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Introduction

The Standard Model of strong and electroweak interactions is the current the-
ory of particle physics and its theoretical predictions have been in astonishing
agreement with experimental data so far.
However, it is widely believed that the Standard Model (SM) needs an ultravi-
olet completion, namely an extension in order to describe physical interactions
properly at high energies. The main reason suggesting an UV completion of the
SM is the fact that we are still missing a quantum theory of gravity and the
energy at which quantum gravity effects become manifest, namely the Planck
scale (MP ∼ 1019 GeV), constitutes the ultimate UV cutoff for the SM.
Nevertheless, there are some theoretical issues, which induce us to believe that
the scale at which new physics (NP) appears should be much lower. The most
compelling one is the so called hierarchy problem: the Higgs boson is a light
particle compared to the Planck scale, but regarding the SM as an effective field
theory with MP as UV cutoff, no argument is able to justify naturally the huge
gap between the electroweak and the fundamental mass scale.
Trusting the Naturalness principle, we would expect the existence of NP around
the TeV scale, which we are probing these years through LHC experiments.
Furthermore, cosmological issues like Dark Matter lead us to think that the SM
is presumably an incomplete theory and new elementary particles still have to
be discovered.
Within the search of a more fundamental model which solves the problems pre-
sented, we focus in this thesis on an hypothetical class of particles known as
Axion-Like Particles (ALPs). These particles inherit their name from the QCD
Axion, postulated in 1977 by Peccei and Quinn to naturally solve the strong CP
problem, namely the absence of CP violation in QCD. ALPs are the Pseudo-
Nambu-Goldstone bosons (pNGb) of spontaneously broken U(1) global symme-
tries, which appear in many extensions of the SM.
They can also acquire a mass ma due to nonperturbative effects and in this case
they consistute a promising candidate to explain DM nature.
While the theoretical difference between the axion and a generic ALP is that the
latter does not need to solve the strong CP problem, the practical one is that
for ALPs the symmetry breaking scale fa and ma can be treated as independent
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parameters, while the two are instead related for the QCD axion. This fact,
combined with cosmological observations, ultimately constrains the Axion mass
to be set in the range between 10−5 and 10−2 eV. We actually focus on generic
ALPs and thus consider fa and ma to be free parameters.
A powerful tool to describe ALPs contributions to physical observables is pro-
vided by the EFT approach. In this framework the SM Lagrangian is extended
with non renormalizable operators. Even though the new Lagrangian is not
renormalizable, it nevertheless provides definite predictions up to the UV cutoff
fa and in this energy range a perturbative expansion is well defined.
Within the EFT approach, NP contributions are included in a set of coeffi-
cients associated with higher dimensional operators, called Wilson coefficients.
This affords to set up a model-independent analysis where NP contributions are
parametrized by the Wilson coefficients. Then, the expression of such coefficients
may be derived in specific NP models.
Among the most sensitive observables to NP we focus on those related to flavour
physics. In the SM all the fermions carrying the same quantum numbers with
respect to the SM gauge group come with three different replicas, known as
flavours. The term flavour physics refers to interactions that distinguish among
generations and in the SM all the source of flavour interactions is encoded in the
Yukawa couplings of fermions with the Higgs field.
In particular we can make the distinction between flavour changing charged cur-
rents (FCCC) and neutral currents (FCNC): the former change the flavour of
a fermion current altering its electric charge, while the latter instead conserve
the electric charge. Although FCCC are allowed to occur in the SM at tree
level, FCNC processes are possible only at the loop level and are furthermore
suppressed by the GIM mechanism.
Consequently, the study of FCNC processes is a powerful tool to detect possi-
ble NP effects and enables us to put strong bounds on Beyond Standard Model
(BSM) theories.
In this work we explore ALPs contributions to FCNC processes, formulating
them in a model-independent approach via an ALP effective lagrangian. Our
goal is to constrain ALP parameter space studying heavy meson FCNC decays.
In fact, while astrophysics and cosmology impose severe constraints on ALP in-
teractions in the sub-KeV mass range and TeV scale can be tested at LHC, the
most efficient probes of ALPs couplings in the Mev-GeV region come from pre-
cision experiments performed at the charm/bottom quark scale.
In particular we analyze ALP couplings with electroweak bosons and fermions,
assuming a flavour blind coupling. The comparison with data considers first
each coupling separately, then the ensamble in combination and the resulting
interference pattern is worked out in detail.
This thesis is developed in the following way: in chapter 1 we discuss the issues
of the SM and we explain why we need an UV completion of the SM and at
what energy we suppose it to occur. In chapter 2 we present briefly the con-
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struction of the SM and we discuss in detail its flavour structure. In chapter 3
we describe the EFT approach and we present in detail an application of this
method in flavour physics, within the SM framework. In chapter 4 we present
the strong CP problem, we show how the axion arises as a natural solution and
we shortly review the main features of axion models. In chapter 5 we introduce
the ALP effective lagrangian and we put phenomenological bounds on its Wilson
coefficients, analyzing FCNC processes. Incidentally, we discuss an example of
a FCNC transition in the SM and we highlight the technical differences of the
computations between an effective theory and a renormalizable theory.
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Chapter 1

Why going beyond the
Standard Model

1.1 Experimental evidences

The Standard Model of particle physics is the current theory describing the in-
teractions of fundamental particles and has been successfully tested over the last
fifty years.
However, there are various phenomena which induce us to believe that the Stan-
dard Model (SM) may not be our ultimate theory of particle physics. The
majority of these issues comes from the comparison between the SM predictions
with cosmological observations, the most remarkable of which are:

• Dark Matter: Today there is experimental evidence that the SM particles
constitute just the 5% of the energy density of the Universe. About the
26% of the energy density should be given by Dark Matter (DM), namely
matter made of electrically neutral particles not included in the SM and
at most weakly interacting with the SM fields.
Therefore the SM would presumably need a completion that introduces
other particles in order to take into account for the presence of DM. There
are various hypotheses about DM nature, between them for example super-
symmetric particles, sterile neutrinos and the axion like particles (ALPs).

• Dark Energy: The remaining 69% of the energy density budget of the Uni-
verse consists of Dark Energy (DE), an unknown form of energy responsible
for the acceleration of the expansion of the Universe.
The simplest physical explanation for DE is that of an intrinsic, funda-
mental energy of space given by the presence of quantum fields. However,
attempts to explain DE in terms of vacuum energy of SM fields lead to a
mismatch of 120 orders of magnitude. If this interpretation of the nature
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of DE is correct, then the SM needs to be extended with other particles,
in order to match the experimental value of the DE energy density.

• Matter-Antimatter asymmetry: It is well established from cosmological
observations that in the Universe there is exceedingly more matter than
antimatter, this fact is known as baryon asymmetry. In order to produce
such an asymmetry, some constraints, known as Sakharov conditions, need
to be satisfied [34]. These conditions for the production of baryon asym-
metry are B violation, C and CP violation and the presence of an out
of equilibrium phase in the early Universe. While such conditions are all
qualitatively satisfied by the SM, the presence of an out of equilibrium
phase would require the Higgs boson mass to be less than 80 GeV, which
is ruled out by experiment. In addition the CP violation amount provided
by the SM is too small to account for the baryon asymmetry.
Extensions of the SM, like Grand Unified Theories (GUT) and Supersym-
metry (SUSY), can solve this problem, for instance introducing new sources
of CP violation.

• Neutrino masses: According to the SM, neutrinos are massless particles,
however from neutrino oscillation experiments we know that they do indeed
have a non vanishing mass.
Mass terms for the neutrinos can be added to the SM, but they require an
extension of the SM particle content, namely the introduction of a right
handed neutrino for a Dirac mass term or new heavy degrees of freedom
for Majorana mass terms.

Even if we already know from the previous observations that the SM cannot be
the ultimate theory of particle physics, since it needs to be extended, to date no
experimental result is accepted as disproving the SM at the 5σ level, which is
fixed to be the threshold of a New Physics (NP) discovery in particle physics.
However, there are some observables, like the muon g − 2 factor, which show
significant discrepancy from the SM predicted value and more sophisticated ex-
perimental tests are needed to shed light on the nature of these discrepancies.

1.2 Theoretical hints

Independently from the compelling experimental reasons, one can also theoreti-
cally argue that the SM cannot be a theory valid up to arbitrarily high energies.
First of all the SM does not include gravitational interactions and moreover a
consistent quantum theory of gravity is still missing.
Nevertheless, the energy scale at which quantum gravity effects eventually be-
come manifest represents the ultimate UV cutoff for the SM. Even in the absence
of any other kind of NP effects up to Planck scale (Mpl∼1019 GeV), the SM needs
at least an UV completion to include gravitation.

10



However, there are some theoretical hints which make reasonable to think that
new physics exists at lower energy, perhaps detectable by current collider exper-
iments.

• One indication of NP below the Planck scale comes from the evolution of
the three gauge couplings under the renormalization group. In the SM they
almost merge at 1014GeV, while their unification is accomplished exactly
at ∼ 1016GeV in supersymmetric extensions of the SM. This means that
at such energy scale there could be just one type of gauge interaction with
a larger gauge group, containing the SM gauge group as a subgroup.
This is very appealing from a theoretical point of view and supports the
idea of GUT at such energy scale.

• Another theoretical clue comes from the smallness of neutrino masses,
which would require an unnatural small Yukawa coupling with the Higgs
field and the introduction of an unobserved right handed neutrino.
Neutrino small masses may be more naturally provided by the following
five dimensional operator, known as Weinberg operator, which is the only
one compatible with SM symmetries:

L5 =
y

Λ
(φ̃†L)TC(φ̃†L) (1.1)

where φ̃ is the charge conjugate of the Higgs field, L is the leptonic left-
handed doublet, C is the charge conjugation operator, Λ is the UV scale
which originates this effective operator and y is an O(1) coupling constant.
Upon the Electroweak Symmetry Breakdown (EWSB), this operator pro-
duces the following mass for neutrino:

mν =
yv2

Λ
, (1.2)

with v = 246.2GeV the VEV of the Higgs field and mν ∼ 0.1eV the neutrino
mass. Inverting this relation we can get an estimate for the scale Λ, which
yields a value O(1015) GeV.

• The Higgs boson mass is linked to the EW symmetry breaking scale,
namely v = 246.2 GeV.
However, one expects that large loop corrections would make the Higgs
mass huge, comparable to the Planck scale, unless there is an incredible
fine tuning cancellation between the radiative corrections and the bare
mass.
Trusting the principle of Naturalness, this fact suggests that new physics
should appear at much lower scale, O (TeV).

• It’s an experimental fact that QCD interactions do not manifest CP viola-
tion, this fact is known as the strong CP problem. The term θQCDG

a
µνG̃

µν
a ,
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which in principle appears in the SM Lagrangian and leads to CP viola-
tion in the strong sector, has an extremely small coefficient, θQCD ≤ 10−10.
The Peccei-Quinn mechanism can explain ”naturally” this value and it also
implies the existence of a new scalar particle, the QCD Axion.

1.3 Naturalness and the hierarchy problem
As we have seen in the previous section, most of the theoretical problems affect-
ing the SM refer to the concept of ”Naturalness”. Therefore we need to define
precisely what is the meaning of the Naturalness of a theory.
The definition of Naturalness given by ’t Hooft is [26]:

At any energy scale µ, a physical parameter or set of physical parameters αi(µ)
is allowed to be very small only if the replacement αi(µ) = 0 would increase the
symmetry of the system.

Apparently, this definition seems to come from nowhere, but it becomes clearer
recalling that, if the classical action of a QFT has a certain symmetry, then this
symmetry, if not anomalous, must be fulfilled by the quantum action as well. As
a consequence, if the parameter α is zero, also its correction δα should vanish,
in order to preserve the symmetry at the quantum level.
If on the other side the symmetry is slightly broken by the appearance of the
parameter, then the parameter will receive quantum corrections proportional
to itself (δα ∼ α), because the symmetry should be restored in the α = 0
limit. An example of the first case is provided by massless gauge bosons, whose
mass is constrained to be zero by gauge invariance. The second case is instead
represented by fermion masses in the SM: setting them to zero restores the chiral
symmetry, which protects them against large loop corrections. In fact, fermion
masses get corrections of the following form:

δmf
∼ α

4π
mf log Λ

mf
(1.3)

that remain acceptably small even if the theory has a UV cutoff at MPl ∼
1019 GeV. Thus, as a consequence of the ’t Hooft Naturalness principle, fermion
masses are protected from planckian corrections and so a small value for mf/MPl

is natural.
Conversely, the scalar masses fail to break any symmetry of the action. This
implies that considering a scalar field φ, loop corrections δm2

φ to m2
φ depend

quadratically on the UV scale Λ, rather than logarithmically as in the case
of fermion masses, making unnatural a physical mass mφ far away from the
fundamental scale of the Planck Mass.
This is indeed the case of the SM Higgs boson. Regarding the SM as an EFT
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Figure 1.1: Two of the contributions to the Higgs mass in the Standard Model at one
loop order: the diagram on the left involves a fermion loop, while the second is a self-
correction of the Higgs propagator.

with UV cutoff at Λ = Mpl, since gravity has to couple with the Higgs field,
the Higgs boson mass will receive a correction δm2

h ∼ M2
pl. One may define the

amount of fine tuning between the Higgs mass and the radiative corrections as:

f ≡
m2

h

δm2
h

∼
m2

h

M2
pl

∼ 10−34 (1.4)

An high fine tuning is regarded as unnatural in the absence of a mechanism to
justify it. While there could be an ambiguity on the naturalness of a generic
fine tuning parameter f , the fine tuning computed in Eq.(1.4) is unambiguously
unnatural.
Thus, there is no way in the SM to naturally protect the Higgs mass from re-
ceiving these large corrections, which would arise also even if the bare mass of
the Higgs were zero.
Thus the problem of the Higgs naturalness eventually turns into a hierarchy
problem: is actually the SM valid up to the Planck scale? If this is the case,
then the question becomes why the EW scale and the Planck scale are so far
away from each other.
Viable solutions require either introducing some new symmetry that protects the
Higgs mass, such as Supersymmetry, or stating that the UV cutoff of the SM as
an effective field theory is much lower than the Planck scale.
For example, setting the fine tuning to be f ≤ 10−2, then the UV cutoff of the
SM should be at O (TeV). This means that there would be some new physics
residing in the ”desert” between 103 and 1019 GeV, whose lower region up to 14
TeV is being explored in these years by LHC.
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Chapter 2

Flavour physics

2.1 Construction of the Standard Model Lagrangian
In this section we briefly present the construction of the Standard Model of par-
ticle physics, formulated in its original version in the 60’ by Glashow, Weinberg
and Salam.
The SM is a renormalizable quantum field theory and resting on the experimental
observations, we set up the following theoretical framework:

1. A gauge symmetry group GSM , bearing the gauge boson fields

GSM = SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (2.1)

where we refer to the first subgroup as Quantum Chromodynamics (QCD),
while the latter constitute the electroweak sector of the SM.

2. In nature we observe 4 gauge bosons mediating electroweak forces: one of
them, the photon, is massless, while Z and W± are massive instead. Hence
SU(2)L gauge symmetry must be spontaneously broken, leaving us with a
residual one-dimensional group corresponding to U(1)EM , so

GSM → H = SU(3)C ⊗ U(1)EM . (2.2)

A doublet of complex scalar fields, φ, denoted as Higgs field, is introduced
to allow the spontaneous breaking of GSM into the residual symmetry
group H.

3. We introduce 3 generations of fermions, each of them consisting of 5 dif-
ferent representations of GSM :

QLi(3, 2) 1
6

, uRi(3, 1) 2
3

, dRi(3, 1)− 1
6

LLi(1, 2) 1
2

, eRi(1, 1)−1.
(2.3)
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In this notation, for example, QLi are left-handed quarks (the index i=1,2,3
runs over families), which transform under the fundamental representation
of SU(3)C and SU(2)L and carry weak hypercharge Y = 1

6 . We can
decompose the two SU(2)L doublets into their components in this way:

QLi =

(
uLi
dLi

)
LLi =

(
νLi
eLi

)
. (2.4)

Finally we have the Higgs field, which is a scalar transforming in the (1, 2) 1
2

representation of GSM .

