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1. Introduction

Although the Standard Model (SM) appears to correctly describe the behaviour of ele-

mentary particles and their interactions, it still presents some unsolved theoretical prob-

lems, like the so-called hierarchy problems, or the explanation of the mysterious dark

matter, and moreover it is not known how to couple it to gravity in a consistent quan-

tum theory of all known interactions. These facts suggest to consider the SM as an

effective theory, valid only up to a certain energy scale ΛSM, that is, as the low-energy

manifestation of a more fundamental theory.

Several models have been developed which describe physics beyond the Standard Model

(BSM). Starting from the Minimal Supersymmetric Standard Model, where supersym-

metry is used as guiding principle for getting the natural extension of the SM [1–3], to

String Theory, born to explain the strong interactions and grown up, once ‘‘equipped”

with supersymmetry, as the best promising theory of everything, able to unify all kinds

of elementary forces.

There exist five different types of critical 1 Superstring Theories : type I, type IIA, type

IIB, heterotic SO(32) and heterotic E8 × E8. They live in a ten-dimensional spacetime

and replace point-particles with several different oscillation modes of one-dimensional

extended objects, the so-called ‘‘strings”. All these different theories are linked among

themselves by dualities, particular equivalences which relate different theories in differ-

ent perturbative regimes (small–large or strong–weak dualities). These dualities sug-

gested that these theories should be different manifestations of a unique theory, dubbed

M-theory. It prescribes an eleven-dimensional spacetime and it is not a string theory.

Nowadays, unfortunately, we know only the M-theory effective supergravity [4], ignoring

its microscopical structure.

In most of the (semi-)realistic string/M-theory models, the unobserved 6/7 extra di-

mensions are assumed to be compactified on manifolds with an extremely small radius.

The properties of the internal spaces manifest themselves in the physical properties of

the corresponding effective four-dimensional theories. It is exactly the analysis of such

physical properties one of the most intriguing and relevant aspects in string phenomenol-

ogy.

1That is, admitting a Poincaré invariant vacuum.
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1. Introduction

This study is commonly carried out following the standard Kaluza–Klein reduction

(KK) [5–8]. It consists in various steps, which can be summarised as follows. Firstly,

one chooses a specific ten-dimensional vacuum field configuration, with a ten-dimensional

manifold usually factorised as

M10 = M1,3 ×M6 , (1.1)

with a Minkowskian M1,3 and a compact M6. Then, one expands all fields into modes on

the internal M6 and, finally, extracts the four-dimensional effective theory of light modes

by integrating out the heavy ones. In fact, the latter have masses which are roughly in-

versely proportional to the compactification radius. Therefore, the corresponding modes

are typically too massive to appear in the low-energy theory.

In the simplest cases, the reduction is carried out with a purely metric M6. The

ten-dimensional metric Ansatz is

ds2
10 = ds2

4 + ds2
6 , (1.2)

and in the effective action there appear several massless scalar fields, which are not

controlled by any potential. They are dubbed ‘‘moduli” and parametrise possible defor-

mations of the internal metric ds6 as well as of other ten-dimensional fields. They do

not correspond to any particle in the SM and moreover their vevs define the coupling

constants, making uncontrollable the effective theory!

To eliminate from the effective theory such problematic fields, one would like to find a

mechanism to produce potentials giving sufficiently high masses to the moduli. This is

referred to as the moduli stabilisation problem. The situation is ameliorated by perform-

ing the KK reduction starting from a non-purely metric background, in which non-trivial

field-strengths are turned on. These kinds of backgrounds are more commonly called

‘‘flux compactifications”, since field-strengths can be identified with their quantised flux

along closed surfaces in M6. Consistency requires fluxes to be accompanied by nega-

tively charged sources, as O-planes. These are localised extended objects, which are

non-dynamical at the perturbative level [9]. More generally, models can be enriched by

the additional presence of D-branes, of positive charge. These are localised dynamical

extended objects which generalise the concept of point-particles [10] and naturally lead to

the appearance of non-abelian gauge groups and charged matter in the effective theory.

One is naturally led to consider models maintaining a certain level of supersymmetry at

high energy scales and this constrains the form and the number of local sources and fluxes.

These models are under a much better control and supersymmetry can be spontaneously
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broken at low energies, reproducing a more realistic non-supersymmetric effective theory.

Now, it is important to observe that the inclusion of fluxes, D-branes and O-planes

modifies the spacetime geometry: a warp factor e2A(y) turns on, dressing the four-

dimensional metric as follows

ds2
10 = e2A(y)ds2

4 + ds2
6 . (1.3)

This effect can have important physical implications. For instance, it is the basic in-

gredient in some ideas proposed to address the hierarchy problems [11, 12]. However, a

non-trivial warping leads to significant complications in the reduction procedure, which

are usually ignored by taking the so-called ‘‘large volume limit”, neglecting the backre-

action of fluxes and localised sources on the geometry and assuming the warping to be

constant [13–15]. Although legitimate in some cases, this approximation is surely quite

limiting and not always justified. Indeed, several attempts have been developed in order

to compute the effective theory including a non-trivial warp factor [16–20].

Nonetheless, a systematic and simple way to include warping effects in the effective

theory of flux compactifications is still missing. This thesis addresses this issue, present-

ing an approach, alternative to direct KK reduction, to compute the Kähler potential of

the effective theory. Here is a summary of the thesis.

In Chapter 2 we introduce the ten-dimensional low-energy effective theory of Type IIB

string theory. We first present the IIB supergravity, describing the light closed string

states. Then, we include the open string sector, associated with Dp-branes, which can

be regarded as non-perturbative objects on which open strings can end.

In Chapter 3 we review the basics of four-dimensional rigid supersymmetry and then

of supergravity, in order to get the needed familiarity to recognise their structures in the

four-dimensional effective theories obtained by dimensional reduction.

In Chapter 4 we deal with Type IIB compactifications. Firstly, in Section 4.1 we focus

on compactifications on Calabi–Yau (CY) spaces, in which the only non-trivial field is

the metric. We explain why moduli are present and where they come from. We show

that the KK reduction (reviewed in Appendix B) leads to a four-dimensional N = 2

supergravity, encoding information on the internal compact space.

Section 4.2, treats compactifications on orientifolds. The internal manifold M6 corre-

sponds to a CY modded out by a symmetry involution which projects out half of the

starting background field content, reducing the effective theory to a more realistic N = 1

supergravity. The orientifold projection introduces O-planes at involution fixed loci.
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1. Introduction

In Section 4.3 we introduce fluxes, following [13]. Focusing on a background main-

taining four-dimensional Poincaré invariance, we see how these fluxes can generate a

four-dimensional scalar potential stabilising some moduli. Furthermore, such a potential

gives a supersymmetry breaking mechanism to the effective N = 1 supergravity. Then

we include Dp-branes, with their own moduli, and see how their presence modifies the

effective theory [21–24]. These results are obtained in the large volume limit, approxi-

mating the warping to a constant.

In Ch. 5 we present an alternative approach to dimensional reduction, in order to

study the low-energy theory of IIB warped flux compactifications. This method, based

on supersymmetry considerations [25–27], allows to take properly into account the non-

trivial warp factor. We discuss how it allows in principle to compute the Kähler potential

K(ϕ, ϕ̄), which determines, in the effective action, the kinetic terms of a number of

complex scalars ϕi parametrising the compactification moduli. We then explicitly apply

this method to a simple class of warped compactifications on fluxed toroidal orientifolds

T 6/Z2 [28], computing the explicit form of the associated low-energy Kähler potential.
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2. IIB Supergravity

In string theory the string dynamics in the ten-dimensional spacetime is governed by

the so-called worldsheet theory, which is a two-dimensional theory generalising the point-

particle dynamics [29, 34]. In general, in a curved space, i.e. with non-flat background

metric, the string worldsheet theory is interacting and usually not exactly solvable. How-

ever, it may be studied as an effective theory, using the so-called α′ expansion, with the

expansion parameter α′

R2 ∼ `2s
R2 ∼ E2

M2
s
. Here `s ≡ 2π

√
α′ and Ms are the length and

energy string scales, while E and R are the length and energy scales at which the the-

ory is studied. Because we do not observe strings, we should deal with energies well

below Ms (which in many model is close to the four-dimensional Planck scale). In such a

low-energy, or large radius, regime there is indeed not enough resolution to perceive the

string spatial extent and its massive oscillation states, with masses quantized in terms

of Ms. Only massless modes of oscillations are observable and thus strings behave as

point-particles, with dynamics governed by an effective quantum field theory action, i.e.

the supergravity action 1.

2.1. The closed string sector: the bulk

Type II supergravity theories are the maximally supersymmetric theories in ten-dimensional

spacetime: they have 32 supercharges organized in two Majorana–Weyl spinors, thus

N = 2 2. There exist two types of such theories, differing for field content. Both type

IIA and IIB are obtained naturally as the low-energy approximations of the type II super-

string theories (closed string theories) and then their spectrum consists of the massless

closed string modes, as illustrated in Tables 2.1 and 2.2.

The closed string sector organise in lef- and right- moving states. In each of these sectors

NS or R refers to the two possible periodicity conditions on the worldsheet fermions.

For both types II, the NSNS sector contains the dilaton scalar φ, the two-form B2 and

the metric g. The RR sector is different for the two types of supergravities. Type IIA

1A full string theory description is only available in some special cases, like orbifolds or CFT construc-

tions [29].
2Indeed ‘‘II” refers to the number of supersymmetries.
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2. IIB Supergravity

Sector 10d fields

NS-NS φ, B2, g

NS-R λ1, ψ1
M

R-NS λ2, ψ2
M

R-R C1, C3

Table 2.1.: Massless spectrum of

IIA supergravity.

Sector 10d fields

NS-NS φ, B2, g

NS-R λ1, ψ1
M

R-NS λ2, ψ2
M

R-R C0, C2, C4

Table 2.2.: Massless spectrum of

IIB supergravity.

contains the odd p-forms C1, C3, while type IIB contains even p-forms: a scalar C0, a

two-form C2 and a four-form C4 with self-dual field-strength F̃5. Fermions are in the

NS-R and R-NS sectors: there are two Rarita–Schwinger fields, corresponding in the

IIB case to two left-handed Majorana–Weyl gravitinos, and two spinors (right-handed

Majorana–Weyl dilatinos). In type IIA the gravitinos and the dilatinos have opposite

chirality [29].

The local symmetries of the type II theories are:

• ten-dimensional diffeomorphisms;

• gauge transformation of the B-field:

B2 → B2 + dλ1 . (2.1.1)

Differently from what happens for Cp fields, strings are charged under the B-field, as

one can see from the two-dimensional string worldsheet action, see for instance [29];

• gauge transformations of p-form fields Cp:

Cp → Cp + dΛp−1 . (2.1.2)

There exist no states in the perturbative string spectrum charged under these fields,

but branes, regarded as non-perturbative states in string theory, are charged under

them [10];

• local superymmetry, with 32 supercharges arranged in two ten-dimensional Majorana–

Weyl spinors (having 16 components each) of the same chirality for type IIB, op-

posite for type IIA. The spectrum is composed by a N = 2 ten-dimensional gravity

multiplet.
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2.1. The closed string sector: the bulk

The great number of supersymmetries strongly constrains the low-energy actions for the

massless states and uniquely fixes the type II supergravity actions up to two derivatives.

In this thesis we are interested in the IIB type, whose massless spectrum is summarized

in Table 2.2 [29].

We will study a IIB background, i.e. a field configuration that is a solution of the equations

of motion, in which all fermionic fields vanish. Hence it is enough to consider just the

bosonic sector of the tree-level IIB supergravity action [30] 3:

Ssf
IIB = SNS + SRR + SCS ,

SNS =
1

2κ2
10

∫
d10x
√
−gs e

−2φ

(
Rs + 4(∇φ)2 − 1

2
|H3|2

)
,

SR = − 1

4κ2
10

∫
d10x
√
−gs

(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
,

SCS =
1

4κ2
10

∫
C4 ∧H3 ∧ F3 ,

(2.1.3)

where 1
2κ2

10
= 2π

`8s
= 2π

(2π
√
α′)8

gives the correct mass dimensions and it is often defined as

κ2
10 ≡

(2π)6

M8
P,10

. The field-strengths are defined as

Fp = dCp−1 ∀ p = 1, 3, 5 ,

F̃3 = F3 − C0H3 ,

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 .

(2.1.4)

In many cases is more convenient to work in the Einstein frame, with the metric gMN =

e−φ/2gsMN , defined in order to recover the usual Einstein–Hilbert term:

SEf
IIB =

1

2κ2
10

∫
d10x
√
−gR− 1

4κ2
10

∫
d10x
√
−g
(
e2φ|F1|2 + (∇φ)2

+ eφ|F̃3|2 + e−φ|H3|2 +
1

2
|F̃5|2 − C4 ∧H3 ∧ F3

)
.

(2.1.5)

To be precise, the actions written above are not supersymmetric, because they possess

more bosonic than fermionic degrees of freedom, due to the fact that they do not incor-

porate the self-duality condition

F̃5 = ∗F̃5 , (2.1.6)

3Note that we use a different convention for the Hodge-∗ with respect to [30], see Appendix A.
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2. IIB Supergravity

which has to be imposed as additional constraint at the level of equations of motion,

reproducing the correct theory 4.

One can check that the equations of motion for the action (2.1.5), in absence of local

sources, are [33]:

RMN =
1

2
∂Mφ∂Nφ+

1

2
e2φ∂MC0∂NC0 +

1

4 · 4!
F̃MABCDF̃

ABCD
N

+
1

4

(
eφF̃MABF̃

AB
N + e−φHMABH

AB
N

)
− 1

48
gMN

(
eφF̃ 2

ABC + e−φH2
ABC

)
,

d ∗ (eφF̃3) = F5 ∧H3 ,

d ∗ F̃5 = dF̃5 = H3 ∧ F3 ,

d ∗ (e−φH3 − eφC0F̃3) = F3 ∧ F5 ,

∇M(e2φ∂MC0) = − eφ ∗H3 ∧ F̃3 ,

∇M∇Mφ = e2φ|F1|2 +
1

2
eφ|F̃3|2 −

1

2
e−φ|H3|2 .

(2.1.7)

We will see how the bulk action and therefore the equations of motion are modified

when localized sources as D-branes (Section 2.2) or O-planes are present.

Later on we will need to know the supersymmetry transformations of the fermionic

fields. Representing gravitinos, dilatinos and supersymmetry parameters by Weyl spinors

ψM , λ, ε, the supersymmetry variations are [34]:

δλ =
1

2
(/∂φ− ieφ/∂C0)ε+

1

4

(
ieφ /̃F 3 − /H3

)
ε∗ ,

δψM =

(
∇M +

i

8
eφ /F 1ΓM +

i

16
eφ /̃F 5ΓM

)
ε− 1

8

(
2 /HM + ieφ /̃F 3ΓM

)
ε∗ ,

(2.1.8)

where

/F p ≡
1

p!
FM1...MP

ΓM1...MP ,

/FM ≡
1

(p− 1)!
FMN1...Np−1ΓN1...Np−1 .

(2.1.9)

4The problem here is that one cannot write the action with a canonical kinetic term for a self-dual form,

as F̃5∧∗F̃5, because it vanishes. Neither a Lagrange multiplier field does help, ending up reintroducing

the components it was intended to eliminate. An alternative approach to the one used here is to

formulate a manifestly covariant action following Pasti, Sorokin and Tonin prescription [31,32].
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2.2. The open string sector: Dp-branes

2.2. The open string sector: Dp-branes

Dp-branes are extended dynamical objects admitted by the string theory, which open

new possibilities for the construction of realistic models in string theory [10]. As we will

see below, they correspond to non-perturbative states of type II string theories 5.

At weak coupling, a Dp-brane is a (p + 1)-dimensional object, on which open strings

can end. Let us explain how this happens. Open and closed strings share the same

local worldsheet structure, which means that both have the same local dynamics, while

differences arise as global boundary conditions [29]. In fact, to get the open strings

e.o.m. from the variation of the Polyakov action, one has to require the vanishing of

boundary terms (which do not arise in the case of closed strings). In order to make them

vanish, one has basically two possibilities. To describe these, let us recall that the string

worldsheet action, which is the two-dimensional generalisation of the particle worldline

action, is described by the embedding XM(t, σ), M = 0, ..., 9. These can be thought as

ten two-dimensional fields, depending on worldsheet parameters (t, σ). σ ∈ [0, `], where

` is the string length. This means that the open string endpoints are at σ = 0 and ` [29].

In a ten-dimensional Poincaré invariant theory the variations of the worldsheet fields

δXM(t, σ) are unconstrained and one finds that the vanishing of the boundary terms re-

quires the so-called ‘‘Neumann-Neumann boundary conditions” (NN) on both endpoints:

∂σX
M |σ=0,` = 0 , (2.2.1)

corresponding to free endpoints moving through spacetime. Another way to make the

boundary terms vanish is to impose δXM(t, σ)|σ=0,` = 0. It corresponds to pin the

endpoints:

XM |σ=0,` = xM0,` , xi0, x
i
` = const . (2.2.2)

These are the so-called ‘‘Dirichlet-Dirichlet boundary conditions” (DD). If one chooses

a starting Minkowskian background, such boundary conditions will break the Poincaré

invariance ISO(1, 9) of the vacuum.

Generally, an open string can have different boundary conditions on each of its end-

points, i.e. not only NN or DD, but also ND or DN. Take, for instance, an open string

which is described by the worldsheet theory of p + 1 fields Xµ(t, σ), µ = 0, ..., p satisfy-

ing the Neumann boundary condition and 9− p fields satisfying the Dirichlet boundary

condition X i(t, σ) = xi0, i = p + 1, ..., 9. Focus on the endpoint at σ = 0. This string

endpoint is confined to move within a p-dimensional hyperplane, termed a ‘‘Dp-brane”,

5Branes are non-perturbative states also of the type I theory, built by orientifolding type IIB [29].
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2. IIB Supergravity

with transverse position xi0
6.

The presence of Dp-branes breaks some of the symmetries of the vacuum. For in-

stance, in a maximal symmetric background, the inclusion of a flat Dp-brane (neglecting

its backreaction on the background, which modifies the geometry) breaks at least both

the Lorentz invariance SO(1, 9) → SO(1, p) × SO(9 − p), where SO(1, p) is the resid-

ual symmetry on the brane, and the traslational invariance in the transverse directions.

Moreover, branes break also some of all bulk supersymmetries.

Branes are physical objects, with a proper dynamics, described by the worldsheet

theory of the open string sector. At low energies compared to the string scale, this

dynamics is encoded in the massless open string modes and one can construct an effective

action based only on them, exactly as in the supergravity case (see subsect. 2.2.1).

Analysing the open string oscillators, one finds that IIB/IIA theories are compatible

only with ‘‘stable” branes with odd/even p respectively. The structure of the oscillators

is similar to that of purely NN open superstrings, but the DD boundary conditions lead

the open string center of mass to be localized on the brane. The corresponding particles

propagate in its (p+ 1)-dimensional volume [29]. For a Dp-brane spanning the directions

xµ, µ = 0, ..., p and transversal to xi, i = p+ 1, ..., 9, the massless spectrum is presented

in Table 2.3. Counting of degrees of freedom shows that massless states fill in a U(1)

vector supermultiplet with respect to 16 supersymmetries in p + 1 dimensions 7. It can

also be thought of as the (p+ 1)-dimensional reduction of a ten-dimensional N = 1 vec-

tor multiplet, with the ten-dimensional vector field splitting into the (p+ 1)-dimensional

gauge boson Aµ and 9− p real scalars φi, and with the ten-dimensional Majorana–Weyl

spinor giving rise to fermions λα. Scalars φi can be regarded as the Goldstone bosons

associated to the Minkowski bulk translational symmetries broken by the D-brane. Their

vevs describe exactly the position of the brane in the transversal directions; their vari-

ations encode the brane transversal fluctuations (see subsection 2.2.1). The spinors λα
can be regarded as goldstinos associated to the broken supersymmetries of Minkowski

bulk, which allows 32 global supercharges.

The maximum number of the unbroken supersymmetries in a Minkowskian vacuum

containing a Dp-brane is 16, that is half of the type II supersymmetries. This suggests

to regard the brane as to a BPS state [29, 34]. This amount of supersymmetry prevents

6Setting 10 Dirichlet conditions, one deals with a (−1)-brane, completely localized in space and time.

It is interpreted as a ‘‘D-instanton”, in the Euclideanized theory.
7Take, for example, a D3-brane. It presents a massless spectrum that is a U(1) N = 4 vector multiplet

in four dimensions, composed by a gauge boson (2 d.o.f.), 6 real scalars and four Majorana spinors

(2 d.o.f. each), for a total of 8 bosonic and 8 fermionic physical d.o.f..
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2.2. The open string sector: Dp-branes

the presence of tachyonic states and makes the brane stable.

Sector (p+ 1)d fields

NS Aµ(xµ)

φi(xµ)

R λα(xµ)

Table 2.3.: Massless spectrum of a Dp-brane: fields live on the brane.

2.2.1. D-brane effective action

Here we present the D-brane (bosonic) action at energy well below the string scale, in the

perturbative regime of string theory. The rigorous derivation follows from the worldsheet

theory, including non-trivial background NSNS and RR fields φ, g, B2, Cp. It yields to an

action corresponding exactly to the worldvolume action for the brane, which is the higher-

dimensional generalization of the string worldsheet action. This formulation is extremely

useful to understand the physical meaning of the effective action. One introduces the

brane worldvolume W , as the p+ 1-dimensional generalization of the string worldsheet,

parametrized by σα = 0, ..., p. To get the spacetime supersymmetric spectrum of Table

2.3, the supersymmetric action can be described by an embedding in superspace [35,36].

We will only need the bosonic brane worldvolume action, which in the string frame is:

Ssf
D−brane = SDBI + SCS , (2.2.3)

SDBI = −Tp
∫
W

dp+1σ e−φ
√
− det(P [g −B2] + λF ) , (2.2.4)

SCS = µp

∫
W

[
P

(∑
P

Cpe
−B2

)
eλF

]
p+1

∧ Â(R) , (2.2.5)

where λ = 2πα′ and P [...] denotes the pullback onto the brane worldvolume W .

The term (2.2.4) is the Dirac–Born–Infeld action. It describes the coupling of the brane

to the NSNS fields of the background. Tp is the brane tension and F = dA is the field-

strength of the U(1) worldvolume gauge field Aα. This action comes from the combination

of the Nambu–Goto action with the Born–Infeld action, both suitably generalized for a

Dp-brane 8. In fact, ignoring fields B2 and Aα and also considering a constant dilaton,

it reproduces exactly the Nambu–Goto action for an extended Dp-brane

8The Nambu–Goto string action is the natural generalization of the free point-particle action:
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2. IIB Supergravity

SDp−brane
NG = −Tp

∫
W

dp+1σ
√
− det(P [g]) . (2.2.8)

The appearance of the combination

F ≡ λF − P [B2] (2.2.9)

is required by gauge invariance under (2.1.1). Indeed, open strings in a non-trivial back-

ground couple also to the gauge boson Aα(σ). The string worldsheet action, from which

we extract the effective brane action, contains the term

S
(A,B)
Σ = − 1

2πα′

∫
Σ

B2 +

∫
∂Σ

A1 (2.2.10)

which is invariant if the gauge transformation of B2 (2.1.1) is accompanied by the shift

A1 → A1 +
1

2πα′
λ1 . (2.2.11)

Hence physical quantities can depend only on the gauge-invariant combination (2.2.9) 9.

The DBI action (2.2.4) encodes the dynamical nature of the brane embedding implicitly

in the pull-back P [...] of the bulk spacetime fields to the brane worldvolume. One can

use the static gauge, i.e. that gauge choice for which the worldvolume diffeomorphisms

symmetry is used to set the first p + 1 components of the embedding fields equal to

the worldvolume coordinates, i.e. Xα(σ) = σα. Then, brane transversal fluctuations

around a fixed X i
o(σ) can be identified with the 9− p scalars as X i(σ) = X i

o(σ) +λφi(σ),

Sstring
NG = −Ts

∫
Σ

d2σ
√
−det(P [g]) , (2.2.6)

where Ts string tension Ts ≡ 1/(2πα′) ∼M2
s . P [g] is the spacetime metric pulled back to the string

worldsheet Σ.

The Born–Infeld action [37] was proposed as a non-linear generalization of the Maxwell theory,

formulated in the attempt to eliminate the classical infinite self-energy of a charged point-particle

(in a flat four-dimensional spacetime):

SBI ∼
∫
d4x

√
−det(ηµν + λFµν) . (2.2.7)

It possesses the crucial property to be generally covariant in a curved space, i.e. replacing ηµν → gµν .

Here these actions are generalized in a higher dimensional structure and combined to give the brane

action [34].
9To be more precise, in a supersymmetric worldsheet theory there are also spinors on the worldsheet

combining in F to make it supersymmetrically invariant. Here we are studying just the bosonic

sector.
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2.2. The open string sector: Dp-branes

i = p + 1, ..., 9 (λ is inserted to give the mass dimension one to the scalars φi). In this

gauge one gets 10:

SDBI = −Tp
∫
W

dp+1σ e−φ
[
− det

(
gαβ + λ2∂αφ

i∂βφ
jgij + 2λgi(α∂β)φ

i −Bαβ + λFαβ
)] 1

2 ,

(2.2.12)

where the pullbacked fields must be regarded of as embedding-dependent. The complete

fluctuations dependence is obtained expanding these fields around brane positions. Take,

for instance, the gαβ term: it must be regarded of as

gαβ(σα, X i
o + λφi) = gαβ(σα, X i

o) + ∂igαβλφ
i + ... . (2.2.13)

Expanding (2.2.12) in powers of the field-strength F one finds that the term quadratic

in λ is the (p + 1)-dimensional generalization of the Maxwell action for Fαβ. Since this

has a coupling like 1/g2
YM ∼ 1/gs, one gets the relation Tp ∼ 1/gs, unveiling the non-

perturbative nature of D-branes.

The Chern–Simons term (2.2.5) encodes the informations of the brane worldvolume

couplings to the RR fields Cp. µp is the Dp-brane charge and it is equal to the tension,

µp = Tp
11.

