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Abstract

Electrocardiogram (ECG) is one of the most common noninvasive diagnostic tools used in clin-
ical medicine. It is mostly used by cardiologists to assess heart function and electrophysiology
in order to assist cardiovascular disease detection and development of treatment strategies.

In recent years, the rapid evolution of machine learning models has opened the possibility
to automate a variety of tasks not feasible by traditional algorithms, such as the detection and
classification of arrhythmia, biometric recognition, and even the diagnosis of other diseases.

Supervised machine learning models, especially deep neural networks, require a large amount
of quality annotated data. The acquisition of ECG data, however, results difficult for several
reasons, including privacy and other legal constraints.

A widely employed technique to overcome this kind of problem is data augmentation, which
consists in increasing the volume, quality and diversity of a training dataset by generating
additional data samples. It is especially useful in cases where data collection consumes a
considerable amount of time and resources. One viable approach to data augmentation consists
in estimating the underlying distribution of the data to be augmented. This enables the creation
of new synthetic data, that exhibit a high degree of correlation with the existing ones, through a
suitable sampling process. Recently, this approach reached state-of-art performances thanks to
the embedding of neural networks into the probability estimators.

The aim of this thesis focuses on exploiting the potential of the VAE latent space by using
its most visually interpretable representation, the two dimensional one. It is going to be shown
how the model can be effectively used for two main purposes: the first one is generating new
ECG data samples from the ones measured from a ’real’ person, by also allowing an adjustable
degree of variability. The second one is generating ECG data samples associated to a ’synthetic’
person, which combines feature of the ECGs belonging to two or more ’real’ people. The whole
process can be directed by human intervention with a high degree of control and assisted by
proper metrics that are used to evaluate the quality of the generated data. The proposed method
allows the generation of single-beat ECGs having a fixed length. The temporal correlation
among consecutive ECG beats and, in general, ECG trace variability, will be considered in a
future work.

The first two chapters will be used to introduce the main topics of the thesis, such as the
concepts of artificial intelligence, data augmentation, ECG signals, and explainable AI. The
third one presents the theoretical background of the implemented variational autoencoder model
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and its training process. The fourth one contains the specific of the chosen model architecture,
while the fifth and sixth ones the application of the model for respectively a test sinusoid dataset
and the assign ECG dataset. Finally, the last chapter is a sum up of the thesis work and results,
along with some further work proposals.
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Sommario

L’elettrocardiogramma (ECG) è uno degli strumenti diagnostici non invasivi più comunemente
utilizzati in medicina clinica. Viene utilizzato principalmente dai cardiologi per valutare la
funzione cardiaca e la sua elettrofisiologia al fine di assistere nel rilevamento di malattie cardi-
ovascolari e nello sviluppo di strategie di trattamento.

Negli ultimi anni, la rapida evoluzione dei modelli di apprendimento automatico ha aperto
la possibilità di automatizzare una serie di compiti non realizzabili dagli algoritmi tradizionali,
come il rilevamento e la classificazione dell’aritmia, il riconoscimento biometrico e persino la
diagnosi di altre malattie.

I modelli di machine learning supervisionati, in particolare le reti neurali profonde, richiedono
una grande quantità di dati annotati di qualità. L’acquisizione dei dati ECG, tuttavia, risulta
difficile per diversi motivi, tra cui la privacy e altri vincoli legali.

Una tecnica ampiamente utilizzata per alleviare questo tipo di problema è la ”data aug-
mentation”, che consiste nell’aumentare il volume, la qualità e la diversità di un set di dati di
addestramento generando ulteriori campioni di dati. È particolarmente utile nei casi in cui la
raccolta di quest’ultimi consumi una notevole quantità di tempo e risorse. Un possibile approccio
di ”data augmentation” consiste nella stima della distribuzione di probabilità associata ai dati da
aumentare di numero. Ciò consente la creazione di nuovi dati sintetici, che presentano un elevato
grado di correlazione con quelli esistenti, attraverso un adeguato processo di campionamento.
Recentemente questo approccio ha raggiunto prestazioni allo stato dell’arte grazie all’inclusione
di reti neurali negli stimatori di probabilità.

Lo scopo di questa tesi si concentra sul massimo impiego del potenziale offerto dallo spazio
latente del VAE, facendo uso della sua rappresentazione più visivamente interpretabile, quella
bidimensionale. Verrà mostrato come il modello possa essere efficacemente utilizzato per due
scopi principali: il primo è generare nuovi campioni di dati ECG basandosi su quelli misurati
da una persona ’reale’, consentendo anche di regolarne la variabilità. Il secondo consiste nel
generare campioni di dati ECG di una persona ’sintetica’, che combina le caratteristiche degli
ECG appartenenti a due o più persone ’reali’. L’intero processo può essere diretto dall’intervento
umano con un elevato grado di controllo e assistito da opportune metriche utilizzate per valutare
la qualità dei dati generati. Il metodo proposto consente la generazione di ECG a singolo battito
aventi lunghezza prefissata. La correlazione temporale tra battiti consecutivi di un ECG e, in
generale, la variabilità del tracciato ECG stesso, verranno presi in considerazione in un lavoro
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futuro.
I primi due capitoli sono utilizzati per introdurre i temi principali di questo lavoro di tesi,

come ad esempio l’intelligenza artificiale, l’incremento artificiale dei dati, i segnali ECG e l’AI
spiegabile. Il terzo, invece, presenta il background teorico relativo al modello di autoencoder
variazionale implementato e la sua procedura di allenamento. Il quarto contiene le specifiche
dell’architettura del modello, mentre il quinto e sesto l’applicazione di quest’ultimo per quanto
riguarda il dataset di sinusoidi di prova e il dataset di elettrocardiogrammi assegnato. Infine,
l’ultimo capitolo riassume il lavoro di tesi trattato e futuri potenziali miglioramenti e applicazioni
del modello sviluppato.
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Chapter 1

Introduction

1.1 AI

Artificial Intelligence is a term coined in the 1950s, which encompasses the simulation of
human intelligence processes by machines. Initially characterized by symbolic reasoning and
rule-based systems, AI has evolved significantly with advancements in computational power and
algorithm performances. Early AI systems focused on explicit programming to perform specific
tasks, such as playing chess or simple decision making. However, the need for more adaptive
and autonomous systems led to the emergence of Machine Learning.

Machine learning is the latest emerging branch of artificial intelligence: it is focused on
the development of algorithms capable of enabling a machine to perform tasks without explicit
instruction. Unlike conventional programming paradigms, the machine autonomously “learns”
previous data in order to make, through statistical modelling and/or pattern matching, classific-
ation or prediction about future unknown data. A wide variety of definitions had been proposed
to address this phenomenon, such as the one given in 1997 by Tom M. Mitchell

”A computer program is said to learn from experience E with respect to some class

of tasks T and a performance measure P if its performance in tasks T, as measured

by P, improves with experience E”

Typically a machine learning algorithm involves processing multidimensional data, where each
dimension is usually addressed as a feature, in order to perform a target task. Some of the
most common ones are regression, classification, clustering, transcription, anomaly detection,
synthesis and sampling. In order to train(teach) and finally evaluate the performance of a ML
algorithm there is a need of a proper quantitative measure, which can vary based on the type of
task and the type of data on which the model is trained on. Depending on the applied learning
methodology, those algorithms can be classified into three main classes:

• Supervised learning : algorithms are trained using labeled dataset, wherein each data
instance is associated to a target outcome or label, hence x 2 ⇡

<
�! H 2 ⇠ from a training
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dataset ( : {(x1, H1), ..., (x<, H<)}. It is widely use in applications where a large number
of labeled data is available, such as image classification, speech and text recognition,
fraud detection and spam filters. Some of the models that come under supervised learning
are Linear and Logistic regressions, Support Vector Machines, Gaussian Processes and
Artificial Neural Networks.

• Unsupervised learning : the learning involves training algorithms on unlabeled data,
where the objective is to discover inherent structures, patterns, or relationships without
an explicit guidance. In this case the training set is made by only input data samples
( : {x1, ..., x<}. Some of the most important algorithms are: Clustering, Principal
Component Analysis and Anomaly Detection.

• Self-supervised learning : Self-supervised learning is a type of machine learning where
the model learns from the data itself without requiring labeled input. The learning process
makes use of the structure within the data itself to generate its own labels. For example, if
it is wanted a model to encode a latent representation of the data ( : {x1, ..., x<}, then the
encoded data can be decoded back by a second model obtaining the reconstructed samples
{x̂1, ..., x̂<}. Then the two networks can be trained jointly and implement an error function
based on a distance metric between the original and decoded data samples, such as the
MSE ; (x, x̂) = | |x� x̂| |

2. Some deep learning algorithms that use self-supervised learning
are Autoencoders, Variational Autoencoders and GANs.

• Reinforcement learning : it is a more generic learning framework which allows the machine
decision making process to be driven by the state of the surrounding dynamic environment
with the help of a reward based feedback loop. The machine makes a decision through an
’agent’, which then has some repercussions on the dynamic ’environment’ and makes its
state change. Finally an ’interpreter’ evaluates the state changes of the environment and,
based on them, updates the ’agent’ decision making process.

Artificial Neural Networks are one of the most used machine learning algorithm nowadays,
they reached state of art performance in a large number of different applications. Those kind of
algorithms constitute themself a subfield of machine learning, called Deep Learning (DL). The
fast development of AI in the last decade is motivated by the fact that they are the only model
which performs well in tasks where there is a need of interpreting really high dimensional data,
such as images, videos, time series data and so on. The throwbacks, however, are that, respect to
other algorithms, they require much more computational power, both for prediction and training,
and they considerably lack of interpretability.
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Figure 1.1: Artificial Intelligence, Machine Learning and Deep Learning

Nowadays, the development of hardware accelerators has made possible the training and
deployment of very deep ANN architectures, even if with some intensive resource efforts. One
of the biggest model released during 2023 is ChatGPT-4, that has been estimated to have more
than 1 trillion parameters. The training seems to have required few tens of thousands of the
best performing GPUs on the market and lasted for about three months. Nowadays, the most
commonly explored and used hardware architecture for training and inference of neural networks
are:

• CPU: the Central Processing Unit is a general purpose hardware responsible of handling
the majority of tasks of a computing device. While being extremely versatile, low power
and also low cost, it lacks of good parallel processing capabilities and is prone to memory
bottlenecks. For this reasons its performances decrease proportionally to the model
complexity and training dataset size, hence it is generally not suited for handling deep
learning algorithms.

• GPU: the Graphic Processing Unit is an hardware accelerator originally designed to
render graphics and video. The architecture is optimised for high throughput and parallel
computing, which make them ideal for handling a large amount of data concurrently and
performing operations that can be parallelised really fast. Moreover they are design to be
easily scaled, making it possible to increase the performance even more. Some of the most
commonly accelerated mathematical operations are matrix multiplication, convolution,
element wise operations, gradient computation and much more. Those are the core of
most of machine learning training and inference algorithm. The more complex those
kind of calculus becomes(bigger matrices, larger convolutional filters, higher dimensional
gradients), the more effective the parallelise computing carried on by the GPU becomes
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effective. That said, this kind of hardware is the most common choice when working with
deep learning algorithms, especially for the training stage. The main throwback is the cost
per-unit and the low power efficiency, which bounds its use primarily within data centres.

• TPU: Tensor Processing Unit is an ASIC accelerator that can be thought as a close GPU
parent, but specialised in processing ANN algorithms. They were among the first hardware
accelerator focusing on deep learning tasks.

• FPGA: Field Programmable Gate Arrays is a semiconductor device that is based around
a matrix of configurable logic blocks (CLBs) connected via programmable interconnects.
Most of modern models implement also hard blocks, such as SRAM, DSPs, eNVMs and
so on. Its main feature is that it can be reprogrammed to meet the desired functionality
requirements after manufacturing multiple times. Their flexibility allows for designing
hardware targeting the specific algorithm to be implemented: by highly render in parallel
operations, a low clock frequency can be selected, allowing for a much more efficient
execution in terms of low latency, high throughput and low power consumption. Its
flexibility makes it ideal for a wide range of algorithmic computational tasks, including
deep learning ones.

Nowadays there is a huge interest in developing hardware aimed to speed up deep learning
algorithms, such as TPUs, and given the threshold of fabric miniaturisation, it is up to the
fantasy of the hardware designers to come up with new architectural principles.

1.2 XAI: Explainable Artificial Intelligence

AI systems such as machine learning (ML) or deep learning (DL) use algorithms learned by their
own process of training, rather than by explicit human programming. During this process, they
can discover new correlations between features of the input data and make decision(classification)
or prediction(regression). If the models are highly complex and involve a large number of
interacting parameters, it becomes more challenging to understand how the model behave, i.e.
how the output is subsequently produced by the model. The reasons for which systems have
made certain decisions may be unclear in these situations: this phenomenon is commonly
referred to as the “black box” effect. The main problem related to this behaviour is that some
of system deficiencies, such as biases, inaccuracies or ”hallucinations” can be hidden, having
a direct impact on individuals, potentially being discriminatory or even harmful. For example,
a not balanced training dataset could cause model biases that are hidden by the opacity of the
model itself. An AI model used to select job applicants it may favour candidates from certain
demographics or backgrounds, or applied for medical diagnosis purpose could disproportionately
misdiagnose or miss certain conditions. These are some of the main reasons for which there is
an urgency to open this ”black box” and make its processes more explainable.
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Explainable Artificial Intelligence (XAI) is the ability of AI systems to provide clear and
understandable explanations for their actions and decisions. Its central goal is to make the beha-
viour of these systems understandable to humans by making clearer the underlying mechanisms
of their decision-making processes. A more complete definition is given by David Gunning [6]

”Ideally, XAI should include the ability to explain the system’s competencies and

understandings, explain its past actions, ongoing processes and upcoming steps,

and disclose the relevant information on which its actions are based.”

This concept may be divided into three main components:

• Transparency: refers to the ability for a specific model to be understood. In the strictest
sense, a model is transparent if a person can contemplate the entire model at once. A
second and less strict notion of transparency might be that each part of the model (e.g., each
input, parameter, and computation) admits an intuitive explanation [5]. It is fundamental
to be able to design a model which aligns with ethical standards and legal requirements.

• Interpretability: refers to the degree of human comprehensibility of a given “black box”
model or decision [4] [3]. Poorly interpretable models “are opaque in the sense that when
presented with the resulting decision, rarely does one have any concrete sense of how or
why a particular classification has been arrived at from inputs [2]. It allows the human
designer or user to be able to estimate the behaviour of the model given a specific input
and also if it makes a mistake.

• Explainability: it focuses on providing clear and coherent explanations for specific model
predictions or decisions. It aims to offer human-understandable justifications for a specific
outcome. Explainability requires interpretability as a building block but also looks to other
fields and areas, such as human-computer interaction, law, and ethics [1]. It is fundamental
in applications where human health or sensitive informations are at stake.

