it
cannot reproduce very well the true Pareto front behaviour. On the other hand,
the second response surface curve shows how much far it does place with such a
little variation of the fixed parameter value.
Before the analysis of box-plot data, the set of points performing better than the
true Pareto front has been handled. They were modified to realize a negative
contribution to the Hyper-Volume. Dealing with the D-metric, this is not nec-
essary since it always measures the discrepancy of points from the true Pareto
front. Finally, observing the box-plot it is possible to see that both D-metric and
HV are anyway very good. Notice that the reference point is placed far from the
true Pareto front to display results also from the ParEGO algorithm. In fact also
ASEMOO, whose results lay over the second response surface ones, has an HV
measure almost equal to 1, as the best algorithms3.

ZDT6 In this last two-objective test function, response surface is able to retrieve just
a little part of the Pareto front, again due to fitting problem, as reported in

3It is possible also to notice that the Pareto front plot B.5 is reported in a logarithmic y-scale to
display all the results in a proper way. Otherwise, it would not be possible to observe clearly that
response surface performs better than the true Pareto front. However, even if there are no other plots
in logarithmic scale and they cannot highlight this particular behaviour, data show that this behaviour
does not happen in other test functions.
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figure B.7. However, it obtains results that are exactly on the true Pareto front.
Though on the other hand, due to the little front build, the performances of
D-metric and normalized HV are quite low. Even if HV box-plot marks response
surface as the worst model, the D-metric shows that it does not perform so bad,
again because of the accurate result of the ending part of the true Pareto front.

7.3.2 Analysis of three-objective test functions

Let’s first deal with the test problem DTLZ2, whose plots and data are here reported.
Observing fig. 7.3 it is straight evident that summing all runs of response surface
method, it realizes a good covering of the true Pareto front. Although, also on the
single run the algorithm performs well and it retrieves several points on the front. Since
all the test methods obtain good results on this test problem4, the reference point for
evaluating the Hyper-Volume measure can be set in proximity of the true Pareto front,
so it can highlight also small variation of the HV values. In fact, analysing the box-plots
7.4, it is possible to observe that GeDEA-II-K, Response Surface and GeDEA-II retrieve
similar results, but the first one almost sets itself to HV norm = 1 in all the runs. In
the meanwhile the other two display little variations, anyway they reach the top value.
Instead, while ASEMOO performs little worse, ParEGO places its HV value much far
from the other. Dealing now with the D-metric, the response surface performs almost
as well as GeDEA-II-K. Such result means that response surface locates its solution
very much near to the true Pareto front, but it cannot cover the front with the same
quality. Anyway this performance shows that Response Surface method retrieves very
satisfactory results and, as it will be seen later, these are even better in three-objective
test functions than in the two-objective ones.

Figure 7.3: Test function DTLZ2: Pareto fronts for all runs (a) and single run (b) and
for all the optimization algorithms.

Finally, let’s analyse the results for all the other three-objective tests:

DTLZ1 The algorithms tested on this problem are just the ASEMOO and the GeDEA-
II, because it was used only in [7]. Here as in almost all the three-objective prob-

4Compared to the previous ZDT4 two-objective test function, but in particular compared to most
three-objective ones
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Figure 7.4: Test function DTLZ2: box-convergence history of D-metric and normalized
Hyper-Volume (with reference point at (3, 3, 3)).

D metric

ASEMOO GeDEA-II GeDEAII-K ParEGO RespSurf

Mean value 18.111 7.3972 2.0632 77.606 2.7919
Median 12.570 6.9942 2.0120 77.847 2.5374
Perc. 25% 11.912 6.6569 1.9096 75.472 2.3927
Perc. 75% 15.653 8.0356 2.1394 79.962 2.7349
Whisker low 11.042 4.8505 1.7129 69.871 2.2997
Whisker up 44.921 11.0240 2.7500 83.623 4.6883

HV normalized

ASEMOO GeDEA-II GeDEAII-K ParEGO RespSurf

Mean value 0.8742 0.9827 0.9980 0.2087 0.9745
Median 0.9265 0.9850 0.9981 0.2034 0.9744
Perc. 25% 0.8708 0.9794 0.9979 0.1930 0.9707
Perc. 75% 0.9284 0.9894 0.9983 0.2142 0.9790
Whisker low 0.6627 0.9580 0.9965 0.1735 0.9598
Whisker up 0.9303 0.9936 0.9986 0.2560 0.9893

Table 7.5: Test function DTLZ2: box-plot statistics of D-metric and normalized Hyper-
Volume (with reference point at (3, 3, 3)).

lems, response surface method performs remarkably well. As figure B.9 reports,
ASEMOO obtains results very far from the Pareto front and not even in all its
runs (single run figure does not report any ASEMOO point). GeDEA-II instead
retrieves better solutions but these are still not that good. As it can be seen in
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fig. B.10, which shows a zoom in the neighbourhood of the true Pareto front,
GeDEA-II obtains just one point in its proximity. On the other hand response
surface completely covers it really well. Analysing the performance of the various
algorithms through box-plot data fig. B.11 and tab. B.5, both GeDEA-II and
Response Surface show high values of the HV, but the last one gets a much better
result on the D-metric. The same values of Hyper-Volume for the former algo-
rithms occur due to the fact that the reference point is set far from the true Pareto
front, to obtain non-null data for the ASEMOO box-plot. Although it is clear
just form the figures the better results of response surface against GeDEA-II.

DTLZ3 This problem shows a similar frame to the former one. ASEMOO and
ParEGO algorithms obtain results very far from the true Pareto front, while
GeDEA-II and GeDEA-II-K manage to get better prediction, but still they can-
not achieve the true front. Once again, response surface reaches true Pareto and
it fills quite well the front. These behaviour are plain from the box-plots figure
B.14 and data. Not only the response surface reaches the normalized Hyper-
Volume best value 1, but it shows also lower level of the D-metric (much lower
than GeDEA-II and GeDEA-II-K). Finally, the behave in the HV box-plots occur
once again due to the far located reference point.