In the integral one has to pick up just the terms corresponding to p + 1 forms, which

can be integrated on the worldvolume. There is not only the leading order contribution

given by the electric coupling to the Cp+1 field. Indeed, the CS action shows that when

non-vanishing worldvolume field-strengths are present, they induce lower-dimensional D-

brane charges, i.e. brane interacts also with lower degree RR forms. The pullback, makes

manifest the interaction of the brane fluctuations φi with the RR fields. Note that, once

again, B2 and F enter the action through the gauge-invariant combination (2.2.9). Since

they are two-forms, only p = odd/even branes coupling RR fields are present in a type

IIB/IIA theory. The last term in (2.2.5) is relevant only in the presence of spacetime

curvature and it is called the A-roof polynomial Â(R) = 1 + c TrR2 + · · · , where c is a

constant and R the curvature two-form [29].

The action (2.2.3) can be generalized to stacks of Dp-branes, giving rise to non-Abelian

gauge theories, where scalars φi becomes N ×N matrices. Both the DBI and the CS ac-

tions are consequently modified [10]. The importance of intersecting brane-world models

has grown since it was discovered they can lead to SM-like gauge theories [29,38,39]. We

10The components of a spacetime tensor TMN pulled-back to the brane worldvolume (P [T ])αβ =

TMN∂αX
M∂βX

M .
11µp = Tp is typical of supersymmetric branes and it does not hold in general.
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2. IIB Supergravity

will see how Dp-branes can be consistently included in compactification backgrounds in

the next Chapter.
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3. N = 1 Supergravity in D = 4

In this Section we present the main features of four-dimensional supergravity theories

that we will encounter in the context of superstring compactifications. A complete dis-

sertation is beyond the scope of the thesis and for more details we refer the reader to

textbooks and exhaustive notes [40–42].

A supergravity theory is obtained by gauging a supersymmetric theory, i.e. promoting

the global (also called rigid) supersymmetry to be local. Such a gauging leads to include

general spacetime transformations (diffeomorphisms) among the symmetries and hence

the theory corresponds to a supersymmetric version of gravity. In order to proceed to the

description of the theory, it is advisable to refresh the fundamental characteristics of a

rigid supersymmetric theory, whose supporting motivations we gave in the Introduction.

3.1. Basics of rigid supersymmetry in D = 4

Supersymmetry is a symmetry which relates bosons and fermions. Calling Q the gener-

ator, one has

Q(fermion) = boson ,

Q(boson) = fermion .
(3.1.1)

Therefore, the theory has to contain an equal number of fermionic and bosonic degrees of

freedom. The first and simpler supersymmetric theory in four dimensions was discovered

by Wess and Zumino [2], which is the free theory of a Weyl fermion ψ 1 and a complex

scalar φ [29]:

1Following the Bagger’s and Wess’ conventions [43], a Weyl spinor is a two-component spinor which

can belong to the fundamental (lefthanded) (1/2, 0) or to the antifundamental (righthanded) (0, 1/2)

representation of the Lorentz group. In the first case it is denoted by ψα (ψL), in the latter with

ψ̄α̇ (ψR), where α, α̇ = 1, 2. In this notation a Dirac spinor is a reducible four-component spinor

collecting two Weyl spinors as

ΨD =

(
ψα

χ̄α̇

)
, (3.1.2)
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3. N = 1 Supergravity in D = 4

S =

∫
d4x(−∂µφ∂µφ∗ − iψ̄σ̄µ∂µψ) . (3.1.3)

This action is invariant under the following supersymmetric variations

δεφ =
√

2εψ , (3.1.4)

δεψα = i
√

2(∂µφσ
µε̄)α , (3.1.5)

where εα is the infinitesimal transformation parameter and it is a fermionic (Grassmann

odd) quantity of mass dimension [ε] = −1/2.

The supercurrent

Jµα = (∂νφ
∗σν σ̄µψ)α (3.1.6)

is conserved ∂µJ
µ
α = 0 by using the equations of motion. Hence, it gives the following

conserved supercharges

Qα =

∫
d3xJ0

α , Q̄α̇ ≡ Q†α . (3.1.7)

These are the charge generators and they transform as Weyl spinors under the Lorentz

group. One can check they satisfy the following superalgebra:

{Qα, Q̄β̇} = 2σµ
αβ̇
Pµ , (3.1.8)

where Pµ is the translation generator, while

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0 , (3.1.9)

[Qα, Pµ] = [Q̄α̇, Pµ] = 0 . (3.1.10)

Since it is constructed as a symmetry between fermions and bosons, which have different

spins, the supersymmetric algebra can not be considered as an internal symmetry. This

is reflected in the non-trivial commutation rules between supersymmetric and Lorentz

generators Mµν :

[Mµν , Qα] = i(σµν)
β
α Qβ ,

[Mµν , Q̄α̇] = i(σ̄µν)
β̇
α̇ Q̄β̇ .

(3.1.11)

the Dirac mass term is hence Ψ†γ0Ψ = χ†RψL + ψ†LχR = χαψα + ψ̄α̇χ̄
α̇, where we used the Weyl

representation of gamma matrices γ0 = σ2 ⊗ 1 and we called χα = (χ̄α̇)∗ and ψ̄α̇ = (ψa)∗. Here

(σµ)αα̇ = (−1, σi) and (σ̄µ)α̇α = (−1,−σi).
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3.1. Basics of rigid supersymmetry in D = 4

Notice that we presented the case of a N = 1 supersymmetric theory. If N > 1 one

deals with an extended supersymmetry. In this case the supercharges are QI
α, Q̄

I
α̇ with

I = 1, ...,N and the anticommutation rules become

{QI
α, Q̄

J
β̇
} = 2σµ

αβ̇
Pµδ

IJ , ∀I, J = 1, ...,N , (3.1.12)

{QI
α, Q

J
β} = εαβZ

IJ , {Q̄I
α̇, Q̄

J
β̇
} = εα̇β̇(ZIJ)∗ , (3.1.13)

where ZIJ are antisymmetric central charges, commuting with full algebra generators.

The values of possible N is constrained by the theory of representations. In fact, N is di-

rectly linked to the maximum spin allowed for a particle in a given representation, which

is one for a rigid supersymmetric theory and two for a supergravity theory. Consistency

then requires N ≤ 4 and N ≤ 8 in the two cases respectively [40,42].

From the rules governing the superalgebra one can study the theory of representa-

tions in terms of states [40–42]. Any representation of the full supersymmetric algebra is

also a representation of the Poincaré algebra, in general reducible. Hence, an irriducible

representation of the superalgebra corresponds to different Poincaré irreducible represen-

tations, i.e. to several particles. This is why such an irreducible representation is called

supermultiplet.

Each supermultiplet contains bosonic and fermionic states, related by the action of

generators Q, Q̄ and having spins differing by units of half. Moreover, in the same super-

multiplet particles have the same mass and bosonic degrees of freedom (d.o.f.) are equal

to fermionic ones [40–42]. Since we deal with fields throughout the thesis, let us describe

supermultiplets in terms of fields.

Fields representations. For us, the relevant supermultiplets are those of N = 1 and

N = 2 supersymmetries. For N = 1 we present each supermultiplet distinguishing be-

tween the massless and the massive representation:

the chiral supermultiplet (matter multiplet): whether massless (called also Wess–

Zumino multiplet) or massive, it contains a complex scalar and a Weyl fermion;

the vector supermultiplet: the massless one corresponds to a gauge boson and a

Weyl fermion, both in the adjoint of the gauge group, while the massive one is composed

by a vector, two Weyl spinors (of opposite chirality) and a real scalar. Notice that de-

grees of freedom are the same of those of a massless vector multiplet plus one massless

matter multiplet. In fact, one can generates massive vector multiplets by a super-Higgs

mechanism [29,42];
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3. N = 1 Supergravity in D = 4

the graviton supermultiplet: we are interested only in the massless representation,

which contains the graviton and a gravitino. This kind of multiplet appears only in su-

pergravity theories.

When N = 2, supermultiplets we are interested in are only the massless ones:

the hypermultiplet (matter multiplet): it may contain a complex scalar and a

Weyl fermion (half-hypermultiplet), or two complex scalars and two Weyl fermions (hy-

permultiplet);

the vector supermultiplet: it contains a gauge boson, a complex scalar and 2 Weyl

fermions, all transforming in the adjoint of the gauge group;

the graviton supermultiplet: it corresponds to a graviton, 2 gravitinos and a vec-

tor (termed the graviphoton).

Superspace and superfields. A very useful mathematical instrument to deal with all those

fields is the superspace formalism, since it allows to organise all components of a super-

multiplet in a single superfield. This, in turn, allows to write general field theory actions.

The superspace is the generalisation of the four-dimensional Minkowskian spacetime in-

cluding two extra fermionic dimensions, described by two anticommuting spinorial coor-

dinates θα, θ̄α̇ [40,42]. Superfields are fields defined in such a space, depending on all its

coordinates (xµ, θα, θ̄α̇). Due to the Grassmann nature of fermionic coordinates, it fol-

lows that superfields have a finite expansion in these coordinates and hence can encode

a finite number of ordinary fields. So they can be naturally filled by the supermultiplet

components. For a N = 1 supersymmetric theory, the simplest type of superfield is the

chiral superfield Φ(x, θ, θ̄), so named since it contains all the fields of the off-shell chiral

supermultiplet

(Φ, ψ, F ) . (3.1.14)

Here Φ, ψ are the complex scalar (typically denoted as the superfield) and the Weyl

fermion contained in the supermultiplet as described above. F is an auxiliary complex

scalar field, introduced for convenience, in order to close the supersymmetry algebra off-

shell. To be clearer, let us come back to the Wess–Zumino example (3.1.3). The model

can be completely described by a chiral superfield with an action

S =

∫
d4x(−∂µΦ∂µΦ∗ − iψ̄σ̄µ∂µψ + |F |2) , (3.1.15)
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3.1. Basics of rigid supersymmetry in D = 4

invariant under

δεΦ =
√

2εψ , (3.1.16)

δεψα = i
√

2(∂µΦσµε̄)α +
√

2εαF , (3.1.17)

δεF = i
√

2(ε̄σ̄µ∂µψ) . (3.1.18)

The additional degrees of freedom represented by F are unphysical. In fact they can be

integrated out by applying the equations of motion. A chiral superfield has the following

expansion in θα:

Φ(x, θ, θ̄) = Φ(y) +
√

2θψ(y) + θθF (y) , (3.1.19)

where y = x+ iθσµθ̄ and we adopt the same notation for the superfield and its complex

scalar component. There exists also the antichiral superfield, which is simply the adjoint

Φ† and contains the conjugate fields (Φ∗, ψ̄α̇, F
∗).

Another kind of superfield is the vector superfield V (x, θ, θ̄), fundamental for the intro-

duction of gauge interactions in the theory. This superfield encodes all the information

about the vector multiplet, described off-shell by (omitting gauge indices)

(Aµ, λα,D, C, χα, N) . (3.1.20)

Here Aµ is the gauge boson with field-strength Fµν , λα is the gaugino, a Weyl spinor

in the adjoint of the gauge group, while D, C,N, χα are auxiliary fields, three complex

scalars and a Weyl spinor, equipping the multiplet with a generalised gauge invariance.

Among these, the latter three are removed by a suitable gauge choice, such that V can

be written as an expansion in the fermionic coordinates with field components Aµ, λ and

D. The latter can then be integrated out, leaving Aµ and λα as dynamical fields. This

superfield has the property to be self-adjoint V † = V .

N = 1 Supersymmetric actions. At his point we possess all the basic instruments to un-

derstand the basic structure of a supersymmetric action, while its meticulous derivation

is beyond the scope of this review.

Let us begin by presenting the most general renormalisable supersymmetric Lagrangian

encoding interactions among a number of chiral superfields Φi:

LW =

∫
d2θW (Φi) + h.c. , (3.1.21)

where
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3. N = 1 Supergravity in D = 4

W (Φi) =
1

3
hijkΦiΦjΦk +

1

2
mijΦiΦj + λiΦi (3.1.22)

is the superpotential, a holomorphic function of chiral fields. It determines masses,

Yukawa couplings and a scalar potential V (Φi). We shall stress that the holompor-

phicity of W is really crucial to supersymmetry. As one can show, the product of chiral

superfields yields another chiral superfield. Now, since the integral in (3.1.21) selects

the ‘‘F-term” of these chiral fields, i.e. the F auxiliary field which has a total deriva-

tive as supersymmetric variation (3.1.18), then the four-dimensional integral of (3.1.21)

is invariant under supersymmetry. This means that the action derived from (3.1.21) is

automatically invariant.

The kinetic terms for chiral multiplets are described by∫
d2θd2θ̄Φ†iΦi . (3.1.23)

The integral now selects the so-called ‘‘D-term”, i.e. the θ2θ̄2 component of the product

Φ†iΦi, which has again a total derivative as supersymmetric variation. Therefore also the

kinetic action is manifestly supersymmetric invariant. It contains kinetic terms for the

complex scalars Φi, for the Weyl spinors ψi and also for the auxiliary fields Fi. In the

latter case the kinetic term is
∑

i |Fi|2 which, by using the equations of motion F ∗i = −∂W
∂Φi

(derived with the interaction (3.1.21)), gives rise to a contribution to the scalar potential

of the form

VF (Φi) =
∑
i

∣∣∣∣∂W∂Φi

∣∣∣∣2 . (3.1.24)

Gauge bosons and gauge interactions are introduced with vector superfields. Given a

vector multiplet V , one can include the gauge invariant field-strength Fµν , the gauginos

λα and the auxiliary scalar D into a spinorial chiral superfield Wα, suitably defined in

order to describe the kinetic terms by

1

4
Tr

∫
d2θWαW

α + h.c. = Tr

[
−1

4
F 2
µν − iλσµDµλ̄+

1

2
D2

]
, (3.1.25)

where Dµ is the gauge covariant derivative Dµλ̄ = ∂µλ̄− i
2
[Aµ, λ̄] [40, 42].

The interactions among the components of a vector superfield V and the components

of a chiral superfield Φ are encoded by the covariantisation of (3.1.23):∫
d2θd2θ̄Φ†eV Φ . (3.1.26)
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Other than being supersymmetric invariant, (3.1.25) and (3.1.26) are invariant under a

generalised gauge symmetry, with chiral superfields Φ transforming in some representa-

tion of the gauge group. However, once gauged away C, χα, N , one is left with the physical

fields ψ,Φ, Aµ, λ transforming under ordinary gauge transformations [40, 42]. Note that

(3.1.26) contains the gauge interactions between matter fields (Φ, ψ) and gauge bosons Aaµ
or gauginos λa. Moreover, it produces a linear term in D, which determines the equation

of motion µDa = −gΦ†T aΦ, where g is the gauge coupling and T a is a representation of

the gauge generator, labelled by the gauge index a and some other representation indices
2 which are the same of Φ. Analogously to what happens for the kinetic terms of chiral

fields, the kinetic term of D in (3.1.25) can be regarded as a contribution to the scalar

potential V (Φ):

VD =
1

2

∑
a

|Da|2 =
g2

2

∑
a

|Φ†T aΦ|2 . (3.1.27)

We can generalise the above renormalisable supersymmetric actions for gauge and matter

multiplets. It is exactly what happens in supergravity theories arising in string compact-

ifications. There, as we will see in the next Chapters, We will deal with superfields

which are singlets under the gauge interactions, therefore we will focus on this case in

the following.

The generalisation of the chiral kinetic terms (3.1.23) is now:∫
d2θd2θ̄K(Φi,Φ

†
j) , (3.1.28)

where K(Φi,Φ
†
j) is the Kähler potential, a real function of chiral fields. It leads to kinetic

terms for the scalar components of the non-linear sigma model form, i.e. (here Φ̄ı̄ ≡ Φ∗i )

gi̄∂µΦi∂µΦ̄̄ , (3.1.29)

where

gi̄ =
∂2K

∂Φi∂Φ̄j
(3.1.30)

is regarded as the Kähler metric of a Kähler manifold, parametrised by the complex

scalar coordinates Φi.

It is also possible to give a field dependent generalisation of the gauge kinetic terms

(3.1.25):

2We chose not to display these indices to simplify the notation.
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3. N = 1 Supergravity in D = 4

1

4

∫
d2θ f(Φi)Tr[WαWα] + h.c. ∼ (Ref)abF

a
µνF

b µν + (Imf)abF
a
µνF̃

b µν , (3.1.31)

where f(Φi) is the holomorphic gauge kinetic function and F̃µν = 1
2
εµνρσF

ρσ.

Notice that, in perturbation theory, loop corrections modify K, but, remarkably, the

superpotential (3.1.22) turns out to be exact to all orders 3. Indeed, one can show

that, in the superspace formalism, such quantum corrections have a D-term structure.

Furthermore, W (Φ) can be any holomorphic function and the scalar potential VF (3.1.24)

becomes

VF = gi̄
∂W

∂Φi

∂W

∂Φ̄j
, (3.1.32)

where gi̄ is the inverse of the Kähler metric (3.1.30).

Supersymmetry breaking. We know that all fields in a supermultiplet have the same mass.

However, at present day, there is no evidence of the existence of superpartners of the SM

particles. This suggests that the supersymmetry must be broken at an energy scale at

least above the electroweak one. One can think that, if realised in nature, supersymmetry

is broken spontaneously, which means the Lagrangian to be supersymmetric invariant but

the vacuum state to be not, i.e. Qα|0〉 6= 0. In global supersymmetric theories the order

parameter is the groundstate energy 〈0|H|0〉, which is shown to be positive semidefinite

and vanishes only in case of unbroken supersymmetry (when Qα|0〉 = 0) [40, 42]. Re-

membering that the vacuum state is by definition such that 〈0|H|0〉 = 〈0|V |0〉 and that

the scalar potential is in general the sum of VD + VF , one finds that the supersymmetry

breaking requires

〈0|Fi|0〉 6= 0 and/or 〈0|Da|0〉 6= 0 , for some i, a. (3.1.33)

There exists also a supersymmetric Goldstone theorem, predicting the existence of a

massless particles for each ‘‘broken degree of freedom”. The broken generator Qα is a

spinor with 2 fermionic indices, hence the Goldstone particle is a Weyl spinor ψG, dubbed

goldstino, and it is typically the partner of the non-vanishing F or D auxiliary term in

(3.1.33).

3.2. Basics of N = 1 supergravity in D = 4

We are now ready to introduce four-dimensional supergravity, in the same pragmatic

approach followed in the previous Section.

3W can get corrections by non-perturbative effects, e.g. instantons.
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Promoting the supersymmetry to hold locally means allowing for parameters of the

super-Poincaré group to vary in spacetime. Supersymmetry parameters become space-

time dependent spinors εα(x), ε̄α̇(x) and, as a consequence, the superalgebra involves local

translation parameters which can be refarded of as diffeomorphisms. This in turn means

that local supersymmetry requires gravity [42].

A supergravity theory is an interacting field theory containing the gravity multiplet

and possible matter/vector multiplets of the underlying globally supersymmetric theory.

In particular, in a four-dimensional N = 1 supergravity the gravity multiplet consists in

the graviton gµν and its superpartner, the gravitino ψµα. This is considered as the gauge

particle of the theory, since it enters the action coupling to the conserved supercurrent,

as (3.1.6) [40, 42]. Being non-renormalisable, a supergravity theory must be regarded as

an effective theory, valid at energies well below the Planck energy scale MP.

We are interested in the supergravity action describing gravity coupled to chiral and

gauge multiplets, up to second order in derivatives. In the following ∂i ≡ ∂
∂Φi . We start

by giving a description of the supergravity coupled to chiral fields. The superspace sigma

model Lagrangian is a particular generalisation of (3.1.28), that is [44]

L = −3M2
P

∫
d2θd2θ̄E exp

[
− 1

3M2
P

K(Φi,Φ
†
j)

]
, (3.2.1)

where M2
P = κ−2 = 1

8πGN
is the reduced Planck mass and E is the superdeterminant of the

superspace vielbeins (supervielbeins), encoding informations about the gravity multiplet.

In the low-energy limit, MP →∞, gravity decouples, i.e. (3.2.1) is expanded as

− 3M2
P

∫
d2θd2θ̄E +

∫
d2θd2θ̄EK(Φi,Φ

†
j) +O(M−2

P ) (3.2.2)

One can check that the first term reproduces the Einstein and Rarita–Schwinger actions

and the second term is the supergravity generalisation of the kinetic terms of chiral fields

in a global supersymmetric theory in a flat spacetime (3.1.28). The third and higher

order terms vanish in the low-energy limit. This analysis furnishes a proof of the validity

of (3.2.1). Let us report, for future reference, the pure bosonic terms coming from the

examination of (3.2.2):

LBos =
M2

P

2
eR− e gi̄ gµν∂µΦi∂νΦ̄

̄ , (3.2.3)

where e is the determinant of the vierbeins eaµ, R is the Ricci scalar with mass dimension

two, gi̄ is the Kähler metric (3.1.30) and it is dimensionless by definition since the Kähler

potential has dimension two while Φi has mass dimension one. We are guaranteed on
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3. N = 1 Supergravity in D = 4

the supersymmetric invariance of the Lagrangian since it has been derived from the

superspace formalism [40,42], as holds for the next term.

The supergravity generalisation of the superpotential (3.1.22) encoding the matter

(chiral) couplings is: ∫
d2θ εW (Φi) + h.c. , (3.2.4)

where ε is the chiral superspace density [40, 42]. Expanding (3.2.4) in components and

eliminating the auxiliary fields by their equations of motion, one obtains some terms,

among which the following pure bosonic contribution

e−1LWBos = −e
K

M2
P

[
gi̄DiWDjW −

3

M2
P

|W |2
]
≡ −VF (3.2.5)

to be added to (3.2.3). This new term has the form of a scalar potential and in fact it

corresponds exactly to the supergravity generalisation of the VF term (3.1.32). To be

precise: the first term on the RHS comes from the F kinetic term, while the second term

descends from the superpotential contribution. Notice that the superpotential must have

mass dimension three. Here gi̄ is the inverse of the Kähler metric and Di = ∂i + 1
M2

P
∂iK

is the Kähler derivative, a covariant derivative with respect to the Kähler invariance

K(Φi, Φ̄j)→ K(Φi, Φ̄j) + h(Φi) + h̄(Φ̄j)

W → e−h(Φi)W
(3.2.6)

enjoyed by the completely expanded supergravity action, where h(Φi) is a holomorphic

function [40,42]. Note that in case of MP →∞, i.e. when gravity decouples, one recovers

the VF potential found for the global supersymmetry (3.1.32).

However, we prefer to deal with dimensionless quantities K̂, Φ̂i, D̂i, defined as:

K = M2
PK̂ , (3.2.7)

Φi = MPΦ̂i , (3.2.8)

Di =
1

MP

D̂i =
∂

∂Φ̂i
+

∂

∂Φ̂i
K̂ . (3.2.9)

In terms of the hatted quantities the Lagrangian kinetic terms (3.2.3) and the scalar

potential (3.2.5) become respectively (dropping hats):

M2
P

2
eR− e M2

P gi̄∂µΦi∂µΦ̄̄ , (3.2.10)

VF =
1

M2
P

eK [|DiW |2 − 3|W |2] . (3.2.11)
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The introduction of gauge interactions, by the gauge superfield V , complicates the sit-

uation. A fortunate guess, as one can show, is to generalise the global supersymmetric

lagragian (3.1.26) taking into account the sigma model type, as done for chiral fields only,

that is [44]

L = −3M2
P

∫
d2θd2θ̄E exp

[
− 1

3M2
P

K
(

Φi, (Φ
†e2gV )†j

)]
, (3.2.12)

where we shall remember that we are assuming chiral fields to be singlets under the gauge

group, therefore the Kähler potential is trivially gauge invariant. The supergravity action

is complete once added to the chiral interactions encoded in the superpotential term

(3.2.4) and the vector multiplet kinetic terms (3.1.25), generalised to the field dependent

case in a way to lead to the gauge kinetic terms of (3.1.31). Eliminating the auxiliary

fields one gets the final action, which has the following bosonic terms (using dimensionless

quantities):

e−1LBos =
M2

P

2
R−M2

Pgi̄∂µΦi∂µΦ̄̄ − 1

4
(Ref)abF

a
µνF

b µν − 1

4
(Imf)abF

a
µνF̃

b µν − V .

(3.2.13)

Here V is the scalar potential, composed by F- and D-terms:

V = VF + VD =
eK

M2
P

[
gi̄DiWDjW − 3|W |2

]
+

1

2
(Ref)−1

ab D∗aDb , (3.2.14)

where also the Da auxiliary field has to be intended replaced by its equation of motion.

The action can be recast in the language of forms as follows:

SBos =

∫ (
M2

P

2
R∗1+M2

Pgi̄dΦi∧∗dΦ̄− 1

2
(Ref)abF

a∧∗F b− 1

2
(Imf)abF

a∧F b−V ∗1
)

.

(3.2.15)

In order to analyse the supersymmetry breaking in the contest of supergravity, it

is useful to remember that typically one chooses a Minkowskian/AdS vacuum state,

constraining gauge and fermion fields to vanish. Since supersymmetric variations of

bosonic fields are proportional to fermionic fields (which vanish) and vice-versa, the only

condition to preserve supersymmetry is the requirement of vanishing fermionic variations

[40,42] 4. In particular, given a graviton multiplet with a gravitino ψµ, a number of chiral

multiplets Φi with Weyl spinors χi and a vector multiplet with gauginos λa, one finds

that supersymmetry is preserved if [40, 42]

4We are assuming constant scalars.
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δψµ = 0 ↔ condition on ε , (3.2.16)

δχi = 0 ↔ DiW = 0 , (3.2.17)

δλa = 0 ↔ Da = 0 . (3.2.18)

Supersymmetry is broken when instead

DiW 6= 0 , for some i , or

Da 6= 0 , for some a .
(3.2.19)

The order parameters are now (up to positive factors) the vevs of auxiliary fields replaced

by their equations of motion. Hence, in contrast to global supersymmetry, there is

the possibility to have a vanishing cosmological constant 〈V 〉 even if supersymmetry is

broken: if

〈W 〉 6= 0 (3.2.20)

then, by a suitable fine tuning, it can cancel the positive term given by the supersymmetry

breaking F-term and/or D-term in (3.2.14). Note that unbroken supersymmetry requires

a negative or vanishing cosmological constant, hence it can not take place in De Sitter

vacua.
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4. IIB Calabi–Yau compactifications

The mechanism of string compactification allows for the construction of models consistent

with the perceived four-dimensional spacetime. In these models, string theory is defined

on a ten-dimensional spacetime M10 = M1,3 ×M6
1, where M6 is a compact manifold

of typical size R. Then, at energies E � 1/R the physics appears essentially four-

dimensional. This observation is the starting point of most of the string phenomenological

models, which assume that presently accessible energies cannot resolve the too small

finite size of the extra dimensions, so that the low-energy physics is described by a four-

dimensional effective theory 2.