Using the above considerations we can write down a renormalizable Lagrangian
for the SM, which can be split into four sectors: gauge boson, Higgs, fermionic
and Yukawian:

LSM = LB + LH + LF + LY (2.5)

where
LB = −1

4
Ga

µνG
µν,a − 1

4
W b

µνW
µν,b − 1

4
BµνB

µν , (2.6)

LH = (Dµφ)
†(Dµφ)− µ2φ†φ− λ(φ†φ)2, (2.7)

LF =
∑
i

i
(
Q̄Li /DQLi + L̄Li /DLLi + ūRi /DuRi + d̄Ri /DdRi + ēRi /DeRi

)
, (2.8)

−LY = Q̄LiY
d
ijφdRj + Q̄LiY

u
ij φ̃uRj + L̄LiY

e
ijφeRj + h.c., (2.9)

where Gµν , Wµν , Bµν are the field strength tensors associated to gluon fields
(a=1...8), weak gauge bosons (b=1,2,3) and hypercharge boson Bµ, respectively.
φ̃ = iσ2φ∗ is the charge conjugated of φ, µ2 and λ are real parameters associated
to the Higgs potential ( µ2 < 0 and λ > 0) and Y u,d,e are 3×3 complex matrices
known as Yukawa matrices.
The action of the gauge covariant derivative Dµ on matter fields is determined by
the representation of GSM under which they transform and takes the following
form: 

Dµφ =
(
∂µ + igWbµ

σb

2 + ig′Bµ
1
2

)
φ

DµQL =
(
∂µ + igsT

aGa
µ + igWbµ

σb

2 + ig′Bµ
1
6

)
QL

DµLL =
(
∂µ + igWbµ

σb

2 − ig
′Bµ

1
2

)
LL

DµuR =
(
∂µ + igsT

aGa
µ + ig′Bµ

2
3

)
uR

DµdR =
(
∂µ + igsT

aGa
µ − ig′Bµ

1
6

)
dR

DµeR =
(
∂µ − ig′Bµ

)
eR,

(2.10)

where T a and σa are the generators of SU(3) and SU(2) respectively, in the
fundamental representation.
LB is the gauge boson part of the Lagrangian, containing boson kinetic terms
and their cubic and quartic self interactions; this part of the Lagrangian contains
three free parameters: g, g′ and gs, which are the gauge couplings associated to
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the three simple subgroups of GSM .
LH is the Higgs doublet Lagrangian, containing its kinetic term, the interactions
with the gauge fields and its potential. In order for φ to acquire a non vanishing
V EV (v), we need to require µ2 < 0, while λ has to be positive in order to have
a bounded potential. The relation between v and the free parameters of LH is
easily obtained minimizing the potential and reads

v =

√
−µ

2

2λ
(2.11)

The mass of the Higgs boson is given in terms of v, which is experimentally
known from the muon decay, and λ, which is instead a free parameter of the
theory. At tree level the relation reads

mh =
√
2λv2 = (124.97± 0.24)GeV (2.12)

LF contains fermion kinetic terms and their interactions with gauge fields, while
LY contains the Yukawa interaction between fermions and the Higgs field. This
interaction produces fermion masses after Electroweak Symmetry Breaking (EWSB).
Due to Higgs mechanism, the electroweak gauge bosons W1,W2,W3 and B mix
to create the states which are physically observable. These physical states are:

W±
µ =

W1µ ∓ iW2µ√
2

, (2.13)(
Aµ

Zµ

)
=

(
cos θW sin θW
− sin θW cos θW

)(
Bµ

W3µ

)
, (2.14)

with the Weinberg angle θW = arctan g′

g ∼ 0.23. W± and Z are the weak
interaction mediator bosons, while A is the electromagnetic field. The former
are massive, with mass linked to the VEV of the Higgs field in this way at tree
level:

MW =
gv

2
= 80.4GeV (2.15)

MZ =

√
g2 + g′2v

2
= 91.2GeV. (2.16)

We can rewrite LF replacing the gauge fields Waµ and Bµ with W± and Z. One
then obtains:

LF = [LKin]−
g√
2
(W+

µ J
−µ +W−

µ J
+µ)− eAµJ

µ
em −

g

cos θW
ZµJ

µ
Z (2.17)

where
J−µ = ν̄Lγ

µeL + ūLγ
µdL

Jµ
em = −ēγµe+ 2

3
ūγµu− 1

3
d̄γµd

Jµ
3L = L̄Lγ

µσ
3

2
LL + Q̄Lγ

µσ
3

2
QL

Jµ
Z = Jµ

3L − sin2 θWJ
µ
em.

(2.18)
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We commonly refer to J±
µ as charged currents terms (CC) and to JZ

µ as neutral
currents (NC) terms.

2.1.1 Interlude on neutrino physics

Today three species of active neutrinos, one for each fermion generation, are
thought to exist: this fact has been determined experimentally at LEP from the
measurement of the invisible decay width of Z boson.
Neutrinos are different from other fermions because of some peculiar properties:
they are purely left-handed, namely no neutrino of right chirality has ever been
observed up to now, and they interact with other particles only through the weak
interaction, since they don’t carry neither electric nor colour charge.
Therefore, their observation is based on processes with very tiny cross sections,
so that sensitive detectors and sophisticated techniques are required in their
experimental hunt.
Even though in the original SM proposed by Glashow, Salam and Weinberg
they were supposed to be massless particles, we know from the phenomenon
of neutrino oscillation that they indeed possess a mass: actually, in neutrino
oscillation experiments we are sensitive only to squared mass differences, and
our best estimates on the sum of their masses is based on a combination of
cosmological probes, which set the limit of

∑
imνi < 120 meV(95%C.L.).

The fact of being electrically neutral opens the possibility that neutrinos are
Majorana fermions, namely that they coincide with their own antiparticle. For
neutrinos a Majorana mass term is allowed, which has the property of violating
any U(1) global symmetry, in particular lepton number.
The other possibility to give neutrino mass is through the Yukawa interaction,
introducing a right-handed neutrino for each generation, inert under electroweak
interaction, which would produce the canonical Dirac mass term.
For both kind of mass terms we would have to extend the original definition of
the SM, since the Majorana mass term for the SM neutrino can be provided only
by higher dimensional operators, implying the existence of high energy fields and
the Dirac mass term requires the introduction of a right handed neutrino.
Up to now we do not have evidence to establish whether neutrinos are Dirac or
Majorana particles, therefore in the following discussion, for simplicity, we will
assume that their mass is generated by a Dirac mass term, keeping in mind that
this is far from being the only possibility.

2.2 Flavour structure of the Standard Model

The term Flavour physics refers to interactions that distinguish among fermion
flavours, where by flavour we mean one of the different generations of fermion
fields carrying the same quantum numbers, namely belonging to the same repre-
sentation of GSM . In the SM all the source of flavour interactions is due to the
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Yukawa matrices Y e,u,d,ν , as they are the only part of LSM which distinguish
between families. In the absence of Yukawa interaction or in the case where
Yukawa matrices are proportional to the identity, besides the Gauge Symmetry,
LSM , extended with right-handed neutrinos, possesses a global U(3)6 symmetry,
which can be split into its quark and lepton subgroup:

GFlavour = U(3)3Q ⊗ U(3)3L, (2.19)

under which fermion fields mix between generations for each representation in
this way:

QL → VQQL LL → VLLL

uR → VuuR dR → VddR

eR → VeeR, νR → VννR

(2.20)

where V’s are U(3) matrices. When considering Y e,u,d,ν 6= {0,13}, GSM is
now broken down to a smaller group, known as the global accidental symmetry
group of the SM. We call this symmetry accidental since it’s not a fundamental
symmetry of our theory like the Gauge Symmetry, which was imposed a priori.

GFlavour → U(1)B ⊗ U(1)L. (2.21)

U(1)B is associated to baryon number conservation, while U(1)L is associated to
lepton number conservation. 1 Let’s now see how we can deduce the number of
physical parameters of the SM looking in particular at LY .
Going in the unitary gauge the Higgs doublet takes the simple form

φ =

[
0

h+v√
2

]
, (2.22)

Since Y e,ν,u,d are 3×3 complex matrices in flavour space they contain 4×2×32 =
72 parameters. However, since in a local QFT physics shouldn’t depend on the
base used in field space, we are free to make a transformation in the fermion field
space to diagonalize Yukawa matrices. As they are complex matrices, they are
diagonalized by a bi-unitary transformation, with real and positive eigenvalues.
From Eq (2.9) the Yukawian Lagrangian reads:

−LY =
h+ v√

2

[
ēiRY

ij
e e

j
L + ν̄iRY

ij
ν ν

j
L + ūiRY

ij
u u

j
L + d̄iRY

ij
d d

j
L

]
+ h.c. (2.23)

We now diagonalize Yukawa matrices making these unitary transformations on
fermion fields:

fL → Vff
′
L fR → Uff

′
R (f = e, ν, u, d) (2.24)

1In the original version of SM, with massless neutrinos, individual lepton family numbers
are conserved too at tree level. Taking into account for the presence of neutrinos, one U(1)
combination, namely B + L, is anomalous at one loop, so the only exactly conserved quantum
number associated to the accidental symmetry group of the SM is B − L.
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where primed indices are referred to fermion fields in the mass basis. We finally
get this expression for LY :

−LY =
h+ v√

2

[
ē′Ri(Ye)

ij
Diage

′
Lj+ν̄

′
Ri(Yν)

ij
Diagν

′
Lj+ū

′
Ri(Yu)

ij
Diagu

′
Lj+d̄

′
Ri(Yd)

ij
Diagd

′
Lj

]
+h.c.

(2.25)
where (Yf )Diag = U †

fYfVf are the Yukawa matrices in the mass basis, which are
related to quark masses by:

mfk = (Yf )
kk
Diag

v√
2
, (2.26)

where the index k runs over fermion generations.
While diagonalizing Yukawa matrices, the change of basis obviously modifies LF

too. In particular NC and CC terms undergo these transformations:

NC f̄Lγ
µfL → f̄LV

†
f γ

µVffL = f̄Lγ
µfL

CC ūLγ
µdL → ūLV

†
u γ

µVddL = ūLγ
µVCKMdL

ν̄Lγ
µeL → ν̄LV

†
ν γ

µVeeL = ν̄Lγ
µU †

PMNSeL

(2.27)

The neutral currents remain unchanged, while charged currents are affected by
the change of basis both in the quark and lepton sectors. In the quark sector
the change of basis produces the Cabibbo-Kobayashi-Maskawa (CKM) unitary
matrix, given by:

VCKM = V †
uVd =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 , (2.28)

responsible for quark mixing, while in the leptor sector the change of basis pro-
duces the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) unitary matrix, which is
responsible for neutrino oscillations and is given by:

UPMNS = V †
e Vν =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 . (2.29)

Therefore we conclude that only CC interactions feel the change of basis, i.e. the
misalignment between the mass basis and the flavour basis. As a consequence,
only Flavour Changing Charged Currents (FCCC) are admitted in the SM at tree
level, while Flavour Changing Neutral Currents (FCNC) can appear only at one-
loop order, so they are suppressed with respect to the former. We will analyze
FCNC processes in the next section, in particular the Glashow-Iliopoulos-Maiani
mechanism(GIM), which explains the suppression of FCNC in the SM.
To stress the importance that the study of FCNC had in the development of
the SM, we remind that in 1964, when only up, down and strange quarks were
thought to exist, on the basis of the suppression of FCNC, the existence of a
fourth quark, the charm, was predicted. Actually the charm quark would be
discovered only 10 years later, in 1974.
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2.2.1 CKM matrix and CP violation

We have seen that the CKM is a 3× 3 unitary matrix in flavour space, which is
responsible for flavour changing transitions in the quark sector. Let’s consider
now the general N generations case, where VCKM is so of dimension N . A gen-
eral N ×N unitary matrix has N2 parameters. N(N − 1)/2 of these parameters
may be taken as Euler angles which one introduces when dealing with rotations
in a N dimensional space, while the remaining N(N +1)/2 are complex phases.
We can ask ourselves whether these phases are all physical or not.
We know from quantum mechanics that the phase of a wavefunction is not a
measurable quantity, namely a wavefunction ψ and exp(iφ)ψ, where φ is a real
number, are physically equivalent. The situation is the same in QFT: what mat-
ters is not the absolute phase but the relative phases of different fields. Therefore
we should examine which phases in VCKM are observable and which are not.
The phases of the fields are arbitrary, so we can redefine them performing phase
transformations in this way:

dLk → eiφkdLk k = d, s, b

uLj → eiφjuLj j = u, c, t
(2.30)

Under the above transformations, for any number of families, what happens is
that:

Vkj → ei(φk−φj)Vkj (2.31)

where j and k denote an up-kind and down-kind quark respectively. Considering
the effect of this field redefinition on the other pieces of LSM , NC terms are
manifestly invariant because they are flavour conserving; LY is affected because
it connects L and R fields, however this can be remedied by rephasing any right-
handed quark field with the same phase as corresponding left-handed one, such
that LY remains unchanged. From the previous equation, we see that the number
of phases which can be reabsorbed is given by the number of phase differences
φj − φk. Since we have 2N of such phases, 2N − 1 of them will be unphysical.
Therefore, CKM has N2 − (2N − 1) = (N − 1)2 total parameters, of which
(N − 1)(N − 2)/2 are complex phases. The same reasoning applies identically
to the PMNS matrix, for the lepton sector. Thus, we have two physical phases
for the 3 fermion generations case (one for each mixing matrix), which combined
with the 12 Yukawa couplings and the 6 Euler angles of the CKM and PMNS
matrix give the number of 20 independent parameters for LY . Adding the gauge
coupling constant g, g’ and gs, the free parameters of the Higgs potential λ and
µ2, and finally the QCD theta term, we are left with 26 free parameters for the
SM, with Dirac mass term for the neutrino.2
On the other side, for the case of 2 families, the CKM matrix has one rotation

2If neutrinos are Majorana particles, than the PMNS would possess 3 physical phases and
the SM would have 28 free parameters
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angle and no phases. In this case the quark mixing matrix has the simple form:

V =

(
cos θC sin θC
− sin θC cos θC

)
, (2.32)

where θC is called Cabibbo angle. The importance of the irremovable phase in
CKM matrix resides on the fact that it allows CP violation in the electroweak
sector of the SM. To see this we recall the CP transformations for vector and
axial fermion bilinears ( V and A) and for the gauge fields (W):

V ψ̄1γ
µψ2

CP−−→ −ψ̄2γµψ1

A ψ̄1γ
µγ5ψ2

CP−−→ −ψ̄2γµγ5ψ1

W W±
µ

CP−−→ −W∓µ

(2.33)

Considering the quark part of the Charged Current Lagrangian in the mass basis,
we have:

L
q
CC = − g√

2

[
ūiLγ

µV CKM
ij djLW

+
µ + d̄L

i
γµV †CKM

ij ujLW
−
µ

]
, (2.34)

Applying CP on L
q
CC we thus obtain the following Lagrangian:

L
′q
CC = − g√

2

[
d̄jLγµV

CKM
ij uiLW

−µ + ūjLγµV
CKM∗
ji diLW

+µ
]
, (2.35)

We note that CP operation interchanges the two terms of Lq
CC and L

′q
CC except

for the fact that Vij and V ∗
ij are not interchanged. Thus CP is a good symmetry

of the electroweak sector only if there is a choice of phase convention where all
the couplings are real.
CP would not necessarily be violated in the three generations SM: for instance
if two quarks of the same charge had the same mass, one mixing angle and the
phase could be removed from CKM mixing matrix.
This happens because in this case we’d have an extra symmetry in the model,
i.e. unitary transformations in the space spanned by the hypotetical degenerate
mass quarks. Taking for example b and s quarks to be mass degenerate, we could
build an s′ quark proportional to the linear combination Vuss + Vubb, whereby
the up quark would couple only to two down-type quarks (d and s’) and not to
the orthogonal combination b′. Thus the element Vub′ of our new CKM matrix
would be zero and by use of unitarity we could show that in this case:

V =

 cos θ sin θ 0
− sin θ cosφ cos θ cosφ sinφ
sin θ sinφ − cos θ sinφ cosφ

 (2.36)

This matrix leads to a CP conserving theory because it’s real and obviously this
argument holds for any pair of up-type or down-type quarks. So we have six
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necessary but not sufficient conditions for CP violation in the EW sector:

mu 6= mc mc 6= mt mt 6= mu

md 6= ms ms 6= mb mb 6= md

(2.37)

Likewise, if the value of any of the three mixing angle were 0 or π/2, then
the phase could be removed. This can be checked writing the CKM matrix as
product of three rotation matrices, one of them involving a phase: this phase
could be absorbed by properly redefining the quark fields.
Therefore there are 8 necessary conditions on the angles and the phase of the
CKM matrix, in order to have CP violation, i.e.

θi 6= 0, π/2 δ 6= 0, π j = 1, 2, 3 (2.38)

Thus there are altogether 14 necessary conditions to have CP violation in the
EW sector of the SM with three fermion generations.
These conditions can be incorporated into one parametrization independent con-
straint. To find this condition, one notes that as a consequence of the unitarity
of CKM matrix, for any choice of i,j,k,l=1,2,3 we have:

Im[VijVklV
∗
ilV

∗
kj ] = J

3∑
m,n=1

εikmεjln (2.39)

where the quantity J is called Jarkslog invariant [31]. One actually observes
that J is phase convention independent, since, rephasing one of the quarks and
using the fact that each quark field appears twice, once in a complex conjugated
matrix element, while the other one not, then we see that J does not change.
We now define the quark mass matrices mu and md associated with up-type and
down-type quarks respectively:

mu = − v√
2
Yu

md = − v√
2
Yd

(2.40)

Finally we can unify the 14 conditions for CP violation within the single relation

Det C 6= 0 (2.41)

where C is given by this commutator of the square of the quark mass matrices:

iC = [mum
†
u,mdm

†
d] (2.42)

What is remarkable of this commutator is that its determinant is given by:

Det C = −2J(m2
t−m2

c)(m
2
c−m2

u)(m
2
u−m2

t )(m
2
b−m2

s)(m
2
s−m2

d)(m
2
d−m2

b) (2.43)

Now we can easily see why this is a condition on CP violation in the EW sector
of the SM: if the determinant is not zero then the quark mixing matrix cannot
be made real by rephasing the quark fields, because J can’t be zero, therefore
CP is violated.
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2.2.2 Unitarity of the CKM matrix

The unitarity of CKM matrix is manifest using an explicit parametrization.
Obviously, as CKM can be obtained composing three rotation matrices, the
parametrization is not unique, but the most used is the so called standard
parametrization.
The standard parametrization of CKM matrix is given by [28]:

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −s23c12 − s12c23s13eiδ c23c13

 (2.44)

where cij = cos θij and sij = sin θij (i, j=1,2,3) and δ the phase necessary for CP
violation. Their values are approximately s12 ∼ 0.22, s23 ∼ 0.042, s13 ∼ 0.0041
and δ ∼ 69◦.
Consequently, to a good accuracy, c13 = c23 = 1 and the set of four independent
parameters is given by:

s12 = |Vus|, s13 = |Vub|, s23 = |Vcb|, δ (2.45)

The main phenomenological advantages of the standard parametrization over
the other proposed in literature are basically these two:

• s12, s13 and s23 are respectively related to |Vus|, |Vub| and |Vcb|, which can
be measured independently in meson decays.