1.3 ECG

An electrocardiogram (ECG) is a recording of the electrical activity of the heart thought repeated
cardiac cycles. It is an electogram displaying voltage versus time of the electrical activity of
the heart using electrodes placed on the skin. These sensors are able to detect small voltage
changes caused by the heart depolarization and repolarization phases. By ECG it is usually
meant a 12-lead ECG with 10 electrodes placed on the patient’s limb and chest. The overall
magnitude of the heart’s electrical potential is then measured from twelve different reference
points (”leads”) and is recorded over a certain period of time. A standard single beat ECG is
composed by three main components: the P wave (depolarization of the atria), QRS complex
(depolarization of the ventricles) and T wave(repolarization of the ventricles)
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Figure 1.2: ECG cardiac beat model (Wikipedia)

Electrocardiogram (ECG) is one of the most common noninvasive diagnostic tools used
in clinical medicine. It is mostly used by cardiologists to assess heart function and electro-
physiology in order to assist in cardiovascular disease detection and development of treatment
strategies. Due to a significant rise in the volume of ECG data and variations in measurements
stemming from diverse medical devices and their placements, traditional diagnostic methods
often prove inefficient. This is due to the necessity for intricate manual analysis and the expert-
ise of highly trained medical professionals to attain satisfactory accuracy. During the past few
decades, the computing power upgrades and the availability of larger datasets led to an increased
use of machine data-driven models in many healthcare areas. In particular deep learning al-
gorithms have been widely adopted since they achieved stat-of-art performances above all others
machine learning approaches. These algorithms leverage deep neural networks to autonomously
analyze ECG data, offering the potential to streamline diagnostic processes, enhance accuracy,
and improve patient outcomes. This paradigm shift towards automated analysis, not only ad-
dresses the challenges posed by the expanding volume of ECG data, but also has the potential of
facilitating early disease detection and personalised treatment strategies. For example Miao et
al [7] proposed a combination of ResNet and LSTM in order to estimate blood pressure(BP) that
achieved a mean average error of �0.75 <<�6 for systolic BP and 2.228 <<�6 for diastolic
BP prediction using a private database. Lu et al [8] used a 1D-CNN for arrhythmia classification,
achieving an accuracy of 99.31% on the MIT-BIH Arrhythmia Database. Chiu et al [9] also
used a 1D-CNN neural network to perform biometric recognition and achieved an identification
rate of 99.10% by using single-lead ECG recordings that originated from the PTB Diagnostic
ECG Database. Ozdemir et al [10] used a private database to diagnose COVID-19 through ECG
classification (accuracy 93.00%). Moreover a study by Baghersalimi et al [11] evaluated the
performance (sensitivity 90.24% and specificity 91.58%) of a fused 1D-CNN-ResNet network to
detect epileptic seizure events from single-lead ECG signals originating from a private database.
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There are however still some critical challenges in obtaining good quality annotated dataset due
to several reasons. The first one regards the lack of accessibility and standardization of biometric
data across healthcare systems. While some institutions may have robust biometric databases,
others may lack the infrastructure or resources to collect and store such data efficiently. This
creates discrepancies in data availability, hindering interoperability and the seamless exchange
of medical information. Ethical considerations further complicate the acquisition of biometric
data in healthcare. Privacy concerns, consent issues, and the risk of data breaches underscore
the need for stringent regulations and ethical guidelines governing the collection, storage, and
usage of biometric information. For what concerns ECG dataset, the vast majority of publicly
available ones experience strong class imbalances, which, if not properly managed, could lead
to model biases. For example, this can happen when trying to predict smaller classes that
usually represent rare conditions, which are far less populated than larger, more common ones,
representing healthy conditions.

1.4 Data augmentation

To ensure good performances, in terms of cost function and model generalisation, modern
supervised machine learning models, especially deep learning ones, require a large amount of
quality annotated data. Data collection and annotation processes are usually performed manually,
and consume a lot of time and resources. Moreover, the quality and representativeness of curated
data for a given task is usually dictated by the natural availability of clean data in the particular
domain as well as the level of expertise of developers involved. In many real-world application
settings it is often not feasible, for different reasons, to obtain a sufficient amount of training
data for a proper train of the application to be developed. For those cases, data augmentation
can solve or at least alleviate this issue.

Data augmentation is the process of increasing the volume, quality and diversity of a train-
ing dataset by generating additional training data samples. A wide range of basic deterministic
transformations have been applied in the context of image data augmentation, such as crop-
ping, scaling, mirroring, colour augmentation and so on. Those techniques, even if they are
straightforward to apply, are not suited for all kinds of data. For examples time series data are
one-dimensional, have an intrinsic sequential nature and often exhibit high temporal correlation
between samples which varies greatly depending on the type of time series data (stock prices,
ECG, temperature measures, ..). Therefore, in order to apply a traditional deterministic data
augmentation transformations to those data, there must be some expertise knowledge about the
data background in order to carefully adapt those augmentation algorithms, otherwise generating
poor quality data could compromise the performance of the trained model.

Traditional techniques mostly fail in time domain manipulation of time series data, however
those techniques could still be applied in general to manipulate the amplitude. For example
using uniform scaling and/or added noise could be useful to simulate different conditions of the
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measure environment.

Figure 1.3: Common data augmentation transformation applied to a single beat ECG signal. (Top
row) the original signal, mirroring and rotation. (Bottom row) cropping, amplitude variation
and noise adding

Figure 1.4: Common data augmentation transformation applied to an image. (Top row) original
image, mirroring and rotation. (Bottom row) cropping, brightness variation and noise adding

Another approach to data augmentation consist in trying to estimate the underlying distribu-
tion of the data to be augmented in order to sample synthetic datapoints that are highly correlated
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with existing ones. Recently this approach has reached state-of-art performance thanks to the
embedding of neural networks to the probability estimators. Through rigorous training on a
limited dataset, the model can discern the underlying data features and approximate their prob-
ability distribution. This distribution can subsequently serves as a basis for sampling new data
instances.

The most common generative model topologies used to perform data augmentation nowadays
are Generative Adversarial Networks (GAN) and Variational Autoencoders (VAE). The first one
is a deep learning architecture which trains two distinct neural networks to compete against each
other to generate new, more authentic data from a given training dataset. A GAN is defined
as ”adversarial” because it trains two different networks and pits them against each other. One
network generates new data by taking a sample of input data and modifying it as much as
possible. The other network attempts to predict whether the generated data output belongs to
the original data set. In other words, the prediction network determines whether the generated
data is false or real. The system generates newer and improved versions of false data values
until the prediction network can no longer distinguish the false values from the original ones.
The second one is a probabilistic generative models composed by two neural networks, mainly
referred to as the encoder and decoder. The encoder maps the input variable to a latent space
that corresponds to the parameters of the estimated probability distribution of the input data.
The decoder receives as inputs encoded samples from this probability distribution and decodes
them back into the input dimensional space.

1.5 State of art

The work of this thesis specifically regards synthetic ECG generations. Previous work was
already carried on in some studies: most of them make use of GAN, which turns out to be the
best performing models, while some recent papers explored the use of VAE, which compared
to GAN have less feature extraction capabilities, but have the advantage to be characterised by
a much more explainable working principle.

In recent years, one of the most productive applications of deep learning in the domain of
electrocardiogram (ECG) analysis has been discovered to lie in the generation of realistic syn-
thetic ECG signals. Various studies, including [15],[16] and [18], have proposed combinations
of 1D-CNN and Bidirectional Long Short-Term Memory (BiLSTM) GANs to generate single
beat ECG signals, which have demonstrated state-of-the-art performances. Furthermore, [15]
and [18] were able to respectively generate up to 2 and 8 beat-long synthetic ECG.

More recently, some other studies have advanced Variational Autoencoder (VAE) model-
based solutions.[12] and [13] proposed a 1D-CNN VAE framework for the generation of single-
lead, single-beat electrocardiogram (ECG) signals, while [14] introduced a 2D-CNN Conditional
VAE (CVAE) approach capable of simultaneously generating synthetic ECG signals for 12 leads.
Additionally, [17] advocated for the utilization of Gramian Angular Summation/Difference Fields
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and Markov Transition Fields to convert single-beat ECG time series into image representations.
Subsequently, they employed a Denoised Diffusion Probabilistic Model (DDPN) to generate
new ECG image samples, yet achieving unsatisfactory performance outcomes.

Model Input Dataset Metric Refs.

1D-CNN VAE ECG
(1 beat) LUDB MMD(3.83 ⇥ 10�3) [12]

VAE ECG
(1 beat) UT-Heart PSNR(64.84) [13]

2D-CNN CVAE ECG
(1 beat) UK-BB MMD(3.05 ⇥ 10�3) [14]

BiLSTM and
1D-CNN GAN

ECG
(2 beats) MIT-BIH MMD(1.03 ⇥ 10�3)

DTW(11.664) [15]

1D-CNN GAN ECG
(1 beat) MIT-BIH LSTM classifier

acc. imprv. (4%) [16]

DDPM
Images of

ECG
(1 beat)

MIT-BIH MMD(35.9)
DTW(6.36) [17]

BiGridLSTM and
1D-CNN GAN

ECG
(8 beats) MIT-BIH RMSE(0.126)

PCC(0.991) [18]

Table 1.1: Benchmark of already existing deep learning models for ECG signal generation
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Chapter 2

Theoretical background

2.1 Early idea

The first attempt to develop a mathematical framework for a neural network took place in 1970’s,
by neurophysiologist Warren McCulloch and mathematician Walter Pitts. They modelled neural
activity by means of propositional logic and also coined the widely used term ”Artificial Neural
Networks”.
The basic computational unit of the brain is a neuron: each neuron can receive as inputs electrical
stimulus from its dendrites, which are then processed in its body where their electrical potential
gets summed up. If the sum reaches a certain threshold the neuron fires as output an electric
signal along its single axon. The axon eventually branches out and connects via synapses to
dendrites of other neurons(fig.2.1). The synaptic strengths can change thru time and experiences
and control the strength of influence and its direction, excitatory or inhibitory of one neuron on
another. This is also the principle of feedforward AANs.

Figure 2.1: Main components of a biological neuron
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2.2 Perceptron: first modern day neural network model

The most significant step forward in the development of an Artificial Neural Network was
achieved by the psychologist Frank Rosenblatt in 1957. In the paper “The Perceptron: a perceiv-
ing and recognising automation”, he proposed the Perceptron, a model capable of performing
linear binary classification on a given labeled dataset. As hypothesis the dataset is composed in
general by< training data of dimension 3 , hence X = {x1, x2, ..., x<} labelled by y = {H1, .., H<}

with H8 = {�1, 1}. The perceptron model performs the classification of a datapoint x
0 based on

the sign of the value assumed by a ”properly” chosen hyperplane w
)
x in that point

⌘w,b(G) = sng(w)

x + 1) =

8>><
>>:
+1 w

)
x + 1 � 0

�1 w
)
x + 1  0

The model is trained by initialising the weights to zero w
(0) = 0 and then by adjusting the

weights in an iterative way as explained in algorithm 1. It can be demonstrated that the model
converges to a solution if the datapoints are linearly separable, however if this condition is not
satisfied there are no guarantees on the outcome. For example the model is not able to perform
the binary xor operation. This problem makes the model not suited for most of practical cases.
Moreover even if a proper solution is found, it is in general not optimal.

Algorithm 1 Perceptron algorithm

w, x8 2 R3

H8 2 R
w

(0)
 0

while 9 G8 : H8 [w(:)
]
)
x8  0 do

select G8 : H8 [w(:)
]
)
x8  0

w
(:+1) = w

(:)B
+ H8x8

end while

At the time, the initial enthusiasm around the Perceptron was damped in a short time due to
the discovery of its inability to classy non linearly separable data. However this model contains,
even if in a simplified way, the foundations of modern day neural network architecture and their
optimisation algorithm. The entire model, in fact, has the same structure of the basic building
block of a DNN (”Deep Neural Network”), the neuron. Neurons, however, depending on the
application, can have various functions applied to the output of the linear combination of the
inputs with the neuron weights, these are called 02C8E0C8>= 5 D=2C8>=B. Moreover the Perceptron
algorithm is just a special case of the SGD (”Stocastic Gradient Descent”), where both the size
of the mini-batch ⌫ and learning rate W are equal to one (|⌫ |, W = 1) and the loss function to
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minimise is

; (w, z8) =

8>><
>>:
�H8 · w

)
x8 H · w

)
x8 < 0

0 otherwise

where z8 = {x8, H8} . Under those hypothesis the SGD and the Perceptron algorithm are equivalent
given that the weights update step of SGD becomes the following

w
(:+1) = w

(:)
� Wrw�⌫ (: ) (w) with �

⌫
(: ) (w) =

1
|⌫ |

’
82⌫ (: )

; (w, z8)

) F
(:+1) = F (:)

+ W

8>><
>>:
H8 · x8 H8 · (w(:)

)
)
x8 < 0

0 otherwise

Figure 2.2: Block diagram of the Perceptron model

2.3 Fully connected neural networks

The basic building block of neural network is the neuron, a single computational unit. This
unit takes a weighted sum of its inputs and adds to it a scalar bias term. Given a set of inputs
x = {G1, G2, ..., G=} the unit has associated a set of weights w = {F1,F2, ...,F=} and a bias term
1. Those quantities are in general real valued numbers. The resulted weighted sum is scalar

I =
=’
8=1

F8G8 + 1 = w
)

x + 1
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Instead of using just the linear combination of the inputsI as the output, the neural units apply a
non linear function 5 to I, called activation function

H = 5 (I) = 5 (w
)

x + 1)

Some of the most popular non-linear activation functions are the sigmoid, the tanh and the
'4!*. The sigmoid maps the output into the range of (0, 1) and it is differentiable within its
domain.

H = f(I) =
1

1 + 4�I

The hyperbolic tangent (tanh) is a variant of the sigmoid which ranges from (�1, 1). It is still
differentiable.

H = tanh(I) =
4
I
� 4
�I

4
I + 4�I

The rectified linear unit (ReLU) function is among the most used activation functions. It is a
piecewise linear function non differentiable in the origin.

H = '4!* (I) = max(I, 0)

Each activation function has different proprieties that makes them more suited for specific kind
of neural networks architectures. For example the hyperbolic tangent has the advantage of being
smoothly differentiable and maps outlier values towards the mean. Sigmoid and tanh functions,
however, have saturated outputs, which makes the derivative very close to zero. Zero derivatives
causes problem during the training of the neural network.

The network is trained using the backpropagation method, which consists in propagating an
error signal, from a properly chosen loss function, backwards, by multiplying gradients from
each layer of the network. If some gradients are close to zero, the propagation error gets smaller
and smaller until it cannot be used to properly update the network parameters. This phenomenon
is called vanishing gradient. Rectifiers linear unit, on the other hand, does not have this problem,
since the derivative for I > 0 is always equal to 1. Moreover the piecewise linear structure makes
it computationally efficient.
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Figure 2.3: Feed forward neural network basic component: the neuron. It applies to the inputs
a weighted linear combination, then the result is passed to a non linear activation function, such
as the ReLU

2.4 Feedforward neural networks

A feedfarward neural network is a multilayer network in which the neurons are connected
with no cycles. The output of the neurons of one layer are connected only to the neurons
of the subsequent layer. Those kind of networks are also known by the name of multi-layer

perceptrons, which is technically a misnomer since those network are characterised in general
by non linear activation functions. There are three main kind of layers: input, hidden and output.
The core of a fully connected feed forward neural networks is the hidden layer, composed by a
specific number of neurons, each of which takes as inputs the weighted sum of all the outputs
of the previous layer plus a bias and applies to it a non linear function. The output of the 8-th
neuron of the ;-th layer is mathematically formulated as follows H (;)

8
= (f

(;)
(w

(;)

8
)
)
y
(;�1)

+ 1
(;)

8
),

where y
(;�1) = {H

(;�1)
1 , ..., H

(;�1)
<

} are the outputs of the previous layer composed by < layers,
w

(;)

8
= {F

(;)

8,1 , ..,F
(;)

8,<
, } are the weights of the weighted sum, 1 (;)

8
is the bias term and f (;) is the

activation function used by the neurons of the ;-th layer. The output of such a network is then
equal to

y
(;) = f (;)

⇣
W

(;)
y
(;�1)

+ b
(;)

⌘

for deep neural network it is essential to choose a non linear f(·) activation function, otherwise
the resulting network is exactly equivalent to a single layer one. Consider the case of a two layer
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neural network with an identity f(x) = G activation function and input x

y
(1) = W

(1)
x + b

(1)

y
(2) = W

(2)
y
(1)

+ b
(2)

= W
(1)

W
(2)

x + W
(2)

b
(1)

+ b
(2)

= W
0
x + b

0

which easily generalise to any number of layers.

Figure 2.4: A single layer(left) and multi-layer(right) feed forward fully connected neural
networks. The first one is characterised by only a single hidden layer, while the second one by
multiple hidden layers. For this reason it is also called deep neural network. The light blue
neurons form the input layer, while the dark blue ones form the output layer

2.5 Convolutional neural networks

Convolutional neural networks(CNN) are a kind of neural networks specialized in processing
grid-like data, such as time series data (1D-grid of samples taken at regular time intervals)
or images (2D-grid of pixels). A network can be defined convolutional if it implements the
mathematical convolution operation in one of its layers. Since the work of the thesis deals with
time signals only, the focus of this chapter will be on 1D convolution.
Given two Lebesgue integrable functions 5 , 6 2 R of variable C 2 R, the convolution between 5

and 6 is defined as

( 5 ⇤ 6) (C) :=
π
1

�1

5 (g)6(C � g)3g

The first and second convolution argument functions are respectively referred to input and kernel,
while the output is called feature map. When data are discretized, hence C ! =)B, with )B the
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sampling period, the discrete convolution is applied

( 5 ⇤ 6) [=] =
1’

<=�1

5 [<]6[= � <]

In machine learning applications, usually the input is a multidimensional array of samples and
the kernel is a multidimensional array of parameters tuned by the training algorithm.

