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Preface

The aim of this thesis is the study of an ultracold gas of Rabi coupled atoms interacting
via a two body contact potential. Apart from Rabi interaction, such is the model describing
the familiar BCS-BEC crossover, in which the gas goes from being superconductive when
the coupling constant is small in modulus to being superfluid as the attraction gets more
intense. The BCS-BEC crossover enriched with Rabi coupling has almost no counterpart in
the literature, so that many of the results presented are a first.

This work is divided in three main parts. Chapter 1 introduces a key quantity to our
treatment: the scattering length aF , through which we will express the contact potential
thereby renormalizing our theory; chapters 2 and 3 are review sections, in which some of the
main techniques used for the study of the BCS-BEC crossover are studied and the behaviour
of various physical quantities will be displayed along the whole crossover in absence of Rabi
coupling. In particular, in chapter 2 we review the mean field treatment of the model both
at the critical temperature and at zero temperature, while in chapter 3 we try to go beyond
mean field, studying specifically the critical temperature of the system along the crossover
with different approaches. In chapters 4 and 5 we introduce Rabi coupling in the model
and try to replicate the results obtained in the Rabiless case both at the mean field level in
chapter 4 and beyond mean field in chapter 5.

To appreciate the work fully and not get lost in the calculations, it is strongly suggested
not to read this thesis section by section in the order given. The work was developed by
writing a section about the Rabiless BCS-BEC crossover and then by producing the Rabi
coupled counterpart. This is why chapter 2 should be read together with 4, while chapter 3
should be studied parallely to chapter 5.

In all the thesis, much attention was payed to making calculations accessible, at the cost
of sometimes being heavy. The idea is that if one reads this work, he or she should be able
to replicate all the results without filling pages and pages of cumbersome calculations on his
or her own. It is not always beautiful, but I hope it will at least be clear and helpful to the
ones who will work in the vast and dense world of the BCS-BEC crossover. Moreover, many
calculations were performed but not fully exploited: for example, in the Gaussian fluctuations
sections, the explicit expressions for the propagators were derived for any temperatures, even
though I only used them at the critical temperature. I hope that these calculations will be
used in the future to explore the zero temperature regime, too.

Finally, before getting into the realms of this work, I would like to thank Prof. L. Salasnich
for his useful suggestions, often asked for and provided promptly way after midnight; I would
like to thank my parents, who supported me and inspired me for all these years; my closest
friend Roberta deserves all my gratefulness for keeping me strong and in touch with the real
world even during the toughest times; and finally Lisa, who made me realise what really is
important in life.

And now, enough with the jibber jabber. In the words of N. David Mermin:

shut up and calculate!
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1 Scattering Theory

The objective of this section is to investigate the behaviour of a very dilute ultracold gas
of atoms which is interacting via a two body potential. In particular, since we want to
write the action functional of the gas in terms of a contact potential, we investigate how
the interaction constant g is derived and in what regimes such approximation is valid. The
treatment will be taken mainly from [1] and [2], but also from [3].

1.1 Two Body Scattering

The Schrodinger equation for two particles interacting via a potential V (q1 − q2) is

i�
∂Ψ(q1,q2, t)

∂t
=

�
− �2

2m1

∇2 − �2

2m2

∇2 + V (q1 − q2)
�
Ψ(q1,q2, t). (1.1)

In order to solve it, one may get in the center of mass frame of reference by introducing the
canonical change of variables �

q = q1 − q2

Q = m1q1+m2q2

m1+m2
,

(1.2)

meaning that �
∇q1

= ∇q +
m1

M
∇Q

∇q2
= −∇q +

m2

M
∇Q.

(1.3)

By substituting (1.3) in (1.1) we find that

i�
∂Ψ(q,Q, t)

∂t
=

�
− �2

2M
∇2

Q − �2

2µ
∇2

q + V (q)
�
Ψ(q,Q, t), (1.4)

which means that the wave function may factorize in a part dependent on the center of mass
coordinate, which behaves like a free particle, and one depending on the relative coordinate.
We then write Ψ(q,Q, t) = φ(Q, t)ψ(q, t) and consider the equation for ψ(q, t)

i�
∂ψ(q, t)

∂t
=

�
− �2

2µ
∇2 + V (q)

�
ψ(q, t). (1.5)

We have reduced the problem to a single particle one.
Now, we want to find the solution of the stationary Schrodinger equation

�
− �2

2µ
∇2 + V (q)

�
ψ(q) = Eψ(q). (1.6)
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1.1.1 Solution of the Equation

In the case of an incoming stream of particles scattering via the potential V (q), we show
that the wave function solving (1.6) is a superposition of an incoming plane wave and an
outgoing spherical wave at long distance [3]. To do so, we solve the equation by using the
Green’s function method. In particular, by defining the Green’s function as G(+)(q − q�)
satisfying the equation

�
∇2

q +
2µ

�2
E

�
G(+)(q− q�) = −δ3(q− q�), (1.7)

we find that

ψ(q) = eik·q − 2µ

�2

�

V

d3q�G(+)(q− q�)V (q�)ψ(q�) (1.8)

is the exact solution of (1.6), given that k2 = 2µ
�2E. To solve (1.7) one goes in Fourier space

to find the algebraic equation

G̃(k) =
1

k2 − 2µ
�2E

, (1.9)

and goes back to coordinate space to find that

G(q) =
eikq

4πq
, (1.10)

with k =
�

2µE/�2.
At this point one may substitute (1.10) into (1.8) and compute its asymptotic value for

large distances by imposing that |q− q�| ≈ q− q
q
· q�, which is true for q � q�, to obtain the

result we wanted,

ψ(q) = eik·q − 2µ

�2
eikq

4πq

�

V

d3q�e−ik q
q
·q’V (q�)ψ(q�). (1.11)

In particular, by calling k q
q
· q� = k�, which is a wavevector of modulus k and the direction

of q, one realizes that the integral is a Fourier transform, so that the overall result may be
written as

ψ(q) = eik·q − 2µ

�2
eikq

4πq
�k�|V |ψ� . (1.12)

In particular the solution of the stationary Schrodinger equation (1.6) is a superposition of
an incoming plane wave and an outgoing spherical wave in the large distance limit.

Conventionally, the scattering amplitude f(k�,k) is then introduced to write such wavefunction
in a more meaningful way:

ψ(q) = eik·q + f(k�,k)
eikq

q
. (1.13)

Notice that the scattering amplitude only depends on the modulus of the incoming plane
wave k =

�
2µE/�2 and the angle that k makes with q, as its explicit expression is

f(k�,k) = − 2µ

4π�2
�k�|V |ψ� . (1.14)
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1.1.2 The Scattering Amplitude

The scattering amplitude contains a lot of physical information [2]. For example, one may
want to calculate the scattering cross section of the system following equation (1.5), i.e. the
ratio between the number of particles scattered on a given solid angle per unit time and the
number of incident particles. The probability per unit time that a scattered particle will go
through the surface element dS = q2dΩ, where dΩ is the solid angle, can be calculated using
the continuity equation

d|ψ(q, t)|2
dt

= −∇ · j(q, t), (1.15)

with

j(q, t) =
1

2mi

�
ψ∗(q, t)∇ψ(q, t)− ψ(q, t)∇ψ∗(q, t)

�
. (1.16)

By calculating ∇ · j explicitly with ψ(q) = f(k�,k) e
ikq

q
, one finds that the flux over dS of

equation (1.15) is � k

m

�
|f(k�,k)|2dΩ. (1.17)

The number of incident particles, instead, can be calculated simply as j · dS substituting
ψ(q) = eik·q in (1.16), and reads

�
k
m

�
. The cross section at large distances, then, depends

only on the scattering amplitude:

dσ = |f(k�,k)|2dΩ. (1.18)

Another interesting relation can be found by taking (1.8) in momentum space [3], where
it reads

ψ(p) = (2π)3δ(3)(p− k)− 2µ

�2
1

p2 − 2µ
�2E

�
d3p�

(2π)3
V (p�)ψ(p− p�). (1.19)

The inverse of the Green’s function (1.9) has come out of the integral naturally this time,
without the need for any large distance approximation. One may call the modified scattering
amplitude

f̃(p,k) = −2µ

�2

�
d3p�

(2π)3
V (p�)ψ(p− p�), (1.20)

where the dependence on k is hidden in ψ. At this point one may multiply both sides of
(1.19) by V (p� − p) and integrate over p to obtain an integral equation for f in terms of V :

f̃(p�,k) = V (p� − k) +

�
d3p

(2π)3
f̃(p,k)V (p� − p)

p2 − 2µ
�2E

. (1.21)

1.1.3 Partial Wave Expansion

We start the analysis by solving the Schrodinger equation (1.6) in polar coordinates, exploiting
the fact that the system is invariant under rotations, so that the angular part and the radial
part of the wave function factorize, leaving the radial equation

� 1

q2
d

dq
q2

d

dq
− l(l + 1)

q2
− 2µ

�2
V (q) +

2µ

�2
E

�
Rl(q) = 0, (1.22)
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which has as an asymptotic solution for q → +∞

Rl(q) ≈
al sin(kq − lπ/2 + δl)

q
. (1.23)

The wave function (1.13) only depends on the modulus of k and the angle between k and
q, which in polar coordinates is θ ∈ (0, π). This means that ψ(q) does not depend on the
azimuthal angle φ, so that its angular part can be written as an expansion over Legendre
polynomials P (cos θ):

ψ(q) =
+∞�

l=0

(2l + 1)AlPl(cos θ)
sin(kq − lπ/2 + δl)

kq
. (1.24)

The unknowns in such expression are the coefficients Al and the phases δl. To write Al(δl),
we first write

eik·q =
+∞�

l=0

(2l + 1)ilPl(cos θ)
sin(kq − πl)

kq
, (1.25)

and then calculate

ψ(q)− eik·q =

=
+∞�

l=0

(2l + 1)
Pl(cos θ)

2ikq

�
Al

�
ei(kq−lπ/2+δl) − e−i(kq−lπ/2+δl)

�
− il

�
ei(kq−lπ/2) − e−i(kq−lπ/2)

���
.

(1.26)

Such is the spherical wave going out of the scattering center, meaning that it cannot have
any term proportional to e−ikq. For this condition to be satisfied

Al = ileiδl , (1.27)

so that

ψ(q) =
+∞�

l=0

(2l + 1)
Pl(cos θ)

2ikq
((−1)le−ikq − e2iδleikq). (1.28)

Moreover, plugging (1.27) into (1.26) it becomes clear that

f(k�,k) =
+∞�

l=0

(2l + 1)
Pl(cos θ)

2ik
(e2iδl − 1). (1.29)

The scattering amplitude is completely determined based on the form of δl, and the total
cross section, meaning the integration over dΩ of (1.18) takes the form

�
dσ = 2π

�
sin(θ)|f(θ)|2 = 4π

k2

+∞�

l=0

(2l + 1) sin2(δl), (1.30)
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knowing that the integral of P 2
l (cos θ) over dθ sin θ is 2

2l+1
, that Legendre polynomials are

orthogonal and that for the derivation of δl it is clear that it only depends on the modulus
of k. Each term in the sum is a partial effective cross section, as it regards particles with
angular momentum l.

Given these expressions, the scattering amplitude is often written with a different notation
[1],

f(k�,k) =
+∞�

l=0

(2l + 1)fl(k)Pl(cos θ), (1.31)

with

fl(k) =
1

2ik
(e2iδl(k) − 1). (1.32)

1.1.4 Born’s Formula

Suppose the potential in equation (1.6) is a small contribution, so that one may use perturbation
theory up to first order to get a reasonable solution to the problem. In order to do so, we write
the wave function ψ(q) =

�+∞
n=0 ψ

(n)(q), with |ψn+1| � |ψ(n)|. The biggest contribution, by
adiabatic continuity, will come from the plane wave, so that ψ(0)(q) = eik·q. Up to first
order, then, the Schrodinger equation is

� �2

2m
+ E

�
ψ(1)(q) = V (q)ψ(0)(q), (1.33)

whose solution can be calculated using the Green’s function method, so that

ψ(1)(q) = −
�

d3q�G(q− q�)V (q�)ψ(0)(q�), (1.34)

with

G(q) =
m

2π�2
eikq

q
. (1.35)

Let a be the characteristic range of interaction of the potential and let the energy of the
particle be small, so that ka is of the order of unity. In this case the oscillating term of the
Green’s function in the integral can be neglected and we see that

ψ(1)(q) ≈ ψ(0)(q)|V |a2m
�2

. (1.36)

Such expression satisfies ψ(1) � ψ(0) iff

|V | � �2

ma2
, (1.37)

which is of the order of the kinetic energy of a particle enclosed in a volume of linear dimension
a.
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At this point, considering the wave function to be the sum of the plane wave and of
ψ(1)(q), one may deduce the approximate shape of the scattering amplitude by calculating
explicitly

ψ(1)(q) = − m

2π�2
eikq

q

�
d3q�e−ik q

q
·q�
eik·q’V (q�), (1.38)

so that the scattering amplitude is actually the Fourier transform of the potential:

f(k�,k) = − m

2π�2

�
d3q�ei(k−k�)·q�

V (q�) = − m

2π�2
V (k� − k). (1.39)

1.1.5 Analytical Properties of the Scattering Amplitude

One may consider the scattering amplitude as a function of the energy E of the system in the
center of mass reference frame [2]. We consider V (q) vanishing rapidly at infinity as usual
and we suppose that the angular momentum of the particle is l = 0. Then, the solution to
(1.22) is asymptotically

u(q) = rR0(q) = A(E)e−
√−2µE

� q + B(E)e
√−2mE

� q, (1.40)

which we can analytically continue by thinking of E as a complex variable z. If E < 0, the
exponentials are real, and so have to be A(E) and B(E). This means that

A(z∗) = A∗(z), B(z∗) = B∗(z). (1.41)

The function
√−z is not single valued, but the function u(q) has to be. To solve the

problem we introduce a branch cut on the energy complex plane, starting at the origin and
running through the positive real axis up to infinity, making

√−z single valued. This way
on the upper half of the plane

u(q) = A(z)eikq + B(z)e−ikq, (1.42)

meaning that we impose
√−z = −i

√
z, while on the lower half

u(q) = A∗(z)e−ikq + B∗(z)eikq, (1.43)

so that
√−z = i

√
z. In this way we have that everywhere in the Riemann sheet Re{√−z} >

0 and that the square root of −z is indeed single valued. For u(q) to be single valued, though,
we also need the condition

A(z) = B∗(z), (1.44)

making u(q) real, too, as it should be. The complex plane cut in this way is referred as
the physical Riemann sheet. The functions A(z) and B(z) are regular everywhere on the
physical sheet except on the branch point z = 0, since u(q) is a solution of an equation with
finite coefficients. Since everywhere on the physical sheet Re{√−z} > 0, the first term in
(1.40) decreases expronentially for Re{z} < 0, while the second term increases exponentially,
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meaning that the two terms have different orders of magnitude and such expression would
not be legitimate as the asymptotic form of the wave function, as the small term is clearly
neglegible with respect to the second one. The ratio of the small and large terms must not
be less than the relative order of magnitude of the potential energy V/E, which is actually
neglected in the asymptotic region. In other words the potential must descease faster than

e−
2
√

2m
� qRe{√−z} as q → +∞. In such situation (1.40) is valid everywhere on the physical

sheet, otherwise it is only for Re{z} > 0.
An important point is that the bound states of a particle in the field V (q) are wavefunctions

that vanish at q → +∞, so that B(E) = 0 in those cases. This means that B(z) has zeroes
on the discrete energy levels of the system, and that all the zeros of B(z) are for real z.

Now, if E > 0, recalling (1.23),

u(q) = constant
�
ei(kq+δ0) − e−i(kq+δ0)

�
, (1.45)

which compared to (1.43) yields the relation

−A(z)

B(z)
= e2iδ0 , (1.46)

so that according to (1.32)

f0 =
�

2
√−2µE

�A

B
+ 1

�
. (1.47)

Now, by analytically continuing f0 to the physical sheet, one realizes that its poles correspond
to the discrete energy levels of the system, which correrspond to bound states, and that it
has no other singular points.

1.1.6 Scattering of Slow Particles

We consider particles with small velocities, so that their wavelength is large compared to the
range of interaction a of the potential, meaning that ka � 1, and that the kinetic energy
of the particle is small compared to the field within the radius a, as in the case of ultracold
atomic gases.

It can be shown that the phases δl of the solution for such a problem are proportional to
k2l, so that the partial amplitudes with l �= 0 can be neglected in the sum (1.31), leading to
the so called s-wave scattering. By using equation (1.32) one finds that

f(k�,k) ≈ f0 =
1

kcot(δ0(k))− ik
, (1.48)

which is spherically symmetric, meaning that scattering at low energies is isotropic. By
defining

lim
k→0

δ0(k)

k
= − 1

aF
, (1.49)
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one may expand the cotangent at the denominator of (1.40) and obtain

f(k�,k) ≈ − aF
1− aF

2
qeffk2 + iaFk

, (1.50)

which can be written in terms of small energies by recalling that k2 = 2µ
�2E. By analytical

continuation, letting the energy E be a complex number z, one may see that

f(k�,k) ≈ − aF

1− aF qeff
µ
�2 z + iaF

�
2µ
�2 z

, (1.51)

meaning that the scattering amplitude has a pole at the energy

Em = − �2

ma2F
. (1.52)

Such pole signals the presence of a two body bound state with a small binding energy Em

according to the last point of the discussion made in section 1.1.5.