• The CP violating phase δ is multiplied by the very small angle s13. This
highlights the suppression of CP violation independently of the actual value
of δ.

This parametrization is suitable for numerical calculations, however it is use-
ful to make a change of parameters in order to see the hierarchical structure
of CKM matrix more transparently. This scope is realized by the Wolfenstein
parametrization [29], which is an approximated one, where each element is ex-
panded as a power series in the small parameter λ = |Vus| ∼ 0.22

VCKM =

 1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+ O(λ4) (2.46)

and so the four free parameters in this parametrization of CKM matrix are λ,
A, ρ and η. Since λ is small, then it’s sufficient to keep only the first few terms
in this expansion.
In literature these redefinitions of the last two parameters are often used:

ρ̄ = ρ
(
1− λ2

2

)
η̄ = η

(
1− λ2

2

) (2.47)
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Figure 2.1: The rescaled Unitarity Triangle, all sides are divided by VcdV ∗
cb

the reason being convenience when extending the Wolfenstein parametrization
to higher orders. The unitarity of CKM matrix implies various relations between
its elements. In particular among these identities:∑

k=1,2,3

VkiV
∗
kj = 0 (2.48)

we focus on the one obtained for i = 1 and j = 3, namely

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

VudV
∗
ub

VcdV
∗
cb

+
VtdV

∗
tb

VcdV
∗
cb

+ 1 = 0
(2.49)

which is the so called ”Unitarity Triangle”, as it can be represented by a triangle
in the complex plane.
This relation is very interesting, since it involves the sum of three terms which
are all of O(λ3), therefore the sides of the triangle are all of the same order of
magnitude and so this relation is easier to test experimentally. In particular
the sides as well the angles α, β and γ are accessible in many flavour changing
observables involving CP asymmetries in various B meson decays.
In fact, it can be proved that the area of the unitarity triangle is related to CP
violation via the Jarkslog invariant:

|J |/2 = A∆, (2.50)

where A∆ denotes the area of the unitarity triangle. Moreover, since CKM
matrix depends only on four parameters, we need four independent physical
observables to completely determine it. After this procedure the theory becomes
predictive and any other observable can be theoretically evaluated and compared
with the experiments.
The numerical values of λ and A are known quite accurately from respectively
k → πlν and b→ clν decays [30]:

λ = 0.22506± 0.00050 A = 0.811± 0.026 (2.51)
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Figure 2.2: Constraints on the ρ̄, η̄ . The shaded area have 95% CL. The individual
constraints come from mass difference in Bd (∆md) and Bs (∆ms), CP violation in
neutral kaon system (εk) and in Bd system(sin 2β) , charmless semileptonic decays
(|Vub|) and from various B decays α and γ

We can then express all the relevant observables as a function of the two remain-
ing parameters, namely ρ and η, and check if there is a region in the (ρ, η) plane
which is consistent with all measurements.

The resulting constraints are shown in Figure 2.2. The agreement between
theory and experiment is impressive, in particular this range of parameters can
account for all measurements:

ρ̄ = 0.124+0.019
−0.018 η̄ = 0.356± 0.011 (2.52)

We can thus conclude that CKM matrix is the dominant source of CP violation
in flavour changing process.
A fascinating question is whether there is room for New Physics contributions
(NP) compatible with experimental bounds. As we will discuss in the following
section the most promising sector is the one of FCNC, that, since are tree-level
forbidden in the SM, can put strong constraints on any NP model.

2.3 FCNC and GIM Mechanism in the SM

We saw in the previous section that the flavour diagonal structure of the basic
vertices involving γ, Z and g forbids the appearance of FCNC processes at tree
level. However, thanks to the flavour changing W vertex, we can construct one-
loop and higher order diagrams mediating FCNC processes.
The fact that these processes take place at the loop level makes them very useful
for testing the quantum structure of the theory and search physics beyond the
SM.
One of the most studied processes involving FCNC processes is meson oscillation.
It obviously involves only neutral mesons, which can mix with their antiparticles.
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Figure 2.3: Box vertices

This can happen because neutral mesons are eigenstates of the strong and of the
electromagnetic part of LSM and are so characterized by well defined flavour and
electric charge.
However LCC contains vertices in which the flavour of the involved fermions is
not conserved. Therefore mesons are not eigenstates of the SM Hamiltonian in
general. In particular, for electrically neutral mesons, meson-antimeson transi-
tions are allowed.
Lowest order Feynman graphs involved in these processes are the so called ”box
diagrams”, which contain four powers of the weak gauge coupling constant g.
These diagrams involve in general both quarks and leptons as depicted in Fig-
ure 2.3. In vertex a the flavour violation takes place on both sides of the box,
thus allowing ∆F = 2 transitions, where F denote the flavour involved (+1 for
particles, -1 for antiparticles). ∆F = 2 sector involves neutral meson oscillation,
namely the K0 − K̄0,D0 − D̄0, B0 − B̄0.
Instead, the ∆F = 1 sector spans a wide range of decays, such as the radiative
b→ sγ, the semileptonic b→ sl+l− and the purely leptonic Bs → µ+µ−.
All these processes get contribution by a set of triple effective vertices, denoted
in literature as ”penguin diagrams”, which have the topology depicted in Figure
2.4. In addition to the penguin vertex, the box vertex may also contribute to
∆F = 1 processes, like in purely leptonic decay.
Both box and penguin effective vertices depend on the masses of the internal
quarks or leptons and consequently are calculable functions of xi = m2

i /M
2
W ,

where i is the flavour index of the fermion running in the loop.
A set of basic universal functions can be found, which govern the physics of all
FCNC processes. These functions were calculated by various authors, in partic-
ular by Inami and Lim [33].

We consider as example the Bd − B̄d oscillation and try to understand how the
amplitude of this process is suppressed by the GIM Mechanism.
Let’s focus on the diagram a in Figure 2.5 and compute its amplitude, setting
external quarks at zero momentum, such that all the particles running in the
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loop have the same momentum k.

A =
∑

i,j=u,c,t

g4

4

∫
d4k

(2π)4
(−i)2

(k2 −MW
2)2

(
gµµ′ −

kµkµ′

MW
2

)(
gνν′ −

kνkν′

MW
2

)
·

[
ūdγ

µPLV
∗
id

−i
/k −mi

Vibγ
νPLub

][
v̄dγ

ν′PLV
∗
jd

−i
/k −mj

Vjbγ
µ′
PLvb

]
,

(2.53)

where PL = (1− γ5)/2. Defining ξi ≡ V ∗
idVib, as a consquence of CKM unitarity,

we have ξu = −(ξc + ξt).
From naive power counting we would expect A to be quadratically divergent,
but this is not going to be the case, due to the unitarity of CKM matrix as we
are going to see. Let’s consider this combination in the first term between square
brackets: ∑

i=u,c,t

ξiγ
µPL

1

/k −mi
γνPL =

∑
i=u,c,t

γµ/k
ξi

k2 −m2
i

γνPL (2.54)

and using unitarity of the CKM we easiliy obtain:

γµ/k
[
ξc

m2
c −m2

u

(k2 −m2
c)(k

2 −m2
u)

+ ξt
m2

t −m2
u

(k2 −m2
t )(k

2 −m2
u)

]
γνPL. (2.55)

Therefore the first term between square brackets goes like 1
k3

, for k → ∞. An
identical analysis holds also for the lower line of the diagram, so we clearly see
from power counting that the amplitude is actually finite, as it behaves like:∫

d4

(2π)4
1

k3k3
→ finite (2.56)

Furthermore we note that that the amplitude would vanish if masses of up-type
quarks were equal, as we see from Eq.(2.55). In this limit FCNC decays and
transitions are absent. Thus, beyond tree level, the conditions for a complete
GIM cancellation of FCNC processes are:

• Unitarity of CKM matrix

• Exact horizontal flavour symmetry which assures the equality of quark
masses of a given charge.
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Figure 2.5: 1 loop box-diagrams for Bd − B̄d oscillation

We emphasize that such a horizontal symmetry is very natural, as all the quan-
tum numbers of fermions of a given charge are equal in the SM. However, such a
horizontal symmetry is broken by the disparity of quark masses. This is in fact
the origin of the breakdown of GIM Mechanism at the one-loop level and the
appearance of FCNC transitions.
The size of this breakdown, and thus the strength of FCNC transitions, is con-
trolled by the disparity of masses and can be affected by QCD corrections, which
are the dominant ones at the O(mb) scale.
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Chapter 3

Effective field theory in flavour
physics

In order to detect possible NP effects contributing to FCNC processes, we will
focus mainly on meson decays, which take place at energy of O(1Gev), namely
the mass of the decaying particle.
The idea is to build a NP model, which generically will be defined by a La-
grangian Density of the form LNP = LSM + LBSM , where by BSM we mean
any kind of physics beyond the SM. Then we should select a physical observable
whose experimental knowledge and SM theoretical estimation allow us to put
constraints on the BSM contribution to that observable.
We can argue why the study of SM suppressed processes, such as FCNC, is a
very powerful tool to test BSM physics. NP models have to be compatible with
observed physical quantities, in particular testing the SM suppressed ones can
put strong constraints on the parameters of the BSM theory. Instead, testing
a SM tree level observable is less useful, because the BSM contribution has to
be subdominant and we should compute the SM value of that observable with
many loops precision to put bounds on the BSM theory, which is a highly non
trivial task.
We have at our disposal two main ways to describe NP effects in flavour physics:
(i) to build an explicit UV completion of the SM; (ii) to analyze NP using an
EFT approach. The former approach is more predictive, but also more model
dependent, since we should completely specify the new fields at the UV scale
besides SM ones. Instead, the EFT approach can provide a general description
of NP at low energy, but has the drawback of shedding less light on NP scenarios
that could arise at high energies, as it depends on a higher number of unknown
parameters. We are going to describe EFT approach in detail in this section.
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3.1 Effective field theories
The basic concept of EFT is to assume that heavy fields are no more dynamical
degrees of freedom at low energy, so that we can remove them from the La-
grangian (we call this procedure ”integrating-out”) by using their equations of
motion. The effect of this procedure is the appearance of new non renormalizable
”effective” vertices between the low energy fields. We can then parametrize NP
contributions using the coefficients associated with these new Lagrangian terms:

LEFT = LSM +
∑
i

C(d)
i Q(d)

i , (3.1)

Since LSM is a renormalizable Lagrangian, then the operators Q(d)
i should have

d > 4 and so LEFT is then not renormalizable.
We refer to the coefficients C(d)

i associated to the operators Q(d)
i as Wilson co-

efficients, whose mass dimension is then 4− d. The series of operators weighted
by relative coefficients is known as Operator Product Expansion (OPE) and it
can be interpreted as a series of effective vertices Q(d)

i multiplied by effective
coupling constants C(d)

i .
In general we will have an infinite number of these operators, but we can establish
a hierarchy among them using dimensional analysis. Calling Λ the mass scale of
NP generating the effective operator Q(d)

i , we can rewrite its Wilson coefficient
in this way:

C(d)
i =

ci
Λd−4

(3.2)

where ci is a dimensionless coefficient. Therefore we can rewrite LEFT as:

LEFT = LSM +
∑
i

ci
Λd−4

Q(d)
i . (3.3)

The magnitude of each of operator in the expansion can be estimated by dimen-
sional analysis as: ∫

d4x
ci

Λd−4
Q(d)

i ∼
(E
Λ

)d−4
, (3.4)

so the higher the dimension of an effective operator, the more it is suppressed at
low energies, where the EFT is valid. We commonly refer to these d > 4 operators
as irrelevant, while d = 4 and d < 4 operators, which appear in LSM , are denoted
respectively as marginal and relevant. Therefore we can restrict ourselves to the
study of lowest dimensional operators contributing to the process of our interest,
since they produce the largest corrections to the SM predictions.
Already in the SM framework, where we know the UV renormalizable theory, it
can be useful to adopt an EFT approach. In this case the main advantage is a
technical one, in the sense that computations are simpler with respect to the full
theory. The most striking example of this feature is represented by weak decays
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Figure 3.1: β-decay at tree level in the SM (a) and in the Fermi (b) theory

of hadrons, such as the β decay, where we have two very separated energy scales
at work: the W boson scale, O(80 GeV), which mediates the process, and the
mass scale of the decaying particle, O(1 GeV). According to EFT, since we are
considering a low energy process (E << MW ), we can integrate out W± bosons
from the SM Lagrangian and compute observables within the new EFT, which is
the Fermi theory of weak interactions, where the charged current interaction of
fermions with W boson is now replaced by an effective four fermions interaction:

LEFT = −4GF√
2
J+
µ J

−µ, (3.5)

where
J+
µ = ūLiγµV

CKM
ij dLj (3.6)

and GF is the Fermi constant, which has been measured by muon lifetime
(GF = 1.16638 · 10−5 GeV−2). Thus, at tree level, EFT provides a simpler
framework to perform computations. Things become more involved at the loop
level, where we should take into account QCD corrections, which are the domi-
nant ones at the hadron mass scales.
However, due to the asymptotic freedom of QCD, short distance corrections,
namely contributions of hard gluons at the energy scales O(MW ), down to
hadronic scales O(1 GeV) can be treated in perturbation theory using renor-
malization group (RG) methods as we will discuss soon.
Our first task is the computation of the Wilson coefficients Ci in the ordinary
perturbation theory. This can be achieved by the requirement that the ampli-
tude Afull in the full theory should be reproduced in the effective theory. This
procedure is called matching and consists generally of the following steps:

• Find all possible gauge-invariant operators of a given dimension allowed by
symmetries and quantum numbers of a given physical process. We will con-
sider up to d = 6 operators, since increasing their dimension calculations
become more and more involved and less physically relevant.
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• Write down the OPE with undetermined Wilson coefficients, namely:

LEFT =
∑
i,d≤6

CiQ(d≤6)
i (3.7)

• Determine the values of Wilson coefficients Ci such that:

Afull =< f |LSM |i >= Aeff =
∑
i

Ci < f |Qi|i > + higher order terms,

(3.8)
by computing the amplitude for a given process both in the full and in
the effective theory and keeping only leading order terms in the former, in
order to perform a consistent matching.

3.1.1 Operator product expansion in the Standard Model

Let’s discuss more in detail the structure of the OPE: actually we have been a
little sloppy on the notation we used when we introduced it, to be more precise
we should observe that both Ci and Qi depend on a renormalization scale µ,
such that the OPE assumes this form:∑

i

Ci(µ)Qi(µ). (3.9)

The key point is that Ci(µ) summarize the physics contributions from scales
higher than µ and, due to asymptotic freedom of QCD, they can be calculated
perturbatively as long as µ is not to small. Ci(µ) will depend on high energy
degrees of freedom, such as W,Z, Higgs boson and top quark. This dependence
can be found evaluating loop diagrams with heavy particle exchanges and prop-
erly including short distance QCD effects.
We note that the value of µ can be chosen arbitrarily, as µ separates the contri-
butions to a given amplitude into short-distance contributions at scales higher
than µ and long-distance ones at scales lower than µ. For our scope we will
choose µ to be of the scale of the decaying hadron mass, so O(mb) in B meson
decay for instance.
Indeed, very different energy scales are involved in the process, as µ << MW ,mt

and, as a consequence, large logarithms log MW /µ appear in the amplitude and
they compensate the smallness of the QCD coupling constant αs in the evalu-
ation of the Ci(µ). Therefore the naive perturbation theory breaks down and
terms αn

s (log MW /µ)
n, αn

s (log MW /µ)
n−1 etc. have to be resummed to all orders

in αs before a reliable result for Ci is obtained.
The solution to this problem is employing RG method. The renormalization
group equations (RGEs) describe the change of renormalized quantities, such
as Green functions and parameters, with the renormalization scale µ. Solving
at leading order RGEs equations allows to sum up these large logarithms to all
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orders in perturbation theory, and enables us to restore a perturbative approach,
the so called RG improved perturbation theory.
Therefore our strategy in order to compute explicitly the Wilson coefficients is to
perform the matching between the UV theory and the EFT at the cutoff scale,
that is O(MW ). In this way we avoid the appearance of large logarithms and
ordinary perturbation theory can be applied. Only after that the matching has
been performed at high energy we’ll use RGEs to run the Ci from high energy
to low energy, when they can be used to compute physical observables of our
interest. This last step amounts to sum up all the contributions of the kind
αi
s(log MW /µ)

n, αn
s (log MW /µ)

n, to all orders in i and for n ≤ i.
For simplicity we will compute only leading logarithms terms of the amplitudes
and thus we will solve RGEs in the leading logarithmic approximation, which is
equivalent to sum up αn

s (log MW /µ)
n terms.

