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Abstract

Although many proteins require a well-defined structure for their function, a significant por-
tion of an organism’s proteome comprises intrinsically disordered regions (IDRs) that do not
adoptadefined three-dimensional structure. Proteins with entirely disordered sequences, known
as intrinsically disordered proteins (IDPs), exhibit functionality that diverges from the classical
structure-function paradigm of globular proteins. Given the extensive conformational variabil-
ity of IDDPs, their diverse states are best represented by a structural ensemble, which consists of
a set of conformations along with their corresponding statistical weights. To determine these
structural ensembles, a range of experimental and computational methods are employed, of-
ten in combination to overcome the limitations of individual techniques. Among computa-
tional methods, molecular simulations using atomistic and coarse-grained models are partic-
ularly prominent. This has led to the creation of numerous software packages for molecular
simulations, alongside a growing number of specialized stand-alone packages for simulation
analysis. While these trajectory analysis tools may not be as robust as simulation engines, they
provide a more flexible and customizable alternative. Despite the availability of various soft-
ware for analyzing protein structures and structural ensembles of IDPs, there remains a notable
shortage of tools offering efficient routines for comparing these ensembles. This thesis intro-
duces IDPET (Intrinsically Disordered Protein Ensemble Toolkit), a Python software package
developed to address this need. IDPET offers a wide range of analytical functions, including
local analysis of residue-level features across all conformations within ensembles and global anal-
ysis for deriving conformation-level averages. It also provides ensemble comparison methods
to assess differences between feature distributions and utilizes dimensionality reduction to vi-
sualize and cluster ensemble features, aiding in the identification of distinct conformational
substates. The effectiveness of IDPET is demonstrated through a detailed analysis of three
structural ensembles of the unfolded drkN SH3 domain, derived from a fully random pool, an
experimentally restrained pool, and a mixture of both.
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Introduction

1.1 PROTEIN STRUCTURE

Nearly every dynamic function of a living organism relies on proteins, which make up more
than 50% of the dry mass of most cells and are crucial for almost all biological activities. Some
proteins accelerate chemical reactions, while others are involved in defense, storage, transport,

cellular communication, movement, or structural support.

The functional properties of proteins depend on their three-dimensional structures, which
arise from the folding of specific amino acid sequences into compact domains. These folded
domains act as building blocks for larger assemblies, such as virus particles or muscle fibers, and
provide specific catalytic or binding sites, commonly seen in enzymes or proteins that bind oxy-
gen or regulate DNA function. Therefore, understanding the biological function of proteins
requires deducing or predicting their three-dimensional structure from their amino acid se-
quence. This task is exceedingly complex due to the 20 different amino acids that can combine

into an almost infinite number of possible protein structures.

All amino acids share a common structure centered around a central carbon atom (Ca) ,
which is bonded to a hydrogen atom, an amino group (NH2), and a carboxyl group (COOH)
(Figure 1.12). The unique feature of each amino acid is its side chain, also known as the R group,
attached to the Ca atom. The R group can vary from a simple hydrogen atom to a complex

carbon skeleton with various functional groups. The physical and chemical properties of the



side chain determine the unique characteristics of each amino acid, influencing its functional
role in a polypeptide.

During protein synthesis, amino acids are linked end-to-end through peptide bonds, formed
by condensing the carboxyl group of one amino acid with the amino group of the next, with
the elimination of water (Figure 1.1b). This process repeats to elongate the polypeptide chain,
where the amino group of the first amino acid and the carboxyl group of the last remain intact,
defining the chain from its amino terminus to its carboxy terminus. This succession of peptide

bonds creates a backbone from which various side chains project.

Figure 1.1: Proteins are constructed from amino acids linked by peptide bonds to form a polypeptide chain. Each amino
acid (a) features a central carbon atom (Ca) bonded to an amino group (NH,), a carboxyl group (COOH), a hydrogen atom
(H), and a unique side chain (R). In the polypeptide chain (b), the carboxyl group of one amino acid forms a peptide bond
with the amino group of the next, resulting in the elimination of a water molecule. This process repeats to create a chain
of residues, where each residue shares a common main-chain structure (Ca, NH, C=0, H) and varies in its side chain (R)
attached to the Ca atom. This figure was adapted from [1].

The 20 amino acids can be categorized into three distinct groups based on the chemical na-
ture of their side chains. The first group includes amino acids with strictly hydrophobic side
chains: Alanine (Ala), Valine (Val), Leucine (Leu), Isoleucine (Ile), Phenylalanine (Phe), Pro-
line (Pro), and Methionine (Met). The second group is formed by charged residues: Aspartic
acid (Asp), Glutamic acid (Glu), Lysine (Lys), and Arginine (Arg). The third group consists of
amino acids with polar side chains: Serine (Ser), Threonine (Thr), Cysteine (Cys), Asparagine
(Asn), Glutamine (Gln), Histidine (His), Tyrosine (Tyr), and Tryptophan (Trp). One excep-
tion to this classification is Glycine (Gly), which has only a hydrogen atom as its side chain. Due
to its simplicity, Glycine possesses special properties and can be considered to belong either to
a fourth group of amino acids or to the first group.

Peptide units are essentially rigid groups linked in a chain by covalent bonds at the Ca atoms.



Their only degrees of freedom are rotations around these specific bonds. Each unit can rotate
around two bonds: the Ca-C’ and the N-Ca bonds. These rotations are described by two
angles: phi (¢) for the rotation around the N-Ca bond, and psi () for the rotation around
the Ca-C’ bond from the same Co atom. Each amino acid residue is thus characterized by
specific ¢ and ¥ angles, which completely determine the conformation of the entire polypeptide
backbone when defined accurately.

Despite their vast diversity, proteins share three fundamental levels of structure: primary,
secondary, and tertiary. A fourth level, quaternary structure, is present when a protein is com-
posed of two or more polypeptide chains (Figure 1.2). The primary structure of a protein refers
to its specific sequence of amino acids, which is determined by genetic information. This pri-
mary structure dictates the protein’s secondary and tertiary structures, influenced by the chemi-
cal properties of the amino acid backbone and side chains along the polypeptide. Most proteins
have segments of their polypeptide chains that repeatedly coil or fold into patterns contribut-
ing to the protein’s overall shape. These patterns, known as secondary structures, are formed
by hydrogen bonds between the repeating units of the polypeptide backbone. One type of sec-
ondary structure is the alpha helix, a coil stabilized by hydrogen bonds between every fourth
amino acid. Another type is the beta pleated sheet, where two or more polypeptide segments
(beta strands) lie side by side, connected by hydrogen bonds between parallel segments. Tertiary
structure, superimposed on the secondary structure patterns, represents the overall shape of a
polypeptide. Unlike secondary structure, which involves backbone interactions, tertiary struc-
ture results from interactions between the amino acid side chains (R groups). Some proteins are
made up of multiple polypeptide chains that combine into a single functional macromolecule.

Quaternary structure describes the overall arrangement of these polypeptide subunits [14, 1].

1.2 PROTEIN STRUCTURE DATA

Protein structures are typically represented using Cartesian coordinates (x, y, z) of their con-
stituent atoms in a standard format known as the Protein Data Bank (PDB) format. X-ray and
cryo-EM structure files usually include coordinates for only the heavy atoms (C, N, O, and S),
whereas NMR structure files generally contain coordinates for both the heavy atoms and the
attached hydrogen atoms.

The PDB format (Figure 1.3) is a machine- and human-readable format that contains de-
tailed information about a protein structure, including data about the protein itself, the depos-

itors, the sequence, the secondary structure, and the Cartesian coordinates of the atoms. Each



Figure 1.2: The primary structure of a protein is its amino acid sequence. Specific regions in this sequence form secondary
structures like alpha helices and beta strands. These secondary structures fold into a tertiary structure, comprising com-
pact globular units called domains. Some proteins have multiple polypeptide chains, forming a quaternary structure. This
figure was taken from [1].

line in a PDB file begins with a specific seven-letter tag, followed by a fixed number of spaces

and the corresponding information. Typically, each PDB file follows a consistent structure.

At the beginning of the document, the HEADER denotes the protein function, PDB ID,
and deposition date; CMPND indicates the protein name; and SOURCE specifies the source
organism. The AUTHOR section lists the authors of the structure, while the JRNL section
lists the journals that published the structure.

Following these sections, the REMARK tag contains additional details such as the resolu-
tion, R factor (a measure of quality), methods used to solve the structure, and the number of
molecules in the asymmetric unit. The amino acid sequence is signified by the SEQRES tag,
given by three-letter amino acid codes. The HET and FORMUL labels signify the names and
chemical formulae of hetero-atoms. Finally, the HELIX, SHEET, TURN, and SSBOND tags

denote secondary structure elements.

Following these tags that together constitute the header of a PDB file, the subsequent lines
provide the actual atomic coordinates and are denoted by the ATOM tag. Each line includes
the atom number, atom label (such as CA for alpha carbon or C for carbonyl carbon), residue
name (three-letter code), chain identifier, residue number, X coordinate (in 4ngstroms), Y coor-
dinate (in dngstroms), Z coordinate (in angstroms), occupancy (typically 1.00), and the thermal

B factor (a measure of atomic mobility) [2].



Figure 1.3: An example of a Protein Data Bank (PDB) formatted file displaying the initial lines of the Escherichia coli thiore-
doxin entry (PDB ID: 2TRX). This figure was taken from [2].



1.3 INTRINSICALLY DISORDERED PROTEINS

Traditionally, protein function has been viewed as dependent on the well-defined, folded three-
dimensional structure of the polypeptide chain. The classical structure-function paradigm
(Figure 1.4; left panel) suggests that a protein’s sequence defines its structure, which in turn
determines its function.

Classification schemes help systematically assign functions to proteins, typically consisting
of one or multiple structured domains. These domains fold independently, form precise ter-
tiary contacts, and adopt specific three-dimensional structures to perform their functions. The
sequences composing structured domains can be grouped into families of homologous sequences
that share common evolutionary relationships and molecular functions.

While many proteins require a well-defined structure to function, a large fraction of an or-
ganism’s proteome consists of polypeptide segments that do not form a defined three-dimensional
structure. These segments are known as intrinsically disordered regions (IDRs; Figure 1.4;
right panel). Consequently, their functionality differs from the classical structure-function
view of globular proteins. According to the disorder-function paradigm, protein sequences
in a genome are modular, combining both structured and disordered regions (Figure 1.4; bot-
tom panel). Proteins lacking IDRs are classified as structured proteins, whereas proteins with
entirely disordered sequences that do not adopt any defined tertiary structure are termed in-
trinsically disordered proteins (IDPs) [3, 15].

The ability of polypeptide segments to fold into a defined tertiary structure cohesively is
largely influenced by long-range hydrophobic interactions among amino acids along the linear
sequence. In contrast, IDRs lack sufficient hydrophobic amino acids to facilitate cooperative
folding. Instead, IDRs typically consist of a higher proportion of polar or charged amino acids.
Consequently, IDRs do not adopt a distinct three-dimensional structure either entirely or in
parts in their native state. They tend to sample a range of conformations that are in dynamic
equilibrium under physiological conditions [16].

Due to remarkable progress in comparative evolutionary and experimental structure-function
research, it is now evident that structural disorder offers numerous functional benefits. IDP
functions either originate directly from their disorder (as entropic chains) or from molecular
recognition, where they undergo induced folding (disorder-to-order transition) upon bind-
ing to a partner molecule. Several specific functional modalities, including adaptability in
binding, high functional density, weak yet specific binding, and frequent regulation by post-

translational modification, have been clearly demonstrated.
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Figure 1.4: Structured domains and intrinsically disordered regions (IDRs) are two fundamental classes of functional build-
ing blocks of proteins. The synergy between disordered regions and structured domains increases the functional versatility
of proteins. This figure was taken from [3].

From a biological standpoint, the role of structural disorder is crucial in determining which
cellular functions benefit most from the absence of a stable protein structure. This question
has been extensively investigated in large-scale bioinformatics studies, highlighting that IDPs
predominantly play roles in signaling and regulation processes. Functions associated with long
disordered regions frequently correlate with regulatory mechanisms involved in transcription
and translation. In contrast, functions correlated with structured proteins often center around

enzymatic catalysis.

Structural disorder is prevalent across all species, with a notably higher presence in eukary-
otes compared to prokaryotes due to its strong association with regulatory and signaling func-
tions. Conservative estimates suggest that 10-3 5% of prokaryotic proteins and 15-45% of eu-
karyotic proteins contain significant disorder, defined as long disordered regions of at least 30
residues. While it is commonly accepted that structural disorder increases with biological com-
plexity, the highest levels are not found in the most complex metazoan eukaryotes (such as hu-

mans), but rather in single-celled eukaryotes that exhibit a host-changing lifestyle [17, 18, 19].

Considering the significant conformational variability exhibited by IDPs, their diverse states



are best represented through structural ensembles. By definition, a structural ensemble is a
set of conformations together with corresponding statistical weights. The statistical weights
define the likelihood of encountering a particular conformation inhabited by a protein under

well-defined experimental conditions [8].

I.4 STRUCTURAL ENSEMBLE DETERMINATION

There has been increasing interest in both experimental and computational approaches to ac-
curately capture structural ensembles of IDPs.

Experimental methods such as nuclear magnetic resonance (NMR), small-angle X-ray scat-
tering (SAXS), and single-molecule spectroscopy have proven highly valuable for gathering
structural information. Techniques like fluorescence resonance energy transfer (FRET), flu-
orescence correlation spectroscopy (FCS), and SAXS provide measurements of overall chain
dimensions, while NMR spectroscopy offers site-specific details, including secondary struc-
ture content, distances between labeled sites, and hydrodynamic radius measurements through
pulsed field gradient NMR (PFG-NMR).

Computational methods typically leverage theoretical models of physical and chemical in-
teractions within the system to generate structural ensembles. These methods can be broadly
categorized into two types: (1) those thatincorporate experimental data to guide ensemble gen-
eration or selection, and (2) those that generate IDP ensembles de novo, without experimental
input.

In the first category, one common approach is to use experimental data as restraints in simu-
lations. Another approach involves statistical methods, such as ENSEMBLE [20], EOM [21],
and ASTEROIDS [22], which utilize experimental data to select ensembles from pre-generated
conformational pools. Additionally, ensembles consistent with experimental data can also be
selected from conformations generated via molecular dynamics (MD) simulations.

For the second category, a range of simulation techniques—including MD, Monte Carlo
(MC), metadynamics, and replica exchange—along with differentlevels of representation (coarse-
grained, implicit solvent, and all-atom with explicit water) have been applied to generate IDP
ensembles de novo [23].