DTLZ5 Here the response surface method fits well the true Pareto front and this
is plain from both picture B.15 and its zoom B.16. However, the evaluation
of HV is once again altered by the low performing algorithms ASEMOO and
ParEGO, which require a far reference point to appear in the box-plot picture.
Anyway, observing the D-metric which reports an unbiased analysis, this time
the response surface is outperformed by the GeDEA-II-K. It reaches the best
accuracy in fitting the true Pareto front, while GeDEA-II and response surface
settle more or less on the same level.

DTLZ6 The same behaviour observed in the former problem repeats itself similarly
here. GeDEA-II-K gives the best fitting of the true Pareto front, followed by
Response Surface and then GeDEA-II. However, in this case the other two algo-
rithms reach results much nearer to the true front as reported in figure B.18. So
the reference point can be set quite nearer than the previous case. Hyper-Volume
measures highlight anyway that the former three algorithms reach HV = 1, so
it means that all of them give very good results on the test function. D-metric
instead proves again that GeDEA-II-K results realize better performance, this
time followed by Response Surface and then by GeDEA-II.

DTLZ7 Finally, tests on this last problem give results not that satisfying. While
GeDEA-II-K covers completely the true Pareto front and little less does GeDEA-
II, Response Surface sets its results just above the front but it cannot follow
exactly its behaviour, as reported in fig. B.20. However, it sets itself more or
less near to the Pareto front as the ASEMOO, which in turn performs better
than ParEGO. This is the exact classification displayed in both D-metric and
normalized HV box-plot B.21. Anyway also in this case the response surface
shows quite good performance.



Chapter 8

Analysis of the Response Surface on
an experimental dataset

This test case was realized to measure the abilities of the response surface in fitting
a generic source of data. The dataset on which this analysis is based represents a
computer based experiment and it is realized using a computational fluid dynamics
software.

The available dataset deals with the baseline geometry of a subsonic airfoil. The
profile can be divided in two regions: a morphing part and a fixed one, as figure 8.1 dis-
plays. The morphing part is the object in analysis and its profile is parametrized with
a B-spline with Constant Arc Length technique. Its upper and lower sides are sepa-
rately parametrized by cubic splines, each one with 6 control points, with non-periodic
uniform knot sequence. The arc length is kept constant by a procedure controlling the
movement of the parameter points. Fixing the arc length allows to introduce a con-
strain on the deformation. The decision variables of this problem are the y coordinate
of control points (CP) 3 and 4 in the upper part (y3Up, y4Up), 1 and 2 in the lower
part (y1Low, y2Low) and both x and y coordinates of the leading-edge control point
(xLE, yLE), whose keeps the arc length constant. The other points reported in fig.
8.2 are used just as control points.

Figure 8.1: Airfoil profile divided in the morphing and fixed region. Deformable part
sets in [0, 0.20] of the chord.
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Figure 8.2: Morphing part of the airfoil. Left: profile parameters and their location.
Right: example of the spline fitting of the profile parameters.

The objective functions are the lift and drag coefficients (cL and cD) of the profile.
Objective of the original optimization task is to minimize the drag and maximize the
lift.

In building the response surface model it was introduced the secondary variables
fixed factor. It sets the values of all the non-modelled variables to better evaluate
the output of the sample set. It is useless in such frameworks, since the data was
retrieved previously and for a different purpose. So all the sample points are already
and completely defined. In fact, to take advantage of the surface model implementation
realized, it would be necessary to perform previously a designed experiment to build
the sample set. Moreover, it is not enough to collect data separating factors in modelled
and non-modelled variables and successively to perform the sample. To correctly define
the chosen variables generating the surface, it would be necessary first of all to perform
a sensitivity analysis to highlight which variables realize the main contributes. Anyway,
dealing with the data at hand, the entire sample and its output were already defined
and so none of the features of the design of experiment above described can be done.
Also the sensitivity analysis cannot be performed, because data do not present in the
desired shape.

Let’s now analyse two different methods which evaluate the performances of the
response surface on the available dataset. Due to the fact that it is not possible to
perform sensitivity analysis, when building the response surface it is not evident which
are the best variables to use. So the result will show the best combination of variables
found between all the possible ones to model the problem.

Anyway, to perform all the following analysis a brief modification of the routine of
the response surface was necessary. Here it is no more possible to define the values of
the secondary variables, since all the points are already defined with their relative lift
and drag outputs values.

8.1 Fitting and testing sets
This way of testing is partly borrowed from Artificial Neural Network fitting procedure,
described previously in 4.3. Here the database is simply divided into two subsets: a
set of sample points, which provides the information to perform the fit, and a testing
set. This last is used once the fitting phase is concluded and its objective is to measure
the quality of the response surface just generated.
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The testing set size is kept varying between 10% and 20% the size of the starting
database. At each run of the algorithm, one by one points are randomly selected from
the original database and moved to the testing set. In this way, no repetition of the
points can occur and once the procedure ends both fitting and testing sets are available.

The following phase consists in the examination of all the possible response surface
configuration. In fact, here the final user can choose both the variables defining the
surface and its total order. To analyse in an exhaustive way the surface performance,
all the possible combinations of parameters need to be tested.

Here are reported just few box-plots of the test results. Further figures for this way
of testing and also for the following two test models can be found in appendix C.
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Figure 8.3: Box-plots of relative errors of fit&test method over 50 runs with response
surface defined by 5 variables: y3Up, y4Up, y1Low, xLE and yLE. Left: relative error
on Drag (cD). Right: relative error on Lift (cL).
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Figure 8.4: Box-plots of relative errors of fit&test method over 50 runs with response
surface defined by 6 variables: y3Up, y4Up, y1Low, y2Low xLE and yLE. Left: relative
error on Drag (cD). Right: relative error on Lift (cL).
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Figure 8.5: Mean error and box-plot comparison on response surfaces built by different
number of variables by fit&test model on full third order. Mean error values are
displayed by the green diamond. Left: relative error on Drag (cD). Right: relative
error on Lift (cL).