3.2 Computation of Wilson Coefficients
To show explicitly how this procedure works, let’s study in detail a simple ex-
ample, namely the quark level decay c → sud̄, neglecting higher order QCD
effects for the moment. The tree-level amplitude is determined by the t-channel
diagram with W boson exchange and is given by

iA = −GF√
2
V ∗
csVud

M2
W

k2 −M2
W

(s̄c)V−A(ūd)V−A

iA =
GF√
2
V ∗
csVud(s̄c)V−A(ūd)V−A + O

( k2

MW
2

)
,

(3.10)

where we defined (s̄c)V−A = s̄γµ(1 − γ5)c, and k is the transferred momentum
through the W propagator. Since at low energy k2 is very small as compared to
M2

W , then O(k2/M2
W ) terms can be safely neglected and the full amplitude can

be recast in this form:

iA =
GF√
2
V ∗
csVud(s̄c)V−A(ūd)V−A + Higher D Operators, (3.11)

where higher dimensional operators correspond to the terms of O(k2/M2
W ). Ne-

glecting these terms means neglecting higher dimensional operators, which is
the core of EFT approach. In this simple example the amplitude in the effective
theory is given by only one operator, namely (s̄c)V−A(ūd)V−A and its associated
Wilson coefficient is simply 1, normalizing the amplitude as:

iA =
GF√
2

∑
i

V i
CKMCi(µ)Qi(µ) (3.12)

Actually, in the EFT one can write another gauge invariant operator contribut-
ing to this process, with the same flavour but different colour structure. This
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Figure 3.2: c→ sud̄ at the quark level in the SM (a) and in the effective (b) theory

operator is induced by higher order QCD effects and so it will have to be included
in the low energy effective lagrangian, when considering also short-distance QCD
effects.

3.2.1 OPE and short distance QCD corrections

We obtained for the c → sud̄ transition, without QCD effects, the following
amplitude in the EFT (Eq. 3.11):

iA0
eff =

GF√
2
V ∗
csVud(s̄αcα)V−A(ūβdβ)V−A, (3.13)

where we are summing over colour indices.
Including QCD effects the effective amplitude is generalized to:

iAeff =
GF√
2
V ∗
csVud

(
C1(µ)Q1(µ) + C2(µ)Q2(µ)

)
, (3.14)

with {
Q1 = (s̄αcβ)V−A(ūβdα)V−A

Q2 = (s̄αcα)V−A(ūβdβ)V−A

(3.15)

The most striking feature of this amplitude is that in addition to the original
operator Q2, which was already present at tree level, a new operator Q1 with
same flavour, but different colour structure has been generated.
This happens, because, as we can see looking at the colour structure of diagrams
(b) and (c) in Figure 3.3, due to the gluon exchange, these diagrams will contain
the product of the colour charges Ta

αβ and Ta
γσ, which using colour algebra gives:

Ta
αβTa

γσ = − 1

2N
δαβδγσ +

1

2
δασδγβ. (3.16)

The first term on the r.h.s of this equation gives a contribution to the operator
Q2, while the second term produces the new operator Q1.
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Figure 3.3: 1 loop current-current diagrams in the full theory

Including QCD corrections C1 and C2 become non trivial functions of the renor-
malization scale µ, αs and MW , while if QCD is neglected C1 = 0, C2 = 1 and
we recover A0

eff .

3.2.2 Calculation of the amplitude in the SM

First order QCD corrections to c → sud̄ in the SM are given by the set of dia-
grams in Figure 3.3. Our goal is to calculate the amplitude for this process at
first order both in the SM and in the EFT and then perform the matching in
order to extract Wilson coefficients C1 and C2.
In the computation we will keep only ∼ αs·log terms and neglect constant con-
tributions of O(αs), which amounts to the leading log approximation (LO). As a
side remark, we will not consider QED corrections since αEM/αs ∼ 10−2. How-
ever, if our goal were performing the matching at NLO in QCD, then LO term in
QED would be a competitive effect and it would not be negligible anymore. Let’s
start with the computation of diagram (a), which is the simplest one, since only
operator Q2 contributes to the amplitude and only three particles are running
in the loop.

A = −g
2

8
(igs)

2VudV
∗
csµ

ε

∫
dDk

(2π)D
[
s̄βγ

ρT a
βαi

/p− /k
(p− k)2

γµ(1− γ5)i
/p− /k

(p− k)2
T a
αγγ

σcγ
]

−igρσ
k2

igµν
M2

W

[
ūδγ

ν(1− γ5)dδ
]

(3.17)

In this computation, since we have to deal with a divergent diagram, we have
to regularize it and we use the Dimensional Regularization (DR) approach. In
order to have a dimensionless coupling constant in D dimension we performed
the replacement gs → gsµ

ε/2, where µ is a renormalization scale. Furthermore
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we are considering an equal momentum p for all the external legs and we set all
quark masses to zero.
Using the definition of GF in terms of g and MW and using colour algebra we
get to

A = −GF√
2
VudV

∗
csg

2
sµ

εCF

∫
dDk

(2π)D

[
s̄βγ

ρ(/p− /k)γµ(/p− /k)γρ(1− γ5)cβ
]

k2((p− k)2)2[
ūδγµ(1− γ5)dδ

] (3.18)

From Dirac gamma matrices properties in D dimensions we have that:

γρ(/p− /k)γµ(/p− /k)γρ
A.13
= (−2 + ε)(/p− /k)γµ(/p− /k), (3.19)

therefore we have

A = −GF√
2
VudV

∗
csg

2
sµ

εCF (−2 + ε)

∫
dDk

(2π)D

[
s̄β(/p− /k)γµ(/p− /k)(1− γ5)cβ

]
k2((p− k)2)2[

ūδγµ(1− γ5)dδ
]

(3.20)

From Dirac equation for a massless particle it follows that:{
s̄β/p = 0

/pcβ = 0
(3.21)

A = −GF√
2
VudV

∗
csg

2
sµ

εCF (−2 + ε)

∫
dDk

(2π)D

[
s̄β/kγ

µ/k(1− γ5)cβ
][
ūδγµ(1− γ5)dδ

]
k2((p− k)2)2

(3.22)
We can now recast the denominator using the Feynman parametrization:

1

A2B
= 2

∫ 1

0
dx

x

[B + (A−B)x]3
(3.23)

We can eliminate linear terms from the denominator D by the change of variable

k → k − px (3.24)

Performing the change of variables also at numerator N and using again Dirac
equation we get this expression for N/D

N

D
=

[
s̄β/kγ

µ/k(1− γ5)cβ
][
ūδγµ(1− γ5)dδ

]
(k2 − c)3

, (3.25)

where c = −p2x(1 − x). After this change of variables the loop integral has
become an even function of k. Since in the integration we can substitute kαkβ →
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k2

4 gαβ, then we just have to evaluate this integral over k, which can be performed
using (A.5):

K1 =

∫
dDk

(2π)D
k2

(k2 − c)3
= i

(4π)ε/2

(4π)2
2

ε

(
1− ε

2
log c

)
(3.26)

We use MS renormalization scheme, so we can forget about the finite part that
arises along with the divergences in Feynman diagrams. We thus get, using again
D dimension algebra of gamma matrices:

A = −GF√
2
VudV

∗
csg

2
sµ

εCF 2(1− ε)S2
∫ 1

0
dx xK1 (3.27)

Where S2 = (s̄αcα)V−A(ūβdβ)V−A is just the tree level matrix element of the
operator Q2. Plugging in the explicit form of K1 we obtain:

A = −iGF√
2
VudV

∗
cs

αs

4π
(4πµ2)ε/2

4

ε
CF (1− ε)S2

∫ 1

0
dxx

(
1− ε

2
log c

)
(3.28)

Multiplying this expression by 2, namely the symmetry factor coming from the
diagram in which the gluon is exchanged between the lower external legs, we
obtain the final expression for the amplitude of diagram (a) [32]:

iA =
GF√
2
VudV

∗
cs

αs

4π
2CF

(2
ε
+ log µ2

−p2
)
S2 (3.29)

We have still to calculate diagrams (b) and (c), but as they have a similar
topology the calculation is almost identical, so we will compute here just diagram
(b), while diagram (c) will be computed in the appendix.
Actually (b) and (c) are both logarithmically divergent diagrams but their sum is
finite, as their divergences cancel due to the different signs of momenta k running
in the loop. Let’s now compute the amplitude of (b):

B = −g
2

8
(igs)

2VudV
∗
csµ

ε

∫
dDk

(2π)D
[
s̄βγ

µ(1− γ5)i
/p− /k

(p− k)2
γρT

a
βαcα

]
·

−igρσ
k2

−igµν
k2 −M2

W

[
ūδγ

ν(1− γ5)i
/p+ /k

(p+ k)2
γσT

a
δγdγ

] (3.30)

In this calculation we actually didn’t use the full W boson propagator, namely
−i(gµν−kµkν/M2

W )/(k2−M2
W ) in the unitary gauge, but we neglected kµkν/M2

W

term because, since the divergent term coming from this piece cancels out with
the corresponding one from diagram (c), then only finite terms survive. More-
over, these terms are suppressed by a p2/M2

W factor with respect to the ones
coming from gµν piece of the propagator, therefore they can be safely neglected.
Another reason to neglect such terms is that our goal is to perform the matching
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between SM and EFT at LO approximation, so keeping only operators of dimen-
sion 6. If we keep also O( p2

M2
W
) terms in the SM calculation, then we would have

to take into account also higher dimensional operators in the EFT, otherwise the
matching would be inconsistent. From colour algebra we have that:

T a
βαT

a
δγ =

1

2

(
δβγδαδ −

1

3
δαβδδγ

)
(3.31)

The first factor gives contribution to Q1, while the second one to Q2. We will
keep only the latter in the following, as they differ just by a numerical constant.
Since we are computing the leading term of the finite part we can set directly
D = 4 as will not have to handle with divergent integrals. Thus we obtain

B(S2) = −
GFM

2
W

6
√
2

VudV
∗
csg

2
s

∫
d4k

(2π)4

[
s̄αγ

µ(1− γ5)(/p− /k)γρcα
][
ūβγµ(1− γ5)(/p+ /k)γρdβ

]
(p− k)2k2(k2 −M2

W )(p+ k)2

(3.32)
Since we are interested in the LO term, we keep only the quadratic term in k at
numerator, as linear terms in k and with no power of k will either vanish or be
suppressed by a p2/M2

W factor.
Writing M2

W at numerator as k2 − (k2 − M2
W ) we can reduce the number of

factors at denominator, by splitting the integral in this way:∫
d4k

(2π)4

[
s̄αγ

µ(1− γ5)/kγρcα
][
ūβγµ(1− γ5)/kγρdβ

]
(p+ k)2(p− k)2(k2 −M2

W )
(1)

−
∫

d4k

(2π)4

[
s̄αγ

µ(1− γ5)/kγρcα
][
ūβγµ(1− γ5)/kγρdβ

]
(p+ k)2(p− k)2k2

(2)

(3.33)

Let’s compute first (1), substituting kνkσ → k2

4 gνσ:

1

4

[
s̄αγ

µγνγρ(1−γ5)cα
][
ūβγµγνγρ(1−γ5)dβ

] ∫ d4k

(2π)4
k2

(p+ k)2(p− k)2(k2 −M2
W )

(3.34)
Let’s try to simplify the structure of gamma matrices in this equation: since
any 4× 4 matrix can be expanded on the 16 matrices Γa, providing the basis of
Clifford algebra, namely {I, γµ, σµν , γ5γµ, iγ5}, then we can rewrite

γµγνγρ = Sµνρσγσ + iεµνρσγσγ5 (3.35)

where Sµνρσ is the symmetric tensor

Sµνρσ = gµνgµσ + gνρgµν − gµρgνσ (3.36)

Using this decomposition, we can simplify gamma matrices contractions in this
way: [

s̄αγ
µγνγρ(1− γ5)cα

][
ūβγµγνγρ(1− γ5)dβ

]
= 16S2, (3.37)
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where the factor 16 is produced by the sum of a factor 10 associated to the
contraction of symmetric tensor indices and a factor of 6 coming from contracting
antisymmetric Levi-Civita tensor indices. Therefore (3.34) becomes

4S2

∫
d4k

(2π)4
k2

(p+ k)2(p− k)2(k2 −M2
W )

(3.38)

Now we can approximate in the denominator (p − k)2 → k2 and (p − k)2 →
k2. This approximation is allowed since, due to the presence of M2

W in the
third factor, IR divergences will not appear. This approximation has the great
advantage of reducing the denominator to 2 factors, enabling us to use only one
Feynman parameter in the computation of the integral. We thus get for (1)

4S2

∫
d4k

(2π)4
1

k2(k2 −M2
W )

. (3.39)

Instead, we cannot apply the same trick in integral (2) at Eq. (3.33), since it
would be otherwise logarithmically IR divergent, so we have to keep both (p−k)2
and (p+ k)2 terms. The amplitude so reads

B(S2) =
4GF

6
√
2
VudV

∗
csg

2
s

(
I1 − I2

)
S2, (3.40)

where

I1 =

∫
d4k

(2π)4
1

k2(k2 −M2
W )

I2 =

∫
d4k

(2π)4
1

(p− k)2(p+ k)2
(3.41)

These integrals can be easily evaluated using (A.4), after simplifying the denom-
inator with the following Feynman parametrization formula:

1

AB
=

∫ 1

0
dx

1

[B + (A−B)x]2
(3.42)

The computations of I1 and I2 yield the following results:

I1 =
i

(4π)2

∫ 1

0
dx

[2
ε
−log(M2

Wx)
]

I2 =
i

(4π)2

∫ 1

0
dx

[2
ε
−log(−4p2x(1−x))

]
(3.43)

When combining them, the divergent parts obviously cancel, since the original
integral in Eq. (3.32) was itself convergent and we finally obtain this expression
for the amplitude associated with the operator Q2, where we have multiplied by
the symmetry factor of 2:

iB(S2) =
4GF√

2
VudV

∗
cs

αs

3(4π)

[
log

M2
W

−p2
− (log 4− 1)

]
S2 (3.44)

41



c s

d u

k

p

p− k p− k

p

p p

c s

d u

p

p− k
p

p p+ k
p

k

c s

d u

k

p

p+ k

p

p p+ k
p

(a) (b) (c)

Figure 3.4: 1 loop current-current diagrams in the effective theory

Since our goal is to perform the matching in the LO approximation we keep only
the dominant logM2

W
−p2

term, neglecting constant contributions of O(αs).
The computation of diagram (c) is performed in the Appendix B. Here we only
report the amplitude associated to the correction of S2

iC(S2) = −GF√
2
VudV

∗
cs

αs

3(4π)

(
log

M2
W

−p2
+ 1

)
S2 (3.45)

In conclusion, summing up first order QCD corrections to the tree level result,
we obtain the following expression for the SM amplitude at LO, in agreement
with [32]:

iAfull =
GF√
2
VudV

∗
cs

[(
1+2CF

αs

4π
(
2

ε
+log µ2

−p2
)
)
S2+

αs

4π
log

M2
W

−p2
S2−3

αs

4π
log

M2
W

−p2
S1

]
(3.46)

3.2.3 Calculation of Q1 and Q2 in the EFT

The unrenormalized operators Q1 and Q2 are found at O(αs) by calculating the
diagrams in Figure 3.4 and their symmetric counterparts. In this case the com-
putations are much easier, therefore we will compute here only the contribution
to Q2 due to diagram (c), while other computations are really similar, therefore
we omit them.
Let’s now calculate the correction to the tree level operator Q2

tree = S2 given
by diagram (c), where

S2 = (s̄αcα)V−A(ūβdβ)V−A. (3.47)
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The amplitude of diagram (a) with the insertion of operator Q2 reads:

Q(c)
2 = −g

2

8
(igs)

2VudV
∗
csµ

ε

∫
dDk

(2π)D
[
s̄βγ

ρT a
βαi

/p+ /k

(p+ k)2
γµ(1− γ5)cα

]
·

−igρσ
k2

igµν
M2

W

[
ūγγ

ν(1− γ5)i
/p+ /k

(p+ k)2
T a
γδγ

σdδ
] (3.48)

The product of colour charges gives:

T a
βαT

a
γδ =

1

2

(
δβδδαγ −

1

3
δαβδδγ

)
(3.49)

The first factor gives a correction to the tree-level operator S1, while the second
one to S2. We carry only the latter in the following calculation. We thus obtain:

Q(c)
2 =

GF

6
√
2
g2sVudV

∗
csµ

ε

∫
dDk

(2π)D

[
s̄βγ

ρ( /p+ k)γµ(1− γ5)cβ
][
ūαγ

µ( /p+ k)γρ(1− γ5)dα
]

((p+ k)2)2k2

(3.50)
Making the shift k → (k + p) we can simplify the numerator, obtaining:

Q(c)
2 =

GF

6
√
2
g2sVudV

∗
csµ

ε

∫
dDk

(2π)D

[
s̄βγ

ρ/kγµ(1− γ5)cβ
][
ūαγ

µ/kγρ(1− γ5)dα
]

(k − p)2k4
(3.51)

Exploiting again the property kνkσ → k2

4 gνσ under integration and projecting,
as seen before, the structure of gamma matrices onto the basis of Clifford algebra
we obtain:

Q(c)
2 =

GF

6
√
2
g2sVudV

∗
csµ

εS2K2 , (3.52)

where
K2 =

∫
dDk

(2π)D
1

k2(k − p)2
. (3.53)

This integral can be performed easily using Feynman parametrization of (3.42)
and (A.4). Reinserting tree level operator S1, which we did not carry in this
computation, we finally obtain the result for the correction to S2 due to diagram
(c):

Q(c)
2 = −GF√

2
VudV

∗
cs

αs

3(4π)

[2
ε
+ log µ2

−p2
](
S2 − 3S1

)
(3.54)

Computing the remaining diagrams, we get these expressions for the unrenor-
malized Q1 and Q2 at O(αs).