Recent advances in machine learning techniques like AlphaFold2 [24] and Rose TTAFold
[25] have significantly transformed protein structure prediction. While these models were pri-
marily developed to predict structures of folded proteins, several pipelines have been proposed

to extend their application to predicting multiple conformational states. Moreover, new ma-
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chine learning approaches specifically designed for generating structural ensembles, such as

idpGAN [11], have been inspired by these breakthrough models.

I1.4.1 EXPERIMENTAL METHODS

Disordered protein states are highly heterogenous and dynamic, making them unaccessible
to X-ray crystalography. Although various solution spectroscopy methods, such as circular
dichroism (CD), fluorescence, Fourier transform infrared (FTIR), and electron paramagnetic
resonance (EPR) have been utilized, two techniques stand out for their contribution to struc-
tural data: NMR spectroscopy, which offers atromic-level information on secondary structure,
tertiary interactions, solvent exposure, overall molecular dimensions and dynamic properties,

and SAXS, a highly specialized method used to measure molecular dimensions [26].

NMR SpeEcTROSCOPY

In NMR spectroscopy, protein structures are determined by measuring the absorption of radio
waves by atomic nuclei, such as hydrogen (1H), isotopically labeled carbon (BQC), or nitrogen
(®N). This absorption measurement indicates the transfer of nuclear magnetism from one
atom to another. In NMR, this magnetization transfer is measured through chemical shifts,
J-couplings, and nuclear Overhauser effects (NOEs). These measurements provide a set of ap-
proximate structural constraints that can be input into a computer-based constraint minimiza-
tion calculation. The outputisaseries of similar protein structures that satisfy the experimental
constraints. These structures are then overlaid or superimposed on each other to create blur-
rograms. The quality of an NMR structure determination is typically assessed by how closely
these superimposed structures match, with root mean square deviation (RMSD) values of less
than 1 A indicating a high-quality structure and RMSD values greater than 2 A indicating a
poorly determined structure [2].

Chemical Shifts (CSs) are the most straightforward parameter to obtain from an NMR ex-
periment. CSs reflect how nuclear magnetic energy levels vary depending on the electronic
environment around a nucleus. Due to their inherent flexibility, IDPs typically exhibit CSs
close to random-coil values. Deviations from these values, especially for backbone carbon
atoms, suggest the presence of secondary structural elements. For a ' N-labeled protein, the
'H —% N HSQC (heteronuclear single quantum coherence) experiment produces peaks rep-

resenting the N-H correlations for each amino acid in the protein. These peaks serve as the
NMR ”fingerprint” of the protein [27]. NMR spectra of IDPs are characterized by a low (*H)



signal dispersion reflecting the similar electronic environment experienced by the different pro-

tons (Figure 1.5) [4].

Figure 1.5: L[ —15 N heteronuclear single quantum coherence (HSQC) spectrum of the intrinsically disordered C-terminal
domain of the Sendai virus nucleoprotein, demonstrating the low signal dispersion in the L[ dimension typical of an IDP.
NMR spectroscopy offers site-specific information, with each resonance in the HSQC spectrum corresponding to a particu-
lar amide group in the protein. This figure was taken from [4].

SMALL ANGLE X-RAY SCATTERING (SAXS)

Small angle X-ray scattering (SAXS) is a powerful technique used to study the structure of pro-
teins in solution, regardless of whether they are ordered or disordered. It provides information
on the size and shape of proteins and their complexes across a wide range of molecular sizes and
under various experimental conditions.

A SAXS experiment (Figure 1.6a) is conceptually straightforward: a solution containing par-
ticles, typically held in a quartz capillary, is exposed to a focused, monochromatic X-ray beam.

An X-ray detector records the intensity of the scattered X-rays. The scattering pattern of the

I0



pure solvent is measured and subtracted from that of the sample solution to isolate the scatter-
ing signal from the particles of interest. The resulting scattering pattern provides information
about the overall shape and size of the particles being studied.

Because the particles in solution are randomly oriented, the scattering pattern is isotropic.
As a result, the pattern recorded by a two-dimensional detector can be averaged radially. The
scattering intensity /(s) is expressed as a function of the momentum transfer s = /””T‘“& , where
A is the wavelength of the beam and 28 is the scattering angle. These isotropic patterns are
represented as radially averaged one-dimensional curves (s) (Figure 1.6b). For flexible macro-
molecules, like IDPs, the measured intensity reflects a population-weighted average of the scat-
tering curves from all the particles in the solution [s].

Key structural details, including the size, shape, compactness, and oligomeric state of a pro-
tein, can be obtained directly from a SAXS curve. The Kratky plot (Figure 1.6¢), which graphs
[I(s) - s*] against s, is commonly used to differentiate between globular proteins—characterized
by a bell-shaped curve—and disordered proteins—showing a continuous increase with s. The
radius of gyration R,, obtained from the initial segment of the curve using Guinier’s method,

estimates the overall size of the particle [27].

I.4.2 STATISTICAL METHODS

Statistical methods for determining structural ensembles rely on generating a random pool of
conformations, and subsequently applying algorithms to select subsets that correspond to ex-
perimental data. It is assumed that the experimental data related to the studied protein can
be represented as an average over multiple conformers, the exact number of which is generally
unknown. This experimental data can be obtained from methods such as NMR, SAXS, or a
combination of various techniques.

Initially, a large and diverse pool of conformations is randomly generated by simulation soft-
ware like TraDES [28] to cover the conformational space of the protein. A Monte Carlo-based
search algorithm is then typically used to sample subsets of conformations that align with the
experimental data. The algorithm iteratively samples subsets from the pool and compares their
properties to the experimental observations, aiming to find an ensemble whose averaged prop-
erties match the experimental data.

Once an ensemble fitting all the experimental data is selected, quantitative criteria such as
Ca-Ca distances, radius of gyration, and secondary structure distribution are used to analyze

and evaluate the ensemble [20, 21, 22].
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Figure 1.6: Small Angle X-ray Scattering (SAXS). a) Schematic representation of a SAXS experiment. (b) Logarithmic plot of
the scattering intensity [(5) (in arbitrary units) vs. s (in inverse nanometers). (c) Kratky plot of 52[(;) vs. 5. Data simulated
from three 60 kDa proteins: globular (dark blue), partially unfolded (light blue), and fully disordered (gray). This figure was
adapted from [5].

1.4.3 MOLECULAR SIMULATIONS

Molecular simulation techniques play a crucial role in understanding and predicting the prop-
erties, structure and function of molecular systems. The essence of any molecular simulation
method is to create a particle-based model of the system and then use deterministic or proba-
bilistic rules to generate a trajectory that describes its evolution during the simulation.

Molecular simulation methods can be divided into Molecular Dynamics (MD) and Monte
Carlo (MC). MD integrates equations of motion to create a dynamical trajectory, useful for
studying structural, dynamic, and thermodynamic properties. MC uses probabilistic rules to
generate a sequence of states for calculating structural and thermodynamic properties, but not
dynamic properties, as it lacks a concept of time.

Molecular simulation methods can use different physical theories to describe the particle-
based model of the system (Figure 1.7). Quantum mechanics (QM) represents electrons ex-
plicitly in the model and calculates interaction energy by solving the electronic structure with

minimal empirical parameters, though it involves various approximations. Molecular mechan-
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ics (MM) represents molecules with particles for atoms or groups of atoms, assigning electric
charges and empirical potential energy functions to calculate interactions.

MM simulations are much faster than quantum simulations, making them the preferred
method for most biomolecular studies in the condensed phase. However, they are generally
less accurate than QM simulations and cannot simulate bond rearrangements. Generally, QM
simulations are feasible for systems with hundreds of atoms or fewer, while MD simulations

can handle tens or hundreds of thousands of atoms [29].

Figure 1.7: Computational approaches to studying biomolecules range from detailed quantum mechanical models to atom-
istic molecular mechanics to coarse-grained models, where several atoms are grouped together. The decreased computa-
tional complexity granted by progressive coarse-graining makes it possible to access longer time scales and greater length
scales. This figure was taken from [6].

Despite advances in computing power, all-atom MD simulations remain limited to small sys-
tems and fast processes. Coarse-grained models offer greater computational efficiency, allow-
ing simulations of larger systems and longer time scales. Well-designed coarse-grained models
can be reconstructed to all-atom resolution, enabling multiscale modeling that combines the
speed of coarse-grained simulations with the accuracy of all-atom MD.

Coarse-grained protein models use various levels of simplified polypeptide chain representa-
tion. The protein main chain can be represented by all heavy atoms or by one or two united
atoms per residue, while the side chain is typically replaced by one or two united atoms.

In comparison to all-atom models, coarse-grained models smooth out the energy landscape
(Figure 1.8). This smoothing effect helps prevent the model from getting trapped in local en-
ergy minima, allowing for more efficient exploration in search of the most likely structures,
represented by global minima. Various definitions of interaction models for coarse-grained

representations are possible. Physics-based derivations of coarse-grained force fields start from

13



classical all-atom interaction models and translate them into united atom potentials. In con-
trast, knowledge-based interaction schemes are derived from statistical regularities observed in

known protein structures [7, 6].

Figure 1.8: All-atom versus coarse-grained energy landscape. The figure illustrates the effect of the smoothening of the
energy landscape in a coarse-grained model as compared to an all-atom model. The flattening enables efficient exploration
of the energy landscape in search for the global minima, while avoiding traps in the local minima. This figure was taken
from [7].

1.4.4 COMBINING EXPERIMENTAL AND THEORETICAL METHODS

Determining protein structural ensembles through experimental methods alone faces several
challenges. Ideally, experimental techniques would distinguish heterogeneous states by hav-
ing faster observation times than the interconversion between states. However, this is often
not the case, resulting in averaged observations over multiple states. Moreover, experimental
methods typically measure specific properties, providing sparse structural information about
protein conformational fluctuations. Additionally, experimental observations are affected by
random errors, stemming from statistical fluctuations, and systematic errors, which can arise

from instrument faults, misuse, incorrect data assignment, or poor sample preparation.
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Computational methods range from highly-detailed ab initio methods and all-atom empiri-
cal force fields to coarse-grained approaches. Despite their detail and accuracy, these models are
still approximations of actual interatomic interactions and cannot fully predict all system prop-
erties. Additionally, limited computational resources restrict simulations to finite timescales
(e.g., microseconds), which are often shorter than the timescales of the biological processes of
interest.

Since neither experimental nor computational approaches can by themselves generate accu-
rate structural ensembles, combined approaches have been developed to overcome the limita-
tions of individual techniques (Figure 1.9). These approaches use experimental data as con-
straints for computational models, typically reflecting averages across all conformations within
an ensemble. However, the number of degrees of freedom in the ensembles significantly ex-
ceeds the available experimental restraints, resulting in multiple potential solutions without a
clear ”best” option [8].

In fact, an infinite number of different conformational ensembles can be reconstructed from
experimental data. Any reconstruction can be seen as a probability distribution over the space
of allowable states, whether defined by Cartesian coordinates of atom nuclei, backbone dihe-
dral angles, or Euler transformations for rigid protein domains.

To address this challenge, two primary approaches have been developed. One approach seeks
to explain the data while maintaining maximum uncertainty, ensuring no additional assump-
tions about the unknown distribution are made. This solution satisfies the Maximum Entropy
Principle. Solutions based on the Maximum Entropy Principle typically consist of a large num-
ber of individual states with small, often equal, probabilities.

The second approach seeks probability distributions where high probabilities are concen-
trated in a small number of states, identifying which conformations can carry significant weights.
Various methods fall under this category and are collectively referred to as large weight solutions.
The effectiveness of these solutions depends on the maximum number of states considered in
the ensemble, with each method adopting a specific strategy to balance the number of conform-

ers and the accuracy of the solution [30].

1.4.5 MACHINE LEARNING APPROACHES

Predicting protein structures from amino acid sequences has been a key area of scientific re-
search for many decades due to its critical importance and well-defined physical and compu-

tational principles. Although progress has varied over time, there have been remarkable ad-
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Figure 1.9: Determination of protein structural ensembles by combining experimental and theoretical methods. Experi-
mental methods, such as NMR spectroscopy, SAXS/WAXS, and cryo-EM, typically provide ensemble-averaged, sparse, and
sometimes ambiguous data, influenced by random and systematic errors. Computational methods, like molecular dynamics
(MD) simulations, are limited by inaccuracies in force fields and accessible timescales. Combining experimental and com-
putational techniques can overcome these limitations, leading to accurate determination of protein structural ensembles.
This figure was taken from [8].

vancements in recent years. These breakthroughs are largely due to the increasing use of neural
networks in structure prediction pipelines, replacing traditional energy models and sampling
procedures [31].

Remarkable progress has been achieved thanks to coevolutionary methods, with DeepMind’s
AlphaFold2 being the most influential, as it arguably solves the single apo domain protein struc-
ture prediction problem. While these methods excel at determining the structures of folded

proteins, modifications are often needed to address the structural variability exhibited by IDDPs.

ALPHAFOLD2

Alphafold2 (AF2), a cutting-edge model from DeepMind, has been notably successful in pre-

dicting protein structures from amino acid sequences. Its performance was highly evaluated
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during the 14th Critical Assessment of Protein Structure (CASP) experiment, accurately pre-
dicting 98.5% of the proteins in the human proteome. Predictions made using AF2 are now
accessible via a portal hosted by the European Bioinformatics Institute. This breakthrough
provides detailed, atomic-level models for most human proteins, showcasing the significant
advancements achieved through curated knowledge bases and extensive sequencing data.

AF2 integrates physical and biological knowledge about protein structure in its deep learn-
ing algorithm design. The network directly predicts the 3D coordinates of all heavy atoms in
a given protein using three main inputs: the primary amino acid sequence, multiple sequence
alignments (MSAs) of evolutionarily related proteins, and the 3D atom coordinates of a small
number of homologous structures (templates), when available. One key factor impacting the
accuracy of AF2 predictions is recycling, which involves iterative refinement through the net-
works. In addition to the predicted coordinates, AF2 computes a per-residue confidence accu-
racy of the structure called the predicted local-distance difterence test (pLDDT).

Interestingly, AF2 predictions emphasize the significance of IDPs/IDRs. A notable aspect
of AF2’s structural annotations of the human proteome is the large number of low and very
low confidence regions that coincide with predicted IDRs. This underscores the importance
of conformational heterogeneity. The annotations from AF2 provide a crucial boost for func-
tional and biophysical research on IDPs/IDRs. A typical annotation, as illustrated in Figure

1.10, displays extensive regions marked in orange as “unstructured” with very low confidence

[o].