From the graphs it is evident that the surface quality fitting is quite good. Lift
coefficients resulting from response surfaces are almost always acceptable in all the
tests. On the other hand, predictions on drag can be considered satisfying for response
surfaces of second and upper order and involving at least 2-3 variables. Dealing with
the width of the box-plots and excluding results of the 1-variable response surfaces,
predictions are not much spread and different from run to run.

Finally let’s observe the comparison of full third order response surfaces generated
by different number of variables. It can be seen how using from three to six vari-
ables does not enhance a lot the prediction performances. Instead, surfaces described
by 5 variables shows the best behave with less spread results, in particular in Drag
coefficient. This last seems to have a much harder behaviour to replicate.

8.2 One point excluded test

In this second testing method, performance are evaluated just in one point per sur-
face building. Here at each algorithm run, from the original database a point gets
excluded and the response surface is built from the new fitting set. Once defined the β
coefficients, the response surface is evaluated on the excluded point and performance
information are retrieved.

A further test, which can be run in this framework, deals with the building a local
response surface. Once selected the excluded point, it is possible to filter the original
database and consider a new sample set containing only points in the neighbourhood
of the excluded one. To properly define the new sample set, some parameters are fixed:
the neighbourhood set needs to contain at least 100 sample points independently on
the surface order. Considered the total spread of the domain, a generic point in the
database xi = (xi1, . . . , xi6) is a neighbour of the excluded point xE = (xE1, . . . , xE6)
if and only if it falls inside a ball centred in the excluded point and with a diameter
length equal to p1 = 15% the entire domain in each direction. If such set does not



101 8.2. One point excluded test

contain enough points, the diameter is enlarged to p2 = 25% of the entire domain.

xi ∈ nbbxE
⇐⇒

 xi ∈ BxE

(p1

2
(U− L)1

)
if |BxE

(r)| ≥ 100

xi ∈ BxE

(p1

2
(U− L)

)
otherwise

Again, all the possible configurations of surface order and chosen variables need to
be investigated to exhaustively evaluate the model performance.

8.2.1 Global response surface result
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Figure 8.6: Box-plots of relative errors on global response surface defined by six vari-
ables: y3Up, y4Up, y1Low, y2Low xLE and yLE. Left: relative error on Drag (cD).
Right: relative error on Lift (cL).

Outcomes on global defined surfaces of this second method work on the entire
dataset and collect error data from each single database point. Here it is evident the
presence of more erroneous data, since each box-plot is a lot wider. These data realize
larger influence on the mean error values. Anyway, the mean error is much higher than
the median value, because box-plots exclude outliers from their evaluation process. So
the resulting mean values obtained by full third order response surfaces with different
number of variables are much higher than those obtained in the previous method.
Although, taking into account the above considerations, it is possible to validate the
obtained predictions. In fact the model itself it is way cheaper than many other that
could be also used as first source of rough data.

8.2.2 Local response surface result

Local defined response surfaces show little better results both on Drag and Lift pre-
dicted values. Anyway, restricting the surface building on such a tiny region of the
domain to obtain this small gain does not pay off the computational cost. However, it

1U and L are the vectorial forms of the upper and lower bounds. Hence the radius of the ball in
the i -th direction is given by

p1
2
(Ui − Li) · 0.15.
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Figure 8.7: Mean error and box-plot comparison on globally defined response surfaces,
built by different number of variables. Mean error values are displayed by the green
diamond. Left: relative error on Drag (cD). Right: relative error on Lift (cL).
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Figure 8.8: Box-plots of relative errors on local response surface defined by six variables:
y3Up, y4Up, y1Low, y2Low xLE and yLE. Left: relative error on Drag (cD). Right:
relative error on Lift (cL).

could happen for different test functions (e. g. with larger variability) that function
results from global to local response surfaces lead to valuable gains in prediction with
a reduction of the test domain.

8.3 Brief conclusions on response surface methods

From the data collected and in particular thanks to the first method results it can be
stated that Response Surface methodology performs quite well on a general dataset.
Although, here it cannot be used the introduced method of the fixed secondary variables
factor where best results are found for 5-variables surfaces, tests show acceptable errors
for this method also in other configurations. Further development could involve higher
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Figure 8.9: Mean error and box-plot comparison on local defined response surfaces,
built by different number of variables. Mean error values are displayed by the green
diamond. Left: relative error on Drag (cD). Right: relative error on Lift (cL).

order fitting or different parameters estimation. However, any new implementation
needs to realize better fitting capacity, since the method here presented is a good
trade-off between prediction fidelity and computational cost.
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Chapter 9

Conclusions

This study provides an insight into multi-objective optimization models. It describes
some fundamental parts of this framework: starting from the general optimization
concepts, it introduces the multi-objective treatment, which involves several other as-
pects as the No free lunch theorem and the curse of dimensionality. Following this,
it describes the basic structures and aims of evolutionary optimization methods and
surrogate models, reporting for both of them some examples and describing their de-
velopment. Last phase of the theoretical part introduces the sensitivity analysis which
seldom escorts a surrogate model. Successively it is described the implementation
of the overall method, followed by the tests and the analysis of its results on multi-
objective problems and on an experimental database. These last part works as a sort
of validation phase for the model, that proves to be quite effective and robust.

Dealing with the mutual help of sensitivity analysis and response surface method-
ology, this coupling works really well and it provided useful results. Even if with the
test functions at hand the main factors are evident, the sensitivity leads to analytical
results. Following indications of this tool and just using the main variables highlighted
to develop each response surface, the model realizes the best performance possible.
In this way the response surface not only provides better fitting features than any
other surface described by more or less variables, but it also obtains good optimization
results.