The derivation of the four-dimensional effective theory associated with a given string

compactification represents a crucial step in the study of these models. The derivation

consists of various steps (see Appendix B). One first chooses a starting background, i.e.

a field configuration solution of the ten-dimensional equations of motion, and studies

perturbatively the theory of the dynamical fluctuations around it. The last step consists

in integrating out extra dimensions to discover how the ten-dimensional theory manifests

itself in our four-dimensional world. One finds that the effective field theory depends on

the structure of M6. Generically, except cases of exact solvable worldsheet theories, the

system is analysed in the small curvature approximation (R� `s) and high string scale

(E �Ms). Since string oscillations modes have masses of order Ms, in this regime strings

can be considered as massless particles whose physics is described by an effective field

theory of supergravity (see Ch. 2). Furthermore, by performing a standard KK reduc-

tion, one gets a tower of Kaluza–Klein massive modes, with masses of order 1/R�Ms.

Therefore, at energies E � 1/R, one can include in the four-dimensional effective theory

only the lightest KK modes.

In particular, we are interested in compactifications of type IIB supergravity, because

they provide one of the richest frameworks for model building and includes the F-theory

models as its non-perturbative completion, when also 7-branes are present [45,46].

In the following Sections we firstly address the compactification on a Calabi–Yau of

1String quantization shows that superstring theories must have a critical dimension D = 10 to have a

well behaviour at high energies. However, one can compactify also the bosonic string theory (which

has crucial dimension D = 26) over a manifold with 22 dimensions M22.
2Here on we will work in natural dimensions ~ = c = 1.
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4. IIB Calabi–Yau compactifications

type IIB supergravity, which leads to an effective N = 2 four-dimensional supergravity.

Orientifold projections, background fluxes and D-branes are subsequently introduced to

reduce it to a more realistic four-dimensional N = 1 supergravity, with a superpotential,

non-trivial gauge couplings and chiral matter 3.

As anticipated in the Introduction, a general string compactification has a factorized

background:

M10 = M1,3 ×M6 . (4.0.1)

Typically one considers a compactification Ansatz in which M1,3 is maximally symmetric,

restricting it to a Minkowski, dS or AdS spacetime. The general metric Ansatz then takes

the form:

ds2 = e2A(y)ds2
4 + gmn(y) dymdyn , (4.0.2)

where e2A is the so-called warp factor, or warping for short, and ds2
4 is the Mink4,AdS4

or dS4 metric, which preserves the Poincaré, SO(2, 3) or SO(1, 4) symmetry respectively.

In order to preserve external maximal symmetry, the warp factor is allowed to depend

on internal coordinates only. In the most general case, such a solution admits also non-

trivial background fluxes and dilaton. In order to not spoil 4d maximal symmetry, the

dilaton is allowed to vary only in the internal space φ(y), while background fluxes have

a precise form as we will see in Section 4.3.

4.1. IIB compactification on Calabi–Yau threefolds

Now we specialise to pure geometrical IIB compactifications, where the only background

field turned on is the metric gMN , while the background fields H3, F1, F3, F5 are set to

zero and the dilaton φ is constant.

In order to get a four-dimensional supersymmetric theory, one has to choose the com-

pactification manifold M6 preserving some amount of supersymmetry, i.e. a manifold

admitting a certain number of Killing spinors. There are several reasons to search for a

supersymmetric effective theory, mainly phenomenological, to construct appealing semi-

realistic models of particle physics, in which to embed the SM gauge group and in which

the supersymmetry is broken at energy scale lower than the string scale (typically at TeV

scale). Compactifications preserving maximal supersymmetry are also simpler to study

from a technical point of view, because one can show that in this case solutions to the

3By compactifying on more symmetric spaces, as six-tori or simple orientifolds thereof, one can get

more supersymmetric effective theories.

34



4.1. IIB compactification on Calabi–Yau threefolds

supersymmetric conditions, first order differential equations, are automatically solutions

of the supergravity equations of motion, which are of second order. Following consider-

ations outlined below, one finds that, in purely geometric compactifications of type II

theories, the manifolds preserving the minimal number of supersymmetries, which is 1/4

of the starting ones, are the Calabi–Yau manifolds.

First of all, in a starting background which preserves four-dimensional maximal sym-

metry, all vevs of fermionic fields are necessarily vanishing 4. For this reason one restricts

the analysis to purely bosonic solutions. Supersymmetries are preserved if the associ-

ated transformations leave the starting background invariant, i.e. if the supersymmetric

variation of each field vanishes. For a generic bosonic Obos or fermionic Oferm field these

variations have the following general structure:

δObos ∼ [Q,Obos] ∼ Oferm ,

δOferm ∼ [Q,Oferm] ∼ Obos ,
(4.1.1)

where Q is the supercharge. Thus, in a background with a maximal four-dimensional

symmetry, δObos = 0 is trivially satisfied, since fermionic fields vanish, and one is left with

the condition on fermionic variations. In the pure geometrical type IIB compactification

at hand, by setting to zero (2.1.8) one gets:

δλ1,2 ∼ ∂MφΓMε1,2 = ∂mφγ
mε1,2 = 0 ,

δψ1,2
M ∼ ∇Mε1,2 = 0 .

(4.1.2)

Equations for ψ1,2
M in (4.1.2) are the so-called Killing spinor equations for the two Majorana–

Weyl spinors ε1,2 representing the infinitesimal supersymmetric parameters. These equa-

tions means that there should exist two covariantly constant spinors ε1,2. Choosing a real

representation for gamma matrices (see Appendix A), ε1,2 are really real.

The factorized Ansatz (4.0.1) induces a decomposition of the ten-dimensional structure

group Spin(1, 9)→ Spin(1, 3)× Spin(6) = SL(2,C)× SU(4). As a consequence, a ten-

dimensional Weyl spinor 16C can be decomposed with respect to that subgroup as

Spin(1, 9)→ Spin(1, 3)× Spin(6)

16C → (2,4)⊕ (2̄, 4̄) ,
(4.1.3)

where 2, 2̄ are four-dimensional Weyl spinors of opposite chirality (irrepses of SL(2,C))

and 4, 4̄ are six-dimensional Weyl spinors of opposite chirality (irrepses of SU(4)). Chi-

4This is due to the structure decomposition (4.1.3). Such a decomposition shows that spinors transform

non-trivially under Spin(1, 3) and then non-vanishing expectation values are not allowed.
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4. IIB Calabi–Yau compactifications

ralities combine in order to reproduce the correct ten-dimensional chirality 5. Hence,

Killing spinors ε1,2 decompose as

ε1(x, y) = ζ1(x)⊗ η1(y) + c.c. ,

ε2(x, y) = ζ2(x)⊗ η2(y) + c.c. .
(4.1.4)

Here ζ1,2 ≡ ζ1,2
+ are two independent four-dimensional anti-commuting spinors of positive

chirality and η1,2 ≡ η1,2
+ are two six-dimensional commuting spinors of positive chiral-

ity, which can be independent or dependent, depending on the structure of M6. Thus

one has anti-commuting ε1,2 ≡ ε1,2+ of ten-dimensional positive chirality (lefthanded), as

must be in a type IIB supergravity. Complex conjugation flips chirality: ζ∗1,2 ≡ ζ1,2
− and

η∗1,2 ≡ η1,2
− . We assume ε†1,2ε1,2 6= 0.

One can show that supersymmetry equations are just necessary conditions to get a

supersymmetric vacuum, they solve the equations of motion 6. Hence, one must im-

pose the Bianchi identities, which are non-trivial constraints on the solutions. However,

since these identities involve fluxes, they are trivially satisfied in case of pure geometric

compactifications, and one is left with the supersymmetry conditions (4.1.2).

Using real ten-dimensional gamma matrices ΓM , the dilatino variations, along with

(4.1.4), gives

γm∂mφ(ζ1,2 ⊗ η1,2 + c.c.) = 0 , (4.1.5)

which are satisfied since we are assuming a constant dilaton φ.

The gravitino variations are more interesting. They constrain the properties of both

the external and the internal spaces. Using the factorization of the gamma matrices [47],

the covariant derivative of a spinor splits as

∇M = ∂M +
1

4
ω AB
M ΓAB −→

∇µ ⊗ 1+
1

2
eA(γµγ5 ⊗ γm∂mA) ,

1⊗∇m ,
(4.1.6)

where ∇µ is the covariant derivative with respect to the unwarped external metric. Using

(4.1.6) and (4.1.4), the equations (4.1.2) for the gravitinos become:

5Ten-dimensional chiral operator splits, under (4.0.1), as Γ10 ≡ γ5 ⊗ γ7, where γ5 and γ7 are the four-

dimensional (unwarped) and six-dimensional chiral operators respectively (see Appendix A for the

conventions on gamma matrices).
6This fact can be elegantly described in the generalised geometry framework [25,26,47].
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∇µζ1,2 ⊗ η1,2 −
1

2
eA(γµζ

∗
1,2 ⊗ γm∂mA η∗1,2) + c.c. = 0 , (4.1.7)

ζ1,2 ⊗∇mη1,2 + c.c. = 0 . (4.1.8)

Equation (4.1.7) is solved only for a constant warping A 7 and therefore the spacetime is

Minkowskian, as we are going to show. Indeed, with constant A, equation (4.1.7) reduces

to

∇µζ1,2 = 0 . (4.1.9)

With a Christoffel connection [34]

[∇µ,∇ν ]ζ1,2 ∼ Rµνρσγ
ρσζ1,2 ∼ Λγµνζ1,2 , (4.1.10)

where we used the expression for the Riemann tensor in the (unwarped) maximally

symmetric 4d spacetime Rµνρσ ∼ Λ(gµρgνσ − gµσgνρ), with cosmological constant Λ.

Therefore, finally, we get:

∇µζ1,2 = 0 =⇒ Λ = 0 ⇐⇒ Rµνρσ = 0 . (4.1.11)

Thus the external gravitino equations require a constant warp factor and a Minkowskian

four-dimensional spacetime.

As a consequence the spin connection vanishes ω AB
M = 0 and ζ1,2 are constants, not

just convariantly constant. They represent the infinitesimal parameters of the unbroken

global four-dimensional supersymmetry. This is a first hint on the fact that the residual

four-dimensional supersymmetry should have at least (i.e. for η1 ∼ η2) N = 2.

By repeating the above considerations for the gravitino internal equations (4.1.8) we

arrive at the Ricci flatness condition for the internal metric [34]:

∇mη1,2 = 0 =⇒ Rmn = 0 . (4.1.12)

Note that this does not mean that M6 is flat, since the Riemann tensor can still be non-

vanishing. Furthermore ∇m(η†1,2η1,2) = 0 which implies η†1,2η1,2 = const.

In general, the existence of a covariantly constant spinor reduces the holonomy group of

the Riemannian manifold M6 [29,34,47]. Hence the supersymmetry conditions ∇mη1,2 =

7We wrote (4.1.7) in that form in order to compare spinors of the same chirality. This fact is useful to

show that the equation is solved for constant A only. Indeed, in case of non-constant A, (4.1.7) is

satisfied if η1,2 ∼ γmη∗1,2, which is impossible since η†1,2γmη1,2 = 0 by chirality.
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0 mean that M6 must have at most holonomy SU(3), i.e. it has to admit at least one

covariantly constant spinor. We will see below that Ricci flat manifolds with SU(3)

holonomy are Calabi–Yau manifolds, but the discussion can be generalized to manifold

of smaller holonomy.

In the first case, there exists only a covariantly constant spinor η1 = η2 ≡ η and the

compactification yields to a four-dimensional N = 2 supersymmetry.

Otherwise, if the holonomy group is smaller, for instance is SU(2) or trivial (in case of

flat M6, which is the particular case treated in this thesis, see Section 5.4), the equation

∇mη = 0 allows respectively two or four covariantly constant independent spinors ηα as

solutions. Hence in general η1,2
+ in (4.1.4) are a linear combination thereof:

η1,2
+ =

∑
α

c1,2
α ηα , α = 1, 2 (1, ..., 4) . (4.1.13)

Inserting (4.1.13) into (4.1.4), one gets four (eight) tensor products ζ1,2 ⊗ ηα, which lead

to 4 (8) independent four-dimensional Weyl spinors, giving 16 (32) independent real su-

percharges, i.e. a N = 4(8) residual supersymmetry in four dimensions.

Resuming, supersymmetry imposes two constraints on the Riemannian internal man-

ifold M6. A topological constraint on the (at most) SU(3)-structure of M6, that is the

existence of (at least) a globally defined non-vanishing invariant spinor η (see (4.1.4)),

and a differential constraint on the covariantly constancy of η. Now we show how these

constraints lead M6 to be a Calabi–Yau three-fold CY3.

4.1.1. The geometry of Calabi–Yau spaces

Let us take the case of strict SU(3) holonomy, in which we can set η ≡ η1 = η2 and

η† η = 1. We want to show that such a manifold is a Calabi–Yau, defined as follows:

Def: A Calabi–Yau manifold is a compact Kähler manifold M with a vanishing first

Chern class.

Def: Given a hermitean manifold M , the first Chern class c1 is defined as the coho-

mology class of the Ricci form R divided by 2π:

c1 ≡
[R]

2π
∈ H1,1(M) . (4.1.14)

Def: On an hermitean manifold M , in terms of the complex local coordinates, the Ricci

form R is the (1,1)-form defined as

R ≡ iRi̄dz
i ∧ dz ̄ = i∂∂̄ log

√
g , (4.1.15)
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where

Ri̄ ≡ Rk
ki̄ = −∂i∂̄ log

√
g , (4.1.16)

as one can show for an hermitian manifold. Rl
li̄ is the only non-vanishing components

of the curvature tensor and g ≡ det(gmn) [48], [49] 8.

Now we want to show that a six-dimensional Riemannian manifold M6 with SU(3)

structure and holonomy is Kähler and has c1(M) = 0 9.

First of all let us see the implications of having a SU(3)-structure. The globally defined

nowhere vanishing chiral spinor η ≡ η+ (and metric g) can be used to build tensor as

spinor bilinears. Remembering that six-dimensional gamma matrices are antisymmetric

and that η is Grassmann even, we get:

ηTη = 0 by chirality10 , (4.1.17)

ηTγmη = 0 by symmetry , (4.1.18)

ηTγmnη = 0 by symmetry (or chirality) , (4.1.19)

Imn ≡ −iη†γmnη glob. defined, nowhere vanishing , (4.1.20)

Ωmnp ≡ ηTγmnpη glob. defined, nowhere vanishing . (4.1.21)

The minus sign in (4.1.20) it is only matter of convention 11. Fierz identities ensure

that ImnI
n
p = −δmp and therefore M6 is at least almost complex, with the almost complex

structure I [34]. As one can verify, the metric is hermitean with respect to the complex

structure defined in (4.1.20), i.e. it satisfies

gmn = IpmI
q
ngpq (4.1.22)

8Here are some notable properties of the Ricci form. Let us first define the action of Dolbeault operators

∂, ∂̄. On a complex (p, q)-form ω: ∂ω = ∂iωj1...jp,k̄1...k̄qdz
i ∧ dzj1 ∧ · · · dzjp ∧ dz̄k1 ∧ · · · dz̄kq and

∂̄ω = ∂ı̄ωj1...jp,k̄1...k̄qdz
ı̄ ∧ dzj1 ∧ · · · dzjp ∧ dz̄k1 ∧ · · · dz̄kq . It is straightforward to show that R is

real, using ∂̄∂ = −∂∂̄, and that it is closed dR = 0, using ∂∂̄ = 1
2d(∂ − ∂̄). However it is not exact,

because (∂ − ∂̄) log
√
g is not globally defined (i.e. coordinate scalar [49]). Hence R is used as the

representative of a cohomology class in H1,1(M), termed the first Chern class. This class possesses

the important property to be analytic invariant, that is, invariant under smooth changes of the metric

gmn → gmn + δgmn [49]. In fact, one can show that R→ R + δR where δR is exact [48], [49].
9The Riemannian structure, i.e. the existence of a globally defined metric tensor, is necessary also to

define gamma matrices in the curved space as γm = e
n
mγn, with the sechsbein e

n
m.

10We use an antisymmetric chiral operator γ7 to build chiral projectors PL,R, see Appendix A.
11Conventions are explained in Appendix A. We anticipate that in Chapter (5) it will turn out more

convenient to change conventions adopted here.
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and therefore M6 is almost hermitean. An almost hermitean manifold has also an almost

symplectic structure [47]. In fact, in this case it is possible to globally define a non-

degenerate two-form

J ≡ 1

2
Jmndy

m ∧ dyn with Jmn = gmpI
p
n . (4.1.23)

This is the almost symplectic structure.

Considering also the differential constraint furnished by the SU(3) holonomy, for a

metric-compatible connection ∇ 12, it happens that the Nijenhuis tensor (NI)
m
np vanishes

[34], [47], [49]:

∇η = 0

∇g = 0
=⇒ ∇I = 0 =⇒ (NI)

m
np = 0 . (4.1.24)

This means that the almost complex structure is integrable and hence M6 is a complex

manifold. To be precise, due to (4.1.22), M6 is an hermitean manifold.

At this point, stated that M6 has both a Riemannian and a complex structure, the

Kähler structure is automatically implied. Let us see how.

On a complex manifold one can locally define a set of complex coordinates zi, z̄i with i =

1, 2, 3, defining an atlas of holomorphic coordinates. In these coordinates the components

of the pre-symplectic structure J defined above are related to the (hermitean) metric as

Ji̄ = igi̄ . (4.1.25)

Therefore

dJ = i∂igjk̄dz
i ∧ dzj ∧ dz̄k̄ + i∂īgjk̄dz̄

ı̄ ∧ dzj ∧ dz̄k̄ = 0 , (4.1.26)

which follows from the metric compatibility condition ∇g = 0, with a torsion-free con-

nection 13 . We have just shown the integrability of the pre-symplectic structure: M6 is

thus a Kähler manifold, with Kähler form J .

12A connection ∇ is said to be metric-compatible, i.e. compatible with respect to the Riemannian

structure with a metric g, if ∇g = 0.
13On a hermitean manifold we can define an hermitean connection respecting the complex and Rieman-

nian structures ∇g = ∇I = 0. The only non-vanishing components of the connection coefficients are

the one pure in lower indices Γijk and its complex conjugate [48], [49]. Then ∇g = 0⇒ ∂igjk̄ = glk̄Γlij
and analogously for the complex conjugate. Taking a torsion-free connection, Γijk are the Levi–Civita

connection components, symmetric in j, k.
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We have to demonstrate that the first Chern class vanishes. The demonstration follows

directly from the Ricci flatness condition (4.1.12), once stated M6 to be Kähler. In this

case, in fact,

Ri̄ = Ri̄ , (4.1.27)

where Ri̄ = Rk
ik̄ is the Ricci tensor in complex coordinates [48], [49]. Therefore, if a

Kähler manifold M6 admits a Ricci flat metric, the analytic invariance of c1 ensures a

vanishing first Chern class for all other metrics and hence c1(M6) = 0.

We have just demonstrated that M6 is a Calabi–Yau manifold as previously defined.

These manifolds are characterised also by a holomorphic (3, 0)-form defined by the bilin-

ear (4.1.21):

Ω ≡ 1

3!
Ωijkdz

i ∧ dzj ∧ dzk . (4.1.28)

Such form is associated to the almost complex structure of M6 and it used, along with

J , to define the SU(3) structure in terms of forms (see [47]). Being Ω holomorphic 14, it

is closed dΩ = 0. It has the following components:

Ωijk(z) = f(z)εijk , (4.1.29)

with f(z) a no-where vanishing holomorphic function. Furthermore, Ω is not exact 15.

Calabi–Yau manifolds are really important because of the following general theorem,

firstly conjectured by Calabi and then demonstrated by Yau:

Yau’s thoerem: Let M be a compact, Kähler manifold, with Kähler metric g and

Kähler form J . Suppose that ρ is a real, closed (1, 1)-form on M with [ρ] = 2πc1(M).

Then there exists a unique Kähler metric g′ on M with Kähler form J ′ in the same class

of J ([J ] = [J ′]) and with Ricci form R′ = ρ.

In other words, for a given compact Kähler manifold M with first Chern class c1(M), it

14∂̄Ω = 0 is implied by ∇ı̄Ωjkl = 0, due to the metric compatibility and the SU(3) holonomy (∇g =

∇η = 0), and by the fact that M6 is hermitean (Γkı̄j = 0).
15This is because by choosing (4.1.20), (4.1.21) one gets (see Appendix A)

iΩ ∧ Ω̄ ∼ dV . (4.1.30)

The integral of the volume form dV over M6 is non-zero. It follows that Ω ∧ Ω̄ is not exact. Hence

Ω is not exact [49].
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4. IIB Calabi–Yau compactifications

is always possible to pick up a metric g giving a particular Ricci form R ∈ c1(M), and

that metric is unique. This means that any other metric g′ corresponding to the same

Ricci form R is associated to a different Kähler manifold, differing in complex structure

and/or Kähler structure.

We will use this fact to parametrize the space of the different supersymmetry preserv-

ing internal Calabi–Yau three-folds, that is the space of the different Kähler manifolds

satisfying Ricci flatness (4.1.12).

A comment is due in order to proceed. We will often refer to ‘‘Calabi–Yau” (CY)

as manifolds with strict SU(3) holonomy, even if the definition is more general and

valid also for manifolds with a smaller holonomy group, as one can check repeating the

considerations above [47]. In particular, the original work in this thesis is based on a

six-torus T 6, of local trivial holonomy, in which the reduction of supersymmetry is due

to additional physical ingredients.

4.1.2. The Cohomology of a Calabi–Yau

In general, the Kaluza–Klein reduction (see Appendix B) on a ten-dimensional back-

ground M1,3 ×M6 with a compact M6, gives rise to massless four-dimensional fields as

zero-modes of the internal Laplacian. Hence, in the case of a CY at hand (strict SU(3)

holonomy), zero-modes are in one-to-one correspondence with the harmonic forms on the

Calabi–Yau threefold and thus their multiplicity is counted by the dimension of the non-

trivial cohomology groups of the CY. These are decomposed in the following even/odd

(p, q)-cohomology groups 16:

16Let us briefly remember that on a complex manifold M one can define complex (p, q)-forms ωp,q as

having p holomorphic and q anti-holomorphic indices. A complex k-form ω is uniquely written in

terms of such bidegree forms as ωk =
∑
p+q=k ω

p,q.

The real exterior derivative on a (p, q)-form can be decomposed as d = ∂ + ∂̄. Each Dolbeault

operator ∂, ∂̄ defines its proper cohomology group Hp,q
∂ (M), Hp,q

∂̄
(M). The complex dimension hp,q ≡

dimCH
p,q

∂̄
(M) is called the Hodge number. In a Kähler manifold the Laplacians ∆d = dd†+d†d,∆∂ =

∂∂† + ∂†∂,∆∂̄ = ∂̄∂̄† + ∂̄†∂̄ are the same. It follows that d, ∂, ∂̄-cohomology groups have the same

harmonic representatives and then:

Hp,q(M) = Hp,q
∂ (M) = Hp,q

∂̄
(M) . (4.1.31)

Using this and the more generic decomposition Hk(M)C = ⊕p+q=kHp,q(M) one finds that in a

Kähler manifold there is a relation between Hodge and Betti numbers bk:

bk ≡ dimRH
k(M) = dimCH

k(M)C =
∑
k=p+q

hp,q . (4.1.32)

42



4.1. IIB compactification on Calabi–Yau threefolds

Heven = H0,0 ⊕H1,1 ⊕H2,2 ⊕H3,3 ,

Hodd = H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3 .
(4.1.33)

The Hodge numbers of a complex manifold are usually organised in the so-called Hodge

diamond. The Hodge diamond of a CY three-fold takes the form:

h3,3

h3,2 h2,3

h3,1 h2,2 h1,3

h3,0 h2,1 h1,2 h0,3

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

SU(3)holonomy−−−−−−−−−→

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

.

(4.1.34)

The Hodge diamond of a CY3 has this particular form because the Hodge numbers of a

generic CY n-fold satisfy hp,0 = hn−p,0 [34,48]. Furthermore, in a Kähler manifold of com-

plex dimension n, Hodge numbers are related also by complex conjugation and by Poicaré

duality respectively as hp,q = hq,p and hp,q = hn−p,n−q. Any compact connected Kähler

manifold has h0,0 = 1, corresponding to constant functions. A simply-connected Kähler

manifold has vanishing first homology group and then b1 = h1,0 = h0,1 = 0 [48,49]. Hence

a simply-connected CY three-fold is described in terms of h1,1 and h2,1 only. h3,0 = 1

refers to the unique (up to constant rescalings) holomorphic Ω and b1 = 0 implies that

on a CY threefold the metric components gµn, leading to 4d massless vector fields, are

absent [29], [34]. Note that the Hodge diamond does not furnish a complete characteri-

sation of the CY, since inequivalent CY may have he same Hodge numbers.

It is useful to introduce a basis for the different cohomology groups by choosing the

unique harmonic representative in each cohomology class, see Table 4.1. Here vol is

the harmonic volume form of the CY, while (αK̂ , β
L̂) is a real basis on H3(M6,R) and

ω̃A is the real dual basis with respect to the real ωA, which means that these have the

non-vanishing intersection numbers∫
M6

ωA ∧ ω̃B = δBA ,

∫
M6

αK̂ ∧ β
L̂ = δL̂

K̂
. (4.1.35)

As we will see below, these harmonic forms are used in the dimensional reduction of

the ten-dimensional theory to four dimensions, and are also related to massless modes

arising as metric deformations [50]. The latter ones deserve a more detailed analysis and

we present them in the following subsection.
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4. IIB Calabi–Yau compactifications

Cohomology group dimension basis

H1,1 h1,1 ωA
H2,2 h1,1 ω̃A

H3 2h2,1 + 2 (αK̂ , β
L̂)

H2,1 h2,1 χK
H1,2 h2,1 χ̄K
H3,3 1 vol

Table 4.1.: Cohomology groups on a CY.