Figure 2.5: Example of the convolution operation carried on for discrete time signals. The upper
sequence of numbers is the input discrete time series, the middle one is the convolutional kernel
and the lower one is the output of the convolutional operation

Fully connected(dense) layers apply matrix multiplication between a specific matrix of
trainable parameters associated to each neuron of the layers and all the inputs of the layer. This
means that every output unit interacts with every input ones. On the other hand, convolutional
layers have sparse interactions, since the kernel is usually smaller than the input. For example, if
there is a time signal of specified length, a much smaller filter can be used to detect most relevant
high frequency signal features. This has the advantages of reducing the number of stored model
weights and reducing the number of operations used to obtain the output. Moreover, in a deep
convolutional network, units in the deepest layer indirectly interact with larger portions of the
input(fig. 2.8), allowing the network to also capture complicated interactions between many
variables with simpler building blocks based on sparse interactions. Convolutional layers are
also characterized by parameters sharing(or tied weights). In such a layer, each weight of the
kernel is used at every position of the input(except for the boundary), so instead of learning a
different set of parameters for each input position, the layer learns only one, the kernel. For
example, if there are < inputs and = outputs the computational complexity of a fully connected
layer is$ (<=) and the number of weights to be stored are<=. On the other hand, a convolutional
layer with just one kernel of size : , which is usually much smaller than<, has the computational
complexity of $ (<:) and the weigths to be stored are just : . An important property of the

31



convolutional layer is the equivariance to translation. When working with time-series data,
convolution between the input data and a specific kernel generates a new temporal sequence that
evaluates some features of the input data. Shifting in time the input will result in the identical
representation appearing in the output, but shifted.

Figure 2.6: Sparse connectivity feature of the convolutional layers. It is highlight in blue
one output neuron, and all the input neurons affecting the output one. When the layer is
convolutional(left), with in this case kernel of width three, only three inputs affect the highlighted
output neuron. On the other hand, if the layer is fully connected(right), all the inputs affects the
highlighted output, hence the connectivity is no more sparse.

Figure 2.7: The receptive field of the neurons in the deeper layers of a convolutional network is
larger than the receptive field of the units in the shallow layers. Even if the direct connection
in a convolutional layer are very sparse, the neurons in the deeper layers are can be indirectly

connected to all or most of the neurons of the networks. The effect increases if strided convolution
or max pooling are applied
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Figure 2.8: Parameters sharing feature. Black arrows indicate the connections that make use of a
particular parameter. (Left) The black arrows indicate uses of the central element of a 3-element
kernel in a convolutional layer. Because of parameter sharing, this single parameter is used at
all input locations. (Right) The single black arrow indicates the use of the central element of
the weight matrix in a fully connected layer. The parameter is used only once, hence there is no
parameter sharing.

Convolutional neural networks have become a powerful tool for extracting meaningful fea-
tures from sequential data, such as time series. Their effectiveness, however, relies on a set of
hyper-parameters that define the architecture and learning behaviour of the convolutional layer.
The tuning of these hyper-parameters enables the layer to capture the relevant essence of the
input data, which is then properly elaborated to carry out the specific task of the deep neural
network model(classification, regression, encoding,..) .
KERNEL SIZE: the kernel size determines the receptive field of the convolutional layer. This
choice is related to the frequency components of the feature to be extracted from the input
signal, such as global trends(low frequency) or spikes(high frequency). Larger kernel sizes
tend capture broader patterns in the input sequence, while smaller kernel sizes focus on finer
details. For example, in the context of financial time series analysis, a small kernel can pinpoint
specific spikes or dips in the data, potentially revealing short-term fluctuations or sudden events.
However, for longer sequences, these small kernels might miss out on broader trends, which
however can be detected by larger kernels. Intuitively, smaller kernels acts as high pass filters
and extract high frequency input signal components, while longer kernels are more suited for
low pass filtering the input signal, hence extracting low frequency components.
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Figure 2.9: Convolutional operation filtering capabilities. (Left) Two convolutional operations
are implemented for filtering respectively the low(orange) and high(green) frequency component
of an input signal(blue). Those filters can also be applied to capture specific input signal feature,
such as peaks. (Right) the convolutional filter is used to extract the peak feature(orange) from
the input signal(blue).

PADDING: padding refers to the technique of adding additional values around the input
data. Padding is commonly used for two main purposes: allowing to perform the convolution
operation also at the edges of the signal and maintaining the original input size at the output.
When convolving an input signal of " samples with a convolutional filter(kernel) of size # , the
filter does not slide along the first and last b#/2c input signal edge samples and the output of
the convolution operation has length of " � 2b#/2c. Most commonly used padding strategies
are zero-padding(adding zeros), replication padding(repeat the edges of the input data) and
reflection padding(mirror the repeated edges of the input data).

Figure 2.10: A zero padding is applied to the input signal to keep the dimensionality of the
convolution output equal to the the input one

STRIDES: strides determine the step size of the moving kernel along the input sequence. A
stride equal to one makes the kernel sliding one sample at a time across the entire input sequence,
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which leads to capturing all the possible overlapping features and preserving the original spatial
resolution of the data. A stride grater then one makes the kernel taking bigger leaps, jumping
by a certain number of positions after each convolution operation. This reduces the size of the
output, which can be useful for dimensionality reduction tasks. For example, in the context of
an autoencoder neural network, a stride grater then one can be an alternative to max pooling for
decoding the input signal into a lower dimensional space.

Figure 2.11: Strides. The figure shows three input signals, where a convolutional kernel of width
equal to three is centred in the samples highlighted in blue colour. Normally the convolutional
kernel slides thru the input signal one sample at the time(top). By applying strides larger than
one, the convolution is applied every two(middle), three(bottom) or more samples. This results
in reducing the dimensionality of the convolution output by half, one third and so on.

FILTER NUMBER: a convolutional layer usually applies multiple filters(kernels) to its
input. The number of filters in a convolutional layer defines the number of output channels
produced by each convolutional operation, also known as the layer depth. Each filter(kernel)
within a convolutional layer acts as a feature extractor, learning to identify specific features from
the input data. Increasing the number of filters allows the network to capture more diverse and
complex patterns. However, this also increases the number of parameters to be learned, which
leads to an higher computational cost and a risk of overfitting. The filter number should be
chosen based on the complexity of the data, the amount of data and the available computational
resources. As an example, a large amount of complex data would benefit of a larger number
of filters, if proper computational resources can be used. In a 1D convolutional layer, however,
the learned filters can also be two dimensional. Consider the case of two 1D convolutional
layers connected to each other with respectively " and # filters. Suppose that for the second
layer a kernel of size  is selected. For each one of the # filters of the second layer, a
convolution between a kernel of size  and each output of filters of the previous layer is applied
simultaneously. This is equivalent of vertically aligning the previous layer filter outputs and
convolve the resulting matrix with a filter of size " ·  .
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Figure 2.12: Filter number. Layer 2 in figure is a convolutional layer which receives as input
the output of a previous convolutional layer with filter size equal to " . Layer 2 carries out a
convolutional operation with a kernel of size 3 among all the input filters, hence the convolutional
operation becomes bi-dimensional and the actual kernel size is 3 ⇥ " . Since layer 2 has #
filters, during the network training, it learns the parameters of # kernels of size 3 ⇥ " , and
returns # convolution output.

TRANSPOSED CONVOLUTIONAL LAYERS: transposed convolutional layers, also
called deconvolutional layers, are a slight variation of the convolutional layer. The operation of
deconvolution is mathematically considered as the inverse of the convolution transformation.
Since the kernel parameters are learned during the training phase, the transpose convolutional
layers do not apply directly a mathematical deconvolution, since there is not in general a
specified convolution for which to find the inverse. The main difference between convolutional
and transpose convolutional layers is in how the stride operation is applied. For this case, it
consists in adding one or multiple zeros between the samples of the layer input. In this way, when
applying the convolution with a specified kernel, the output will increase in size with respect to
the input. This turns out to be useful in a variety of applications, such as image super resolution,
semantic segmentation, GANs, autoencoders and variational autoencoders. For example, if a
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stride of 2 and a padding of 1 is chosen for a transposed convolutional layer of kernel size 3,
then the output signal is going to have double the samples of the input one(fig. 2.13)

Figure 2.13: The transposed convolutional layer has the same working principle of the convolu-
tional one, with just a change in the application of strides. A stride equal to two, applied to the
input signal, adds zero values between the input signal samples, making the output signal have
double the samples of the input one

2.6 Variational Autoencoder

Variational Autoencoders (VAEs) are deep learning generative models explicitly designed to
capture the underlying probability distribution of a given dataset and generate novel samples.
They leverage on an architecture that comprises an encoder-decoder structure, both implemented
by artificial neural networks. The encoder transforms input data into a latent form, and the
decoder aims to reconstruct the original data based on the latent representation. The VAE
is programmed to minimise the dissimilarity between the original and reconstructed data, in
a manner that enables it to comprehend the underlying data distribution and generate new
samples that are conform to it. The main advantage is their ability to generate new data samples
resembling the training data. In a vanilla VAE the latent space is continuous, so the decoder
can generate new data points that seamlessly interpolate among the training data. The main
theoretical building blocks that compose a VAE model are now introduced.

KL divergence

The Kullback-Leiber (KL) divergence is a type of statistical distance that measures the difference
between two probability distributions ?\ and @q, even though it is not a metric in the proper
sense, since it is not symmetric. In probabilistic terms it is the expected value of the difference
between the two probability distributions with respect to one of those two probabilities. The
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forward and reverse KL divergence are respectively defined as follows

⇡ ! (?\ | | @q) = EG⇠?\ [log ?\ (G) � log @q (G)]

= EG⇠?\

"
log

?\ (G)

@q (G)

#

⇡
(A)

 !
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"
log

?\ (G)

@q (G)

#

Useful properties:

• Non symmetric: the forward and reverse KL divergence are in general not equal

⇡
( 5 )

 !
(?\ | | @q) < ⇡

(A)

 !
(?\ , @q)

• Positive semidefinite: the KL divergence is positive semidefinite
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Evidence Lower Bound (ELBO)

It is considered the case where ?\ (I |G) is unknown and @q (I |G) is known and chosen between
known probability distributions(e.g. gaussian). The aim is to estimate the parameters q̂ of the
chosen distribution @q that better approximate ?\ (I |G). The KL divergence can be used as the
loss function of such optimisation task

⇡ ! (@q | | ?\) = EI |G⇠@q


log

@q (I |G)

?\ (I |G)

�
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q̂ = argmin
q

⇡ ! (@q | | ?\)

The problem with this approach is that ?\ (I |G) has an unknown analytic expression, so the
minimisation is intractable. By reshaping the KL divergence term it is however possible to make
the problem feasible indirectly.

⇡ ! (@q | | ?\) = EI |G⇠@q


log
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Rearranging the terms it is obtained

log ?\ (G) = �EI |G⇠@q
⇥
log @q (I |G)
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+ E
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log ?\ (I, G)
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Since the KL divergence term, as previously demonstrated, is positive semidefinite⇡ ! (@q | | ?\) �

0 it can be stated that
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⇥
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⇤
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⇥
log ?\ (I, G)
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The right hand side is called Evidence Lower Bound (ELBO) and, in order for the previous
equality to hold true, maximising it leads to indirectly minimise the KL divergence term
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The first term is the expected reconstruction loss while the second one is the KL divergence
between the approximated posterior and the chosen prior probabilities.

Reparameterization Trick

In the variational autoencoders, neural networks are used as probabilistic encoders @q (I |G) and
decoders ?\ (I |G). There are many possible choices of encoders and decoders, depending on the
type of data and model. The neural networks weighs represent the parameters \ and q of the
respective probability distributions. The neural network encoder/decoder structure uses ELBO
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as loss function and is trained with gradient back-propagation techniques, such as SGD, AGRAD
or ADAM.

Figure 2.14: VAE theoretical model

First it is reshaped the loss ELBO function

L\,q (G) = EI |G⇠@q
⇥
log ?\ (G |I)

⇤
� E

I |G⇠@q


log

@q (I |G)

?\ (I)

�

= E
I |G⇠@q

⇥
log ?\ (G, I) � log @q (I |G)

⇤

calculating the gradient for the discrete probability distribution case presents no issues, thanks
to the linearity rule of the derivative. However, the continuous case is not that simple, so it is
now treated more in detail. Thanks to the Leibniz integral rule the gradient with respect to \
can be easily obtained as

r\L\,q (G) = r\ EI |G⇠@q
⇥
log ?\ (G, I) � log @q (I |G)

⇤
= E

I |G⇠@q

⇥
r\ (log ?\ (G, I) � log @q (I |G))

⇤
= E

I |G⇠@q

⇥
r\ log ?\ (G, I)

⇤

it is not possible to apply the same rule when deriving with respect to q since the support of
the continuous expectation integrals is a function of it. The reparameterization trick consists
in applying a change of variable to the continuous random variable I |G ⇠ @q (I |G), in order
to express this probability distribution as a deterministic function 6 of the parameters q, a
random variable that follows a properly chosen base distribution n ⇠ ?(n) and G. This allows
to indirectly apply the Leibniz integral rule. The ”trick” can be applied to various known
continuous probability distributions(e.g. gaussian).

I = 6q (n , G) F⌘4A4 n ⇠ ?(n)
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Finally, thanks to the Law of the Unconscious Statistician, the unbiased gradient expression can
be obtained

rqL\,q (G) = rq EI |G⇠@q
⇥
log ?\ (G, I) � log @q (I |G)

⇤
= rq En⇠?(n)

⇥
log ?\ (G, 6q (n , G)) � log @q (6q (n , G) |G)

⇤
= E

n⇠?(n)

⇥
rq ( log ?\ (G, 6q (n , G)) � log @q (6q (n , G) |G) )

⇤

Figure 2.15: Reparemeterization trick

Gaussian case

The gaussian case considers the prior ?\ (I) as a standard normal distribution, while ?\ (G |I) and
@q (I |G) are gaussian distributions whose parameters are mean and diagonal covariance matrix,
which are function of respectively \ and q, so given the VAE loss function
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the probability distributions for the gaussian case are defined as
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For this particular case the KL divergence term of the loss function has the following closed
form
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where � = ⇠ (I) is the dimension of the latent space. The full proof is found in the Appendix.
On the other hand, the reconstruction loss term has no analytical closed form and it must be
estimated

E
I |G⇠@q [log ?\ (G |I)] '

1
!

!’
;=1

log ?\ (G |I(;))

This is a simple Montecarlo estimator, where ! is the number of datapoints drawn from the
latent space given an input G. This estimator is not feasible in practice during training, so the
MSE (”Mean Squared Error”) is used instead
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where  = ⇠ (G) is the dimension of input x. Finally, given M datapoints, the loss function is
estimated as
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where fq and `q are the outputs of the encoder neural network
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Figure 2.16: VAE model with encoder and decoder implemented by neural networks, gaussian
prior, and the sampling procedure carried on using the reparameterization trick

2.7 Numerical optimization algorithm

A mathematical optimization problem, or just optimization problem, has the form of

minimize 50(x)

subject to 58 (x)  08, 8 = 1, . . . , =.

⌘ 9 (x) = 1 9 , 9 = 1, . . . ,<.
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the vector x = (G1, .., G3) is the optimization variable of the problem, the function 50 : R3 ! R
is the objective function, the functions 58 : R3  R, 8 = 1, ..., = and ⌘ 9 : R3  R, 9 = 1, ...,<
are respectively the inequality and equality constraint functions, and the constants 08, 1 9 88, 9
are the limits or bounds of the constraints. A vector G⇤ is called an optimal solution of the
optimization problem, if it has the smallest objective function value among all the vectors that
satisfies the constraints, hence 8x 2 R3 : 58 (x)  08 _ ⌘ 9 (x) = 1 988 = 1, ..., =; 9 = 1, ...,< )
50(x) � 50(x

⇤
)

There are several families of optimization problems, characterized by particular forms of
the objective and constraint functions. As an important example, the optimization problem
discussed at the beginnning is called a linear program if the objective and constraint functions
50, 58, ⌘ 9 88, 9 are linear, i.e. satisfy

5 (Ux + Vy) = U 5 (x) + V 5 (y) 8 x, y 2 R3 _ U, V 2 R

If the optimization problem is not linear, it is called a nonlinear program.. Another important
family is called convex optimization problems, in which the objective and constraint functions
are convex, hence they satisfy the following inequality

5 (Ux + Vy)  U 5 (x) + V 5 (y) 8 x, y 2 R3 _ U, V 2 R

the convex optimization problem can be considered a generalization of linear programming.
A solution method refers to an algorithmic approach designed to find a solution to a specific
optimization problem within a certain degree of precision. Since the late 1940s, considerable
attention has been devoted into crafting algorithms capable of handling different optimization
problems. This involves not only creating precise algorithms but also developing suitable
software implementations in order to make it computationally affordable. The effectiveness of
a solution method relies on numerous factors, including the distinct forms of the objective and
constraint functions involved, the quantity of variables, the constraints within the problem and
the unique structural attributes it possesses, such as sparsity. A specific class of optimization
problems is called unconstrained minimization problem, and it is based on finding the optimal
domain value for which the objective function has its minimum value regardless any constraints

x
⇤ = argmin

x

5 (x)

The optimal value is denoted as infx 5 (x) = 5 (x
⇤
) = ?⇤.

