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Summary 
 

In this essay will be treated the Strain Energy Density method on PUR foams made in different 

densities, a local approach to predict the static failure of the components. In literature are 

present studies about these foams and are showed the parameters that could be used for the 

SED method; the main goal is to define these parameters through different experimental tests 

and after to see the difference between the obtained values and the values defined in 

literature. The following step is to define the SED parameters through the obtained 

experimental results and apply the SED method on different notched specimens (blunt V notch 

components, U notched components, holed components and cracked components) made by 

different densities and see the dispersion of the data, dispersion means the difference 

between the experimental and theoretical fracture loads. All the configuration loads are in 

pure mode I except the cracked components that are tested under mode I, mode II and mixed 

mode II.  
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INTRODUCTION 
 

Polyurethane (PUR) foam materials are widely used as cores in sandwich composites, for 

packing and cushioning. They are made of interconnected networks of solid struts and cell 

walls incorporating voids with entrapped gas. The main characteristics of foams are 

lightweight, high porosity, high crushability, and good energy absorption capacity. In this last 

years these type of material are becoming very important for their properties of lightweight 

and good energy absorption capacity. 

In this project the main purpose is to apply a local approach to predict the static failure. This 

local approach is called SED and is based on the strain energy density of the material; this local 

approach will be applied on different specimen’s geometries made by different densities. At 

the beginning the SED method has been applied for welded components but can be extended 

to predict the failure in static condition for notched components. The SED method (and other 

methods that take part of MFLE) it’s a part of the mechanic linear elastic fracture (MFLE), so it 

can be applied only on materials with a linear elastic behaviour, as ideally brittle materials ( 

ceramics, glasses and some polymers). These foams, under tensile loads, present no plasticity 

but show a non-linear behaviour so seems that it’s not possible to apply the methods based on 

MFLE; the particularity of these foams is that the notched specimens has a quasi-linear elastic 

behaviour, so it’s possible to apply the MFLE’s methods. 

Recently has been conducted study on this foams and it has been applied the TCD method, a 

point method based on the same theory of the SED method. In these studies are defined the 

parameters that could be used for the SED method. The main goal is to determine these 

parameters through a different way (through different experimental tests). It’s very important 

to underline that the work will be made in this paper represents a different approach of the 

same problem and the expectation is that the parameters, that will be defined through 

experimental test, are not so far from the parameters already defined. 

It’s known that the parameters for calculate the  SED depend fundamentally  from the strength 

of the material (σt): in the previously studies, this σt is defined in a certain way and it has 

wanted to demonstrate that with different tests, the parameters has the same order of 

magnitude. 

The specimens investigated are notched geometries, with different types of notch. To evaluate 

if the parameters defined are reasonable or not, it will determined the theoretical fracture 

loads of these notched specimens (applying SED method) and after compared with the 

experimental fracture loads. The notched specimens investigated are blunt V notch 
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components, U notched components and holed components under mode I load configuration 

while ASCB specimens under mode I, mode II and mixed mode I+II. 

For the cracked cases will be proposed a personal approach to define the SED parameters 

under mode II and mixed mode I+II loads configuration. 

To determine the SED parameters, it’s necessary to know the mechanical properties of the 

materials; in this work it will be used the mechanical properties (as Young’s modulus, Poisson’s 

ratio, fracture toughness, etc..) determined in the precedent studies.  

In the last chapter will be analysed some specimens with plasticization in a region of the 

components but not where the crack born and propagate (a non-linear behaviour), under 

compression loads, and the goal is to verify if the SED method could be applied and if the 

plasticity influences the results or not. 

(In the Appendix has been applied the TCD method and to define the TCD’s parameters has 

been used the tension determined through the experimental tests: it’s reported only the main 

passages because the finite element models used are the same of the SED method). 
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CHAPTER 1 :Theoretical basis of SED approach 
 

In this last years, the strain energy density (SED) method is becoming a very important method 

to predict the failure of a material. At the beginning this method is born for the welded joints 

and after it has been extended to the static case. The SED method takes part of the linear 

elastic mechanic fracture (MFLE), based on the linear elastic behaviour of the materials. The 

SED is a local approach used for notched components and is based on the energy determined 

by the strain in a finite volume (control volume) near the notch tip. The strain depends from 

the tensions in this volume so it’s necessary to see how is the stresses behaviour near the 

notch tip. 