1.1.7 Scattering from a Square Well Potential

Consider low energy particles, so that the s-wave scattering approximation can be used, in
a square well potential of the form

V (q) =

�
V0 if q < a

0 otherwise
. (1.53)

The potential is spherically symmetric and we only consider solutions of the Schrodinger
equation with l = 0, so that the general solution of the problem for q → +∞ is of the kind
(1.40). The equation of motion is

� d2

dq2
− 2µ

�2
V (q) +

2µ

�2
E

�
u(q) = 0, (1.54)

where u(q) = qR0(q) as usual. The general solution can be written as

u(q) =

�
Aeikq + Be−ikq for q > a

CeiKq +De−iKq for q < a
, (1.55)

with k =
√
2µE
� and K =

√
2µ
�
√
E − V0. We impose the boundary condition that u(0) = 0, so

that C = −D and use equation (1.46) to show that

e2iδ0 = −C

D
. (1.56)
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Finally, we impose boundary conditions, letting the two functions join smoothly at a,
meaning that they must have the same value and the same derivative at a. From these
conditions we find that

δ0(k) = −ka+ tan−1
� k

K
tan(Ka)

�
. (1.57)

If one lets V0 → +∞, the scattering length just takes the form

aF = a, (1.58)

the range of interaction of the potential. For low energies and long wavelengths, the details
of a short ranged potential are not probed, and are unimportant to the treatment. One is
allowed to model any short ranged potential as a hard core potential of range aF .
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2 Mean Field Analysis of the BCS-BEC Crossover

In this chapter we seek a mean field description of a gas of ultracold fermionic atoms whose
interaction is modeled with an attractive contact potential of value −g, with g > 0. Since the
gas is very dilute, the most relevant contributions come from two body interactions, so that
the second quantized Hamilton operator can be written in the form of the BCS Hamiltonian

Ĥ =

�

V

d3q
�
â†σ(q)

�
− ∇2

2m

�
âσ(q)− gâ†↑(q)â

†
↓(q)â↓(q)â↑(q)

�
, (2.1)

where V is the volume of the system, � = 1, q is the coordinate of the particles, σ is the
spin index; the operators âσ(q) and â†σ(q) are respectively the fermionic annihilation and
creation operators; the sum over repeated indeces is implicit.

The partition function at equilibrium, using the coherent state path integral formalism
[5], then, is of the form

Z =

�
D[ψ̄σ(q, τ)ψσ(q, τ)]e

−S[ψ̄σ(q,τ)ψσ(q,τ)], (2.2)

in which the action S[ψ̄σ(q, τ)ψσ(q, τ)] reads

S[ψ̄σψσ] =� β

0

dτ

�

V

d3q
�
ψ̄σ(q, τ)

�
∂τ −

∇2

2m
− µ

�
ψσ(qτ)− gψ̄↑(q, τ)ψ̄↓(q, τ)ψ↓(q, τ)ψ↑(q, τ)

�
,

(2.3)

where β = 1
kBT

, with kB the Boltzmann constant, T the absolute temperature, ψσ(q, τ) is
a time, position and spin dependent Grassmann field and µ is the chemical potential of the
system. Our objective is to study this system while varying the value of the potential g,
which can be tuned by changing the scattering length aF of the two body scattering events.
Such quantity can be controlled continuously and arbitrarily thanks to the use of Feshback
resonances [1].

2.1 Gap and Number Equations

The aim of this section is to derive the mean field gap and number equations in order to
relate the macroscopic quantities of the system. Such equations contain most of the Physics
of interest, and already at the mean field level allow a glimpse of the superconducting and
superfluid nature of our gas in the different regimes of the crossover.

2.1.1 Hubbard-Stratonovich Transformation

The treatment of the partition function (2.2) will not differ much from the standard BCS
one, as what we want to investigate is the behaviour of the Cooper pairs formed below
the critical temperature Tc, which, as the interaction gets stronger, will have a shorter and
shorter correlation length, until the formation of actual bosonic molecules occurs [4]. We
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know, then, that to investigate the behaviour of Cooper pairs, we may introduce the spinless
bosonic field Δ(q, τ) in the partition function via a Hubbard-Stratonovich transformation.
We then separate the interaction using the Cooper channel and obtain the new action

S[Δ̄Δψ̄ψ] =

=

� β

0

dτ

�

V

d3q
� |Δ(q, τ)|2

g
−Δ(q, τ)ψ̄↑(q, τ)ψ̄↓(q, τ)− Δ̄(q, τ)ψ↓(q, τ)ψ↑(q, τ)+

+ψ̄σ(q, τ)
�
∂τ −

∇2

2m
− µ

�
ψσ(q, τ)

�
.

(2.4)

Now that the quartic term in the fermionic fields is decoupled one can introduce the
Nambu spinors

Ψ̄(q, τ) =
�
ψ̄↑(q, τ) ψ↓(q, τ)

�
, Ψ(q, τ) =

�
ψ↑(q, τ)
ψ̄↓(q, τ)

�
, (2.5)

and rewrite the action as

S[Δ̄Δψ̄ψ] =

� β

0

dτ

�

V

d3q
� |Δ(q, τ)|2

g
− Ψ̄(q, τ)G−1

q,τ (Δ̄,Δ)Ψ(q, τ)
�
+ β

�

p

ξp, (2.6)

with ξp = p2

2m
− µ being the free particle energy, while the inverse fermionic propagator is

G−1
q,τ (Δ̄,Δ) =

�
−∂τ +

∇2

2m
+ µ Δ(q, τ)

Δ̄(q, τ) −∂τ − ∇2

2m
− µ

�
. (2.7)

The last term comes from the fact that the fermionic fields anticommute. Such term yields
a constant, and can then be taken out of the path integral. Its role will come into play in
the calculation of the number equation.

The path integral over the fermionic variables can then be solved, yielding the determinant
of G−1

q,τ (Δ̄,Δ). We then managed to write a new effective theory for the field Δ(q, τ), whose
action reads

Seff [Δ̄Δ] =

� β

0

dτ

�

V

d3q
|Δ(q, τ)|2

g
− Tr[ln(G−1

q,τ (Δ̄,Δ))] + β
�

p

ξp . (2.8)

2.1.2 Derivation of the Gap and Number Equations

In the spirit of mean field, to treat the path integral we use the saddle point approximation
imposing Δ(q, τ) = Δ0 to be a homogeneous field in space and time. To find the value that
minimizes (2.8) one may compute S0, the effective action calculated at Δ0, and derive it
with respect to Δ0, imposing the condition

∂S0

∂Δ0

= 0. (2.9)
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First of all, then, we consider the action (2.8) calculated at Δ(q, τ) = Δ0,

S0 = βV
|Δ0|2
g

− Tr[lnG−1
KP (Δ̄0,Δ0)], (2.10)

where G−1
KP (Δ̄0,Δ0) is the inverse fermionic propagator written in Matzubara representation,

G−1
KP (Δ̄0,Δ0) =

�
(iΩF

n − ξp)δ
(4)
P,K Δ0δ

(4)
K,−P

Δ0δ
(4)
K,−P (iΩF

n + ξp)δ
(4)
P,K

�
, (2.11)

where by P we mean the four vector P =
�
iΩF

n ,p
�
, with

ΩF
n =

(2n+ 1)π

β
, n ∈ Z, (2.12)

the fermionic Matzubara frequencies, and ξp = p2

2m
− µ is the free particle energy.

The isolated zeros of the inverse propagator correspond to the discrete energy levels of
the fermions of the theory. In particular, by imposing that the determinant of (2.11) is null
when the field is homogeneous and by performing a Wick rotation to real time t = −iτ
corresponding to ω = iΩF

n , we find that the excitation energies of the fermions are

ω =
�

ξ2p + |Δ0|2, (2.13)

which is the spectrum of a free particle plus an energy gap |Δ0|, interpreted as the energy
necessary to break a Cooper pair.

By deriving (2.10), then,

∂S0

∂Δ0

= βV
Δ̄0

g
− Tr

�
GKP (Δ̄0,Δ0)

�
0 1
0 0

� �
, (2.14)

where in Matzubara representation

GKP (Δ̄0,Δ0) = − 1

(ΩF
n )

2 + ξ2p + |Δ0|2

�
(iΩF

n + ξp)δ
(4)
P,K −Δ0δ

(4)
P,−K

−Δ̄0δ
(4)
P,−K (iΩF

n − ξp)δ
(4)
P,K

�
. (2.15)

Given these considerations, equation (2.9), which is the familiar gap equation, reads

1

g
=

kBT

V

�

p

1

(ΩF
n )

2 + ξ2p + |Δ0|2
. (2.16)

Such relation depends on both |Δ0| and µ, which are unknowns for the interacting system,

since for g �= 0 the chemical potential µ �= ωF , the Fermi energy ωF = (3π2n)
2
3

2m
.

Despite the fact that we are working in the grand canonical ensamble for convenience,
we want to provide a model for an experiment in which the number of particles N is fixed.
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Since we will be working in the thermodynamic limit, though, the number of particles and
the volume V will take infinite values, while the density of particles n = N

V
will be kept fixed,

yielding results analogous to the ones obtained in the canonical ensemble. Given the mean
field partition function that we found in our treatment,

ZMF = e−S0 , (2.17)

the average number of particles can be calculated as

n =
kBT

V
∂µ ln(ZMF ) =

�

p

1− ∂µ
|Δ0|2
g

+
kBT

V
Tr

�
GKP

�
1 ∂µΔ0

∂µΔ̄0 −1

� �
, (2.18)

which recalling (2.15) reads

n =
�

p

1− ∂µ|Δ0|2
g

− kBT

V

�

P

2ξp − ∂µ|Δ0|2
(ΩF

n )
2 + ξ2p + |Δ0|2

=

=
�

p

1− kBT

V

�

P

2ξp
(ΩF

n )
2 + ξ2p + |Δ0|2

,

(2.19)

in which the last equality holds thanks to the gap equation (2.16). It is indeed very lucky
that the terms proportional to the derivative of the energy gap cancel out at equilibrium.

By solving (2.16) and (2.19) in a consistent way, one may get the mean field values of the
gap Δ0 and of the chemical potential of the system µ. Actually, the gap equation written in
such a way diverges in the ultraviolet and needs regularization. The divergence comes from
the contact potential approximation, and can be fixed by improving it with the introduction
of its definition in terms of the scattering length aF , as will be shown. Indeed, by performing
the sum over Matzubara frequencies of the gap equation and the number equation one gets
the system 




1
g
= 1

2V

�
p

tanh
�

β
2

√
ξ2p+|Δ0|2

�
√

ξ2p+|Δ0|2

n = 1
V

�
p

�
1− ξp√

ξ2p+|Δ0|2
tanh

�
β
2

�
ξ2p + |Δ0|2

�� . (2.20)

In appendix A one can find the calculation of the mean field grand canonical potential, from
which one may derive the number and gap equations directly from its minimization and its
derivative with respect to µ. We now investigate the behaviour of the system at T → 0+

and T = Tc, the critical temperature.

2.2 Critical Temperature

The critical temperature of the system Tc is the lowest temperature at which the energy
gap becomes |Δ0(Tc)| = 0. In fact, |Δ0| = 0 is always a solution of (2.9), meaning that it
always extremizes the grand canonical potential, but it corresponds to a maximum only for
temperatures below Tc. Below the critical temperature the spontaneous symmetry breaking
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of the U(1) gauge symmetry of the theory occurs, and the field Δ0 that minimizes the grand
potential becomes non zero, solving the gap equation. In this section we investigate the
behaviour of the critical temperature of the system in the different regimes that depend on
the strength of g.

2.2.1 Analytical Results

To find an expression for the critical temperature one may simply impose the condition
|Δ0| = 0 in the system of equations (2.20). First, though, one would like to get rid of the
ultraviolet divergence present in the gap equation. The divergence comes from the contact
potential approximation, and may be cured by regularizing it, defining it in terms of the
scattering length aF of the system:

1

g
= − m

4πaF
+

1

V

�

p

m

p2
, (2.21)

where the second term is indeed divergent and happens to cancel exactly the divergence of
the gap equation.

The system of equations then becomes




− m

4πaF
= 1

V

�
p

�
tanh

�
βc
2
ξp

�
2ξp

− m
p2

�

n = 1
V

�
p

�
1− tanh

�
βc

2
ξp

�� . (2.22)

From these equations one may obtain analytical results with respect to the expressions of
the critical temperature and of the chemical potential in the BCS and deep BEC limit.

First, we turn the sums into integrals in polar coordinates with the usual prescription
1
V

�
p → 1

(2π)3

� 2π

0
dϕ

� 1

−1
d cos θ

� +∞
0

dpp2, then introduce a unit integral
� +∞
−∞ dεδ( p2

2m
− ε)

and integrate over the momentum p, with the overall effect of a change of variables yielding




− m

4πaF
= m

3
2√

2π2

� +∞
0

dε
√
ε
�
tanh

�
βc
2
(ε−µ)

�
2(ε−µ)

− 1
2ε

�

n = m
3
2√

2π2

� +∞
0

dε
√
ε
�
1− tanh

�
βc

2
(ε− µ)

�� . (2.23)

The first integral has an analytical solution when µ > 0, and in fact by substituting ε/µ = z
one gets the equation

− 1

aF
=

√
8mµ

π

� +∞

0

dz
√
z
�tanh

�
βcµ
2
(z − 1)

�

2(z − 1)
− 1

2z

�
, (2.24)

so that

− 1

aF
=

√
8mµ

π
ln

� 8γ

πe2KBTc

�
, (2.25)
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with γ the Euler-Mascheroni constant and e the Euler constant [4]. The critical temperature
can then be extracted and reads

kBTc =
8γ

πe2
µe

π√
8mµaF . (2.26)

We have a relation between the critical temperature and the chemical potential in all the
cases in which µ > 0.

In particular we have that in the BCS regime, in which 1
aF

→ −∞ and the interaction
is very weak, the critical temperature is much smaller than the chemical potential, meaning
that we can approximate µ with the Fermi energy ωF , as predicted in the plot in figure 4.

In the BEC regime, instead, we expect a bound state to develop and the chemical
potential to change sign, with the realization of a bosonic system. Considering the critical
temperature to be Tc � |µ| the hyperbolic tangent can be set to unity, so that one may
exploit the fact that � +∞

0

dz
√
z
� 1

2(z − 1)
− 1

z

�
= −π

2
, (2.27)

to rewrite the gap equation as

− m

4πaF
= −m

3
2
√
µ

2
√
2π

, (2.28)

yielding

µ =
1

2ma2F
, (2.29)

which corresponds to half of the predicted energy of the new molecular bound state, as stated
in equation (1.52). By substituting (2.29) in the number equation in (2.23) while expanding
the hyperbolic tangent around Tc → 0+ one gets

n ≈ 2
m

3
2√

2π2

� +∞

0

dε
√
εe

− ε−µ
kBTc , (2.30)

so that the critical temperature should be

Tc ≈
1

4ma2F ln
�

1
2ma2FωF

� 3
2

. (2.31)

This result is not consistent with the previous approximations we made, as the critical
temperature turns out to be divergent in the strong coupling limit, but can still be interpreted
physically as the dissociation temperature of the molecules. To fix this inconsistency one
should go beyond the mean field analysis and consider quantum fluctuations around the
saddle point of the theory [10].
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2.2.2 Numerical Treatment

The unknowns in the system of equations (2.22) are the critical temperature and the chemical
potential. We are interested in studying the behaviour of the critical temperature with
respect to the variation of the scattering length aF along the whole crossover. In order to
do so, we procede in a similar fashion as done in [9] for the T → 0+ case by introducing the
dimensionless variables

x2 =
βcp

2

2m
, z0 = βcµ, (2.32)

and getting rid of the divergences by integrating by parts, thereby obtaining the expressions




1
aF

= 4
π

√
2mkBTc

� +∞
0

dx
�

x4

2(x2−z0) cosh
2
�

1
2
(x2−z0)

� − z0
x2 tanh

�
1
2
(x2−z0)

�
(x2−z0)2

�

n = (2mkBTc)
3
2

6π2

� +∞
0

dx x4

cosh2
�

1
2
(x2−z0)

�
, (2.33)

which we recast by writing �
1
aF

= 4
π

√
2mkBTcI3(z0)

n = (2mkBTc)
3
2

6π2 I4(z0)
. (2.34)

Both integrals depend on only one parameter. In particular, from the number equation

we can recover the expression for the Fermi energy ωF = (3π2n)
2
3

2m
, from which one gets that

kBTc

ωF

=
� 2

I4(z0)

� 2
3
,

µ

ωF

=
µ

kBTc

kBTc

ωF

= z0

� 2

I4(z0)

� 2
3
,

1

kFaF
=

4

π

2
1
3 I3(z0)

I4(z0)
1
3

. (2.35)

The plot we obtain is shown below, and shows how the crcitical temperature increases as
the scattering length goes to 1

aF
→ +∞ as predicted by (2.31).

Figure 1: Mean field critical temperature vs. inverse scattering length over the whole
crossover.
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2.3 T → 0+ Limit

In this section we show the behaviour of some of the most significant physical quantities of
the system at zero temperature, among which the variation of the energy gap, the chemical
potential and the condensed fraction of Cooper pairs along the whole crossover. Most of the
results will be achieved numerically, even though some analytical results can be extracted.

2.3.1 Numerical Solutions for the Gap and Number Equations

At zero temperature the system of equations (2.20) can be reduced to two one dimensional
integrals that can be written as linear combinations of elliptic integrals as shown in [9],
thanks to the fact that the hyperbolic tangent at the numerator becomes unity. In order to
reproduce such result, though, we have to eliminate the ultraviolet divergence present in the
gap equation, which using (2.21) will read

− m

4πaF
=

1

V

�

p

� 1

2
�

ξ2p + |Δ0|2
− m

p2

�
. (2.36)

One may start the treatment of the equation by transforming the sum over p into an
integral in polar coordinates with the usual prescription. Then, it is useful to make the
integral dimensionless by introducing the new variables

x2 =
p2

2m

1

|Δ0|
, x0 =

µ

|Δ0|
, (2.37)

so that one may get the expression for the scattering length

− 1

aF
=

2

π
(2m|Δ0|)

1
2

� +∞

0

dxx2
� 1

[(x2 − x0)2 + 1]
1
2

− 1

x2

�
=

4(2m|Δ0|)
1
2

π
I1(x0). (2.38)

In the meantime, using the same substitutions, the number equation can be written as

n =
(2m|Δ0|)

3
2

4π2

� +∞

0

dxx2
�
1− x2 − x0

[(x2 − x0)2 + 1]
1
2

�
=

(2m|Δ0|)
3
2

3π2
I2(x0). (2.39)

One may explicitly eliminate the divergences by integrating by parts I1(x0) and I2(x0).
As far as the first integral is concerned, indeed, the term emerging from parts integration is

lim
x→+∞

� x3

[(x2 − x0)2 + 1]
1
2

− x
�
= 0, (2.40)

while for the latter

lim
x→+∞

�x3

3
− x3(x2 − x0)

3[(x2 − x0)2 + 1]

�
= 0, (2.41)
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Figure 2: Energy gap vs. inverse scattering length along the whole crossover

leaving the system of equations as





− 1
aF

= 4(2m|Δ0|)
1
2

π

� +∞
0

dxx0x2(x2−x0)−x2

[(x2−x0)2+1]
3
2

n = (2m|Δ0|)
3
2

3π2

� +∞
0

dx x4

[(x2−x0)2+1]
3
2

, (2.42)

which is explicitly convergent and treatable numerically. These calculations are shown
explicitly, since for the treatment of the Rabi coupled diluted fermion gas the steps will
be very similar.