Figure 1.10: Example showing Alphafold2 predicted structures of proteins with long IDRs. Unstructured regions are de-
picted in orange to signify very low confidence. This figure was taken from [9].
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Usually, AF2 models exhibit restricted conformational diversity. To overcome this, various
pipelines have been suggested to augment the structural variability of the predicted ensem-
ble using different strategies (Figure 1.11). One method [32] involves reducing the number
of sequences employed in creating the MSA, alongside retaining templates and recycling. By
selecting a smaller, less comprehensive MSA from the pool of homologous sequences at ran-
dom, uncertainty is heightened, thereby improving sampling. An alternative method, known
as SPEACH_AF [33], masks columns instead of rows to expand AF2 conformational sampling.
This technique fundamentally changes the information within the MSA by replacing residues
with alanine along the columns, thereby obscuring coevolutionary information. In an alterna-
tive pipeline [34], MSA sequences are clustered based on similarity, and each cluster is subse-
quently used as an MSA input to potentially generate models with different conformational

states [10].

IpPGAN

Although machine learning methods like AF2 have achieved high accuracy in predicting con-
formations from amino acid sequences, these methods overlook the dynamic nature of proteins
and focus on deriving a single conformational state. In contrast, IdpGAN [11] directly models
conformational ensembles using a generative approach. It achieves this by learning probability
distributions of conformations from a training dataset obtained from MD simulations. The
output of this approach consists of Cartesian coordinates of conformations at the Ca coarse-
grained level.

IdpGAN leverages a Generative Adversarial Network (GAN) to capture the distributions of
conformations in the training set. The GAN comprises two neural networks: a generator (G)
and a discriminator (D), which engage in an adversarial game (Figure 1.12). The G network in
IdpGAN employs a transformer architecture that takes a randomly sampled latent sequence
as input. This sequence is refined progressively through transformer blocks and is ultimately
outputted as Cartesian coordinates for the Cz atoms. Additionally, the network requires a
one-hot encoded amino acid sequence that provides essential conditional information for dif-
ferent proteins. IdpGAN also includes a self-attention mechanism that updates each residue’s
embedding with information from the entire sequence.

The D network’s role during GAN training is to guide G toward generating data consistent
with the training set. In IdpGAN, the D network inputs a protein conformation and an amino
acid sequence, and outputs a scalar value representing the probability that the combination is

valid. The conformation input is in the form of an intratomic distance matrix computed from
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Figure 1.11: AF2 pipelines enhance the exploration of predicted conformational variability. A shallow multiple sequence
alignment (MSA) extracts coevolutionary insights linked to various conformational states from a subset of randomly se-
lected sequences. SPEACH_AF reveals alternative states by selectively masking the primary coevolutionary signal, thereby
sampling different conformations. AFcluster utilizes sequence clustering to extract information pertaining to distinct con-
formational states. This figure was taken from [10].
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coordinates, ensuring that IdpGAN is invariant to translations, rotations, and reflections.

Figure 1.12: A latent sequence 2 and amino acid information 4 are inputs for the G network. The output of G is mapped

to Cartesian coordinates 7 using a fully connected network. Conformations » generated by G and those from the training
set are converted to distance matrices and, along with amino acid information 4, serve as input to a set of D networks. The
objective of the D network is to distinguish between real and generated samples, thereby improving the performance of G.
This figure was taken from [11].

1.5 IDP DATABASES

Despite the continual growth of experimentally determined protein structures in resources like
the Protein Data Bank (PDB) [35] and the recent emergence of the AlphaFold Protein Struc-
ture Database [36], which provides accurate structural models for millions of proteins, insights
into the dynamic nature of proteins remain limited, particularly regarding the ensemble repre-
sentation of IDDPs.

To address this limitation, comprehensive and manually curated IDP-related databases, such
as PED [37], DisProt [38], MobiDB [39], FuzDB [40], and IDEAL [41], offer multiple ben-
efits. Primarily, they serve as foundational references and valuable resources for establishing
validation pipelines to assess the reliability of IDP conformational ensembles. Additionally,
these databases function as extensive training datasets for the development of future machine

learning (ML) models [42].
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1.s.1 THE PROTEIN ENSEMBLE DATABASE (PED)

The Protein Ensemble Database (PED) focuses on hosting conformational ensembles of non-
globular proteins (NGDPs) or regions. PED features an accessible data deposition process and

upholds high standards for the quality of the structural ensembles it manages.

The PED deposition process is carried out through a web interface that enables both au-
tomatic data validation and manual curation steps. The validation step standardizes the data
and enhances its quality by generating various structural indicators. The manual curation step
improves data accessibility by providing detailed metadata. Biocurators use a controlled vocab-
ulary to standardize the description of experimental methods and identify cross-references to
external databases. Additionally, curators review literature to find and include ensembles not
yet deposited in PED. PED also features a well-documented RESTful API for programmatic

access, search, and download.

In PED, each entry is identified by the PED prefix and five digits (e.g., PEDoooo1), repre-
senting an experiment on a protein. A PED ensemble (e.g., PEDoooo1eoor) consists of a set of
conformations generated to fit the experimental data. Ensembles produced using the same pro-
teoform (identical sequence construct and PTMs), experimental conditions, and experimental
and computational methodologies are considered different replicas of the same experiment and
are grouped under the same PED entry. PED also includes conformation weights as provided

by the authors, indicating the probability of each conformation within the ensemble [37, 42].

1.5.2 ATLAS

ATLAS [43] is a comprehensive database of standardized all-atom MD simulations for a di-
verse set of representative protein structures. It comprises three distinct datasets. The main
ATLAS dataset includes high-quality protein chains from the PDB. The second dataset fo-
cuses on proteins with Dual Personality Fragments (DPFs), which are regions that can exist in
both disordered and ordered states across different structures. The third dataset contains MD
simulations of proteins featuring chameleon sequences, which are capable of adopting difter-
ent secondary structure conformations, such as a-helix or 3-strand, depending on the protein

context.
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1.6 ANALYZING IDP ENSEMBLES

Due to the structural heterogeneity of IDPs, representing them with a single molecular struc-
ture is impossible. Instead, the entire distribution of structures, known as the structural ensem-
ble, is used to model the different structural states. Consequently, comparing these proteins
involves comparing structural ensembles rather than individual conformations. The RMSD is
a common score for assessing the similarity of individual structures. However, techniques for
comparing structural ensembles are limited. An initial solution was to generalize the standard
RMSD method [44]. Later approaches [45] introduced three main comparison techniques
based on the underlying probability distributions of the ensembles: fast harmonic algorithms
for small-scale fluctuations (harmonic ensemble similarity), structural clustering methods that
define similarity by the co-occurrence of conformations in both ensembles, and dimensional-
ity reduction methods that define similarity by projecting ensembles into lower-dimensional
spaces [46].

In terms of visualization, it is common to represent structural ensembles by overlaying multi-
ple conformations in a single image. While visually appealing, such representations often fail to
show the weights associated with individual conformations, thus limiting their informational
content. An alternative method involves representing free energy landscapes corresponding to
the structural ensembles, which can be generated using dimensionality reduction algorithms
[8].

The high-dimensional nature of IDP conformational ensembles, with thousands of inde-
pendently varying features, makes it difficult to uncover correlations among conformations.
Efficiently identifying representative conformational substates and quantifying their popula-
tions in different contexts would greatly facilitate the identification of conformational features
linked to specific functions or disease states.

One effective approach to identifying these substates in IDP ensembles is clustering. Due
to its ability to provide better visualization and statistical insights, clustering is widely used in
the analysis of big-data biological systems. Applications include profiling gene expression pat-
terns, de novo structure prediction of proteins, quantitative structure—activity relationships of
chemical entities, docking and binding geometry scoring, and the analysis of protein ensembles
from MD trajectories. However, clustering IDP ensembles is particularly challenging due to
their large conformational heterogeneity.

To address this challenge, approaches that combine dimensionality reduction techniques

with clustering have proved effective. Dimensionality reduction techniques are now commonly
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used in protein conformation analysis to extract low-dimensional features, with the amount
of information lost depending on the dataset. For highly heterogeneous datasets like IDPs,
nonlinear dimension reduction techniques are preferred as they aim to preserve the proximity
of nearest neighbors, thus improving the clustering process and enabling better identification
of conformational substates.

For exaple, [47] utilizes t-SNE in combination with k-means clustering to identify and vi-
sualize representative conformational substates in IDP ensembles. The recently developed t-
distributed stochastic neighbor embedding (t-SNE) method effectively disentangles multiple
manifolds in high-dimensional data by focusing on the local structure, thereby extracting clus-
tered local groups of samples. As a result, t-SNE tends to outperform other methods in sepa-

rating clusters and avoiding crowding.

1.7 TRAJECTORY ANALYSIS SOFTWARE

All-atom simulations, as opposed to coarse-grained simulations, are particularly well-suited for
generating sequence-specific conformational ensembles of IDPs because they allow for direct
prediction of ensembles from sequence data. In response to the growing demand for all-atom
simulations, various software packages have been developed to perform and analyze molecular
simulations. Key packages for conducting all-atom simulations, known as simulation engines,
include Amber [48], CAMPARI [49], CHARMM [50], Desmond [51], GROMACS [52],
LAMMPS [53], OpenMM [54],and NAMD [55]. While most simulation engines offer some
analysis routines, their usability is often limited by their design priorities, which emphasize
performance.

Alongside the development of these simulation engines, there has been an increase in stand-
alone packages designed specifically for simulation analysis. Although less robust than simu-
lation engines, trajectory analysis software provides a lightweight and customizable alternative.
These analysis tools are often developed to balance flexibility and computational efficiency.
Broadly, such software can be categorized into four groups based on the knowledge required
for their use and their degree of extensibility: frameworks, toolkits, plugins, and web servers
(Figure 1.13).

Web servers provide access to toolkits, plugins, or frameworks through a web interface, such
as a browser. These services can perform calculations like sequence alignments and trajectory
analysis, and deliver results to users without the need to install external software. For molecular

trajectory analysis, users simply upload a simulation trajectory and select analysis options via
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Figure 1.13: A summary of the four categories of trajectory analysis software illustrates how their ease of use and ex-
tensibility vary. As software abstractions increase, usability generally improves. However, these abstractions reduce the
software’s flexibility and its interoperability with other programs. This figure was taken from [12].

form controls. The server performs the analysis based on the user’s specifications and reports

the results back through the browser.

Plugins are programs that enhance the functionality of existing software. For trajectory anal-
ysis, plugins typically add additional analysis routines to a visualization toolkit. The primary
advantage of this approach is that users can perform interactive analysis within a familiar inter-

face without needing detailed knowledge of the host software’s or plugin’s implementation.

In a computational biophysical context, toolkits are collections of standalone programs or
scripts designed for molecular simulations and related analyses. These tools are usually launched
via a command-line interface, allowing analysis options to be directly passed as arguments to

the specific program.

Frameworks provide their functionalities through an application programming interface
(API), which is designed for use in a specific programming language. This API facilitates the
development of new software by providing access to the framework’s features and capabilities.
Moreover, several frameworks organize trajectory data into natural hierarchical objects such as
atoms, amino acids, proteins, protein chains, and molecules. This hierarchical organization fa-
cilitates the efficient development of customized algorithms. Consequently, these frameworks
serve as ideal starting points for the creation of purpose-specific frameworks and toolkits. Ex-
amples of trajectory analysis frameworks include MDTraj [56], MDAnalysis [57, 58], LOOS
[s9],Jgromacs [60], OpenStructure [61], Pteros [62], CPPTraj [63], and Bio3D [64] (see Table
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1.1 for details).

Software Use Language Year
MDTraj Spatial and Structural analysis Python 2015
MDAnalysis Spatial and Structural analysis Python 2011
LOOS Spatial, Structural, and information C++/Python 2009

Theoretic Analyses

Object-Oriented Representation and

Jgromacs Analysis Java 2012
Spatial, Structural, and information
OpenStructure Theoretic Analyses, with Visualization C++/Python 2013
Geometry transformations, Structural
Pteros . . C++ 2012
alignment, Energy calculations
CPPTRA] Spatial, Structur'fll, and information Cot 2013
Theoretic Analyses
Bio3D Spatial, Structural, Evolutionary Analysis, R 2006

with Visualization

Table 1.1: Frameworks for Analysis of MD Trajectories

1.7.1 MDTRraj

MDTraj is an open-source Python library designed for the analysis and manipulation of MD
trajectories. It can load trajectory and topology data from a variety of MD package formats,
offering wide interoperability. By leveraging Python and NumPy, MDTraj connects MD data
with an extensive ecosystem of data science tools. Rather than providing all functionalities
within a single toolkit, MDTraj integrates MD data with a broad range of statistical and graph-
ical libraries, such as scikit-learn and matplotlib. Additionally, MDTraj features an atom selec-
tion language, enabling users to apply analysis functions to specific subsets of atoms within the
system.

MDTraj simplifies data analysis for MD by providing efficient tools to extract order param-
eters and define distance metrics between simulation snapshots. It features a highly optimized
RMSD engine, performing Theobald’s QCP algorithm three times faster than the original.
Additionally, it offers functions for secondary-structure assignment, solvent-accessible surface
area determination, hydrogen bond identification, residue-residue contact mapping, NMR

scalar coupling constants, nematic order parameters, and extraction of internal degrees of free-
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dom. These functions, optimized with C/C++ and multithreading, return data as multidi-

mensional NumPy arrays, ensuring compatibility with the scientific Python ecosystem.

Additionally, MDTraj includes a unique interactive WebGL-based three-dimensional struc-
ture viewer designed for the IPython notebook, adapted from iview. This viewer is comple-
mented by MDTraj’s TrajectoryView widget, which operates directly within the IPython note-
book to deliver a high-quality, fully interactive three-dimensional rendering of molecular trajec-

tories. Users can also save their visualizations as high-quality PNG images or STL 3D models.

MDTrgj is utilized in various toolkits for analysis and input processing. Examples include
SSTMap [65], taurenmd [66], and TTClust [67] toolkits. Additionally, frameworks such as
Geo-Measures [68], MDEntropy [69], PyRETIS [70], OpenPathSampling [71], mdciao [72],
ProLint [73], and the Biotite [74] package integrate MDTraj into their APIs for diverse func-
tionalities (see Table 1.2 for details). Notably, SOURSOP [12] stands out as a Python-based
software package dedicated specifically to analyzing conformational ensembles of IDPs, relying
on MDTraj for its core functionality. SOURSOP integrates analysis routines typically applied

to folded proteins with a suite of extensively utilized IDR-centric analyses.