Summing up the results obtained in the test problems, it is possible to state that the
method shows satisfactory performance. In fact it manages to retrieve good solutions
in almost all the tests and to provide a full coverage of the true Pareto front. Despite it
does not work well on DTLZ4 problem due to its large variation, it generates accurate
prediction for almost all the other functions. This fact is achieved also thanks to the
fixed parameter which has been introduced once the first results were obtained and
studied. It helps to build a response surface that partly considers also the secondary
variables1 which do not entry in the model and thus in the optimization task. Building
several surfaces that test different configurations of the secondary factor enhances the
possibility to later obtain a better result during the optimization. This particular
approach has revealed helpful in retrieving solutions near the Pareto front in two-
objective test functions. While in three-objective ones all the secondary variables fixed
to their mid-domain values, as literature suggests, leaded to the Pareto front by luck
at first, in most of other problems the results were far from the optimum with the

1Recall previous chapter 4.4 and 6.2 to complete definition of the secondary variables and of the
fixed parameter.
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secondary variables set to their mid-domain values. Thanks to this fixed parameter it
has been identified the set of values that allows the response surfaces of these problems
to approach the true Pareto front. So finally, it has been developed an optimization
method that retrieves really good results over all the test functions at hand and which
seems to require also little computational cost.

The test phase on the experimental dataset gives positive outcomes as well. Despite
the nature of the dataset, the fitting performance reached by the response surface is
quite good. In fact the data were obtained before the method implementation and its
sample points do not build up the typical dataset, which is defined to fit the response
surface coefficients. Moreover, it was neither possible to take advantage of the fixed
parameter to set the secondary variable. Neither the sensitivity analysis was performed
to highlight the most important factors, once again due to the database nature. So, the
problem has been tackled by testing all the possible configurations of response surfaces:
changing its order, the number of model variables and their combinations. These tests
retrieve satisfying results for the fitting abilities of the response surface. Hence, also
this feature of the model is partly validated, even if further tests should be performed
to completely analyse its behaviour in different framework.

The comparison with other optimization algorithms highlights once again that the
performance of the developed model are really satisfying. Although its results some-
times are matched and exceeded by some of the other algorithms, these however are
much more structured and computational expensive. This statement cannot be proved
in this work, due to the lack of complete knowledge over the other tested algorithms.
Just one of them is an open source algorithm, but it is also the one that realizes most
of the time the worst results. On the other hand, only the data referring to the other
algorithms were provided. So it had not been possible to perform a computational cost
analysis, which would have lead to a more complete model validation. Anyway, ob-
serving the nature of the comparison algorithms, their building-block described in the
relative literature results accurate but also computational expensive. Moreover, also
other kind of multi-objective optimization test problems and database to study fitting
abilities would have been necessary, to provide further results on different frameworks.
However, all the features of the model had been tested and it proved to manage very
well various situations.

In conclusion, this work leads to the construction of a new meta-heuristic surrogate
assisted model to perform multi-objective optimization. Tests proved the effectiveness
of the realized model. After an analysis also on a real application, it could be also used
to perform cheap optimization on reality-based complex problem, before the search of
accurate optimum solutions with other expensive codes. Moreover, always in combina-
tion with sensitivity analysis, it could be used to retrieve information on the problem at
hand, through a complete investigation of the search space. However it is necessary to
realize further analysis on this method to test its features on different kind of function.
Last, the model could be implemented which higher order of the response surface, a
different fitting procedure and other new features to enhance its abilities. Anyway as
already stated, this method solves cheaply the optimization tasks and its performance
is quite satisfying, compared to other test algorithms.



Appendix A

Test Functions

The problems here reported was first introduced by Zitzler, Deb, Thiele and Laumanns
in [67] and [12]. These test function offer an easy visualization of the results, hence
the Pareto Front, and involve multiple variables and objective functions. The authors
aimed to develop problems which were easy to construct, scalable in the number of vari-
ables and also objectives, with easily understandable Pareto Front, either continuous
or discrete, widely distributed.

A.1 Two-objectives test functions

This test problems were presented in [67] and their main features are the difficulties
to converge to the optimal Pareto Front and to maintain the population diversity.
Each function reported below is structured in the following manner, build by the basic
functions f1, g, h:

Minimize F(x) = (f1(x1), f2(x))
subject to f2(x) = g(x2, . . . , xm)h(f1(x1), g(x2, . . . , xm))
where x = (x1, x2, . . . , xm)

(A.1)

The first objective function f1 is always defined just by the x1 variable (moreover often
f1 = x1), while g function of all the remaining m−1 variables. The number of variables
describing the problem was set to m = 30 in the original paper [67] but it is possible to
enlarge or reduce arbitrarily the space dimension to complicate or simplify the problem.

ZDT1

Test function ZDT1 has a convex Pareto optimal front:

f1(x) = x1

g(x) = 1 + 9
m∑
i=2

xi
m− 1

h(f1, g) = 1−

√
f1

g

(A.2)

The original function has m = 30 and xi ∈ [0, 1] ∀i, while the implemented version has
m = 100. The Pareto optimal front is formed with g(x) = 1.
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ZDT2

Test function ZDT2 is the non-convex counterpart to ZDT1 :

f1(x) = x1

g(x) = 1 + 9
m∑
i=2

xi
m− 1

h(f1, g) = 1−
(
f1

g

)2

(A.3)

The original function has m = 30 and xi ∈ [0, 1] ∀i, while the implemented version has
m = 100. The Pareto optimal front is formed with g(x) = 1.

ZDT3

Test function ZDT3 represents the discreteness feature; its Pareto optimal front con-
sists of several non-contiguous convex parts:

f1(x) = x1

g(x) = 1 + 9
m∑
i=2

xi
m− 1

h(f1, g) = 1−
√
f1

g
−
(
f1

g

)
sin(10πf1)

(A.4)

The original function has m = 30 and xi ∈ [0, 1] ∀i, while the implemented version has
m = 100. The Pareto optimal front is formed with g(x) = 1. The introduction of the
sine function in causes discontinuity in the Pareto optimal front. However, there is no
discontinuity in the parameter space.