4.1.3. Calabi–Yau deformations

In this subsection we restrict to CY spaces in the stricter sense, i.e. Kähler manifolds of

SU(3) holonomy. In the following we will refer to the complex coordinates as yi, ȳ̄, to

avoid confusion with complex structure moduli (zk). Therefore in complex coordinates

the Kähler form is

J = igi̄dy
i ∧ dȳ̄ . (4.1.36)

Following Candelas and de la Ossa [50] we choose the pair (g, I) to describe the Calabi–

Yau threefold (SU(3) holonomy) and its deformations. Thus the manifold can be de-

formed in two ways. The first consists in directly deforming the complex structure, the

other in deforming the components gi̄ of the metric, in such a way to deform J [50].

The Yau’s theorem comes here to the fore. It allows to parametrize the space of

different Calabi–Yau manifolds with the space of the Ricci flat metrics. Let gmn and

gmn + δgmn be two Ricci-flat metrics for the CY, referred each to a different Kähler

class. Imposing a gauge fixing ‘‘coordinate condition”, necessary to eliminate the metric

deformations describing coordinate changes which are not of interest, the Ricci flatness

Rmn(g) = 0 = Rmn(g+δg) forces deformations δg to satisfy a differential equation, called

the Lichnerowicz equation [50]. Zero-modes solutions to this equation separate in mixed

type δgi̄ and in pure type δgij, δgı̄̄ (omitting zero-mode index). They are in one-to-one

correspondence with the elements of the cohomology groups H1,1 and H2,1. Indeed, δgi̄
can be used to build the real harmonic (1, 1)-form

δJ = iδgi̄ dy
i ∧ dȳ̄ , (4.1.37)

while δgij can be used to build the following complex harmonic (2, 1)-form

Ω k̄
ij δgk̄l̄ dy

i ∧ dyj ∧ dȳ l̄ . (4.1.38)
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4.1. IIB compactification on Calabi–Yau threefolds

From (4.1.37) it should be clear that variations of mixed type correspond to variations of

the Kähler class. On the other hand, variations of mixed type correspond to variations of

the complex structure. The proof follows remembering that gmn + δgmn is still a Kähler

metric. Hence, there must exist a coordinate system in which its pure parts vanish. How-

ever, only a non-holomorphic change of coordinates can remove these parts [50], that is,

one must change complex structure.

The deformations of the Kähler form (4.1.37) can be expanded in a basis of harmonic

(1, 1)-forms and thus J can be described by h1,1 real parameters vA:

δgi̄ = −iδvA(ωA)i̄ , Ji̄ = vA(ωA)i̄ , A = 1, ..., h1,1 . (4.1.39)

To be precise, by integrating infinitesimal deformations δvA, one can get finite deforma-

tions vA. Among these, only those leading to positive definite metrics are allowed, or

equivalently, those such that the volumes of complex two-cycles, complex four-cycles and

M6 are positive 17 [34]:∫
M6

J ∧ J ∧ J > 0 ,

∫
c2

J ∧ J > 0 ,

∫
c4

J > 0 . (4.1.40)

These conditions are preserved under positive rescalings J → rJ , for any r > 0. Hence,

the subset of Kähler deformations vA leading to a J satisfying (4.1.40) is called Kähler

cone. Under these rescalings vA span indeed a h1,1-dimensional cone.

In both type II string theories there exists a real two-form field, the B2 field. After the

dimensional reduction on a Calabi–Yau threefold, for a pure geometrical compactification,

internal components of such a field are components of an harmonic (1, 1)-form Bi̄ (see

Appendix B). This real form, closed on the CY, can be used to build the complexified

Kähler form

J ≡ B1,1 + iJ . (4.1.41)

The real scalars bA(x), which arise in the expansion of the internal part of the B2 form,

can be used to provide the imaginary parts of the complex moduli fields

tA(x) = bA(x) + ivA(x) (4.1.42)

parametrizing the h1,1-dimensional complexified Kähler cone. By writing vA(x) we are

anticipating that the reduction procedure will lead to promote parameters describing the

17Complex cycles C2k (k = 1, 2, 3) are complex submanifold of M6, defined by equations like f(z) = 0.

Remarkably, they are volume-minimising in their homology classes [51]. Their volume is given by
1
k!

∫
C2k

Jk. Note that conditions (4.1.40) depend on conventions, as explained in Appendix A. Here

we are adopting the most natural notation convention.
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4. IIB Calabi–Yau compactifications

internal metric to four-dimensional scalar fields. As we will see, there exist also models in

which bA are not present. In these cases the complexification of Kähler moduli involves

moduli coming from the expansion of other fields.

The second set of deformations are variations of the complex structure of the Calabi–

Yau. They are in one-to-one correspondence with the harmonic (2, 1)-forms (4.1.38).

Expanding (4.1.38) in the harmonic basis of H2,1 we get

1

4
Ω k̄
ij δgk̄l̄ dy

i ∧ dyj ∧ dȳ l̄ = δzKχK

= δzK
1

2
(χK)ijk̄ dy

i ∧ dyj ∧ dȳk̄ ,
(4.1.43)

where zk are h2,1 complex parameters describing the complex structure. They correspond

to local coordinates for the complex structure moduli space [50]. The 1
4

has been chosen

for convenience. By inverting (4.1.43), one finds

δgı̄̄ =
1

||Ω||2
δzK(χK)ij̄ Ω̄ij

ı̄ , (4.1.44)

which shows how the metric changes under a deformation of the complex structure δzk.

Here ||Ω||2 ≡ 1
3!

ΩijkΩ̄
ijk.

Complex parameters tA and zK span the geometric Calabi–Yau moduli space. Candelas

and de la Ossa showed that such a moduli space is at least locally a product

Mz ×Mk , (4.1.45)

withMz the manifold of complex structure of complex dimension h2,1 andMk the com-

plexification of the space of parameters of the Kähler class, with complex dimension h1,1.

It is also shown they are special Kähler manifolds [50]. Here is a review of the main results.

The complex structure moduli space Mz

This is the space parametrized by zK . Its metric is given by

GKL̄ = −
∫
M6
χK ∧ χ̄L̄∫

M6
Ω ∧ Ω̄

= ∂K∂L̄K
cs , (4.1.46)

with the Kähler potential

Kcs = − log

(
i

∫
M6

Ω ∧ Ω̄

)
, (4.1.47)
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4.1. IIB compactification on Calabi–Yau threefolds

as one can verify by using

∂

∂zK
Ω(z) = −Ω(z)

∂

∂zK
Kcs + χK(z, z̄) . (4.1.48)

Notice that the three-form Ω is defined up to a complex rescaling by a holomorphic

function [50]

Ω→ ef(z)Ω , (4.1.49)

which changes also the Kähler potential (4.1.47) by a Kähler transformation

Kcs → Kcs − f(z)− f̄(z̄) . (4.1.50)

Notable consequences are the possibility to construct a covariant derivative and the fact

that the symmetry (4.1.49) allows to reduce the number of periods of Ω 18 and then to

define h2,1 special coordinates for Mz [50].

The complexified Kähler moduli space Mk

Mk is spanned by the complex parameters tA. The metric of this space is defined as

GAB̄ =
1

2
G(ωA, ωB) ≡ 1

4V

∫
M6

ωA ∧ ∗6ωB = ∂A∂B̄K
k , (4.1.51)

where ωA, ωB are real (1, 1)-forms and ∗6 is the Hodge operator on the CY. The metric

(4.1.51) is derivable from the Kähler potential

Kk = − log

(
4

3

∫
M6

J ∧ J ∧ J
)

= − log(8V) , (4.1.52)

where J = vAωA is the Kähler form and V is the volume of the Calabi–Yau

V =
1

6

∫
M6

J ∧ J ∧ J . (4.1.53)

Its special character is well described in [50].

In the following we will abbreviate the intersection numbers as

18Periods of Ω are parameters used to describe the manifold to underline its special Kähler structure.
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4. IIB Calabi–Yau compactifications

IABC =

∫
M6

ωA ∧ ωB ∧ ωC ,

IAB =

∫
M6

ωA ∧ ωB ∧ J = IABCvC ,

IA =

∫
M6

ωA ∧ J ∧ J = IABCvBvC ,

I =

∫
M6

J ∧ J ∧ J = IABCvAvBvC = 6V .

(4.1.54)

Example: moduli of T 2

We have just seen that compactifications on CY threefolds are described by h1,1 real

parameters vA and h2,1 complex parameters zK characterising completely the shape and

the size of M6. In order to better understand what does shape and size mean, let us see,

for instance, the moduli of a CY onefold, a two-dimensional torus T 2.

Consider a two-torus T 2 = S1×S1 described by two real periodic coordinates (x, y) ∼
(x + 1, y + 1). We can introduce a complex coordinate z = x + λy, where λ can be

identified with the single complex structure. The torus is defined by the flat metric

ds2 = 2gzz̄dzdz̄ = 2|α|2dzdz̄
= 2|α|2(dx2 + |λ|2dy2 + 2Reλdxdy) ,

(4.1.55)

where α is a generic complex constant. In this case the holomoprhic one-form is dΩ = dz

and the Kähler form is J = igzz̄ = 2Imλ gzz̄dx∧ dy =
√
gdx∧ dy. Hence J describes the

volume, i.e. the size

v ≡
∫
J =

∫
dxdy

√
g = 2|α|2Imλ . (4.1.56)

The shape, on the other hand, is parametrised by the complex structure λ itself. If it is

pure imaginary, one has a rectangular torus, described by

Rez ∼ Rez + 1 ,

Imz ∼ Imz + Imλ .
(4.1.57)

The torus starts to flex when the complex structure has also a real part, since the iden-

tification becomes
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4.1. IIB compactification on Calabi–Yau threefolds

Rez ∼ Rez + 1 + Reλ ,

Imz ∼ Imz + Imλ .
(4.1.58)

Notice that the metric can be rewritten explicitly in terms of parameters v, λ as

ds2 =
v

Imλ
(dx2 + |λ|2dy2 + 2Reλdxdy) . (4.1.59)

4.1.4. The effective theory

To obtain the effective four-dimensional theory for the compactification on a Calabi–

Yau threefold M6 one has to reduce the action (2.1.3) 19. Massless metric fluctuations

correspond to promoting geometric Kähler and complex structure parameters to 4d scalar

fields vA(x) and zK(x). In addition, 4d massless fields come also from the expansion of

a massless fluctuation of other IIB fields. Indeed, such fluctuations can be expanded in

terms of the harmonic forms on M6 presented in Table 4.1 as [14]:

B2 = B2(x) + bA(x)ωA , A = 1, ..., h1,1 ,

C2 = C2(x) + cA(x)ωA ,

C4 = DA
2 (x) ∧ ωA + V K̂(x) ∧ αK̂ + UK̂(x) ∧ βK̂ + dA(x)ω̃A , K̂ = 0, ..., h2,1 .

(4.1.60)

There are various types of four-dimensional fields appearing in these expansions.

bA(x), cA(x) and dA(x) are scalars; V K̂(x) and UK̂(x) are one-forms 20; B2(x), C2(x) and

DA
2 (x) are two-forms. The self-duality condition ∗F̃5 = F̃5 eliminates half of degrees of

freedom of C4. Following [14] we keep dA(x) and V K̂(x).

For what concern the axion and the dilaton, their massless fluctuations appear as four-

dimensional scalars φ(x) and C0(x) in the effective theory 21.

The low-energy action is computed inserting (4.1.39), (4.1.44), (4.1.60) in (2.1.5) and

integrating over M6. As expected, the effective action reproduces the (bosonic part of

the) standard N = 2 supergravity action, once moduli are organized in the (bosonic

components of the) supermultiplets as presented in Table 4.2 [14, 52–55]. To be precise,

in order to recover the standard N = 2 supergravity action one has to express also

the so-called double-tensor multiplet in a hypermultiplet. This is achieved by dualizing

19For a review on the dimensional reduction see Appendix B.
20Turning on fluxes, V K̂ and UK̂ will correspond to magnetic and electric potentials.
21Taking the equations of motion (2.1.7) it is quite straightforward to check that the massless fluctuations

of the dilaton and the axion correspond to zero-modes of the internal Laplacian and hence are

constants in M6.
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B2(x) and C2(x) to two scalar fields [14]. Kinetic terms for geometric moduli vA(x) and

zK(x) are of sigma-model type, determined respectively by the metrics on the space of

geometric deformations GAB (4.1.51) and GKL (4.1.46).

In conclusion, one finds an effective N = 2 supergravity action with only moduli and

gauge kinetic terms, without a scalar potential V . This means that supersymmetry is

unbroken.

supermultiplet number 4d fields

gravity multiplet 1 gµν , V
0

vector multiplets h2,1 V K , zK

hypermultiplets h1,1 vA, bA, cA, dA

double-tensor multiplet 1 B2, C2, φ, C0

Table 4.2.: N = 2 four-dimensional bosonic components of supermultiplets.

4.2. IIB compactification on Calabi–Yau orientifolds

Purely geometrical supersymmetric IIB CY compactifications lead toN = 2 supergravity

theory, as just seen. To reduce the supersymmetry one usually considers orientifold

projections. For instance, CY orientifolds lead to an effective N = 1 supergravity.

As we will see, the orientifold projection introduce new objects in the compactification

background, the O-planes. Consistency implies the presence of D-branes and/or non-

vanishing background fluxes. Fluxes enrich the effective supergravity with a non-trivial

scalar potential, which can admit even non-supersymmetric (tree-level) vacua.

In general, the introduction of O-planes, branes and fluxes in the background modifies

the CY geometry. As we will see in Sect. 4.3, these sources backreact and turn on a

non-trivial warping e2A(y) in the metric (4.0.2). Such warp factor becomes very strong

near local sources. We will often denote this Ansatz by

M1,3 ×M6
sources + bg fluxes−−−−−−−−−−→ M1,3 ×w M6 . (4.2.1)

Hence, in presence of fluxes, the compactification manifold is in general no more a CY

and in order to give a proper characterisation to such manifold one has to work in the

generalised geometry framework [47,56].
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Carrying out the effective theory by KK reduction in warped compactifications is really

involved because of warping. Nevertheless, it is quite standard to by-pass the problem,

by performing the dimensional reduction in the large volume limit. By taking the average

compactification radius R to be large enough, one may assume that background fluxes

are diluted and sources are smeared and then do not backreact on the geometry. Since

the backreaction is encoded in the warp factor, as we will see, this limit corresponds to

a constant warping and then the unwarped Ansatz M1,3 ×M6 is restored [13, 17]. This

simplifying assumption implies that the metrics on the moduli space of deformations

agree with the CY case. Consequently, also the kinetic terms of the reduced action are

equal to the ones obtained in CY compactifications, as we will see in Sect. 4.3. However,

a non-trivial warp factor is a physically important feature in string compactifications and

one should study how it contributes to the effective action.

To summarize, we proceed by steps. Firstly, after recalling the meaning of the ori-

entifold projection in a type IIB theory, we specialise to the example of the O3/O7

CY orientifold. We study how the bulk massless spectrum of the Table 4.2 is reduced

(4.2.1) and recall peculiarities of the effective action (focusing on the Kähler potential),

in absence of background fluxes and neglecting the open string sector (4.2.2).

Then in Section 4.3, we turn on fluxes and study the associated compactification

background. We specialise to a particular class of fluxed vacua, the ‘‘GKP Ansatz”, and

analyse features of the reduced effective action, still neglecting the open string sector.

Hence, we complete the analysis in subsection 4.3.1 allowing for the presence of D3-

branes in the background. Since D-branes have their own dynamics, the effective action

is modified. In particular, in the scalar sector additional moduli appear. We are inter-

ested in understanding how these brane moduli enter in the effective Kähler potential.

All these steps are based on the dimensional reduction carried out in the large volume

limit. In the next Chapter we will present an elegant approach which allows to identify

non-trivial warping contributions to the effective Kähler potential.

IIB orientifolds

Orientifold projections are a fundamental ingredient for model building, because they

allow to include D-braes and fluxes and to reduce the supersymmetry of the effective

action obtained from pure geometrical compactifications. In the following we will review

the case of Calabi–Yau orientifold compactifications, but the same approach can be ap-

plied to compactifications on other other kinds of internal manifolds. The original work

of this thesis lies in a toroidal orientifold compactification, which is rather special and so

does not fit precisely in this more general class. Nevertheless, one can learn something
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interesting from it (see Section 5.4).

Orientifold theories are unoriented string theories constructed by starting from oriented

ones as follows. Consider a string theory with isomorphic left-right moving worldsheet

sectors, as the type II. The type I unoriented theory is built as a quotient by the worldsheet

parity Ωp, that exchanges left and right movers. States surviving the quotient, i.e. states

which are considered equivalent under the left-right exchange, define the new theory.

The quotient is called orientifold, since Ωp flips the orientation of the string. see for

instance [29].

More in general, one can consider a type II theory modded out by a symmetry group

SΩp, where S is a symmetry composed by a group of target space symmetries σ and,

eventually, by other operations to render SΩp a symmetry of the string theory. The

symmetry group SΩp consists of perturbative symmetries of the string theory and then

the orientifold projection can be imposed in the low-energy description of the string

theory. Bosonic states transforms under Ωp as in Table 4.3.

Orientifold planes are the surfaces left invariant by the σ action. They are RR charged,

they have negative tension and they are non-dynamical at lowest order in string theory,

which will be always the case of interest. [14].

In type IIB orientifold S depends on the model. As described below, in the simplest

case it suffices S to be a symmetry σ of the ten-dimensional spacetime, but in other

models σΩp is no more a symmetry of the IIB string theory and S must be of the form

(−1)FLσ, where (−1)FL is another symmetry operation admitted by the IIB theory 22.

The IIB bosonic fields transformations under (−1)FL and Ωp are resumed in Table 4.3 [14].

10d fields Ωp (−1)FL (−1)FLΩp

φ + + +

g + + +

B2 − + −
C0 − − +

C2 + − −
C4 − − +

Table 4.3.: IIB orientifolds: Ωp and (−1)FL action.

22FL is the spacetime fermion number in the left-moving sector [29].
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IIB Calabi–Yau orientifolds

In this particular case, consistency requires the internal discrete spacetime symmetry

σ to be an isometric and holomorphic involution. Orientifold planes are the spacetime

subspaces of fixed points of this involution. Op-planes wrap (p − 3)-cycles and their

negative RR charge µOp−plane must be cancelled by fluxes or by the charge of Dp-branes

wrapped on similar cycles [15].

The possible Calabi–Yau orientifolds are the following:

• O3-D3 models, S = σ(−1)FL : locally, around an O3-plane located at zi = 0, σ flips

all complex coordinates zi → −zi, for each i = 1, 2, 3. The allowed extended objects

are space-filling O3-planes and D3-branes;

• O5-D5 models, S = σ: σ acts flipping locally two different coordinates zi and zj,

leaving the other one zk untouched (i 6= j 6= k 6= i). This model has O5-planes and

D5 branes transverse to zi and zj and wrapped on 2-cycles;

• O7-D7 models, S = σ(−1)FL : σ acts locally as zi → −zi only in the i-th direction.

The model contains O7-planes and D7-branes, both transverse to the i-th direction

and wrapped on 4-cycles along the other directions;

• O9-D9 models, S = σ = Id: the trivial action of σ allows for the presence of ten-

dimensional space-filling objects, as O9-planes and D9-branes.

Since consistency requires σ to be an isometry an holomorphic involution of the CY,

it leaves invariant both the metric and the complex structure. It follows that the Kähler

metric is left invariant too. In order to distinguish the different projections O above, one

refers to the holomorphic three-form Ω transformation under σ:

O3/O7 : O1 = (−1)FLΩpσ σΩ = −Ω , (4.2.2)

O5/O9 : O2 = Ωpσ σΩ = Ω . (4.2.3)

Given an orientifold action among those listed above, not all kinds of permitted D-branes

and O-planes combine in a supersymmetric background. Including in the compactifica-

tion different types of these objects can break the supersymmetry. It can be shown

that only compactifications on orientifold O3/O7 models with D3/D7-branes and O5/O9

models with D5/D9-branes preserve a common four-dimensional N = 1 supersymmetry.

In other words, it can be shown that supersymmetry is preserved in presence of differ-

ent types of D-branes with four non-common transversal directions, as D3/D7-branes or

D5/D9-branes [29].
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4. IIB Calabi–Yau compactifications

4.2.1. CY orientifolds with O3/O7-planes

Now we focus on the first type of orientifold projection O1 (4.2.2). The purpose is to

present, following [14], the massless spectrum of the effective N = 1 supergravity that

arises in such compactifications.

To determine the effective theory massless spectrum, when the projection is taken into

account, and to see how the massless fields assemble in N = 1 supermultiplets, one has to

look at the behaviour of fields under the projection (−1)FLΩpσ. In the four-dimensional

reduced theory, in fact, only massless states which are invariant under orientifolding are

selected. Remembering the action of Ωp and (−1)FL of Tab. 4.3, it is straightforward to

check that the invariant states have to transform under σ as:

10d fields σ

φ +

g +

B2 −
C0 +

C2 −
C4 +

Table 4.4.: IIB orientifolds: σ action.

Since σ is a holomorphic involution, the cohomology groups split in two eigenspaces

under the σ action as:

Hp,q = Hp,q
+ ⊕H

p,q
− (4.2.4)

and analogously every harmonic p, q-form. The Hodge numbers hp,q+ and hp,q− are the

dimensions of Hp,q
+ and Hp,q

− respectively and satisfy hp,q = hp,q+ + hp,q− .

Since the Hodge-∗ operator commutes with σ 23, the Hodge numbers satisfy hp,q± =

h3−p,3−q
± . Recalling the action on the holomorphic three-form Ω (4.2.2) and that the

volume form depends on the σ-invariant Ω ∧ Ω̄ (A.8), one gets (see Table 4.5):

h1,1
± = h2,2

± , h1,2
± = h2,1

± ,

h3,0
+ = h0,3

+ = 0 , h3,0
− = h0,3

− = 1 ,

h0,0
+ = h3,3

+ = 1 , h0,0
− = h3,3

− = 0 .

(4.2.5)

23σ indeed preserves orientation and metric of the CY.
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4.2. IIB compactification on Calabi–Yau orientifolds

cohomology group dimension basis

H1,1
+ H1,1

− h1,1
+ h1,1

− ωα ωa
H2,2

+ H2,2
− h1,1

+ h1,1
− ω̃α ω̃a

H2,1
+ H2,1

− h2,1
+ h2,1

− χκ χk
H1,2

+ H1,2
− h2,1

+ h2,1
− χ̄κ χ̄k

H3
+ H3

− 2h2,1
+ 2h2,1

− + 2 (ακ, β
λ) (αk̂, β

l̂)

Table 4.5.: Cohomology groups for a CY O3/O7 orientifold.

For the reduction procedure is fundamental to keep in the expansions (4.1.39), (4.1.44),

(4.1.60) only those components which survive the projection, i.e. transforming under σ

as in Tab. 4.4.

Four-dimensional scalars φ(x) and C0(x) survive. As for the scalars vA(x), only a

subset remains in the spectrum:

J = vαωα , α = 1, ..., h1,1
+ . (4.2.6)

From the invariance of g under σ along with (4.2.2), the surviving components of the

complex structure deformations (4.1.44) are:

δgı̄̄ =
1

||Ω||2
δzk(x)(χk)ij̄ Ω̄ij

ı̄ , k = 1, ..., h2,1
− . (4.2.7)

The expansions of form fields (4.1.60) are truncated as follows:

B2 = ba(x)ωa , a = 1, ..., h1,1
− ,

C2 = ca(x)ωa ,

C4 = Dα
2 (x)ωα + V κ(x) ∧ ακ + Uκ(x) ∧ βκ + dα(x)ω̃α , κ = 1, ..., h2,1

+ .

(4.2.8)

Imposing F5 self-duality one reduces the degrees of freedom of C4. It corresponds to

two choices: one between electric and magnetic potentials V κ(x),Uκ(x), and the other

between the two-form Dα
2 (x) and the scalar dA(x). Although the first choice does not

change the structure of the 4d spectrum (both are one-forms), the last one does determine

the structure of some of the N = 1 multiplets to be linear (choosing Dα
2 ) or chiral

(choosing dA) 24.

24A linear multiplet L has a real scalar L and the field stregth of a two-form D2 as bosonic components.
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4. IIB Calabi–Yau compactifications

supermultiplet number 4d fields

gravity multiplet 1 gµν
vector multiplets h2,1

+ V k

chiral multiplets h2,1
− zk

1 (φ,C0)

h1,1
− (ba, ca)

chiral/linear multiplets h1,1
+ (vα, dα)/(vα, Dα

2 )

Table 4.6.: N = 1 4d bosonic spectrum of O3/O7-orientifold compactification.

These choices are however equivalent, as one should expect. The effective theory

described in the linear multiplet formalism corresponds to the effective theory described

in terms of chiral multiplets. Indeed, by dualising linear multiplets (i.e. by dualising

Dα
2 , or performing the dualisation in the superspace formalism), one recovers exactly the

effective action in terms of chiral multiplets [14, 57].

Let us remark that components ca(x), ba(x), V κ(x), Uκ(x) appear in (4.2.8) only if the

model allows for O7-planes. Indeed, in O3 models two/three-forms are locally even/odd

under the σ action respectively. Hence, in such models ca(x), ba(x), V κ(x), Uκ(x) must

vanish. Notice that, in the particular case of O3 models and flat space, all cohomology

groups Hp,q are even/odd under σ if (p+ q) is even/odd. This consideration will be used

in Section 5.4, where we will deal with a T 6/Z2 orientifold compactification.

Fields describing the effective theory are organizable as the N = 1 multiplets of Table

(4.6). The spectrum is indeed a truncation of the N = 2 spectrum of a Calabi–Yau com-

pactification (Table (4.2)). The graviphoton V 0 disappeared; the h2,1 vector multiplets

decomposed into h2,1
+ N = 1 vector multiplets plus h2,1

− chiral multiplets; the h1,1 + 1

hypermultiplets are reduced into h1,1 + 1 chiral multiplets, losing half of their degrees of

freedom 25.

4.2.2. O3/O7 CY orientifolds without fluxes: the Kähler

potential

The four-dimensional effective action is computed by Kaluza–Klein reduction of the IIB

action (2.1.5), for the orientifold-truncated expansions (4.2.6), (4.2.7), (4.2.8). We recall

25Totally, in the h1,1 + 1 hypermultiplets there are 4h1,1 + 4 scalar fields: vA, bA, cA, dA(or DA
2 -

dualization), φ,C0 and other two scalars, dualizations of B2 and C2. Of these, only vα, ba, ca, dα(or

Dα
2 -dualization), φ,C0 survive, for a total of 2h1,1

− + 2h1,1
+ + 2 = 2h1,1 + 2 degrees of freedom.
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4.2. IIB compactification on Calabi–Yau orientifolds

that there are two descriptions of the effective action, depending on the choice between

dα and Dα
2 in (4.2.8). In the following we use chiral multiplets.