Software Use Year
Thermodynamic, Structural, and Spatial Analysis

SSTMap of Water in MD trajectories 2018

taurenmd Spatial and Structural analysis 2020

TTClust Identify dlssm'nlar conformeftlons through 2018

trajectory clustering

Geo-Measures PyMol plugin for structure ensemble analysis 2020

MDEntropy Information Theoretic analysis 2017

PyRETIS Identifies rare events by replica exchange 2017

OpenPathSampling Transition Path Sampling 2019
. Structural analysis and visualization using

mdciao . . . 2022

residue-residue distances
ProLint Analysis and Vls.uahzatllon for lipid-protein ront
interactions

Biotite Spatial and Structural analysis 2018

SOURSOP Integrates analysm routines typlcauy applied to 2023
folded proteins with IDR-centric analyses.

Table 1.2: Trajectory Analysis Software Built upon MDTraj

26



1.8 THESIS OBJECTIVES

For intrinsically disordered proteins (IDPs), it is common to obtain several different structural
ensembles of the same protein using various methods or under different experimental condi-
tions. Despite the abundance of software available for analyzing protein structures and several
solutions tailored for analyzing structural ensembles of IDPs, there is a notable shortage of tools
that provide rapid analysis routines for comparing these ensembles.

The goal of this thesis is to showcase the development of a software package specifically de-
signed for analyzing and comparing Structural Ensembles of IDPs. As these structural ensem-
bles are represented by molecular trajectories, the final product can be categorized as trajectory
analysis software. The main objectives are to create a lightweight, user-friendly, and easily instal-
lable software solution that is both extendable and integrated with existing tools. Additionally,
the software aims to analyze multiple IDP ensembles within a single data analysis pipeline, ofter-
ing a variety of analysis routines that include methods from polymer physics to dimensionality
reduction techniques.

To meet these requirements, IDPET (Intrinsically Disordered Protein Ensemble Toolkit)
was developed. IDPET is a Python package designed for the comprehensive analysis of confor-
mational ensembles of IDPs. Built on the MDTraj library, IDPET can read ensemble files in
various formats and automatically download data from databases such as the Protein Ensemble
Database (PED) and ATLAS.

IDPET offers a range of functionalities for analyzing and comparing multiple structural en-
sembles of disordered proteins in parallel. It includes various visualization tools that enable the
exploration of global and local features of IDDPs, offering insights into their general configura-
tions and detailed interactions at various scales. These visualizations are crucial for understand-
ing the complex structural dynamics inherent to IDPs.

Moreover, IDPET incorporates advanced statistical methods and dimensionality reduction
techniques to manage the complex, high-dimensional nature of IDP conformational ensem-
bles. By combining dimensionality reduction with clustering, IDPET eftectively identifies and

visualizes representative conformational substates within IDP ensembles.
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2.8



Methods

2.1 SOFTWARE ARCHITECTURE AND DEsIGN ofF IDPET

The Intrinsically Disordered Protein Ensemble Toolkit (IDPET) is developed in Python 3.10
and relies heavily on the simulation analysis framework MDTraj for many of its functionali-
ties. Firstly, IDPET utilizes MDTraj for parsing and generating molecular dynamics trajecto-
ries. These trajectories, represented as mdtraj.trajectory objects (with access to mdtraj.topology ob-
jects), serve as the backbone for many of the analyses provided by IDPET. Following Python
conventions already enforced through MDTraj, IDPET aims to represent all data obtained
from these trajectories in the NumPy array format whenever possible, promoting extensibility

and interoperability with other tools.

One of the main goals of this package is to be lightweight, easy to install, and user-friendly.
To achieve this, IDPET follows a straightforward file structure, promoting the use of lower-
level features for experienced users (Figure 2.1). The files contain analysis routines at different
functional levels, intuitively distributed across various modules. While the main functionali-
ties of the package can be found within the ensemble_analysis and visualization modules, dimen-
sionality_reduction and ensemble modules possess user-friendly interfaces that makes it possible
to utilize their functionalities aside from the main pipeline. The featurization directory offers
methods for feature extraction, categorized into four modules based on their semantics. The

angles and distances modules provide methods for extracting local (residue-level) features, the
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glob module focuses on global (conformation-level) features, and the ensemble_level module
provides methods for computing ensemble-level metrics. IDPET is available for installation
via pip and conda tools and features extensive documentation. Additionally, several Jupyter

notebooks have been developed to demonstrate the various use cases of the package.

Figure 2.1: The straightforward structure of the programmatic library ensures ease of use while promoting the utilization
of lower-level functional features. Only the modules with relevant analysis routines are displayed.

Furthermore, IDPET follows an object-oriented design structure to encapsulate its func-
tionalities and provide an intuitive interface. While leveraging the multi-paradigmatic nature
of Python, IDPET predominantly uses the object-oriented paradigm to distribute its function-
alities across a few key objects. This design choice, inspired by similar frameworks such as MD-
Traj and SOURSOP, aims to enhance ease of use. Users can access all the tools provided by
IDPET by familiarizing themselves with these core objects. A class diagram showcasing the
object-oriented design of IDPET is shown in Figure 2.2.

The two main objects in the IDPET framework are EnsembleAnalysis and Visualization, which
offer high-level functionalities sufficient for basic analysis of IDPs. The EnsembleAnalysis ob-
ject contains the data transformation pipeline that begins with data loading and extends to fea-
ture extraction, dimensionality reduction, and clustering methods. Although EnsembleAnalysis
houses all the products of the various pipeline steps, this data is readily accessible in the form of

NumPy arrays or dictionaries with ensemble IDs as keys and arrays as values. The Visualization
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Figure 2.2: A UML class diagram depicting the main classes present in IDPET. The high-level classes EnsembleAnalysis and
Visualization interact with lower-level ones such as Ensemble and the classes implementing the DimensionalityReduction
interface.

class builds on this pipeline, initialized with the EnsembleAnalysis object after data transforma-
tion is complete, to access all produced data. It provides numerous plotting functions that
offer insights into the analyzed IDPs.

IDPET is designed for the simultaneous analysis and comparison of multiple ensembles, re-
quiring a dedicated unit to represent each ensemble individually. The lower-level Ensemble ob-
ject contains ensemble-specific data and includes separate pipeline steps applied independently.
Atahigher level, the EnsembleAnalysis object is instantiated with a list of Ensemble objects, spec-
ifying their data sources and processing instructions, and oversees these objects throughout the
analysis process.

In IDPET, dimensionality reduction methods are managed through the Factory design pat-
tern, specifically the Factory Method pattern, which is a common software engineering ap-
proach. This pattern offers an interface that allows a client to obtain instances of classes that
adhere to a specific interface or protocol, without needing to know the exact class being in-
stantiated. This approach enhances encapsulation and code reuse, as implementations can be

altered without requiring any modifications to the client code.

The factory pattern offers several benefits. Firstly, it enforces the dependency inversion prin-

ciple, ensuring that client dependencies are only on abstract classes and interfaces, not on the
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concrete subclasses they receive. Secondly, it decouples the concrete product instances from all
aspects except their point of instantiation. Thirdly, the factory pattern promotes the creation
of consistent products, as they are all instantiated using the same factory [75].

The various dimensionality reduction classes, each implementing the abstract class Dimen-
sionalityReduction, are instantiated through the static methods of the DimensionalityReductionFac-
tory class. This design promotes modularity by enabling easy addition and integration of new
methods. Although all dimensionality reduction methods adhere to a common interface that
includes methods like fit, transform, and fit_transform, their implementations can difter consid-
erably. Additionally, some methods integrate clustering techniques into their pipelines, each
with its unique approach. Because the various methods adhere to the same interface defined
in DimensionalityReduction, the different parameters for each method are passed directly to the
constructors of the subclasses upon creation, using named and positional arguments. In the
example given in Listing 2.1, the reference to the hidden TSNEReduction subclass is obtained us-
ing the DimensionalityReductionFactory class, which is then used through the uniform interface

defined in DimensionalityReduction to perform the fit_transform method.

. # Obtain a dimensionality reduction subclass using the factory with all
parameters provided

; reducer = DimensionalityReductionFactory.get_reducer(

4 method="'tsne',

5 perplexity_vals=[10, 20, 50, 100],

6 circular=False,

7 range_n_clusters=range(2, 10, 1)

o # Apply the dimensionality reduction to the data
.« reduce_dim_data = reducer.fit_transform(data)

Listing 2.1: Using the Factory Pattern for Dimensionality Reduction

IDPET uses SPHINX for documentation and Git for version controll. Additionally, ID-
PET relies on NumPy for numerical computations on arrays and matrices, scikit-learn for ma-
chine learning, SciPy for scientific and technical computing required in certain analysis rou-
tines, Requests for making HT'TP requests to remote databases, matplotlib for visualizations

and provides outputs as Pandas dataframes.
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2.2 IDPET WORKFLOW

In this section, the workflow of IDPET is outlined. The IDPET analysis follows a roughly
sequential structure, where each step builds upon the previous one, as illustrated in Figure 2..3.
While different steps of the pipeline may follow different paths, they can generally be divided
into three main stages: data loading, analysis, and visualization. The corresponding modules
of the software package responsible for these stages are the ensemble, ensemble_analysis, and

visualization modules, respectively.

Figure 2.3: A schematic of the IDPET workflow is shown, starting with data loading from local files or IDP databases us-
ing the ensemble module. It proceeds with four types of analyses: global, local, dimensionality reduction, and ensemble
comparison, performed by the ensemble_analysis module. Finally, different visualization options are provided by the visual-

ization module.

The workflow commences with data loading from either the local file system or a supported
IDP database. MDTraj is employed during this initial phase to parse or generate trajectory
objects from the provided data. Following data loading, the analysis proceeds with various

functions categorized into global analysis, local analysis, dimensionality reduction analysis, and
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ensemble comparison. Global analysis focuses on entire conformations within the analyzed
ensembles, while local analysis provides residue-level information. Dimensionality reduction,
combined with clustering techniques, condenses the data into a two-dimensional space, facili-
tating visualization and the identification of structural patterns. Finally, ensemble comparison
methods quantify relationships between entire ensembles using a set of similarity measures.
These functionalities leverage scikit-learn and other Python machine learning libraries. An ad-
ditional option is feature extraction, which is integrated into the other analyses but can also
be used independently by the user to obtain global or local features of the ensembles for sepa-
rate evaluation. IDPET supports its analysis routines with a variety of visualization functions
powered by matplotlib. Most visualization functions are designed to be customizable and ex-

tendable.

2.3 Data LOADING

As previously mentioned, IDPET utilizes MDTraj to generate trajectories from various input
files or to load them directly from specific trajectory files. Currently, IDPET supports data files
in PDB format, directories containing PDB files (each representing a different conformation”),
and trajectory files in ”XTC” or ’DCD” formats along with a corresponding topology file in
PDB format. These files can be loaded from the local machine. Additionally, IDPET is inte-
grated with the data APIs of two protein structure databases, PED and ATLAS, enabling it to
fetch necessary data by providing the correct database ID. A summary of available data formats
is presented in Table 2.1

The EnsembleAnalysis object is instantiated by providing a list of Ensemble objects and a path
to an output directory where the various files produced during the analysis pipeline are stored.
Each Ensemble object must contain a unique code serving as its main identifier throughout the
analysis, along with paths to the data files or an identifier from one of the supported databases
("ped” or "atlas”). Additional optional parameters include a chain ID, used to select a single
chain if a provided pdb file contains multiple chains, and a residue range, which indicates the
indexes of residues to be analyzed (See Listing 2.2 for an example of the data loading step).

Since data loading can be a relatively long task, measures were taken to skip certain steps
wherever possible. For instance, downloading ensemble data from remote databases is skipped
when the processed data is already present in the output directory. Additionally, when trajec-
tories are generated from data files using MDTraj, the trajectory files are immediately saved to

bypass this lengthy step in future analyses.
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Data Format

Short Description

Technical Details

PDB Files

Single PDB files representing protein
structures

Standard file format for
macromolecular
structure data; contains
atomic coordinates,
connectivity, and
optionally, occupancy
and temperature factors

Directories with
Multiple PDB Files

Collections of PDB files in a directory

Directory-based input
for batch processing of
structural ensembles,
where each PDB file
represents a distinct
conformational state

Trajectory Files

Trajectories (xtc or ded) along with a

topology file (pdb)

XTC and DCD are
binary trajectory formats
capturing atomic
positions over
simulation time; requires
a corresponding PDB
file for atomic topology
and connectivity
information

Table 2.1: Supported File Formats for IDPET Analysis

An important step in data loading is determining whether a loaded trajectory belongs to a

coarse-grained model. This is identified by checking if the topology contains only C atoms. If
so, the ensemble is marked as coarse-grained and is treated differently in subsequent pipeline
steps. In fact, some features are completely unavailable if at least one ensemble comes from a

coarse-grained model.

Since most functionalities provided by IDPET are designed to work on a single polypeptide
chain, conformations consisting of multiple chains need special handling. By convention, dif-
ferent chains are assigned alphabetical identifiers (A, B, C, etc.). However, MDTraj trajectory
objects do not retain these identifiers, instead replacing them with numerical indexes. To ad-
dress this, IDPET processes the original PDB files to list all chain identifiers and map them to
indexes. This allows users to set the chain_id parameter of the Ensemble objects before loading

the ensembles, automatically restricting the analysis to the specified chain.
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. # Define a list of Ensemble objects

, ensembles = [

4 Ensemble(ens_code='Ensemblel', database='atlas'), # Ensemblel from the
'atlas' database

s Ensemble(ens_code="Ensemble2', database='ped'), # Ensemble2 from the '
ped' database

6 Ensemble(ens_code="Ensemble3', data_path='/path/to/local/filel.pdb"), #

Ensemble3 from a local PDB file

7 Ensemble(ens_code="Ensemble4', data_path='/path/to/local/file2.dcd',
top_path="'/path/to/local/file2.top.pdb') # Ensemble4 from a local
trajectory file with topology

s ]

9

o # Instantiate the EnsembleAnalysis object

. analysis = EnsembleAnalysis(ensembles=ensembles, output_dir='/path/to/

output/directory')

; # Load trajectories for all ensembles

1+ analysis.load_trajectories()

Is

¢« # Randomly sample 50 conformations from the ensembles

1

analysis.random_sample_trajectories(sample_size=50)

Listing 2.2: Data loading example. The EnsembleAnalysis class is instantiated with a list of Ensembles. For each ensemble
it is necessary to specify local paths to data files or indicate the remote database. After loading the ensembles it is possible
to randomly sample a given number of conformations

A function for randomly sampling a defined number of conformations from all loaded en-
sembles is supported. When this function is performed, the original trajectory representation
of the ensembles is stored, allowing the functionality to be executed multiple times, each time
overriding the previous sampling. Interestingly, this implementation corresponds to randomly
sampling frames from molecular dynamics trajectories. However, in the context of IDPET, dif-

ferent conformations belonging to an ensemble are treated as simulation frames.