Q0
1 =

[
1 + 2CF

αs

4π
(
2

ε
+ log µ2

−p2
)
]
S1 +

αs

4π

[2
ε
+ log µ2

−p2
]
S1 − 3

αs

4π

[2
ε
+ log µ2

−p2
]
S2

(3.55)

Q0
2 =

[
1 + 2CF

αs

4π
(
2

ε
+ log µ2

−p2
)
]
S2 +

αs

4π

[2
ε
+ log µ2

−p2
]
S2 − 3

αs

4π

[2
ε
+ log µ2

−p2
]
S1

(3.56)
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where the coefficient GF√
2
VudV

∗
cs has been factorized from the definition of the

operators.
It can be proved that divergences appearing in the first term of both equations
can be removed through quark field renormalization, namely the bare field q(0)

is renormalized according to:

q(0) = Z1/2
q q, (3.57)

where Z1/2
q is the renormalization constant and q is the physical, i.e. renormal-

ized field.
However, in contrast to the full amplitude, the resulting expressions are still
divergent after quark field renormalization. This is because EFT is no more
a renormalizable theory and therefore the standard renormalization procedure
which works for the SM does not completely eliminate the divergences from the
physical amplitude of the EFT.
Thus, to remove the additional divergences, a further renormalization, known as
operator renormalization becomes necessary:

Q(0)
i = ZijQj , (3.58)

where the renormalization constant is the 2 × 2 matrix Z. This means that
in general Q(0)

1 and Q
(0)
2 are not renormalized independently from each other,

namely they mix under renormalization.
We stress that, although operator renormalization seems a new concept, it can
be described in terms of the completely equivalent renormalization of the Wilson
coefficients Ci. This can be seen explicitly from the effective lagrangian, which
can be written as:

C
(0)
i Q(0)

i = ZijCiQj , (3.59)

and we can think of Z as the result of the renormalization procedure

C
(0)
i = ZjiCj (3.60)

carried on the Wilson coefficients.
In our case we easily obtain from (3.55) and (3.56) the following renormalization
matrix Z :

Z = 1 +
2αs

4πε

(
1 −3
−3 1

)
(3.61)

Thus we finally obtain the renormalized operators Qi, which are given by{
Q1 =

(
1 + 2CF

αs
4π log µ2

−p2

)
S1 +

αs
4π log µ2

−p2
S1 − 3αs

4π log µ2

−p2
S2

Q2 =
(
1 + 2CF

αs
4π log µ2

−p2

)
S2 +

αs
4π log µ2

−p2
S2 − 3αs

4π log µ2

−p2
S1

(3.62)
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3.2.4 Extraction of the Wilson Coefficients

After performing quark field renormalization also in the full theory, we can finally
match Afull = Aeff where, according to our convention on the normalization of
Wilson coefficients,

iAeff =
GF√
2
VudV

∗
cs

∑
i

CiQi (3.63)

The matching gives the following result for the Wilson coefficients:

C1(µ) = −3
αs

4π
log

M2
W

µ2
, C2(µ) = 1 +

αs

4π
log

M2
W

µ2
(3.64)

However, as anticipated in the previous section, this result can only be used for
µ = O(MW ), while for µ � MW we have to sum the large logarithms to all
orders of perturbation theory before we can trust our result for Ci, using RGEs.
For the study of RG properties of Q1 and Q2 it is useful to go to a different
operators basis, defined by

Q± =
Q2 ±Q1

2
C± = C2 ± C1. (3.65)

In the new basis, Q± are renormalized independently of each other, via:

Q(0)
± = Z±Q±, Z± = 1 +

αs

4πε
(∓3∓ 1) (3.66)

From (3.62) and (3.64) we read the following values respectively for Q± and C±:

Q± =
(
1 + 2CF

αs

4π
log µ2

−p2
)
S± + (1∓ 3)

αs

4π
log µ2

−p2
S± (3.67)

C± = 1 + (1∓ 3)
αs

4π
log

M2
W

µ2
, (3.68)

where S± = (S2 ± S1)/2. From equations (3.67) and (3.68) we can see explic-
itly one of the most important features of OPE, namely the factorization of
the effective amplitude in short-distance (Wilson coefficients) and long-distance
(operators) contributions. This factorization is achieved by this splitting of the
integration over virtual momenta:∫ M2

W

−p2

dk2

k2
=

∫ M2
W

µ2

dk2

k2
+

∫ µ2

−p2

dk2

k2
. (3.69)

This last equation manifests the fact that Wilson coefficients contain contribu-
tions above µ = O(mb), up to O(MW ), whereas low energy contributions are
encoded into Q± operators.
RGEs for C± follow from the fact that the bare coefficients C(0)

± do not depend
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on the renormalization scale µ. Then, recasting Eq. (3.60) properly adapted to
the diagonal basis we have that:

C± = Z±C
(0)
± , (3.70)

and differentiating this equation we get

dC±(µ)

dlog(µ)
= γ±(gs)C±(µ). (3.71)

Here γ± is the anomalous dimension of the operator Q± and is given by

γ±(gs) =
1

Z±

dZ±
dlog(µ)

. (3.72)

We note that without QCD loop corrections, the coupling C± would be indepen-
dent on µ; therefore the non trivial µ dependence of the Wilson coefficients is a
pure quantum effect, which implies an anomalous scaling behaviour of C±. For
this reason we refer to γ± as the anomalous dimension of Q±.
The solution of RGEs equations (3.71) is given by:

C±(µ) = U±(µ, µW )C±(µW ), (3.73)

where µW = O(MW ) and U±(µ, µW ) is the evolution function:

U±(µ, µW ) = exp
[ ∫ gs(µ)

gs(µW )
dg′s

γ±(g
′
s)

β(g′s)

]
, (3.74)

where β(gs) is the QCD Beta function, which is given at 1 loop by:

β(gs) = −β0g3/16π2 β0 = 11− 2

3
f, (3.75)

with f the number of effective flavours present at the scale µ. Using the value
of Z± computed in (3.66), the one loop anomalous dimension of Q± is given by:

γ±(αs) =
αs

4π
γ
(0)
± γ

(0)
± = ±2(3∓ 1). (3.76)

In order to complete our calculation we choose µ = MW and so, from (3.68)
C±(MW ) = 1, and consequently we get for µ = O(mb):

C±(µb) =
[αs(MW )

αs(µ)

] γ
(0)
±
2β0 (3.77)

We have now summed up over all leading logarithms and this equation gives the
Wilson coefficients C± in leading log approximation. For instance, taking f = 5

and plugging in the above equation the numerical values of γ(0)± and β0 we find
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C+(µb) ∼ 0.85 and C−(µb) ∼ 1.40, therefore we have an enhancement of C−
and a suppression of C+ relative to the case without QCD corrections, in which
C± = 1.
To summarize, we have seen explicitly for a typical weak decay process, in the
leading log approximation, that RG improved perturbation theory enables us to
implement a perturbative approach in the framework of low energy EFT, which
is technically useful, as computations are simpler than in the full SM theory.
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Chapter 4

Strong CP problem and axions

4.1 The strong CP problem
The strong CP problem is a naturalness issue dealing with QCD: from a theo-
retical point of view we expect such an SU(3) gauge theory coupled to massive
quarks to be generically CP violating, but no experimental evidence of CP viola-
tion in the strong interactions has ever been observed. In this section we discuss
why this experimental fact poses a naturalness problem in QCD and how axions
can solve this issue. The QCD Lagrangian density for N quark flavours reads

LQCD = −1

4
Ga

µνG
µνa +

6∑
i=1

q̄i
(
i /D −mi

)
qi, (4.1)

where qi are the quark fields and Ga
µν is the gluon field-strength tensor.

We can easily see that in the limit mi → 0, the Lagrangian has a global U(6)V ×
U(6)A global symmetry.
However, since only up and down quark masses are smaller than the typical scale
of the formation of hadrons, that is ΛQCD ∼ 200 MeV, then we should expect
only U(2)V × U(2)A to be a good approximate global symmetry of the strong
interactions. We can decompose this symmetry as

U(2)V × U(2)A = SU(2)V × SU(2)A × U(1)V × U(1)A (4.2)

The U(1)V subgroup is associated to baryon number conservation and is broken
by anomaly, while SU(2)V is an approximated symmetry, due to the quarks mass
term. The axial symmetry group U(2)A, instead, is spontaneously broken by the
non-vanishing value of the QCD quark condensate, < qq̄ > 6= 0.
According to the Goldstone theorem, we should have four pNGB in the particle
spectrum, with small mass compared to ΛQCD. Although the three pions (π0,
π±) forming an SU(2) triplet are light, and therefore are suitable to be considered
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Jµ
5

f
g

f
g

f

Figure 4.1: The triangle diagram responsible of the chiral anomaly. Here f is the fermion
coupled to the gluons g. It can be shown that all the contribution to the anomaly is
given by this diagram, so the anomaly is one loop exact, and thus is a non-perturbative
effect

as the pNGBs of SU(2)A symmetry, the next particle in the hadron spectrum,
namely the η meson, is much heavier, mη∼ 958 MeV, and so we cannot associate
this particle to the U(1)A symmetry.
This is the U(1)A missing meson problem, namely the fact that we are still
missing a pNGB in the particle spectrum.
The solution to this issue is that U(1)A is not a true symmetry at the quantum
level, but is instead anomalous, so there is no approximate NGB associated with
this chiral symmetry.
Although in the mu,d → 0 limit the Lagrangian is invariant under the U(1)A
transformation

qi → eiαγ5/2qi (4.3)

the associated current Jµ
5 is not conserved even in the massless quark limit, but

gets contribution from the triangle diagram and its divergence is given by

∂µJ
µ
5 =

g2s
32π2

Ga
µνG̃

µν
a , (4.4)

where G̃µν is the dual field strength tensor.
Physical effects of the GG̃ term were neglected in early times because it turns
out to be a total derivative,

Ga
µνG̃

µν
a = ∂µK

µ (4.5)

where
Kµ = εµνρσAa

ν

(
Ga

ρσ −
2

3
gsf

abcAb
ρA

c
σ

)
(4.6)

By partial integration, the contribution to GG̃ is given by field configurations
at infinity, which would not contribute to physical processes if the gauge fields
went to zero at the boundary. However, Gerard ’t Hooft realised that the QCD
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vacuum is far from being trivial and there are actually topologically non-trivial
field configurations, called instantons, that contribute to this operator, and thus
it cannot be neglected [6].
These instantons are strongly related to the structure of the QCD vacuum,
namely the different vacuum configurations of Aa

µ cannot be mapped to the
trivial vacuum Aa

µ = 0, but instead belong to different topological sectors. Since
we have to take into account all the topologically different QCD vacua, in order
to have a gauge invariant QCD vacuum, then we conclude that the total diver-
gence is no more irrelevant and so the operator GG̃ cannot be neglected.
As a consequence, a GG̃ term must be admitted in the Lagrangian (4.1), be-
cause it is compatible with all symmetries of the SM gauge group and instanton
configurations provide a non vanishing contribution to it. Thus, we are led to
add the following term to the QCD Lagrangian, known as theta term:

Lθ =
g2s

32π2
Ga

µνG̃
µν
a θ (4.7)

In addition to the QCD term, the θ parameter gets an additional contribution
coming from the quark masses: in principle the Yukawa matrices are generic
3×3 complex matrices and, in order to go in the physical mass basis, we need to
perform a SU(N) chiral rotation of quarks. This step does not affect the theta
term, since there is no anomaly associated to SU(N). We are now left with
diagonal but complex mass matrices Mu and Md.

Lmass = −mi
ue

−iβi ūiLu
i
R −m

j
de

−iβj d̄jLd
i
R + h.c., (4.8)

where M ii
u = −mi

ue
−iβi and M jj

d = −mj
de

−iβj . Their coefficients can be made
real performing a U(1)A transformation (4.3) for each quark field, with angle
αi = βi, where βi is the phase of the corresponding coefficient. As we have seen
these transformations are anomalous and produce a contribution to the QCD
theta parameter equal to −

∑
i ai =

∑
i βi = Arg det(MuMd). Therefore, the

final coefficient of the GG̃ term is given by

θ̄ = θ + Arg Det(MuMd) (4.9)

The theta term respects the symmetries of QCD, but violates time reversal and
parity, while conserving charge conjugation, so it violates CP and induces a
neutron electric dipole moment dn whose upper limit is given by [5]:

dn ∼
eθmq

m2
N

< 3 · 10−26ecm (4.10)

The experimental bound on dn implies a bound on the QCD θ parameter,
θ < 10−9.
Here stands the strong CP problem, namely the fact that this parameter, in
principle arbitrary, is unnaturally small. In fact, we notice that putting the θ
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parameter to zero doesn’t provide CP conservation in the SM, since it is already
broken in the EW sector, so the symmetry of the Lagrangian does not increase
and from the definition of Naturalness given by ’t Hooft the theory is so not
natural.

4.1.1 Peccei Quinn solution to strong CP problem

A natural solution to the strong CP problem is to enlarge the SM symmetry
group with a global chiral U(1) symmetry, known as U(1)PQ, for R. Peccei and
H. Quinn [25].
This symmetry is spontaneously broken when one or more scalar fields take a
vev and the associated GB is called Axion. We can ask ourselves how this could
solve the strong CP problem. Basically, the idea is that by incorporating this
symmetry in the theory one replaces the CP violating parameter θ with the
dynamical CP conserving interactions of the axion field a(x). Because the axion
field is the NGB associated with the spontaneously broken PQ symmetry, it
transforms as

a(x)→ a(x) + αfa, (4.11)
where α is the parameter of the transformation and fa the scale associated with
symmetry breaking.
Therefore, if the effective Lagrangian LEff describing the full theory is U(1)PQ

invariant, the axion field must only enter derivatively coupled. However, due to
the chiral anomaly, LEff must also have a term in which the axion field couples
directly to the gluon pseudoscalar density GG̃, to guarantee that current Jµ

PQ

associated to U(1)PQ has a QCD chiral anomaly. The effective SM Lagrangian,
endued with the extra U(1)PQ global symmetry is thus given by [15]

LEff = LSM + θ
αs

8π
Ga

µνG̃
µν
a +

1

2
∂µa∂

µa+ Lint

[
∂µa/fa, ψ

]
+

a

fa
ξ
αs

8π
Ga

µνG̃
µν
a ,

(4.12)
where ξ is a model dependent parameter associated with the anomaly of the
U(1)PQ current

∂µJ
µ
PQ = ξ

αs

8π
Ga

µνG̃
µν
a (4.13)

The presence of the last term in the above Lagrangian produces an effective
potential for the axion field, thus its vev is no more arbitrary and is obtained by
minimizing the effective potential.〈∂VEff

∂a

〉
= − ξ

fa

αs

8π

〈
Ga

µνG̃
µν
a

〉∣∣
<a>

= 0 (4.14)

What Peccei and Quinn showed is that the periodicity of 〈GG̃〉 in the relevant
theta parameter (θ + ξ〈a〉/fa) forces the axion to take the vev

〈a〉 = −fa
ξ
θ (4.15)
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This solves the strong CP problem, since expressing L
Eff
SM in terms of the physical

axion field, aph = a− 〈a〉, it does no longer contain the CP violating term. Fur-
thermore, the effective potential, breaking explicitly U(1)PQ symmetry, provides
the axion a mass term:

m2
a =

〈∂2VEff

∂a2

〉
= − ξ

fa

αs

8π

∂

∂a

〈
Ga

µνG̃
µν
a

〉∣∣
<a>

(4.16)

Therefore, the SM with an additional U(1)PQ symmetry no longer has a QCD
CP violating interaction. Instead, it contains additional interactions of a massive
axion field both with matter and gluons characterized by a scale fa:

LEff = LSM +
1

2
∂µaph∂

µaph −
1

2
m2

aa
2
ph + Lint

[
∂µaph/fa, ψ

]
+
aph
fa
ξ
αs

8π
Ga

µνG̃
µν
a

(4.17)

4.2 QCD Axion
We saw in the previous section that the PQ solution to the strong CP problem
implies the existence of a pseudoscalar particle, the axion. The axion mixes with
the π0 and η mesons, since it has their same quantum numbers and takes a mass
given by [38]:

ma =

√
mumd

mu +md

mπfπ
fa

(4.18)

Thus we see that the axion mass is inversely proportional to its decay constant
fa. Even if axions would not couple to photons directly, they inherit a coupling
from their mixing with π0 and η and the effective interaction can be written as

Laγγ = −1

4
gaγγaFµνF

µν , (4.19)

where gaγγ is a dimensionful coupling constant. Experimental constraints on gaγγ
can be inferred as a function of the axion mass from various astrophysical con-
straints and low energy data. For example, for ma ≤ 1 KeV solar neutrino data
observations and Horizontal Branch stars data [4] result in gaγγ ≤ 10−10GeV−1.
Let’s now review briefly the different ways proposed to implement the U(1)PQ

symmetry, which lead to different axion models.