After this theoretical background, it will be presented the definition of the SED method and 

the main formulation of the method’s parameters for different notch’s geometries.  

1.1.Analitical frame 

 

The deformation energy is a function linked to the stress states present in the material in three 

dimensions. It is therefore impossible to define an energy of deformation without clearly 

defined before what are the tensions in play and how their performance is linked to the notch 

and loading system . 

Filippi [1] proposed an analytical method for the definition of stresses in notched components . 

With reference to the coordinate system shown in Fig. 1, the stress distribution in Mode I , the 

apex of a V-shaped notch , is given by: 

 

 

𝜎𝑖𝑗 = 𝑎1𝑟𝜆1−1 [𝑓𝑖𝑗(𝜃; 𝛼) +  (
𝑟

𝑟0
)

𝜇1−𝜆1

𝑔𝑖𝑗(𝜃; 𝛼)]                                 [1]    

 

 

Where the parameter a1 can be expressed as a function of the stress intensity factor KI
V , in the 

case of a V-notch not connected, when and where λ1 > μ1. 
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Fig. 1. Polar coordinate system and relative parameters. 

 

In the eq. (1), indicates the distance from the apex of the notch of the origin of the polar 

coordinate system and depends on the notch fillet radius and the opening angle ,Fig. 1 , in 

accordance with the  equation: 

 

𝑟0 = 𝜌
(𝜋 − 2𝛼)

(2𝜋 − 2𝛼)
= 𝜌

(𝑞 − 1)

𝑞
                                                      [2] 

 

The distance r0  is maximum for 2α = 0 , resulting r0 = ρ/2 , and decreases with the increase of 

the angle of opening up to a value of r0 = 0 for an angle 2α = π . The parameter q varies 

according to the angle 2α  and has a maximum value q = 2 for 2α = 0  and a minimum value for 

q = 1 and 2α = π. 

 

𝑞 =
(2𝜋 − 2𝛼)

𝜋
                                                           [3] 

 

 

 

The angular functions 𝑓𝑖𝑗(𝜃; 𝛼) and 𝑔𝑖𝑗(𝜃; 𝛼)  are defined in function of William’s parameter 

λ1 , e in a less way from the parameter μ1 [1]. Eq. (3) and (4) reports the formulas to calculate 

these two functions, in a vector form that contains the three components θθ, rr and rθ. 
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{

𝑓𝜃𝜃

𝑓𝑟𝑟

𝑓𝑟𝜃

} =
1

1+𝜆1+𝜒𝑏1(1−𝜆1)
[{

(1 + 𝜆1) cos(1 − 𝜆1) 𝜃
(3 − 𝜆1) cos(1 − 𝜆1) 𝜃
(1 − 𝜆1) sin(1 − 𝜆1) 𝜃

}  +  𝜒𝑏1(1 − 𝜆1) {

cos (1 + 𝜆1)𝜃
−cos (1 + 𝜆1)𝜃
sin (1 + 𝜆1)𝜃

}]     

[4]                                 
 

 

 

{

𝑔𝜃𝜃

𝑔𝑟𝑟

𝑔𝑟𝜃

} =
𝑞

4(𝑞 − 1)[1 + 𝜆1 + 𝜒𝑏1(1 − 𝜆1)
[𝜒𝑑1 {

(1 + 𝜇1)cos (1 − 𝜇1)𝜃
(3 − 𝜇1)cos (1 − 𝜇1)𝜃

(1 − 𝜇1)sin (1 − 𝜇1)𝜃

}                     

+  𝜒𝑐1(1 − 𝜆1) {

cos (1 + 𝜇1)𝜃
−cos (1 + 𝜇1)𝜃
sin (1 + 𝜇1)𝜃

}]                                                              [5] 

 

The value of the parameters regarding the Filippi’s formulation, has been summarized in table, 

where they depend from the opening angle  2α, as seen in Table 1. 