2.4 GLOBAL ANALYSIS

Using this toolkit, multiple structural ensembles of intrinsically disordered proteins (IDPs) can

be analyzed simultaneously. A structural ensemble contains several conformations, which rep-
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resent three-dimensional protein structures, along with their statistical weights, indicating their
prevalence under experimental conditions. The Global Analysis component of the pipeline of-
fers functionalities to extract information about whole conformations, rather than focusing on
residue-level details.

IDPET ofters several functionalities to gain insights into the global features of conforma-
tional ensembles. In addition to extracting these features and presenting them to the user,
the global analysis functionalities are closely integrated with visualization functions. Conse-
quently, various distribution functions plot the values of these global features across entire en-
sembles, as each value corresponds to a conformation. Additionally, several routines connect
these features, enabling the plotting of one feature against another for comparative analyses.
IDPET’s global analysis evaluates features such as the radius of gyration, end-to-end distances,
asphericity, prolateness, global surface accessible solvent area (SASA), and the Flory scaling ex-

pOIlCI‘lt.

2.4.1  RADIUS OF GYRATION

The radius of gyration R, is a measure of the compactness of the entire protein structure and
is computed in two steps. First, the coordinates of the center of mass R are determined, disre-

garding the hydrogen atoms, using the following equation:

> mi(r; —Re) =0,

where m; is the mass of the 7-th atom and r, denotes its coordinates.

From this, the radius of gyration is obtained as:

N

1
2 ~ o 2
Rg~N§ (r; — Re)?,

i=1

where /N is the number of atoms other than hydrogens in a protein [76].

A lower radius of gyration indicates a more compact protein structure, where atoms are
tightly clustered around the center of mass, typically corresponding to a folded and functional
state. Conversely, a higher radius of gyration indicates a less compact, more extended structure,
often seen in unfolded or intrinsically disordered proteins.

The radius of gyration is a measurable physical quantity that can be both experimentally
determined and calculated without a reference structure. Plotting values against the radius of

gyration is commonly used to study protein structure stability [77].
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2.4.2  END-TO-END DISTANCES

The end-to-end distance in a polypeptide chain is the distance between the Ca atoms of its
N- and C-termini. This measurement is significant as it reflects the overall span of the chain
and can be experimentally determined without needing a reference structure. Like the radius
of gyration, the end-to-end distance provides insight into the compactness of a protein struc-
ture. Therefore, it serves as a useful metric for comparing and correlating with other structural

measures of proteins [77].

2.4.3 ASPHERICITY

While Rg provides a good measure for the size of an IDP, the asphericity provides a very useful
measure of its shape [78]. In order to compute the asphericity of a protein, it is first necessary
to compute the gyration tensor.
The gyration tensor S, is a 3x3 matrix that provides information about the distribution of
a molecule’s mass around its center of mass. It is defined as:
| X

S, = NZ@ — RQ)u(r: — Re)g

i=1

where Nis the number of atoms in the molecule, 7; is the position vector of the z-th atom, R¢

is the position vector of the center of mass of the molecule, # and 8 denote Cartesian coordinates
(%, v, 2).

To gain insight into the molecule’s shape, the eigenvalues (4;, 15, A3) of the gyration tensor
are computed. These eigenvalues represent the principal components of the tensor and provide
information about the distribution of the molecule’s mass along the principal axes.

In this context, the radius of gyration R, is a measure of the overall size of the molecule and

is related to the eigenvalues of the gyration tensor:

@:L+L+%

Asphericity is a measure of how much the shape of the molecule deviates from being spher-

ical. It is defined using the eigenvalues of the gyration tensor as follows:

3(Ads + 2ids + Aads)
(A + 2 + 23)?

A=1-
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The value of A ranges from o to 1, with o representing a sphere and 1 representing a thin

rod [79, 80].

2.4.4 PROLATENESS

In addition to metrics like the radius of gyration and asphericity, the eigenvalues of a protein’s
gyration tensor provide insights into its shape, specifically its prolateness. Prolateness measures
how elongated a structure is relative to its transverse dimensions. A prolateness value greater
than one indicates a more elongated shape, whereas smaller values suggest a more spherical
shape.

The prolateness (Prolateness) of a protein is computed using the following formula:

/‘lmz'd - }lmin

2’ max

where A, Amid, and A,,,, represent the largest, middle, and smallest eigenvalues obtained

Prolateness =

from the gyration tensor, respectively.

2.4.5 SURFACE ACCESSIBLE SOLVENT AREA (SASA)

An important characteristic of each residue in a protein structure is its solvent accessible surface
area (SASA), which quantifies the portion of the residue’s surface exposed to a solvent, such as
water, enabling potential interactions with other proteins or smaller molecules.

SASA was first described by Lee and Richards in 1971 [81] and is sometimes referred to as the
Lee-Richards molecular surface. SASA is typically calculated using the "rolling ball” algorithm
developed by Shrake and Rupley in 1973 [82]. This method involves simulating the rolling
of a probe ball over the protein surface while considering the van der Waals radii of the atoms
(Figure 2.4).

The core concept of this algorithm is to generate a mesh of points representing the surface
of each atom, positioned at a distance equal to the sum of the atom’s van der Waals radius and
the probe radius. The algorithm then counts the number of these mesh points that are on the
molecular surface, meaning they are not within the radius of any other atom.

From a biological perspective, accessibility is significant because it accounts for residues
buried deep within the folded protein structure which greatly impact the protein’s stability,

even though they may not directly interact with other molecules [2].
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Figure 2.4: Solvent accessible surface area (SASA) refers to the portion of a protein’s surface that is in direct contact
with the solvent, typically water. SASA is determined by rolling a probe, represented as a blue sphere the size of a wa-
ter molecule, over the protein’s surface. The protein’s surface is defined by the van der Waals volumes of the amino

acid atoms, shown in gray. The SASA is then described by the path of the probe's center, which moves along the surface,
shown in red. This figure was taken from [2].

2.4.6 FLORY SCALING EXPONENT

A polymer chain, such as a polypeptide, behaves difterently in various solvents. In a good sol-
vent, where the polymer is highly soluble, the polymer chain expands to maximize its contacts
with the solvent. Conversely, in a poor solvent, where the polymer is insoluble or barely solu-
ble, the polymer chain condenses to form a spherical structure. Scaling laws relate the radius of

gyration of a polymer (representing its size) to its length under different solvent conditions:

RgocN”

where R, represents the radius of gyration of the polymer, Nis the number of bonds, and »
is the Flory scaling exponent.

When v = %, the chain is in the expanded coil state. When v = %, it indicates the most
compact globule state. When » = 0.5, the polymer is in the & state, behaving like a perfect
chain [83].

For the purposes of IDPET, Flory scaling exponents () were determined by fitting the mean-
squared distances between residues (R ;2), calculated for sequential separations greater than

five residues along the linear sequence. This method is detailed in [84].
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2.5 LOCAL ANALYSIS

IDPET slocal analysis focuses on residue-level features of proteins that define their three-dimensional
structure, closely integrating with visualization tools. Typical plots of local features display the
residue index on the X-axis and the examined local feature on the Y-axis. Key visualizations in-
clude Ramachandran plots for torsion angles, average distance maps, and contact probability
maps for Ca-Cz distances. Local analysis routines encompass these visualizations along with
a angle distributions, secondary structure propensities, and site-specific order and flexibility

parameters.

2.5.1 AVERAGE D1STANCE AND CONTACT PROBABILITY MAPS

Spatial proximities between amino acid residues are crucial for protein 3D structure predic-
tion. This information can be represented as a square symmetric matrix, where values indicate
Euclidean distances between specific atoms, known as a distance map. When the matrix con-
tains binary data about residue-residue interactions, qualified by a Euclidean distance below
a set threshold, it is called a contact map. Most approaches utilizing contact maps for protein
structure prediction use Euclidean distances between Cz or (3 atoms, with a contact threshold
typically set at 8 A [85].

Since IDPET analyzes ensembles containing multiple protein structures, its distance maps
require averaging across all conformations. The average distance map in IDPET illustrates the
average distance between every pair of Cz atoms across all conformations within an ensemble.

Similarly, contact maps in IDPET are adjusted to encompass information from multiple
structures. IDPET computes contact maps for each conformation, identifying pairs of Cx
atoms that are closer than a predefined threshold (typically 8 A). These individual contact maps
are then averaged to derive a contact probability for every residue pair in the ensemble. The

resulting probabilities are visualized as a contact probability map.

2.5.2 RAMACHANDRAN PLOTS

Dihedral angles, also known as torsion angles, are particularly useful for compactly representing
the backbone or overall topology of protein structures. The two key backbone dihedral angles
are phi (¢), along the N-Ca bond, and psi (), along the Ca-C bond of the residue. Each residue
in a protein is characterized by a ¢ angle and a ¥ angle. Consequently, the complete protein

backbone can be described by the collection of ¢ and  angles for all residues in the protein.
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When plotting torsion angles of known protein structures, with ¢ on the X-axis and ¥ on
the Y-axis, a distinct distribution known as a Ramachandran plot emerges (Figure 2.5). These
plots reveal empty regions, comprising about 75% of the area, where clashes between amino
acid side chains restrict access to certain torsion angles. Furthermore, residues with torsion
angles in the upper left quadrant (centered around ¢ = -120° and = 120°) typically correspond
to beta strands, while those in the lower left quadrant (centered around ¢ = -60° and ¥ = -40°)
correspond to alpha helices. Ramachandran plots are invaluable for evaluating the quality of
protein structures. Studies have shown that high-quality structures exhibit tightly clustered

patterns in these plots, with few residues falling outside the defined “allowed” dihedral regions

[2].

Figure 2.5: A Ramachandran plot for the thioredoxin protein (PDB ID: 2TRX) displays each residue as a point, categorized
by specific symbols. Squares represent residues within the "allowed” or "core” regions, triangles denote glycine residues,
and "X” marks residues in "disallowed” regions. Red areas mark "core boundaries,” where about 85% of residues in high-
quality structures should be found. Yellow areas denote "allowed boundaries,” where around 10% of residues should lie.
Residues falling within the "generously allowed boundaries” (green regions) or outside these areas suggest potential steric
issues. Glycine residues, uniquely marked with "X,” can appear across the entire plot. This figure was taken from [2].

IDPET utilizes MDTraj to compute@ and ¢ angles for a trajectory to construct Ramachan-
dran plots for the analyzed ensembles. There are two options for a Ramachandran plot. The

first option plots a two dimensional histogram with a user-defined number of bins. The second
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option is more straightforward as it simply scatters values of all ensembles onto a single plot.

2.5.3 CA-BASED TORSION ANGLES (A ANGLES)

Ca-based torsion angles as defined in [86], referred to as o angles, are a convenient tool that can
easily and without bias identify most regions of the protein where conformational changes take
place. Given a set of coordinates for a protein, a dihedral angle a(i) for each residue i is defined
by the atoms Ca(i - 1), Ca(i), Ca(i + 1), and Ca(i + 2). First, a vector P is calculated, which
is normal to the plane formed by the vectors Ca(i - 1)-Ca(i) and Ca(i + 1)-Co(i). Similarly, a
vector Q is calculated, which is normal to the plane formed by the vectors Ce(i)-Ca(i + 1) and
Caf(i + 2)-Ca(i + 1). The angle between vectors P and Q determines the value of the dihedral
angle a(i). Two protein structures can be compared by constructing their Aa profiles, which
depict the differences in alpha angles determined for corresponding residues. These Aa values
exceeding a predefined threshold can identify regions where the directions of the polypeptide
chains differ significantly.

In IDPET, alpha angles are calculated using MDTraj to determine dihedrals defined by sets
of four consecutive C alpha atoms within a trajectory. These angles represent torsional move-
ments around bonds linking the middle two atoms, as defined by planes formed by the first
three and last three atoms. Analysis involves creating histograms to visualize the frequency or

density of these alpha angles within distinct ensembles.

2.5.4 SECONDARY STRUCTURE PROPENSITIES

For a successful analysis of the relationship between amino acid sequence and protein structure,
itis crucial to have a clear and physically meaningful definition of secondary structure. This can
be achieved through a set of simple, physically motivated criteria based on pattern recognition
of hydrogen-bonded and geometrical features.

Characterizing secondary structures using backbone @, ¥ angles or C, positions requires ad-
justing multiple parameters, such as four angles for a rectangle in the @, ¥ plane for each type
of secondary structure. In contrast, the presence or absence of a hydrogen bond can be deter-
mined by a single decision parameter: a cutoff in bond energy. Therefore, secondary struc-
tures can be recognized primarily by identifying hydrogen bonding patterns. These patterns
include “n-turns,” characterized by a hydrogen bond between the CO group of residue 7 and
the NH group of residue 7 + 7 (where » = 3, 4,5), and “bridges,” which involve hydrogen

bonds between residues that are not sequentially adjacent. These patterns encompass nearly
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all backbone-backbone hydrogen bonds. Repeating 4-turns define a-helices, and repeating
bridges define 4-structures. Additional patterns include 3;9-helices, z-helices, single turns, and
single B-bridges [87].

The Dictionary of Protein Secondary Structure (DSSP) is commonly used to describe pro-
tein secondary structures with single-letter codes based on hydrogen bonding patterns. DSSP
defines eight types of secondary structures: 3-turn helices (G), 4-turn helices (H), s-turn he-
lices (I), hydrogen-bonded turns (T), extended strands in 8-sheet conformations (E), residues
in isolated B-bridges (B), bends (S), and coils (C).

IDPET relies on MDTraj’s implementation of the DSSP algorithm to perform local analysis
of ensemble conformations. Because IDP ensembles contain many conformational states, the
relative content of specific structures is considered. The analysis takes as a parameter the code
for the secondary structure and plots the relative presence of that structure at specific residues

across all conformations.

2.5.5 SITE-SPECIFIC ORDER

A site-specific measure of order can be derived from the distribution of angles (&) between
bond vectors, where each bond corresponds to the Cz; — Cz, vector. At any given residue 7,
the variance afj of cos 8f is computed across all residues 7, including 7. The correlation param-
eter is defined as c=1— \/Ea—; The local order parameter for residue 7 is the average of all Gy

values:

1 N
0; — NZ Cz'j
=1

This parameter ranges between o for a random distribution of all 6’17- angles and 1 for perfect
order [88, 89].