From now on, for theoretical background purposes, the problem is assumed to be convex,
i.e. there is only one global minimum of the objective function. However, all the following
proposed techniques can be applied also to non convex problems. In those cases, however, the
proposed algorithm will in general not converge to the global optimum of the objective function,
but one of its local ones if it is assumed the objective function to be differentiable and convex, a
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necessary and sufficient condition for Ĝ to be optimal is

x
⇤ s.t. rx 5 (x

⇤
) = 0

In few special cases, such as linear and quadratic programs, there is a closed form analytical
solution, but usually the problem must be solved by means of an iterative algorithm. The desired
algorithm behaviour is such that it computes a sequence of points called minimizing sequence

x
(0)
, x

(1)
, ... 2 dom 5 with 5 (x

(:)
) ! ?

⇤ as : ! 1. In practice the algorithm is terminated
with an early stopping, i.e. when 5 (x

(:)
) � ?

⇤
 n , where n > 0 is some accepted tolerance

value. This approach leads to an estimate of the optimal value x̂ ' x
⇤ .

Such iterative class of algorithms require a suitable intialization value x
(0) . The initialization

point must lie in the domain of the objective function dom 5 and the following subset level

( = {x 2 dom 5 s.t. 5 (x)  x
(0)
}

must be closed. This condition is satisfied for all x
(0)
2 dom 5 if the function 5 is closed itself,

i.e. all its sublevel sets are closed. As an example, all the functions with real domain dom 5 2 R
=

are closed, hence they satisfy the condition. This family of algorithms produce a minimizing
sequence x

(:)
, : = 1, 2, ..., such that

x
(:+1) = x

(:)
+ C

(:)
4 x

(:)

with C (:) > 0 (C (:) = 0 when x
(:) = x

⇤ ). Here 4x is a vector in R
= called search direction,

: = 0, 1, ... denotes the iteration number and the scalar C (:) is called the step size or , for machine
learning applications, learning rate. Ideally, for all the descent methods applied to differentiable
convex functions, the following condition must be satisfied:

5 (x
(:+1)

) < 5 (x
(:)

)

except when x
(:) = x

⇤. This implies that 8: 9 x
(:)
2 ( ) x

(:)
2 dom 5 . Moreover if the

cost function is convex r 5 (x(:)
)
)
(y� x

(:)
) � 0) 5 (y) � 5 (x

(:)
), so the search direction in a

descent method must satisfy the condition

r 5 (G
(:)

)
)

4x
(:)

< 0

a search direction satisfying the condition above is called a descent direction. The outline of a
general descent algorithm is described here below
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Algorithm 2 General descent method

Init. x
(0)
 0

while stopping criterion is satisfied do

Determine 4x
(:)

Select C
(:)

> 0 (line search)
x
(:+1)

 x
(:)

+ C
(:)
4x

(:)

end while

A practical stopping criterion is often implemented in the form of —— r 5 (x) | |2 = [, where
[ is positive and ’small’.

2.7.1 Gradient descent

If the search direction is set to be the negative gradient of the objective function, then the
descent method is called Gradient Descent. The intuitive explanation of choosing the opposite

Algorithm 3 Gradient descent

Init. x
(0)
 0

while stopping criterion is satisfied do

4x
(:) = �r 5 (x(:)

)

Select C
(:)

> 0 (line search)
x
(:+1)

 x
(:)

+ C
(:)
4x

(:)

end while

of the objective function 5 (x) gradient as the search direction traces back to the first order
Taylor approximation centred in 5 (x

(:)
). Assuming 5 is differentiable in x

(:) , for any small
perturbation 4x

(:)

5 (x
(:)

+ 4x
(:)

) ' 5 (x
(:)

) + 4(x
(:)

)
)

r 5 (x)

���
x=x(: )

now it is explicit that in order to get maximum leverage out, 4x must be align along �r 5 (x(:)
).

By multiplying with a positive value C (:) the following results still holds

5 (x
(:+1)

) = 5 (x
(:)

) � C
(:)

((r 5 (x
(:)

)
)

r 5 (x
(:)

) < 5 (x
(:)

)

The algorithm parameter C (:) plays an important role in the optimization process. Intuitively,
since the first-order approximation is good only for small 4x, it is preferred to choose it in order
to make the search direction small. Additionally, a high learning rate leads to “overshooting”
past the local minima point and may even lead to the algorithm diverging. On the other hand, a
small learning rate increases the time the algorithm takes to converge. Choosing a right balance
between the two is essential in order to get a stable and efficient algorithm.
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2.7.2 Momentum-based GD

Polyak GD

Heavy-ball method, which is also referenced as momentum in deep learning, was first proposed
by Polyak [23] and is a modification of vanilla gradient descent. The main idea is to move in a
direction given by a linear combination of past gradients in each step of the algorithm. The main
purpose was to make the algorithm converge faster and still in a stable way, this was shown to be
more effective the GD for quadratics problems, but was not able to generalize well to other kinds
of objective function. The algorithm leverages on the current position in the function space G: ,
and the “momentum” D: , which is a linear combination of the past gradients. The update rule
is the following:

Algorithm 4 Polyak GD

Init. x
(0)
 0

while stopping criterion is satisfied do

Select V
(:)

, C
(:)

> 0
u
(:+1)

 u
(:)
� V

(:)
r 5 (x

(:)
)

x
(:+1)

 x
(:)

+ C
(:)
D
(:)

end while

The scalar hyperparameters V(:) and C (:) must be properly tuned, usually based on the bounds
of the condition number of the objective function Hessian matrix.

Nesterov GD

Leveraging the idea of momentum introduced by Polyak, Nesterov [24] introduced a sligh
modification to the update rule that has been shown to converge well not only for quadratic
functions, but for general convex functions. While Polyak GD makes the gradient step first and
then adds the momentum, Nesterov GD can be thought of as adding the momentum first and
evaluating the gradient step from the new point after.

Figure 2.17: Paths followed by GD(blue) and Momentum GD(red) for reaching the function
minimum. In orange the momentum component at each iteration
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Algorithm 5 Nesterov GD

Init. x
(0)
 0

while stopping criterion is satisfied do

Select V
(:)

, C
(:)

> 0
u
(:+1)

 x
(:)
� V

(:)
r 5 (x

(:)
)

x
(:+1)

 u
(:)

+ C
(:)

(D
(:+1)
� D

(:)
)

end while

Figure 2.18: Polyak versus Nesterov momentum update step

2.7.3 SGD and minibatch

Gradient Descent algorithms are not subjected to training variance since at every step it is
computed the average gradient using the whole dataset. The downside is that every step is very
computationally expensive. The complexity of each iteration is $ (=3), where = is the number
of samples in our dataset and 3 is the number of dimensions of x. This becomes impractical
when dealing with very large dataset. The stochastic gradient descent algorithm (SGD) does not
update the direction based on all the dataset points, but at each iteration it randomly picks just
one of them. The updated direction is not the exact gradient, like in GD, but a random vector
v: which is required to have expected value equal to the gradient. In this way, the computation
complexity is reduced to$ (3) for each iteration. Let 5 ()) : R= ! R be a stochastic scalar. The
aim of SGD is to minimize E[ 5 ())] w.r.t. ) . The functions 5 (1) ()), 5 (2) ()), ..., 5 ( ) ()) denote
the realization of the stochastic function at each iteration. The minibatch variation considers, at
each iteration, a subset ((:) = [1,<] of the < available data samples. Note that if ((:) = 1 then
the minibatch SGD is equal to the SGD and if ((:) = < then it is equal to the GD.
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Algorithm 6 Stochastic gradient descent

Init. ) (0)
 0

while stopping criterion is satisfied do

Select C
(:)

> 0
Choose v: at random from a distribution s.t. E[v: |) (:)

] = r 5 () (:)
)

) (:+1)
 ) (:)

� C
(:)

v:

)̂  1
:+1

Õ
:+1
8=1 ) (8)

end while

Figure 2.19: Path towards the function minimum followed by GD(left) and SGD(right)

2.7.4 ADAM

ADAM(”Adaptive Moment Estimation”) is an efficient stochastic optimization method that only
requires first order gradients with little memory requirements. It combines ideas from both
AdaGrad and Momentum GD, indeed its key features include momentum-based updating of
gradients and adaptive scaling of learning rates for each parameter. Whereas momentum can be
seen as a ball running down a slope, Adam behaves like a heavy ball with friction, which thus
prefers flat minima in the error surface.

Let 5 ()) be a stochastic scalar function with parameters ) . The aim is to minimize E[ 5 ())]
w.r.t. ) and 5

(1)
()), 5 (2) ()), ..., 5 ( ) ()) denote the realization of the stochastic function at

each iteration. The stochasticity might come from the evaluation at random subsamples (mini-
batches) of datapoints, or arise from inherent function noise. The algorithm updates exponential
moving averages of the gradient < (:) and the squared gradient E (:) where the hyper-parameters
V1, V2 2 [0, 1) control the exponential decay rates of these moving averages. Since the moving
averages are initialized to zero this leads to moment estimates biased towards zero. Anyway this
initialization bias can be easily counteracted, resulting in bias-corrected estimates <̂ (:) and Ê (:) .
The gradient of the objective function is denoted by g

(:) = r) 5 (:) ()), while (6(:))2 = g
(:)
�g

(:)

and V:1 and V:2 denote V values to the power of : . All vector operations are element-wise. Good
default settings of the hyperparameters proposed by the paper [27] are U = 0.001, V1 = 0.9,
V2 = 0.999 and n = 10�8
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Algorithm 7 ADAM

Require: U: Stepsize
Require: V1, V2 2 [0, 1): Exponential decay rates for the moment estimates
Require: 5 ()): Stochastic objective function with parameters )
Require: )0: Initial parameter vector

m
(0)
 0 (Initialize 1st moment vector)

v
(0)
 0 (Initialize 2nd moment vector)

:  0 (Initialize timestep)
while stopping criterion is satisfied do

:  : + 1
g
(:)
 r) 5

(:)
() (:�1)

) (Get gradients w.r.t. stochastic objective at timestep :)
m

(:)
 V1 · m

(:�1)
+ (1 � V1) · g

(:) (Update biased first moment estimate)
v
(:)
 V2 ·v

(:�1)
+(1�V2) · (g

(:)
)
2 (Update biased second raw moment estimate)

m̂
(:)
 m

(:)
/(1 � V:1 ) (Compute bias-corrected first moment estimate)

v̂
(:)
 v

(:)
/(1 � V:2 ) (Compute bias-corrected second raw moment estimate)

) (:)
 ) (:�1)

� U · m̂
(:)

/(

p
v̂
(:)

+ n) (Update parameters)
end while

return ) (:) (Resulting parameters)

2.8 Backpropagation algorithm

Deep neural networks are trained using a particular kind of algorithm called back-propagation,
which is an efficient algorithm based on the chain rule, with the purpose of computing the
gradient update step in a computationally more efficient way for specifically the DNN model
topology. The chain rules states that given a differentiable function 6(G) at some point G⇤ and 5

a differentiable function at 6(G⇤), then the composite function 5 � 6 is differentiable in G⇤ and
its derivative is equal to

( 5 � 6) (G
⇤
) = 5

0
(6(G

⇤
))6
0
(G
⇤
)

The concept is generalized to multiple composite functions using the Leibniz notation

351
3G

(G
⇤
) =

351
352

( 52(G
⇤
)) ·

352
353

( 53(G
⇤
)) · ... ·

35=

3G

(G
⇤
)

Next, it is going to be considered a generic example of a multilayer feedforward fully connected
neural networks composed by ! layers, multiple inputs and outputs, to be trained using the MSE
loss function and " training data samples. The ;-th layer is supposed to have � outputs(neurons)
and � inputs. The output of a dense layer, without considering the activation function, is the
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following

y = Wx + b =

8>>>>>>>><
>>>>>>>>:

H1 = F11G1 + F12G2 + · · · + F1�G� + 11

H2 = F21G1 + F22G2 + · · · + F2�G� + 12
.
.
.

H� = F�1G1 + F�2G2 + · · · + F��G� + 1�

Given ⇢ the error back propagated to the ;-th dense layer we are interested on calculating the
gradient of this with respect to the trainable parameters W and b and the input x, to be passed
to the previous dense layer. In order to do so, the gradient of the error is first calculated with
respect to the layer outputs y and then it is applied the chain rule
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The expression rW⇢ is an abuse of notation, it represent the gradient of ⇢ over all the weights
F8 9 associated to the layer. Using the chain rule the gradients can be easily evaluated

m⇢

mF8 9

=
m⇢

mH8

G8 88, 9 ! rW⇢ =
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The activation function can be considered a layer itself, with no trainable parameter

y = 5 (x) =

8>>>>>>>><
>>>>>>>>:

H1 = 5 (G1)

H2 = 5 (G2)
.
.
.

H� = 5 (G�)
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Since it has no trainable parameters, the only quantity of interest is the gradient of the received
error with respect to the layer inputs.

m⇢

mG 9

=
m⇢

mH 9

m 5

mG 9

8 9 ! rx⇢ = ry⇢ � rx 5

The blockchain can be summarised by the block diagram 2.20. At the very end of the network,
the error propagating is the loss function used to train the model. In this example, it is considered
the MSE loss with " training data samples as the initial back-propagated error

ry⇢ = ry

1
"

"’
8=1

| |y
8
� y
⇤

8
| |

2

Figure 2.20: Backpropagation of the error through a multi-layer fully connected neural network

2.9 Evaluation metrics

2.9.1 Dynamic Time Warping

Dynamic time warping (DTW) is a dynamic programming technique used to find the optimal
alignment between two given time-dependent sequences of possibly different length. Intuit-
ively, the sequences are warped in a non-linear fashion to match each other, which allows to
compare and measure the similarity between the two, that may vary in time or speed. The
objective of DTW is to compare two (time-dependent) sequences - = {G1, G2, ..., G# } and
. = {H1, H2, ..., H"} of respectively length of # ," 2 N. To compare two different features
G, H 2 R, one needs a local cost measure, sometimes also referred to as local distance measure
inversely proportional to the difference. This can be defined to be a function 2 : R ⇥ R ! R+.
Evaluating the local cost measure foreach pair of elements of the sequences - and . leads to a
cost matrix ⇠ 2 R#⇥" such that ⇠ (=,<) = 2(G=, H<). The goal is to find an alignment between
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- and . having minimal overall cost. An (# ,") warping path is a sequence ? = (?1, .., %!)

with ?; = (=; ,<;) 2 [1 : #] ⇥ [1 : "] for ; 2 [1 : !] satisfying the following three conditions:

• Boundary condition: ?1 = (1, 1) and ?! = (# ,")

• Monotonicity condition: =1  =2  ...  =! and <1  <2  ...  <!