PQWW

The original model is known as the Peccei-Quinn-Weinberg-Wilczek (PQWW)
axion model [7], [8], [9]. The PQ symmetry is realized with two Higgs doublets
and the SM quarks:

LY = −Q̄LYdΦ2dR − Q̄LYuΦ̃1uR + h.c. (4.20)
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where the Higgs fields Φi take vacuum expectation values vi. The chiral PQ
transformation takes the form

Φi → eiαXiΦi uR → eiαXuuR dR → eiαXddR (4.21)

where the PQ charges have to satisfy Xu = X1 and Xd = −X2 in order to have an
invariant Lagrangian. The Higgs doublets take vev vi after symmetry breaking
and in particular the neutral part of the Higgs doublets can be parametrized as

Φ0
1 =

1√
2
(v1 + h1)e

iρ1
v1 Φ0

2 =
1√
2
(v2 + h2)e

iρ2
v2 (4.22)

One linear combination of ρ1 and ρ2 provides the longitudinal component of the
Z boson, the other one is the axion.
In this model the axion couples to the SM via the chiral rotations and the PQ
charges of the SM fermions and expanding in powers of 1/v, where v =

√
v21 + v22,

the quark coupling is given at leading order in the expansion by imq(a/v)q̄γ5q.
The PQ chiral anomaly then induces couplings to gauge bosons via fermion loops
∝ aGG̃/v and ∝ aF F̃/v.
In particular the gluon term is the term which leads to the PQ solution of the
strong-CP problem.
One notes that all the axion couplings come suppressed by the scale v, which in
the PQWW model is fixed to be the electroweak scale.
However, the PQWW axion is experimentally ruled out. The reason is that its
physics is tied with the EWSB, and the experimental data do not agree with
the predictions of the model. For instance, the following branching ratio can be
estimated

Br(K+ → π+ + a) ∼ 10−5
(
x+

1

x

)2
, (4.23)

where x = v2/v1 and is many order of magnitude above the experimental bound

Br(K+ → π+ + invisible) < 10−9 (4.24)

Other models, with PQ symmetry breaking scale fa � v, called ”invisible” axion
models, are still viable and we are going to present them below.

4.2.1 Invisible axion models

KSVZ

One type of invisible axion model is the Kim-Shifman-Vainshtein-Zakharov (KSVZ)
[10], [11]. In this model a new complex scalar φ, singlet under the SM gauge
group, and a new heavy quark Q are introduced. The PQ field and the heavy
quarks interact via the U(1)PQ invariant Yukawa term, which provides the heavy
quark mass:

LY = −λQφQ̄LQR + h.c. (4.25)
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where the Yukawa coupling λQ is a free parameter. The PQ symmetry is spon-
taneously broken when the scalar φ acquires a vev due to a ”Mexican-hat” type
potential and the fermion Q obtains a large mass mQ ∼ λQfa.
At the classical level, the Lagrangian is unaffected by chiral rotations, and the
field φ is not coupled to the SM. Nevertheless at the quantum level chiral rota-
tions on Q affect the gluon pseudoscalar density via the chiral anomaly:

L→ L+
α

32π2
GG̃ (4.26)

The interactions of KSVZ axion with the gauge bosons arise at one loop as a
result of the chiral anomaly. At the level of EFT, the induced topological term
is the only modification to the SM lagrangian and, since the heavy fermion can
be integrated out for E � mQ, then the axion is directly coupled to the gauge
bosons.
There is in particular an axion-photon coupling in this model that can be cal-
culated via loops giving the EM anomaly and its value depends on the electro-
magnetic charges assigned to Q.
However the KSVZ axion has no tree-level couplings to the SM matter fields,
while such terms are generated at one loop in the EFT.

DFSZ

The other popular invisible axion model is the Dine-Fischler-Srednicki-Zhitnisky
(DFSZ) [12], [13], where the axion couples to the SM via the Higgs sector.
It contains two Higgs doublets, Hu, Hd, like in the PQWW model, however the
complex scalar φ, which contains the axion as its angular degree of freedom,
is introduced as a standard model singlet. The PQ and Higgs fields interact
through the scalar potential

V = λHHuHdφ
2 (4.27)

This term is U(1)PQ invariant for φ with PQ charge +1, and the Higgs fields
each with charge -1.
The Higgs also couples to all the SM fermions, providing them mass via the
Yukawa interaction

LY ⊃ Q̄LyuuRHu, (4.28)

therefore in order to satisfy the symmetry, SM fermions have to be charged under
U(1)PQ.
After EW symmetry breaking, H is replaced by its vev, inducing axial current
couplings between the axion and standard model fermions from the chiral term
in the fermion mass matrix: imu(a/fa)ūγ5u. This axial current in turn induces
the coupling between the axion and the QCD GG̃ via the colour anomaly.
Thus, the main phenomenological difference between this model and the KSVZ
is that now there are tree level coupling between the axion and the SM fermions.
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Chapter 5

ALPs Effective Field Theory

The Higgs boson discovery in 2012 has set spin zero particles at the center of
searches for BSM physics. This may have been the first exploration of a new
universe: scalar and pseudoscalar particles, elementary or composite, as portals
to new physics.
Extra spin zero particles are in fact proposed as solutions to fundamentals and
pressing problems in particle physics. A paradigmatic example is the strong
CP problem of QCD, for which the solution relies on an anomalous global U(1)
symmetry, the so called Peccei-Quinn symmetry, which is spontaneously broken.
The associated (pseudo) Nambu-Goldstone boson (NGB), the axion, is in addi-
tion an excellent candidate to explain the Dark Matter content of the Universe.
Many other extensions of the SM present one or several spontaneously broken
global U(1) symmetries, thus predicting the appearance of Nambu-Goldstone
bosons: we refer to these particles as axion-like particles (ALP). If ALPs get a
tiny mass due to non-perturbative effect or explicit symmetry breaking, they are
also good DM matter candidates. One important difference between a generic
ALP and the QCD axion is that for the former the scale of symmetry breaking fa
and its mass ma are treated as independent variables, while for the QCD axion
the two parameters are inversely proportional. In full generality, the impact of
ALPs depends on their nature and on the strength of their couplings; in practice
the relevant characteristic of NGbs is that they only possess derivative couplings,
because of the underlying shift symmetry.
We are going to explore in this chapter ALPs contributions to FCNC processes,
formulating them via the linear realization of the ALP effective Lagrangian. We
will consider the complete basis of bosonic ALP couplings to the electroweak
sector, namely we will discuss the set of gauge invariant, independent leading
order couplings to the W, Z, photon and Higgs doublet. In particular we will
see that FCNC processes can get contributions from more couplings and we will
have to consider them simultaneously in order to delimit the parameter space.

57



t c

h

p

p− l p− l − k

p− kl

k

t c

h

p p− l

q

p− k

l l − k

k

(a) (b)

Figure 5.1: Feynman diagrams for the decay t→ cH in the unitary gauge.

5.1 FCNC top quark decay in the SM

In order to put bounds on ALP couplings through FCNC processes, we will have
to compute Feynman amplitudes given by the penguin diagrams associated to
the di → dja transition, where d is a generic down type quark and a is an ALP.
In order to get some practice with quark FCNC decays involving a scalar or
pseudoscalar particle, we focus now on the process t→ cH in the SM, where H
is the Higgs boson, with the goal of getting an estimate of the amplitude and of
the branching ratio of this decay channel. This decay proceeds via one loop W
boson exchanges and the corresponding diagrams are depicted in Figure 5.1.
Since the SM is a renormalizable theory, then we expect divergences appearing in
the diagrams to cancel out, therefore the amplitude should be finite. The check
of the finitness of the amplitude is left to the appendix, while here we will make
an estimate of the decay width assuming the unrealistic parameters range [17].

M2
W � m2

t � m2
b � m2

c (5.1)

This simplification neglects terms of O(m2
t /M

2
W ) but allows us to get without

heavy computations an approximated amplitude, that is valid in the same param-
eter range, and to make comparison with the complete numerical computation.
The amplitude of diagram (a) is given by:

A = −g
2

8
(− ig

2
)

1

MW

∑
q=d,s,b

VqcV
∗
qtmq

∫
dDl

(2π)D

[
ūcγ

µ(1− γ5)i·

/p− /l − /k +mq

(p− l − k)2 −m2
q

i
/p− /l +mq

(p− l)2 −m2
q

γν(1− γ5)uc
]( −i
l2 −M2

W

)[
gµν −

lµlν
M2

W

] (5.2)
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Using the orthogonality of L and R chiral projectors we obtain

A = − g3

4MW

∑
q

VqcV
∗
qtm

2
q

∫
dDl

(2π)D

[
ūcγ

µ(2/p− /k − 2/l)γνPLut

][
gµν − lµlν

M2
W

]
((p− l − k)2 −m2

q)((p− l)2 −m2
q)(l

2 −M2
W )

(5.3)
The dominant part of the amplitude comes from the contraction of the gµν piece
of the W propagator, since the lµlν part gives an O(m2

t /M
2
W ) correction, which

is small in the limit M2
W � m2

t . Applying gamma matrices algebra and putting
mc = 0 we get to

A = − g3

4MW

∑
q

VqcV
∗
qtm

2
q(I1 + I2), (5.4)

where 
I1 = 4

∫
dDl

(2π)D

[
ūc/lPLut

]
((p−l−k)2−m2

q)((p−l)2−m2
q)(l

2−M2
W )

I2 = −2mt

∫
dDl

(2π)D

[
ūcPRut

]
((p−l−k)2−m2

q)((p−l)2−m2
q)(l

2−M2
W )

(5.5)

The integrals can be solved using the following Feynman parametrization for-
mula:

1

ABC
= 2

∫ 1

0
dx

∫ 1−x

0
dy

1[
A+ (B −A)x+ (C −A)y

]3 , (5.6)

where 
A = l2 −M2

W

B = (p− l)2 −m2
q

C = (p− l − k)2 −m2
q

(5.7)

In order to get rid of linear terms at denominators, the shift l→ l′ = l−
[
p(x+

y)− ky
]

is performed and we rearrange the integrals in the following form:I1 = 8
∫ 1
0 dx

∫ 1−x
0 dy

∫
dDl

(2π)D

[
ūc(/l+/p(x+y)−/ky)PLut

]
(l2−a)3

I2 = −4mt

∫ 1
0 dx

∫ 1−x
0 dy

∫
dDl

(2π)D

[
ūcPRut

]
(l2−a)3

,

(5.8)

a = m2
q(x+y)+M

2
W (1−x−y)−k2y−p2(x+y)−p2(x+y)2−k2y2+2kpy (5.9)

The linear term in l in I1 vanishes by symmetry of the integration volume and
using Dirac equation, recalling that we are putting mc = 0, we get the following
expression for I1 + I2:

I1 + I2 = −4mt

[
ūcPRut

] ∫ 1

0
dx

∫ 1−x

0
dy(1− 2x)

∫
dDl

(2π)D
1

(l2 − a)3
(5.10)
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From Eq. (A.4) and integrating over Feynman parameters in the limitM2
W � m2

q

we thus get to the following value of iA

iA =
g3mt

2MW

∑
q

VqcV
∗
qtm

2
q

16π2
[
ūcPRut

] ∫ 1

0
dx

∫ 1−x

0
dy

1− 2x

a
(5.11)

Finally, the integration over Feynman parameters in the range M2
W � m2

t pro-
duces the final amplitude for diagram (a), which reads

iA =
g3mt

4MW

∑
q

VqcV
∗
qtxq

16π2
[
ūcPRut

]
(5.12)

where we have defined xq ≡ m2
q/M

2
W . Let’s now proceed with the computation

of diagram (b) in the same parameters range. The amplitude of the diagram
reads

B = −g
2

8
igMW

∑
q=d,s,b

VqcV
∗
qtmq

∫
dDl

(2π)D

[
ūcγ

µ(1− γ5)i
(/p− /l +mq)

(p− l)2 −m2
q

γν(1− γ5)ut
]
·

(
− i

(l − k)2 −M2
W

)(
gµσ −

(l − k)µ(l − k)σ
M2

W

)(
− i

l2 −M2
W

)(
gσν −

lν l
σ

M2
W

)
(5.13)

The dominant contribution comes from taking the contraction of the metric
tensors inside W boson propagators, as other finite terms will be suppressed by
powers of MW .
Using orthogonality of chiral projectors and basic gamma matrices properties,
the loop integral becomes

−2
∫

dDl

(2π)D

[
ūc(/p− /l)PLut

]
((p− l)2 −m2

q)(l
2 −M2

W )((l − k)2 −M2
W )

(5.14)

Using the Feynman parametrization Eq. (5.6) and performing the loop momen-
tum shift l→ l′ = l − (px+ by) we are given with

−4
∫ 1

0
dx

∫ 1−x

0
dy

∫
dDl

(2π)D

[
ūc
(
/p(1− x)− /ky − /l

)
PLut

]
(l2 − b)3

, (5.15)

where b = M2
W (1 − x) +m2

qx − p2x − k2y − (px + ky)2. Using Dirac equation
and setting mc = 0 yields the following amplitude:

B = 2g3MW

∑
q

VqcV
∗
qtmt

[
ūcPRut

] ∫ 1

0
dx

∫ 1−x

0
dy(1− x− y)

∫
dDl

(2π)D
1

(l2 − b)3

(5.16)
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When we perform the integrals over Feynman parameters only terms propor-
tional to quark masses survive, due to unitarity of CKM matrix and we finally
obtain this expression for iB:

iB = −g
3mt

MW

∑
q

VqcV
∗
qtxq

16π2
[
ūcPRut

]
(5.17)

The leading term of the sum is given by the bottom quark and thus we obtain
the approximated amplitude for t→ cH:

M(t→ cH) ∼ − 3g3

64π2
VcbV

∗
tb

mtm
2
b

M3
W

[
ūcPRut

]
(5.18)

This expression shows the basic dependence of the amplitude on both the top
Yukawa coupling, through the factor mt/MW , and the remnants of the GIM
cancellation, giving rise to the factor V ∗

tbVcb
m2

b

m2
W

.
Using some spinor algebra we get the following unpolarized squared amplitude:

|M̄ |2 = 1

2

( 3g3

64π2
)2|Vcb|2|Vtb|2m2

tm
4
b

M6
W

(
m2

t −m2
H

)
(5.19)

The differential decay width is given by:

dΓ =
1

2mt
|M̄ |2dφ, (5.20)

where dφ is the differential phase space. Integrating over the full solid angle, the
total decay width reads

Γ(t→ cH) =
9

512π5
G3

F√
2
|Vcb|2|Vtb|2m3

tm
4
b

(
1−

m2
H

m2
t

)2
(5.21)

Extrapolating the formula Eq.(5.18) out of its validity region yields the following
value for the branching ratio: B(t→ cH) ∼ 7·10−14, which differs by one order of
magnitude from the numerical result reported in [36], namely BNum(t→ cH) ∼
3 ·10−15. The discrepancy is due to the fact that we neglected O(m2

t /m
2
W ) terms

in the computation and we did not perform the running of the bottom quark mass
to the top scale, which yields a factor [mb(mt)/mb(mb)]

4 ∼ 0.09. However, the
experimental bound on this decay from LHC is BExp(t→ cH) < 2.1 · 10−3 [37],
that is about twelve orders of magnitude less stringent than the SM prediction.
Other top quark FCNC decay processes are characterized by similar SM rates:

B(t→ cZ) ∼ 1 · 10−14

B(t→ cγ) ∼ 4.6 · 10−14

B(t→ cg) ∼ 4.6 · 10−12

(5.22)

These values are well beyond the detection capabilities of the LHC, which can
optimistically probe a maximum of 10−5. Consequently, measuring any excess
in the branching ratios for top quark FCNC processes would be a clear evidence
of physics beyond the SM.
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5.2 Bosonic ALP Lagrangian
The most general effective Lagrangian describing ALP couplings to the SM
bosons is given at LO in the linear expansion by [1]:

LEff = LSM + δLEff , (5.23)

where

LSM ⊃ DµΦ
†DµΦ−

(
Q̄LY

dΦdRj + Q̄LY
uΦ̃uR + L̄LY

eΦeR + h.c.
)

(5.24)

δLEff =
1

2
∂µa∂

µa− 1

2
m2

aa
2 + caφOaφ + cBOB + cWOW , (5.25)

with

Oaφ = i
∂µa

fa
Φ†←→DµΦ

OB = − a

fa
BµνB̃

µν

OW = − a

fa
WµνW̃

µν ,

(5.26)

where ci are real Wilson coefficients, Φ is the SM Higgs doublet, fa is the ALP
decay constant and X̃µν is the dual field strength of X boson.
We see that there is no explicit interaction term in the Lagrangian between the
ALP and fermions, however fermion-axion interactions are there even if hidden.
This can be seen by using the equation of motion of Φ and substituting the
resulting expression into OaΦ, thus inducing a new Yukawa-axion coupling for
which OaΦ can be entirely traded up to O(a/fa). Let’s prove this statement
explicitly now: taking the expression of OaΦ, we can get rid of the derivative
acting on the ALP field integrating by parts and thus obtaining:

OaΦ = − ia
fa

[
∂µ

(
Φ†DµΦ

)
− ∂µ

(
DµΦ

†)Φ] (5.27)

The covariant derivative acts on the Higgs doublet as DµΦ = (∂µ + iΓµ)Φ,
where Γµ is the Yang-Mills connection. After some algebraic manipulations, the
operator OaΦ can be rewritten as:

OaΦ =
ia

fa
�Φ†Φ+ h.c. � = DµD

µ (5.28)

The Euler-Lagrange equations for Φ and Φ† yield{
�Φ† = X†Φ† − ∂LY uk

∂Φ

�Φ = XΦ− ∂LY uk

∂Φ† ,
(5.29)
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where LY uk is given by the second piece in Eq. (5.24) and

X = −icaΦ
�a
fa
− 2caΦΓµ

∂µa

fa
(5.30)

Since X is made by operators suppressed by a power of the UV cutoff fa, we
can forget about it, as our goal is to obtain an equivalent operator OaΦ at order
O(a/fa) and thus we plug in Eq. (5.28) only the terms given by ∂LY uk

∂Φ and its
hermitian conjugate.
The overall effect is that

OaΦ → i
a

fa

[
Q̄LYuΦ̃uR − Q̄LYdΦdR − L̄LYeΦeR

]
+ h.c. (5.31)

The Lagrangians containing the expressions given by Eqs. (5.26) and (5.31)
respectively of OaΦ give not the same Feynman rules, since the couplings between
fields are different, but produce the same S matrix, as they are equivalent on-
shell.
We note that the ALP-electroweak operators in Eq. (5.26) are flavour blind,
nevertheless OaΦ and OW can take part in FCNC at one loop level through W
boson exchange. At this order of perturbation theory, the parameter space of
ALP-couplings in FCNC processes is thus bidimensional and is spanned by the
Wilson coefficients cW and caΦ.