Once obtained the effective action by dimensional reduction, one has to rewrite it the

standard N = 1 supergravity form (3.2.15). This action would be characterised by a

Kähler potential K(ϕi, ϕ̄i), a holomorphic superpotential W (ϕi) and holomorphic gauge-

kinetic coupling functions f(ϕi), all determined as functions of some chiral fields ϕi, called

‘‘the Kähler coordinates”, to be identified in terms of moduli zk, φ, C0, b
a, ca, vα, dα. This

identification is highly non-trivial.

Fortunately, complex structure deformations zk(x) are already good Kähler coordi-

nates. The other fields combine in a more complicated way [14] 26:

τ = C0 + ie−φ ,

Ga = ca − τba ,

ρα = idα+
1

2
Iα(v)− ζα(τ, τ̄ , G, Ḡ) ,

(4.2.9)

where

ζα = − i

2Imτ
Iαbc Gb ImGc . (4.2.10)

In terms of coordinates ϕi = (zk, τ, ρα, G
a) the effective theory has a Kähler metric

descending from the following Kähler potential

K = Kcs +Kk +Kτ ,

Kcs = − log

(
i

∫
M6

Ω(z) ∧ Ω̄(z̄)

)
,

Kk = −2 log[V(τ, ρ,G)] ,

Kτ = − log[−i(τ − τ̄)] ,

(4.2.11)

where

V(v(τ, ρ,G)) ≡ 1

6

∫
M6

J ∧ J ∧ J = Iαβγvαvβvγ (4.2.12)

has to be understood as a function of the Kähler coordinates τ, ρ,G which enter inverting

ρα(v, τ, G) in (4.2.9) to get v(τ, ρ,G). The inversion must be carried out case by case

26Note that only a subset of the intersection numbers (4.1.54) is invariant under the orientifold action.

From Table 4.4 and the σ-invariance of J , one argues that Iαβc = Iabc = Iαb = Ia = 0, where to

omit an index corresponds to a contraction with a vα (for instance Ia = Iaβγvβvγ). All the others

can be non vanishing, in particular I = Iαβγvαvβvγ = 6V.

57



4. IIB Calabi–Yau compactifications

and it is not possible to give a general explicit solution of v(τ, ρ,G). Hence the Kähler

potential remains implicit. It enjoys the following features:

• it has a part describing the complex structure moduli which is exactly the orien-

tifold projection of that found in the case of the compactification on a Calabi–Yau

threefold (Section 4.1);

• it gives a metric which is diagonal in the complex structure moduli while it mixes

τ, ρ,G, implying a moduli space of the form

Mh2,1
−

cs ×Mh1,1+1 , (4.2.13)

where Mh1,1+1 is a Kähler manifold and Mh2,1
−

cs is special Kähler [14];

• By considering only one Kähler modulus vα ≡ v (ρα ≡ ρ) parametrizing the inter-

nal volume, one can check that ρ(v, τ, G) in (4.2.9) can be easily inverted to find

v(τ, ρ,G) and thus

Kk = −3 log

[
ρ+ ρ̄+

1

Imτ
I1abImGaImGb

]
. (4.2.14)

One can proceed computing the gauge-kinetic coupling functions fκλ and show that

they are holomorphic in the complex structure moduli fκλ(z
k) [14].

As expected, dealing simply with a truncation of the pure CY three-fold compactifi-

cation, the reduced action presents no scalar potential V . Both W = 0 and Dκ = 0 and

the supersymmetry remains unbroken.

Let us see now how background fluxes enter in the description.

4.3. Turning on background fluxes

We now generalise the discussion on compactifications to the case with a richer back-

ground 27. The starting Ansatz is always (4.0.1), with the metric (4.0.2). The difference

with respect to pure geometrical compactifications lies in the fact that now we allow for

the presence of non-trivial background fluxes.

Fluxes enter the equations of motion (2.1.7) and then play a fundamental role in de-

termining solutions! In particular they backreact on the geometry, as one can see from

27Let us anticipate that the notation conventions for this Section and for next Chapter differ from the

ones adopted so far, see Appendix A.
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4.3. Turning on background fluxes

the Einstein equation (2.1.7), and this is enough to state that the internal manifold

cannot be Ricci-flat any more. This backreaction is encoded in a non-trivial warp factor

e2A(y) which dresses the four-dimensional metric in (4.0.2). Indeed, we will see that fluxes,

along with localised objects like D-branes or O-planes, behave as sources for the warping.

Of course, non-vanishing background fluxes modify crucially supersymmetry equations

too. Indeed, in presence of RR fluxes, supersymmetry conditions imply a relation between

the ten-dimensional Majorana–Weyl parameters ε1,2 entering the dilatino and gravitino

susy variations (2.1.8). As a consequence, four-dimensional spinors ζ1,2, components of

ε1,2 as in 4.1, are related ζ1 ∼ ζ2 ≡ ζ. Since they can not be chosen independently any

more, these backgrounds will generally preserve have an N = 1 supersymmetry.

Supersymmetry conditions are found by setting fermionic variations (2.1.8) to vanish,

along the lines of Section 4.1. In particular, from the analysis of supersymmetry condi-

tions given by gravitinos, one finds that supersymmetric fluxed backgrounds are possible

only if

M1,3 = Mink4,AdS (4.3.1)

and that the internal manifold M6 is no more Ricci flat [47].

To say something about the geometry of the internal manifold one has to work in

the generalised geometry framework. In fact, in this framework one can split supersym-

metry conditions in topological and differential conditions, as done for pure geometrical

compactifications. In the particular case of Minkowskian flux compactification these con-

ditions allow to identify the internal M6 as a generalised Calabi–Yau [47, 56]. This is a

weaker condition with respect to the Calabi–Yau one, since it admits only half of the

differentiable structures with respect to CY spaces [47]. For AdS compactification the

geometric interpretation is not so clear.

A subclass of supersymmetric vacua: the GKP Ansatz

An important IIB flux background with four-dimensional Minkowski spacetime is the one

proposed by Giddings, Kachru and Polchinski in [13] (see also [58]) and since the original

work of this thesis is based on a background of this kind, it turns out appropriate to

review that solution.

This vacuum turns out to be particularly fortunate since the internal manifold is a

warped Calabi–Yau orientifold 28 (O-planes are necessary for consistency), or a non-

Ricci-flat Kähler space in F-theory models. We are interested in the first class of models.

28Or, to be precise, a conformally CY [47].
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4. IIB Calabi–Yau compactifications

In general, however, the ten-dimensional Einstein frame metric is:

ds2 = e2A(y)ηµνdx
µdxν + e−2A(y)gmn(y)dymdyn , (4.3.2)

where gmn (or simply g6) is the underlying metric and it is Ricci-flat for the cases we are

interested in, as we will see.

By taking M6 to be a CY threefold (SU(3) holonomy) one gets a model with N = 1

(or N = 0) supersymmetry. One can take also a M6 of smaller holonomy, in which case

the supersymmetry is enhanced. In Section 5.4, we will take the T 6/Z2 as the underlying

orientifold, which can have at most a N = 4 supersymmetry.

Generally, the only assumption of a starting Minkowskian M1,3 allows for the presence

of supersymmetry preserving space-filling D3/O3 and D7/O7, leading to F-theory com-

pactifications on CY four-folds, so in the following we will maintain the presentation as

more general as possible.

In order to easily describe this background solution, it is convenient to recast the IIB

Einstein frame action (2.1.5) in terms of the three-form flux G3 and the axio-dilaton τ ,

defined as:

τ = C0 + ie−φ ,

G3 = F3 − τH3 .
(4.3.3)

Hence the IIB supergravity action becomes 29:

SIIB =
1

2κ2
10

∫
d10x
√
−gR− 1

4κ2
10

∫
d10x
√
−g
(
∂Mτ∂

Mτ

(Imτ)2
+
G3 · Ḡ3

3! Imτ
+

F̃ 2
5

2 · 5!

)
− 1

8iκ2
10

∫
1

Imτ
C4 ∧G3 ∧ Ḡ3 + Sloc ,

(4.3.4)

where the Sloc includes local sources present in the supergravity background, as D-branes

or orientifold O-planes.

Four-dimensional Poincaré symmetry restricts G3 to have only internal legs

GMNP −→ Gmnp , (4.3.5)

the self-dual F̃5 to be of the form

F̃5 = (1 + ∗)[dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3] (4.3.6)

29See Appendix A for conventions on the Hodge-∗ used.
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and the assio-dilaton to be 30

τ(y) . (4.3.7)

In F-theory models, i.e. type IIB solutions including D7-branes, τ(y) is related to an

elliptically fibered CY four-fold [45, 46], while in CY orientifold models it is simply con-

stant.

Three-form fluxes F3, H3 satisfy, in absence of sources, the Bianchi identities dH3 =

dF3 = 0. Hence they are closed and belong to H3(M6,Z). They are also quantized as

1

2πα′

∫
Σ3

F3 = 2πZ ,

1

2πα′

∫
Σ3

F3 = 2πZ ,

(4.3.8)

where Σ3 is a non-trivial 3-cycle supported on M6. This flux quantization can be un-

derstood by considering, in the ten-dimensional IIB theory, the quantum amplitude of a

process in which a Euclidean D1-brane wraps 31 on a trivial 2-cycle Π2 in Σ3. Π2 splits

Σ3 in an internal part Σ+ and an external part Σ−, satisfying Σ+ − Σ− = Σ3 where the

minus sign is due to the orientation flip. The 2-cycle is the boundary of both these parts

Π2 = ∂Σ+ = ∂Σ−. Consider the CS contributions (2.2.5) to the path integral amplitude

exp

(
iµ1

∫
Π2

C2

)
= exp

(
iµ1

∫
Σ±

F3

)
, (4.3.9)

where we used the Stoke’s theorem, since F3 is globally well-defined while RR fields are

not. Remember in fact that F3 = dC2 holds only locally, not globally since M6 has in

general a non-trivial cohomology, which means that F3 is not exact. The two choices Σ±
differ by a phase, but physically the integration has to lead to the same result, which is

guaranteed if that phase is 2πZ:

µ1

∫
Σ+

F3 − µ1

∫
Σ−

F3 = µ

∫
Σ3

F3 = 2πZ , (4.3.10)

which is exactly the quantization condition of the RR F3 (4.3.8).

The same considerations can be carried out for the amplitude of a process between

fundamental strings, whose coupling to B2 is given by the term of the worldsheet Σws =

Π2 action

30Poincaré invariance let F1 to have only internal legs, hence C0(y). Furthermore, in a generic back-

ground φ(y).
31We are assuming a static gauge.
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SB2 =
1

2πα′

∫
Π2

B2 . (4.3.11)

No-go theorem

Before reviewing the GKP special solution, it is worth emphasising that localised sources

are necessary in order to find solutions. Let us take the metric Ansatz (4.3.2). The

Einstein equation of motion (2.1.7) for the non-compact components Rµν , in presence of

localized sources with stress tensor T loc
MN and in the metric Ansatz (4.3.2), can be recast

as 32

∇2e4A = e8AGmnpḠ
mnp

12Imτ
+ e−4A(∂mα∂

mα + ∂me
4A∂me4A) +

κ2
10

2
e2ATloc , (4.3.12)

where

Tloc ≡

(
9∑

M=5

TMM −
3∑

M=0

TMM

)
loc

(4.3.13)

is the energy-momentum tensor contribution associated to localised sources. Contractions

in (4.3.13) are intended with respect to the components of the ten-dimensional metric

gMN . Equation (4.3.12) leads to a no-go theorem in the absence of localized sources.

In fact, integrating over the internal compact manifold M6 the LHS vanishes while the

RHS, composed by the flux and warping terms, is positive semidefinite. Therefore fluxes

must vanish and warping must be constant.

The warping turns on only in the case of Tloc < 0. In [13] it is shown that, to leading or-

der in α′, this condition can be satisfied in two cases: in F-theory models, with D7-branes,

or in compactifications with negative tension objects, like anti-Dp-branes (branes of neg-

ative tension and charge) or O-planes. Anti-branes, however, do break supersymmetry

and then one is led to considering CY orientifolds.

We obtained this no-go theorem using the Minkowskian compactification (4.3.2). How-

ever, similar considerations can be carried out for dS or AdS compactifications too, where

the cosmological constant is Λ > 0, Λ < 0 respectively. In these cases one ends up with

an equation analogous to (4.3.12), in which Λ contributes with an additional constant

term on the RHS. Hence, for dS compactifications negative tension objects are needed

too, while for AdS compactifications the cosmological constant provides a negative term

itself and negative tension sources are no more necessary [13,59,60].

32In (4.3.12) ∇2 and all contractions are referred to the underlying (unwarped) metric g6 and not to the

internal (warped) one.
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4.3. Turning on background fluxes

Another constraint comes from the equation of motion/Bianchi identity of F̃5, which

is 33:

dF̃5 = d ∗ F̃5 = H3 ∧ F3 + `4
s δ̂

loc
6 , (4.3.14)

where `4
s = 2πκ2

10T3 since the tension of a D3-brane is T3 = µ3 = (2π)−3α′−2. δ̂loc
6 is the

six-form local charge density encoding the distribution of D3-branes and O3-planes 34:

δ̂loc
6 ≡

∑
I∈D3′s

δ̂I6 −
1

4

∑
J∈O3′s

δ̂J6 + ... . (4.3.16)

Here the factor −1
4

is because TO3 = −1
4
T3 [30]. The ellipses denote the other possible

contributions, due to other kinds of localised sources (as exotic O-planes) or, in F-theory

compactifications, to the α′ contribution of the D7 CS action [13]. We will however treat

only compactifications with constant τ and without other exotic sources.

The equation (4.3.14) tells us that fluxes behave as local sources as well, as anticipated.

Integration over M6 gives the no-tadpole cancellation condition

Qloc
3 +Qflux

3 = 0 , (4.3.17)

where

Qflux
3 ≡ 1

`4
s

∫
M6

H3 ∧ F3 (4.3.18)

and

Qloc
3 ≡

∫
M6

δ̂loc
6 . (4.3.19)

The equation (4.3.17) states that the total D3-charge from supergravity bulk fields and

localized sources must vanish. From this condition one can realize that O-planes have

negative tension. Let us take the O3-orientifold model as described in [30]: it is a compact

Minkowski solution without background fluxes and with 16 D3-branes and 64 fixed O3-

planes. Hence, from the no-tadpole cancellation one can understand that TO3 = −1
4
T3.

33Notice that, in deriving (4.3.14) from the IIB action (4.3.4) one has to double the CS term. This is

because any object with a D3 charge couples both electrically and magnetically to C4 and the self

duality of F̃5 implies that this coupling are equal.
34 A p-form density δ̂p is associated to a 6−p-dimensional surface Σ in such a way that, given a 6−p-form

ω on M6: ∫
Σ

α =

∫
M6

α ∧ δ̂p . (4.3.15)

Hence, we can write a six-form density as δ̂6 = δ6(y)d6y = ρ(y)dV, with ρ(y) = δ6(y)/
√
g6 and

dV ≡ √g6d
6y.
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The GKP special solution

Giddings, Kachru and Polchinski showed that only in the presence of objects satisfying

a BPS-like condition each, that is [13]

1

4
Tloc ≥ T3ρ

loc
3 , (4.3.20)

global constraints determine the solution completely. Here ρloc
3 ≡ δloc

6 /
√
g6, see (4.3.16)

(see also footnote 34). By combining the Einstein equation (4.3.12) with the equation of

motion for F̃5 (4.3.14) one gets indeed:

∇2(e4A − α) =
e8A

6 Imτ
|iG3 − ∗6G3|2 + e−4A|∂(e4A − α)|2

+ 2κ2
10e

2A

[
1

4
Tloc − T3ρ

loc
3

]
,

(4.3.21)

where ∗6 denoted the Hodge star with respect to the underlying g6. Integration over the

compact internal space leads the LHS to vanish while assuming the BPS-like condition

(4.3.20) the RHS vanishes if:

?6G3 = iG3 , (4.3.22)

e4A = α , (4.3.23)

1

4
Tloc = T3ρ

loc
3 . (4.3.24)

Under these conditions, equations of motion and Bianchi identities give the solution. In

particular, one finds that the Einstein equation for Rmn reduces to Rmn ∼ f(∂mτ, T
D7
mn)

[13]. Furthermore, using (4.3.6) and under (4.3.23), equation (4.3.14) gives the following

equation for the warp factor:

−∇2e−4A =
GmnpḠ

mnp

12Imτ
+ `4

sρ
loc
3 . (4.3.25)

Henceforth set τ to be constant, i.e. we consider backgrounds without 7-branes. In

this case, Rmn = 0 and M6 is Ricci flat [13, 58]. We are dealing with a O3 orientifold,

with D3-branes and O3-planes, as anticipated. The local density ρloc
3 is

ρloc
3 =

∑
I∈D3′s,O3′s

qI
δ6(y − YI)√

g6

(4.3.26)

where qI = 1,−1/4 for a D3-brane or O3-plane respectively.
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4.3. Turning on background fluxes

Supersymmetry

Both supersymmetric and nonsupersymmetric solutions are possible, depending on the

form of G3. Since the underlying metric is Kähler, a generic solution to the ISD condition

(4.3.22) is an harmonic form that can be Lefschetz decomposed as (see Appendix C):

G3 = G0,3 +G2,1
pr +G1,2

np , (4.3.27)

where the last term is the non-primitive form G1,2
np = J ∧ ω0,1

pr of Lefschetz spin l = 1. If

the compact manifold is a CY (in the stricter sense) h0,1 = 0 and this term is absent,

while it is present in compactifications on manifolds of smaller holonomy, such as toroidal

ones. It was shown that only the primitive G2,1
pr is allowed for supersymmetric (N = 1)

solutions [58]. As we will show below, we find that these supersymmetry conditions on

the ten-dimensional background corresponds to supersymmetry conditions in the four-

dimensional effective theory.

On the moduli of warped orientifold compactifications

These CY threefolds have in general h2,1 geometric complex moduli and h1,1 Kähler mod-

uli, along with dilaton moduli and D3-brane positions moduli. Among these, the complex

structure moduli and the assio-dilaton moduli are fixed by (4.3.22), which is indeed a

condition on moduli and not on fluxes, fixed by quantization (4.3.8). In order to under-

stand this fact, let us recall that the ISD condition implies the Lefschetz decomposition

(4.3.27). Since we are dealing with a CY it reduces to G3 = G0,3 + G2,1
pr , where both

components depend on complex structure and τ only.

This can be explained also in terms of the four-dimensional effective theory. As we

will see below, Kähler deformations (along with the D3-brane moduli, when present)

correspond to flat directions of the scalar potential arising in the effective action.

The universal modulus and the large volume limit.

Typically, in unwarped compactifications with ten-dimensional metric ds2
10 = ds2

4 + ds2
6,

all equations specifying a solution are invariant under a constant rescaling of the internal

metric:

g6 → ag6 , (4.3.28)

where a is identified with a particular Kähler modulus, called ‘‘the universal modulus”.

In presence of non-trivial warping in the metric (4.3.2), one has to define the universal

modulus in another way. Indeed, under a rescaling of the underlying metric g6 → ag6,

the equation (4.3.25) would imply e2A → ae2A, meaning that the internal metric e−2Ag6

would remain unchanged.

65



4. IIB Calabi–Yau compactifications

In this case, the correct identification of the universal modulus follows from the obser-

vation that the solution of (4.3.25) determines the warp factor up to a constant a:

e−4A = a+ e−4A0 . (4.3.29)

Here e−4A0 is a particular solution of (4.3.25), associated to a fiducial metric ĝmn which

we can take to have unit volume V̂. For instance, one can take e−4A0 such that e−4A

behaves as a constant away from sources and diverges in their vicinity, i.e. such that in

presence of a D3-brane located at y0 we may locally write [17]:

e−4A ≈ a+
4πα′2

|y − y0|4
. (4.3.30)

Now, since the internal metric is (a+ e−4A0)1/2ĝ6, any changes of a modifies the internal

volume. Therefore one is led to identify the universal modulus with the constant a. A

further confirmation is given by the fact that in unwarped regions, away from sources, a

corresponds to the definition of the universal modulus in the unwarped case (4.3.28).

To simplify the study of warped compactifications one usually adopts the large vol-

ume/radius limit, corresponding to take a → ∞. This is justified by the fact that one

can choose freely a, since is it an unfixed modulus. In this limit the internal volume of

M6 is

Vint ∼
∫
M6

√
det(a1/2ĝ6) ∼ a3/2V̂ ∼ a3/2 , (4.3.31)

since V̂ is fixed, as discussed above. Hence from Vint ∼ R6 one gets the relation a ∼ R4,

which explains the name of the approximation. In fact, taking this limit corresponds

to taking a constant warp factor, which physically corresponds to smearing sources and

diluting fluxes, neglecting their backreaction on the geometry. Although it is a useful tool

to simplify the reduction and to get the effective action 35, it is still an approximation.

Indeed, one would like to control warping effects, which may lead to relevant physical

effects.

35This limit allows to get the effective theory as done for a pure CY compactification in Section 4.1,

eventually including flux effects. This procedure is however consistent only in a particular regime.

As we will see, fluxes lead to stabilization of some moduli, giving them a mass of the order α′/R3.

On the other hand, KK modes have masses mKK ∼ 1/R. Hence, in the large volume limit, the mass

induced by fluxes is smaller than the KK one. The regime allowed is between these two scales, where

flux contributions are negligible and the effective theory corresponds to the one obtained from a pure

geometrical compactification. However, fluxes become relevant at lower energies, near the flux scale

and modify the effective action as we will describe.
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4.3. Turning on background fluxes

The effective theory

Here we review the main features of the effective four-dimensional action, obtained by

reducing the ten-dimensional theory compactified on a CY O3-orientifold and using the

large volume limit. Here then the warp factor approaches a constant and F̃5 = 0 (4.3.6).

In absence of fluxes H3, F3, the reduction leads to a supergravity theory with the

massless spectrum of Table 4.6, without the vector multiplets V κ and the chiral multiplets

(ba, ca), cut by the O3-projection.

Assuming for simplicity the presence of a single Kähler modulus (i.e. h1,1
+ = 1), the

universal modulus a, the effective action has moduli kinetic terms determined by the

Kähler potential [13]:

K = − log[−i(τ − τ̄)]− 3 log(ρ+ ρ̄)− log

(
−i
∫
M6

Ω ∧ Ω̄

)
, (4.3.32)

where ρ ≡ a+ id is the scalar component of a chiral field ant it is composed by the uni-

versal modulus a and the C4 modulus d. Notice that the last two terms of (4.3.32) give

the Weyl–Petersson metric on the moduli space of a CY threefold, as seen in Sect. 4.1 [50].

Turning on three-form fluxes deforms the geometry of the compactification and gener-

ates a scalar potential for some moduli. This is obtained from the reduction of the kinetic

|G3|2 term of the IIB action (4.3.4). In the large volume approximation and splitting the

flux G3 in its imaginary and anti-imaginary self-dual parts (ISD/AISD) defined as

G±3 ≡
1

2
(G3 ± i ∗6 G3) ,

∗6 G
±
3 = ∓iG±3 ,

G3 = G+
3 +G−3 ,

(4.3.33)

one gets

Sflux = −V − i

4κ2
10Imτ

∫
M6

G3 ∧ Ḡ3 , (4.3.34)

The last term in the RHS is purely topological and does not contain moduli. It is

proportional to the D3-charge given by three-form fluxes Qflux
3 (4.3.18) entering the no-

tadpole cancellation (4.3.17). Thus the potential for moduli is determined only by the

first term on the RHS of (4.3.34), which is

V ≡ − 1

2κ2
10Imτ

∫
M6

G+
3 ∧ ∗6Ḡ

+
3 . (4.3.35)

This potential depends on moduli defining the chiral field τ , which enter in V by the

definition of G3, and on geometric Kähler and complex structure moduli (a, zk respec-
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4. IIB Calabi–Yau compactifications

tively), which enter via the Hodge-∗6. The ISD condition for the special solution (4.3.22)

corresponds in the four-dimensional theory to V = 0. This is a condition which can fix

many moduli.

Expanding G3 in the basis of 3-forms allowed by the orientifold projection, and using

a little algebra, V can be recast in the following form:

V =
1

2κ2
10

eK(Gi̄DiWDjW ) , ∀i, j = k, τ , (4.3.36)

where Di ≡ ∂i + ∂iK and Gi̄ = ∂i∂̄K are the Kähler covariant derivatives and the the

Kähler metric respectively. W is the superpotential, which has a Gukov–Vafa–Witten

form [61]

WGVW =

∫
M6

G3 ∧ Ω (4.3.37)

and it is independent on ρ, since both G3 and Ω are. Indices i, j in (4.3.36) run over

k, τ only because of the particular structure of the effective theory obtained, which is a

no-scale N = 1 supergravity [62]. It is indeed straightforward to verify that (4.3.36) can

be recast as the usual N = 1 VF :

VF =
1

2κ2
10

eK(Gi̄DiWD̄W − 3|W |2) , (4.3.38)

where now i, j run over all chiral indices k, τ, ρ. No-scale models are characterised by a

Kähler potential such that the minimum of (4.3.38) possesses some flat directions (here

parametrised by the chiral field ρ) and corresponds to a vanishing cosmological constant

too. These models possess the interesting feature to allow for a vanishing cosmological

constant even if the supersymmetry is broken. Indeed, from (4.3.36) it is immediate to

check that V = 0 when

DτW = 0 =⇒ G3,0 = 0 ,

DkW = 0 =⇒ G1,2 = 0 ,
(4.3.39)

while supersymmetry is preserved when DiW = 0, for i labelling all chiral fields, without

exceptions. Hence supersymmetry can be generally broken.

In order to keep supersymmetry unbroken (4.3.39) must be accompanied by the addi-

tional condition

DρW = 0 =⇒ W = 0 =⇒ G0,3 = 0 , (4.3.40)

which further constrains G3 ∈ H2,1(M6). In the case of a compactification on a CY orien-

tifold (strict SU(3) holonomy), the three condition (4.3.39), (4.3.40) are enough to state

that G3 has to be primitive, in agreement with the ten-dimensional considerations. If
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4.3. Turning on background fluxes

the CY has smaller holonomy, for instance taking a toroidal orientifold, those conditions

are no more sufficient in order to get a primitive G2,1 preserving supersymmetry. The

additional condition J ∧G3 = 0 to be imposed arises from constraints on D-terms related

to the superpotential by the enhanced supersymmetry [54].