• Step size condition: ?;+1 � ?; 2 {(1, 0), (0, 1), (1, 1)} for ; 2 [1 : ! � 1]

The total cost 2? (- ,. ) of a warping path ? between - and . with respect to the local cost
measure 2 (such as the squared ;2 norm 2 = | | · | |

2
2) is defined as

2? (- ,. ) =
!’
;=1

2(G=; , H<; )

An optimal warping path ?
⇤ between - and. is a warping path having minimal total cost among

all possible ones. Finally, the DTW distance is defined as the total cost of ?⇤

⇡), (- ,. ) = 2?⇤ (- ,. ) = <8={2? (- ,. )}

To determine an optimal path ?⇤, one could test every possible warping path between - and
. . Such a procedure, however, would lead to a computational complexity that is exponential
in the lengths # and " . There exists, however, a dynamic programming algorithm that can
reduce this complexity to $ (#"). To this end, the prefix sequences - (1 : =) = {G1, ..., G=} and
. (1 : <) = {H1, ..., H<} are defined for = = [1 : #] and < = [1 : "] and set

⇡ (=,<) = ⇡), (- (1 : =),. (1 : <))

The values⇡ (=,<) defines a#⇥" matrix defined as accumulated cost matrix. The accumulated
cost matrix defines the following identities

⇡ (=, 1) =
=’
:=1

2(G: , H1)

⇡ (1,<) =
<’
:=1

2(G1, H: )

⇡ (=,<) = min{⇡ (= � 1,< � 1),⇡ (= � 1,<),⇡ (=,< � 1)} + 2(G=, H<)

for = 2 [1, #] and < 2 [1,"]. It can be demonstrated that, by using the accumulated cost
matrix, ⇡), (- ,. ) = ⇡ (# ,") can computed with a complexity of $ (#") by the algorithm
8. In order for the agorithm to work the first row and column of the accumulated cost matrix
must be initialized to infinity except for the corner element which is initialized to zero.
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Algorithm 8 Accumulated cost matrix and DTW

⇡ (0, 0)  0
⇡ (=, 0)  1, = 2 [1 : #]
⇡ (0,<)  1, < 2 [1 : "]

for n = 1:N do

for m = 1:M do

2(=,<)  (- (=) � . (<))
2

⇡ (=,<)  2(=,<) +min{⇡ (=�1,<),⇡ (=,<�1),⇡ (=�1,<�
1)}

end for

end for

⇡), (- ,. )  ⇡ (# ,")

return ⇡,⇡), (- ,. )

Algorithm 9 Optimal path

Eval. ⇡ (accumulated cost matrix)
Init. ?⇤

!
 [# ,"]

Init. ;  !

while ?
⇤

;
< [1, 1] do

?
⇤

;�1  argmin {⇡ (= � 1,< � 1),⇡ (= � 1,<),⇡ (=,< � 1)}
;  ; � 1

end while

?
⇤

1 = [1, 1]
return ?

⇤

Figure 2.21: Time warping of two shifted sinusoidal time series(left) and the associated cost
matrix(right) with the optimal path displayed in red.
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2.9.2 Squared Maximum Mean Discrepancy

Maximum mean discrepancy (MMD) is a kernel based statistical test used to measure the level
of discrepancy between two probability distributions, which is defined as the distance between
their embeddings in a Reproducing Kernel Hilbert Space (RKHS). Given G ⇠ ? and H ⇠ @

""⇡ (?, @) = sup
kqk2H

(EG⇠? [q(G)] � EH⇠@ [q(H)])

By considering `? = [EG⇠? q(G)] and `@ = [EH⇠@ q(H)] the MMD square root can be demon-
strated to be

""⇡
2
(?, @) =

��
`? � `@

��2
H

= h`?, `?iH + h`@, `@iH � 2h`?, `@iH
= EG,G0⇠? hq(G), q(G0)iH + EH,H0⇠@ hq(H), q(H

0
)iH � 2EG⇠?,H⇠@ hq(G), q(H)iH

By defining the Kernel as  (G, H) = hq(G), q(H)i, it leads to

""⇡
2
(?, @) = EG,G0⇠?  (G, G

0
) + EH,H0⇠@  (H, H

0
) + EG⇠?,H⇠@  (G, H)

The empirical estimate is obtained by replacing the population expectations with their corres-
ponding U or V-statistics and sample averages, which respectively leads to unbiased and biased
estimators

""⇡
2
D
(G, H) =

1
<(< � 1)

<’
8=1

<’
9<8

 (G8, G 9 ) +
1

=(= � 1)

=’
8=1

=’
9<8

 (H8, H 9 ) �
2
<=

<’
8=1

=’
9=1
 (G8, H 9 )

""⇡
2
1
(G, H) =

1
<

2

<’
8, 9=1

 (G8, G 9 ) +
1
=

2

=’
8, 9=1

 (H8, H 9 ) �
2
<=

<,=’
8, 9=1

 (G8, H 9 )

The characteristics of the two estimators are the following: the U-statistic is unbiased, close
to minimum variance and not always � 0. On the other hand, the V-statistic is biased, with
minimum variance and always � 0. It is used the gaussian Radial Basis Function (RBF) kernel

 (G, H) = 4�WkG�Hk
2

the bandwidth W hyper parameter is set to the median pairwise norm-1 distances among the joint
kernel input data as suggested in [21]. The dimension of x and y is assumed to be the same
(#G8 = #H8 = 2)

W = "43 ({3 (G8, H8) | G8 2 G, H8 2 H})

3 (G8, H8) =
2’
8=1

|G8 � H8 |
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Chapter 3

Proposed model

3.1 Tensorflow and Keras

TensorFlow is an open-source machine learning library developed by the Google Brain team.
It is above the most popular frameworks used in the field of artificial intelligence and machine
learning. It is designed to simplify the creation, training, and deployment of machine learning
models, ranging from simple linear regressions to complex neural networks. One of its main
features is its versatility. It supports a wide range of machine learning algorithms and can be
run on different types of hardware, including CPUs, GPUs, and even TPUs. This flexibility
makes TensorFlow suitable for both academic research and large-scale production environments.
TensorFlow relies on data flow graphs. In this architectural paradigm, nodes in the graph
represent mathematical operations, while the edges represent the data arrays (tensors) that flow
between them. TensorFlow provides a large built-in support for deep learning, by implementing
a rich set of tools for constructing and training neural networks. This includes pre-built datasets
(MNIST, CIFAR-10-100, COCO, ...), models (ResNet, YOLO, GPT, ...), layers (Dense, CNN,
RNN, LSTM, ...) and optimizers (SGD, Adagrad, Adam, ...).

Moreover, TensorFlow has an already developed and varied ecosystem. TensorFlow Ex-
tended (TFX) is a production-ready machine learning platform that includes tools for model
training, serving, and validation. TensorFlow Lite is a lightweight version of the library de-
signed for mobile and embedded devices, which allows developers to run machine learning
models on smartphones, IoT devices and other resource-constrained platforms.

One of its strengths is the community support and extensive documentation. The community
continuously contributes to the library’s development and the documentation is comprehensive,
providing detailed explanations of its APIs, modules and functions.

Another significant aspect of TensorFlow is the integration with other Google services and
tools. TensorFlow can seamlessly integrate with Google Cloud, allowing users to leverage
the power of cloud computing for training and deploying models. Google Cloud AI Plat-
form provides managed services for TensorFlow, enabling users to train models on powerful
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cloud-based hardware without worrying about the underlying infrastructure. While Python is
the primary language used for TensorFlow, the library also provides APIs for other languages
such as C++, Java, and JavaScript. This cross-language support ensures that TensorFlow can
adapt to different environments. TensorFlow.js, for example, allows for the development and
deployment of machine learning models in the browser, enabling web developers to incorporate
AI into their applications without needing server-side processing. Another important example
is Tensorflow Lite for Microcontrollers, which is a C++ library which allows to implement
Tensorflow into an embedded system. The Tensorflow APIs hierarchy is rapresented in figure
3.1. The high-level API is object-oriented and is called Keras. It is integrated into TensorFlow
to offer a straightforward way to define and train models, making it accessible for beginners
while still powerful enough for advanced users. It abstracts much of the complexity involved
in developing software for machine learning applications, allowing users to focus on the archi-
tecture of their models rather than the underlying implementation details. When developing a
custom neural network architecture and/or training procedure and there are no high level Keras
building blocks to fulfill the task, then some lower level API must be used. Tensorflow provides
reusable libraries for common model components which can be used to customize the model
and/or training with a higher degree of freedom. Moreover, the core low-level API, allows the
user to directly work with the fundamental data structures(Tensor, TensorArray, Variable, ...),
primitive API(Shape, Concat, Slicing ...), Numerical(Math, Linalg, Random, ...) and functional
components(GradientTape, Function, ...).

Figure 3.1: TensorFlow APIs hierarchy(left) and the TensorFlow data flow graph of a fully
connected layer(right)
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3.2 Model architecture

The proposed VAE model is implemented and trained using Python and Tensorflow version
2.16.1, the structure is illustrated in figure 3.2.

The time series signal is provided as input to two one-dimensional convolutional Layers
(Conv1D) working in parallel, with respectively kernel size of 11 and 5 and 32 filters for both of
them. The convolution is performed by applying strides of length 2, which reduces the dimension
of the layers’ output feature maps, allowing to gradually encoding a compressed representation
of the input. The outputs of the two Conv1D layers are successively concatenated along the
filter axis, thus obtaining a total of 64 filters. A cascade of other two Conv1D layers leads to
an output of 18 samples with 32 filters. This output is reshaped into a one-dimensional array
of 576 samples by a Flatten layer. A Dense layer, composed by 32 neurons, is finally added as
penultimate layer to reduce the data size that are finally split into 2-neuron Dense layers. These
two final layers represent, respectively, the means and logarithmic variances of the bivariate
normal distribution associated to the two-dimensional latent space.

The decoder is symmetric to the encoder. The compressed vector is provided in input to
a cascade of two Dense layers of size 32 and 576, respectively. Then the data is reshaped
into a structure having size (18, 32). Two one-dimensional transposed convolutional layers
(Conv1DT) with reversed strides and 32 filters are used to gradually augment the data size up to
(144, 32). The signal is again split into two vectors to feed two different Conv1DT layers with
32 filters. The outputs of these filters are than concatenated and a final Conv1DT with only one
filter is applied to obtain the original input size. All layers implement a Rectified Linear Unit
(ReLU) activation function, except for the decoder last layer, where a hyperbolic tangent (Tanh)
is employed. Tables 3.1 and 3.2 summarize the layers of the two deep-learning networks. The
sampling layer, the custom loss function and training procedure are implemented using core low
level Tensorflow API.

Table 3.1: Encoder architecture

Layer
type

Output
shape

Kernel
size Strides Act.

function
Input (288,1) N/A N/A N/A

Conv1D (144,32) 11 2 ReLU
Conv1D (144,32) 5 2 ReLU

”Concat.” (144,64) N/A N/A N/A
Conv1D (72,32) 11 2 ReLU
Conv1D (18,32) 9 4 ReLU
Flatten (576) N/A N/A N/A
Dense (32) N/A N/A ReLU
Dense (2) N/A N/A ReLU
Dense (2) N/A N/A ReLU

”Sampling” (2) N/A N/A ReLU
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Table 3.2: Decoder architecture

Layer
type

Output
shape

Kernel
size Strides Act.

function
Input (2) N/A N/A N/A
Dense (32) N/A N/A ReLU
Dense (576) N/A N/A ReLU

”Reshape” (18,32) N/A N/A N/A
Conv1DT (72,32) 9 4 ReLU
Conv1DT (144,32) 11 2 ReLU
Conv1DT (288,32) 13 2 ReLU
Conv1DT (288,32) 5 2 ReLU
”Concat.” (288,64) N/A N/A N/A
Conv1DT (288,1) 13 1 tanh
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Figure 3.2: Encoder (up) and decoder (bottom) architectures
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3.3 Model training

Encoder and decoder are trained jointly: a sampling layer samples from the normal distribution
parameterized by the encoder outputs and obtains a two-dimensional vector to be fed into
the decoder network, which tries to reconstruct the original signal. The available dataset
has very few samples and the aim is to augment their number and diversity. DNN based
architectures, given their large amount of parameters, require quite a large amount of data
in order not to be underfitted. The required amount of data, however, is unavailable, so the
only possible solution is a very ”intensive training”, which leads to overfitting the model to
the small amount of available data, but does no compromise its generative capabilities of
augmenting the training data itself. Network parameters are initialized using the Gloroth
uniform initializer. The ADAM optimizer is chosen. The training is concluded with an early
stopping when there is no relevant improvement of the reconstruction loss after a certain number
of epochs. At the end of training phase, the quality of the model is evaluated by considering the
Reconstruction Loss '! =

Õ
⌫

8=1 kG
(8)
� Ĝ

(8)
k

2
2, which corresponds to the average mean squared

error between original and reconstructed single-beat ECG signals, along with the KL-Divergence
 ! = �1

2
Õ
⌫

8=1
Õ
�

9=1(1 + log(f (8)

q, 9
)
2
� (`

(8)

q, 9
)
2
� (f

(8)

q, 9
)
2
), with ⌫ the number of samples in the

mini-batch.
The best trained model values are: '! = 1.09 and  ! = 1.43. The reconstruction error

might seem strange at first glance, since it is quite high for training values which are normalized
in the amplitude range of [�1, 1]. This is indeed due to the fact that the reconstructed signal is
derived from a sampled latent space variable. In fact, a training datapoint is first fed as input
of the encoder neural network, which returns as output the values of the bivariate gaussian
distribution - = [`1, `2] and log22 = [logf1, logf2]. A latent variable is then sampled from
that distribution and reconstructed by the decoder neural network. In order to evaluate a proper
MSE measurements it is indeed necessary to fed to the decoder input the mean values estimated
by the encoder network, bypassing the sampling procedure. Given x8 for 8 = 1, 2, ..< the original
< training data samples and x̂8 for 8 = 1, 2, ..< the reconstructed ones bypassing the sampling
procedure, the MSE is evaluated as

"(⇢ =
<’
8=1

| |x̂8 � x8 | |
2
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Chapter 4

Application 1: test with a sinusoid dataset

4.1 Introduction

In the time domain, a sinewave signal is represented by 3 main features: amplitude, phase and
frequency. Sinusoidal signals represent mathematically simple and well understood signals, for
which those proprieties are well-defined and predictable.

G(C) = � sin(2c 50C + q) C 2 R

G [=] = � sin(2c 50= + q) = = 0, 1, ..., # � 1

This allows to more easily assess the model interpolation and extrapolation capabilities of those
essential characteristics. A sinewave is one of the most employed test signals. Amplitude can be
varied in order to evaluate the dynamic range of a given device, while by varying the frequency
we can easily test the frequency response of the device under test.

Any periodic signal can be decomposed into a sum of sinusoidal components using the
Fourier series, this makes sinusoidal signals suited for the analysis and understandings of more
complex periodic signals. The continuous and discrete sinusoid signal Fourier transforms are

- ( 5 ) =
π
1

�1

G(C)4
� 92c 5 C

3C =
�

2

⇣
4
9q

X( 5 � 50) + 4
� 9q
X( 5 + 50)

⌘

- [<] =
#�1’
==0

G [=]4
� 9

2c
# <=

=
4
9q

2

#�1’
==0

4
� 92c <�# 50

# =

+
4
� 9q

2

#�1’
==0

4
� 92c <+# 50

# =

< = 1, 2, ..., # � 1

Those can be used to evaluate the frequency behaviour of the model generative process. Since
this thesis work deals only with real amplitude time signals, the Fourier transform is always
symmetric with respect to the origin, hence only positive values 5 � 0 are going to be considered.
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4.2 Sinusoid dataset

The sinusoid training dataset was created with 6 different classes, each composed by 100
sinusoidal signals belonging to a specific set of frequency values {1, 2, 3, 4, 5, 6}�I. Each
signal was generated over an observation window of 1 second and the sampling frequency was
set to 288�I, obtaining a total of 288 samples. The amplitude of each sinusoid is sampled
from the uniform distribution � ⇠ * [0.1, 1], in this way the signals are already normalised
and ready to be used for training the VAE. Initially, the sinusoids are going to be set with a
null phase component. Later, the phase component is going to be implemented by sampling it
from the probability distribution q ⇠ * [0, 1]. Finally, a white gaussian noise is added to the
sampled sinusoid amplitudes in order to assess the model rejection to noise. The noise is set to
be proportional to the sampled amplitude � ⇠ * [0.1, 1] and scaled by a proper factor  = 0.1.
Given =I ⇠ N(0, 1), the added noise is equal to = =  · � ·=I. Three dataset are then synthetized

1. Dataset 1: 6 fixed frequencies(classes), randomly varying amplitude

2. Dataset 2: 6 fixed frequencies(classes), randomly varying amplitude, randomly varying
phase

3. Dataset 3: 6 fixed frequencies(classes), randomly varying amplitude, added gaussian noise
to the amplitude

Figure 4.1: Some signals of the dataset 1 (top-left), 2 (top-right) and 3 (bottom)
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4.3 Training results

The model is trained using mini-batch Adam optimiser, with a batch size of both 32 and 64
samples and a total of 72 epochs. It took approximately 4 minutes to complete the training
process by using the standard CPU available in Google Colab, an Intel Xeon CPU with 2 vCPUs
and 13GB of RAM.