From (2.42) one can write the physical quantities of interest in terms of the integrals
I1(x0) and I2(x0) as

|Δ0|
ωF

=
1

I2(x0)
2
3

,
µ

ωF

=
µ

|Δ0|
|Δ0|
ωF

=
x0

I2(x0)
2
3

,
1

kFaF
= − 4

π

I1(x0)

I2(x0)
1
3

, (2.43)

with ωF = (3π2n)
2
3

2m
the Fermi energy of the system and kF = (3π2n)

1
3 its Fermi momentum.

Using these expressions one may plot how the energy gap and the chemical potential vary
with the scattering length, keeping the density of particles n fixed. In choosing a given
ratio x0 one may deduce how the energy gap or the chemical potential depend on the free
parameter aF . In other words, by fixing a value of the scatttering length aF and x0, both
values of |Δ0| and µ are automatically fixed by (2.43). The plots describing the behaviour
of |Δ0| and µ at thermodynamic equilibrium with respect to the change of the scattering
length are shown in figures 2 and 3 respectively. It is also interesting to see how the energy
gap changes together with the chemical potential, which is shown in figure 4.
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Figure 3: Chemical potential vs. inverse scattering length along the whole crossover

Figure 4: The energy gap as a function of the chemical potential. Notice how as the critical
temperature approaches zero the chemical potential converges to the Fermi energy.

2.3.2 Reduced Density Matrices and BEC

The fact that below a critical temperature Tc the value of |Δ0| takes non vanishing values
signifies the spontaneous symmetry breaking of the U(1) gauge symmetry of the model.
The solution |Δ0| = 0 indeed always satisfies (2.9), minimizing the grand potential above
Tc and locally maximizing it below it. Such phenomenon translates to a phase transition
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with the formation of Cooper pairs, which behave like spinless bosonic particles. Such pairs
may undergo Bose-Einstein condensation, and an accessible quantity one may calculate is
their condensate fraction. Before tackling the problem of the calculation of the condensate
fraction for an interacting Fermi gas, we briefly review the arguments made by Penrose and
Onsager in [12] and by Yang in [13]. In particular we will see the connection between BEC
and off diagonal long range order (OLDRO).

Let ρ̂ be the density matrix of an N particle fermionic system, meaning

ρ̂ =
�

j1,...,jN

pj1,...,jN |j1, ..., jN� �j1, ..., jN | , (2.44)

where the index jk stands for the quantum numbers identifying the k − th particle and
pj1,...,jN is the probability for the system to be in the pure state |j1, ..., jN�. In particular, for
a system in thermal equilibrium like the one we are studying,

ρ̂ =
1

Z
e−βĤ . (2.45)

In this work, we are always working in thermal equilibrium and in the thermodynamic limit,
meaning that the particle density n = N

V
will be kept fixed, while the number of particles N

and the volume V will be considered to be infinite.
We may define the elements of the reduced density matrices ρ̂1 and ρ̂2 as

�j|ρ̂1|k� = Tr[âj ρ̂â
†
k], �jk|ρ̂2|lm� = Tr[âj âkρ̂â

†
mâ

†
l ], (2.46)

where âj and â†j are respectively the annihilation and creation operators for a single particle
with quantum numbers j and by Tr[·] we mean the trace operator. Both the reduced density
matrices are positive semidefinite, since they are products of positive semidefinite operators.
Moreover, since Tr[ρ̂] = 1, Tr[ρ̂1] = N and Tr[ρ̂2] = N(N − 1), the eigenvalues of ρ̂1 must
be smaller than N , while the ones of ρ̂2 have to be smaller than N(N − 1). The physical
meaning of the elements of such operators can be understood by noticing that

�j|ρ̂1|k� = �â†kâj�, �jk|ρ̂2|lm� = �â†mâ†l âj âk�, (2.47)

so that they are strictly related to the single and two particle thermal Green’s functions of
the system.

Both ρ̂1 and ρ̂2 are hermitian, and can thus be diagonalized as

ρ̂1 =
�

j

nj |j� �j| , ρ̂2 =
�

j,k

njk |jk� �jk| , (2.48)

where |j� and |lm� are the eigenstates of ρ̂1 and ρ̂2 respectively, not necessarily corresponding
to quantities related to the eigenstates of Ĥ. It is natural, knowing the trace of such
operators, to interpret nj, the eigenvalues of ρ̂1, as the numbers of particles in the single
particle state |j� and the eigenvalues of ρ̂2, njk, as the numbers of pairs in the two particle
state |jk�. The criterion to have Bose Einstein condensation in the case of a fermionic gas
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as the one we are studying is that there must be at least an eigenvalue of ρ̂2, which we will
call λ2, of order N , so that the condensate fraction

n0 =
λ2

V
, (2.49)

is finite in the thermodynamic limit, meaning that there is a macroscopic occupation of a
state |jk� by Cooper pairs [14]. It is clear that the eigenvalues of ρ̂1 will all be smaller than
one because of the Pauli exclusion principle in the case of a Fermi gas, while for a Bose
system one may calculate the condensate fraction directly as the largest eigenvalue of ρ̂1. In
particular, it is possible to show that for a fermionic system the maximum eigenvalue of ρ̂2
can be at most of order N , and not N2 [13]. The physical interpretation of the formation of
bosonic particles made of fermionic pairs, in this picture, holds.

2.3.3 OLDRO

A different way of facing the question of whether BEC may occur in a Fermi gas is to look at
the behaviour of the elements of the reduced density matrix ρ̂2 in coordinate representation

�q�
1q

�
2|ρ̂2|q1q2� = Tr[â↓(q

�
1)â↑(q

�
2)ρ̂â

†
↑(q2)â

†
↓(q1)]. (2.50)

What Yang shows [13] is that if such elements do not vanish at infinite interparticle distances,

�q�
1q

�
2|ρ̂2|q1q2� �= 0 for

�
|q�

1 − q1| → +∞
|q�

2 − q2| → +∞ , (2.51)

the reduced density matrix ρ̂2 will certainly have an eigenvalue of order N in the fermionic
case.

The element of ρ̂2 in coordinate representation, using its diagonal form (2.48), reads

�q�
1q

�
2|ρ̂2|q1q2� =

�

j,k

njk �q�
1q

�
2|jk� �jk|q1q2� =

�

j,k

njkψjk(q
�
1,q

�
2)ψ

∗
jk(q1,q2), (2.52)

where ψjk(q1q2) is the eigenvector of ρ̂2 relative to the eigenvalue njk written in coordinate
representation.

We now show explicitly that equation (2.51) holds at the mean field level for the theory
of action (2.6), taking into account that |Δ0| is kept fixed at its saddle point value. The
path integration formalism comes in handy in this task, since we are dealing now with a
Gaussian theory for the fermionic degrees of freedom. In particular, then, when calculating
the elements of ρ̂2 in coordinate representation, one may exploit Wick’s theorem as

�q�
1q

�
2|ρ̂2|q1q2� = �ψ̄↑(q1)ψ̄↓(q2)��ψ↓(q

�
1)ψ↑(q

�
2)� − �ψ↑(q

�
2)ψ̄↑(q1)��ψ̄↓(q2)ψ↓(q

�
1)�, (2.53)

where the single terms can be calculated using the explicit expression of the fermionic
propagator in (2.15), which is

G(Δ̄0,Δ0) =

�
�ψ↑ψ̄↑� �ψ↑ψ↓�
�ψ̄↓ψ̄↑� �ψ̄↓ψ↓�

�
. (2.54)
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By working in Matzubara representation, then, after the sum over Matzubara frequencies,
one gets that

�q�
1q

�
2|ρ̂2|q1q2� =

1

4V 2

�

p,k

� |Δ0|2 tanh(β2
�

ξ2p + |Δ0|2) tanh(β2
�

ξ2k + |Δ0|2)
�

ξ2p + |Δ0|2
�

ξ2k + |Δ0|2
eip·(q

�
1−q�

2)e−ik·(q1−q2)+

+
�ξpξk tanh(β2

�
ξ2p + |Δ0|2) tanh(β2

�
ξ2k + |Δ0|2

�
ξ2p + |Δ0|2

�
ξ2k + |Δ0|2

− 1
�
eip·(q

�
2−q2)eik·(q

�
1−q1)

�
,

(2.55)

where the first term corresponds to �ψ̄↑(q1)ψ̄↓(q2)��ψ↓(q�
1)ψ↑(q�

2)�, while the second to the
other term in (2.53). What is interesting about this formula is that it makes it explicit that
the second term in the sum in the thermodynamic limit, in which the sum over momenta

can be transformed into an integral, will vanish in the limit

�
|q�

1 − q1| → +∞
|q�

2 − q2| → +∞ due to

the Riemann-Lebesgue lemma. In the meantime, the other term will survive only below the
critical temperature, since it is proportional to |Δ0|2. Then, OLDRO will hold below Tc, and
the two particle reduced density matrix will factorize as

�q�
1q

�
2|ρ̂2|q1q2� = �ψ̄↑(q1)ψ̄↓(q2)��ψ↓(q

�
1)ψ↑(q

�
2)� for

�
|q�

1 − q1| → +∞
|q�

2 − q2| → +∞ . (2.56)

Since OLDRO is present, we can be certain that there will be a non-vanishing condensate
fraction below the critical temperature Tc. For completeness, we write (2.56) explicitly, as

�q�
1q

�
2|ρ̂2|q1q2� =

1

4V 2

�

p,k

|Δ0|2 tanh(β2
�

ξ2p + |Δ0|2) tanh(β2
�

ξ2k + |Δ0|2)
�

ξ2p + |Δ0|2
�

ξ2k + |Δ0|2
eip·(q

�
1−q�

2)e−ik·(q1−q2).

(2.57)

2.3.4 Condensate Fraction in the T → 0+ Limit

In this section we want to calculate the fraction of condensed Cooper pairs along the whole
crossover, giving particular attention to the T → 0+ case. In particular we can recover an
analytical result depending on the chemical potential and the energy gap [15], whose values
along the whole crossover are reported in figure 4. We will then be able to construct the
plot for the condensed fraction vs the scattering length aF .

As stated in the previous sections, we want to calculate the highest eigenvalue of (2.57)
below the critical temperature. Such quantity can be calculated as

n0 =
1

V

�

V

d3q1

�

V

d3q2|�ψ↓(q1)ψ↑(q2)�|2 . (2.58)
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By working in Matzubara representation and recalling (2.57), thanks to the orthonormality
of plane waves, we see that such expression corresponds to

n0 =
|Δ0|2
4V

�

p

tanh2(β
2

�
ξ2p + |Δ0|2)

ξ2p + |Δ0|2
. (2.59)

In particular, we want to focus on the T → 0+ limit, where n0 will take the highest
values. In such regime (2.59) reads

n0 =
|Δ0|2
4V

�

p

1

ξ2p + |Δ0|2
=

|Δ0|2
8π2

� +∞

0

dp
p2

ξ2p + |Δ0|2
. (2.60)

By making the change of variables

x2 =
p2

2m

1

|Δ0|
, x0 =

µ

|Δ0|
, (2.61)

one gets that

n0 =
(2m|Δ0|

3
2 )

8π2

� +∞

0

dx
x2

(x2 − x0)2 + 1
, (2.62)

which is solvable analytically, and yields

n0 =
(m|Δ0|)

3
2

8π

�
x0 +

�
x2
0 + 1 . (2.63)

Written in a more convenient way, using the number equation in (2.42), we see that

n0

n/2
=

3π

4
√
8I2(x0)

�
x0 +

�
x2
0 + 1 , (2.64)

meaning that we can use the data obtained in figure 4 to plot such normalized condensed
fraction vs the scattering length, as shown in figure 5.

Notice that in the BEC regime the fraction approaches unity, meaning that all fermions
will be involved in Cooper pairing. In the BCS regime, instead, the fraction will be lower,
but still non vanishing for finite falues of 1

kF aF
.
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Figure 5: Condensate fraction vs inverse scattering length over the whole crossover at T →
0+.
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3 Gaussian Fluctuations in the BCS-BEC Crossover

We now want to improve our approximation with the introuction of Gaussian fluctuations
in the partition function. The results we found so far, in fact, may describe well the BCS
regime, in which the attraction is very weak, but fail to reproduce the wanted results in the
BEC regime, as we saw for example in the calculation of the critical temperature in equation
(2.31). Our objective is the calculation of a more refined grand canonical potential in order
to establish a more meaningful relation between the chemical potential µ and the number of
particles n, by obtaining a new number equation n = −∂µΩ as done in [10]. Such relation
will enable us to calculate again the physical values of interest.

3.1 General Form of the Grand Canonical Potential

We start this section with the derivation of the grand canonical potential with the inclusion
of Gaussian fluctuations. From the effective action

Seff [Δ̄Δ] =

� β

0

dτ

�

V

d3q
|Δ(q, τ)|2

g
− Tr[ln(G−1

q,τ (Δ̄,Δ))] + β
�

p

ξp, (3.1)

with

G−1
q,τ (Δ̄,Δ) =

�
−∂τ +

∇2

2m
+ µ Δ(q, τ)

Δ̄(q, τ) −∂τ − ∇2

2m
− µ

�
, (3.2)

one may introduce fluctuations by separating the bosonic field into the homogeneous classical
part Δ0 satisfying the gap equation

1

g
=

1

2V

�

p

tanh
�
β
2

�
ξ2p + |Δ0|2

�
�

ξ2p + |Δ0|2
, (3.3)

and its fluctuations around it, which will behave as a complex field that we will call η(q, τ),

Δ(q, τ) = Δ0 + η(q, τ). (3.4)

Then, the task at hand is to expand Tr[ln(G−1
q,τ )] about η(q, τ) → 0. To do so, one may

write the inverse fermionic propagator in Matzubara representation as

G−1
KP =

�
(iΩF

n − ξp)δ
(4)
K,P Δ0δ

(4)
K,−P

Δ̄0δ
(4)
K,−P (iΩF

n + ξp)δ
(4)
K,P

�
+

�
0 ηP+K

η̄P+K 0

�
=

= G̃−1
KP + ηKP ,

(3.5)

and express the trace of the logarithm of G−1
KP as

Tr[lnG−1
KP ] ≈ Tr[ln G̃−1

kp ] + Tr[G̃KPηPK ]−
1

2
Tr[G̃KPηPLG̃LMηMK ]. (3.6)
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The first term in the expansion contributes to the action at the saddle point, yielding

S0 = βV
|Δ0|2
g

− Tr[lnG−1
KP (Δ̄0,Δ0)] + β

�

p

ξp, (3.7)

which goes outside the path integral, since it depends only on Δ0 and corresponds to the
mean field theory. The second term ends up cancelling the linear terms in η(q, τ), leaving
us with a purely Gaussian theory. The quadratic term, instead, reads

1

2
Tr[G̃KPηPLG̃LMηMK ] =

kBT

2V

�

P,K

Δ2
0η̄K−P η̄K−P + Δ̄2

0ηK−PηP−K + 2(iΩF
n + ξp)(iΩ̃nF − ξk)η̄P+KηP+K

((ΩF
n )

2 + ξ2p + |Δ0|2)(Ω̃2
nF + ξ2k + |Δ0|2)

,
(3.8)

with both

ΩF
n =

(2n+ 1)π

β
, Ω̃mF =

(2m+ 1)π

β
, n,m ∈ Z, (3.9)

being fermionic Matzubara frequencies. Denoting by K the four vector (iΩB
m,k), with

ΩB
m =

2mπ

β
, m ∈ Z (3.10)

bosonic Matzubara frequencies, the new effective action can be written as

Seff
G [η̄η] = S0 +

�

K

�
η̄K η−K

�
MK

�
ηK
η̄−K

�
, (3.11)

with the inverse propagator of the bosonic fluctuations being

MK =
1

2g
Id+ χK , (3.12)

where Id is the 2× 2 identity matrix in Nambu space and

χK =
kBT

2V

�

P




(iΩF
n−ξp)(i(ΩB

m+ΩF
n )+ξk+p)

((ΩF
n )2+ξ2p+|Δ0|2)((ΩB

m+ΩF
n )2+ξ2k+p+|Δ0|2)

Δ2
0
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Δ̄2
0

((ΩF
n )2+ξ2p+|Δ0|2)((ΩB
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n )2+ξ2k+p+|Δ0|2)

(iΩF
n−ξp)(i(−ΩB
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n )+ξ−k+p)

((ΩF
n )2+ξ2p+|Δ0|2)((−ΩB
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n )2+ξ2−k+p+|Δ0|2)


 .

(3.13)
More explicitly, one may perform the sums over Matzubara frequencies for the elements

of χK . The calculations are reported in appendix B, and the results are presented below,
noticing that (χK)11 = (χ−K)22 and that (χK)12 is the complex conjugate of (χK)21,

(χK)11 =
1

2V

�

p

�(
�

ξ2p + |Δ0|2 − ξp)(iΩ
B
m +

�
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� +
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m) tanh
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β
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2 + ξ2p+k − ξ2p + 2iΩB
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ξ2p + |Δ0|2
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�
,

(3.14)
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while

(χK)12 =
1

2V

�

p

tanh
�

β
2

�
ξ2p + |Δ0|2

�

�
ξ2p + |Δ0|2((ΩB

m)
2 + ξ2p+k − ξ2p − 2iΩB

m

�
ξ2p + |Δ0|2)

. (3.15)

The partition function of the system, since our new theory is Gaussian, reads

ZG =

�
D[η̄η]e−Seff

G [η̄η] = e−S0

�
det

�
M

��−1

. (3.16)

and the corresponding grand canonical potential is

ΩG

V
=

kBT

V
S0 +

kBT

V
Tr[ln

�
M

�
] =

ΩMF

V
+

kBT

V
Tr[ln

�
M

�
] , (3.17)

where byM we mean the infinite dimensional matrix whose blocks areMK and kBT
V

S0 =
ΩMF

V

corresponds to the mean field grand canonical potential. Since M is a block matrix, its
determinant may be computed as the product of the determinants of all the MK .