ZDT4

Test function ZDT4 contains 219 local Pareto optimal fronts and, therefore, tests the
ability of Evolutionary Algorithm to deal with multi-modality:

f1(x) = x1

g(x) = 1 + 10(m− 1) +
m∑
i=2

[
x2
i − 10 cos(4πxi)

]
h(f1, g) = 1−

√
f1

g

(A.5)

The original function has m = 10 with x1 ∈ [0, 1] and x2, . . . , xm ∈ [−5,−5] ∀i, while
the implemented version has m = 100. The global Pareto optimal front is formed with
g(x) = 1, the best local Pareto optimal front with g(x) = 1.25 (note that not all local
Pareto optimal sets are distinguishable in the objective space).

ZDT6

Test function ZDT6 includes two difficulties caused by the non-uniformity of the search
space: first, the Pareto optimal solutions are non-uniformly distributed along the global
Pareto front (the front is biased for solutions for which f1(x) is near one); second, the
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density of the solutions is lowest near the Pareto optimal front and highest away from
the front:

f1(x) = 1− exp(−4xi) sin6(6πxi)

g(x) = 1 + 9

(
m∑
i=2

xi
m− 1

)0.25

h(f1, g) = 1−
(
f1

g

)2

(A.6)

The original function has m = 10 and xi ∈ [0, 1] ∀i, while the implemented version has
m = 100. The Pareto optimal front is formed with g(x) = 1 and is non-convex.

A.2 Three-objective test functions
The three-objective problems reported below are particular expression of the general
M -objectives test. In fact the original definition in [12] introduce an arbitrary number
of objective function, and the relative problem becomes more difficult as this number
increases. The way of building the test function and the difficulties inherent resemble
those introduced above in A.1. Although larger problem can be defined, here are
reported only problems with three objectives. This gives the possibility to graphically
represent the results and intuitively understand them.

DTLZ1

Test function DTLZ1 contains 11k − 1 local Pareto optimal fronts, each of which can
attract an multi-objective evolutionary algorithm [12]. To increase the difficulty of the
problem, the number of variables and the frequency of the cosine function were doubled
when compared to those suggested in [12].

f1(x) =
1

2
(1 + g(xM))x1x2

f2(x) =
1

2
(1 + g(xM))x1(1− x2)

f3(x) =
1

2
(1 + g(xM))(1− x1)

g(xM) = 100

[
|xM |+

∑
xi∈xM

(xi − 0.5)2 − cos[20π(xi − 0.5)]

]
(A.7)

where n = 14 and xi ∈ [0, 1].

DTLZ2

Test function DTLZ2 is the Generic sphere problem.

f1(x) = (1 + g(xM)) cos(
x1π

2
) cos(

x2π

2
)

f2(x) = (1 + g(xM)) cos(
x1π

2
) sin(

x2π

2
)

f3(x) = (1 + g(xM)) sin(
x1π

2
)

g(xM) =
∑
xi∈xM

(xi − 0.5)2

(A.8)
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where n = 22 and xi ∈ [0, 1]. The number of variables suggested in [12] for this test
problem is 12.

DTLZ3

Test function DTLZ3 is similar to test function DTLZ2, except for the function g, which
introduces 3k−1 local Pareto optimal fronts, and only one global Pareto optimal front.

f1(x) = (1 + g(xM)) cos(
x1π

2
) cos(

x2π

2
)

f2(x) = (1 + g(xM)) cos(
x1π

2
) sin(

x2π

2
)

f3(x) = (1 + g(xM)) sin(
x1π

2
)

g(xM) = 100

[
|xM |+

∑
xi∈xM

(xi − 0.5)2 − cos[20π(xi − 0.5)]

] (A.9)

where n = 22 and xi ∈ [0, 1]. The number of variables suggested in [12] for this test
problem is 12.

DTLZ4

Test function DTLZ4 is a modified version of DTLZ2, since it features a different
meta-variable mapping.

f1(x) = (1 + g(xM)) cos(
xα1π

2
) cos(

xα2π

2
)

f2(x) = (1 + g(xM)) cos(
xα1π

2
) sin(

xα2π

2
)

f3(x) = (1 + g(xM)) sin(
xα1π

2
)

g(xM) =
∑
xi∈xM

(xi − 0.5)2

(A.10)

where n = 22, α = 100 and xi ∈ [0, 1]. The number of variables suggested in [12] for
this test problem is 12.

DTLZ5

Test function DTLZ5 features a different mapping compared to the one of DTLZ2.
This problem will test a multi-objective evolutionary algorithm ability to converge to
a curve and will also allow an easier way to visually demonstrate the performance of
the algorithm.

f1(x) = (1 + g(xM)) cos(
x1π

2
) cos(

x2π

2
)

f2(x) = (1 + g(xM)) cos(
x1π

2
) sin(

x2π

2
)

f3(x) = (1 + g(xM)) sin(
x1π

2
)

g(xM) =
∑
xi∈xM

(xi − 0.5)2

with θ2 =
π

4(1 + g)
(1 + 2gx2)

(A.11)
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where n = 22 and xi ∈ [0, 1]. The number of variables suggested in [12] for this test
problem is 12.

DTLZ6

Test function DTLZ6 is a modified, harder-to-optimize version of the above test prob-
lem. The number of decision variables was dramatically increased when compared to
the original one.

f1(x) = (1 + g(xM)) cos(
x1π

2
) cos(

x2π

2
)

f2(x) = (1 + g(xM)) cos(
x1π

2
) sin(

x2π

2
)

f3(x) = (1 + g(xM)) sin(
x1π

2
)

g(xM) =
∑
xi∈xM

(xi)
0.1

with θ2 =
π

4(1 + g)
(1 + 2gx2)

(A.12)

where n = 100 and xi ∈ [0, 1]. The number of variables suggested in [12] for this test
problem is 12.