Note that the no-scale structure holds also in the presence of more Kähler moduli,

because it is determined by the ISD condition (4.3.22) which, as discussed before, leaves

Kähler moduli unfixed. Since this condition corresponds to the vanishing of the scalar

potential, it follows immediately that V has to be of the form (4.3.36), with indices

running over all moduli except Kähler ones. Hence in these models the superpotential

cannot depend on any Kähler modulus.

This structure, however, holds only in classical and large volume approximation. For

instance, non-perturbative effects, like instantonic branes, furnish mechanism to stabilise

the universal modulus and can generate a non-vanishing cosmological constant [63].

4.3.1. Introducing branes: the Kähler potential

Here we see how brane moduli fields, kept frozen so far, enter in the effective action. We

work in a GKP background, compactified on a CY O3/O7 orientifold, with background

three-form fluxes F3 and H3 turned on and including space-filling D3-branes 36. The

result is obtained in the large volume approximation.

Let us first recall that, in absence of branes, one obtains the effective action just plug-

ging the orientifold truncated expansions (4.2.6), (4.2.7) and (4.2.8) including background

fluxes (F3, H3), in the IIB action and by reducing it [14]. The final result is an effective

action which differs from the one obtained in absence of fluxes only for the presence of a

scalar potential term, as explained in Section 4.3. The Kähler potential is (4.2.11) and

Kähler coordinates are (4.2.9).

In order to derive the effective action including branes, one strategy is to add bosonic

and fermionic brane action terms to the IIB bulk action (2.1.5) and then to perform the

reduction, in the large volume limit. This strategy, in which branes are considered as

probes, has been followed in [21]. The results are reviewed here below. On the other hand,

let us anticipate that the D3-moduli are automatically incorporated once the non-trivial

warping is taken into account, see Chapter 5.

First of all one studies the bosonic sector, composed by the Dirac–Born–Infeld and by

the Chern–Simons term of D3-brane action. One expands fields in fluctuations, includ-

36D3-branes and O3-planes indeed satisfy the saturation condition (4.3.24) [13].
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4. IIB Calabi–Yau compactifications

ing fluctuations of transversal positions in M6, and computes the effective action. The

fluctuations of D3-brane positions around given given points Zi
I ' Zi

(0)I + φiI give rise to

scalar moduli fields, collected in the complex scalars φiI , with i = 1, 2, 3 and I = 1, ..., N

for N branes located apart from each other. These branes give rise to a gauge group

U(1)N . After that, one has to introduce the fermionic action, in order to satisfy super-

symmtry [35,36]. By reducing the action one finds that fermionic four-dimensional fields

combine with bosonic φiI into N = 1 chiral multiplets. We refer the reader to [21] for the

detailed discussion.

Obtained the low-energy four-dimensional action in presence of N D3-branes, one has

to rewrite it in a standard supergravity form. However, the usual supergravity action

(3.2.15) does not fit this situation and one finds that the effective action corresponds

to a softly broken globally supersymmetric theory [21]. We are interested in the Kähler

potential of the reduced theory. Let us remark that the analysis is carried out taking

infinitesimal complex structure deformations δzk. Remaining bulk moduli organise in

the following scalar components of chiral fields (ρα, G
a, τ), which are defined as:

τ = C0 + ie−φ , Ga = ca − τba ,

ρα = idα +
1

2
Iα −

i

2Imτ
Iαbc Gb ImGc

+ iµ3`
2
s (ωα)i̄

∑
I

φiI

(
φ̄̄I −

i

2
δz̄k(χk)

̄
lφ
l
I

)
.

(4.3.41)

The Kähler potential K(τ, ρ,G, z, φ) obtained differs from (4.2.11) only in the functional

dependence of the second term (Kk), which is now

− 2 log [V(v(τ, ρ,G, z, φ))] . (4.3.42)

This means that the presence of D3-branes mixes all Kähler coordinates τ, ρ,G, z, φ. As

in the case of (4.2.11), in general, the dependence of K in terms of the Kähler coordinates

can be stated only implicitly.

Let us take, for example, a single Kähler modulus v. It will correspond to a single

chiral field ρ. In this case (4.3.41) can be inverted in terms of v(τ, ρ,G, z, φ) and inserted

in the (4.3.42), to get [21]:

−2 log V = −3 log

[
ρ+ ρ̄− 1

Imτ
I1ab ImGaImGb

+ 2iµ3`
2
s (ω1)i̄

∑
I

(φiI φ̄
̄
I) +

1

2
µ3`

2
s

(
(ω1)i̄ δz̄

k (χ̄k)
̄
l

∑
I

(φlIφ
i
I) + h.c.

)]
.

(4.3.43)
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4.3. Turning on background fluxes

The definition of the Kähler coordinates ρα in (4.3.41) and the particular form of the

Kähler potential (4.3.43) confirm the non-trivial fibration of chiral fields ρα over the

D3-brane moduli space discussed in [22,23,64] and typical of KK reductions [7].
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5. An alternative to dimensional

reduction

In this Chapter we will present an alternative strategy to compute the Kähler potential

for a flux compactification, which does not require a systematic KK reduction. This

strategy relies on the combination of supersymmetric considerations and some properties

of instantonic branes, which can be used to ‘‘probe” these backgrounds, see [26], [25] 1.

This Chapter has been developed in parallel with the recent paper [27].

5.1. A look at the symmetry of the effective theory

The setup is the GKP background of Section 4.3 with ten-dimensional Einstein frame

metric (4.3.2).

We saw that the warp factor must satisfy equation (4.3.25), where ρloc
3 is given by

(4.3.26), since we are interested in O3 CY orientifolds only.

The supersymmetry equations are solved by a ten-dimensional Weyl Killing spinor

ε ≡ ε1 + iε2 of the form

ε = eA/2ζ ⊗ η . (5.1.1)

Here ζ and η are respectively a four-dimensional and a six-dimensional chiral spinors on

the unwarped manifolds M1,3 and M6. As explained in Section 4.1, η (chosen such that

η†η = 1) defines the Kähler form J and the holomorphic three-form Ω of the unwarped

M6 as follows 2:

Jmn = iη†γmnη , Ωmnp = eφ/2ηTγmnpη . (5.1.2)

1The approach proposed in [26] is described within the framework of generalised geometry, which

indeed furnishes an elegant and efficient way to deal with flux compactifications. The main idea of

that paper, leading to the deduction of an implicit formulation of the Kähler potential, is however

independent on generalised geometry and can be carried on in a simpler context, as we will discuss.
2The factor eφ/2 in (5.1.2) is in general needed to ensure holomorphicity. However this is irrelevant

for us, since we deal with a constant φ. Here we are choose the (A.12) convention for J and the

orientation defined by (A.11).
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5. An alternative to dimensional reduction

J and Ω obey:

dV6 =
1

3!
J ∧ J ∧ J = − i

8
e−φΩ ∧ Ω̄ , (5.1.3)

where

dV6 =
√
g6 dy

1 ∧ · · · ∧ dy6 (5.1.4)

is the volume form for the unwarped M6.

A key point of the reasoning for the deduction of the Kähler potential lies in the

observation of a symmetry of the dynamical field configuration generalising the vacuum

Ansatz. In fact, in order to study the physics around a vacuum configuration, one has

to consider the fluctuations of background fields around their vevs (Appendix B). For

instance, at linear order, fluctuations of the ten-dimensional metric around the vacuum

(4.3.2) are in general:

δ(e2Agµν)(x, y) = e2A(y)(2δA(x, y)ηµν + δgµν(x, y)) ,

δ(e−2Agmn)(x, y) = e−2A(y)(−2δA(x, y)gmn(y) + δgmn(x, y)) .
(5.1.5)

Here δgµν(x, y) are the four-dimensional graviton Kaluza–Klein modes, whose zero-mode

is the graviton; δgmn(x, y) are internal metric fluctuations, which depend on metric mod-

uli uA(x) and on their respective KK modes. The warping depends on external coordi-

nates x just through moduli and their KK tower of massive states. In fact, because of

(4.3.25), a deformation δgmn in turn implies a variation δD ∼ ∂D
∂uA

uA.

Since we are interested only in the four-dimensional physics described by massless

fields, we truncate the KK towers to zero-modes. The four-dimensional metric is trun-

cated to the graviton gµν(x) and internal geometric massless zero-modes give rise to

the appearance of moduli uA(x). One expects the ten-dimensional metric to be slightly

modified by the presence of moduli smoothly varying in spacetime, in such a way that

the equations of motion remain satisfied. However, the dynamical generalisation of the

warped background Ansatz (4.3.2) can not include only fluctuations of the external and

internal metrics (5.1.5). In fact, such a generalisation is not a KK consistent Ansatz, i.e.

from which to start the reduction, because it does not satisfy the equations of motion.

Extra off-diagonal terms are needed. This is the main difference with respect to the

unwarped case: the correct dynamical metric Ansatz, describing fluctuations around the

vacuum is [17,19,20,65]:

ds2
10 = e2A(y,u(x))gµν(x)dxµdxν + e−2A(y,u(x))gmn(y, u(x))dymdyn

+ 2∂µ∂νu
A(x)e2A(y)KA(y)dxµdxν + 2e2A(y)BAm(y)∂µu

A(x)dxµdym ,
(5.1.6)
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where KA and BAm are called compensators for the metric [17]. This is the typical

starting point for the reduction procedure, which is now much more involved, due to

compensating terms. Here is why we would like to find a more general short-cut.

We start pointing out that the zero-modes Ansatz (5.1.6) possesses the following gauge

symmetry:

gµν(x)→ e−2σ(x)gµν(x) , (5.1.7)

gmn(x, y)→ e2σ(x)gmn(x, y) , (5.1.8)

A(x, y)→ A(x, y) + σ(x) . (5.1.9)

Also the dynamical spinorial Ansatz, generalisation of the background Ansatz (5.1.1),

has a similar gauge symmetry. Indeed, under

ζ(x)→ ei/2α(x)ζ(x) , (5.1.10)

η(x, y)→ e−i/2α(x)η(x, y) (5.1.11)

the ten-dimensional dynamical Weyl spinor (5.1.1) is invariant.

Since the starting background is supersymmetric, then the four-dimensional effective

theory must be supersymmetric. Such a theory will inherit these gauge symmetries. In

particular, under these transformations, Ω (5.1.2) transforms as 3

Ω→ e3σ(x)−iα(x)Ω . (5.1.12)

The invariance of the effective theory under this kind of transformation suggests to iden-

tify the effective theory as a superconformal supergravity. As we will see in the next

Section, this theory is characterised by a Weyl–chiral symmetry, i.e. it is invariant under

field transformations of the kind (5.2.1). This is enough to deduce the form of the Kähler

potential as we will see in Section 5.3. Before entering the argument it is better to review

the main aspects of such a theory. For a detailed discussion we refer the reader to [66].

5.2. Superconformal theory in a nutshell

Four-dimensional superconformal theory is typically used as an underlying theory, a tool

for constructing standard supergravities. It possesses more symmetries than standard

3γmnp in (5.1.2) in curved space are defined by sechsbeins, which have half Weyl weight with respect

to g6 (5.1.8).
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5. An alternative to dimensional reduction

supersymmetric theories, based on the super-Poincaré group, and has the peculiarity

of describing the gravitational coupling M2
P as a the expectation value of a function of

some scalar N (Φ, Φ̄). One recovers the Poincaré supergravity through an appropriate

gauge-fixing, which breaks the local superconformal symmetries to the super-Poincaré

subgroup.

A superconformal theory enjoys the super-Poincaré symmetry, which means invari-

ance under general coordinate transformations, local Lorentz symmetry and local Q-

supersymmetry. Additionally it possesses a chiral U(1) symmetry, local dilatation invari-

ance, special conformal symmetry and S-supersymmetry (see Table 5.1) [66].

Symmetry g.c.t. Lorentz Q-susy U(1) chiral dilatations spec. conf. S-susy

Generator Pa Mab Q T D Ka S

Gauge field eaµ ωabµ ψµ Aµ bµ faµ χµ

Table 5.1.: Superconformal symmetries.

Not all gauge fields in Table 5.1 are independent. In particular, ωabµ , faµ and χµ are

composite fields and the only independent fields are the vierbeins eaµ, the gravitino ψµ,

the dilatation field bµ and the U(1) gauge field Aµ. All these fields are collected in the

Weyl multiplet.

The other superconformal multiplets in the theory are the chiral and the vector mul-

tiplets. A chiral multiplet Φ is defined as in rigid ordinary supersymmetry, i.e. by a

complex scalar Φ (as usual, we identify the multiplet with its scalar component), a spinor

of defined chirality ψ and an auxiliary complex scalar F . A Yang–Mills vector multiplet

is defined by the gauge field Aµ, a gaugino λ and the auxiliary complex scalar D. The

gaugino and the auxiliary field stay in the adjoint of the gauge group, labelled by a.

A generic field φ of a multiplet has its proper dilatation and chiral weighs (w, c) (called

also Weyl–chiral weights), i.e. it transforms under a dilatation and a chiral transformation

as [66]:

φ→ φ′ = ewσ(x)+icα(x)φ , (5.2.1)

where σ(x), α(x) are the dilatation and chiral parameters respectively.

The superconformally invariant action of N = 1 supergravity conformally coupled to

n+ 1 chiral multiplets ΦI , I = 0, ..., n of weights (1,−1/3), and some gauge multiplets is

determined by three functions: a real function N (Φ, Φ̄) and two holomorphic functions

W(Φ), fαβ(Φ), respectively encoding the Kähler potential, the superpotential and the
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gauge kinetic functions. The superconformal tensor calculus [67] leads to the complete

component Lagrangian, whose bosonic part is 4

(− det g)−1/2 L =
1

2
NR + 3NIJ̄∂µΦI∂µΦ̄J

−WI(N−1)IJ̄WJ̄ −
1

2
(Refab)D

aDb − 1

4
(Refab)F

a
µνF

µνb + ... ,
(5.2.2)

where R is the four-dimensional Ricci scalar, while NI ≡ ∂N
∂ΦI and so on.

The first term in the superconformal Lagrangian L (5.2.2) is invariant under dilatations

and chiral symmetry if N transforms as

N → N e2σ(x) , (5.2.3)

that is, if N transforms with opposite weights with respect to the metric g4, which has

weights (w, c) = (−2, 0). Choosing the chiral multiplets Φ to have weights (1, 0), one

finds that N (Φ, Φ̄) is a homogeneous function of order two.

One may obtain a theory invariant invariant under dilatations and chiral transforma-

tions (5.2.1) by partially breaking the superconformal invariance, that is by breaking the

special conformal symmetry and the S-supersymmetry. This is achieved by two suitable

gauge choices, called ‘‘special conformal gauge” and ‘‘S-gauge” respectively [66].

Fixing also the gauges for dilatations and chiral transformations, one ends up with

a theory invariant only under the super-Poincaré group. This is evident operating the

change of variables ΦI → (Y, ϕi), i = 1, ..., n, defined by

ΦI = Y f I(ϕi) , (5.2.4)

where f I(ϕi) are arbitrary holomorphic functions. Y has weights (1,−1/3) while ϕi’s

have weights (0, 0). In this variables the scalar kinetic terms in (5.2.2) can be rewritten

as [66]

3NIJ̄∂µΦI∂µΦ̄J̄ =
3

4
N−1(∂µN )2 −N∂i∂̄K ∂µϕ

i∂µϕ̄̄ . (5.2.5)

This is a Kählerian sigma model with a Kähler potential and metric [66]

K(ϕ, ϕ̄) = −3 log

(
N (ϕ, ϕ̄)

|Y |2

)
, (5.2.6)

gi̄ ≡ ∂i∂̄K =
∂2K

∂ϕi∂ϕ̄̄
, (5.2.7)

where N (ϕ, ϕ̄) is a compact notation, which must be regarded as

4Our conventions differ from [66] by the redefinition N → −3N .
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N (ϕ, ϕ̄)

|Y |2
≡ NIJ̄f I(ϕ)f̄J(ϕ̄) . (5.2.8)

The scalar fields ϕi are the n complex coordinates parametrizing the Kähler manifold,

while Y is the so-called ‘‘conformon”.

The transition to standard supergravity occurs by breaking dilatations, by fixing the

‘‘D-gauge”

D − gauge : N = M2
P , (5.2.9)

i.e. when the modulus of the conformon is

|Y |2 = eK/3M2
P . (5.2.10)

This means that there are only n physical degrees of freedom, corresponding to ϕi’s, and

that the conformal compensator Y is unphysical. With (5.2.10) the Lagrangian (5.2.2)

becomes

1

2
M2

PR−M2
Pgi̄ ∂µϕ

i∂µϕ̄̄ + ... . (5.2.11)

The Kähler invariance follows from the non-uniqueness of the definition (5.2.4), which

possesses the symmetry

Y ′ = Y eg(ϕ)/3 ,

f ′I = f Ie−g(ϕ)/3 ,
(5.2.12)

for an arbitrary holomorphic function g(ϕ), implying the invariance under

K → K ′ = K + g(ϕ) + ḡ(ϕ̄) . (5.2.13)

Since W has weights (3,−1), it takes the form [66]:

W = Y 3M−3
P W (ϕ) , (5.2.14)

where W (ϕ) is the superpotential of the supergravity theory. Since W depends on ΦI

(5.2.4), it is invariant under redefinitions (5.2.12). This in turn means that the superpo-

tential W (ϕ) enjoys the Kähler transformation

W → W ′ = We−g(ϕ) . (5.2.15)

The correct standard N = 1 supergravity in the Einstein frame is recovered finally

gauging the U(1) chiral symmetry by the
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U(1)− gauge : Y = Ȳ . (5.2.16)

Notice that this choice is broken by the transformations (5.2.12), which must be accom-

panied by a compensating chiral transformation [66].

5.3. The Kähler potential

From what just explained, it should be clear that the symmetry transformation of Ω

(5.1.12) is a complexified Weyl symmetry of the same kind of (5.2.1). Hence, we can

conclude that reducing the ten-dimensional action SEf
IIB without specifying a gauge for the

Weyl symmetry 5 and properly taking into account all compensator terms, we should get

an effective action of the same type of (5.2.2). In particular, the scalars ΦI should be

defined in terms of the moduli uA, organised in complex combinations.

Let us focus on the first two terms of that superconformal action (5.2.2). We know

that N (Φ, Φ̄) defines the Kähler potential of the effective sigma model (5.2.6) and also

enters in the superconformal Einstein term. Here is the crucial point. The Einstein term,

in fact, does not depend on spacetime derivatives of chiral fields (since these are collected

in the second term of (5.2.2)), hence it does not depend on ∂µu
A. This means that

the superconformal Einstein term can be obtained simply reducing the ten-dimensional

Einstein term of SEf
IIB neglecting the compensator terms in (5.1.6). This reduction gives

SEf
IIB =

2π

`8
s

∫
M1,3

d4x
√
− det g4R4

∫
M6

d6y
√

det g6 e
−4A(y,u) + ... . (5.3.1)

Matching this result with the superconformal action (5.2.2), the identification of N is

immediate:

N =
4π

`8
s

∫
M6

d6y
√

det g6 e
−4A(y,u) . (5.3.2)

Hence the superconformal Kähler potential corresponds to the so-called warped volume

N = Vw, defined as the conversion factor between the four-dimensional and the ten-

dimensional Planck mass [16,17]. Under Weyl symmetry transformations (5.1.8), (5.1.9)

Vw → e2σ(x)Vw in agreement with (5.2.3).

One can then use the gauge-fixing procedure outlined above to obtain the standard

supergravity formulation of the effective four-dimensional theory.

5Typically one proceeds in the reduction passing to the Einstein frame, which corresponds to fix the

gauge for Weyl symmetries.
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The conformal compensator Y

In order to compute the (implicit) Kähler potential K(ϕ, ϕ̄) from the (implicit) N (Φ, Φ̄),

we have firstly to identify a conformal compensator Y 6.

Let us work assuming the dilaton moduli and the complex structure moduli fixed, as it

might happen in presence of background fluxes, see Section 4.3. The holomorphic three-

form Ω, specifying the complex structure of M6, is then fixed up to the normalisation.

Indeed, because of the symmetry under (5.1.12), the normalisation cannot be fixed.

However, by defining 7

Ω = `6
sY (x)3Ω0 , (5.3.3)

with a complex Y (x) transforming as

Y (x)→ eσ(x)− i
3
α(x) , (5.3.4)

one encodes the gauge symmetry in Y (x) completely. Hence Ω0 has a fixed normalisation,

i.e. it satisfies:

dV0 ≡ −
i

8
e−φΩ0 ∧ Ω̄0 =

1

3!
J0 ∧ J0 ∧ J0 =

√
det g0 d

6y , (5.3.5)

with a dimensionless constant volume

V0 =

∫
M6

dV0 = const . (5.3.6)

In (5.3.5) J0, g0 are redefinitions of J, g. Indeed, since J, g, e2A have Weyl–chiral weights

(2, 0) they can be redefined as done for Ω, in order to isolate this symmetry in Y (x):

J = `4
s |Y |2J0 , (5.3.7)

g = `4
s |Y |2g0 , (5.3.8)

e2A = `2
s |Y |2e2D . (5.3.9)

In terms of redefined quantities and Y , the ten-dimensional metric is (neglecting com-

pensators):

ds2
10 = `2

s |Y |2e2D(y,u(x))ds2
4 + `2

se
−2D(y,u(x))ds2

6,0 . (5.3.10)

6Henceforth let us denote g6 by g.
7Powers of `s appearing in redefinitions (5.3.3), (5.3.7), (5.3.8) and (5.3.9) are included for convenience.
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At this point one should recognise that the redefinition (5.3.3) corresponds to a redefi-

nition like (5.2.4) 8 9. Y (x) is the conformal compensator which appears in the effective

superconformal theory as an unphysical degree of freedom. Since it carries all informa-

tions on Weyl–chiral symmetry, it will be used to gauge-fix these symmetries as explained

previously.

The implicit form of Kähler potential follows immediately from (5.2.6) along with

(5.3.2) and (5.3.5):

K(ϕ, ϕ̄) = −3 log

(
4π

|Y |2`8
s

∫
M6

d6y
√

det g6 e
−4A(y,u)

)
= −3 log

(
4π

3!

∫
M6

e−4D(y,u) J0 ∧ J0 ∧ J0

)
.

(5.3.11)

Now, finally, we recover the effective supergravity theory by fixing the gauge of dilata-

tions (5.2.10) and of U(1) transformations (5.2.16).

Notice that, if we were dealing with an unwarped compactification, the fixed normal-

isation (5.3.6) would remove the overall rescaling from the set of the possible Kähler

deformations of the internal metric (the universal modulus). However, in a warped com-

pactification this is not the case. In fact, here the universal modulus is encoded in the

warping itself (4.3.29) and no physical degrees of freedom are lost fixing V0.

Now it is ‘‘only” matter of finding the correct definition of the Kähler coordinates ϕi

in terms of the moduli, in order to make explicit the Kähler potential (5.3.11) in terms

of them, i.e. as K(ϕ, ϕ̄).

5.3.1. The holomorphic coordinates

Typically, as seen in Section 4.1, to find the correct definition of the holomorphic chiral

fields ϕi in terms of the background moduli, one has to perform the dimensional reduction

and to recast the four-dimensional effective in a supersymmetric form by a suitable

definition of chiral fields. Here we follow a different and simpler strategy, which use probe

Euclidean supersymmetric D3-branes. This is because we know that such instantonic

8On the other hand, redefinitions of J (or g) and e2A do not correspond to redefinitions like (5.2.4),

because they enter in the superconformal action via gauge invariant combinations. See for instance

the first line of the Kähler potential (5.3.11) or the definition of chiral fields (5.3.18). Nothing changes

passing to gauge fixed quantities J0, e
2D.

9Let us remember that we are assuming complex structure moduli, introduced by Ω0, to be fixed by

fluxes, hence we denote by ϕi the chiral fields composed by Kähler and brane moduli only.
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corrections affect the effective action in a particular way. They can contribute to the

superpotential by a term [29], [34]

Wnp ∼ e−S
E3

, (5.3.12)

where SE3 is the Euclidean D3-brane action

SE3 = SE3
DBI − iSE3

CS , (5.3.13)

derived in a Wick rotated vacuum. The relevant point is that four-dimensional super-

symmetry requires this action to depend holomorphically on chiral fields ϕi. This fact

allows for a definition of the same ϕi in terms of background moduli, as we are going to

explain.

In warped compactifications the definition of the Chern–Simons term SCS is prob-

lematic, being the RR potentials not globally defined [68], while the Dirac–Born–Infeld

action SDBI does not present such an issue and it can be computed in terms of back-

ground moduli [27]. Indeed, in order to find a correct holomorphic parametrization, the

fact that SE3
DBI = ReSE3(ϕ) suggests to impose that SDBI must be the real part of chiral

fields defined in terms of background moduli.

Let us specify to the simplified case of a O3 CY orientifold M6/Z2, where C2 and B2

moduli are absent. We assume fixed complex structure moduli, due to background fluxes.

We deal with h1,1
+ Kähler moduli (one is the universal modulus and the other preserve the

normalisation (5.3.6)) and h2,2
+ = h1,1

+ moduli of C4. When mobile space-filling D3-branes

are present, one has to include the associated moduli. These are indeed the brane inter-

nal positions Y m
I , with I = 1, ..., ND3, which have a natural holomorphic parametrization

in terms of complex coordinates of M6: we denote chiral fields describing D3-moduli as

Zi
I , with i = 1, 2, 3. We are left with to identify the other chiral fields, denoted as ρA,

which in general may depend on all other moduli, as we saw in subsection 4.3.1. ReρA

are encoded in SE3
DBI, while ImρA in SE3

CS.

Introducing a basis of forms ωA ∈ H1,1
+ (M6,Z), we can expand J0 as explained in

Appendix A:

J0 = −vAωA . (5.3.14)

The normalisation condition (5.3.6) becomes

V0 = − 1

3!
vAvBvCIABC = const . (5.3.15)

Here IABC is the usual intersection number
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IABC =

∫
M6

ωA ∧ ωB ∧ ωC . (5.3.16)

The constraint (5.3.15) implies that just h1,1 − 1 among the vA are independent. The

missing degree of freedom is encoded in the Kähler universal modulus a.