3.2 Critical Temperature

Now that we have an expression for the effective action with the inclusion of Gaussian
fluctuations and a general expression for the partition function and the grand canonical
potential, we can restrict ourselves to the critical temperature regime. Our objective is to
improve the results obtained in the mean field case, and in particular to understand the
behaviour of Tc along the crossover.

3.2.1 MK at the Critical Temperature

We want to investigate the properties of MK before deriving a feasible expression for the
number equation at the critical temperature. First, we start by noticing that by imposing
Δ0 = 0 the off-diagonal terms vanish since they are proportional to Δ2

0, so that it is no
longer useful to consider MK in Nambu space. Then, one may write

MK =
1

g
− 1

V

�

p

tanh
�
βc

2
ξp

�

ξp+k + ξp − iΩB
m

. (3.18)

First, we want to eliminate the dependence on mixed p and k terms from the denominator,
since we want to transform the sum over p into an integral in polar coordinates. To do so,
we substitute p → p− k

2
and k → −k, so that

MK =
1

g
− 1

V

�

p

tanh
�
βc

2
ξp+k/2

�

ξp+k/2 + ξp−k/2 − iΩB
m

, (3.19)
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meaning that the dependence on the angle is present only in the argument of the hyperbolic
tangent: explicitly, by using the usual regularization for the potential,

MK = − m

4πaF
− m

(2π)2

� 1

−1

d cos θ

� +∞

0

dpp2
�tanh

�
βc

2
( p2

2m
+ k2

8m
+ pk cos θ

2m
− µ)

�

p2 + k2

4
− 2mµ− imΩB

m

− 1

p2

�
, (3.20)

where we mean k = |k|.
The integration over d cos θ is straight forward, since only the hyperbolic tangent will be

affected by it, and

� 1

−1

d cos θ tanh
�βc

2
(
p2

2m
+

k2

8m
+

pk cos θ

2m
− µ)

�
=

4mkBTc
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�
ln

�
cosh

�βc

2

�(p+ k/2)2

2m
−µ

���
− ln

�
cosh

�βc

2

�(p− k/2)2

2m
− µ

����
.

(3.21)

We may make the integral adimensional by performing the changes of variables

βcΩ
B
n = ω, z = βc

k2

2m
, z0 = βcµ. (3.22)

so that finally, calling

A(x, z) = ln
�
cosh

�1
2

�
(x+

z

2
)2 − z0

���
, (3.23)

one gets that the inverse propagator MK has the form

MK = −m

4π

� 1

aF
+

2
√
2mkBTc

zπ

� +∞

0

dx
�x[A(x, z)− A(x,−z)]

x2 + z2

4
− z0 − iω

2

− z
�
. (3.24)

It is straight forward to check that the integrand vanishes at infinity, since

lim
x→+∞

�
ln

�
cosh

�1
2

�
(x+

z

2
)2 − z0

���
− ln

�
cosh

�1
2

�
(x− z

2
)2 − z0

����
= lim

x→+∞
xz. (3.25)

We make the remark that for k = 0 and ΩB
n = 0 the matrix element MK vanishes, as it

takes exactly the form of the gap equation (3.3) calculated at the critical temperature. This
means that the theory is actually divergent and that the grand potential will experience
a divergence at the critical temperature, as expected. This problem can be avoided by
considering η0 = 0 as a classical field, so that it can be taken out of the path integral,
making the theory convergent. Such procedure is physically significant, similar to the one
carried out in the treatment of a non interacting Bose gas experiencing BEC [4]. Notice also
that if ΩB

n = 0, the imaginary part of MK vanishes exactly for any value of k.
Moreover, one can see that MK = M∗

−K from (3.24), ensuring that the partition function
and the grand potential will be real.
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3.2.2 Number and Gap Equations at the Critical Temperature

At the critical temperature, given the above considerations, the grand canonical potential
(3.17) reduces to

ΩG − ΩMF =
kBTc

V

�

K �=0

ln(MK), (3.26)

with MK being the one defined in (3.24). The sum over Matzubara frequencies can be carried
out in a similar fashion as the one used for the calculation of the grand potential in appendix
A. First, we write the sum over frequencies as

ΩG − ΩMF = − 1

2πi

1

V

�

k

�

C

dω̃nB(ω̃) ln(Mω̃,k), (3.27)

with C being a contour containing the imaginary axis of the complex ω̃ plane and nB(ω̃) =
(eβω̃ − 1)−1 being the Bose-Einstein distribution; with the notation Mω̃,k we mean that the
dependence on the four vector K = (iΩB

n ,k) of MK changes to the one on (ω̃,k), with the
overall result of a change of variables

iΩB
n → ω̃ ∈ C (3.28)

in (3.24), yielding

Mω,z = −m

4π

� 1

aF
+

2
√
2mkBTc

zπ

� +∞

0

dx
�x[A(x, z)− A(x,−z)]

x2 + z2

4
− z0 − ω

2

− z
�
, (3.29)

with

βcω̃ = ω, z = βc
k2

2m
, z0 = βcµ. (3.30)

Given such form for Mω̃,k one realizes that ln(Mω̃,k) has a branch cut over the whole real
axis in the complex ω̃ plane and has no isolated poles, so that the integration contour C can
be modified to one containing the real axis. The result, then, is that

ΩG − ΩMF = − 1

2πi

1

V

�

k

� +∞

−∞
dω̃nB(ω̃)

�
ln(Mω̃+iε,k)− ln(Mω̃−iε,k)

�
. (3.31)

with ε → 0. Now, as done in [11], we may write Mω̃±iε,k in the Euler representation as

Mω̃±iε,k = |Mω̃±iε,k|e±iδ(ω̃+iε,k), (3.32)

where for convenience we exploited the fact that by changing the sign of iε the phases of the
two quantities have to be opposite in sign. The phase can be written as

δ(ω̃,k) = arctan
�Im[Mω̃,k]

Re[Mω̃,k]

�
, (3.33)
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where Re[Mω̃,k] and Im[Mω̃,k] can be calculated using (3.29).
Notice in fact that the integrand in (3.29) has two poles at

±p0(ω, z0) = ±
�

ω

2
+ z0 −

z2

4
, (3.34)

so that if p0(ω, z0) ∈ R, one has to use residue calculus to get a finite result, since p0(ω, z0)
will lie on the integration domain. In such case, then,

Mω,z = −m

4π

� 1
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+
2
√
2mkBTc

zπ
P
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dx
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�
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+i

√
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z

�
A(p0(ω, z), z)− A(p0(ω, z),−z)

��
,

(3.35)

where by P · we mean the principal value, showing that for p20(ω, z) > 0, Mω̃,z actually has
a non vanishing imaginary part.

Then one may split the logarithms and get the identity

ΩG − ΩMF = − 1

π

1

V

�

k

� +∞

−∞
dω̃nB(ω̃)δ(ω̃,k). (3.36)

The number equation n = −∂µΩG at the critical temperature, recalling the form of the
number equation at the mean field level in (2.20) can then be written as

n =
1

V

�

p

�
1− tanh

�β
2
ξp

��
+

1

πV

�

k

� +∞

−∞
dω̃nB(ω̃)

∂δ(ω̃,k)

∂µ
, (3.37)

where the first contribution comes from the mean field grand potential, so that the system
of equations to be solved is




− m

4πaF
= 1

2V

�
p

�
tanh

�
β
2
ξp

�
ξp

− m
p2

�

n = 1
V

�
p

�
1− tanh
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β
2
ξp

��
+ 1

πV

�
k

� +∞
−∞ dω̃nB(ω̃)

∂δ(ω̃,k)
∂µ

,
(3.38)

We make the remark that the gap equation does not distinguish itself from the one
derived in the mean field case. Once fixed the scattering length aF one can establish the
relation between µ and the critical temperature Tc, which will be the same as in the mean
field case and does not depend on n. The difference from the mean field analysis lies in the
relation between the chemical potential µ and the number of particles n which, once fixed
the scattering length, can be extracted from the number equation. Another big difference is
the dependence of the number equation from the scattering length, which is implicit in the
definition of δ(ω,k) due to the form of Mω̃,k in (3.35).

As in the mean field analysis, from such relations we will be able to construct the plot
kBTc

ωF
vs 1

kF aF
. In order to do so, though, it will be useful to make the integrals dimensionless
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via the changes of variables in equation (3.30), since we are going to transform the sum over
k into an integral in polar coordinates. The number equation, recalling the expression for
the particle density at the mean field level given in (2.34), will become

n =
(2mkBTc)
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�
=

=
(2mkBTc)

3
2

3π2

�1
2
I4(z0)+

3

2π
I5(z0)

�
.

(3.39)

Such can be recast in the form

kBTc

ωF

=
� 1

1
2
I4(z0) +

3
2π
I5(z0)

� 2
3
, (3.40)

Working on the gap equation, which can be rewritten as a one dimensional integral as in
(2.34), instead, one gets that

1

kFaF
=

4

π

� 1
1
2
I4(z0) +

3
2π
I5(z0)

� 1
3
I3(z0) , (3.41)

with

I3(z0) =

� +∞

0

dx
� x4

2(x2 − z0) cosh
2
�
1
2
(x2 − z0)

� − z0
x2 tanh

�
1
2
(x2 − z0)

�

(x2 − z0)2

�
. (3.42)

In the meantime, to express 1
aF
, present in the definition of Mω̃,k (3.35), we can use directly

the expression in equation (2.34),

1

aF
=

4

π

�
2mkBTcI3(z0). (3.43)

We were not able to implement such equations to retrieve the plot of the critical temperature
vs. the scattering length, due to the computational difficulty of the problem and the absence
of time. Despite that, results with this method (NSR), are reported in [11].

3.3 Beyond Mean Field Critical Temperature from the Phase
Stiffness

In this section we follow [18] in a computationally simpler approach to the calculation of the
critical temperature in the BCS-BEC crossover, exploiting only mean field quantities. This
approach is certainly effective in two dimensions, but we try to generalize it to three, in a
somewhat heuristic way. We will start with the calculation of the superfluid density of the
system, which we will use to perform our calculation of the critical temperature.
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3.3.1 Mean Field Superfluid Fraction

As explained by Tisza and Landau in [6] and [7], the condensate formed below Tc is formed
by a mixture of two interpenetrating components: the superfluid one and the normal one.
The superfluid part has no viscosity, while the normal part is viscous.

The number density of the fluid, then, can be written as

n = ns(T ) + nn(T ), (3.44)

where ns(T ) is the superfluid density and nn(T ) is the density of the viscous fluid. As proven
below, an explicit expression for nn(T ) can be derived.

Following [8], we consider the liquid at a finite temperature close to T = 0. In this
situation the fluid is not in its ground state and contains excitations. We think of the
excitations as a gas of quasi particles moving with respect to the liquid at velocity v. Let us
take a coordinate system in which the gas is at rest as a whole, so that the liquid is moving
at velocity −v. The total energy E of the liquid in such reference frame is given by

E = E0 −P0 · v+
1

2
Mv2, (3.45)

where M is the mass of the gas while E0 and P0 are the energy and momentum of the liquid
in its rest frame. If we consider an excitation of energy ω(p) arising, the additional energy
of the liquid will be ω − p · v in such frame. Then, the distribution of the gas moving as a
whole is n(ω−p ·v), where p is the momentum of the particle and n(ω) is the Bose-Einstein
distribution n(ω) = (e−βω − 1)−1.

The total momentum per unit volume of the quasi particle gas, then, is

P =

�
d3qpn(ω − p · v). (3.46)

If the velocity is small and the system is homogeneous and isotropic, as in our case, one can
rewrite such equation as

P =
1

3
v

�
d3q

�
− dn(ω)

dω

�
p2, (3.47)

so that one can express the density of the normal fluid as

nn(T ) = −1

3

�
d3q

dn(ω)

dω

p2

m
= −1

3

�
d3p

(2π)3
p2

m

dn(ω(p))

dω
. (3.48)

Finally, one can express the superfluid density of the system as

ns(T )

n
= 1− β

6π2n

� +∞

0

dp
p4

m

eβω(p)

(eβω(p) − 1)2
, (3.49)

with

ω(p) =

�� p2

2m
− µ

�2

+ |Δ0|2, (3.50)
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Figure 6: Superfluid fraction ns(T )
n

vs. temperature. Blue line: ( µ
ωF

, |Δ0|
ωF

) = (−2.78, 1.71);

red line: ( µ
ωF

, |Δ0|
ωF

) = (−0.26, 1.16); orange line: ( µ
ωF

, |Δ0|
ωF

) = (0.83, 0.44).

the fermionic excitation energies. In this treatment we are only considering fermionic
excitation energies, neglecting the fluctuations of the Hubbard Stratonovich bosonic field
|Δ(q, τ)|.

To study the behaviour of ns(T ) one can perform the change of variables x = p
kF

in the

integral (3.49), with kF = (3πn)
1
3 the Fermi momentum, thereby obtaining

ns(T )

n
= 1− ωF

kBT

� +∞

0

dxx4 e
ωF
kBT

�
(x2− µ

ωF
)2+

|Δ0|2
ω2
F

�
e

ωF
kBT

�
(x2− µ

ωF
)2+

|Δ0|2
ω2
F − 1

�2
. (3.51)

Since the equation is valid for small temperatures, it makes sense to consider the pairs
( µ
ωF

, |Δ0|
ωF

) we calculated at the mean field level from the solution of the number and gap
equations at zero temperature, shown in figure 4.

In figure 6 we show the behaviour of the superfluid density varying with temperature for
fixed ( µ

ωF
, |Δ0|

ωF
). From the plot we can see the behaviour of the temperature at which the

superfluid fraction becomes null: the more negative the chemical potential, the higher the
temperature.

Notice also how the superfluid fraction is unity at T → 0+ in all regimes, contrary to the
condensate fraction, whose behaviour is reported in figure 5. The superfluid density and the
condensate density indeed differ, as pointed out at the beginning of the section.
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3.3.2 Beyond Mean Field Critical Temperature with the Kleinert method

As reported in [19], the effective action we derived in 2.1.1

S[Δ̄Δψ̄ψ] =

� β

0

dτ

�

V

d3q
� |Δ(q, τ)|2

g
− Ψ̄(q, τ)G−1

q,τ (Δ̄,Δ)Ψ(q, τ)
�
+ β

�

p

ξp, (3.52)

with ξp = p2

2m
− µ being the free particle energy and the inverse fermionic propagator being

G−1
q,τ (Δ̄,Δ) =

�
−∂τ +

∇2

2m
+ µ Δ(q, τ)

Δ̄(q, τ) −∂τ − ∇2

2m
− µ

�
, (3.53)

can be mapped to an XY model one, recalling that

Ψ̄(q, τ) =
�
ψ̄↑(q, τ) ψ↓(q, τ)

�
, Ψ(q, τ) =

�
ψ↑(q, τ)
ψ̄↓(q, τ)

�
. (3.54)

This is achieved by imposing that Δ(q, τ) → Δ(q, τ)eiθ(q,τ), so that also ψσ(q, τ) →
ψσ(q, τ)e

i
θ(q,τ)

2 and by assuming that the phase gradients are small.
The effective XY model obtained has the Hamiltian

H =
J

2

�
d3q[∇θ(q)]2, (3.55)

with stiffness parameter

J =
ns(Tc)

4m
, (3.56)

where in our approximation ns(T ) will be the superfluid density calculated in equation (3.49).
The critical temperature of the model can be heuristically calculated with the equation

kBTc = 3J
� 2

n

� 1
3
= 3

ns(Tc)

4m

� 2

n

� 1
3
, (3.57)

Such formula is a generalization of the exact one obtained in the 2 dimensional XY model,
and is numerically consistent with Monte Carlo simulations of the 3D XY model [20]. By
dividing both sides of the equation by the Fermi energy ωF we manage to get an expression
independent of n: explicitly

kBTc

ωF

=
� 3

4π4

� 1
3 ns(Tc)

n
. (3.58)

Once again, to solve the equation, we plug in the values of the pairs ( µ
ωF

, |Δ0|
ωF

) taken
from figure 4 in (3.58). To calculate the inverse scattering length corresponding to such
temperature, instead, we use the gap equation at the critical temperature derived in the
mean field treatment in section 2.2.2

1

kFaF
=

4

π

2
1
3 I3(z0)

I4(z0)
1
3

, (3.59)
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with

I3(z0) =

� +∞

0

dx
� x4

2(x2 − z0) cosh
2
�
1
2
(x2 − z0)

� − z0
x2 tanh

�
1
2
(x2 − z0)

�

(x2 − z0)2

�
,

I4(z0) =

� +∞

0

dx
x4

cosh2
�
1
2
(x2 − z0)

� ,
(3.60)

where z0 =
µ

kBTc
; the critical temperatures are the ones derived from solving (3.58), and the

chemical potentials are the corresponding values used to solve the same equation.
The so obtained beyond mean field critical temperature is is shown in figure 7 along

the whole crossover, for varying inverse scattering length. Despite our approximations, this
heuristic approach yields a critical temperature whose behaviour resembles the one obtained
with the introduction of Gaussian fluctuations, derived in [10], with the difference that in
this case kBTc does not have a maximum in the intermediate regime. The curve we obtained
is more similar to the one displayed in fig. 3 of [21] through the application of the Thouless
criterion.

Figure 7: Critical temperature calculated with the implicit equation (3.58) vs. inverse
scattering length along the whole crossover.

3.3.3 A Small Step Further

In the deep BEC limit, as the chemical potential µ approaches negative infinity, the superfluid
fraction (3.51) clearly approaches unity, meaning that the critical temperature stabilizes at

kBTc

ωF

−−−−→
µ→−∞

� 3

4π4

� 1
3 ≈ 0.197, (3.61)

as also clear from figure 7. If we consider a gas of free bosons of mass 2m and density n
2

undergoing Bose Einstein condensation, given ζ(x) =
�+∞

n=1
1
nx , we find the familiar formula
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[4] for the critical temperature

kBTc =
2π

2m

� n

2ζ(3
2
)

� 2
3 ↔ kBTc

ωF

=
2

(6
√
πζ(3

2
))

2
3

≈ 0.218. (3.62)

The values of (3.61) and (3.62) are actually similar, meaning that our system in the BEC
limit has a similar behaviour as a bosonic gas of free particles with mass 2m and density n

2
.