2.5.6 SITE-SPECIFIC FLEXIBILITY

To obtain a disorder parameter that reflects local flexibility, the circular variance of the Ra-
machandran angles ¢, and ¢, of all conformers is considered. The circular variance of ¢, is

given by:

2

RZ(?’;’) = (Z We COS(@;‘,)) + (Z we sin(g)l.,c))
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where C is the number of conformers in the ensemble, w, is the weight associated with the
c-th conformer, and P, is the @, angle belonging to the the ¢-th conformer. An analogous
expression applies for R* (}kl)

If all conformers have the same dihedral angles at residue 7, each of the two circular variances
is equal to one. For a large C and with a uniform distribution of dihedral angles, the circular

variance tends to zero. Therefore, a site-specific flexibility parameter can be defined as follows:

1 1
" —1- ~R(p,) — =R(¥.
f=1-1R(p) - 1R()
This parameter ranges from o when all conformers at residue 7 have identical dihedral angles,

to 1 when there is a uniform distribution of dihedral angles at residue 7 [88, 89].

2.6 FEATURE EXTRACTION

IDPET supports various methods for extracting structural and biophysical features from the
analyzed ensembles. These features can be utilized independently by the user, and some can be
turther employed in specific machine learning dimensionality reduction techniques.

Dimensionality reduction algorithms can be applied only to certain local features of the en-
semble. These features include Ca-Cx distances, @ and ¢ torsion angles, « angles and ¢ and w
interresidue orientation angles as defined in the trRosetta method [90]. Ca-Ca distances refer
to the Euclidean distance between each pair of residues in a conformation, ¢ and w are angles
defined along the N-Cz bonds and the Cz-Cbonds of each residue of the protein, and & angles
are torsion angles defined by four consecutive Cz atoms around each residue.

Usually, » and ¢ angles denote the third and first mainchain backbone dihedrals of @ amino
acids, respectively. Meanwhile, theta refers to the second mainchain backbone dihedral of 2
amino acids. However, in the context of trRosetta, » signifies the dihedral angle between two
residues defined between the Cz and Cf atoms of the first residue and the Cj and Cx atoms of
the second residue. Theta refers to the dihedral angle between two residues constructed by the
N, Ca, and Cf atoms of the first residue and the Cf atom of the second residue. @ refers to the
dihedral angle between two residues that lies between the Ca and CB atoms of the first residue
and the Cf atom of the second residue.

In designing IDPET, the goal was to enable the entire analysis pipeline to be managed by a
single object. The resulting EnsembleAnalysis object, initialized with ensemble data and used to

load molecular dynamics trajectories, also extracts features and performs dimensionality reduc-
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tion on those features. The primary function for this task, extract_features, requires only the
feature extraction method as a mandatory parameter, with other method-specific parameters
being optional. This function returns a dictionary with ensemble IDs as keys and the extracted
features as values, while also updating the state of the EnsembleAnalysis object for further pro-
cessing. The extracted features are stored within the EnsembleAnalysis class and can be accessed
at any time.

In addition to the feature extraction that is linked with subsequent dimensionality reduc-
tion methods, IDPET also supports the extraction of all other local and global features of an
ensemble, which were described in the previous sections. The function that serves this pur-
pose, get_features, operates similarly but does not alter the state of the EnsembleAnalysis object.

Listing 2.3 showcases different feature extraction functionalities.

. # Perform feature extraction for C-alpha distances

, analysis.extract_features(featurization="ca_dist")

4

s # Access the extracted features stored in the EnsembleAnalysis object

¢ ca_dist_features = analysis.features

s # Perform feature extraction for phi and psi angles without changing the
state of the EnsembleAnalysis object

5 phi_psi_features = analysis.get_features(featurization="phi_psi'")

i # Get a summary dataframe of selected features with variability

» summary_df = analysis.get_features_summary_dataframe(selected_features=["
rg", "asphericity"], show_variability=True)

Listing 2.3: Feature extraction example using the EnsembleAnalysis class. This demonstrates how to extract features,
access them, perform extraction without changing the state, and obtain a summary dataframe with selected features and
variability.

When developing IDPET, one of the goals was to anticipate future methods for feature ex-
traction. To achieve this, feature extraction functions utilize the "argument unpacking” ap-
proach. This method allows for an arbitrary number of positional and keyword arguments to
be accepted and passed directly to various feature extraction functions. By doing so, it elimi-
nates the need to explicitly define every possible parameter in the method’s signature, enhanc-
ing the flexibility and extensibility of the code.

IDPET offers an additional feature extraction option that outputs ensemble averages and
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standard deviations of global feature distributions in a summary Pandas dataframe. This func-
tionality takes a list of strings indicating the desired features to be extracted as input, along with
aboolean parameter specifying whether to include standard deviations with the averages. If no

features are specified, the function returns a predefined list of global features.

2.7 ENSEMBLE COMPARISON

In addition to comparing average values and distributions of various global and local features,
there is a need to quantify the similarity between entire ensembles with a single metric. To
achieve this, IDPET utilizes techniques which compute the divergence between distributions
of extracted local features. Specifically, two techniques are employed: the Jensen-Shannon Di-
vergence (JSD) and the Earth Mover’s Distance (EMD).These methods are utilized to compare
the distributions of Cx-Cz distances and « angles, which were described previously.

Previous studies have applied these techniques in related contexts: JSD has been used to
assess similarities among ensembles of CGRP (calcitonin gene-related peptide) variants based
on Ca-Ca distance distributions [91], while the EMD has been employed to compare predicted
structural ensembles with ground truth structures by relying on RMSD, termed EMD-RMSD

[92].

2.7.1 JENSEN-SHANNON DIVERGENCE (JSD)

In probability theory and statistics, the Jensen—Shannon divergence (JSD) is a technique for
assessing the similarity between two probability distributions. Although it is based on the
Kullback-Leibler divergence, it is distinct in being symmetric and always producing a finite
value.

The Kullback-Leibler Divergence (KLD) KL : P x P — [0, 00| is a fundamental measure
of distance between probability distributions, defined by:

KL(P: Q) := /Plog <§) e,

where p and g represent the Radon—Nikodym derivatives of probability measures P and Q
with respect to u, a positive measure.
Generally, the Kullback-Leibler Divergence (KLD) is an asymetric measure of distance. One

well-known approach to symmetrize the KLD is through the JSD:
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which can also be written as:

S Q) = %/ (Plog (Pi—pq) +qlog <P2%1>) .

This distance can be interpreted as the overall divergence to the average distribution. An

important characteristic of the JSD is that it is always bounded:

0<JS(P| Q) <log2.

Finally, the square root of the JSD (1/]S) produces a metric distance that satisfies the trian-
gular inequality [93].

2.7.2 EARTH MoOVER’s DisTaNCE (EMD)

The Earth Mover’s Distance (EMD) is a technique used to measure the dissimilarity between
two multi-dimensional distributions within a feature space, where a distance metric, known as
the ground distance, is specified for individual features.

Intuitively, given two distributions, one can be seen as a mass of earth spread in space, and
the other as a collection of holes in the same space. The EMD measures the least amount of
work required to fill the holes with the earth. In this context, a unit of work is defined as moving
a unit of earth over a unit of (ground) distance.

Computing the EMD is based on solving the transportation problem. Let / represent a set
of suppliers, / a set of consumers, and ¢;; the cost of transporting a unit of supply from 7 € 7
toj € J. The objective is to determine a set of flows f;; that minimize the total transportation

cost:

minE E Ciif if

i€l jej
Each distribution can be represented by a signature, which consists of a set of clusters. Each
cluster is characterized by its mean (or mode) and the fraction of the distribution that it con-
tains.

The transportation problem can be effectively applied to match signatures by treating one
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signature as the supplier and the other as the consumer. In this context, the cost ¢; represents
the ground distance between element 7 in the first signature and element ; in the second signa-
ture. After solving the transportation problem and finding the optimal flow f;;, the EMD is
determined by dividing the total transportation cost by the total flow:

2ier 2jes il

Zz‘el jejfij

The normalization factor is introduced to prevent bias towards signatures with smaller total

EMD(x,5) =

weights [94].

2.8 DIMENSIONALITY REDUCTION AND CLUSTERING

IDPET incorporates several dimensionality reduction techniques into its data analysis pipeline
to handle the high-dimensional nature of IDP ensembles. These techniques enable the projec-
tion of data into a two-dimensional space for visualization purposes. By doing so, they uncover
patterns in the conformations of IDPs and provide detailed insights into conformational sub-
states when combined with clustering methods.

Dimensionality reduction pipelines are not applied directly to the Cartesian coordinates of
each atom. Instead, they operate on features extracted from these trajectories, such as Ca-
Cz distances or ¢ and ¢ angles, which contain more significant information about protein
structures. Implemented dimensionality reduction methods include T-distributed Stochastic
Neighbor Embedding (t-SNE), Principal Component Analysis (PCA), Kernel Principal Com-
ponent Analysis (KernelPCA), the Force Scheme with Dimenfix modification, and Uniform
Manifold Approximation and Projection (UMARP).

2.8.1 T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING (T-SNE)

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a statistical method designed to visu-
alize high-dimensional data by mapping each data point onto a lower dimensional space. It was
created as an improvement over the original Stochastic Neighbor Embedding (SNE) algorithm.

At ahigh level, the SNE algorithm starts by converting the high-dimensional Euclidean dis-
tances between datapoints into conditional probabilities that represent similarities. Next, SNE
defines an analogous conditional probability for the low-dimensional features and attempts to

obtain the low-dimensional data representation that minimizes the Kullback-Leibler (KL) di-
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vergence between the two probabilities. To achieve this, SNE minimizes the sum of Kullback-
Leibler divergences over all datapoints using a gradient descent method.

The cost function employed by t-SNE differs from SNE in two main aspects: it employs a
symmetrized version of the SNE cost function with simpler gradients, and it uses a Student-t
distribution instead of a Gaussian to determine the similarity between two points in the lower-
dimensional space [95, 96].

IDPET addapts the approach in [47], which combines t-SNE dimensionality reduction
with k-means clustering to visualize complex IDP data and highlight conformational substates.
The fundamental approach involves clustering the heterogeneous mixture of disordered pro-
tein conformations into subsets characterized by unique homogeneous structures.

This approach requires tuning two hyperparameters to achieve optimal results. The first hy-
perparameter represents the number of clusters assigned to the transformed data using k-means.
The second hyperparameter is perplexity, associated with t-SNE, which determines how to bal-
ance attention between local and global aspects of the data. It essentially estimates the number
of close neighbors for each point. Perplexity has a complex effect on t-SNE performance, with
typical values ranging from s to so.

To determine the best hyperparameters, IDPET evaluates different combinations of cluster
numbers and perplexity values. The method selects the combination that results in the most
interpretable clusters, as determined by the Silhouette score. This score measures the quality
of clustering by evaluating both the cohesiveness of each point within its cluster (its proximity
to the cluster center) and its separateness from points in other clusters (its distance from other
cluster centers). The Silhouette score ranges from -1 to 1, with positive values indicating good
clustering quality.

Since the clusters are determined on the reduced t-SNE data, computing the Silhouette score
on this low-dimensional representation alone can be misleading. Therefore, the Silhouette
score is also measured on the original high-dimensional features (S),) in addition to the score
computed on the low-dimensional data produced by the algorithm (S;). The integrated score,
calculated as the product of these two scores (S * Sj4), has proven to be a reliable metric for
assessing cluster quality.

IDPET relies on the scikit-learn implementation of t-SNE, which uses a specified metric to
calculate distances between instances in a feature array. While IDPET can use the standard
metrics defined by scikit-learn, it also ofters an additional metric for circular data such as @ and
¥ torsion angles, where Euclidean distances are not effective. The “circular” option employs

a custom metric, unit vector distance. This metric converts the angles into unit vectors in 2D
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space by representing each angle with its sine and cosine values and then computes the sum of

distances between these unit vectors.

2.8.2 PRINCIPAL COMPONENT ANALYSIS (PCA)

Principal Component Analysis (PCA) is possibly the oldest and most popular multivariate
statistical technique. The goal of PCA is to extract important information from the data by
expressing it as a set of new orthogonal variables called principal components. These principal
components are linear combinations of the original features in the dataset. The first princi-
pal component is computed to capture the largest possible variance in the data. The second
principal component is computed to be orthogonal to the first and to capture the next largest
variance. Subsequent components are computed similarly. The values of the principal com-
ponents for the observations are called factor scores, which can be interpreted geometrically as
the projections of the observations onto the principal components [97].

PCA maps a data vector from its original set of variables to a new set of uncorrelated vari-
ables. However, not all principal components need to be retained. Dimensionality reduction is
achieved by keeping only the first few principal components that capture the most significant
variance in the data.

As a linear dimensionality reduction method, PCA has limited performance in retaining
local neighborhoods. However, IDPET includes PCA as a baseline and reference point, pro-
viding functionalities for PCA dimensionality reduction alongside more advanced non-linear

methods.

2.8.3 KERNEL PRINCIPAL COMPONENT ANALISIS (KERNELPCA)

Kernel Principal Component Analysis (Kernel PCA) is a method for performing a nonlinear
form of Principal Component Analysis (PCA). This modification is achieved by generalizing
PCA to handle features that are nonlinearly related to the input variables. While traditional
PCA projects data onto a lower-dimensional subspace, Kernel PCA implicitly maps the data to
a higher-dimensional feature space using a kernel function. This allows for the computation of
principal components in this higher-dimensional space without the need to explicitly compute
the coordinates in that space [98].

In the context of IDPET, Kernel PCA addresses the limitations of linear dimensionality
reduction methods, particularly when dealing with circular data like @ and ¢ torsion angles.

For such data, extreme values like —180° and 180° are practically adjacent, posing a challenge
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for linear methods. Kernel PCA, as a nonlinear variant of PCA, more effectively preserves the
intrinsic relationships between these circular data points, ensuring that their true proximity is

maintained in the reduced dimensional space.

2.8.4 FORCE SCHEME WITH DIMENFIX

The nearest-neighbor projection (NNP) is a dimensionality reduction method that projects
multi-dimensional data into a two-dimensional space intended for visualization. The funda-
mental approach to NNP is straightforward: for each new data point to be projected, two
nearest neighbors among projected data points are used to establish its position in the pro-
jected space. The position of the new point ' = «(x) in the projected space is determined by
the intersection of two circles centered at ' = a(g) and ¥ = a(r), with radii equal to d(x, 9)
and d(x, 7), respectively, where d refers to the distance criterion in the original space. If there is
no intersection between the circles, an intermediary point between their centers is used (Figure
2.6). The outcome of this approach is a projection that preserves local neighbors and ofters

information about relationships between instances in the original space.