 

2

[rad] 

q   b c d 1
~  F(2

0 2.0000 0.5 -0.5 1 4 0 1 0.7850 

/6 1.8333 0.5014 -0.4561 1.0707 3.7907 0.0632 1.034 0.6917 

/4 1.7500 0.5050 -0.4319 1.1656 3.5721 0.0828 1.014 0.6692 

/3 1.6667 0.5122 -0.4057 1.3123 3.2832 0.0960 0.970 0.6620 

/2 1.5000 0.5448 -0.3449 1.8414 2.5057 0.1046 0.810 0.7049 

/3 1.3334 0.6157 -0.2678 3.0027 1.5150 0.0871 0.570 0.8779 

3/4 1.2500 0.6736 -0.2198 4.1530 0.9933 0.0673 0.432 1.0717 

 1.1667 0.7520 -0.1624 6.3617 0.5137 0.0413 0.288 1.4417 

Table1 . Parameters for the stress distributions.  

In plane strain conditions, the functions 𝑓𝑖𝑗(𝜃)  and 𝑔𝑖𝑗(𝜃)  can be expressed as a function of 

the Poisson’s ratio ν. 
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𝑓𝑧𝑧(𝜃) = 𝜈(𝑓𝜃𝜃(𝜃) + 𝑓𝑟𝑟(𝜃))                                             [6] 
 

𝑔𝑧𝑧(𝜃) = 𝜈(𝑔𝜃𝜃(𝜃) +  𝑔𝑟𝑟(𝜃))                                          [7] 
 

In plane stress conditions, these two values go to zero. 

1.2.The SED method 

 

The SED approach is based on the idea that under prevailing tensile stresses failure occurs 

when the strain energy density averaged over a given control volume reaches a critical value: 

 

𝑊̅ = 𝑊𝑐                                                                            [8] 
 

where Wc depends on the material. If the material behaviour is ideally brittle, then Wc can be 

evaluated by using simply the conventional ultimate tensile strength σt, so: 

 

Wc = σt
2 / 2E                                                                      [9] 

 

In principle Wc as determined from uniaxial tests cannot be considered independent on the 

loading mode. Under compression, for example, the critical value of Wc is surely different from 

the critical value under tension. 

 

Often unnotched specimens exhibit a non-linear behaviour whereas the behaviour of notched 

specimens remains linear. Under these circumstances the stress σt should be substituted by 

“the maximum normal stress existing at the edge at the moment preceding the cracking”, 

where it is also recommended to use tensile specimens with large semi-circular notches to 

have a full notch sensitivity. 
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1.2.1.Sharp V notch, under pure mode I 

 

The a1 parameter in eq. (1), can be linked to stress intensity factor in mode I through the 

following equation: 

𝑎1 =
𝐾𝐼

𝑉

√2𝜋
                                                               [10]     

 

Where the value of KI
V has defined by Gross and Mendelson [5] as: 

 

𝐾𝐼
𝑉 = √2𝜋 lim

𝑟→0
[𝜎𝜃(𝑟, 0)]𝑟1−𝜆1                                               [11] 

 
For sharp  V notches, the value of r0 , eq. (2), is equal to zero because the centre of the polar 

coordinate system is coincident with the notch tip and the components linked to the term μ is 

null. 

In plane strain condition is possible to define the strain energy density in mode I as a Filippi’s 

equations, as made by Lazzarin and Berto [6]: 

 

𝑊𝐼(𝑟, 0) =
1

2𝐸

(𝐾𝐼
𝑉)2

2𝜋𝑟2(1−𝜆1)
[𝑓𝜃𝜃

2 +  𝑓𝑟𝑟
2 + 𝑓𝑧𝑧

2 − 2𝜈(𝑓𝜃𝜃𝑓𝑟𝑟 +  𝑓𝜃𝜃𝑓𝑧𝑧 + 𝑓𝑟𝑟𝑓𝑧𝑧) + 2(1 + 𝜈)𝑓𝑟𝜃
2 ]          [12] 

 

 
Known the equation for the determination of the total strain energy density, it’s necessary to 

define the area where this strain energy density should be calculated. This control area has 

radius Rc . This area is defined through the two free edges of the crack, oriented of an angle 

equal to γ respects to the notch bisector and the control radius Rc , as seen in Fig. 2. 