DTLZ7

Test function DTLZ7 features 2M−1 disconnected local Pareto optimal regions in the
search space. It is chosen to test the multi-objective evolutionary algorithm ability in
finding and maintain stable and distributed sub-populations in all four disconnected
global Pareto-optimal regions.

f1(x) = x1

f2(x) = x2

f3(x) = [1 + g(xM)]h

g(xM) = 1 +
9

|xi|
∑
xi∈xM

xi

with h = M −
M−1∑
i=1

[
fi

1 + g
[1 + sin(3πfi)]

]
(A.13)

where n = 100 and xi ∈ [0, 1]. Once again, the number of decision variables was
dramatically increased when compared to the original one, suggested in [12] for this
test problem, and equal to 22.
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Appendix B

Plots and Data of Test Functions

Here the reader can found all the results on test problems. Plots and data already
presented in chapter 7 are not repeated. However, the test problems are divided in
two section relative to their number of objective functions. For each problem there are
reported:

1. Pareto front plots for all runs and a single run of all the test algorithms. Some
problems present also a further Pareto front plot to highlight results in the neigh-
bourhood of the true front. This is the case of B.2 with fig. B.13, where the best
results of ASEMOO and ParEGO are much far from the true Pareto.

2. The box-plots of D-metric and normalized Hyper-Volume for all the test algo-
rithms, obtained from the results variation of their single runs.

3. The table which reports the mean values and the characteristics of the previous
box-plots for D-metric and normalized Hyper-Volume on all the test algorithms.

B.1 Results of two-objective problems
ZDT2

Figure B.1: Test function ZDT2: Pareto fronts for all runs (a) and single run (b) and
for all the optimization algorithms.
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Figure B.2: Test function ZDT2: box-convergence history of D-metric and normalized
Hyper-Volume (with reference point at (1, 6)).

D metric

ASEMOO GeDEA-II GeDEAII-K ParEGO RespSurf

Mean value 0.2401 0.2407 0.1078 42.5630 0.0602
Median 0.2340 0.1306 0.1067 43.0106 0.0600
Perc. 25% 0.2278 0.1069 0.0998 41.4886 0.0570
Perc. 75% 0.2409 0.1566 0.1164 43.1841 0.0644
Whisker low 0.2265 0.0929 0.0803 40.4812 0.0522
Whisker up 0.2775 2.6024 0.1406 44.3363 0.0696

HV normalized

ASEMOO GeDEA-II GeDEAII-K ParEGO RespSurf

Mean value 0.9942 0.9966 0.9983 0.3166 0.9975
Median 0.9945 0.9983 0.9983 0.3125 0.9991
Perc. 25% 0.9940 0.9978 0.9980 0.3028 0.9958
Perc. 75% 0.9946 0.9988 0.9985 0.3323 0.9997
Whisker low 0.9924 0.9628 0.9975 0.2909 0.9887
Whisker up 0.9951 0.9991 0.9990 0.3423 0.9998

Table B.1: Test function ZDT2: box-plot statistics of D-metric and normalized Hyper-
Volume (with reference point at (1, 6)).
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ZDT3

Figure B.3: Test function ZDT3: Pareto fronts for all runs (a) and single run (b) and
for all the optimization algorithms.
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Figure B.4: Test function ZDT3: box-convergence history of D-metric and normalized
Hyper-Volume (with reference point at (1, 4.5)).
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D metric

ASEMOO GeDEA-II GeDEAII-K ParEGO RespSurf

Mean value 0.89448856 1.376560997 0.194158349 29.48717305 3.542727923
Median 0.215326776 1.178176132 0.19186676 30.11026466 3.53973088
Perc. 25% 0.201492497 0.775718055 0.17266714 28.01847132 3.538851389
Perc. 75% 0.350786151 1.920959139 0.209299497 30.62127223 3.544852194
Whisker low 0.199490354 0.44196404 0.139116769 23.39608568 3.536473088
Whisker up 4.184508803 2.848019594 0.314880099 33.63030292 3.560232243

HV normalized

ASEMOO GeDEA-II GeDEAII-K ParEGO RespSurf

Mean value 0.953437573 0.976703063 0.997530336 0.341933701 0.905293547
Median 0.99185563 0.982498627 0.997498745 0.341331007 0.905926659
Perc. 25% 0.990388913 0.959500756 0.997275989 0.332788412 0.905751633
Perc. 75% 0.992328872 0.989079328 0.997876686 0.349953517 0.906007409
Whisker low 0.758922773 0.947746544 0.99630598 0.319158847 0.89912409
Whisker up 0.995273623 0.996462845 0.998462966 0.374332924 0.906134788

Table B.2: Test function ZDT3: box-plot statistics of D-metric and normalized Hyper-
Volume (with reference point at (1, 4.5)).

ZDT4

Figure B.5: Test function ZDT4: Pareto fronts for all runs (a) and single run (b) and
for all the optimization algorithms.
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Figure B.6: Test function ZDT4: box-convergence history of D-metric and normalized
Hyper-Volume (with reference point at (1, 750)).

D metric

ASEMOO GeDEA-II GeDEAII-K ParEGO RespSurf

Mean value 365.6865 0.2135 0.2489 8765.37 0.1896
Median 346.0383 0.1833 0.2286 8786.71 0.1881
Perc. 25% 278.3476 0.1441 0.1980 8520.63 0.1857
Perc. 75% 430.8727 0.2137 0.2818 8969.81 0.1926
Whisker low 270.4160 0.1019 0.1302 8098.32 0.1822
Whisker up 522.4064 1.1319 0.5076 9275.59 0.2005

HV normalized

ASEMOO GeDEA-II GeDEAII-K ParEGO RespSurf

Mean value 0.9699 1.0000 1.0000 0.2795 0.9995
Median 0.9719 1.0000 1.0000 0.2766 1.0000
Perc. 25% 0.9653 1.0000 1.0000 0.2643 1.0000
Perc. 75% 0.9753 1.0000 1.0000 0.2911 1.0000
Whisker low 0.9587 0.9999 0.9999 0.2514 0.9932
Whisker up 0.9765 1.0000 1.0000 0.3269 1.0000

Table B.3: Test function ZDT4: box-plot statistics of D-metric and normalized Hyper-
Volume (with reference point at (1, 750)).
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ZDT6

Figure B.7: Test function ZDT6: Pareto fronts for all runs (a) and single run (b) and
for all the optimization algorithms.
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Figure B.8: Test function ZDT6: box-convergence history of D-metric and normalized
Hyper-Volume (with reference point at (1, 10)).
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D metric