Figure 2.6: Intersection cases for NNP mapping. (a) Circles intersect. (b) No intersections, one internal circle. (c) No inter-
section or inclusion. This figure was taken from [13].

These mappings can be further improved by applying normalization to the coordinates of
the projected instances in the two dimensional space. This improvement scheme is called the
Force approach, referring to the concept that points are "attracted to” or “repelled by” each
other. In the algorithm, A approximates the difference between the projected distance and the

distance in the original space. This approximation is defined as:
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d(xa 9) - dmin
dmax - dmin

Here, d(x, g) represents the distance criterion in the original #-dimensional space between

A= — dz(x',ql)

points x and ¢, while d i, and dy.x denote the minimum and maximum distances in that space,
respectively. x’ and ¢’ are the projected data points obtained after transformation, denoted as
¥ = a(x)and g’ = a(q). d»(x', 4') refers to the distance criterion in the transformed space.

The Force Scheme enhances proximity relationships in the projected space by reducing the
distance between points that were placed farther apart than their original distances. Impor-
tantly, the Force Scheme can be applied to adjust projections produced by any dimensionality
reduction method [13].

DimenFix is a meta-method that can be applied to any dimensionality reduction technique
involving gradient descent-like steps. It preserves the values of a specific feature during dimen-
sionality reduction and controls changes in relationships between points concerning the se-
lected feature to a specified degree. DimenFix operates in two modes: the Strictly Fixed mode,
which prevents a point from moving along the fixed axis, and the Moving-in-Range mode,
which allows a point to move within a defined range [99].

IDPET integrates the DimenFix-modified Force Scheme with k-means clustering to identify

representative structural features in the visualization of conformational ensembles.

2.8.5 UNIFORM MANIFOLD APPROXIMATION AND ProOJECTION (UMAP)

Non-linear dimensionality reduction algorithms like t-SNE are highly effective at preserving
features in high-dimensional data. The Uniform Manifold Approximation and Projection
(UMAP) algorithm is competitive with t-SNE, which is the current state-of-the-art for visu-
alization. UMAP arguably preserves more of the global structure and offers superior perfor-
mance.

At a high level, UMAP approximates local manifolds and combines their local fuzzy simpli-
cial set representations to build a topological representation of high-dimensional data. This
process can similarly be applied to a low-dimensional representation of the data to construct
an equivalent topological representation. UMAP then optimizes the layout of the data in the
low-dimensional space by minimizing the cross-entropy between the two topological represen-
tations.

From a computational standpoint, UMAP can be classified as a k-neighbor based graph
learning algoritm along with t-SNE. Like other k-neighbor graph-based algorithms, UMAP
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operates in two phases. In the first phase, it constructs a specific weighted k-neighbor graph. In
the second phase, it computes a low-dimensional layout of this graph. The differences among
algorithms in this class lie in the specific methods used to construct the graph and compute the
layout.

The UMAP algorithm, requires four hyperparameters: the number of neighbors to consider
when approximating the local metric, the target embedding dimension, the desired separation
between close points in the embedding space, and the number of training epochs used to opti-
mize the low-dimensional representation [100].

IDPET incorporates UMAP into its dimensionality reduction analysis routines, following a
simplified approach described in [1o1]. By applying UMAP to extracted features such as back-
bone torsion angles or Ca-Ca distances and combining it with k-means clustering, it allows for
a comparative analysis with other dimensionality reduction methods like t-SNE through a uni-
form interface. As with t-SNE, IDPET allows users to specify multiple values for the number
of neighbors and the number of clusters when executing UMAP. For each combination of hy-
perparameters, the silhouette score is computed for the resulting clusters, and the combination

with the highest score is retained.

2.8.6 DIMENSIONALITY REDUCTION WORKFLOW

The dimensionality reduction workflow in IDPET follows a two-step procedure. First, local
features are extracted, such as Ca-Ca distances, @ and ¢ torsion angles, 2 angles, and trRosetta
and w angles. Next, dimensionality reduction is performed on the EnsembleAnalysis object by
calling a single function (reduce_features) and providing the chosen method along with method-
specific parameters. The function returns the transformed data as a NumPy array, and also
stores it within the EnsembleAnalysis class for easy access and visualization at any time. The
two-step approach was chosen to allow different dimensionality reduction algorithms to be
tested on the same extracted features, enabling the best results to be obtained without needing

to recompute the features for each execution (Listing 2.4).

2.9 VISUALIZATION

The visualization functions in IDPET are provided by the visualization module, which includes
the Visualization class. This class is instantiated with an EnsembleAnalysis object that encompasses

all data generated during various analysis steps. This data includes trajectories of the loaded
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. # Perform feature extraction for torsion angles

; analysis.extract_features(featurization="phi_psi")

4

s # Perform dimensionality reduction using t-SNE

¢ analysis.reduce_features(method="tsne', perplexity_vals=[10, 20, 50],
circular=False, range_n_clusters=range(2, 10, 1))

Listing 2.4: Dimensionality Reduction Workflow Example

ensembles, extracted features, reduced data, and metadata, which are essential for the diverse
tools available within the Visualization class.

Most plotting functions in the Visualization class are closely related to one of the analysis
routines: local, global, ensemble comparison, or dimensionality reduction. These functions
are designed to be both customizable and extendable. They accept a Matplotlib Axes object or
a list of Axes objects if multiple plots are displayed, allowing for the creation of publication-
quality plots with custom layouts.

Many functions offer unique parameters for further customization or provide multiple rep-
resentations of the same feature. Additionally, all supported plot functions include a boolean
save parameter, which determines whether the resulting plots should be saved in the output di-
rectory of the Visualization class in PNG format. To facilitate extendability, all functions return
their Axes objects after plotting. An example of a visualization function for analyzing aspheric-

ity is shown in Listing 2..5.

. # Instantiate the Visualization class with the analysis object
. visualization = Visualization(analysis=analysis)

Generate an asphericity plot with specific parameters:
- bins: Number of bins for the histogram (10)

- violin_plot: Use a violin plot representation (True)
- location: Statistical measure to display ('median')

H OH H H HF

- save: Save the plot to the output directory (True)
, visualization.asphericity(bins=10, violin_plot=True, location='median',
save=True)

Listing 2.5: Generating and Saving an Asphericity Plot
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2.10 DOCUMENTATION AND INSTALLATION

IDPET features extensive documentation generated using Sphinx. Sphinx’s sphinx-quickstart
tool simplifies initial setup by creating a documentation source directory with a configuration
file (conf.py) and a master document (index.rst). The master document serves as a welcome page
and contains the root of the "table of contents tree” (toctree). Additional source files in re-
Structured Text (rst) format showcase IDPET’s capabilities, linked hierarchically from the mas-
ter document. Sphinx’s autodoc extension includes docstrings from the package modules, pro-
viding a comprehensive description of IDPETs core functionalities. The final documentation,

consisting of HTML pages, is generated using a Makefile and make.bat file.

The documentation (Figure 2.7) consists of an overview, which outlines the primary use
case of the package, an Installation page, and a comprehensive demo showcasing global analysis,
local analysis, dimensionality reduction, and ensemble comparison. Additionally, it provides
detailed documentation on various functions distributed across the ensemble_analysis, ensemble,

and visualization modules.

Figure 2.7: IDPET'’s documentation includes an overview of the package’s basic use, installation instructions, a detailed
demo covering various analyses, and descriptions of functions within the ensemble_analysis, ensemble, and visualization
modules.
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IDPET is available for download through the Python Package Index (PyPI) and Conda.
PyPl is a repository for Python software packages. The process of uploading a project to PyPI
involves several steps. First, the project directory must be structured appropriately, with Python
files organized in a directory named to match the project name. The pyproject.toml file specifies
the build backend, such as setuptools, which is responsible for converting the source code into
distribution packages. Additional configurations, including metadata and dependencies, are
included in a setup.cfg file. The build process generates two types of distribution files: a source
distribution ( tar.gz) and a built distribution (.whl). These packages are then uploaded to PyPI
using Twine and can be installed with pip.

Conda is a powerful command-line tool for package and environment management. To
build a package with Conda, three files are required: a meta.yaml file containing metadata such
as the required Python version and dependencies; build.sh, a shell script for macOS and Linux;
and bld.bat, a batch file for Windows. For IDPET, the build process uses PyPI as the source
by providing the package URL and SHA-256 hash. After building the package with conda-
build for the current platform, it is converted to be compatible with other platforms. The
resulting packages are then uploaded to Anaconda.org, making them available for installation

using conda.
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Results

3.1 USE CASE: DRKN SH3 DOMAIN ANALYSIS

In this section, the goal is to demonstrate how the IDPET framework can enhance the analysis

of conformational ensembles of IDPs, using a practical example.

Lincoft et al.[102] examined the impact of the initial conformation pool on the derived en-
semble, focusing on the unfolded state of the N-terminal SH3 domain of Drosophila Drk, con-
sistent with previously published NMR, SAXS, and smFRET data. Three different conforma-
tion pools were used in the study: a completely random pool generated using TraDES [28], an
experimentally restrained pool obtained with ENSEMBLE [20], and a third pool consisting of
an equal mixture of the first two pools. Using the Bayesian-based selection method X-EISD
[103], three distinct structural ensembles were derived from these starting pools. The analysis
showed that the ensemble from the mixed pool best matched experimental restraints across mul-
tiple data sets. Throughout the analysis, the distribution of the radius of gyration was used to
gain insights into the protein’s overall size and shape, and secondary structure propensity data

were examined to identify changes in the features of the three ensembles.

To showcase the effectiveness of IDPET, the ensembles obtained in the study from the dif-

ferent pools of conformers are compared against one another. These ensembles are available in
the Protein Ensemble Database (PED) under the following IDs: PEDoo1 56 for the ensemble

generated from the random pool, PEDoo157 for the ensemble obtained from the experimen-
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tally constrained pool, and PEDoor1 58 for the ensemble derived from the mixed pool. Despite
representing the same protein, these structural ensembles exhibit significant variation in their
conformations. With IDPET, there’s no need for manual download of these ensembles. The
package utilizes the PED API to automatically download and load the ensemble files by speci-
tying their IDs in the appropriate format.

The analysis of results is divided into four main sections: Global Analysis, Local Analysis,

Ensemble Comparison, and Dimensionality Reduction.

3.2 GLOBAL ANALYSIS

The original paper exclusively used the radius of gyration and secondary structure propensities
to compare the Random, Mixed, and Experimental ensembles. IDPET not only simplifies
the extraction and visualization of these features but also analyzes other global features of the
ensembles, providing comprehensive insights into their comparison.

First, IDPET can be used to obtain a summary of the ensemble’s global features in a Pandas
DataFrame format (Table 3.1). The table shows that while the mean values of many global
features are quite similar, the standard deviations indicate differences in the underlying distri-
butions of the conformation features. Therefore, visualizing these distributions is essential to

gain a more comprehensive understanding of the structures.

ensemble_code  n_residues n_conformers rg_mean rg std end_to_end_mean end_to_end_std asphericity_mean asphericity_std sasa_mean sasa_std

PEDoo156eo001 59 100 1.79 0.59 4.33 2.39 0.37 0.27 65.25 8.24
PEDoo1s7e001 59 100 1.91 0.20 4.34 1.33 0.48 .14 64.02 4.08
PEDoo158eoo1 59 88 1.87 0.19 4.38 1.17 0.53 0.13 62.22 4.57

Table 3.1: Summary of global features for ensembles PED00156e001, PED00157e001, and PED00158e001. The table
presents mean and standard deviation values for radius of gyration , end-to-end distance, asphericity, and solvent accessi-
ble surface area (SASA).

The figure (Figure 3.1) was created using IDPET with a layout consisting of a two-by-two
subplotgrid. Each subplot visualizes specific features of the three ensembles (PEDoo1 56, PEDoo1 57,
and PEDoo158). The subplot located at the top-left displays the distribution of radius of gy-
ration using violin plots colored in blue. The top-right subplot illustrates the distribution of
end-to-end distances, represented in yellow. The bottom-left subplot shows the distribution of
asphericity values depicted in green. Lastly, the bottom-right subplot presents the distribution
of global SASA values in orange. Horizontal lines in each subplot indicate the mean values of

their respective distributions.
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Figure 3.1: Distributions of radius of gyration, end-to-end distances, asphericity, and global SASA for ensembles
PEDO00156, PED00157, and PED00158, visualized using IDPET. Each subplot corresponds to a specific feature, with ra-
dius of gyration shown in blue, end-to-end distances in yellow, asphericity in green, and SASA in orange. Horizontal lines
indicate the mean values of each distribution.

Although the ensemble means for the radius of gyration across all conformations are simi-
lar, the distributions of these values differ significantly. The ensemble derived from the ran-
dom pool (PEDoo156) exhibits a broader range of values and a less uniform distribution com-
pared to the ensembles from the experimental (PEDoo1 57) and mixed (PEDoo158) pools. The
presence of values in the higher range suggests the existence of highly extended conformations
within the random ensemble. In contrast, the presence of secondary structures in the conform-

ers of the latter two ensembles contributes to their relatively compact structures, as indicated
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by their radius of gyration distributions. Since there is a high correlation between radius of
gyration and end-to-end distances, the distributions are nearly identical.

A conformation-level measure of SASA is obtained by summing the SASA values computed
for every residue within a conformation. The distribution of this global SASA is then plot-
ted for each ensemble. The plots reveal a direct correlation between radius of gyration and
global SASA. The narrower distributions observed in the experimental (PEDoo157) and mixed
(PEDoo158) ensembles can be attributed to the higher presence of secondary structure ele-
ments. This suggests that the ENSEMBLE method, used to derive the experimentally con-
strained structural ensembles, is highly biased towards experimental data such as NMR.

Distributions of asphericity plotted for each of the three ensembles quantify the deviation
of individual conformations from a perfect sphere, with lower values indicating a more spher-
ical structure. As with previous features, the random ensemble (PEDoo1 56) exhibits a wider
distribution, encompassing extreme shapes ranging from nearly perfect spheres to nearly per-
fect rods. In contrast, the shapes in the experimental (PEDoo157) and mixed (PEDoo158)
ensembles are much more uniform. Notably, the mean asphericity is significantly lower for
the random ensemble, indicating a greater presence of more spherical structures within this
set.

The diversity in global properties of IDPs, such as size and shape, is of ten obscured by ensemble-
average properties. Solely consulting the average properties can lead to the assumption that the
analyzed ensembles are very similar, when they are, in fact, quite different. Analyzing the sim-
ulation trajectories of the ensembles can reveal these differences through the distributions of
conformation properties.