A Euclidean D3-brane wrapping a divisor DA ∈M6, i.e. a linear combination of holo-

morphic four-cycles, has the following DBI action:

SE3
DBI = 2π

∫
DA

d4xe−φ
√

det(gs|DA + F) , (5.3.17)

where F = 2πα′FD3−B2|DA is the worldvolume flux on the brane. As already anticipated

the instantonic Euclidean brane can preserve half of the background supersymmetry. The

supersymmetry conditions for more general N = 1 vacua have been derived in [26]. In

the present case they read√
det(gs|DA + F) =

1

2

(
−e−4A+φJ ∧ J + F ∧ F

)
, (5.3.18)

where J refers to the internal (Einstein frame) metric g. In terms of J0 (5.3.7) and e−4D

(5.3.9), (5.3.17) becomes

SE3
DBI = π

∫
DA

(
−e−4DJ0 ∧ J0

)
+
π

`4
s

∫
DA

e−φF ∧ F . (5.3.19)

Notice that the second term on the RHS is metric- (hence metric moduli-) independent,

therefore it can be thought of as a constant and be ignored in what follows. Let us remark

that, with our choice of conventions, the first term on the RHS is positive.

There are h1,1
+ independent four-cycles of this kind which are Poincaré dual to the ωA.

Hence, all D3-branes wrapping a divisor DA each (or a combinations thereof) furnish

SE3
DBI’s detecting all Kähler moduli. This is enough in order to compute the Kähler

potential. Indeed, as we will see in the explicit example of subsection 5.4.1, it turns out

that (5.3.11) depends just on geometric Kähler moduli and not on C4 ones. Hence we do

not need to compute SE3
CS, which furnishes the ρA’s dependence on C4 moduli.

In other words, it is only matter of computing the following integrals

IA ≡ −1

2

∫
DA

e−4DJ0 ∧ J0 . (5.3.20)

For what just discussed, such integrals must correspond to

IA = ReρA(v, a, ZI , Z̄I) + (hol + hol) , (5.3.21)

where (hol + hol) depends on other chiral fields, as D3 positions. We shall stress that

ReρA(v, a, ZI , Z̄I) depends on both the Kähler (vA, a) and the brane (Zi
I) moduli, which
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enter in (5.3.20) through the warp factor. To compute the Kähler potential we will need

to invert ReρA(v, a, ZI , Z̄I), expressing a in terms of complex coordinates ρA, Zi
I . This

means that, taking properly into account the backreaction, K will depend also on brane

moduli, in agreement with what found by including branes as probes and carrying out

the reduction (see subsect. 4.3.1).

In the following we present a simple explicit example.

5.4. A simple example

For this example we use one of the GKP backgrounds described in [28]. The internal

manifold M6 is a toroidal O3-orientifold T 6/Z2 with T 6 = T 2 × T 2 × T 2, parametrized

by six real coordinates ym, m = 1, ..., 6, with periodicity

ym ∼ ym + 1 . (5.4.1)

These coordinates are conventionally split in xi, yi, i = 1, 2, 3 used to define the complex

coordinates with the orientation convention of (A.11), i.e. with holomorphic one-forms

dzi = dxi + λijdyj , (5.4.2)

where the complex structure is defined by the matrix λij and we have redefined

(y1, y2, y3)→ (x1, x2, x3) , (y4, y4, y5)→ (y1, y2, y3) . (5.4.3)

With this choice then:∫
T 6

dx1 ∧ dx2 ∧ dx3 ∧ dy1 ∧ dy2 ∧ dy3 = 1 . (5.4.4)

The normalisation is such that the holomorphic three-form is simply

Ω0 = dz1 ∧ dz2 ∧ dz3 . (5.4.5)

The orientifold involution is given by O1 = (−1)FLΩpσ (4.2.2) with σ acting on complex

coordinates as

σ : zi → −zi , i = 1, 2, 3 . (5.4.6)

Such an involution gives rise to 64 O3-planes. In absence of O3-planes and fluxes, since

the torus has trivial holonomy, the compactification would preserve maximal N = 8

four-dimensional supersymmetry. As we saw in subsection 4.2.1, the orientifold action

reduces the massless spectrum of the effective theory and in this case we are left with
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10d component # 4d field

gµν 1 graviton

gmn 21 scalars

Bmν b1 = 6 vectors

Cmν b1 = 6 vectors

Cmnpq b4 = 15 scalars

C0 1 scalar

φ 1 scalar

Table 5.2.: Massless spectrum of closed string sector.

a N = 4 supersymmetry. Fields describing the effective theory must then fill in N = 4

supermultiplets. Moreover, in presence of O3-planes and vanishing background fluxes,

the no-tadpole condition (4.3.17) implies the presence of D3-branes.

In order to find this spectrum one has to remember the transformation properties of

the NSNS and RR fields under the worldsheet parity Ωp and (−1)FL given in Table 4.3.

Moreover, in a O3 orientifold with flat metric cohomology groups are split under the σ

action simply in Hodd
− and Heven

+ . The massless bosonic spectrum is reported in Table

5.2. The components Bmν , Cmν are now present since T 6 has a richer cohomology than a

CY manifold, in particular b1 = 6. Of the 21 metric moduli, 9 are Kähler moduli (related

to (δg0)i̄) and 12 are complex structure moduli (linked to (δg0)ij).

However, differently from the compactification on a CY, where the Yau’s theorem

ensures that any complex and/or Kähler deformation implies a deformation of the Ricci-

flat metric, in this case we have that three out of 12 complex structure moduli correspond

to deformation of the complex structure at fixed metric. In fact, the complex structure

of T 6 is fixed by 9 complex scalars encoded in the period matrix λij of (5.4.2) [28], [69].

The graviton, six vector bosons, the axion and the dilaton are organised in the graviton

multiplet with their fermionic partners, while the remaining six gauge fields and 36 real

scalars fill into six gauge multiplets along with their fermionic partners 10.

If G3 = 0, the tadpole condition (4.3.17) imposes the presence of 16 spacetime filling

D3-branes. Branes introduce new moduli. Each I-th D3 brane comes in fact with a

worldvolume N = 4 gauge supermultiplet, composed by a gauge boson and six real

10Possible N = 4 massless supermultiplets are: the gravity multiplet encoding the following number of

particles of given helicity h (2, 4× 3/2, 6× 1, 4× 1/2, 2× 0), the gravitino multiplet (3/2, 4× 1, 7×
1/2, 8 × 0) and the gauge multiplet (1, 4 × 1/2, 6 × 0). Purely matter multiplets are absent, since

the number of supersymmetry generators is to high to avoid helicity one states. Hence there is no

possibility to have a multiplet with fermions transforming in fundamental representations [41,42].
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scalars, with their fermionic partners. As we already explained, these scalars are the six

transversal direction of the brane, i.e. the internal six real coordinates Y m
I or the three

complex Zi
I .

Turning on internal components of background three-form fluxes F3 and H3, one see

from their definitions that they survive the projection, while F5 is completely determined

by (4.3.14). F3 and H3 must be closed, as required by their Bianchi identities, and they

have also to obey the quantisation conditions (4.3.8). One can expand fluxes in a basis

of H3(M6,Z) as

1

`2
s

F3 = a0α0 + aijαij + bijβ
ij + b0β

0 ,

1

`2
s

H3 = c0α0 + cijαij + dijβ
ij + d0β

0 ,
(5.4.7)

where (a0, aij, bij, b0), (c0, cij, dij, d0) are integers, taken fixed since we are interested in

vacua with constant fluxes, and

α0 = dx1 ∧ dx2 ∧ dx3 ,

αij =
1

2
εilmdx

l ∧ dxm ∧ dyj ,

βij = −1

2
εjlmdy

l ∧ dym ∧ dxi ,

β0 = dy1 ∧ dy2 ∧ dy3

(5.4.8)

is a basis of H3(M6,Z).

By turning on background fluxes, one expects the supersymmetry to be reduced and

some of the 38 moduli to be fixed. For instance, as we will see, one can get N = 1

solutions. In these cases, generally, one can show that 12/15 of C4 scalars give mass

to gauge fields by the Higgs mechanism [70, 71]. Six of them are partners of six Kähler

moduli, fixed by supersymmetry conditions as explained below. The remaining 3 moduli

of C4 couple with the other three Kähler moduli in three massless matter multiplets.

The presence of H3 and F3 gives rise to the superpotential term WGVW =
∫
G3 ∧ Ω0

(4.3.37). Supersymmetry conditions impose G3 to be of type (2, 1) and primitive, i.e.

(g0)i̄Gi̄k = 0 or J0 ∧G3 = 0 . (5.4.9)

The requirement of G3 to be (2, 1) is equivalent to the vanishing of its (3, 0), (0, 3) and

(1, 2) components and can be translated into three conditions on WGVW. In the present

case, these these equations turn into 11 equations involving the complex axio-dilaton τ

and the 9 complex components of λij as variables, to be determined in function of integers
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defining fluxes [28] 11. Thus, in general, these equations can not be simultaneously

satisfied and supersymmetry is broken. There are however cases in which, by a suitable

choice of fluxes, they can be satisfied. We are interested in these classes of solutions.

At this point one is left with the imposition of the primitivity condition, which corre-

sponds to 3 complex equations. It then fixes, in general, six Kähler moduli, as anticipated.

In the following discussion we specialise to the set-up given in the example in Sect. 4.1

of [28]. This is an N = 1 supersymmetric vacuum with constant diagonal fluxes

(aij, bij, c
ij, dij) = (a, b, c, d, )δij . (5.4.10)

With this choice of fluxes the system of 11 equations for λij, τ drastically simplifies and

one can solve it, fixing both. One can check that the complex structure is diagonal

λij = λδij (5.4.11)

and the value of λ depends on the choice of the integers that define the fluxes.

The flux contribution to the D3 charge in (4.3.17) is given by Qflux
3 = 1

2
Nflux, where

Nflux ≡
1

`4
s

∫
T 6

H3 ∧ F3 = (b0c
0 − a0d0) + 3(bc− ad) ∈ Z . (5.4.12)

Since several combinations of these integers are possible, it means that there exist models

with different Nflux and then with different numbers of D3-branes, fixed by the no-tadpole

condition (4.3.17):

1

2
Nflux +ND3 −

1

4
NO3 = 0 . (5.4.13)

Take, for instance:

(a0, a, b, b
0) = (2, 0, 0, 2) , (c0, c, d, d0) = (2,−2,−2,−4) . (5.4.14)

With this choice equations for λ and τ give [28]

λ = τ = e2πi/3 (5.4.15)

and Nflux = 12 12. Then, (5.4.13) implies that in this model ND3 = 10.

Once chosen the values of (a, b, c, d, a0, b0, c
0, d0) and gotten λ, τ solving the 11 equa-

tions, we are guaranteed to have a G3 of type (2, 1) of the form:

11This is because also the holomorphic Ω0 can be rewritten in terms of λij in the basis (5.4.8) [28].
12Note that for odd values of Nflux consistency requires additional discrete NS/R fluxes to be switched

on [28]. In this Section we avoid this issue, restricting to even Nflux.
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G3 ∼ dz1 ∧ dz2 ∧ dz̄3 + cyc. perms. of 123 . (5.4.16)

Now we must impose the primitivity condition J0 ∧ G3 = 0. As explained above, this

condition furnishes six equations and one expects it generally fixes six out of the h1,1
+ =

9 Kähler moduli. However, this is not the case since the choice of three-form fluxes

determining the G3 in (5.4.16) is particular and the primitivity condition fixes just three

Kähler moduli. It is indeed straightforward to check that the following Kähler form

J0 = −vAωA (5.4.17)

where ωA is the basis of H1,1(M6) with

ω1 =
i

Imλ
dz1 ∧ dz̄1 , ω2 =

i

Imλ
dz2 ∧ dz̄2 , ω3 =

i

Imλ
dz3 ∧ dz̄3 ,

ω4 =
i

2Imλ
(dz2 ∧ dz̄3 + dz3 ∧ dz̄2) , ω5 =

i

2Imλ
(dz3 ∧ dz̄1 + dz1 ∧ dz̄3) ,

ω6 =
i

2Imλ
(dz1 ∧ dz̄2 + dz2 ∧ dz̄1) ,

(5.4.18)

satisfies J0 ∧G3. Therefore the most general supersymmetry preserving metric takes the

form

(g0)i̄ =
1

Imλ

 v1 v6/2 v5/2

v6/2 v2 v4/2

v5/2 v4/2 v3


︸ ︷︷ ︸

Ai̄

→ (g0)mn =
2

Imλ

(
Ai̄ Reλ Ai̄

Reλ Ai̄ |λ|2 Ai̄

)
.

(5.4.19)

For future reference we furnish here the inverse metric:

(g0)mn =
1

2Imλ

(
|λ|2 Ai̄ −ReλAi̄

−Reλ Ai̄ Ai̄

)
, Ai̄ =

1

detA

 u1 u6 u5

u6 u2 u4

u5 u4 u3

 . (5.4.20)

where uA are the following combinations of the constrained Kähler moduli vA:
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u1 ≡ v2v3 − v2
4/4 ,

u2 ≡ v1v3 − v2
5/4 ,

u3 ≡ v1v2 − v2
6/4 ,

u4 ≡ v5v6/4− v1v4/2 ,

u5 ≡ v4v6/4− v2v5/2 ,

u6 ≡ v4v5/4− v3v6/2 .

(5.4.21)

Hence

g0 ≡ det(g0)mn = 26(detA)2 . (5.4.22)

Parameters vA’s (> 0) are the six real Kähler moduli parametrising the flat directions of

the effective N = 1 supersymmetric theory.

Let us stop for a moment to comment the residual supersymmetry. To argue that it is

minimal and not enhanced, one has to search for additional possible complex structures

in which G3 is (2, 1) and primitive. One can change the complex structure by taking

zi → z̄i for some or all i = 1, 2, 3. However no one of these additional possibilities pre-

serve the required conditions and then this example has N = 1 supersymmetry [28].

5.4.1. The Kähler potential and the universal modulus

We want to show now that the Kähler potential (5.3.11) can be recast only in terms of

the universal modulus a.

First of all, one has to rewrite the equation for the warp factor (4.3.25) using the

redefined quantities g0 (5.3.10) and e−4D (5.3.9). A little algebra gives

d6y
√
g
GmnpḠ

mnp

12Imτ
=
∗6G3 ∧ Ḡ3

2Imτ
=

i

2Imτ
G3 ∧ Ḡ3 = H3 ∧ F3 = `4

sNfluxd
6y , (5.4.23)

where the third term follows by the ISD of G3. Hence, defining

ρbg ≡
Nflux√
g0

, (5.4.24)

the warping equation (4.3.25) becomes:

−∇2
0e
−4D = ρbg +

∑
I∈D3′s,O3′s

qI
δ6(y − YI)√

g0

. (5.4.25)

Integrating (5.4.25) over M6 one gets the no-tadpole condition
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∫
M6

d6y
√
g0 ρbg +Qloc

3 = 0 , (5.4.26)

where Qloc
3 =

∑
I∈D3′s,O3′s qI = ND3 − 16 is the total D3 charge of localised D3’s and

O3’s. The solution of (5.4.25) determines e−4D up to a constant a, identifiable, as seen

in Section 4.3, as the universal modulus:

e−4D = a+ e−4D0 . (5.4.27)

Here e−4D0 is a particular solution of the Poisson equation (5.4.25). This split possesses

the redundancy

a→ a+ c ,

e−4D0 → e−4D0 − c
(5.4.28)

which can be fixed simply choosing a particular value for the internal warped volume

Vw
0 ≡

∫
M6

e−4D0dV0 . (5.4.29)

Vw
0 is, in fact, a constant and its value is associated to the particular solution e−4D0 .

Take, for instance, the following split for (5.4.27)

e−4D = â+ e−4D̂0 , (5.4.30)

where e−4D̂0 is the particular solution

e−4D̂0 =

∫
M6

d6y′
√
g0G(y, y′)

[ ∑
I∈D3′s,O3′s

qI
δ6(y′ − YI)√

g0

+ ρbg

]
, (5.4.31)

where G(y, y′) is the Green’s function, solution of

−∇2
0,(y)G(y, y′) = −∇2

0,(y′)G(y, y′) =
δ6(y − y′)
√
g0

− 1

2V0

, (5.4.32)

with V0 =
∫
M6
d6y
√
g0 =

√
g0

2
. We can solve (5.4.32) passing in Fourier space, where

G(y, y′) =
∑
k∈Z6

Ake
2πik·(y−y′) , (5.4.33)

δ(y − y′) =
∑
k∈Z6

e2πik·(y−y′) . (5.4.34)

By inserting these expansions in (5.4.32), one gets
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Ak =
1

√
g0(2π)2k2

0

, k ∈ Z6 − {0} . (5.4.35)

where k2
0 = (g0)mnkmkn. Thus, using the orthonormality condition in each single n-th

direction on T 6

∫ 1

0

dyne2πiknyn = δkn,0 , (5.4.36)

it is straightforward to make (5.4.31) explicit:

e−4D̂0 =
∑

I∈D3′s,O3′s

qI
∑
Z6−{0}

Ake
2πik·(y−YI) . (5.4.37)

Finally, by inserting (5.4.37) in (5.4.29) and by using again orthonormality, one gets:

V̂w
0 =

∫
M6

d6ye−4D̂0
√
g0 = 0 . (5.4.38)

More generally, since different particular solutions e−4D0 differ by a constant shift (5.4.28),

the warped volume (5.4.29) is

Vw
0 = V̂w

0 + const . (5.4.39)

Being V̂w
0 = 0, this means that for every choice of the splitting (5.4.27), the associated

warped volume is a moduli-independent constant 13. The Kähler potential (5.3.11) can

be written, in general, as

K = −3 log(V0a+ Vw
0 )− 3 log 4π , (5.4.40)

or, more conveniently, using the particular split (5.4.30) as:

K = −3 log(âV0)− 3 log 4π . (5.4.41)

Thus the Kähler potential depends only on the universal modulus. In order to make

(5.4.41) explicit in terms of chiral fields ϕi, we must identify the latter in terms of the

moduli and then, if possible, invert these relations to get â(ϕi, ϕ̄i).

13The result (5.4.39) seems to depend on the constancy of
√
g0, i.e. on the flatness of the metric, which

makes V̂w
0 vanish. However these same considerations can be easily generalised, as explained in [27].
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5.4.2. Kähler potential and chiral fields

As we saw in subsection 5.3.1, possible chiral fields are the brane positions Zi
I ’s and the

closed string moduli ρA’s. Kähler moduli enter only in the real part of the latter. Hence

we are interested in computing only ReρA(v, â, Z, Z̄)’s, following the parametrization

(5.3.21).

In order to detect ReρA’s, we have to identify the six divisors DA’s over which to

integrate to get integrals IA’s (5.3.20). Let us remember that a divisor takes the form

niz
i = const, where ni are integers. Moreover, since we are dealing with a O3 orientifold,

for each instantonic D3-brane wrapping a divisor defined by niz
i = const, there is a

corresponding brane-image localised at niz
i = −const in the recovering space T 6. The

same holds for space-filling D3-branes. We have to take these images into account when

integrating over T 6. In the following we identify divisors on T 6/Z2. The simplest ones

are identified by:

z1 = Z1 → D1 = T 2
2 × T 2

3 ,

z2 = Z2 → D2 = T 2
1 × T 2

3 ,

z3 = Z3 → D3 = T 2
1 × T 2

2 ,

(5.4.42)

where Z1, Z2, Z3 are the transversal positions of D1, D2, D3 respectively 14. The other

three divisors are less obvious. They are identified by:

z2 − z3 = Z4 → D4 =
1

2
T 2

1 × Σ1 ,

z1 − z3 = Z5 → D5 =
1

2
T 2

2 × Σ2 ,

z1 − z2 = Z6 → D6 =
1

2
T 2

3 × Σ3 ,

(5.4.43)

where Z4, Z5, Z6 denote transversal positions of D4, D5, D6 respectively. In order to

better understand the geometry of these cycles, let us take, for instance, D4. It wraps T 2
1

and Σ1, which is the two-torus of complex structure λ defined by the complex embedding

ζ = σ1 + λσ2 →

{
z2 = ζ + const

z3 = ζ
. (5.4.44)

Σ1 wraps the direction defined by z2 + z3, while it is transversal to T 2
1 and to the di-

rection defined by z2 − z3. Along this direction it is located at z2 − z3 = const ≡ Z4.

As a consequence, D4 wraps directions z1 and z2 + z3, while it is identified as a point of

coordinate z2 − z3 = Z4 in the transversal direction. The same holds for D5, D6. The

14Notice to not confuse complex coordinates zi with D3 positions ZiI or transversal divisor positions

Z1, ..., Z6 for each D1, ..., D6 respectively.
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importance of having identified a good choice of divisors will be obvious below. Now we

move on to compute the integrals IA, working out I1 and I4 explicitly. Once understood

how to obtain these two, the others are found by analogy.

I1. Using the most convenient warp factor splitting (5.4.30) in (5.3.20):

I1 = − 1

2

∫
D1

e−4D̂J0 ∧ J0

= − 1

2

∫
T 2

2×T 2
3

(â+ e−4D̂0)J0 ∧ J0

≡ I1
(1) + I1

(2) .

(5.4.45)

By inserting

J0 ∧ J0 = [2u3 ω1 ∧ ω2 + 2u2 ω1 ∧ ω3 + 2u1 ω2 ∧ ω3

−4u4 ω1 ∧ ω4 − 4u5 ω2 ∧ ω5 − 4u6 ω3 ∧ ω6] ,
(5.4.46)

one gets

I1
(1) = 4u1â , (5.4.47)

I1
(2)(X

1, Y 1) = 4u1

∫
T 2

2×T 2
3

e−4D̂0dx2 ∧ dx3 ∧ dy2 ∧ dy3 , (5.4.48)

where we emphasised that I1
(2) depends on the transversal positions (X1, Y 1) of the divisor

D1. In order to obtain I1
(2) one should insert the warping solution (5.4.37), integrate and

finally recast the result in complex variables, in such a way that to make possible the

identification of Reρ1 in the integral in I1, as prescribed by (5.3.21).

As outlined in [24], there is a simpler way to proceed. It consists in transforming

the six-dimensional Poisson equation for the warp factor (5.4.25) to a two-dimensional

Poisson equation for I1
(2) and then to solve it in complex coordinates.

By multiplying both members of (5.4.25) by J0 ∧ J0 and by carrying out a cautious

integration over the divisor D1 15 and using (5.4.26), one finds:

−∇2
0,(X1,Y 1)I

1
(2) =

8u1√
g0

[ ∑
I∈D3′s,O3′s

qIδ
2(X1 −X1

I ;Y 1 − Y 1
I )−Qloc

3

]
, (5.4.50)

15 Note that the integration over D1 can be rewritten as:∫
T 2
2×T 2

3

dx2 ∧ dx3 ∧ dy2 ∧ dy3 = 2

∫
T 6/Z2

d6y δ2(x1 −X1; y1 − Y 1) , (5.4.49)

where δ2(x1 −X1; y1 − Y 1) ≡ δ(x1 −X1)δ(y1 − Y 1).
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where ∇2
0,(X1,Y 1) ≡ (g0)mn ∂2

∂Ym∂Y n with m,n = 1, 4, since these are the only derivative

terms of ∇2
0 surviving the integration. Equation (5.4.50) is a Poisson equation in the

transversal positions of D1. We are however interested in expliciting the dependence of

I1
(2) on D3-positions. The Green’s function method comes here to the fore. Indeed, using

the Green’s function G(X1, Y 1;x′1, y′1) satisfying

−∇2
0,(X1,Y 1)G(X1, Y 1;x′1, y′1) = −∇2

0,(x′1,y′1)G(X1, Y 1;x′1, y′1)

=
δ2(X1 − x′1;Y 1 − y′1)

√
g0

− 1
√
g0

,
(5.4.51)

the solution of (5.4.50) is

I1
(2) = 8u1

∫
T 2

1

dx′1dy′1G(X1, Y 1;x′1, y′1)

[ ∑
I∈D3′s,O3′s

qIδ
2(X1 −X1

I ;Y 1 − Y 1
I )−Qloc

3

]
.

(5.4.52)

At this point, it is crucial to notice that:

−∇2
0,(X1

I ,Y
1
I )I

1
(2) =

8u1qI√
g0

[
δ2(X1 −X1

I ;Y 1 − Y 1
I )− 1

]
, (5.4.53)

where (X1
I , Y

1
I ) are the transversal positions to D1 of the I-th localised source (D3 or

O3). We are interested in solving this equation. The complete solution for I1
(2) will be

obtained by summing over all sources.

In complex variables 16, where

∇2
0,(X1

I ,Y
1
I ) =

2u1Imλ

detA

∂

∂Z1
I

∂

∂Z̄1
I

, (5.4.56)

equation (5.4.53) becomes:

∂

∂Z1
I

∂

∂Z̄1
I

I1
(2) = −qI

(
δ2(Z1 − Z1

I )− 1

2Imλ

)
. (5.4.57)

16On a complex manifold M of dimCM = 1 and with complex structure λ, we define the basis of the

complex cotangent and tangent spaces as (dz, dz̄) and ( ∂∂z ,
∂
∂z̄ ) respectively, where

dz = dx+ λdy , (5.4.54)

∂

∂z
=

1

2

(
∂

∂x
+ i

Reλ

Imλ

∂

∂x
− i 1

Imλ

∂

∂y

)
, (5.4.55)

in a way that 〈 ∂∂z , dz〉 = 〈 ∂∂z̄ , dz̄〉 = 1 and 〈 ∂∂z , dz̄〉 = 〈 ∂∂z̄ , dz〉 = 0 [49].