The evolution of the latent space mapping during the training phase is reported in figure 4.2;
in this case the first dataset was employed. During the first epoch, the latent space is collapsed.
The model provides a unique representation for all the training data, hence it is still not able to
capture the data features and distinguish the different classes. After the third epoch, the training
datapoints are encoded along a single diirection. The model is starting to slowly capture some of
the data feature and mapping the latent space accordingly. Since the classes are still not clearly
separated, this means that the model is first learning the amplitude feature, but it is still not able
to recognise the frequency of the sinusoids. It is expected for the reconstructed signals to not
preserve the morphology typical of a sinusoidal signal, but still have different amplitudes along
the mapped line. From epoch 5 to 14 the model learns also to better recognize the frequency
feature. This leads to a mapping of the latent space where each class of clusters occupies a
well defined region of space, leading to a final star shaped formation. The remaining epochs
still mapped the class clusters with a common origin, but more equally spaced and in a more
compressed region of space.
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Figure 4.2: Mapping of the training datapoints in the latent space at different training epochs

The original and reconstructed sinusoidal waveforms are plotted in figure 4.3, 4.4 and 4.5 for
respectively the dataset 1, 2 and 3. The morphological shapes seem to be preserved, moreover
figure 4.5 shows also the noise rejection capabilities of the model. The reconstructed waveforms,
compared with the original one, are clearly distinguishable.

In order to make some more consistent evaluation of the reconstructing capabilities of the
model and its noise rejection, proper quantitative evaluation metrics are used. The reconstruction
loss (RL) and the Kullback-Leibler divergence (KLD) are the losses used during the training
process, while the mean squared error(MSE) is only used for evaluation purposes. The first two
metrics are just the output of the final epoch of the training process while the MSE has been
calculated has explained in section 3.3.

The dataset 1 and 2 present a very low MSE, proving very good performances of the model
in reconstructing the training data samples. The metric is one order of magnitude higher for
the dataset 2, which contains sinusoids with also a varying phase shift. This is an expected
behaviour, since the complexity of the feature in this case is higher, while the training procedure
is kept the same. For what concern dataset 3, the RL metric is much higher compared to dataset
1 and 2. The model reconstructs the input signals by rejecting the high frequency gaussian noise,
hence the RL is calculated between the original noisy signals and the reconstructed de-noised
ones, making the amount of error higher by a factor proportional to the added noise. In order to

66



properly evaluate the reconstruction and denoising capability of the model, without interfering
with the generative oriented training process, the MSE is used. It is considered x8 the original
data samples without added noise, x

(=)

8
the original data samples with added noise and x̂

(=)

8
the

reconstructed data samples obtained by giving as input to the VAE the original ones with added
noise.

"(⇢ =
<’
8=1

| |x̂
(=)

8
� x8 | |

2

In this way it is possible to provide a first evaluation about the denoising capability of the
developed VAE. In this example, a "(⇢ = 2 ⇥ 10�4 is obtained, thus suggesting that the
proposed VAE could be considered, in future applications, also for signal denoising.

Figure 4.3: Dataset 1: original training signals(top) and reconstructed training signals(bottom)
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Figure 4.4: Dataset 2: original training signals(top) and reconstructed training signals(bottom)

Figure 4.5: Dataset 3: original training signals(top) and reconstructed training signals(bottom)
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Dataset RL KLD MSE

1 1.8 6.8 6 ⇥ 10�05

2 4.3 8.4 4.5 ⇥ 10�04

3 35 8.3 1.9 ⇥ 10�04

Table 4.1: Reconstruction Loss (RL), Kullback-Leibler Divergence (KLD) and Mean Squares
Error (MSE) results of the sinusoid dataset

4.4 Latent space

The developed VAE latent space is a two-dimensional space in which the encoder networks
maps the input data. More precisely, the encoder network, given an input data, returns the
parameters of the bivariate gaussian distribution(means and logarithmic covariances) from which
an encoded data point is then sampled. The latent space is mapped continuously, enabling
smooth interpolation between the encoded training data points. Different regions of the latent
space are associated to encoded data having different features. This interpolation capability is
a direct result of the continuity and smoothness of the latent space and is particularly useful
for morphing between different signals shapes and structures. It allows to generate new data
samples characterised by a mix of feature of the training data. Once the proposed VAE model
is trained, the encoder and decoder components can be used as independent neural network
models.

The encoder neural network receive as input a 288-th dimensional variable, in this case a
288 samples long signal, and encodes it into a lower dimensional latent space, with just two
dimensional components 54 : R288

! R2. The decoder on the other hand, receives a two
dimensional variable as input and then outputs a 288-th dimensional one 53 : R2

! R288.
The last layer of the encoder component is a custom sampling layer based on a bivariate
gaussian distribution. The encoder inner architecture converts a 288 samples signal input into
a 4 parameters of the bivariate gaussian distribution, the mean values - = [`1, `2] and the
logarithm variances log22 = [logf1, logf2]. Next, the sampling layer samples from that
probability distribution. The randomness added by the sampling layer is essential during the
training phase for preserving the model generative performances. In order to map the latent
space, however, the sampling procedure is bypassed and it is plotted directly the gaussian mean
values z = - = [`1, `2] of each training data.

The figure 4.6 represents the latent space encoded mean values of the training data. The
generated latent space representation has mapped the sinusoidal training signals approximately
along 6 lines, one for each class. This exhibits the model capability of properly interpreting
the specific classes features, hence, distinguishing the data samples of each individual class by
grouping them in well defined clusters. Those lines are quite equally distanced and arranged in
a radial pattern with a common origin.

The model, even if the same training data are used, learns a different latent representation
each time it is trained. This is due to the random nature of the mini-batch training process,
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which uniformly samples the training signals to be used at a specified training epoch. However,
if properly trained, even if the position of the class clusters changes, the main mapping structure
remains the same.

The dataset 1 contains sinusoids with a specific frequency and varying amplitude. By just
looking at the latent space, it can be assessed a general interpretation on how it is mapped.
Each line represent a specific class, i.e. sinusoid signals at different frequencies, while each
point along that line represent sinusoids with different amplitude values. Sinusoidal signals with
different frequencies tend to be harder to distinguish as the amplitude decreases, this suggests that
the points nearby the star center are the ones with lower amplitude. The points (encoded signal)
seems to be quite uniformly distributed along the lines. This again comes with a meaningful
interpretation, since the sinusoids of each class had their amplitude uniformly sampled in the
range [0.1, 1]. The encoded signals of dataset 2 have a similar interpretation of dataset 1, with
the main difference that also the changing phase component is mapped into the latent space,
making the lines spread radially, but still clearly distinguishable. This, along with the low value
of the reconstruction loss 4.1 , is an indicator of the model ability to correctly capture both the
changing amplitude and phase features. Finally, the latent space associated to dataset 3 has a
shape similar to the one associated to dataset 1.
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Figure 4.6: Latent space mapped with the training datapoints belonging to dataset 1(top-left), 2
(top-right) and 3 (bottom)

4.4.1 Cluster inspection

In the following sections a specific cluster of points, the coloured ones in the presented figures, is
properly chosen. The encoded points are decoded to obtain the associated reconstructed signals
and their magnitude Fourier transform with the purpose to more clearly assess the mapping of
the latent space. Figures 4.7, 4.8 and 4.9 plots respectively a cluster of points along one of the
six training data clusters. The reconstructed signals confirm the hypothesis carried on in the
previous section. Along one of the six lines there are encoded sinusoidal signals with the same
frequency and different amplitudes, which increases by moving from the center of the star to the
external points. The FFT plot shows that the decoded signals are sinusoids with perfectly the
same frequency of the considered class.
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Figure 4.8 shows that, at a similar radial distance from the center, the class points capture the
phase shifting feature of the training signals. The reconstructed signals have indeed the same
frequency, approximately the same amplitude and different phase values.

Figure 4.9 shows that the reconstructed signals are almost identical to the ones without noise
of dataset 1, with just a small amount of high frequency noise. From the reconstructed signal in
the time domain, it can be noticed that the high frequency noisy components are more relevant
for the sinusoids with larger amplitudes. This is an expected behaviour since, in the dataset 3,
the amount of added noise is proportional to the sinusoid amplitude.

Figure 4.7: Dataset 1: cluster inspection
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Figure 4.8: Dataset 2: cluster inspection

Figure 4.9: Dataset 3: cluster inspection
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4.4.2 Interpolation

Next, the interpolation capability of the model is evaluated. It is chosen a set of points in the
latent space, which are then decoded using the decoder network. The reconstructed signals
will be more affected by the features of the closer clusters. The closer the cluster is and the
higher its effect will be. Figure 4.10, 4.11 and 4.12 represent the interpolating points along
a line among two classes clusters for respectively dataset 1, 2 and 3. Figure 4.10 shows an
interpolation between the features of the two surrounding clusters. By moving from one cluster
towards another, the frequency component gradually changes.

Once that the training signal features are correctly identified, that, in this case, correspond
to the frequency of the two classes, the VAE maps the intermediate latent space region in such a
way that both the features are combined with different weights. The amount of specific features
that characterise the reconstructed signal is inversely proportional to the geometric distance
between the encoded signal and the features of the specified cluster. The closer the encoded
signal to one cluster, the more the signal is characterised by the features of that cluster.

The sinusoids of dataset 1 are composed by 2 two features, the amplitude and the frequency.
The behaviour becomes much clearer by looking at the frequency domain of the reconstructed
signal. There are two main frequency components, which are the frequencies associated to the
two surrounding clusters, along with some other noisy components in the nearby spectrum. The
interpolation seems to be approximately just the sum of the signals associated to the clusters,
weighted proportionally to their geometric distances.

Figure 4.11 shows that the coloured line edges point (darker and lighter ones) are associated to
sinusoidal signals with different amplitudes. This is expected since their encoded representations
have different radial distances from the star center. By looking at the reconstructed signals, the
sinusoidal signals with frequency equal to 4�I start shifting in phase and keep almost the same
amplitude. This is due to the fact that the line moves along the width of the class cluster. Next,
in the intermediate region, the features of the two sinusoidal components are mixed. Finally,
when reaching the second cluster, the reconstructed sinusoidal signals have the same frequency
of the associated cluster, but still shift in phase.

Figure 4.12 shows that the model, trained with dataset 3, behaves almost identically to the
one trained with dataset 1. The model is able to maintain its generative properties while still
applying its denoising feature.
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Figure 4.10: Dataset 1: interpolation capabilities

Figure 4.11: Dataset 2: interpolation capabilities
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Figure 4.12: Dataset 3: interpolation capabilities

4.4.3 Extrapolation

In order to assess the extrapolation capability of the proposed model, it is needed to choose
some encoded signals in the latent space outside the region mapped with the training ones. The
dataset 1 is used for this purpose, since it has the clearer and more interpretable latent space
mapping.

The latent space is sampled along a line starting from the center of the star and with length
about two times the length of the radius of the star, as reported in Fig. 41. The reconstructed
signal saturates if its encoded representation stands outside the mapped region. Figure 4.13
shows that the reconstructed signals are not more characterized by a sinusoidal shape and tends
toward a square wave. This can also be evaluated in the frequency domain, where there are also
harmonic components in correspondence to the odd multiples of the fundamental frequency.

This behaviour has a clear explanation: the last layer of the decoder neural network has
an hyperbolic tangent as its activation function. This means that all the output of the decoder,
hence the reconstructed amplitudes, are compressed in the range [�1, 1]. The VAE clearly
captures the amplitude feature, but it is not able to extrapolate it further with respect to the
training signals due to the limitation imposed by the tanh activation function. Without entering
in details, the most straightforward solution to the problem is to change the activation function
from the hyperbolic tangent to the linear ones 5 (x) = x. In this way, both negative and positive
signal values are passed through without any compression. This choice has the main drawback
of reducing the numerical stability of the training procedure. In fact, without any constraints,
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the output values can become very large or very small. If the network is trained on the same
dataset 1, but the last decoder layer activation function is set to ”linear”, the problem is solved
(fig. 4.14). Moreover, it seems that this approach leads to a similarly good qualitative results
compared with the initial model.

Figure 4.13: Amplitude compression of the reconstructed sinusoids, due to the tanh activation
function of the last decoder layer
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Figure 4.14: The amplitude is no more compressed if it is applied a linear activation function
to the last decoder layer. The VAE is now capable of extrapolating the amplitude features of the
sinusoidal signals.
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Chapter 5

Application 2: ECG dataset

5.1 Dataset and pre-processing

The dataset under test is composed of 12 lead ECG signals up to one minute long and of 20
different healthy people. It is derived from the public database MIT-BIH Arrhythmia Database.
This dataset is scarcely populated, hence synthetically augmenting it could be greatly beneficial
for its potential use in data-driven applications. The main features are listed below:

• Only healthy ECG

• Number of people = 20

• Sampling frequency = 500 Hz

• Number of ECG leads = 12

• ECG traces length = up to 1 minute

• The network is trained on lead no. 1 of 6 people

In machine learning applications, data preprocessing stands as an essential foundation for the
efficacy of any data driven model. It acts as a critical intermediary step, transforming raw data
into a much more usable format that aims to improve the learning process of a model. It ensure
that the data conforms to specific application requirements, allowing the model to achieve proper
feature extraction capabilities. Data preprocessing deals with both the quality and the quantity
of the data, along with the most suited data representation for the model to learn. Good quality
data has a minimum presence of noise, no inconsistencies, no duplicates and its outliers are
carefully handled. In general, the more complex the data structure is, the greater the amount
of data samples is required for the model to correctly interpret it. Moreover, when dealing
with labeled data(supervised learning), it is essential to have approximately the same amount
of samples for each class. Finally, proper transformations applied to the specific data type can
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improve the numerical stability of the model during training and evaluation, leading to a faster
training and better performances.

The quality of the measured ECG is quite high, there is very little presence of high frequency
noise, since the data was already cleaned beforehand. No duplicate ECG traces were found to
be present in the dataset.

During a visual inspection of the ECG traces, two of the classes(15 and 19) clearly appeared
to be compromised. The amplitude readings of the electrical hearth activity of each leads were
completely off scale and the cardiac beat morphology was abnormal. These classes have been
discarded.

Since the model aims to process single beat ECGs, the next task is to slice the ECG traces
and extract each cardiac beat. For this purposes, the Pan-Tompkins algorithm is used to detect
the R-peaks and a suited observation window is used to extract the samples of each ECG beat.
The cardiac frequency, in general, changes quite frequently in time. If the measured subject
is supposed to be in a state of rest during the ECG measurements, it is highly probable that
the cardiac frequency remains almost the same for smaller interval durations, such as the ones
from the measurements(up to 1 minute). However from one healthy subject to another it could
vary consistently. This leads to ECG traces that presents slight or more consistent changes in
the cardiac frequency. Therefore, the extracted ECG beat signals have different samples length.
The implemented deep learning model, however, requires a fixed-length input, so also the length
of the single beat ECG signals must be fixed. Ideally, this would be achieved by cutting the
number of edges samples of all the beats down to the smallest amount of signal samples among
the dataset signals. However, for longer heart beat signals, this could cause cutting some of
the relevant information of the signal itself(one of the main peaks). A possible solution is to
choose a proper amount of samples to keep, then removing all the signals with a lower amount
of samples and cutting the edges of the remaining ones. The used dataset is scarcely populated
and the overall cardiac frequency of the stored ECG leads does not change excessively, so the
proposed solution has excluded only a really small amount of signals.

Data normalization involves scaling the input data to a specific range or distribution. This
process ensures that each feature contributes more equally to the learning process, preventing
certain features from dominating the others due to their scale. Moreover, normalizing data helps
in accelerating the training process and improves the overall performances of deep learning
models. For example, since neural networks are typically optimized using gradient-based
methods, if the input features vary widely in scale, the gradients can also vary significantly,
leading to inefficient updates and slow convergence.

Normalizing the data ensures that all input features have a similar scale, leading to more
uniform gradient updates and faster convergence during training. Neural networks involve also
numerous mathematical operations, including multiplication, addition and activation functions.
When the input data has large variations in scale, it can lead to numerical instability, causing
computational issues such as overflow or underflow. Normalizing the data helps in maintaining
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numerical stability, ensuring that the training process remains robust and efficient. Finally, nor-
malized data helps in regularizing the model, reducing the risk of overfitting to the training data.
By ensuring that all features contribute equally, normalization promotes learning representations
that generalize better to unseen data.