The relationship between radius of gyration and asphericity provides another insightful met-
ric worth examining (Figure 3.2). The random ensemble (PEDoo156) exhibits a strong pos-
sitive correlation between radius of gyration and asphericity, indicating that the larger struc-
tures in the ensemble also tend to be less spherical. Conversely, the experimental ensemble
(PEDoo1s7) is characterized by a weaker correlation, which can be attributed to a greater pres-
ence of secondary structures. The mixed ensemble shows an intermediate correlation, as ex-
pected.

The Flory exponent describes how the radius of gyration of a polymer chain scales in a spe-
cific solvent environment. Using IDPET, the Flory exponent is computed for the analyzed
ensembles. The computed Flory exponents for the ensembles are summarized in Table 3.2.
These results indicate that PEDoor1 56 has the most expanded conformations among all three

ensembles, irrespective of radius of gyration, according to polymer physics principles. The
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Figure 3.2: The relationship between radius of gyration and asphericity across ensembles (PED00156, PED00157, and
PEDO00158) demonstrates varying correlations. The random ensemble (PED00156) shows a strong positive correlation,
indicating larger structures are less spherical. The experimental ensemble (PED00157) exhibits a weaker correlation, at-
tributed to higher secondary structure content, while the mixed ensemble shows an intermediate correlation.

lower values of the exponent in the other two ensembles can be attributed to the presence of

secondary structures.

Ensemble  Flory Exponent

PEDoo156 0.600
PEDoo1s7 0.555
PEDoor158 0.573

Table 3.2: Flory exponents computed for the analyzed ensembles using IDPET.

3.3 LocAL ANALYSIS

In this section, the analysis begins with the replication of the secondary structure propensity
analysis from the original paper to demonstrate the effectiveness of IDPET. Following this, an
analysis of other local features is conducted, including site-specific flexibility, 2D Ramachan-

dran histograms, and alpha angle distributions.
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The figure (Figure 3.3) was created using IDPET with a layout consisting of three vertically
stacked subplots. Each subplot visualizes specific features of the three ensembles (PEDoo1 56,
PEDoo157, and PEDoo158). The top subplot displays the relative DSSP content for helices
(’H’), indicating the propensity of helical structures across residue positions in the analyzed
ensembles. The middle subplot illustrates the site-specific flexibility parameter, highlighting
regions of increased flexibility. The bottom subplot presents the distribution of alpha angles,

describing the geometric relationships between adjacent segments of the protein backbone.

The IDPET function for displaying secondary structure propensities utilizes MDTraj’s im-
plementation of the DSSP algorithm, supporting letter codes such as ’H’ for helices, *C’ for
coils, and ’E’ for strands. The plot showing the relative presence of helices per residue reveals sig-
nificant differences among the ensembles PEDoo1 56, PEDoo1 57, and PEDoo158. PEDoors7
and PEDoo1 58 are characterized by several regions with a distinctly high presence of helices,
specifically at residue positions 16-20, 30-45, and so-55. In contrast, the random ensemble
(PEDoo156) lacks any meaningful presence of helices. Additionally, the similarity in the sec-
ondary structure patterns of PEDoo157 and PEDoor 58 suggests that these ensembles contain

comparable structures.

Site-specific flexibility provides insight into local disorder by analyzing the circular variance
of the Ramachandran ¢ and ¢ angles for each residue position. The values of this parameter
range from o, indicating identical angles across all conformations, to 1, representing a uniform
distribution. According to this metric, PEDoo156 exhibits higher flexibility in two regions,

specifically residues 16-20 and 30-45.

Alpha angles are defined between two hyperplanes formed by four consecutive Cz atoms and
are used to describe the geometric relationship between adjacent segments of the protein back-
bone. Visualizing the density distribution of alpha angles helps quantify these relationships at
the ensemble level. Angles ranging between so° and 70° (approximately 1 radian) correspond
to helical backbone geometries. The higher densities exhibited by PEDoo1 57 and PEDoor 58
around this range indicate the presence of these structures in the ensembles. These results align

with previous findings.

The 2D Ramachandran histogram displays ¢ and yangle distributions, indicating secondary
structures in the protein. The Ramachandran diagrams for the three analyzed ensembles (Fig-
ure 3.4) show a higher density in the helical region (between -90° and -40°) for PEDoo157 and
PEDoo158 compared to PEDoo156. This observation is consistent with the higher helicity

previously determined in these ensembles.
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Figure 3.3: Visualization of local features for three ensembles (PED00156, PED00157, and PED00158) created using
IDPET. The top subplot shows the relative DSSP content for helices ('H’), indicating the helical structure propensity across
residues. The middle subplot illustrates the site-specific flexibility parameter, highlighting regions of increased flexibility
around residues 16-20 and 30-45. The bottom subplot presents the distribution of alpha angles, describing the geometric
relationships between adjacent segments of the protein backbone.
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Figure 3.4: 2D Ramachandran histograms of ¢ and ;kangle distributions for three ensembles (PED00156, PED00157, and
PEDO00158). Higher density in the helical region (between -90° and -40°) for PED00157 and PED00158 indicates greater
helicity compared to PED00156.

3.4 ENSEMBLE COMPARISON

Using IDPET, pairwise comparisons between ensembles can be performed based on the dis-
tributions of extracted features. Two methods for measuring the divergence between these
distributions are supported: the Jensen-Shannon Divergence (JSD) and the Earth Mover’s Dis-
tance (EMD). The outcome of these methods is a numerical score ranging from o, indicating
identical distributions, to 1, indicating complete divergence.

In this analysis, the Jensen-Shannon Divergence is employed to compare the distributions of
Ca-Ce distances and « angles between the analyzed ensembles. A plot with two subplots was
created, each displaying a colored comparison matrix. One subplot compares the distribution
of Ca-Ca distances, while the other compares the distribution of  angles using Jensen-Shannon
Divergence.

The results (Figure 3.5) clearly illustrate the differences between the three ensembles. As
anticipated, PEDoo1 56 shows greater divergence from PEDoo157 and PEDoo158 compared
to the divergence observed between the latter two, both in terms of distributions of Ca-Ca

distances and « angles.

3.5 DIMENSIONALITY REDUCTION ANALYSIS

Dimensionality reduction techniques enable a detailed examination of structural features ex-
tracted from ensemble data. In IDPET, this process involves two main steps: extracting the

specified features and then applying a dimensionality reduction algorithm, often in combina-
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Figure 3.5: Comparison matrices of Jensen-Shannon Divergence for Ca-Cr distances and « angles across three structural
ensembles. The left matrix illustrates the divergence in Ca-Cax distances, while the right matrix shows the divergence in
angles. The analysis highlights that PED00156 diverges more significantly from the other two ensembles compared to the
divergence between the latter two.

tion with clustering methods. This section demonstrates the utility of this approach using the
three ensembles from the original paper. Two sets of features, @ and y angles and Ca-Cz dis-
tances, will be analyzed by applying the t-distributed stochastic neighbor embedding (t-SNE)

algorithm along with k-means clustering.

t-SNE is the current state-of-the-art technique for visualizing high-dimensional data. When
combined with k-means clustering, two hyperparameters need to be specified: perplexity and
the number of clusters. Perplexity balances attention between global and local aspects of the
data in t-SNE, while the number of clusters is used in k-means clustering. For both types of
analyzed features, the algorithm was executed with perplexity values of 10, 20, 50, and 100, and
a range of cluster numbers from 2 to 10. For each combination of parameters, the silhouette
score, which measures the quality of the final clusters, was computed for both the original high-
dimensional data and the transformed low-dimensional data. The best results were retained
based on the product of these two scores. When executing t-SNE on extracted ¢ and y features,
it is necessary to specify that the algorithm is working with angles. This modifies the distance

function to first compute unit vectors from the angles before calculating the distances.

The results are visualized using a supported function that presents the conformations in
the reduced space with different labels. The first plot retains the original labels, linking the
conformations to their respective ensembles. The second plot displays the clustering labels,

and the third plot can be specified to represent conformations using global features such as
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radius of gyration, asphericity, SASA, etc. The fourth is a density plot with original labels.
After applying t-SNE and k-means clustering to extracted Cz-Ca distances, the best results
were achieved with a perplexity of 100 and 3 clusters. The computed silhouette scores were
0.533 for the low-dimensional data and o.253 for the original high-dimensional data (Table
3.3). Both positive scores indicate that the clusters are acceptable. The best score was selected

based on the product of these two scores.

Feature Set Perplexity Number of Clusters ~ Silhouette Score (Low-Dim)  Silhouette Score (High-Dim)
Ca-Ce Distances 100 3 0.533 0.253
@ and ¢ Angles 100 2 0.41 0.03

Table 3.3: Summary of t-SNE and k-means clustering results

Based on the number of clusters observed in the scatter plot with cluster labels, three confor-
mational substates can be identified within the protein based on Ca-Cx distances (Figure 3.6).
Analyzing the transformed features, the plot with original labels and the density plot reveal that
conformations from PEDoo157 and PEDoor1 58 are similar based on carbon alpha inter-atomic
distances. The radius of gyration labels plot illustrates how dimensionality reduction based on
Ca-Ca distances arranges conformations from the lowest radius of gyration (bottom left) to
the highest radius of gyration (top right). Additionally, it shows that some PEDoo156 con-
formations are similar to those in PEDoo157 and PEDoo158 in terms of inter-atomic Ca-Cax
distances. This similarity is expected, given that the final mixed (PEDoo1 58) ensemble contains

2.4% of conformations from the random pool.

Figure 3.6: t-SNE and k-means clustering results based on Cx-Ca distances, with a perplexity of 100 and 3 clusters. The
plots reveal similarities between PED00157 and PED00158 conformations and show how dimensionality reduction or-
ganizes conformations by radius of gyration. Some PED00156 conformations are similar to those in PEDO0157 and
PEDO00158, reflecting the mixed nature of PED00158.

When t-SNE and k-means clustering were applied to @ and ¢ angles, the best silhouette
scores of 0.41 for low-dimensional data and .03 for high-dimensional data were obtained with

a perplexity of 100 and 2 k-means clusters. While the resulting clusters were satisfactory, they
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indicate the presence of two conformational substates within the protein, which differs from
the results obtained using Ca-Ca distances. Additionally, the plots using original labels reveal
that PEDoo156 is quite different from PEDoo157 and PEDoo158 in terms of dihedral angle
distributions (Figure 3.7).

Figure 3.7: t-SNE and k-means clustering results based on @ and ¥ angles, with a perplexity of 100 and 2 clusters. The
plots indicate the presence of two conformational substates within the protein and show that PED00156 differs signifi-
cantly from PED00157 and PED00158 in terms of dihedral angle distributions.

69



70



Conclusion

SUMMARY OF WORK

This thesis describes the development and application of IDPET (Intrinsically Disordered Pro-
tein Ensemble Toolkit), an integrative Python software package designed for analyzing molecu-
lar simulations of intrinsically disordered proteins (IDPs). IDPET aims to be user-friendly and
easy to install, achieved through an intuitive package structure and a consistent object-oriented
interface. It features comprehensive documentation generated with Sphinx and supports quick
installation via PyPI and Conda. IDPET is versatile, suitable for analyzing both all-atom and
coarse-grained ensemble simulations, though the latter may require some modifications and
has certain limitations.

IDPET was developed as an extensible framework that builds upon the general-purpose sim-
ulation analysis package MDTraj. While MDTraj focuses on well-defined proteins, IDPET
enhances MDTraj’s capabilities by specializing in the analysis of IDPs. IDPET is designed to
handle multiple IDP ensembles simultaneously, supporting various file formats and remote
interfaces from databases like PED and ATLAS.

IDPET ofters a comprehensive range of analysis functionalities. It enables local analysis, fo-
cusing on residue-level features across all conformations within ensembles, and global analysis,
which derives conformation-level averages to provide overall structural insights. The software
also includes ensemble comparison methods that evaluate the divergence between distributions

of features extracted from different ensembles. Additionally, IDPET employs dimensionality
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reduction techniques to visualize ensemble features in two-dimensional space and cluster them,
helping to identify distinct conformational substates. To achieve these analyses, IDPET inte-

grates methodologies from various fields, including polymer physics.

KEeY FINDINGS

Using IDPET, a comprehensive analysis of three structural ensembles of the unfolded drkN
SH3 domain was conducted. These ensembles were derived from three conformation pools: a
completely random pool generated using TraDES, an experimentally restrained pool obtained
with ENSEMBLE, and a third pool consisting of an equal mixture of the first two pools. The
analysis revealed that the latter two ensembles contained structures that were more compact
and exhibited a higher presence of secondary structures. This was supported by both global
and local feature analyses. Additionally, the latter two ensembles showed greater similarity
concerning the analyzed features, as confirmed by ensemble comparison methods. Finally, di-
mensionality reduction combined with clustering suggested that up to three conformational

substates can be defined for the observed protein.

IMPLICATIONS AND CONTRIBUTIONS

This study demonstrates that IDPET is an effective tool for analyzing structural ensembles of
IDPs. By extending MDTraj’s capabilities and offering specialized functions for IDP analysis,
IDPET fills a significant gap in the current toolkit for protein analysis. A key contribution of
IDPET is its ability to load multiple conformational ensembles from different data formats or
remote databases directly, eliminating the need to preprocess or merge data into a single file.
IDPET was developed as an independent package rather than an extension of MDTraj because
its analysis routines are specifically tailored for disordered proteins and offer limited value for
well-folded proteins. Additionally, IDPET aims to serve as a general platform for implement-
ing novel analysis routines for disordered proteins, supporting the growing community of re-

searchers in this field.

LimiTaTIONS AND FUTURE WORK

While IDPET is robust and versatile, its application to coarse-grained simulations requires fur-
ther development to address current limitations. Although most analyses oftered by IDPET

can be applied to coarse-grained models, some may cause errors or yield meaningless results.
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IDPET manages these cases appropriately but may not be the optimal tool for analyzing coarse-
grained models. Developing an extension or a separate tool specifically designed for these mod-
els could provide a more effective solution.

IDPET was designed to be highly extendable, particularly in extracting various structural fea-
tures and introducing dimensionality reduction and clustering methods. Future work could
involve adding new methods to IDPET’s analysis pipeline. Additionally, integrating IDPET
into a web server could provide remote access to its functions, enhancing accessibility but po-
tentially sacrificing some extensibility. Furthermore, given its close integration with remote
database APIs, IDPET could be incorporated into PED, offering additional analysis options
within the IDP database.
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