The main difference of our result and the one in [21] is in the BEC limit, where we would
like the critical temperature to stabilize at the value given by (3.62). To get to such a result
one may improve equation (3.57) by promoting the factor 3 to an arbitrary α

kBTc = 3
ns(Tc)

4m

� 2

n

� 1
3 → kBTc = α

ns(Tc)

4m

� 2

n

� 1
3
, (3.63)

that will yield
kBTc

ωF

−−−−→
µ→−∞

2

(6
√
πζ(3

2
))

2
3

. (3.64)

In order for the limit (3.64) to be achieved, we have that

α = 2
� √

π

ζ(3
2
)

� 2
3 ≈ 1.55 −→ kBTc

ωF

=
2

(6
√
πζ(3

2
))

2
3

ns(Tc)

n
. (3.65)

The results obtained with the same approach as the one used in the previous section are
displayed in figure 8.

Figure 8: Critical temperature vs. inverse scattering length along the whole crossover. Red
dashed line: mean field result; thick blue line: data obtained from (3.65); red points: results
from diagrammatic Monte Carlo approach [22]; green points: results from Monte Carlo
simulations [23].

44



One may be tempted to look for a more accurate approach to the solution of the implicit
equation (3.65), in which we use values of µ

ωF
and |Δ0|

ωF
consistent with the mean field number

and gap equations calculated at a generic temperature T , which were derived in (2.20).
In fact, by taking (2.20), transforming the sums over momenta in integrals with the usual
prescription 1

V

�
p → 1

(2π)3

�
d3p, working in polar coordinates and performing the changes

of variables p2

k2F
= x2, one obtains the system of equations





− 1
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= 2
π

� +∞
0

dxx2
� tanh

�
ωF
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�
(x2− µ

ωF
)2+

|Δ0|2
ω2
F

�

�
(x2− µ

ωF
)2+

|Δ0|2
ω2
F

− 1
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�

1 = 3
2

� +∞
0

dxx2
�
1− x2− µ

ωF�
(x2− µ

ωF
)2+

|Δ0|2
ω2
F

tanh
�

ωF

2kBT

�
(x2 − µ

ωF
)2 + |Δ0|2

ω2
F

�� , (3.66)

which can be coupled to equation (3.65) to get the triplets ( µ
ωF

, |Δ0|
ωF

, kBT
ωF

) for different values

of 1
kF aF

. The pairs made of the chemical potential and the temperature will be used to
calculate the inverse scattering length with equation (3.59), since the temperatures we found
will be considered to be the critical ones.

This approach improves only a little the results we obtained in figure 8, as one can
see from figure 9, although being computationally more expensive. The deep BEC limit is
reached thanks to our improvement of the Kleinert equation and the BCS regime resembles
the mean field one, as expected.

Figure 9: Critical temperature vs. inverse scattering length along the whole crossover. Red
dashed line: mean field result; thick blue line: plot obtained from solving the system of
equations made of (3.66) and (3.65); red points: results from diagrammatic Monte Carlo
approach [22]; green points: results from Monte Carlo simulations [23].

45



46



4 Mean Field Treatment of the BCS-BEC Crossover

with Rabi Coupling

In this chapter the ultra cold Fermi gas model treated previously will be enriched with the
addition of Rabi coupling, which enables the spin of the particles involved to flip. The action,
omitting the explicit dependence of the fields on space and time, then, reads

S[ψ̄,ψ] =

� β

0

dτ

�
d3q

�
ψ̄σ

�
∂τ −

∇2

2m
− µ

�
ψσ − gψ̄↑ψ̄↓ψ↓ψ↑ + ωR(ψ̄↑ψ↓ + ψ̄↓ψ↑)

�
. (4.1)

To recover the physical degrees of freedom of interest, we may perform the same Hubbard
Stratonovich transformation made in section 2.1.1, so that the model can be rewritten in
terms of a new action depending also on a new spinless complex field Δ(q, τ):

S[Δ̄Δψ̄ψ] =

� β

0

dτ

�

V

d3q
� |Δ(q, τ)|2

g
− 1

2
Ψ̄(q, τ)G−1Ψ(q, τ)

�
+ β

�

p

ξp, (4.2)

where the modified Nambu spinors have to be four dimensional and take the form

Ψ̄(q, τ) =
�
ψ̄↑(q, τ) ψ↓(q, τ) ψ̄↓(q, τ) ψ↑(q, τ)

�
, Ψ(q, τ) =




ψ↑(q, τ)
ψ̄↓(q, τ)
ψ↓(q, τ)
ψ̄↑(q, τ)


 (4.3)

while the inverse fermionic propagator in coordinate representation is

G−1
q,τ (Δ̄,Δ) =




−∂τ +
∇2

2m
+ µ Δ(q, τ) −ωR 0

Δ̄(q, τ) −∂τ − ∇2

2m
− µ 0 ωR

−ωR 0 −∂τ +
∇2

2m
+ µ −Δ(q, τ)

0 ωR −Δ̄(q, τ) −∂τ − ∇2

2m
− µ


 . (4.4)

The new theory is Gaussian in the fermionic degrees of freedom, meaning that their
integration in the path integral can be performed to obtain an effective theory for the complex
field Δ(q, τ), whose action reads

Seff [Δ̄,Δ] =

� β

0

dτ

�

V

d3q
|Δ(q, τ)|2

g
− 1

2
Tr[lnG−1

q,τ (Δ̄,Δ)] + β
�

p

ξp. (4.5)

With such theory in mind, we may procede in its mean field analysis and in the study of its
Gaussian fluctuations as we did for the Rabiless case.

4.1 Gap and Number Equations

The mean field analysis of this model will be carried out on a similar ground with respect
to the standard one, but some differences will arise in the BCS regime, both at T → 0+ and
at the critical temperature T = Tc. In particular, the calculation of the grand potential will
be of great importance in the understaing of how the gap and number equations differ from
the ones in the Rabiless case at low temperatures.
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4.1.1 Derivation of the Gap and Number Equations

Given the action (4.5), we want to calculate its saddle point value by imposing the complex
field Δ(q, τ) to be space and time homogeneous. The mean field action, then, reads

SMF = βV
|Δ0|2
g

− 1

2
Tr[lnG−1

KP (Δ̄0,Δ0)] + β
�

p

ξp, (4.6)

where again to calculate the trace of the logarithm of the mean field fermionic inverse
propagator we will work in the Matzubara representation. The four momenta will be denoted
by a capital letter such as K = (iΩF

n ,p), with the fermionic Matzubara frequencies

ΩF
n =

(2n+ 1)π

β
, n ∈ Z. (4.7)

To minimize (4.6) we derive the mean field action with respect toΔ0, getting the equation

βV
Δ̄0

g
− 1

2
Tr

�
GKP (Δ̄0Δ0)




0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0




�
= 0. (4.8)

Since it has not yet been written explicitly and it will be useful both in this mean field
treatment and in the calculation of Gaussian fluctuations, the explicit expression forG−1

KP (Δ̄,Δ)
for an arbitrary field ΔK is reported below

G−1
KP (Δ̄,Δ) =




(iΩF
n − ξp)δ

(4)
K,P ΔK+P −ωRδ

(4)
K,−P 0

Δ̄K+P (iΩF
n + ξp)δ

(4)
K,P 0 ωRδk,−p

−ωRδ
(k,−p) 0 (iΩF

n − ξp)δ
(4)
K,P −ΔK+P

0 ωRδ
(4)
K,−P −Δ̄K+P (iΩF

n + ξp)δ
(4)
K,P ;


 .

(4.9)
By imposing that the complex field is homogeneous in space and time in (4.9) we may
calculate its determinant

det(G−1
KP (Δ̄,Δ)) = ((ΩF

n )
2 + ω2

+(p,ωR))((Ω
F
n )

2 + ω2
−(p,ωR)), (4.10)

with

ω+(p,ωR) =
�

ξ2p + |Δ0|2 + ωR, ω−(p,ωR) =
�

ξ2p + |Δ0|2 − ωR . (4.11)

These two energies correspond to the poles of the fermionic propagator in real time, meaning
that they are the single particle excitation energies of the theory, and they differ from the
expression (2.13) from the Rabiless case only by a constant shift of ωR. The presence of
Rabi coupling splits the excitation energies calculated in (2.13) into two different energy
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levels separated by a shift of 2ωR. It is immediately clear that ω−(p,ωR) may take negative
values, which is somewhat unexpected. This may happen for |Δ0| < ωR, a regime which will
be proven to be unphysical, unless |Δ0| = 0.

In order to write (4.8) in a compact form, firstly one has to compute the elements of the
propagator GKP (Δ̄,Δ), which read

G11 = G33 =
(iΩF

n + ξp)
2(iΩF

n − ξp)− ω2
R(iΩ

F
n − ξp)− |ΔK+P |2(iΩF

n + ξp)

((ΩF
n )

2 + ω2
+(p,ωR))((ΩF

n )
2 + ω2

−(p,ωR))
,

G22 = G44 =
(iΩF

n − ξp)
2(iΩF

n + ξp)− ω2
R(iΩ

F
n + ξp)− |ΔK+P |2(iΩF

n − ξp)

((ΩF
n )

2 − ω2
+(p,ωR))((ΩF

n )
2 + ω2

−(p,ωR))
,

G21 =−G34 = Ḡ12 = −Ḡ43 =
ΔK+P

�
((ΩF

n )
2 + ξ2p − ω2

R + |ΔK+P |2
�

((ΩF
n )

2 + ω2
+(p,ωR))((ΩF

n )
2 + ω2

−(p,ωR))
,

G13 =G31 = −Ḡ24 = −Ḡ42 =
|ΔK+P |2ωR − ω3

R + ωR(iΩ
F
n + ξp)

2

((ΩF
n )

2 + ω2
+(p,ωR))((ΩF

n )
2 + ω2

−(p,ωR))
,

G14 =−G32 = Ḡ41 = −Ḡ23 =
2iΩF

nωRΔK+P

((ΩF
n )

2 + ω2
+(p,ωR))((ΩF

n )
2 + ω2

−(p,ωR))
.

(4.12)

Given these results, the gap equation in the presence of Rabi interaction can be written as

1

g
=

kBT

V

�

P

(ΩF
n )

2 + ξ2p + |Δ0|2 − ω2
R

((ΩF
n )

2 + ω2
+(p,ωR))((ΩF

n )
2 + ω2

−(p,ωR))
, (4.13)

which after the Matzubara frequency sum yields

1

g
=

1

4V

�

p

�tanh
�
β
2
ω+(p,ωR)

�
�

ξ2p + |Δ0|2
+

tanh
�
β
2
ω−(p,ωR)

�
�

ξ2p + |Δ0|2
�
. (4.14)

As expected, for ωR = 0 one recovers exactly the result obtained in equation (2.16). Once
again the gap equation (4.14) is divergent in the ultraviolet and requires the same regularization
as the one used for the case of the previous section:

1

g
= − m

4πaF
+

1

V

�

p

m

p2
, (4.15)

with aF being the scattering length of the system.
As far as the number equation is concerned, instead, one has that

n =
kBT

V
∂µ lnZMF = −∂µ

|Δ0|2
g

+
kBT

2V
Tr

�
GKP




1 ∂µΔ0 0 0
∂µΔ̄0 −1 0 0
0 0 1 −∂µΔ0

0 0 −∂µΔ̄0 −1




�
, (4.16)
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which expanded reads

n = −∂µ
|Δ0|2
g

+
kBT

2V

�

P

�
G11+G33−G22−G44+(G12−G34)∂µΔ̄0+(G21−G43)∂µΔ0

�
. (4.17)

Recalling the relations (4.12) one may rewrite such equation as

n = −∂µ
|Δ0|2
g

+
kBT

2V

�

P

�
2G11 − 2G22 + 2Re{G12}(∂µΔ0 + ∂µΔ̄0)

�
, (4.18)

where by Re{·} we mean the real part. Explicitly, substituting the results gotten in (4.12),
one gets that

n = −∂µ
|Δ0|2
g

+
�

p

1+

+
kBT

V

�

P

�((ΩF
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F
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R)

((ΩF
n )

2 + ω2
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−(p,ωR))

�
.

(4.19)

The sum over Matzubara frequencies has the same form as the one of the gap equation, so
that the result is analogous apart from factors, meaning

n = −∂µ
|Δ0|2
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�

p

1 +
1
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p
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2
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+
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.

(4.20)
The expression for ωR = 0 goes back to the original one (2.19). Moreover, exploiting (4.14)
one can see once again that the terms proportional to ∂µ|Δ0| exactly cancel out.

Including the regularization of the contact potential, then, the system of equations with
Rabi coupling reads
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� , (4.21)

The difference with respect to the Rabiless case is a shift of ±ωR in the arguments of the
hyperbolic tangents, which makes the derivation of analytic results more demanding.

4.1.2 Calculation of the Gran Potential

The procedure we will follow to calculate the grand potential is analogous to the one carried
out in appendix A, with the complication that the determinant of G−1

KP (Δ̄0,Δ0) is now
quartic in the Matzubara frequencies instead of quadratic, meaning that there will be two
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integrals of the kind (A.5) instead of one, because of the splitting of the excitation energies
due to the presence of Rabi coupling.

The determinant of the inverse fermionic propagator (4.9) calculated at a homogeneous
value Δ0 is given by (4.10), and can be recast conviniently as

det(G−1
KP (Δ̄,Δ)) = (−(ΩF

n )
2 − ω2

+(p,ωR))(−(ΩF
n )

2 − ω2
−(p,ωR)), (4.22)

in such a way that when taking its logarithm all the frequencies iΩF
n may be written with a

positive sign. The grand potential, given the mean field action (4.6), is given by

ΩMF = kBTSMF = V
|Δ0|2
g

− 1

2
ln

� �

p

(−(ΩF
n )

2−ω2
+(p,ωR))(−(ΩF

n )
2−ω2

−(p,ωR))
�
. (4.23)

By looking at the shape of the argument of the logarithm it is clear that the reasoning made
in appendix A follows step by step, so that we can safely say that the grand potential for
the Rabi coupled fermi gas at the mean field level has the form

ΩMF

V
=

|Δ0|2
g

− kBT

2V

�

p

�
ln

�
2
�
1 + cosh[βω+(p,ωR)]

��
+ ln

�
2
�
1 + cosh[βω−(p,ωR)]

���
.

(4.24)
From this expression one could derive the number and gap equations again. The real practical
use of this expression, though, will be manifest in the following, where we investigate the
behaviour of the system at T → 0+.

4.2 Critical Temperature

We now investigate the behaviour of the system at the critical temperature Tc, at which the
energy gap |Δ0(Tc)| = 0. In particular, following a similar procedure to the one used for the
Rabiless case, we can obtain the plot for the critical temperature varying with the scattering
length.

4.2.1 Numerical Results

To obtain such result, we start from the gap and number equations at the critical temperature,
which read




− m

4πaF
= 1

V

�
p

�
tanh

�
βc
2
(ξp+ωR

�
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+
tanh
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βc
2
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�
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1− tanh
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2
(ξp + ωR)

�
− tanh

�
βc

2
(ξp − ωR)

�� , (4.25)

and can be manipulated as usual, turning the sums into integrals over momenta and by
making the substitution

βcp
2

2m
= x2, (4.26)
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making the integrals adimensional. In the following we use parts integration on the number
equation in order to have an expression quickly converging at infinity, which was found to
be computed faster numerically: namely, we rewrite the system of equations as





1
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= 2
π
(2mkBTc)

1
2J3

�
µ
ωF

,ωFβc,
ωR

ωF

�

n = 1
12π2 (2mkBTc)

3
2J4

�
µ
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,ωFβc,
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� , (4.27)

with
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(4.28)

and
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ωF
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=
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2
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.

(4.29)

The complication with respect to the case with no Rabi interaction is that one cannot
let the integrals J3 and J4 depend only on one parameter z0 = βcµ, since the dependence on
the Rabi frequency ωR does not allow it. To solve the problem, then, one has to first find
the level curves for kBTc in function of µ. This can be done numerically by exploiting the
number equation in (4.27), which can be recast in the form

kBTc

ωF

=
� 4

J4
�

µ
ωF

,ωFβc,
ωR

ωF

�
� 2

3
. (4.30)

Such equation depends only on the two variables µ
ωF

and ωFβc and the plot obtained is shown
below:
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Figure 10: Level curves of (4.30). Red dashed line: Rabiless case, i.e. ωR

ωF
= 0. Blue line:

fixed value of ωR

ωF
= 0.6. Orange Line: fixed value of ωR

ωF
= 1.

It is interesting to notice that the value of the chemical potential at very low temperatures
is suppressed by the Rabi coupling, as will also be shown analytically in the discussion made
in the zero temperature section. As already seen in section 2.2, in the Rabiless case the
chemical potential at low critical temperature approaches the Fermi energy; in the presence
of Rabi interaction, instead, such value decreases and, as will be discussed, using equation
(4.42) its value can be predicted. Such solution to the equation, though, has proven to be
unphysical, as is clear also from the plot in figure 11. In the BEC regime, instead, as the
critical temperature increases, the effect of Rabi coupling tends to vanish, as clear from the
raw expressions of (4.28) and (4.29), which depend on βcωR.

Working with the gap equation in (4.27), then, one may obtain the expression for the
scattering length

1

kFaF
=

2

π

� 4

J4
�

µ
ωF

,ωFβc,
ωR

ωF

�
� 1

3
J3

� µ

ωF

,ωFβc,
ωR

ωF

�
, (4.31)

so that using the data in figure 10 one can produce a plot of the critical temperature varying
with the scattering length as the one in figure 11.
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[H]

Figure 11: Red dashed line: critical temperature vs scattering length with no Rabi
interaction; thick blue line: critical temperature vs scattering length over the whole crossover
with fixed ωR

ωF
= 0.5; thick orange line: critical temperature vs scattering length over the

whole crossover with fixed ωR

ωF
= 1.

The net effect of the Rabi coupling manifests itself in the BCS regime, in which there is no
critical temperature. Rabi coupling inhibits the formation of Cooper pairs. The stronger the
Rabi coupling, the higher the lowest possible critical temperature and the higher the lowest
scattering length at which the existence of a critical temperature is possible at the mean
field level. From the plot in figure 11 it would seem like there exists a region of scattering
lengths for which two different critical temperatures exist. Actually, we will prove in the
zero temperature section that the solution for Tc = 0 is unphysical, and so will be all the
ones in the lower part of the curve.