Commonly used normalization techniques are Min-Max, Z-score, Robust, Log scaling,
Robust scaling and Max Abs scaling. Since ECG signals are essentially a measure of the
difference of electrical potential between two points(ECG lead), they can have both positive and
negative amplitude values. The zero corresponds to the absence of electrical activity. During
the generative process it is essential to preserve this representation in order for the signal to be
properly interpreted. Applying techniques such as min-max or log scaling, would not allow to
reconstruct back this representation. It is, indeed, needed a zero-centred transformation, which
normalize the amplitude values in the range of both negative and positive values. For this
purpose, it is used the Max Abs scaling, which constraints the data in the range [-1,1], it is zero
centered and easily reversible

x= =
x

max( |x|)
The single beat ECG signal is composed of 5 main peak components (see section 1.3). In an
healthy subject, the R peak has usually the highest amplitude among all. The difference of this
peak compared to the others, especially Q and S can be very large even after the normalisation
of the signal. The VAE model is based also on the reconstruction loss metric which in our case
has been implemented with a MSE. This means that the model would tend to give priority to
the reconstruction to the higher amplitudes peaks, especially the R ones. In order to reduce this
effect, a dynamic compression has been applied to the data. This must compress efficiently a
signal with both positive and negative values, be zero centered and reversible. For this purpose,
a simple transformation based on the hyperbolic tangent was used

G2 = tanh(: · G)

with : = 1.5 being the applied compression ratio.
Class balancing refers to the process of ensuring that each class in a dataset is represented

equally. When classes are imbalanced, a model might become biased towards the majority class,
leading to poor performance on minority classes. Class balancing can be achieved with two
main approaches: oversampling and undersampling. Class oversampling is one of the main
goal of the developed model. Synthetically augmenting the data used to train it would ruin the
genuineness of the model results, hence the only left approach is undersampling. The dataset
being used present 18 classes(excluding the two abnormal ones), with a wide range of single beat
ECG data samples(fig. 5.1). In order to have a better insights on the model working principle,
only 6 classes are chosen {1, 2, 3, 4, 14, 18}. The smallest populated classes among them are
3 and 14, with 15 samples, while the others have been undersampled down to that number, by
randomly removing excess data samples.
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Figure 5.1: The class population of the provided single beat ECG dataset. The number of
samples represents the number of single beat signals associated to a specific person(class).
(Top-left) The population of all the dataset classes excluded the abnormal ones. (Top-right) The
population of the selected classes to be augmented. (Bottom) Undersampled selected classes,
which achieved classes balance
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Figure 5.2: Preprocessing steps of the ECG training dataset. From top to bottom the visualisation
of the training signals once each transformation is applied: normalization, compression and class
balancing.

83



5.2 Training results

The model is trained using mini-batch Adam optimiser, with a batch size of both 32 and 64
samples and a total of 216 epochs. It took approximately 1 minute and 29 seconds to complete
the training process by just using the standard CPU available in Google Colab, an Intel Xeon
CPU with 2 vCPUs and 13GB of RAM. During the first epoch, the latent space representation is
collapsed. The model finds a unique reconstructed representation for all the training data, hence
it is still not able to capture the data features and distinguish the different data classes, just like
the sinusoid test dataset. After the 18th epoch, the training datapoints of each classes start to
be mapped into clusters in different region of the latent space. Up to the 72th epoch those class
clusters becomes more and more defined, even if the model seems to be mapping them along a
linear subregion of the latent space. From epoch 90th to 126th the model learns a more fruitful
mapping of the training signals by spreading them thru a two dimensional region of space.

This concept may be explained with a simple example. The trained VAE maps the latent
space such as the different regions are associated to different features of the training signal.
Regions next to each other have one or more similar features. On the other hand, regions located
really far away from each other are expected to have different features. If three clusters of points
share a common feature with a fourth one, they should be placed around the fourth one, however
if the latent space has dimension of just 1, this cannot happen and the training forces the model
to find a less suited latent space mapping. The higher the latent space dimensionality, the more
placement possibility there are for the feature regions. If the latent space dimension is too low
to correctly capture all the training data diversity, the model fails to accurately reconstruct the
encoded representation. This is also called as the bottleneck effect.

The remaining epochs don’t seem to be changing the latent space mapping in some relevant
way. They indeed have been used to achieve a really small increase in the overall training error.
This particular case, shows that the chosen training process is stable.
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Figure 5.3: Mapping of the ECG training datapoints in the latent space at different training
epochs

After training the model, the reconstruction loss (RL), KL divergence (KLD) and mean
squared error (MSE) values are

• '! = 1.0895

•  !⇡ = 1.4276

• "(⇢ = 1.0912 ⇥ 10�4
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Figure 5.4: Original vs reconstructed ECG training signals. The reconstructed signals are the
output of the VAE model given as input the original ones

5.3 Latent space

The figure 5.5 is a plot of the mean values encoded in the latent space for the training data.
This representation has mapped the single beat ECG signals of each class into 6 well defined
clusters. This exhibits the model capability of properly interpreting the specific class features.
Clusters of encoded signals which are closer to each other, represents signals with more similar
morphological features. For example, signals from classes 3 and 4 have a much more similar
structure with respect to the other classes. From fig 5.4, it can be seen that they present really
similar QRS complex and T wave, but some differences in the P wave. The small amount of
differences is correctly captured by the model. This can be assessed in two ways: by looking at
the reconstructed training signals or, much more clearly, by looking at the latent space, which
visibly separates the encoded signals of the two classes in well defined clusters.

Each encoded signal represents a single beat ECG of a specific ECG lead of a specific person.
One of the first analysis, done on these data, aims at studying possible time variations of the
ECG beats for a given subject during the observation time. This is an essential evaluation to
properly interpret and make use of the generated single beat ECG. As an example, if an ECG
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measurement is carried on a person which changes motion activity in time, such as walking and
running, the ECG measurements would be quite different and the model is expected to identify
ECG beats of each motion state and group them in different clusters in the latent space. In
this case, it is needed to further label the training data samples, with the motion state at the
time of their measurement. This can be achieved also through the VAE model. Both clusters,
representing walking and running, can be inspected and then interpreted. Next, the user can
decide to generate the person EGC in walking or running state. This proves the power of the
VAE interpretable latent space, which allows for the user to generate data with really specific
features. Figure 5.6, shows the single ECG beats for each subject, hence for each cluster. Each
plot represents only the region of the latent space corresponding to a given cluster; each dot
corresponds to an encoded ECG beat. The colours represent the time positioning of each single
beat along the ECG trace, ranging from the more recent(lighter) to the latest(darker) ones.

There is no clear evidence of a time correlation between the individual ECG beats of the
traces. This is also confirmed by the fact that the measurements were taken on patients with
healthy conditions and during a rest state.

Figure 5.5: Latent space mapped with the single beat ECG encoded training datapoints
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Figure 5.6: Each plot represent the latent space cluster of a specified class. The points,
representing the single beat ECGs of those classes, are coloured based on the time positioning
along the ECG trace, from more recent (lighter) ones to the latest latest (darker) ones

5.3.1 Interpolation

As already explained in section 4.4.2, the trained VAE maps the latent space in a continuous way,
by interpolating between the data samples. In fig. 5.7 the points belonging to the colored line
are reconstructed by the decoder. This analysis allows to evaluate the interpolation capability
of the model in the subregion of space between the clusters of classes 3 and 6. The main
differences between the ECG beats of the two classes are the R and S peaks. Class 3 contains
signals characterised by a high R and a much smaller S peak, while the other class 6 has a
significantly lower R peak and a much more pronounced S peak. The model clearly interpolates
those features, reconstructing signals that have features that almost linearly range from the ones
of the first class to the ones of the second one.
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Figure 5.7: Interpolating capabilities of the model on the ECG dataset

5.3.2 Extrapolation

In order to visualise and give an initial assessment of the model extrapolation capabilities, some
encoded signals are picked outside the mapped region of the latent space, in particular six points
along two concentric circumferences, the inner and outer ones (fig. 5.8).

The reconstructed single beat ECG signals associated to the inner circumference still preserve
a good morphological structure, even if the high frequency noise increases for lower amplitude
peaks. The reconstructed ones associated to the outer circumference definitely do not maintain
intact the morphological ECG structure of an healthy person. The R wave peak is compressed
down to the threshold of 1. This is due to the activation function of the last layer of the decoder
network, as already discussed in section 4.4.3. The hyperbolic tangent, indeed, has the codomain
constrained in the range [�1, 1], hence it does not allow the reconstructed output signal to have
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values outside that range. This problem could be solved by training the model choosing a linear
activation function. The S peak has increased a lot, while the P peak has widened towards the R

peak. The T wave seems to have kept most of the morphological structures, but it is characterised
by an high level of high frequency noise. The most probable cause of the scarse extrapolating
capability of the proposed VAE model is the low dimensionality of the latent space. A single
beat ECG signal is characterised by mainly 5 waves: P, Q, R, S, T. Each wave is characterised
by approximately three mean features: the value of the highest peak, its position and the width
of the wave itself, for a grant total of 15 features. The model, it was indeed able to encode
those features, but only in the mapped region of the latent space, hence it is learned the range
of values of those features typical of the data it is trained on. In conclusion, this shows that the
developed model generative capabilities are constrained within the mapped region of the latent
space. Ideally, a latent space of dimension 15 would be suited to allow the model to extrapolate
all the main signal features. For example, an alternative version of the standard VAE, called
V-VAE [28] is proven to make the model learn only one specific feature for each dimensions
of the latent space. The main drawback is that the higher dimensional space becomes no more
visually interpretable.
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Figure 5.8: Extrapolation capabilities of the VAE on the ECG dataset. Six points are picked
around two concentric circles and then decoded, in order to assess the reconstruction capabilities
of the model outside the mapped region of latent space.
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5.4 Use cases

In this section it is presented the generative use cases of the developed model. The main aim of
this thesis project is to increase in size and diversity a really scarce time series dataset. One issue
is the high level of class imbalance (fig. 5.1). If the dataset is intended to be used for machine
learning applications, it is essential to have a proper level of class balancing, in order to avoid
poor performances on minority classes. Balancing the dataset can be achieved in two ways:
undersampling and oversampling. The first one consists in randomly removing samples from
the majority classes, while the second one in adding samples to the minority classes through a
data augmentation technique. The first use case of the developed VAE is oversampling minority
classes and achieving dataset balancing.

Another issue is that it contains only few people ECG, which in some cases would not be
suited for training a data-driven model since there is not enough data diversity. The second use
case of the proposed model regards the possibility to generate data of synthetic classes which
combines data features of two or more training classes.

5.4.1 Class oversampling

The first use case of the model regards oversampling the minority classes of the dataset or
even augmenting all the classes data samples. The process is carried on by using the mapped
two dimensional latent space. For simplicity, the datapoints of each cluster are assumed to be
distributed as a bivariate gaussian distribution. Given z 2 R2 the latent space variable
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New datapoints can be sampled from that distribution and reconstructed by the decoder,
obtaining synthetic data samples highly correlated to the ones associated to the chosen class.

z ⇠ N(-(:)
,⌃(:)

)

Moreover, by multiplicating the gaussian variance matrix coefficients by a chosen factor U,
it can be set the amount of features variability of the reconstructed signals

⌃(:) =

 
U · f

(:)

11 U · f
(:)

12
U · f

(:)

21 U · f
(:)

22

!

Figure 5.10 shows three cases in which the value of the multiplicative factor is respectively
U < 1(top), U = 1(middle) and U > 1(bottom). Each of the three plot contains the mapped latent
space on the left and the reconstructed gaussian samples on the right. Depending on the chosen
values of U the reconstructed signal features may vary from the ones of the associated class

• if U < 1, then the reconstructed signals tend to have the ”average” class features. In fig.
5.10 , the top plot shows that the generated reconstructed signals are somewhat in between
the original training ones.

• if U = 1, then the reconstructed signals are expected to be closely like to the ones of the
associated class

• if U > 1, then the reconstructed signals present some variability from the original signals
features of the chosen class. For example, in figure 5.9 the plot on the bottom shows that
the R and T waves peak values change significantly. The higher the value of U the greater
the changes of features.
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Figure 5.9: Class oversampling on the ECG dataset with varying covariance matrix coefficients.
From top to bottom the covariance coefficients are multiplied respectively by U < 1, U = 1,
U > 1

In order to evaluate the quality of the generated single beat ECG signals, two metrics are
used: the Maximum Mean Discrepancy(MMD) and the Dynamic Time Warping(DTW), both
introduced in section 2.9. There are a total of " = 15 samples for each class and another
15 samples are generated with the Montecarlo sampling procedure introduced above. The
estimated covariance matrix is not modified, hence U = 1. Figure 5.10 shows the original
training signals(black) and the sampled reconstructed ones(lightblue). For each :-th class the
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The DTW, on the other hand, for each class, is evaluated with all the combinations of the original
and generated signals. The resulting values are then averaged. Given " the total number of
both original and generated samples (in this case � = 15), then for each :-th class the DTW is
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evaluated as
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Finally, for both ""⇡ and ⇡), , the average is calculated among all the  = 6 classes. This
evaluation metric is used for keeping track of the quality of the oversampling generative process.

""⇡C>C =
1
 

 ’
:=1

""⇡
(:)

⇡),C>C =
1
 

 ’
:=1

⇡),
(:)

The proposed model led to results of ""⇡C>C = 5.1 ⇥ 10�3 and ⇡),C>C = 0.69. Those values
reach the same order of magnitude of the state-of-art approaches listed in the benchmark table
1.1.

Figure 5.10: Class oversampling carried on for each class of data. For each class they are plotted
the original training signals(black) and the generated ones(lightblue). The x-axis represent the
sample indices of the signals
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5.4.2 Generating a new synthetic class

In the previous sections, it has been shown the interpolating capabilities of the VAE model.
Each mapped cluster contains encoded signal with specific features. The empty regions of
latent space represent encoded signals which are characterised by a combination of the features
associated to the surrounding clusters. Leveraging on the mapped latent space, the user can set a
proper vector of means and covariances matrix, and start sampling from the gaussian probability
distribution with the chosen parameters. As an example, in figure 5.11, there is a new single
beat ECG class which has a mix of the features of classes 2 and 5. The vector means is chosen
to be at the same geometric distance from the two surrounding cluster centers. The covariance
matrix is chosen by averaging the values of the two surrounding cluster covariance matrices.

Given this setup, the reconstructed signals have a mix of features associated to the two
surrounding classes. For this reason, the synthetic class can also be called child class, while
the classes associated to the nearby clusters can be called parent classes. The results are indeed
consistent to what was expected. It can be clearly seen how the synthetic signals present peak
amplitudes of the R and S wave that stand approximately between the ones associated to the
signals of the nearby clusters. The quantitative evaluation is carried on using the metrics ""⇡
and ⇡), (section 2.9). It is generated an amount of samples for the synthetic class equal to the
amount of the surrounding once, hence 15 samples. Next, the DTW and MMD are calculated
between the reconstructed samples of the synthetic class and the original ones of respectively
the two nearby clusters. It is given x

(2)
>

and x
(6)
>

the original training signals of respectively
classes : = 2 and : = 6, xB the reconstructed signals of the synthetic class and " = 15 the total
amount of samples of each of the three classes.
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The following results are obtained

""⇡
(2)
B

= 1.74

""⇡
(6)
B

= 1.65

⇡),
(2)
B

= 1.70

⇡),
(6)
B

= 1.69

These values are significantly greater than the MMD obtained when samples of the same clusters
are considered (""⇡ = 5.1 ⇥ 10�3 and ⇡), = 0.69), thus confirming that the new generated
ECG signals are quite dissimilar to the closer clusters ones.
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Figure 5.11: The black dots shows the encoded signals of the synthetic class. At the bottom, the
plot shows the reconstructed signals of the synthetic class(center) and of the closer clusters(left
and right)
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Chapter 6

Conclusions and further works

6.1 Conclusions

The main objective of the thesis is to find a way to augment a proposed ECG dataset composed of
multiple ECG traces of various healthy patients. The traces contained a varying amount of single
beat recordings, making the dataset highly imbalanced. Moreover, the number of recorded ECG
beats, as well as the number of patients, is overall really scarce. Existing generative solutions
are investigated, leading to the choice of a deep learning based approach. Those kind of
models reach stat-of-art performances in generative tasks, but are characterised by a poorly
explainable functioning process, acting most of the times as grey-box models. A deep learning
generative approach based on a 1D convolutional Variational Autoencoder(VAE) is proposed.
This model topology is, indeed, characterised by an interpretable latent space, allowing for a
more explainable and controllable generative process. A proper VAE model architecture capable
of extracting the dataset signal features is then developed. The latent space dimensions are set
to 2, in order to have the highest interpretable encoded data representation. It is first tested
the developed model on a sinusoid dataset, where the main features and working principles are
explained. Next, the model is applied to the ECG dataset. After pre-processing the data and
training the network, the latent space is mapped with the training ECG signals. The mapping
shows that the model is able to clearly identify the specific class(patient) ECG features, since
each class datapoints are grouped in well defined clusters. The generative process is carried on by
leveraging on the mapped latent space and the decoder network. The proposed solution allows for
two main applications: oversampling an already existing class and generating samples of a new
synthetic class, by making use of a generative process highly explainable and controllable. The
results are qualitatively evaluate using the Maximum Mean Discrepancy(MMD) and Dynamic
Time Warping(DTW) metrics (tab. 6.1), obtaining values close to the current state-of-art (tab.
1.1).
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Application Metric Value

class oversampling ""⇡ 5.12 ⇥ 10�3

⇡), 0.698
synthetic class ""⇡

(2)
B

1.74
""⇡

(6)
B

1.65
⇡),

(2)
B

1.70
⇡),

(6)
B

1.69

Table 6.1: Evaluation metrics results

In section 1.2, three main XAI concept have been introduced: transparency, interpretability

and explainability. It is now shown how these concepts apply for the developed VAE model.
The first one, transparency, refers to the ability of a model and its inner working principles

to be understood, if not formally and quantitatively , at least intuitively. The VAE encoder and
decoder components are built up with neural network architectures, which are above the less
explainable models. However, most of the neural networks layers are of type 1D convolutional,
which are characterised by a well defined principle of functioning, the mathematical operation of
convolution, and have a transparent output. By looking at the output of each convolutional filter
it can be intuitively assessed the model ability to capture the signal features. Each output filter
represents a feature map that contains specific features of the output signal. By reducing the
dimensionality of the output at each 1D convolutional layers, the features start to be encoded into
a lower dimensional space, hence only the most prominent features are sent to the subsequent
layers, until reaching the fully connected layers. Those layers are above the less explainable
ones, but they are necessary to map a function from the given input to the parameters of the
bivariate gaussian distribution of the sampling layer.