The Dirac delta function in complex variables is defined, accordingly to [30], such that∫
d2zδ2(z, z̄) =

∫
dxdyδ(x)δ(y) = 1 where d2z ≡ |Jac|dxdy = 2Imλdxdy and thus δ(x)δ(y) =

2Imλδ2(z, z̄).
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Notice that any dependence on Kähler moduli vA has disappeared. Hence I1
(2) will depend

only on the brane moduli. Equation (5.4.57) is solved for

− qI
2π

log |θ1(Z1 − Z1
I |λ)|2 +

qI
Imλ

(Im(Z1 − Z1
I ))2 , (5.4.58)

where θ1(z|λ) is a particular theta function defined on the two-torus [30] 17. The complete

solution for I1
(2) is then:

I1
(2) =

∑
I∈D3′s,O3′s

qI

[
− 1

2π
log |θ1(Z1 − Z1

I |λ)|2 +
1

Imλ
(Im(Z1 − Z1

I ))2

]
. (5.4.59)

By re-summing (5.4.59) and (5.4.47), we get the integral I1:

I1 = 4u1â+
∑

I∈D3′s,O3′s

qI

[
− 1

2π
log |θ1(Z1 − Z1

I |λ)|2 +
1

Imλ
(Im(Z1 − Z1

I ))2

]
. (5.4.60)

We can now rewrite I1 as in (5.3.21) and identify Reρ1. First of all notice that both the

transversal position Z1 of the divisor D1 and O3-plane positions (Z1, Z2, Z3)J (J ∈ O3′s)

are fixed. Hence they contribute as constants in I1. We can consistently restrict the

summation index I to run over D3-branes only (and take qI = 1). The log |θ1|2 term is

already in the form hol + hol. On the other hand, expanding

(Im(Z1 − Z1
I ))2 = i(Z1

I − Z̄1
I )ImZ1 − 1

4
((Z1

I )2 + (Z̄1
I )2) +

1

2
|Z1

I |2 + consts , (5.4.61)

we see immediately that the term |Z1
I |2 obstructs to rewrite (Im(Z1−Z1

I ))2 as hol + hol.

Hence we are led to identify Reρ1 as

Reρ1 ≡ t1 +
∑
I∈D3′s

|Z1
I |2

2Imλ
, (5.4.62)

where

t1 = 4u1â (5.4.63)

must be regarded of as function of chiral fields t1(Reρ1, Z1
I , Z̄

1
I ).

17An important feature of this function is that it vanishes linearly when its first argument goes to zero

θ1(z|λ) ∼
z→0

z. It is hence straightforward to verify that (5.4.59) satisfies (5.4.57), just recalling that

∂z∂z̄ log |z|2 = 2πδ2(z, z̄). Notice that we are using a different periodicity condition with respect

to [30], where y ∼ y + 2π. This choice is reflected in the first argument of θ1.
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In the same way we find also:

I2 = 4u2â+
∑
I∈D3′s

|Z2
I |2

2Imλ
+ hol(Z2

I ) + hol(Z̄2
I ) + consts , (5.4.64)

I3 = 4u3â+
∑
I∈D3′s

|Z3
I |2

2Imλ
+ hol(Z3

I ) + hol(Z̄3
I ) + consts , (5.4.65)

and so, accordingly to (5.3.21), we are led to choose:

Reρ2 ≡ t2 +
∑
I∈D3′s

|Z2
I |2

2Imλ
, (5.4.66)

Reρ3 ≡ t3 +
∑
I∈D3′s

|Z3
I |2

2Imλ
, (5.4.67)

with

t2 = 4u2â ,

t3 = 4u3â .
(5.4.68)

I4. The integral I4 is computed by repeating the same steps followed for I1, but its

computation is a bit more involved, due to the definition of D4.

First of all, let us work, for convenience, redefining coordinate spanning Σ1 by z2+z3 ≡
z5 and coordinates transversal to D4 by z2 − z3 ≡ z4. In real coordinates this means

passing from (x2, x3, y2, y3) to (x4, x5, y4, y5) defined by

x4 ≡ x2 − x3 ,

x5 ≡ x2 + x3 ,

y4 ≡ y2 − y3 ,

y5 ≡ y2 + y3 .

(5.4.69)

Now, D3-brane positions are identified by (Z1
I , Z

4
I ≡ Z2

I − Z3
I , Z

5
I ≡ Z2

I + Z3
I ) and the

divisor D4, located transversally in z4 = Z4, wraps directions (z1, z5). The integral we

have to compute is:

I4 = − 1

2

∫
D4

e−4D̂J0 ∧ J0

= − 1

4

∫
T 2

1×T 2
5

(â+ e−4D̂0)J0 ∧ J0

≡ I4
(1) + I4

(2) .

(5.4.70)
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A little algebra reveals that

I4
(1) = 2u3 + 2u2 − 4u4

I4
(2)(X

4, Y 4) =
u3 + u2 − 2u4

2

∫
T 2

1×Σ1

e−4D̂0dx1 ∧ dx5 ∧ dy1 ∧ dy5 ,
(5.4.71)

where X4, Y 4 are the real coordinates identifying D4 transversal position.

We start rewriting (5.4.25) in terms of new coordinates (5.4.69) and multiplying both

its members by J0 ∧ J0. Then, we integrate over D4, getting 18:

−∇2
0,(X4,Y 4)I

4
(2) =

4u3 + 4u2 − 8u4√
g0

[ ∑
I∈D3′s,O3′s

qIδ
2(X4 −X4

I ;Y 4 − Y 4
I )−Qloc

3

]
,

(5.4.73)

where ∇2
0,(X4,Y 4) is the 2d Laplacian surviving the integration. Equation (5.4.73) for I4

(2)

corresponds to (5.4.50) for I1
(2). Therefore, repeating above arguments based on Green’s

function (just replace (X1, Y 1) with (X4, Y 4)), we arrive at the following equation, which

corresponds to (5.4.53):

−∇2
0,(X4

I ,Y
4
I )I

4
(2) =

(4u3 + 4u2 − 8u4)qI√
g0

[
δ2(X4 −X4

I ;Y 4 − Y 4
I )−Qloc

3

]
. (5.4.74)

This equation encodes the dependence of I4
(2) on (X4

I , Y
4
I ), i.e. from the transversal posi-

tions to D4 of the I-th source. In complex variables 19, we have

∇2
0,(X4

I ,Y
4
I ) ≡

Imλ

detA
(2u3 + 2u2 − 4u4)

∂

∂Z4

∂

∂Z̄4
I4

(2) , (5.4.76)

and equation (5.4.74) can be rewritten as:

18The integration over
∫
T 2
1×Σ1

can be rewritten using the redefined coordinates as:∫
T 2
1×Σ1

dx1 ∧ dx5 ∧ dy1 ∧ dy5 = 4

∫
T 6

d6y δ2(x4 −X4; y4 − Y 4)

= 8

∫
T 6/Z2

d6y d6y δ2(x4 −X4; y4 − Y 4) .

(5.4.72)

For notation see footnote 15.
19Since dz4 = dz2 − dz3 and dz5 = dz2 + dz3, then:

∂

∂z4
=

1

2

(
∂

∂z2
− ∂

∂z3

)
,

∂

∂z5
=

1

2

(
∂

∂z2
+

∂

∂z3

)
. (5.4.75)
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∂

∂Z4
I

∂

∂Z̄4
I

I4
(2) = −qI

(
1

2
δ2(Z4 − Z4

I )− 1

4Imλ

)
. (5.4.77)

Hence, once again, we get an equation free of Kähler moduli. The general solution for

I4
(2) is:

I4
(2) =

∑
I∈D3′s,O3′s

qI

[
− 1

4π
log |θ1(Z4 − Z4

I |λ)|2 +
1

2Imλ
(Im(Z4 − Z4

I ))2

]
. (5.4.78)

Thus, the integral I4 (5.4.70) has the following form:

I4 = (2u3 + 2u2 − 4u4)â+
∑
I∈D3′s

(
|Z4

I |2

4Imλ
+ hol(Z4

I ) + hol(Z̄4
I )

)
+ consts . (5.4.79)

By expressing it in terms of (Z2
I , Z

3
I ), i.e. as

I4 = (2u3 + 2u2 − 4u4)â

+
∑
I∈D3′s

(
|Z2

I |2 + |Z3
I |2 − 2Re(Z2

I Z̄
3
I )

4Imλ
+ hol(Z2

I − Z3
I ) + hol(Z̄2

I − Z̄3
I )

)
+ consts

=
Reρ2

2
+

Reρ3

2
− 4u4â

+
∑
I∈D3′s

(
−Re(Z2

I Z̄
3
I )

2Imλ
+ hol(Z2

I − Z3
I ) + hol(Z̄2

I − Z̄3
I )

)
+ consts ,

(5.4.80)

the identification of Reρ4 follows immediately:

Reρ4 ≡ t4 +
∑
I∈D3′s

Re(Z2
I Z̄

3
I )

2Imλ
, (5.4.81)

where

t4 = 4u4â . (5.4.82)

Analogously:

I5 =
Reρ1

2
+

Reρ3

2
− 4u5â

+
∑
I∈D3′s

(
−Re(Z3

I Z̄
1
I )

2Imλ
+ hol(Z3

I − Z1
I ) + hol(Z̄3

I − Z̄1
I )

)
+ consts

(5.4.83)
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5.4. A simple example

and

I6 =
Reρ1

2
+

Reρ2

2
− 4u6â

+
∑
I∈D3′s

(
−Re(Z1

I Z̄
2
I )

2Imλ
+ hol(Z1

I − Z2
I ) + hol(Z̄1

I − Z̄2
I )

)
+ consts .

(5.4.84)

Therefore we identify remaining chiral fields by:

Reρ5 ≡ t5 +
∑
I∈D3′s

Re(Z3
I Z̄

1
I )

2Imλ
, (5.4.85)

Reρ6 ≡ t6 +
∑
I∈D3′s

Re(Z1
I Z̄

2
I )

2Imλ
, (5.4.86)

where

t5 = 4u5â ,

t6 = 4u6â .
(5.4.87)

We have just found that Kähler moduli (vA, a) can be expressed in terms of chiral fields

ρA, Zi
I as:

t1 = â(4v2v3 − v2
4) = Reρ1 −

∑
I∈D3′s

|Z1
I |2

2Imλ

t2 = â(4v1v3 − v2
5) = Reρ2 −

∑
I∈D3′s

|Z2
I |2

2Imλ

t3 = â(4v1v2 − v2
6) = Reρ3 −

∑
I∈D3′s

|Z3
I |2

2Imλ

t4 = â(v5v6 − 2v1v4) = Reρ4 −
∑
I∈D3′s

Re(Z2
I Z̄

3
I )

2Imλ

t5 = â(v4v6 − 2v2v5) = Reρ5 −
∑
I∈D3′s

Re(Z3
I Z̄

1
I )

2Imλ

t6 = â(v4v5 − 2v3v6) = Reρ6 −
∑
I∈D3′s

Re(Z1
I Z̄

2
I )

2Imλ

.

(5.4.88)

We can finally explicit the the Kähler potential (5.4.41). From the observation that
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5. An alternative to dimensional reduction

â3V2
0 = â3 V2

T 6

4

= 42â3(detA)2

= â3(4v1v2v3 − v2
4v1 − v2

5v2 − v2
6v3 + v4v5v6)2

=
1

4

(
t1t2t3 + 2t4t5t6 − t1t24 − t2t25 − t3t26

)
,

(5.4.89)

we get:

K = − log(â3V2
0)− log((4π)3V0)

= − log
(
t1t2t3 + 2t4t5t6 − t1t24 − t2t25 − t3t26

)
− log(16π3V0) .

(5.4.90)

We remark that all tA’s must be thought of as functions of chiral fields ρA’s, which enter

through their real part, and Zi
I , as in (5.4.88). The Kähler potential we have just found

then involves a non-trivial combination of these fields and, fortunately in this model, we

were able to find its explicit form. In fact, in general, the inversion â(Reρ, Z, Z̄) is not

always possible, see Sect. 4.1.

The last term in (5.4.90) is a constant and it does not matter for the computation of

the effective kinetic terms for chiral fields. However, it can play a non-trivial role in the

determination of the four-dimensional scalar potential VF , arising from WGVW, see Sect.

4.3.

We note that each ReρA has the structure

ReρA = tA +
1

2

∑
I∈D3′s

kA(ZI , Z̄I) , (5.4.91)

where kA(ZI , Z̄I) can be identified as a set of potentials, as explained in [27]. They are

not globally defined and under a holomorphic transformation they transform as

kA(ZI , Z̄I)→ kA(ZI , Z̄I) + fA(ZI) + f̄A(Z̄I) (5.4.92)

for some holomorphic fA(ZI).

The structure (5.4.91), confirms the non-trivial fibration of ρA over the D3-brane mod-

uli space found in subsection 4.3.1. Indeed, to get a well-behaving Kähler potential K

(5.4.90) under transformations (5.4.92), ρA must transform as

ρA → ρA +
∑
I∈D3′s

fA(ZI) , (5.4.93)

in order to leave each tA(ReρA, ZI , Z̄I) invariant.

Moreover, the form of ReρA agrees with (and completes) the one obtained in [21] for

small fluctuations of D3-brane positions, see (4.3.43). Indeed, by setting δzk = Ga = 0

100



5.4. A simple example

(these moduli are absent in our model) and by expanding brane positions around given

points Zi
I ' Zi

(0)I + φiI we recover (4.3.43). Indeed, in this expansion, kA(φiI , φ
j
I) ∼

−i(ωA)i̄(Z(0)I , Z̄(0)I)φ
i
I φ̄

j
I .

Finally, note that by setting v4 = v5 = v6 = 0 one gets:

K = −
3∑
i=1

log

(
Reρi −

∑
I∈D3′s

|Zi
I |2

2Imλ

)
− log(16π3V0) . (5.4.94)

This expression coincides with the Kähler potential proposed in [72], where it is argued

that (5.4.94) can be interpreted as the Kähler potential of the coset

U(1, ND3 + 1)

U(1)× U(1 +ND3)
× U(1, ND3 + 1)

U(1)× U(1 +ND3)
× U(1, ND3 + 1)

U(1)× U(1 +ND3)
. (5.4.95)

However, the discussion of [72] assumes the presence of a generic background flux G3,

which leads to fix six of the nine Kähler moduli as discussed above (it corresponds to

taking a pure diagonal metric (5.4.19)) and then it should be generalised. Indeed, our

result shows that there exist N = 1 models compactified on a fluxed T 6 orientifold which

have a more extended space of Kähler and D3-brane moduli.
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6. Conclusions

In this thesis we reviewed the main aspects of IIB compactifications, focusing on the

Kähler potential they give rise in the four-dimensional effective theory.

We started from pure geometric supersymmetric compactifications, which are CY com-

pactifications. Although such models have remarkably physical and geometrical proper-

ties, they give N = 2 supersymmetric effective theories with no chiral matter and no

supersymmetry breaking mechanism. In order to include these ingredients one has to

introduce fluxes and localised sources in the background.

Hence we studied the more phenomenologically attractive fluxed compactifications. We

specialised to a particular class of compactifications to Mink4, the GKP backgrounds, in

which the compact manifold is still Kähler, and, in absence of 7-branes, even a CY orien-

tifold. We saw that fluxes and localised sources turn on a warp factor. Such a non-trivial

warping makes particularly cumbersome the reduction procedure and for this reason it is

commonly approximated to a constant. We reviewed the structure of the corresponding

(unwarped) effective theory. However, a non-trivial warp factor is a physically important

feature in flux compactifications and one would like to understand how it affects the

effective four-dimensional theory.

In order to address this problem we followed an alternative approach to dimensional

reduction, based on four-dimensional local super-conformal symmetry and holomorphic-

ity of brane instantons contributions, as presented in [25–27]. The original work of this

thesis was to apply such a method to a simple class of models, in order to explicitly

check how the warping contributes to the Kähler potential. Results agree with previ-

ous works [16, 17, 21, 22, 24]. Remarkably, we showed that brane moduli enter in the

Kähler potential via the warp factor. The contribution found is compatible with the ap-

proximate corresponding contribution obtained in [21], where D3-branes are included as

probes and their contribution is obtained by dimensional reduction in the large volume

limit, in the approximation of small fluctuations of brane positions. In the particular

case in which Kähler moduli v4 = v5 = v6 = 0, our result agrees with [72] and then shows

that the discussion presented there is not completely exhaustive. Notice that, in this

simple model, fluxes do not modify the structure of the Kähler potential, in agreement

with what found in [20] by dimensional reduction. However, it has been recently shown

that more in general fluxes do change this structure, see [27].
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6. Conclusions

In this work we detected the dependence of the Kähler potential on the geometric

Kähler moduli and on the brane moduli, freezing out complex structure moduli, assumed

fixed by fluxes. We leave to future work the inclusion of these moduli, in order to check

if they enter in the Kähler potential mixing chiral fields, as found in [21] (see (4.3.42)

and (4.3.43)).
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Appendices

A. Conventions

• The generic Ansatz M10 = M1,3 × M6 has ten-dimensional coordinates denoted

by xM , with M = 0, ..., 9. These split in xµ, µ = 0, ...3, and in ym, m = 1, ..., 6,

which are coordinates on M1,3 and M6 respectively. Local flat frame coordinates

are identified with underlined indices (xµ, ym) and vielbeins are e N
M .

• The Hodge-∗ operator adopted throughout the thesis acts one the basis of a p-form

αp as:

∗dxM1∧· · ·∧dxMP ≡ 1

(D − p)!
√
−g gM1N1 · · · gMPNpεL1···LD−pN1···Np dx

L1∧· · ·∧dxLD−p ,

(A.1)

Therefore:

∗αp ∧ αp = |αp|2
√
gdDx

=
1

p!
α2
p dV

=
1

p!
αM1...MP

αM1...MP dV > 0 .

(A.2)

This choice in particular implies a change of the Chern–Simons action sign in the

IIB action (2.1.3), (2.1.5) with respect to [30].

• For the most general warped Ansatz M10 = M1,3 ×w M6 with metric

ds2 = e2Ads2
4 + ds2

6 , (A.3)

we can define ten-dimensional gamma matrices in the local flat frame. Calling γµ
four-dimensional gamma matrices associated to the unwarped M1,3 and γm six-

dimensional gamma matrices related to M6, ten-dimensional ΓM split as:
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A. Conventions

Γµ = e−Aγµ ⊗ 1 ,

Γm = γ5 ⊗ γm .
(A.4)

γ5 = iγ0123 and γ7 = −iγ123456 are the four-dimensional and six-dimensional chiral

operators, while the ten-dimensional one is

Γ10 = Γ0...9 = γ5 ⊗ γ7 . (A.5)

It results convenient to use a real representation for ten-dimensional gammas, since

than a generic IIA/IIB ten-dimensional Majorana–Weyl spinor ε can be decomposed

as ε = ζ ⊗ η + c.c., with ζ, η Weyl spinors in unwarped M1,3 and M6 respectively.

Hence, as suggested by (A.4), one has to choose a real representation for γµ and a

pure imaginary representation for γm.

• There are two main ways to deal with the internal manifold in string compactifica-

tions. In Sect. 4.1 we saw that for a six-dimensional CY, a Riemannian manifold

of strict SU(3) holonomy, there exists a single covariantly constant chiral spinor η

which can be used to build the Kähler form J and the holomorphic three-form Ω

by defining their components as:

Jmn ≡ −iη†γmnη → J = igi̄dz
i ∧ dz̄ ̄ , (A.6)

Ωmnp ≡ ηTγmnpη → Ω =
1

3!
Ωijkdz

i ∧ dzj ∧ dzk . (A.7)

With these definitions, remembering that Ωijk = f(z)εijk with a holomorphic f and

that
√
g = 23 det gi̄, one can verify:

i
Ω ∧ Ω̄

||Ω||2
=

1

3!
J ∧ J ∧ J = ±dV , (A.8)

where

||Ω||2 =
1

3!
ΩijkΩ̄

ijk

=
1

3!
gīıgj̄gkk̄ΩijkΩ̄ı̄̄k̄

=
23

√
g
|f |2 .

(A.9)

A typical choice is f = 1, i.e. Ω = dz1 ∧ dz2 ∧ dz3.
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The the sign in front of the volume form in (A.8) depends on the orientation choice.

The more natural orientation is

dz1 = dy1 + idy2 ,

dz2 = dy3 + idy4 ,

dz3 = dy5 + idy6 ,

(A.10)

since it gives 1
3!
J ∧ J ∧ J = dV. With this orientation also the volume form of

complex one- and two- cycles, given by the pull-back on the cycle of J and 1
2
J ∧ J

respectively, are positive definite. A complex r-cycle volume form is said to be

positive definite if its wedge product with the remaining complex forms, defining

volumes in transversal directions, reproduces the total volume form dV. Otherwise,

it is said to be negative definite. In particular, chosen the orientation

dz1 = dy1 + idy4 ,

dz2 = dy2 + idy5 ,

dz3 = dy3 + idy6 ,

(A.11)

all volume forms of complex r-cycles, with r = 1, 2, 3, are negative definite. In order

to ameliorate the situation one can change the sign in the definition of J (A.6)

Jmn ≡ iη†γmnη → J = −igi̄dzi ∧ dz̄ ̄ → J = −vAωA , (A.12)

with positive Kähler moduli vA, as usual. Now (A.8) becomes

− iΩ ∧ Ω̄

||Ω||2
=

1

3!
J ∧ J ∧ J = dV . (A.13)

Therefore volume forms of complex 1-cycles and 3-cycles are positive definite, while

volume forms of complex 2-cycles remain negative definite. This implies that vol-

umes of holomorphic four-cycles c4 are given by

Vc4 = −1

2

∫
c4

J ∧ J . (A.14)

This convention it adopted from Section 4.3 on. In fact, using the Hodge-∗ (A.1),

this convention is compatible with the ISD condition of G3 (4.3.22).
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B. Dimesional reduction

B. Dimesional reduction

Given a ten-dimensional action and a starting background, to determine the resulting

theory in four dimensions one has to perform the KK reduction [8].

Let us review how it works in the case of a generic field ΦMN.... To study the dynamics

of fluctuations around the background, one begins expanding each ten-dimensional field

component, conventionally denoted Φmn...
µν... (x, y), around its vacuum expectation value:

Φmn...
µν... (x, y) = 〈Φmn...

µν... (x, y)〉+ δΦmn...
µν... (x, y) . (B.1)

Then, sobstituting (B.1) in the corresponding ten-dimensional equation of motion and

keeping only linear terms (and eventually fixing the gauge to eliminate redundant degrees

of freedom), one gets typically an equation of the form

(Oext +Oint)δΦ
mn...
µν... (x, y) = 0 , (B.2)

where Oext, Oint are n-order differential operators (n = 1 for fermions, n = 2 for bosons),

which depend on the specific field.

Being the internal manifold compact, one can expand fluctuations in series, in a basis of

eigenfunction for the respective Oint:

δΦmn...
µν... (x, y) =

∑
i

φiµν...(x)Y mn...
i (y) , (B.3)

with

OintY
mn...
i (y) = λiY mn...

i (y) . (B.4)

Replacing (B.1) into (B.2) one finds that the mass of each four-dimensional mode φiµν...(x)

is quantized in terms of λi. This is the so-called ‘‘Kaluza–Klein tower of states”. Eigen-

values λi are typically proportional to some power p of the internal momentum, i.e. in-

versely proportional to the same power of the average compactification radius, λi ∼ 1/Rp

(p > 0). For a small R, KK states can be very massive with respect to the energy scale

of the effective theory and then they can be integrated out. We say that the KK tower

is truncated to the massless zero-modes φ0
µν...(x).

The effective four-dimensional action is obtained replacing in the ten-dimensional ac-

tion the expansions (B.1), truncating to zero-modes and finally integrating over the
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internal manifold, up to second order in fluctuations.

It is worth noting, however, that this truncation is not consistent in many cases: the

heavier fields might induce interactions of the zero-mode that are not suppressed by

inverse powers of the heavy mass. Sometimes (this is typical of warped compactifica-

tions) even the lighter massive modes should be considered in the reduction, since their

contribution can in principle modify the effective theory [18].

B.1. An example: B2

Let us work out, for instance, the reduction of a p-form, the B2 field in the simpler case

of the pure geometrical IIB compactification explained in Section 4.1, i.e. with vanishing

background fluxes and constant background dilaton. In this situation the equation of

motion (2.1.7) for B2 = Bbg
2 + δB2, with Bbg

2 = const, at first order in the variations

becomes:

∆δB2 = d ∗ dδB2 = 0 . (B.1.1)

Remembering that in a factorised background M1,3 ×M6 the Laplacian splits as ∆ =

∆4 + ∆6, one gets:

(∆4 + ∆6)δB2 = 0 . (B.1.2)

Hence the number of four-dimensional massless fields is given by the number of the zero-

modes of the internal Laplacian, which are the Betti number bp of M6. For instance,

taking M6 to be a CY in the stricter sense, the four-dimensional massless spectrum

generated by the B-field is presented in Table B.1.

δBMN δBµν δBµn δBmn

type of field in 4d 2-form 1-forms scalars

type of field in M6 scalar 1-forms 2−forms

# of fields in 4d b0 = 1 b1 = 0 b2 = h1,1

Table B.1.: B2 zero modes.

Hence, in the effective action will appear also b2 four-dimensional scalars. These are

the moduli fields of B2. More generally, if we had a M6 such that b1 6= 0, also four-

dimensional vectors would appear in the effective four-dimensional action as additional
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C. Lefschetz decomposition

fields. Hence one finds that the four-dimensional theory is determined by geometrical

and topological details of the internal space.

C. Lefschetz decomposition

On a compact Kähler manifold M of complex dimension d and with a Kähler form J

one can define a SU(2) algebra, called Lefschetz algebra, by defining three operators

L+, L−, L3 which act on a generic harmonic n-forms as:

L3G ≡
d− n

2
G ,

L+G ≡ JxG =
1

2(n− 2)!
Jm1m2Gm1m2m3...mndx

m3 ∧ · · · ∧ dxmn ,

L−G ≡ J ∧G .

(C.0.1)

One can check that L± raises/lowers the L3-eigenvalue by one. ‘‘States”, i.e. harmonic

forms, are classified by L2 and L3 eigenvalues as spin states |l,m〉. A primitive n-form

Gpr is a state of highest weight |l,+l〉 (l = d−n
2

), i.e. such that

L+Gpr = 0 , L2l+1
− Gpr = 0 . (C.0.2)

Hence primitive forms in the middle cohomology, i.e. with n = d, are singlets |0, 0〉
annihilated by both L±. A general harmonic form can be obtained acting with L− on a

primitive form:

Harmn(M) = ⊕kLk−Harmn−2k
pr (M) . (C.0.3)

This is the Lefschetz decomposition. A crucial property of this decomposition is that it is

compatible with the Hodge decomposition. Indeed, one can show that [L2, ∗] = 0, which

means that one can simultaneously diagonalise both the Lefschetz spin and the Hodge-∗.
For a spin l harmonic (d− q, q)-form ω:

∗ ω = (−1)l+qω d even , ∗ω = (−1)l+q(−i)ω d odd . (C.0.4)

A generic harmonic (p, q)-form can thus be decomposed as (remember footnote 16):

Harmp,q(M) = ⊕kLk−Harmp−k,q−k
pr (M) . (C.0.5)
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