4.3 T → 0+ Limit

In this section we investigate the behaviour of the energy gap, chemical potential and of the
condensate fraction with respect to the variation of the scattering length of the system aF
along the whole crossover at zero temperature.

4.3.1 Gap and Number Equations

As we did in the Rabiless case, we may reduce (4.21) to a system of two expressions written
in terms of one dimensional integrals exploiting the fact that the hyperbolic tangent becomes
unity at T → 0+ thereby obtaining relations similar to the ones in (2.43). In doing so, one
has to be careful in the study of the sign of ω−(p,ωR), which affects the form of the equations.
In fact, if ω−(p,ωR) > 0 for any value of the momentum p, the number and gap equations
(4.21) will take the same form as the ones with no Rabi interaction (2.20), while if for some
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values of p the energy ω−(p,ωR) < 0, the equations will take a different form, as we will
show below.

To start, we see from the form of the excitation energies in equation (4.11) that

ω−(p,ωR) > 0 ←→ p4 − 4mµp2 + 4m2(µ2 + |Δ0|2 − ω2
R) > 0. (4.32)

It is clear that for |Δ0| > ωR such inequality is satisfied for any value of the momentum
p, since p4 − 4mµp2 + 4m2µ2 = (p2 − 2mµ)2 > 0. Actually, one finds that the minimum
value of ω−(p,ωR) with respect to p is taken for |p| = √

2mµ. Then, by imposing that
ω−(

√
2mµ) > 0 one obtains the inequality

ω−(p,ωR) > 0 ∀ p ←→ |Δ0| > ωR. (4.33)

In the case ωR > |Δ0|, the solutions for (4.32) are

p2

2m
< µ−

�
ω2
R − |Δ0|2 or

p2

2m
> µ+

�
ω2
R − |Δ0|2, (4.34)

in which the first inequality may be satisfied if

µ2 > ω2
R − |Δ0|2. (4.35)

We then conclude that

ω−(p,ωR) < 0 ←→
�
µ−

�
ω2
R − |Δ0|2 < p2

2m
< µ+

�
ω2
R − |Δ0|2,

|Δ0| < ωR

. (4.36)

The terms in (4.21) that satisfy (4.36) cancel out, since

lim
x→+∞

tanh(x) = 1 and lim
x→−∞

tanh(x) = −1, (4.37)

meaning that the effect of Rabi interaction on the gap and number equations is null if
|Δ0| > ωR and to change the momenta domain of integration in the complementary case.

To be more precise, one may rewrite the gap equation as

1

g
=

1

2V

�

p

�Θ(|Δ0|− ωR)�
ξ2p + |Δ0|2

+

Θ(ξp −
�

ω2
R − |Δ0|2) +Θ(−ξp −

�
ω2
R − |Δ0|2)�

ξ2p + |Δ0|2
Θ(ωR − |Δ0|)

�
,

, (4.38)

where Θ(·) is the Heaviside step function. This expression is valid for any value of the
chemical potential, energy gap and Rabi frequency. The number equation suffers the same
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fate as (4.38) and may be rearranged similarly as

n =
1

V

�

p

�
1− ξp�
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Θ(ωR − |Δ0|)

�
.

. (4.39)

Both the number and gap equations are obtained as derivatives of the mean field grand
potential ΩMF written in (4.24). One can in fact obtain them in the same form by deriving
the grand potential calculated at zero temperature, which reads

1

V
lim

T→0+
ΩMF =

|Δ0|2
g

− 1

2V

�

p

��
ξ2p + |Δ0|2 + ωR +

���
�

ξ2p + |Δ0|2 − ωR

���
�
. (4.40)

From the shape of the grand potential one can conclude that for |Δ0| > ωR the Physics of
the system will not at all be affected by Rabi coupling. It is also interesting to notice that
the right hand sides of both (4.38) and (4.39) are continuous at |Δ0| = ωR, even though the
grand potential is not smooth.

The objective is now to find the solutions for the system made of equations (4.38) and
(4.39). By considering the case in which (4.33) holds, we know that the solutions will be
the same as the ones reported in the plots in figures 2, 3 and 4 of the Rabiless case, since
we know from the previous discussion that Rabi coupling will not have any effect on the
system. The presence of Rabi coupling, though, will affect the physics of the system, since
for |Δ0| < ωR the solutions obtained in the system with no Rabi coupling will no longer be
solutions of (4.21). We then want to understand the nature of the new kind of solutions,
obtained in the regime |Δ0| < ωR.

We want to show through an analytical example that the solutions for |Δ0| < ωR are
unphysical. The case in which |Δ0| = 0, corresponding to Tc = 0, is particularly easy
to study, and it contains useful information about the validity of the solutions of the gap
equation. In that case the number equation takes the form

n =
1

V

�

p

�
1−Θ(

p2

2m
− µ− ωR)−Θ(− p2

2m
+ µ− ωR)

�
, (4.41)

which can easily be solved and yields the equation

(µ+ ωR)
3
2

2ω
3
2
F

− (µ− ωR)
3
2

2ω
3
2
F

Θ(µ− ωR) = 1. (4.42)

From this we may extract an explicit expression for the case in which µ < ωR, which reads

µ

ωF

= 22/3 − ωR

ωF

. (4.43)
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By imposing again that ωR > µ we get the relation

ωR

ωF

>
1

2
1
3

≈ 0.7937. (4.44)

With this solution of the chemical potential and energy gap in mind, we calculate the second
derivative of the grand potential, which in this case for ωR > µ and ωR > 0.7937 reads
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(4.45)
In the |Δ0| = 0 case we see that such expression is identically zero, giving no useful
information. We can explore the region for which |Δ0| ≈ 0+, from which we may understand
if it corresponds to a maximum or a minimum of the grand potential. To do this, we expand
(4.45) up to second order in |Δ0|, get rid of the constant factors and impose equation (4.43).
Then one has that (4.45), after the change of variables

p2

2mωF

= z2

and after getting rid of unimportant global positive factors becomes
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3
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2
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]3
. (4.46)

Such function can be plotted with varying ωR, showing that it is actually always negative
for ωR > 0.7937:

Figure 12: Second derivative of the grand potential near vanishing critical temperature (apart
from positive factors) vs Rabi frequency.

The solution of the system of equations (4.38) and (4.39) that we found in this regime
is then proven to be unphysical, since it corresponds to a maximum of the grand potential.
With this result, we may go on assuming that all the solutions of (4.21) in the regime not
satisfying (4.33) are maxima of ΩMF .
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4.3.2 Numerical Results

To solve the system of equations made of (4.38) and (4.39) in the general case, the procedure
is analogous to the one followed in the Rabiless case, with the obvious complication that the
expressions are more convoluted. For instance, here it is not possible to reduce such equations
to one dimensional integrals depending only on one parameter because of the presence of
the Rabi frequency in the Heaviside step functions, so that for a fixed Rabi frequency one
will first have to find the level curves of the energy gap vs the chemical potential. We start
from the number equation by turning the sum into an integral in spherical coordinates and
by performing the change of variables

p2

2m|Δ0|
= x2, x0 =

µ

|Δ0|
, η =

ωR

|Δ0|
. (4.47)

Then we may use the Heaviside step functions to change the domains of integration of the
integrals and by integrating by parts we can eliminate the ultraviolet divergences. Finally,
the number equation translates to
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(4.48)

which can be recast in the form
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from which one obtains the relation
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The plot for the solutions of such equation is reported in figure 13, and it shows both the
physical and unphysical solutions.

To carry on the treatment we take the gap equation (4.38), substitute the contact
potential with its regularized counterpart and follow the same procedure carried out for
the number equation, obtaining the equation
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(4.51)
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Figure 13: Values of the energy gap vs the chemical potential solving equation (4.50) over
the whole crossover. Red dashed line: null Rabi frequency ωR

ωF
= 0. Thick blue line: fixed

value of ωR

ωF
= 0.5. Orange dotted line: dixed value of ωR

ωF
= 1.

Figure 14: Energy gap vs inverse scattering length solving the system of equations (4.21) in
the T → 0+ limit in the presence of Rabi Coupling. Red dashed line: null Rabi frequency
ωR

ωF
= 0. Thick blue line: fixed value of ωR

ωF
= 0.5. Orange dotted line: fixed value of ωR

ωF
= 1.
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The corresponding plots for the energy gap and chemical potential varying with the scattering
length are then analogous to the ones in the case with no Rabi coupling for |Δ0| > ωR, but
exhibit a different behaviour below such threshold. These results are reported in figure 14,
in which it is clear that for some given scattering lengths aF , the system of equations (4.21)
may have two solutions. As we showed, only the ones above |Δ0| � ωR are physical, though.

Figure 15: Chemical potential vs inverse scattering length solving the system of equations
(4.21) in the T → 0+ limit in the presence of Rabi Coupling. Red dashed line: null Rabi
frequency ωR

ωF
= 0. Thick blue line: fixed value of ωR

ωF
= 0.5. Orange dotted line: fixed value

of ωR

ωF
= 1.

4.3.3 Condensate Fraction

We now investigate how the Rabi coupling affects the condensate fraction of the system at
all temperatures, focusing in particular in the T → 0+ case as we did in the Rabiless case.
First, we want to investigate when OLDRO is present, as we did in section 2.3.3 and then
find an explicit expression for the condensate fraction n0.

The fermionic propagator of the theory at the mean field level, whose elements are listed
in equation (4.12), contains the necessary information for the calculation of the two particle
reduced density matrices

�q�
1q

�
2|ρ̂2|q1q2� = Tr[â↓(q

�
1)â↑(q

�
2)ρ̂â

†
↑(q1)â

†
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†
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†
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In particular,

G(Δ̄0,Δ0) =




�ψ↑ψ̄↑� �ψ↑ψ↓� �ψ↑ψ̄↓� �ψ↑ψ↑�
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�ψ̄↑ψ̄↑� �ψ̄↑ψ↓� �ψ̄↑ψ̄↓� �ψ̄↑ψ↑�


 , (4.54)
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so that by using Wick’s theorem we may rewrite the elements of the reduced density matrix
ρ̂2, for example, as

�q�
1q

�
2|ρ̂2|q1q2� = �ψ̄↑(q1)ψ̄↓(q2)��ψ↓(q
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. (4.55)

By working in Matzubara representation and taking the limit

�
|q�

1 − q1| → +∞
|q�

2 − q2| → +∞ we see

again that the second and third terms vanish due to the Riemann-Lebesgue lemma, so that
the matrix factorizes again as
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The condensate fraction may split into two contributions, then: the singlet one coming
from (4.56) and the triplet one from (4.57),

n0 = ns + nt, (4.58)

with
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It is straightforward to prove that after the Matzubara frequency summation
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(4.61)
so that one may write the singlet contribution of the condensate fraction as
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. (4.62)

The calculation of �ψ̄↑(q1)ψ̄↑(q2)�, instead, yields exactly zero after the sum over Matzubara
frequencies, since that element of the propagator is odd in iω. Rabi coupling, then, does not
enable the formation of spinful Cooper pairs, contrary to what happens in the similar case
of spin-orbit coupling [16], meaning that

nt = 0. (4.63)

61



Once again we proved that OLDRO may occur only below the critical temperature Tc, when
|Δ0| �= 0, since our formula for n0 is proportional to |Δ0|2.

As it happened for the gap and number equations at zero temperature, in the T → 0+

limit, the expression for the condensate fraction reduces to the one of the Rabiless case.
The only difference that we have to keep in mind is the behaviour of the energy gap, which
cannot take values below the Rabi frequency ωR and instead has to abruptly go to zero at
that point, meaning that

n0 =





(m|Δ0|)
3
2

8π

�
µ

|Δ0| +

��
µ

|Δ0|

�2

+ 1 for |Δ0| > ωR

0 for |Δ0| � ωR.

(4.64)

The plot in figure 16 shows the values of the condensate fraction corresponding to the values
of the chemical potential and energy gap solving (4.21) reported in figure 13. The parts of
the curves getting away from the one of the ωR

ωF
= 0 case, then, are unphysical.

Figure 16: Condensate fraction vs inverse scattering length over the whole crossover in the
T → 0+ limit for different values of ωR

ωF
. Red dashed line: curve in the absence of Rabi

coupling, ωR

ωF
= 0. Thick blue line: fixed value of ωR

ωF
= 0.5. Orange dotted line: fixed value

of ωR

ωF
= 1.
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5 Gaussian Fluctuations in the Rabi Coupled BCS-BEC

Crossover

We now introduce Gaussian fluctuations in the partition function of the system. The
objective is analogous to the one of the Rabiless case: derive a more precise form for the
number equation in order to understand the role of quantum fluctuations on the relation
between the chemical potential µ and the density of particles n.

Moreover, in this section we are going to show also another approach to go beyond mean
field at the critical temperature over the whole crossover.

5.1 General Form of the Grand Canonical Potential

In this section we derive the expression for the grand canonical potential at a generic inverse
temperature β. This will be the starting point of the treatment at the critical temperature.

5.1.1 Expansion of the Action

We start from the effective action that we obtained from performing the Hubbard-Stratonovich
transformation and by integrating out the fermionic degrees of freedom

Seff [Δ̄,Δ] =

� β

0

dτ

�

V

d3q
|Δ(q, τ)|2

g
− 1

2
Tr[lnG−1

q,τ (Δ̄,Δ)] + β
�

p

ξp, (5.1)

where in Matzubara representation

G−1
KP (Δ̄,Δ) =




(iΩF
n − ξp)δ

(4)
K,P ΔK+P −ωRδ

(4)
K,−P 0

Δ̄K+P (iΩF
n + ξp)δ

(4)
K,P 0 ωRδk,−p

−ωRδ
(k,−p) 0 (iΩF

n − ξp)δ
(4)
K,P −ΔK+P

0 ωRδ
(4)
K,−P −Δ̄K+P (iΩF

n + ξp)δ
(4)
K,P ;


 .

(5.2)
In order to introduce fluctuations we separate the field Δ(q, τ) in its homogeneous part Δ0

minimizing the grand potential at the mean field level and its fluctuations η(q, τ) around it
so that

Δ(q, τ) = Δ0 + η(q, τ). (5.3)

Recall that |Δ0| has to solve the gap equation

− m

4πaF
=

1

V

�

p

�tanh
�
β
2
ω+(p,ωR)

�

4
�

ξ2p + |Δ0|2
+

tanh
�
β
2
ω−(p,ωR)

�

4
�

ξ2p + |Δ0|2
− m

p2

�
, (5.4)

with

ω+(p,ωR) =
�

ξ2p + |Δ0|2 + ωR, ω−(p,ωR) =
�

ξ2p + |Δ0|2 − ωR, (5.5)
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below the critical temperature. This way one may write

G−1
KP (Δ̄,Δ) = G̃−1

KP + ηKP , (5.6)

with

G̃−1
KP =




(iΩF
n − ξp)δ

(4)
K,P Δ0δ

(4)
K,−P −ωRδ

(4)
K,−P 0

Δ̄0δ
(4)
K,−P (iΩF

n + ξp)δ
(4)
K,P 0 ωRδk,−p

−ωRδ
(k,−p) 0 (iΩF

n − ξp)δ
(4)
K,P −Δ0δ

(4)
K,−P

0 ωRδ
(4)
K,−P −Δ̄0δ

(4)
K,−P (iΩF

n + ξp)δ
(4)
K,P ;


 (5.7)

and

ηPK =




0 ηK+P 0 0
η̄K+P 0 0 0
0 0 0 −ηK+P

0 0 −η̄K+P 0


 . (5.8)

Then, the expansion of the trace of the logarithm of G−1
KP is

Tr[lnG−1
KP ] ≈ Tr[ln G̃−1

kp ] + Tr[G̃KPηPK ]−
1

2
Tr[G̃KPηPLG̃LMηMK ], (5.9)

as in the Rabiless case, yielding the mean field action

SMF = βV
|Δ0|2
g

− 1

2
Tr[ln G̃−1

KP ] (5.10)

from the first term, the cancellation of linear terms in ηK from the second one and a Gaussian
term from the last one. For the calculation of the last term, we start by stating that

1

2
Tr[G̃KPηPLG̃LMηMK ] =

kBT

V

�

P,K

η̄−K

�
(G̃12)P (G̃12)P+K + (G̃14)P (G̃14)P+K

�
η̄K+

+
kBT

V

�

P,K

η−K

�
(G̃12)P (G̃12)P+K + (G̃14)P (G̃14)P+K

�
ηK+

+2
kBT

V

�

P,K

η̄K

�
(G̃11)P (G̃22)K−P + (G̃13)P (

¯̃G13)K−P

�
ηK ,

(5.11)

so that such term in the action may be written in Nambu space as

Seff
G = SMF +

1

2

�

K

�
η̄K η−K

�
MK

�
ηK
η̄−K

�
, (5.12)

with

MK =
1

g
I+ χK , (5.13)
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where χK is the contribution coming from the trace of the logarithm and I denotes the 2× 2
identity matrix in Nambu space. The components of χK read

(χK)11 = (χ−K)22 =
kBT

V

�

P

[(iΩF
n − ξp)((iΩ

F
n )

2 − ξ2p − |Δ0|2)− ω2
R(iΩ

F
n + ξp)]

((ΩF
n )

2 + ω2
+(p,ωR))((ΩF

n )
2 + ω2

−(p,ωR))
×

×
[(iΩB

m + iΩF
n + ξk+p)((iΩ

B
m + iΩF

n )
2 − ξ2k+p − |Δ0|2)− ω2

R(iΩ
B
m + iΩF

n − ξk+p)]

((ΩB
m + ΩF

n )
2 + ω2

+(k+ p,ωR))((ΩB
m + ΩF

n )
2 + ω2

−(k+ p,ωR)
+

+ωR
kBT

V

�

P

[|Δ0|2 − ω2
R + (iΩF

n − ξp)
2]

((ΩF
n )

2 + ω2
+(p,ωR))((ΩF

n )
2 + ω2

−(p,ωR))
×

× [|Δ0|2 − ω2
R + (iΩB

m + iΩF
n + ξp+k)

2]

((ΩB
m + ΩF

n )
2 + ω2

+(p+ k,ωR))((ΩB
m + ΩF

n )
2 + ω2

−(p+ k,ωR))

(5.14)

and

(χK)12 = (χK)21 = |Δ0|2
kBT

V

�

P

�
((ΩF

n )
2 + ξ2p)− ω2

R + |Δ0|2
�

((ΩF
n )

2 + ω2
+(p,ωR))((ΩF

n )
2 + ω2

−(p,ωR))
×

×

�
((ΩB

m + ΩnF
)2 + ξ2p+k)− ω2

R + |Δ0|2
�

((ΩB
m + ΩF

n )
2 + ω2

+(p+ k))((ΩB
m + ΩF

n )
2 + ω2

−(p+ k))
+

−4ω2
R|Δ0|2

kBT

V

�

P

ΩF
n

((ΩF
n )

2 + ω2
+(p,ωR))((ΩF

n )
2 + ω2

−(p,ωR))
×

× (ΩB
m + ΩF

n )

((ΩB
m + ΩF

n )
2 + ω2

+(p+ k,ωR))((ΩB
m + ΩF

n )
2 + ω2

−(p+ k,ωR))
.