To better understand the working process, it is chosen as test signal a single ECG beat from
the training dataset (fig. 6.1). The outputs of the first two convolutional layer, working in
parallel, respectively with a kernel size of 11 and 5, are plotted in figure 6.2 and 6.3. Each
convolutional layer has 32 filter, meaning that there are 32 feature maps. It is clear how the
model captures various features with each filter. For example it is clear how some filters remove
the less relevant component and outputs only the main R and T waves, while some others do
the opposite. This allows to have an insight of the intricate behaviour of the network feature
extraction process and it can be useful both during the network architecture design and the
evaluation phase. Figure 6.4, instead, plots the feature map of the last convolutional layer of
the encoder. Due to the low dimensionality, the encoder creates a feature map of only the
most relevant features, which usually are difficult to be understood by a human operator. In
conclusion, the shallow layers are return the clearer outputs, while the deeper ones, due to their
low dimensionality nature, compress the feature informations in such a way that is difficult to
understand. During the network design and evaluation phase, the shallow convolutional layers
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give the best insights about the network working mechanisms.

Figure 6.1: Test signal, randomly picked from the ECG training dataset

Figure 6.2: Feature maps (32) of the input convolutional layer with kernel size 11 of the encoder
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Figure 6.3: Feature maps (32) of the input convolutional layer with kernel size 5 of the encoder
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Figure 6.4: Feature maps (32) of the last convolutional layer of the encoder

Interpretability, on the other hand, refers to the ability of the model to make clear the reason
why a specific input results in a specific output. In other words, it should allow the user to
estimate the behaviour of the model given the specific input. Once the proposed VAE is trained,
the generative part is carried on using only the decoder. The latent space allows for a clear
understanding of what to expect at the decoder output given a specific input(a point in the latent
space). After training the model, the training data samples can be encoded in the latent space
through the encoder network. Since its dimensionality is equal just to 2, the encoded data are
clearly visualised(fig. 5.5). Moreover, if the network architecture is well suited for the type
of training data, it should capture the features of each training class and properly map those
samples into clusters which occupy a well defined subregion of space. Due to the interpolating
capabilities of the model, the empty regions of latent space, not mapped by the training data
points, are also interpretable. As an example, given two clusters, by taking a value at the same
geometric distance between their centers, the decoder reconstructs a signal having a mix of
features typical of the datapoints of the two classes. By moving closer to one of the clusters, the

103



features of the associated class would become more prominent in the reconstructed signal(fig.
5.7). Once the model has been properly trained and the latent space mapped with the training
data points, the generative process that relies on the decoder network becomes interpretable.

Figure 6.5: Latent space representation of the training ECG signals. The red cross indicates the
encoded signals that are reconstructed by the decoder in the following figure.
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Figure 6.6: Reconstructed signals. Each plot is a reconstructed signal associated to the encoded
signal on the same position in the figure above. For example, the top-left plot is the reconstructed
signal of the top-left red cross datapoint in the previous figure.

Finally, explainability, extends the interpretability concept encompassing also a well defined
human-computer interaction. The developed model has automated only the training of the
network, during which the weights of the decoder network are properly tuned based on the
training data. Once the model is trained and the latent space mapped, the decoder becomes a
toll that, with some approximation, allows the user to choose the characteristics of the single
beat ECG signal to be generated. The generative process is carried on with an high presence
of human intervention. As an example, the first model application explained in section 5.4.1,
allows the user to set for which class generating new data samples, the amount of data samples
to be generated and their feature variability by properly setting the factor parameter U. The
human user control over the generative process happens also in the second application (section

105



5.4.2), when generating samples from a brand new synthetic class. The vector means and the
covariance matrix are, in fact, set by the user.

6.2 Further works

The proposed model could be further improved by automating the process of sampling from a
synthetic class. The user should be allowed to choose from which class signals mix the features
into the synthetic class, then a proper gaussian distribution mean vector and covariance matrix
should be automatically set. The user can then choose the number synthetic class signals to
sample.

The sinusoid test application showed that the model is also able to capture the features typical
of sinusoidal signals. In general, the model can be trained on the most various kind of time
series, with the constraint of a fixed sample length(in this case 288 samples). The only limitation
is the amount and complexity of the time series features to be capture. The more complex the
dataset signals are, the more features the model needs to learn. Proportionally, the neural
network architecture complexity must be increased in depth(higher number of layers) and/or in
width(higher number of convolutional layer filters and/or fully connected layer neurons). This,
however, is rarely the case when working with topic specific signals and with a low number
of classes. This includes also other bio signals measurements, such as Electroencephalogram
(EEG), Photoplethysmogram (PPG), Force and Pressure Measurements, Gait Analysis, and so
on. Further work can be carried out to further test and validate this hypothesis.

the model can indirectly be used for other relevant tasks. As an example, the inner encoding
working principle can be use to map the input time series into a lower dimensional representation
for the purpose of data visualisation. The feature extraction capabilities of the model allows to
use it also as a classifier. Figure 4.6 and 5.5 shows how the model clearly capture the specific
features of each training class, since it maps the class datapoints in well defined region of the
latent space.

Moreover, since the encoder is trained to map the input data into a lower dimensional space,
it can also be used for data compression purposes. The compression would be lossy, but
potentially with a very low loss of information (see evaluation metric results in section 4.3 and
5.2). Compared with a deterministic autoencoder model, the interpolation capabilities allow
for a better model generalization. Moreover, by properly setting the latent space dimension, the
VAE tend to disentangle the training data features along each dimension [28] . As an example,
one dimension could encode the amplitude of the R wave peak of the single beat ECG signal.
This behaviour leads to an improvement of the model extrapolation capabilities, therefore a
further improved model generalization.

All this applications can be further investigated in future works.
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Chapter 7

Appendix

7.1 Leibniz integral rule

Theorem – Let 5 (G, C) be a function such that both 5 (G, C) and its partial derivative 5G (G, C) are
continuous in C and G in some region of the GC-plane, including 0(G)  C  1(G), G0  G 

G1. Also suppose the functions 0(G) and 1(G) are both continuous and both have continuous
derivatives for G0  G  G1. Then , for G0  G  G1,

3
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 π
1(G)

0(G)

5 (G, C)3C
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If the integral extremes are independent from the derivation variable then
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7.2 Law of the unconscious statistician

Theorem – Let G be a discrete (or continuous) random variable and let 5G be its probability
density function. Given H a new random variable such that H = ⌘(G), where h is a deterministic
function, then

discrete: E[H] = E[⌘(G)] =
’
G

⌘(G) 5G (G)

continuous: E[H] = E[⌘(G)] =
π
1

�1

⌘(G) 5G (G)3G

7.3 Reparameterization trick: generic example

Given G, a continuous random variable following the parametrised distribution G ⇠ ?\ (G) and
5 (G) a deterministic function of G, it is wanted to calculate the gradient with respect to \ of the
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expected value of 5 (G)
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In the first step it is applied the law of the unconscious statistician and in the second one the
reparameterization trick such that G = 6(n , \) where n ⇠ ?(n) and 6 is a deterministic function.
Finally, in the third step the Leibniz integral rule is applied. Since the integral is most of the
time intractable, a basic Monte Carlo estimator can be used for its practical evaluation.

7.4 VAE KL divergence: gaussian case

It is considered both the prior ?) (z) = N(0, I) and the posterior @5 (z|x) distributions as
Gaussian. Let � = C(z) be the dimensionality of z. Let - and 2 denote the variational mean
and s.d. evaluated at the 8-th datapoint, and let ` 9 and f9 simply denote the 9-th element of
these vectors. Both - and 2 are functions of the encoder network weights 5 and the input data
x.
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Solving (1)
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where in the second to last equation it has simply used the definition of variance f2
(G) =

E[G2
] � E[G]2. Solving (2) requires the same tools already used in (1)
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Combining term (1) and (2), the closed form of the KL divergence term becomes

⇡ ! (@q (I |G) | |?\ (I)) = �
1
2

�’
9=1

(1 + logf2
9
� `

2
9
� f

2
9
)

110



Bibliography

[1] Thampi. (2022). Interpretable AI: Building explainable machine learning systems. Simon
and Schuster, 14-15.

[2] Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning
algorithms. Big data & society, 3(1)

[3] Miller, T. H. (2017). Explainable AI: Beware of inmates running the asylum or: How
I learnt to stop worrying and love the social and behavioural sciences. arXiv preprint
arXiv:1712.00547.

[4] Lisboa, P. J. (2013). Interpretability in machine learning–principles and practice. Interna-
tional Workshop on Fuzzy Logic and Applications. Cham: Springer International Publish-
ing., 15-21.

[5] Lepri, B. O. (2018). Fair, transparent, and accountable algorithmic decision-making pro-
cesses: The premise, the proposed solutions, and the open challenges. Philosophy & Tech-
nology, 31, 611-627

[6] Gunning, D. and Aha, D.W. (2019), DARPA’s Explainable Artificial Intelligence Program.
AI Magazine, 40: 44-58.

[7] Miao F, Wen B, Hu Z, Fortino G, Wang XP, Liu ZD, Tang M, Li Y. Continuous blood pressure
measurement from one-channel electrocardiogram signal using deep-learning techniques.
Artif Intell Med. 2020 June.

[8] Lu P, Gao Y, Xi H, Zhang Y, Gao C, Zhou B, et al. KecNet: a light neural network for
arrhythmia classification based on knowledge reinforcement. J Healthc Eng 2021 April.

[9] Chiu JK, Chang CS, Wu SC. ECG-based biometric recognition without QRS segmentation:
a deep learning-based approach.In: Proceedings of the 2021 43rd Annual International
Conference of the IEEE Engineering in Medicine & Biology Society(EMBC). 2021.

[10] Ozdemir MA, Ozdemir GD, Guren O. Classification of COVID-19 electrocardiograms by
using hexaxial feature mapping and deep learning. BMC Med Inform Decis Mak. 2021 May.

111



[11] Baghersalimi S, Teijeiro T, Atienza D, Aminifar A. Personalized real-time federated learn-
ing for epileptic seizure detection. IEEE J Biomed Health Inform 2022 Feb

[12] Kuznetsov, V. V., Moskalenko, V. A., & Zolotykh, N. Yu. Electrocardiogram Generation
and Feature Extraction Using a Variational Autoencoder. 2020.

[13] Ryo Nishikimi, Masahiro Nakano, Kunio Kashino, Shingo Tsukada, Variational autoen-
coder–based neural electrocardiogram synthesis trained by FEM-based heart simulator,
Cardiovascular Digital Health Journal, Volume 5, Issue 1, 2024.

[14] Y. Sang, M. Beetz and V. Grau, ”Generation of 12-Lead Electrocardiogram with Subject-
Specific, Image-Derived Characteristics Using a Conditional Variational Autoencoder,”
2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), Kolkata, India,
2022, pp. 1-5, doi: 10.1109/ISBI52829.2022.9761431.

[15] Delaney, A. M., Brophy, E., & Ward, T. E. . Synthesis of Realistic ECG using Generative
Adversarial Networks. 2019.

[16] Golany, Tomer & Lavee, Gal & Yarden, Shai & Radinsky, Kira. Improving ECG Classi-
fication Using Generative Adversarial Networks. Proceedings of the AAAI Conference on
Artificial Intelligence. 2020.

[17] E. Adib, A. S. Fernandez, F. Afghah and J. J. Prevost, ”Synthetic ECG Signal Generation
Using Probabilistic Diffusion Models,” in IEEE Access, vol. 11, pp. 75818-75828, 2023.

[18] Hazra D, Byun YC. SynSigGAN: Generative Adversarial Networks for Synthetic Biomed-
ical Signal Generation. Biology (Basel). 2020 December.

[19] Ian Goodfellow, Yoshua Bengio, & Aaron Courville (2016). Deep Learning. MIT Press.

[20] Müller, Meinard. Dynamic time warping. Information Retrieval for Music and Motion. 2.
69-84, 2007.

[21] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Scholkopf, & Alexander
Smola. A Kernel Two-Sample Test. Journal of Machine Learning Research, 13(25), 723-773.
(2012)

[22] Boyd Stephen, Vandenberghe Lieven, ”Convex Optimization”, Cambridge, Cambridge
University Press, 2004.

[23] B.T. Polyak, ”Some methods of speeding up the convergence of iteration methods”, USSR
Computational Mathematics and Mathematical Physics, Volume 4, Issue 5, 1964.

[24] Yurii Nesterov, A method for solving the convex programming problem with convergence
rate O(1/k2), Dokl. Akad. Nauk SSSR, Vol. 269, 1983.

112



[25] Duchi, J., Hazan, E. & Singer, Y. Adaptive Subgradient Methods for Online Learning and
Stochastic Optimization. Journal Of Machine Learning Research. 12, 2121-2159 (2011)

[26] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, & Yoshua Bengio. (2014). Generative Adversarial Networks.

[27] Kingma, D. & Ba, J. Adam: A Method for Stochastic Optimization. (2017)

[28] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, & Alexander Lerchner (2017). beta-VAE: Learning Basic
Visual Concepts with a Constrained Variational Framework. In International Conference on
Learning Representations.

[29] Diederik P Kingma, & Max Welling. (2022). Auto-Encoding Variational Bayes.

[30] Kingma, D., & Welling, M. (2019). An Introduction to Variational Autoencoders. Found-
ations and Trends in Machine Learning.

[31] Sebastian Ruder. (2017). An overview of gradient descent optimization algorithms.

[32] Iglesias, G., Talavera, E., Gonzalez-Prieto, Mozo, A., & Gomez-Canaval, S. (2023). Data
Augmentation techniques in time series domain: a survey and taxonomy. Neural Computing
and Applications.

[33] Shenda Hong, Yuxi Zhou, Junyuan Shang, Cao Xiao, & Jimeng Sun. (2020). Opportunities
and Challenges of Deep Learning Methods for Electrocardiogram Data: A Systematic
Review.

[34] Rahman MM, Rivolta MW, Badilini F, Sassi R. A Systematic Survey of Data Augmentation
of ECG Signals for AI Applications. Sensors. 2023.

[35] Keiron O’Shea, & Ryan Nash. (2015). An Introduction to Convolutional Neural Networks.

[36] Albawi, S., Mohammed, T., & Al-Zawi, S. (2017). Understanding of a convolutional
neural network. In 2017 International Conference on Engineering and Technology (ICET)
(pp. 1-6).

[37] Zhao, B., Lu, H., Chen, S., Liu, J., & Wu, D. (2017). Convolutional neural networks for
time series classification. Journal of Systems Engineering and Electronics, 28(1), 162-169.

[38] Rumelhart, D., Hinton, G. & Williams, R. Learning representations by back-propagating
errors. Nature 323, 533–536 (1986).

[39] Hecht-Nielsen (1989). Theory of the backpropagation neural network. In International
1989 Joint Conference on Neural Networks.

113



[40] Obaid, H., Dheyab, S., & Sabry, S. (2019). The Impact of Data Pre-Processing Techniques
and Dimensionality Reduction on the Accuracy of Machine Learning.

[41] Balderas, L., Lastra, M., & Benı́tez, J. (2024). Optimizing dense feed-forward neural
networks.

114