5.3 ALP and FCNC processes

The effective interaction between the ALP and left-handed fermions can be ex-
pressed in full generality as:

L
di→dj
eff = −gaij(∂µa)d̄jγµPLdi + h.c, (5.32)

where PL ≡ (1 − γ5)/2, i and j denote flavour indices and gaij is an effective
coupling.
The operators OaΦ and OW give contributions to the flavour changing di → dja
transition, with i 6= j, via one-loop W± exchange. The corresponding Feynman
diagrams at the quark level are represented in Figure 5.2. From the expressions
of OW and OaΦ, we can show that the Feynman rules of ALP vertices with
fermions and W bosons are the following:

a

ūβ

uα

− (mu)α
fa

δαβγ5caΦ

(5.33)
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i j

caΦ

a

p

p− l p− l − k

p− kl

k

i j

cW

a

p p− l

q

p− k

l l − k

k

(a) (b)

Figure 5.2: One-loop diagrams contributing to FCNC transitions, involving OW and
OaΦ

a

d̄β

dα

(md)α
fa

δαβγ5caΦ

(5.34)

a

ēβ

eα

(me)α
fa

δαβγ5caΦ

(5.35)

a

Wµ,+

W ν,−

− 4i
fa
cW p

+
αp

−
β ε

µναβ

(5.36)

Let’s perform now the calculation of the amplitude of diagram (b), in order to
find its contribution to the effective coupling gaij :

B = −g
2

8

(−4i
fa

)cW
∑

q=u,c,t

VqiV
∗
qj

∫
dDl

(2π)D

[
d̄jγ

µ(1− γ5)i
/p− /l +mq

(p− l)2 −m2
q

γν(1− γ5)di
]
·

( −i
(l − k)2 −M2

W

)[
gµσ −

(l − k)µ(l − k)σ
M2

W

]
(k − l)αlβεσδαβ

( −i
l2 −M2

W

)(
gνδ −

lν lδ
M2

W

)
(5.37)
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B =
g2cW
2fa

∑
q=u,c,t

VqiV
∗
qj

∫
dDl

(2π)D

[
d̄jγ

µ(1− γ5)
/p− /l +mq

(p− l)2 −m2
q

γν(1− γ5)di
]
·

( 1

(l − k)2 −M2
W

)[
gµσ −

(l − k)µ(l − k)σ
M2

W

]
(k − l)αlβεσδαβ

( 1

l2 −M2
W

)(
gνδ −

lν lδ
M2

W

)
.

(5.38)
In these equations mq is the mass of a given up-type quark q running in the loop,
and in the approximation that mdj , mdj �MW we can set p2 → 0 and k2 → 0.
In this limit we obtain:

B = −g
2cW
2fa

∑
q=u,c,t

VqiV
∗
qj

∫
dDl

(2π)D

[
d̄jγ

µ(1− γ5)(/p− /l +mq)γ
ν(1− γ5)di

]
·(

gµσ − (l−k)µ(l−k)σ
M2

W

)
(k − l)αlβεσδαβ

(
gνδ − lν lδ

M2
W

)(
l2 −m2

q

)(
l2 −M2

W

)2
(5.39)

The factor mq in the fermion propagator vanishes because of the orthogonality
of left and right chiral projectors. Taking the product of the two W boson
propagators we are left with 4 terms, where the only one non vanishing by
symmetry is given by the product of the metric tensors gµσgνδ.
Thus we are left with this D dimensional integral to compute:∫

dDl

(2π)D
lβlσ(

l2 −m2
q

)(
l2 −M2

W

)2 [d̄jγµγσγν(1− γ5)di]kαεµναβ (5.40)

Under integration over loop momenta we can substitute lβlσ → l2

4 gβσ, so that
the integral simplifies to:

1

4

∫
dDl

(2π)D
l2(

l2 −m2
q

)(
l2 −M2

W

)2 [d̄jγµγβγν(1− γ5)di]kαεµναβ . (5.41)

We can now decompose the product of gamma matrices into symmetric and
antisymmetric parts, namely:

γµγβγν = Sµβνσγ
σ − iεσµβνγσγ5, (5.42)

where only the latter term survives the contraction with the epsilon tensor. The
use of Levi-Civita contraction identity

εµνβσε
µνβα = −6δασ (5.43)

yields the following amplitude:

B = −3ig2cW
2fa

[
d̄jγ

σ(1− γ5)di
]
kσ

∑
q=u,c,t

VqiV
∗
qj

∫
dDl

(2π)D
l2(

l2 −m2
q

)(
l2 −M2

W

)2
(5.44)
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Defining ξq ≡ VqiV ∗
qj and setting mu = 0, we can easily show exploiting unitarity

of CKM matrix that: ∑
q=u,c,t

ξq
l2 −m2

q

=
∑
q=c,t

ξqm
2
q

l2(l2 −m2
q)
. (5.45)

Since in our notation PL = (1− γ5)/2 and defining xq ≡ m2
q/M

2
W , we thus get:

B = −3ig2cW
fa

[
d̄jγ

σPLdi

]
kσ

∑
q=c,t

VqiV
∗
qjxq

∫
dDl

(2π)D
M2

W(
l2 −m2

q

)(
l2 −M2

W

)2
(5.46)

Therefore we see GIM Mechanism at work, namely the logarithmic divergent
loop integral is actually made to be finite as a consequence of the unitarity of
CKM matrix. The integral can be easily computed with the following Feynman
parametrization formula:

1

A2B
= 2

∫ 1

0
dx

x[
B + (A−B)x

]3 (5.47)

This formula yields for the loop integral:

2

∫ 1

0
dxx

∫
d4l

(2π)4
1

(l2 − c)3
, c =M2

Wx+m2
q(1− x). (5.48)

Computing the integral with (A.4) the amplitude reads now:

B =
3g2cW
fa

[
d̄jγ

σPLdi

]
kσ

∑
q=c,t

VqiV
∗
qj

16π2
xqM

2
W

∫ 1

0
dx

x

M2
Wx+m2

q(1− x)
(5.49)

Evaluating now the integral over x parameter, we get the final amplitude:

B =
3g2cW
fa

[
d̄jγ

σPLdi

]
kσ

∑
q=c,t

VqiV
∗
qj

16π2
g(xq), (5.50)

where the loop function is given by

g(x) =
x
[
1 + x(log x− 1)

]
(1− x)2

(5.51)

By means of the expression of the effective Lagrangian (Eq. 5.32) we can extract
the contribution to gaij given by this loop diagram, which is given by:

gaij(b) =
3g2cW
fa

∑
q=c,t

VqiV
∗
qj

16π2
g(xq) (5.52)
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Let’s now look at diagram (a), whose estimation, as we will see, involves some
more technical aspects. From Eq. (5.33) the amplitude A of the diagram reads

A = −g
2

8

(
− caΦ

fa
)

∑
q=u,c,t

VqiV
∗
qjmq

∫
dDl

(2π)D

[
d̄jγ

µ(1− γ5)i·

/p− /l − /k +mq

(p− l − k)2 −m2
q

γ5i
/p− /l +mq

(p− l)2 −m2
q

γν(1− γ5)di
]( −i
l2 −M2

W

)[
gµν −

lµlν
M2

W

]
(5.53)

Using the approximation of light external quarks at denominator and some ele-
mentary gamma matrices algebra at the numerator, we can recast the amplitude
in the following form:

A = − ig
2caΦ
4fa

∑
q=u,c,t

VqiV
∗
qjm

2
q

∫
dDl

(2π)D

[
d̄jγ

µ(1− γ5)/kγνdi
]

(l2 −m2
q)

2(l2 −M2
W )

[
gµν−

lµlν
M2

W

]
(5.54)

The expression in square brackets is proportional to external quark masses when
multiplied by the gµν piece of the W propagator, this can be seen writing /k as
/p− (/p− /k) and applying Dirac equation to the fermion fields. Therefore only the
term proportional to lµlν survives, and we are left with

A =
ig2caΦ
4fa

∑
q=u,c,t

VqiV
∗
qjm

2
q

∫
dDl

(2π)D

[
d̄j/l /k/l(1− γ5)di

]
M2

W (l2 −m2
q)

2(l2 −M2
W )

(5.55)

Exploiting gamma matrices anticommutation relation yields:

/l /k/l(1− γ5) =
[
− /kl2 + 2(l · k)/l

]
(1− γ5), (5.56)

so, introducing the chiral projector PL and making the replacement lµlν → l2

4 gµν
in the integral we obtain

A = − ig
2caΦ
4fa

∑
q=u,c,t

VqiV
∗
qjxq

[
d̄jγ

αPLdi

]
kα

∫
dDl

(2π)D
l2

(l2 −m2
q)

2(l2 −M2
W )

(5.57)
Now, from power counting the integral is logarithmically divergent, and we do
not get rid of this divergence by means of the unitarity of CKM matrix, because
the sum over internal quarks does not cancel due to the factor xq, therefore this
amplitude is truly divergent.
Anyway, since we are using an EFT approach, we can put a UV cutoff over
momentum integration and since the only UV scale at our disposal is the ALP
scale fa we fix Λ ≡ fa.
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Applying a Wick rotation in the loop integral via l0 → il0E and keeping only the
leading logarithm term we get:

∫ fa

mq

dDl

(2π)D
l2

(l2 −m2
q)

2(l2 −M2
W )

= − i

8π2

(
log fa

mq
+ corrections

)
(5.58)

Actually, there is some ambiguity in the definition of the IR cutoff mq, since we
should define at what scale µ the mass of the quarks is evaluated, whether at
the scale of the experiment or at the scale mq itself, where in the latter case
mq would correspond to the on-shell mass. However, this correction due to the
running of the mass is a NLO correction, whose size is of the same order of the
corrections that we neglected in the loop integral, so we forget about it in order
to be consistent with our approximation.
Thus, we finally obtain the following amplitude for the diagram (a):

A = − ig
2caΦ
4fa

∑
q=u,c,t

VqiV
∗
qj

16π2
xq

[
d̄jγ

αPLdi

]
kαlog f

2
a

m2
q

(5.59)

From Eq. (5.32) we extract the contribution to the effective coupling gaij provided
by the diagram (a):

gaij(a) = −
g2caΦ
4fa

∑
q=u,c,t

VqiV
∗
qj

16π2
xqlog f

2
a

m2
q

(5.60)

Therefore, we are given with the following one loop result for the effective cou-
pling gaij , in accordance with [1]:

gaij = g2
∑

q=u,c,t

VqiV
∗
qj

16π2

[3cW
fa

g(xq)−
caΦ
4fa

xqlog f
2
a

m2
q

]
(5.61)

We note that, since g(x) ∼ x+O(x2) for small x, up and charm quark contribu-
tions are subleading in both terms with respect to that of the top quark, which
is the dominant one. We also observe that the logarithmic enhancement of the
caφ term ∝ log (fa/mq) should be particularly relevant for large values of fa.
We saw in the previous section that the decay amplitude in the SM for a FCNC
quark decay into the Higgs boson was finite, while in this computation a UV
divergence appears in the diagram containing an ALP vertex with fermions (a),
while the one where the ALP couples to W bosons (b) is indeed finite. While
this is theoretically reasonable, since we are now working in an EFT, it may
seem puzzling to understand how technically the amplitude results to be finite
by replacing the ALP with the Higgs boson, but we should remember that, in
addition to be a pseudoscalar, the ALP is also a NGB and so has an anomalous
coupling with gauge bosons in order to preserve the shift symmetry.
Conversely, the Higgs coupling with the W boson is just proportional to the W
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mass itself and the degree of divergence of the corresponding diagram is not low-
ered by vanishing contractions of loop momenta with the antisymmetric tensor.

5.3.1 Computation of Γ
(
K+ → π+a

)
The differential decay rate for K+ → π+a is given by:

dΓ =
(2π)4

2MK

∫
d3p̄1

(2π)32E1

d3p̄2
(2π)32E2

δ(4)
(
kµ − pµ1 − p

µ
2

)
|M̄2|, (5.62)

where kµ, pµ1 and pµ2 are the four momenta of K+, π+ and a respectively. Inte-
grating over p̄2 and going to polar coordinates, where d3p̄1 = |p̄21|dp1dΩ yields:

dΓ =
1

32π2MK

∫
dp1
E1E2

δ
(
MK −

√
p̄21 +m2

π−
√
p̄21 +m2

a

)
|p̄21||M̄2|dp1dΩ (5.63)

The kinematic part can be easily solved using the well known property of the
δ-function:

δ(f(x)) =
∑
k

δ(x− xk)
|f ′(xk)|

f(xk) = 0 (5.64)

We thus get to the following expression:

dΓ =
1

64π2MK
λ1/2πa

∫
dp1δ

(
|p̄1|−

1

2mk

(
M2

K−m2
π−m2

a

))
|p̄21||M̄2|dp1dΩ, (5.65)

with
λπa =

[
1− (ma +mπ)

2

m2
k

][
1− (ma −mπ)

2

m2
k

]
(5.66)

We are now left with with the matrix element M to compute. The Feynman
rule for the vertex defined by the Lagrangian in Eq.(5.32) is given by

a

di

dj

= −igaij(p− p′)µγµ(1− γ5)

p

p′
(5.67)

Therefore the amplitude M may be written as

M = − i
2
gaij(p− p′)µ < k+|d̄jγµ(1− γ5)di|π+ > (5.68)

Since initial and final states have the same parity, only vector current contribu-
tion is not vanishing. Its matrix element between kaon and pion states decom-
poses into two form factors, f+ and f− as

< k+|d̄jγµdi|π+ >= (pk + pπ)µf+(q
2) + (pk − pπ)µf−(q2), (5.69)
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where qµ = (pk− pπ)µ is the 4-momentum transferred between the kaon and the
pion. We can define from f+ and f− the following scalar form factor f0:

f0(q
2) = f+(q

2) +
q2

M2
K −M2

π

f−(q
2), (5.70)

which satisfies by definition the relation f+(0) = f0(0). We can so rewrite M in
terms of f0 as

M = − i
2
gaij(m

2
k −m2

π)f0(q
2) (5.71)

Taking the square modulus of M and integrating over the solid angle dΩ we
finally obtain this expression for the decay width:

Γ
(
K+ → π+a

)
=
M3

K |gπa|2

64π
f20 (m

2
a)λ

1/2
πa

(
1− m2

π

m2
k

)2
(5.72)

An analogous expression can be obtained for the B → Ka decay performing the
proper replacements. Finally we read the relevant scalar form factors for Kaon
and B-meson decays respectively from Refs. [2], [3].
We are now ready to start our phenomenological analysis, in order to put con-
straints on the parameter space spanned by cW and caΦ, comparing the exper-
imental values with the theoretical ones, computed considering both the SM
contribution and the ALPs one.

5.4 Phenomenological bounds on ALPs couplings
We perform our analysis in the scenario of an ALP which does not decay into
visible particles in the detector. This situation can occur if a has sufficiently
large coupling to a stable dark sector, as motivated by several DM models. The
experimental constraints relevant for different ma ranges are given by:

• ma ∈ (0,mK −mπ).
The most constraining experimental limits on B(K → πνν̄) come from
the E787 and E949 experiments, performed at Brookhaven National Lab-
oratory. The value reported in these searches is B(K+ → π+νν̄)Exp =
(1.731.15−1.05)×10−10 [19], slightly above the SM prediction, B(K+ → π+νν̄)SM =
(9.11± 0.72)× 10−11 [18], where the SM uncertainty is dominated by the
current precision on CKM matrix parameters.
The NA62 experiment at the CERN SPS aims to measure B(K+ → π+νν̄)
attaining at the SM rates in the very near future [22].