(5.15)

5.1.2 The Grand Canonical Potential

Our objective is to find an expression for the grand canonical potential from which we can
recover a treatable expression for the contribution of the Gaussian fluctuations to the number
equation as the one in [17]. The theory we obtained is Gaussian, meaning that it can be
integrated explicitly, giving

ZG = e−SMF

��

K

�
det(MK)

�−1

, (5.16)

where by
��

K we mean the product of all K except for the ones such that det(MK) = 0.
For example, as in the Rabiless case at the critical temperature, in fact, for K = 0 the
determinant of M0 yields zero, since it takes the form of the gap equation. To avoid the
divergence of the grand potential and the degeneration of the theory, then, we may consider
the fluctuation field η0 to be classical, meaning that it will not be involved in the path
integration.
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The grand potential will simply be

ΩG

V
=

kBT

V
SMF +

kBT

V

��

K

ln[det(MK)], (5.17)

with the prime in
��

K taking the same meaning as the one in the product in (5.16). To
compute the sum over Matzubara frequencies in (5.16) one may analytically continue the
argument of the sum by promoting

iΩB
n → ω̃ (5.18)

as we did in the Rabiless case and transform the sum in an integral so that

ΩG

V
− kBT

V
SMF = − 1

V 2πi

�

k

�

C

dω̃nB(ω̃) ln
�
det(Mω̃,k)

�
, (5.19)

with
nB(ω̃) = (eβω̃ − 1)−1 (5.20)

the Bose-Einstein distribution and C is a closed integration contour containing the whole
imaginary axis of the complex ω̃ plane.

Supposing that ln
�
det(Mω̃,k)

�
has no poles in the complex ω̃ plane and a branch cut on

the real axis, as will be shown, we can modify the integration contour C to one containing
the real axis, so that one gets

ΩG

V
− kBT

V
SMF = − 1

V 2πi

�

k

� +∞

−∞
dω̃nB(ω̃)

�
ln

�
det(Mω̃+iε,k)

�
− ln

�
det(Mω̃−iε,k)

��
.

(5.21)
In doing so, one has to be careful not to take into account the contribution coming from
ω̃ = 0, which is a pole of the Bose Einstein distribution. By using the Euler representation
for the determinant of Mω̃±iε,k one may write

det(Mω̃±iε,k) = | det(Mω̃±iε,k)|e±iδ(ω̃+iε,k), (5.22)

with the phase

δ(ω̃,k) = arctan
�Im[det(Mω̃,k]

Re[det(Mω̃,k]

�
. (5.23)

Finally, then, one can write the grand potential in terms of an integral of the phase δ(ω̃,k)
as

ΩG

V
=

kBT

V
SMF − 1

πV

�

k

� +∞

−∞
dω̃nB(ω̃)

�
δ(ω̃,k)− δ(0,k)

�
. (5.24)

The issue for future calculations, then, will be to identify the real and imaginary parts
of the determinant of Mω̃,k in order to compute the phase δ(ω̃,k).
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5.1.3 Number and Gap Equations

Now that we have an explicit form of the grand canonical potential, we may write the number
equation for the system as

n = −∂µ
ΩG

V
. (5.25)

Such will consist of two contributions, then, one coming from the mean field action, which
will be identical to the one found in (4.21) and one coming from Gaussian fluctuations.
Namely,

n =
1

V

�

p

�
1− ξp

2

tanh
�
β
2
ω+(p,ωR)

�
�

ξ2p + |Δ0|2
− ξp

2

tanh
�
β
2
ω−(p,ωR)

�
�

ξ2p + |Δ0|2
�
+

1

π

�

k

� +∞

−∞
dω̃nB(ω̃)

∂δ(ω̃,k)

∂µ
.

(5.26)
To determine the physical quantities of the system we still have to take the gap equation

into consideration. Such is the one that determines the value of the energy gap |Δ0| around
which the bosonic field η(q, τ) fluctuates, meaning that it will not change its form with
respect to the one in the mean field treatment. In particular the equation will read

− m

4πaF
=

1

V

�

p

�tanh
�
β
2
ω+(p,ωR)

�

4
�

ξ2p + |Δ0|2
+

tanh
�
β
2
ω−(p,ωR)

�

4
�

ξ2p + |Δ0|2
− m

p2

�
, (5.27)

always taking into account the same renormalization of the contact potential

1

g
= − m

4πaF
+

1

V

�

p

m

p2
. (5.28)

Solving the system made of (5.27) and (5.26) one can retrieve information about the
main physical quantities of the system, as in the mean field case. The main difference is
provided by the modified form of the number equation, which leads to a different dependence
of the chemical potential µ on the fixed number of particles n = N

V
. The difficult part in the

solution of such equations is to find a treatable expression for the phase δ(ω̃,k) that appears
in the number equation. Our main efforts in the following will be dedicated to this task.

5.1.4 Sum over Matzubara Frequencies for χk

The sum over Matzubara frequencies of the elements of χK (5.14) and (5.15) can be performed
explicitly. The procedure is all in all the same one used in appendix B for the Rabiless case,
with the difference that more terms will be involved. In particular we have completely new
contributions which come from the Rabi coupling, proportional to ωR, both in the diagonal
and offdiagonal terms.

In the following we will separate the contributions proportional to ωR from the other
ones in order to have clearly in mind the effects coming purely from the Rabi coupling.
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Moreover, in order to write such elements in a compact form, we will introduce some auxiliary
functions of the single particle energy ω+(p,ωR) defined in (5.5), of the bosonic four vector
K = (iΩB

n ,k) and of the Rabi frequency ωR. All the information regarding (χK)11 can be
put inside these three functions

f1(ω+(p,ωR), K) =
(ω+(p,ωR)− ξp)(ω

2
+(p,ωR)− ξ2p − |Δ0|2)

8ωR

�
ξ2p + |Δ0|2ω+(p,ωR)

×

×
(ω+(p,ωR) + iΩB

n + ξp+k)((ω+(p,ωR) + iΩB
n )

2 − ξp+k − |Δ0|2) tanh
�
β
2
ω+(p,ωR)

�

(ΩB2
n + ω2

+(p+k)− ω2
+(p,ωR)− 2iΩB

nω+(p,ωR))(ΩB2
n + ω2

−(p+k)− ω2
+(p,ωR)− 2iΩB

nω+(p,ωR))
;

f2(ω+(p,ωR), K) =
[(ω+(p,ωR) + ξp)(ω+(p,ωR) + iΩB

n + ξp+k)((ω+(p,ωR) + iΩB
n )

2 − ξp+k − |Δ0|2)+
8
�

ξ2p + |Δ0|2ω+(p,ωR)
×

×
+(ω+(p,ωR) + iΩB

n − ξp+k)(ω+(p,ωR)− ξp)(ω
2
+(p,ωR)− ξ2p − |Δ0|2)] tanh

�
β
2
ω+(p,ωR)

�

(ΩB2
n + ω2

+(p+k)− ω2
+(p,ωR)− 2iΩB

nω+(p,ωR))(ΩB2
n + ω2

−(p+k)− ω2
+(p,ωR)− 2iΩB

nω+(p,ωR))

f3(ω+(p,ωR), K) =
(ω+(p,ωR) + ξp)

8
�

ξ2p + |Δ0|2ω+(p,ωR)
×

×
(ω+(p,ωR) + iΩB

n − ξp+k) tanh
�
β
2
ω+(p,ωR)

�

(ΩB2
n + ω2

+(p+k)− ω2
+(p,ωR)− 2iΩB

nω+(p,ωR))(ΩB2
n + ω2

−(p+k)− ω2
+(p,ωR)− 2iΩB

nω+(p,ωR))
,

f4(ω+(p,ωR), K) =
((ω+(p,ωR)− ξp)

2 + |Δ0|2 − ω2
R)

8
�

ξ2p + |Δ0|2ω+(p,ωR)
×

×
((ω+(p,ωR) + iΩB

n + ξp+k)
2 + |Δ0|2 − ω2

R) tanh
�
β
2
ω+(p,ωR)

�

(ΩB2
n + ω2

+(p+k)− ω2
+(p,ωR)− 2iΩB

nω+(p,ωR))(ΩB2
n + ω2

−(p+k)− ω2
+(p,ωR)− 2iΩB

nω+(p,ωR))
(5.29)

keeping in mind that
ω+(p,−ωR) = ω−(p,ωR). (5.30)

The diagonal element (χK)11, then, has the form

(χk)11 =

1

V

�

p

�
(−f1 + ωRf2 − ω3

Rf3 − ωRf4)(ω+(p,ωR), K)+

+(−f1 + ωRf2 − ω3
Rf3 − ωRf4)(−ω+(p,ωR), K)+

+(f1 − ωRf2 + ω3
Rf3 + ωRf4)(ω+(p,−ωR), K)+

+(f1 − ωRf2 + ω3
Rf3 − ωRf4)(−ω+(p,−ωR), K)

�
,

(5.31)
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where we placed the arguments of the functions at the end to make the equation more
compact. It is useful to have this expression written in such a way to highlight the symmetry
in the sum, since it will make further calculations more straight forward.

To express the off-diagonal elements of χK , instead, we define the three functions

g1(ω+(p,ωR), K) =
(ω2

+(p,ωR) + ξ2p + |Δ0|2)
8ωR

�
ξ2p + |Δ0|2ω+(p,ωR)

×

×
[(ω+(p,ωR) + ΩB

n )
2 + ξ2p+k + |Δ0|2] tanh

�
β
2
ω+(p,ωR)

�

((ΩB
m + ΩF

n )
2 + ω2

+(p+ k,ωR))((ΩB
m + ΩF

n )
2 + ω2

−(p+ k,ωR))
;

g2(ω+(p,ωR), K) =
[ω2

+(p,ωR) + ξ2p + |Δ0|2+
8
�

ξ2p + |Δ0|2ω+(p,ωR)
×

×
+(ω+(p,ωR) + ΩB

n )
2 + ξ2p+k + |Δ0|2] tanh

�
β
2
ω+(p,ωR)

�

((ΩB
m + ΩF

n )
2 + ω2

+(p+ k,ωR))((ΩB
m + ΩF

n )
2 + ω2

−(p+ k,ωR))
;

g3(ω+(p,ωR), K) =
1

8
�

ξ2p + |Δ0|2ω+(p,ωR)
×

×
tanh

�
β
2
ω+(p,ωR)

�

((ΩB
m + ΩF

n )
2 + ω2

+(p+ k))((ΩB
m + ΩF

n )
2 + ω2

−(p+ k))

g4(ω+(p,ωR), K) =
ω+(p,ωR)

8
�

ξ2p + |Δ0|2ω+(p,ωR)
×

×
(ω+(p,ωR) + ΩB

n ) tanh
�
β
2
ω+(p,ωR)

�

((ΩB
m + ΩF

n )
2 + ω2

+(p+ k,ωR))((ΩB
m + ΩF

n )
2 + ω2

−(p+ k,ωR))
.

(5.32)

Then, one can express (χK)12 in a similar way with respect to (χK)11, as

(χK)12 =
|Δ0|2
V

�

p

�
(−g1 + ωRg2 − ω3

Rg3 + 4ωRg4)(ω+(p,ωR), K)+

+(−g1 + ωRg2 − ω3
Rg3 + 4ωRg4)(−ω+(p,ωR), K)+

+(g1 − ωRg2 + ω3
Rg3 − 4ωRg4)(ω+(p,−ωR), K)+

+(g1 − ωRg2 + ω3
Rg3 − 4ωRg4)(−ω+(p,−ωR), K)

�
.

(5.33)

With these expressions in mind, we can procede with the treatment of the system at the
critical temperature.
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5.2 Critical Temperature

We now procede with the treatment of the system at the critical temperature with the
inclusion of Gaussian fluctuations. The aim is to find a reasonable expression for χK in
order to rewrite the number equation in a treatable way numerically. In doing so, one may
obtain the plot of the behaviour of the critical temperature with respect to the varying of
the scattering length along the whole crossover.

5.2.1 MK at the Critical Temperature

The off-diagonal terms of MK vanish at the critical temperature, as they are proportional to
|Δ0|2. As a result, one can consider MK as a scalar instead of a matrix in Nambu space. The
technical point is the calculation of χK , which is twice (5.31) in this case. The situation will
be quite different from the Rabiless case, as some completely new contributions will appear
due to Rabi coupling. Anyway, we will be able to write it in a quite compact form.

The first thing to notice is that by imposing that the energy gap |Δ0| = 0 the first three
terms in the first row of (5.31) cancel each other, implying that the same happens to the
first three in the third row. Equivalently, the fourth term on the first row of (5.31) vanishes,
and consequently the last term in the third row will, too. Then, we are left with eight
contributions, six of which come purely from Rabi coupling, since they are proportional to
ωR, and two that correspond to the one in the Rabiless case, meaning that they reduce to
the Rabiless inverse propagator of the fluctuations in the case in which ωR = 0. All in all the
eight terms coming from Rabi coupling can be put together to obtain an even more compact
form of χK with some simple algebraic calculations, so that calling

D1(p,ωR, K) = (ξp+k − ξp − 2ωR + iΩB
n )(ξp+k + ξp + 2ωR − iΩB

n ), (5.34)

one gets that

χK =
1

2V

�

p

�
− [ξp+k − ξp + iΩB

n ]

D1(p, K)
tanh

�βc

2
(ξp + ωR)

�
+ ωR

� (ξp+k + 3ξp + 2ωR − 3iΩB
n )

D1(p, K)(ξp+k + ξp − iΩB
n )

+

− 1

(ξp+k + ξp + 2ωR − iΩB
n )(ξp+k + ξp − iΩB

n )

�
tanh

�βc

2
(ξp + ωR)

��
+

+(ωR → −ωR),

(5.35)

where with the notation (ωR → −ωR) we mean the sum of all of the same terms with the
substitution ωR → −ωR. Notice that only the first term is ultraviolet divergent, while the
purely Rabi contributions are all convergent.

To further simplify the expression, we add 2ωR

D1(p,K)
to the first term and subtract it to the
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second one. This way the expression will become much more feasible:

χK =
1

2V

�

p

�
−

tanh
�
βc

2
(ξp + ωR)

�

(ξp+k + ξp + 2ωR − iΩB
n )

+

− 2ωR

(ξp+k + ξp + 2ωR − iΩB
n )(ξp+k + ξp − iΩB

n )
tanh

�βc

2
(ξp + ωR)

��
+

+ (ωR → −ωR).

(5.36)

The great simplification lies in the fact that now there are no more terms of the kind ξp+k−ξp,
but only of the kind ξp+k+ ξp, meaning that by shifting the argument of the sum p → p− k

2

we can move the dependence on the angle between p and k to the argument of the hyperbolic
tangent alone. Thanks to this fact one can transform the sum over p into an integral in polar
coordinates

�
p →

� 2π

0
dϕ

� 1

−1
d cos θ

� +∞
0

dpp2 and solve analytically the integral over d cos θ,
leaving a one dimensional integral that can be solved numerically.

All in all, recalling the definition (5.13), the inverse propagator of the fluctuations can
be written as

MK = − m

4πaF
− 1

2V
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p

� tanh
�
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2
(ξp+k

2
+ ωR)

�
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2
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2
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− m

p2

�
+

+
ωR

V

�

p
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�
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2
(ξp+k

2
+ ωR)

�

(ξp+k
2
+ ξp−k

2
+ 2ωR − iΩB

n )(ξp+k
2
+ ξp−k

2
− iΩB

n )
+ (ωR → −ωR).

(5.37)

5.2.2 Real and Imaginary parts of Mω̃,k

To treat the number equation, one has to continue analytically MK in (5.37) by promoting

iΩB
n → ω̃ ∈ C (5.38)

and calculate the real and imaginary parts of

Mω̃,k = − m
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(5.39)

In order to do so we transform the sum over p into an integral in polar coordinates and
define the quantities

x2 = βc
p2

2m
, z2 = βc

k2

2m
, ω = βcω̃, z0 = βcµ, f = βcωR, (5.40)
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so that one can render the integral dimensionless, getting
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(5.41)

The integral over d cos θ is readily performed since
� 1
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so that calling

A(x, z, f) = ln
�
cosh

�1
2

�
(x+

z

2
)2 − z0 + f

���
, (5.43)

one gets that
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We now define the poles of the integrands as

p±0 =
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2
∓ f − z2

4
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�
z0 +

ω

2
− z2

4
, (5.45)

since we will need to use residue calculus to get finite results from the integrals in the regimes
in which such quantities are real.

In the end, then, we are able to separate the real and imaginary parts of Mω,z as
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(5.46)
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where by P · we mean the principal part of the integral, while the imaginary part will read

Im[Mω,z] = −m

4π

√
2mkBTc

z

A(p1, z, f)− A(p1,−z, f)

2
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4
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(5.47)
since all the other contributions cancel and where by Θ(·) we denote the Heavyside step
function. Notice that there is a lower threshold for ω, namely

ωt(z) =
z2

2
− 2z0, (5.48)

below which the imaginary part of Mω,z vanishes exactly. Such is the same as in the Rabiless
case, contrary to the similar spin orbit coupling studied, for example, in [17], for which ωt(z)
changes.

5.2.3 Numerical Treatment

As already pointed out in section 5.1.3, the gap equation remains unchanged in the treatment
including Gaussian fluctuations, meaning that it will read

1
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(5.50)

By fixing the inverse scattering length, then, one may find the relation between the critical
temperature Tc and the chemical potential µ, which can then be used in the number equation.