ASEMOO GeDEA-II GeDEAII-K ParEGO RespSurf

Mean value 44.8098 0.1321 1.1659 87.063 5.2797
Median 43.5201 0.0838 0.6850 87.243 5.2797
Perc. 25% 42.9681 0.0535 0.5395 86.423 5.2794
Perc. 75% 47.0851 0.1159 1.3689 87.538 5.2799
Whisker low 42.5276 0.0378 0.3341 85.476 5.2790
Whisker up 49.2375 1.2630 5.3784 89.171 5.2806

HV normalized

ASEMOO GeDEA-II GeDEAII-K ParEGO RespSurf

Mean value 0.5186 0.9952 0.9566 0.1949 0.1323
Median 0.5400 0.9990 0.9701 0.1948 0.1323
Perc. 25% 0.5239 0.9981 0.9469 0.1899 0.1323
Perc. 75% 0.5641 0.9996 0.9877 0.1990 0.1323
Whisker low 0.3776 0.9130 0.8009 0.1825 0.1323
Whisker up 0.5663 0.9999 0.9953 0.2097 0.1323

Table B.4: Test function ZDT6: box-plot statistics of D-metric and normalized Hyper-
Volume (with reference point at (1, 10)).
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B.2 Results of three-objective problems
DTLZ1

Figure B.9: Test function DTLZ1: Pareto fronts for all runs (a) and single run (b) and
for all the optimization algorithms.

Figure B.10: Test function DTLZ1: zoom on the Pareto font.
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Figure B.11: Test function DTLZ1: box-convergence history of D-metric and normal-
ized Hyper-Volume (with reference point at (1000, 1000, 1000)).

D metric

ASEMOO GeDEA-II RespSurf

Mean value 1.04E+05 2.90E+03 3.8303
Median 9.93E+04 2.22E+03 3.7964
Perc. 25% 7.57E+04 1.92E+03 3.7111
Perc. 75% 1.31E+05 4.14E+03 3.9132
Whisker low 6.78E+04 1.51E+02 3.3884
Whisker up 1.53E+05 6.14E+03 4.5058

HV normalized

ASEMOO GeDEA-II RespSurf

Mean value 0.4241 1.0000 1.0000
Median 0.4385 1.0000 1.0000
Perc. 25% 0.3695 0.9999 1.0000
Perc. 75% 0.5357 1.0000 1.0000
Whisker low 0.1543 0.9998 1.0000
Whisker up 0.6083 1.0000 1.0000

Table B.5: Test function DTLZ1: box-plot statistics of D-metric and normalized Hyper-
Volume (with reference point at (1000, 1000, 1000)).
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DTLZ3

Figure B.12: Test function DTLZ3: Pareto fronts for all runs (a) and single run (b)
and for all the optimization algorithms.

Figure B.13: Test function DTLZ3: zoom on the Pareto font.
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Figure B.14: Test function DTLZ3: box-convergence history of D-metric and normal-
ized Hyper-Volume (with reference point at (2500, 2500, 2500)).

D metric

ASEMOO GeDEA-II GeDEAII-K ParEGO RespSurf

Mean value 63927.9 1720.8 1115.7 103517.4 2.8946
Median 59581.6 1618.1 1425.7 105797.1 2.6212
Perc. 25% 56901.1 1445.4 1187.4 99002.9 2.4849
Perc. 75% 72008.7 2098.3 1427.8 109771.4 2.8688
Whisker low 51772.7 724.0 20.5 87051.7 2.3254
Whisker up 83721.4 2267.3 1513.0 113028.1 4.7685

HV normalized

ASEMOO GeDEA-II GeDEAII-K ParEGO RespSurf

Mean value 0.4848 1.0000 0.9999 0.0546 1.0000
Median 0.5349 1.0000 1.0000 0.0491 1.0000
Perc. 25% 0.2325 1.0000 0.9999 0.0338 1.0000
Perc. 75% 0.6778 1.0000 1.0000 0.0764 1.0000
Whisker low 0.1962 1.0000 0.9998 0.0136 1.0000
Whisker up 0.7327 1.0000 1.0000 0.1095 1.0000

Table B.6: Test function DTLZ3: box-plot statistics of D-metric and normalized Hyper-
Volume (with reference point at (2500, 2500, 2500)).
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DTLZ5

Figure B.15: Test function DTLZ5: Pareto fronts for all runs (a) and single run (b)
and for all the optimization algorithms.

Figure B.16: Test function DTLZ5: zoom on the Pareto font.
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Figure B.17: Test function DTLZ5: box-convergence history of D-metric and normal-
ized Hyper-Volume (with reference point at (32, 32, 32)).

D metric

ASEMOO GeDEA-II GeDEAII-K ParEGO RespSurf

Mean value 246.99 0.2524 0.0233 364.19 0.2141
Median 239.44 0.1765 0.0229 364.19 0.2075
Perc. 25% 238.23 0.1267 0.0215 362.51 0.1940
Perc. 75% 252.18 0.2248 0.0254 366.65 0.2382
Whisker low 237.04 0.0987 0.0158 357.53 0.1694
Whisker up 275.43 1.5032 0.0291 368.09 0.2794

HV normalized

ASEMOO GeDEA-II GeDEAII-K ParEGO RespSurf

Mean value 0.3637 1.0000 1.0000 0.1287 1.0000
Median 0.3507 1.0000 1.0000 0.1290 1.0000
Perc. 25% 0.3190 1.0000 1.0000 0.1276 1.0000
Perc. 75% 0.4093 1.0000 1.0000 0.1301 1.0000
Whisker low 0.2574 0.9998 1.0000 0.1251 1.0000
Whisker up 0.4878 1.0000 1.0000 0.1310 1.0000

Table B.7: Test function DTLZ5: box-plot statistics of D-metric and normalized Hyper-
Volume (with reference point at (32, 32, 32)).
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DTLZ6

Figure B.18: Test function DTLZ6: Pareto fronts for all runs (a) and single run (b)
and for all the optimization algorithms.
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Figure B.19: Test function DTLZ6: box-convergence history of D-metric and normal-
ized Hyper-Volume (with reference point at (32, 32, 32)).
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D metric