• ma ∈ (0,mB −mK)
The study of the decay B → Kνν̄ was performed by the Belle collaboration.
The experimental limit on the Branching ratio is given by B(B → Kνν̄) <
2.7 × 10−5 [20], which lays a factor 2.7 above the SM prediction [21]. In
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Figure 5.3: Invisible Alp: limits on the absolute values of cW (left panel) and caΦ (right
panel) as a function of the ALP mass. The exclusion contours were derived from the
experimental bounds on B(K+ → π+ + inv) (green) and B(B → K + inv) (blue), by
fixing fa = 1 TeV and by setting the other coupling to zero.

the near future, Belle-II experiment aims at measuring the SM value with
a O(10%) precision [23].

We will infer the constraints on ALPs-electroweak couplings given by data in two
different setups: firstly within the one coupling at a time approach, where either
cW or caΦ are switched on, then we will consider the simultaneous presence of
both couplings.
In Figure 5.3 the allowed values of cW and caΦ are depicted as a function of the
ALP mass, where only the corresponding coupling is added to the SM.
The constraints derived on the parameter spaces {ma, cW } and {ma, caΦ} coin-
cide with those derived in [1].
The case illustrated corresponds to fa = 1 TeV and we observe that the quan-
titative similarity of the contour regions of the two couplings is just accidental.
It can be checked that the limits on caΦ become stronger than those for cW for
large values of fa, as a consequence of the logarithmic dependence on fa of its
contribution.
We can note that K-meson constraints are about one order of magnitude stronger
than those derived for B-meson decays, although limited to a more restricted pa-
rameter range. However, such constraints become weaker in the ALP mass range
150 MeV ≤ ma ≤ 260 MeV, since the search for K+ → π+νν̄ is background lim-
ited in this region and therefore the branching ratio limit is bigger.
When both caΦ and cW are simultaneously considered, an interesting interfer-
ence pattern can take place.
In Figure 5.4 the results of combining the experimental constraints for fa =
1 TeV and ma ≤ 0.1 GeV are represented.
We can observe that when the relative sign between the couplings is positive, then
a blind direction in the parameter space appears, due to the cancellation of the
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Figure 5.4: Invisible Alp: allowed {cW , caΦ} parameter space when the two couplings
are simultaneously present. The superposition of the constraints from K+ → π+ + inv
(pink) and B+ → K+ + inv (red) is shown for the illustrative case with fa = 1 TeV and
ma ≤ 0.1 GeV. The left (right) panel shows the destructive (constructive) interference
of the two couplings for cW /caΦ > 0 (cW /caΦ < 0). The blue solid line corresponds to
the current limit from mono-W searches at the LHC with 3.2 fb−1 of data [24].

two contributions. This unconstrained direction is exactly aligned for Kaon and
B-meson decays, therefore additional experimental information is then needed
to strengthen the constraint along this direction.
One possibility would be to consider the D-meson decay D → πνν̄, which is
sensitive to a different combination of caΦ and cW , as up and down-type quark
contributions to the term proportional to caΦ have opposite sign (Eqs. 5.33 and
5.34).
Nevertheless, these decays suffer from heavy GIM suppression, since the con-
tribution of the loop is proportional to (mb/mW )2 and no such experiments
have been performed to date. A more promising possibility is to consider LHC
constraints which are sensitive to a specific ALP coupling. For example, LHC
searches for mono-W final states are only sensitive to the coefficient cW . The
authors of Ref [24] derived the following bound from 3.2 fb−1 luminosity of LHC
data:

|cW |
fa
≤ 0.41 TeV−1, (5.73)

these constraints have been superimposed in Figure 5.4.
Similarly, the study of pp → tt̄ + MET at LHC would constrain only caΦ, but
such an analysis goes beyond the goal of our work.
Finally, from these plots we can observe that typically LHC constraints are
weaker than flavour ones, except in the region of parameter space where the
FCNC processes are suppressed due to the destructive interference between cW
and caΦ contributions. In this situation, the combination of low and high-energy
bounds becomes an important tool to shed light on new physics.
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Conclusions

Axions and ALPs phenomenology is a very promising research field, with im-
portant implications both in particle physics and in cosmology. In this context,
FCNC processes provide a unique framework for testing the SM, as they enclose
a huge variety of suppressed decays, through which one can look for deviations
of the experimental results from the SM predictions and put bounds on ALP
parameter space. However, so far no NP signals have been detected in flavour
physics and this demands for more experimental advances to attain SM rates,
which are going to be pursued in the very near future.
In the absence of data supporting a specific model of physics BSM, effective
lagrangians provide a powerful model-independent tool based on the SM gauge
symmetry.
In this work we considered the complete basis of bosonic electroweak ALP effec-
tive operators, at leading order of the expansion in powers of the inverse of the
symmetry breaking scale, i.e. dimension 5 operators. Since this basis is flavour
blind, its impact on flavour changing transitions starts at the loop level. Indeed,
the experimental accuracy achieved in rare-decay physics is so good that loop-
induced contributions by ALPs may provide the best bounds in a large fraction
of the parameter space.
We derived constraints on ALP couplings in the scenario of invisible ALP: this
assumption is physically motivated, as it can arise if the ALP has a sufficiently
large coupling to a dark sector, as motivated by several DM models, making
(a→inv) the dominant decay channel of the ALP.
We first performed the analysis considering just one operator at a time and we
found out that searches for K meson decays provide more stringent constraints
than for B decay, even if limited to a more restricted ALP mass range. Then
we took into account simultaneously ALP couplings to fermions and W boson
and we studied the two dimensional parameter space spanned by the Wilson
coefficients caΦ and cW , reproducing the costraints derived in [1].
An interesting pattern of constructive/destructive interference has been revealed,
depending on the relative sign of the couplings and on the mass range consid-
ered. In this way, the previous bounds stemming from kaon and B-decay data,
obtained in the one coupling at a time approach, are alleviated by the appearence
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of an unconstrained direction in the parameter space.
Moreover, we outlined how LHC constraints sensitive to a single ALP coupling,
while generally considerably weaker than flavour bounds, can actually provide
complementary information to low-energy probes, exploring otherwise inaccessi-
ble directions in the ALP parameter space.
These searches will be improved in the next years thanks to the experimental
data collected at Na62, LHCb and Belle-II, providing hopeful opportunites to
detect NP.
This thesis can be extended in several ways as we performed our analysis setting
up many assumptions. For instance, we could perform the analysis also in the
case of visible ALP decays, as presented in Reference [1]. Moreover, we could re-
lax the hypothesis of flavour blind coupling of the ALP to fermions, introducing
flavour diagonal couplings caff . This theoretical setup may be useful to improve
the current experimental bounds of ALP couplings to fermions and may be the
topic of a future work.
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Appendix A

Loop integrals in D dimensions

When performing loop computations, one has to deal with the propagators of
the particles running in the loops, which can be combined in a more suitable
way by the integration over Feynman parameters:

1

A1A2 . . . An
=

∫ 1

0
dx1 . . . dxnδ(1−

∑
i

xi)
(n− 1)!

[x1 +A1 + x2A2 + . . .+ xnAn]n

(A.1)
Once we have done this step, the expression between square brackets in the
denominator will be a quadratic function of the integration momentum kµ, for
a one loop integral. In general the denominator will contain both quadratic and
linear terms in k. We can eliminate the latter shifting the integration momentum
k → l. After this shift the denominator takes the form (l2 −∆)n.
Obviously the same shift has to be performed at numerator. Here, terms with an
odd number of powers of l vanish by symmetric integration and we can replace,
still due to symmetry:

lµlν → l2

D
gµν (A.2)

lµlν lρlσ → 1

D(D + 2)
(l2)2(gµνgρσ + gµρgνσ + gµσgνρ). (A.3)

These integrals can be evaluated either in Euclidean space after Wick-rotating,
or, as we have done in our computations, using the following D-dimensional
integrals in Minkowski spacetime:∫

dDl

(2π)D
1

(l2 −∆)n
=

(−1)ni
(4π)D/2

Γ(n− D
2 )

Γ(n)

( 1

∆

)n−D
2 (A.4)

∫
dDl

(2π)D
l2

(l2 −∆)n
=

(−1)n−1i

(4π)D/2

D

2

Γ(n− D
2 − 1)

Γ(n)

( 1

∆

)n−D
2
−1

(A.5)
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∫
dDl

(2π)D
lµlν

(l2 −∆)n
=

(−1)n−1i

(4π)D/2

gµν

2

Γ(n− D
2 − 1)

Γ(n)

( 1

∆

)n−D
2
−1

(A.6)

∫
dDl

(2π)D
(l2)2

(l2 −∆)n
=

(−1)ni
(4π)D/2

D(D + 2)

4

Γ(n− D
2 − 2)

Γ(n)

( 1

∆

)n−D
2
−2

(A.7)

If the integral is divergent, we can extract the behaviour near D = 4 expanding:( 1

∆

)n−D
2
= 1− ε

2
log(∆) + O(ε2) (A.8)

where we have defined ε ≡ 4−D. We also need Euler Gamma function expansion
around its poles, which is the following for n = 0, 1 . . .

Γ(−n+
ε

2
) =

(−1)n

n!

[2
ε
+ ψ(n+ 1) + O(ε)

]
, (A.9)

being ψ(1) = γE the Euler-Mascheroni constant

γE = −0.5772 . . . (A.10)

We finally write down some gamma matrices contraction identities in D dimen-
sion which we used in our computations:

γµγµ = D (A.11)

γµγνγµ = −(D − 2)γν (A.12)

γµγνγργµ = 4gνρ − (4−D)γνγρ (A.13)

γµγνγργσγµ = −2γσγργν + (4−D)γνγργσ (A.14)
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Appendix B

Computation of diagram c in
Fig. 3.3

Here we report the computation for the amplitude C of Figure 3.3 (c) in sec-
tion 3.2. Since it’s topologically similar to diagram (b), we will use the same
techniques in the calculation. The amplitude C is given by:

C = −g
2

8
(igs)

2VudV
∗
csµ

ε

∫
dDk

(2π)D
[
s̄βγ

ρT a
βαi

/p+ /k

(p+ k)2
γµ(1− γ5)cα

]
·

−igρσ
k2

−igµν
k2 −M2

W

[
ūδγ

ν(1− γ5)i
/p+ /k

(p+ k)2
γσT

a
δγdγ

] (B.1)

Using colour algebra identity (3.49) and keeping only the piece contributing to
the coefficient of S2 we obtain

C(S2) =
−GF

6
√
2
M2

WVudV
∗
csg

2
s

∫
d4k

(2π)4

[
s̄αγ

ρ(/p+ /k)γµ(1− γ5)cα
][
ūβγµ(/p+ /k)γρ(1− γ5)dβ

]
k2(k2 −M2

W )((p+ k)2)2

(B.2)
We can now make a shift of integration momentum k, namely k → k + p, in
order to eliminate the external momentum p from the numerator; this yields the
following expression:

C(S2) =
−GF

6
√
2
M2

WVudV
∗
csg

2
s

∫
d4k

(2π)4

[
s̄αγ

ρ/kγµ(1− γ5)cα
][
ūβγµ/kγρ(1− γ5)dβ

]
k4((k − p)2 −M2

W )(k − p)2
(B.3)

Using decomposition of gamma matrices, we can simplify the contractions at
numerator as: [

s̄αγ
ργνγµ(1− γ5)cα

][
ūβγµγνγρ(1− γ5)dβ

]
= 4S2 (B.4)

We note that this relation has a factor 4 of difference with respect to the corre-
sponding one in diagram (b), this is because, due to the exchange of the order of
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gamma matrices in the contractions, symmetric and antisymmetric parts of the
decomposition now give opposite contribution.
Rewriting at numerator M2

W = (k − p)2 −
[
(k − p)2 −M2

W

]
, and substituting in

the integration kνkσ → gνσ
4 k2 the amplitude considerably simplifies:

C(S2) =
−GF

6
√
2
M2

WVudV
∗
csg

2
s

(
I − J

)
S2, (B.5)

where
I =

∫
d4k

(2π)4
1

k2
(
k2 −M2

W

) J =

∫
d4k

(2π)4
1

k2(k − p)2
(B.6)

Using Feynman parametrization formula (3.43) we obtain these results for I and
J:

I =
i

(4π)2

∫ 1

0
dx

[2
ε
− log(M2

Wx)
]

J =
i

(4π)2

∫ 1

0
dx

[2
ε
− log(−p2x(1− x))

]
(B.7)

Combining and reinserting S1 tree-level, which we did not carry in the compu-
tation, we get the final expression for the amplitude of diagram (c):

C = −GF√
2
VudV

∗
cs

αs

3(4π)

[
log

(M2
W

−p2
)
+ 1

]
(S2 − 3S1) (B.8)

Since we are computing the amplitude in the LO approximation, the finite O(αs)
constant term can be neglected, so we have reproduced the result quoted in
(3.45).
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Appendix C

Computation of the divergent
parts of diagrams in Fig. 5.1

Let’s start with the computation of the divergent part of the amplitude associated
to diagram (a).
Taking Eq. (5.3) and performing the shift over loop momentum l → l′ = l −[
p(x+ y)− ky

]
we obtain

A = − g3

2MW

∑
q=d,s,b

VqcV
∗
qtm

2
q

∫ 1

0
dx

∫ 1−x

0
dy

∫
dDl

(2π)D

[
ūcγ

µ(2/p(1− x− y)− /k(1− 2y)− 2/l)γνPLut

]
(l2 − a)3

·

[
gµν −

(l + p(x+ y)− ky)µ(l + p(x+ y)− ky)ν
M2

W

]
(C.1)

In order to select the divergent terms, we need to pick up quadratic terms in l;
there are three of such contributions, namely the one taking the lµlν piece of W
boson propagator (I1), and two taking one power of l from the W propagator
and the other one from the fermion propagator (I2 and I3).
The divergent part of the loop integrals reads:I1 =

1
2

[
ūc
(
2/p(1− x− y)− /k(1− 2y)

)
PLut

] ∫
dDl

(2π)D
l2

(l2−a)3

I2 = I3 = 2
[
ūc
(
/p(x+ y)− /ky

)
PLut

] ∫
dDl

(2π)D
l2

(l2−a)3

(C.2)

Applying Eq.(A.5) and summing up the three integrals we end up with the
following expression for the divergent part associated to diagram (a):

ADiv = − ig3

2MW

∑
q

VqcV
∗
qt

16π2
m2

q

[
ūcγ

αPLut
] ∫ 1

0
dx

∫ 1−x

0
dy

[(
2+6(x+y))pα−(1+6y)kα

]
(C.3)
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Performing the integration over Feynman parameters and using Dirac equation
we get the final result, which reads

ADiv = − 3ig3

2MW

∑
q

VqcV
∗
qt

16π2
m2

q

(
mb

[
ūcPRut

]
+mc

[
ūcPLut

])
(C.4)

Let’s move now to diagram (b). Starting from Eq.(5.13), after some algebraic ma-
nipulation and the introduction of Feynman parameters, we get to the following
amplitude:

B = −g3MW

∑
q=d,s,b

VqcV
∗
qt

∫ 1

0
dx

∫ 1−x

0
dy

∫
dDl

(2π)D

[
ūcγ

µ
(
/p(1− x)− /ky − /l

)
γνPLut

]
(l2 − b)3

·

[
gδµ −

(l + px− k(1− y))δ(l + px− k(1− y))µ
M2

W

][
gδν −

(l + px+ ky)δ(l + px+ ky)ν
M2

W

]
(C.5)

where
b =M2

W (1− x) +m2
qx− p2x− k2y − (px+ ky)2 (C.6)

We have to select quartic terms in l, since the quadratic ones produce a loga-
rithmic divergence, which is canceled by unitarity.
There are 5 of such terms, one is obtained picking up all the four powers of l
from the W boson propagators and the other four picking up three powers of l
from the W propagators and the other power from the fermion propagator.
Summing up all these contributions we obtained the following expression for the
divergent part:

BDiv =
g3

4M3
W

∑
q=d,s,b

VqcV
∗
qt

[
ūcγ

αPLut
] ∫ 1

0
dx

∫ 1−x

0
dy

[(
2+8x)pα−(5−8y)kα

] ∫ dDl

(2π)D
l4

(l2 − b)3

(C.7)
The loop integral can be computed using Eq.(A.7) and yields

BDiv =
ig3

2M3
W

∑
q=d,s,b

VqcV
∗
qt

16π2
[
ūcγ

αPLut
]
6

∫ 1

0
dx

∫ 1−x

0
dy

[(
2 + 8x)pα − (5− 8y)kα

]
·

(
M2

W (1− x) +m2
qx− p2x− k2y − (px+ ky)2

)
(C.8)

Applying unitarity, only the term proportional to m2
q survives and using Dirac

equation we obtain

BDiv =
3ig3

2MW

∑
q

VqcV
∗
qt

16π2
m2

q

(
mb

[
ūcPRut

]
+mc

[
ūcPLut

])
(C.9)

Comparing Eq.(C.4) and Eq.(C.9) we finally see that divergences in the ampli-
tude of the process t → cH cancel out, in agreement with the fact that the SM
is a renormalizable theory.
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