The number equation (5.26), instead, can be written in terms of the changes of variables
(5.40) as
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(5.51)

with ωt(z) given in (5.48) and
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(5.52)
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meaning that one can recover the usual relation
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Then, by dividing both members of (5.49) by the Fermi momentum kF and using (5.53) one
gets that
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5.3 Beyond Mean Field Critical Temperature From The Phase
Stiffness

We now take a little step back from the cumbersome calculations of the past section and
briefly go back to the use of mean field quantities. The objective of this section is the
generalization of the calculations made in section 3.3 in the case of the presence of Rabi
interaction. First, then, the superfluid density of the system will be calculated, using the
arguments of [8], and the beyond mean field critical temperature will be obtained with the
method proposed in [18].

5.3.1 Mean Field Superfluid Density

For the calculation of the mean field superfluid density we proceed as in section 3.3.1 in the
Rabiless case. Generalizing formula (3.48) taken from [8] to the Rabi case, we get that

ns(T ) = n+
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where

ω+(p,ωR) =
�

ξ2p + |Δ0|2 + ωR, ω−(p,ωR) =
�

ξ2p + |Δ0|2 − ωR, (5.56)

are the single particle fermionic excitation energies derived in equation (4.11), n(ω) = (eβω−
1)−1 is the Bose-Einstein distribution and n is the total number density. Once again, it is
due to point out that this is an approximation, since we are only considering the fermionic
excitation energies, and neglecting all the corrections coming from the fluctuations of the
bosonic field Δ(q, τ).

Calculating explicitly the derivatives, integrating over the angles and dividing both sides
by n

2
one gets the equation
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Once again, since this equation is valid for small temperatures, we will use the pairs ( µ
ωF

, |Δ0|
ωF

)

that satisfy the gap and number equations at T → 0+, reported in figure 13.
To work with dimensionless quantities, we perform the change of variables x = p

kF
, where

kF = (3π2n)
1
3 is the Fermi momentum, obtaining the expression
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(5.58)

In figure 17 we show the behaviour of the superfluid density in the BEC regime at different
values of ωR

ωF
. The effect of Rabi coupling is to lower the temperature T ∗ at which ns(T

∗) = 0.
At very low temperatures, as expected, the behaviour is the same as the one taken by the
Rabi less system.

Figure 17: Superfluid fraction vs. temperature at different values of the Rabi frequency ωR

at fixed ( µ
ωF

, |Δ0|
ωF

) = (−2.42, 1.65). Red dashed line: Rabiless case, i.e. ωR

ωF
= 0; blue line:

ωR

ωF
= 0.5; orange dotted line: ωR

ωF
= 1. Here we have set kB = 1

Instead, in figure 18, we show the superfluid fraction changing with the temperature in
different regimes of the crossover at fixed ωR

ωF
= 1. In particular this plot shows, compared

to the one in the Rabiless case in figure 6, that the temperature T ∗ decreases much more
drammatically with the change of µ

ωF
in the presence of Rabi coupling. In particular, it gives

more evidence of the fact that in the deep BEC regime the system resembles the Rabi less
one, while in the BCS regime, after a threshold, the values different from zero solving the
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Figure 18: Superfluid fraction vs. temperature for ωR=1
ωF

at fixed ( µ
ωF

, |Δ0|
ωF

). Blue line:
ωR

ωF
= 1 at fixed ( µ

ωF
, |Δ0|

ωF
) = (−2.43, 1.66); orange line: ( µ

ωF
, |Δ0|

ωF
) = (0.035, 1.04); red line:

( µ
ωF

, |Δ0|
ωF

) = (0.30, 0.82). Here we have set kB = 1.

gap equation are unphysical, i.e. they maximize, not minimize, the grand potential. This is
evident, since there is no superfluid fraction for T > 0 in such regime, meaning that no phase
transition occurs. In particular, equation (5.58) develops a pole when |Δ0| < ωR, making
the expression unphysical.

5.3.2 Calculation of the Beyond Mean Field Critical Temperature

As already reported in section 3.3.2 for the Rabiless case, by following the calculations of
[19] we can map the effective action

S[Δ̄Δψ̄ψ] =
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2
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where the modified Nambu spinors are
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 (5.61)
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to the one of a three dimensional XY model by making the changes of variables ψσ(q, τ) →
ψσ(q, τ)e

i
θ(q,τ)

2 and Δ(q, τ) → Δ(q, τ)eiθ(q,τ) and making a gradient expansion, considering
long wavelength contributions of the phase as the most significant.

The Hamiltonian of the effective XY model obtained has the form

H =
J

2

�
d3q[∇θ(q)]2, (5.62)

where the stiff parameter J is related to the superfluid density as

J =
ns(T )

4m
, (5.63)

with ns(T ) given by equation (5.58) in our approximation. The critical temperature of
such model, as derived through Montecarlo simulations in [20], can be approximated by the
implicit equation
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which we will improve to
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with ζ(x) =
�+∞

n=1
1
nx , as already done in the Rabiless case in section 3.3.3 in order to get a

critical temperature analogue to the one of a gas of free bosons of mass 2m and density n
2

in the deep BEC regime. Since the expression for ns(T ) is valid at small temperatures, such

expression will be solved by using the pairs ( µ
ωF

, |Δ|
ωF

) solving the number and gap equations
at zero temperature, reported in figure 13, as done in the previous section.

By dividing both sides of (5.65) by the Fermi energy ωF = (3π2n)
2
3

2m
we finally get the

expression that, coupled with (5.58), is used to obtain our numerical results:
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. (5.66)

To solve such problem along the whole crossover, given that the expression for ns(T ) is valid
only for small temperatures, we first find the temperatures Tc that satisfy (5.66) coupled with

the pairs ( µ
ωF

, |Δ0|
ωF

) that solve the mean field number equation at zero temperature found in
section 4.3.2, whose values are reported in figure 13. Then, to calculate the inverse scattering
length, we use the equation
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, (5.67)

from the mean field treatment at the critical temperature derived in section 4.2, in which

the integrals J3
�

µ
ωF

,ωFβc,
ωR

ωF

�
and J4

�
µ
ωF

,ωFβc,
ωR

ωF

�
are given in equations (4.28) and (4.29).
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Figure 19: Critical temperature vs. inverse scattering length along the whole crossover for
different values of the Rabi frequency ωR

ωF
. Green dashed line: Rabiless case, i.e. ωR = 0 at

the mean field level; blue dashed line: ωR

ωF
= 0.5 at the mean field level; orange dashed line:

ωR

ωF
= 0.3 at the mean field level; thick green line: Rabiless case beyond mean field; thick

blue line: ωR

ωF
= 0.5 beyond mean field; thick orange line: ωR

ωF
= 0.3 beyond mean field.

The pairs ( µ
ωF

, kBTc

ωF
) plugged in such equation are the critical temperature calculated from

solving (5.66) and the corresponding value of the chemical potential used to solve the same
equation.

In figure 19 we show the results obtained along the whole crossover for different values of
the Rabi frequency. It is clear that Rabi interaction does not affect the deep BEC regime,
where the behaviour of the beyond mean field critical temperature resembles perfectly the
one of the Rabiless case.

5.3.3 A Small Step Further

We replicate the procedure followed in the treatment of the Kleinert equation (5.66) carried
out in the Rabiless case in the last part of section 3.3.3. In order to do so, we manipulate
the mean field gap and number equations for a generic temperature obtained in equation
(4.21), transforming them in one dimensional integrals. To do so, we transform the sums over
momenta in integrals in polar coordinates with the usual prescription 1

V

�
p → 1

(2π)3

�
d3p

and perform the change of variables p2

k2F
= x2.
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The gap equation can then be rewritten as
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while the number equation will read
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The prescription is to solve the system of equations made of (5.68), (5.69) and (5.66) to get

triplets of ( µ
ωF

, |Δ0|
ωF

, kBT
ωF

) for different values of 1
kF aF

. The pairs ( µ
ωF

, kBT
ωF

) will then be used to
calculate the inverse scattering length obtained with the mean field equation at the critical
temperature, (5.67), as such temperatures will be considered the critical ones. The results
we obtained are reported in figure 20.

As expected, the only values for ( µ
ωF

, |Δ0|
ωF

) that yield a non null critical temperature from
equation (5.64) are the ones that we labelled as physical, or in other words that minimize the
mean field grand potential at zero temperature. The unphysical values yield a null superfluid
density, since no phase transition occurs in that regime, as shown in figure 18. In fact, while
in the Rabiless case we see that the critical temperature decreases as 1

kF aF
decreases, but

never reaches the exact zero, in the Rabi case we have an actual point at which the critical
temperature becomes null, for a finite value of 1

kF aF
. The main takeaway is that in the BEC

regime Rabi interaction does not affect the physics of our system, which will behave as a
bosonic field of free Cooper pairs as discussed in section 3.3.2, while as the chemical potential
µ grows, it inhibits the bosonic nature of the system, until a point is reached at which the
second order phase transition becomes a first order one.
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Figure 20: Critical temperature along the whole crossover for different values of Rabi
frequency. Green dashed line: mean field critical temperature in absence of Rabi coupling;
red dashed line: beyond mean field critical temperature with no Rabi coupling; orange dotted
line: beyond mean field critical temperature at ωF

ωF
= 0.3; thick blue line: beyond mean field

critical temperature at ωF

ωF
= 0.5.
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6 Conclusions

The BCS-BEC crossover has been studied thoroughly both in the standard Rabiless case
and in the presence of Rabi coupling using the coherent state path integral formalism. The
behaviour of many physical quantities has been studied along the whole crossover, including
the mean field critical temperature, the beyond mean field critical temperature, the mean
field energy gap at zero temperature, the condensate fraction and the superfluid fraction.
The results we obtained were compared, enabling us to understand the effect of Rabi coupling
in the crossover.

In particular, we found that both at zero temperature and at the critical temperature the
system is not affected by Rabi interaction in the deep BEC regime (µ → −∞) (figures 14, 16,
19 as a few examples). In the BCS regime, instead, the phase transition that characterizes
superconductivity and has a second order nature in the Rabiless case, is inhibited by Rabi
coupling, so much that at a given inverse scattering length depending on the strength of
Rabi interaction the transition becomes a first order one (figures 11 and 19 as examples);
below such scattering length, no phase transition is possible. Such scattering length does
not have to be smaller than zero necessarily, so that Rabi interaction, if strong enough, will
affect the BEC regime, too.

The beyond mean field treatment was carried out following two different and independent
procedures: the NSR [11] and the Kleinert [18] ones, the first being more formal and the
second being more heuristic, but much less computationally costly. In particular the Kleinert
approach was improved, getting the desired result in the deep BEC limit.

Explicit calculations for the NSR approach were given in section 5.2, even though we were
not able to obtain the plots of the critical temperature due to the computational difficulty
of the problem. Despite that, one can use the cumbersome calculations we performed to try
and implement them: no calculation is to be thrown away!
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A Calculation of the Gran Potential at the Mean Field

Level

The calculation of the grand potential in this case will be of no pratical use, but the procedure
to evaluate it will be the same in the case of the Rabi-coupled gas, where the form of the
mean field grand potential will play an important role in the interpretation of the gap and
number equations, in particular in the T → 0+ limit.

The grand potential of the system at mean field level will be denoted by ΩMF and is
defined as

ΩMF = −kBT ln(ZMF ) = kBTS0. (A.1)

The non obvious part of this calculation is the evaluation of the trace of the logarithm of the
inverse fermionic propagator G−1

KP (Δ̄0,Δ0). To find its compact form, we use the identity

Tr[ln(G−1
KP (Δ̄0,Δ0))] = ln

�
det(G−1

KP (Δ̄0,Δ0))
�
, (A.2)

which is easier to calculate thanks to the fact that in the mean field approximationG−1
KP (Δ̄0,Δ0)

is diagonal in its Matzubara representation, as clear from (2.11), in whichΔK+P → Δ0. Then
one has that

ΩMF = V
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, (A.3)

which can be simplified by taking the product out of the logarithm and by performing the
sum over Matzubara frequencies in the usual way.

The sum over the frequencies is delicate because of the presence of a branch cut in the
complex plane of frequencies due to the multivalued nature of the logarithm. The integration
contour will have to be modified with respect to the usual case in order to avoid the branch
cut [4]. To be more precise, the integral to calculate is
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where Γ1 is a circle covering the whole complex plane and curved in order to avoid the

branch cut on the real axis starting at z = −∞ and ending at z = −
�

ξ2p + |Δ0|2, while
Γ2 is the same contour, but avoiding the branch cut starting at z = −∞ and ending at�

ξ2p + |Δ0|2. Since the integrands have no poles on the real axis, the two contours can be

modified by extending the deformation around the branch cuts up to z = +∞, so that the
grand potential can be written as
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where Γ is the new contour. The integrals vanish at infinity over the whole complex plane,
so that what remains of them is

� +∞

−∞

dz

2πi

1

eβz + 1

�
ln(z + iη +

�
ξ2p + |Δ0|2)− ln(z − iη +

�
ξ2p + |Δ0|2)+

+ ln(z + iη −
�

ξ2p + |Δ0|2)− ln(z − iη −
�

ξ2p + |Δ0|2)
�
,

(A.6)

where η → 0+. Such expression can be calculated explicitly by noticing that (eβz + 1)−1 =
− 1

β
∂z ln(1 + e−βz) and by integrating by parts. Explicitly,

kBT
�

p

� +∞

−∞

dz

2πi
ln(1 + e−βz)

� 1

z + iη +
�

ξ2p + |Δ0|2
− 1

z − iη +
�

ξ2p + |Δ0|2
+

+
1

z + iη −
�

ξ2p + |Δ0|2
− 1

z − iη −
�

ξ2p + |Δ0|2
�
.

(A.7)

Now, by using the fact that

lim
η→0+

1

z + iη
= −iπδ(z) + P

�1
z

�
, (A.8)

where by P
�
·
�
we denote the principal part, we get that

ΩMF = V
|Δ0|2
g

− kBT
�

p

ln
�
[1 + e−β

√
ξ2p+|Δ2

0|][1 + eβ
√

ξ2p+|Δ2
0|]

�
, (A.9)

which in a more familiar form reads

ΩMF = V
|Δ0|2
g

− kBT
�

p

ln
�
2
�
1 + cosh[β

�
ξ2p + |Δ0|2]

��
. (A.10)

From such equation one may rederive the gap equation and the number equation.

B Sum over Matzubara Frequencies For The Calculation

of MK

We compute the sums over Matzubara frequencies of χK for a generic temperature T , by
first noticing that (χK)11 = (χ−K)22 and that (χK)12 is the complex conjugate of (χK)21,
meaning that χK only has two independent elements. For the diagonal element we obtain
four different contributions

(χK)11 =
kBT

2V

�

P

(iΩF
n − ξp)(i(Ω

B
m + ΩF

n ) + ξk+p)

((ΩF
n )

2 + ξ2p + |Δ0|2)((ΩB
m + ΩF

n )
2 + ξ2k−p + |Δ0|2)

=
1

2V

�

p

[f1+f2+f3+f4],

(B.1)
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with, given nF (z) = (eβz + 1)−1 the Fermi distribution,

f1 = −
(
�

ξ2p + |Δ0|2 − ξp)(iΩ
B
m +

�
ξ2p + |Δ0|2 + ξp+k)nF

��
ξ2p + |Δ0|2

�

2
�

ξ2p + |Δ0|2
�
(ΩB

m)
2 + ξ2p+k − ξ2p − 2iΩB

m

�
ξ2p + |Δ0|2

� ,

f2 = −
(
�

ξ2p+k + |Δ0|2 + ξp+k)(
�

ξ2p+k + |Δ0|2 − ξp − iΩB
m)nF

��
ξ2p+k + |Δ0|2

�

2
�

ξ2p+k + |Δ0|2
�
(ΩB

m)
2 − ξ2p+k + ξ2p + 2iΩB

m

�
ξ2p+k + |Δ0|2

� ,

f3 =
(
�

ξ2p + |Δ0|2 + ξp)(
�

ξ2p + |Δ0|2 − ξp+k − iΩB
m)nF

�
−

�
ξ2p + |Δ0|2

�

2
�

ξ2p + |Δ0|2
�
(ΩB

m)
2 + ξ2p+k − ξ2p + 2iΩB

m

�
ξ2p + |Δ0|2

� ,

f4 =
(
�

ξ2p+k + |Δ0|2 − ξp+k)(iΩ
B
m +

�
ξ2p+k + |Δ0|2 + ξp)nF

�
−

�
ξ2p+k + |Δ0|2

�

2
�

ξ2p+k + |Δ0|2
�
(ΩB

m)
2 − ξ2p+k + ξ2p − 2iΩB

m

�
ξ2p+k + |Δ0|2

� .

(B.2)

One may substitute the sum parameter p with l = p + k in the terms involving f2 and
f4, rename l → p and finally, in the action, change k → −k. This way the factor of the
Fermi distribution in f1 and f4 will become equal, and the same will happen for f2 and f3.
After these manipulations, then, (χK)11 can be rewritten as

(χK)11 =
1

2V

�

p

�(
�

ξ2p + |Δ0|2 − ξp)(iΩ
B
m +

�
ξ2p + |Δ0|2 + ξp+k) tanh

�
β
2

�
ξ2p + |Δ0|2

�

2
�

ξ2p + |Δ0|2
�
(ΩB

m)
2 + ξ2p+k − ξ2p − 2iΩB

m

�
ξ2p + |Δ0|2

� +

+
(
�

ξ2p+k + |Δ0|2 + ξp+k)(
�

ξ2p+k + |Δ0|2 − ξp − iΩB
m) tanh

�
β
2

�
ξ2p + |Δ0|2

�

2
�

ξ2p + |Δ0|2
�
(ΩB

m)
2 + ξ2p+k − ξ2p + 2iΩB

m

�
ξ2p + |Δ0|2

�
�

(B.3)

The calculation is the same for the off-diagonal term, with the difference that there is no
frequency dependent term at the numerator. The four terms emerging from the sum, then,
will give the same contribution and yield

(χK)12 =
1

2V

�

p

tanh
�

β
2

�
ξ2p + |Δ0|2

�

�
ξ2p + |Δ0|2((ΩB

m)
2 + ξ2p+k − ξ2p − 2iΩB

m

�
ξ2p + |Δ0|2)

. (B.4)
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