ASEMOO GeDEA-II GeDEAII-K ParEGO RespSurf

Mean value 4.2337 0.4689 0.0446 22.370 0.1978
Median 3.2121 0.4772 0.0454 22.298 0.1944
Perc. 25% 2.1129 0.3157 0.0321 22.036 0.1772
Perc. 75% 5.2544 0.5774 0.0525 23.129 0.2092
Whisker low 1.9176 0.2409 0.0294 19.665 0.1629
Whisker up 9.6931 0.8600 0.0751 23.577 0.2631

HV normalized

ASEMOO GeDEA-II GeDEAII-K ParEGO RespSurf

Mean value 0.7938 0.9936 0.9998 0.2263 0.9997
Median 0.7748 0.9940 0.9999 0.2208 1.0000
Perc. 25% 0.7108 0.9919 0.9997 0.2148 0.9990
Perc. 75% 0.9188 0.9960 1.0000 0.2344 1.0000
Whisker low 0.6415 0.9795 0.9992 0.1894 0.9957
Whisker up 0.9419 0.9976 1.0000 0.2691 1.0000

Table B.8: Test function DTLZ6: box-plot statistics of D-metric and normalized Hyper-
Volume (with reference point at (3, 3, 3)).

DTLZ7

Figure B.20: Test function DTLZ7: Pareto fronts for all runs (a) and single run (b)
and for all the optimization algorithms.
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Figure B.21: Test function DTLZ7: box-convergence history of D-metric and normal-
ized Hyper-Volume (with reference point at (18, 18, 18)).

D metric

ASEMOO GeDEA-II GeDEAII-K ParEGO RespSurf

Mean value 3.4030 1.0215 0.2526 49.289 1.6401
Median 3.3708 0.9478 0.2552 48.834 1.6868
Perc. 25% 3.3513 0.7746 0.2356 47.390 1.4690
Perc. 75% 3.4360 1.2934 0.2646 51.507 1.7642
Whisker low 3.3454 0.5062 0.2117 45.411 1.3041
Whisker up 3.5468 1.8577 0.3262 53.670 1.8799

HV normalized

ASEMOO GeDEA-II GeDEAII-K ParEGO RespSurf

Mean value 0.8854 0.9747 0.9977 0.2816 0.8616
Median 0.8854 0.9806 0.9977 0.2870 0.8608
Perc. 25% 0.8849 0.9565 0.9972 0.2567 0.8570
Perc. 75% 0.8861 0.9934 0.9982 0.3019 0.8645
Whisker low 0.8838 0.9159 0.9957 0.2320 0.8562
Whisker up 0.8864 0.9992 0.9990 0.3223 0.8770

Table B.9: Test function DTLZ7: box-plot statistics of D-metric and normalized Hyper-
Volume (with reference point at (18, 18, 18)).



Appendix C

Box-plots of errors on the
experimental dataset

Here are reported the results of Response Surface method over the experimental database
of chapter 7. These box-plots below, with those in the relative chapter, describe all the
tested configuration of the surface.

C.1 Fitting and testing sets box-plots
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Figure C.1: Box-plots of relative errors of fit&test method over 50 runs with response
surface defined by a the single variable y1Low. Left: relative error on Drag (cD). Right:
relative error on Lift (cL).
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Figure C.2: Box-plots of relative errors of fit&test method over 50 runs with response
surface defined by 2 variables: y3Up and y1Low. Left: relative error on Drag (cD).
Right: relative error on Lift (cL).
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Figure C.3: Box-plots of relative errors of fit&test method over 50 runs with response
surface defined by 3 variables: y3Up, y1Low and yLE. Left: relative error on Drag
(cD). Right: relative error on Lift (cL).
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Figure C.4: Box-plots of relative errors of fit&test method over 50 runs with response
surface defined by 4 variables: y3Up, y1Low, xLE and yLE. Left: relative error on Drag
(cD). Right: relative error on Lift (cL).
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C.2 One point excluded global tests box-plots
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Figure C.5: Box-plots of relative errors on global response surface defined by a the
single variable y1Low. Left: relative error on Drag (cD). Right: relative error on Lift
(cL).
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Figure C.6: Box-plots of relative errors on global response surface defined by 2 variables:
y3Up and y1Low. Left: relative error on Drag (cD). Right: relative error on Lift (cL).
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Figure C.7: Box-plots of relative errors on global response surface defined by 3 variables:
y3Up, y1Low and yLE. Left: relative error on Drag (cD). Right: relative error on Lift
(cL).
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Figure C.8: Box-plots of relative errors on global response surface defined by 4 variables:
y3Up, y1Low, xLE and yLE. Left: relative error on Drag (cD). Right: relative error on
Lift (cL).
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Figure C.9: Box-plots of relative errors on global response surface defined by 5 variables:
y3Up, y4Up, y1Low, xLE and yLE. Left: relative error on Drag (cD). Right: relative
error on Lift (cL).
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C.3 One point excluded local tests box-plots
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Figure C.10: Box-plots of relative errors on local response surface defined by a the
single variable y1Low. Left: relative error on Drag (cD). Right: relative error on Lift
(cL).
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Figure C.11: Box-plots of relative errors on local response surface defined by 2 variables:
y3Up and y1Low. Left: relative error on Drag (cD). Right: relative error on Lift (cL).
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Figure C.12: Box-plots of relative errors on local response surface defined by 3 variables:
y3Up, y1Low and yLE. Left: relative error on Drag (cD). Right: relative error on Lift
(cL).
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Figure C.13: Box-plots of relative errors on local response surface defined by 4 variables:
y3Up, y1Low, xLE and yLE. Left: relative error on Drag (cD). Right: relative error on
Lift (cL).
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Figure C.14: Box-plots of relative errors on local response surface defined by 5 variables:
y3Up, y4Up, y1Low, xLE and yLE. Left: relative error on Drag (cD). Right: relative
error on Lift (cL).
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