 

 

Fig. 2. Control area for sharp V notches.  
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𝐴 = ∫ ∫ 𝑟 𝑑𝑟 𝑑𝜃 =  𝑅𝑐
2𝛾                                              [13]

+𝛾

−𝛾

𝑅𝑐

0

 

 
So, the total strain energy EI  inside the control area, is possible to define integrating eq. (12) in 

the control area, eq. (14). 

 

𝐸𝐼 = ∫ 𝑊𝐼𝑑𝐴 =  ∫ ∫ 𝑊𝐼(𝑟, 𝜃)𝑟 𝑑𝑟 𝑑𝜃 =  
1

𝐸

𝐼1(𝛾)

4𝜆1
(𝐾𝐼

𝑉)2𝑅𝑐
2𝜆1                       [14]

+𝛾

−𝛾

𝑅𝑐

0

 

 

Where the I1(γ) is obtained integrating  the stress components reported in eq. (12) ,respects to 

opening angle ± γ. 

 

𝐼𝐼(𝛾) =
1

2𝜋
∫ [𝑓𝜃𝜃

2 +  𝑓𝑟𝑟
2 +  𝑓𝑧𝑧

2 − 2𝜈(
+𝛾

−𝛾

𝑓𝜃𝜃𝑓𝑟𝑟 +  𝑓𝜃𝜃𝑓𝑧𝑧 +  𝑓𝑟𝑟𝑓𝑧𝑧) + 2(1 + 𝜈)𝑓𝑟𝜃
2 ]𝑑𝜃   [15]  

 

I1(γ) is a function depending from: 

 - The geometry through the opening angle 2α, in fact γ = π – α. 

 - The material, through the Poisson’s ratio. 

The value of I1 different typology of sharp notch and different material is showed in Table 2. 

 

2

(degrees) 

/

rad 

1 









0.10









0.15









0.2



pl.  strain 





0.25









0.3









0.35









0.4



pl. 

stress 





0.3

0 1 0.50

00 

1.1550 1.0925 1.0200 0.9375 0.8450 0.7425 0.6300 1.0250 
15 23/24 0.50

02 

1.1497 1.0880 1.0162 0.9346 

 

0.8431 0.7416 0.6303 1.0216 
30 11/12 0.50

14 

1.1335 1.0738 1.0044 0.9254 0.8366 0.7382 0.6301 1.0108 
45 7/8 0.50

50 

1.1063 1.0499 0.9841 0.9090 0.8247 0.7311 0.6282 0.9918 
60 5/6 0.51

22 

1.0678 1.0156 0.9547 0.8850 0.8066 0.7194 0.6235 0.9642 
90 3/4 0.54

45 

0.9582 0.9173 0.8690 0.8134 0.7504 0.6801 0.6024 0.8826 
120 2/3 0.61

57 

0.8137 0.7859 0.7524 0.7134 0.6687 0.6184 0.5624 0.7701 
135 5/8 0.67

36 

0.7343 0.7129 0.6867 0.6558 0.6201 0.5796 0.5344 0.7058 
150 7/12 0.75

20 

0.6536 0.6380 0.6186 0.5952 0.5678 0.5366 0.5013 0.6386 
Table 2. Values of I1 parameter for different material and different sharp notch. 
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From eq. (13) and (14), it’s calculated the value of the average strain energy density as a 

function of the control area: 

 

𝑊𝐼
̅̅̅̅ =

𝐸𝐼

𝐴𝐶
=

𝐼1

4𝐸𝜆1𝛾
(

𝐾𝐼
𝑉

𝑅𝑐
1−𝜆1

)

2

                                              [16] 

 
The SED method assumes that the failure of the material occurs when the average value of the 

strain energy density (𝑊𝐼
̅̅̅̅ ) , defined in a control volume near the notch tip, reach the critical 

value Wc .   

 

If the material has an ideally brittle behavior, the value of the critical energy density can be 

defined as: 

 

𝑊𝑐 =
𝜎𝑢𝑡𝑠

2

2𝐸
                                                                 [17] 

 
In the case where the specimens have not a linear behavior or for notched specimens, 

Seweryn [8] impose the substitution of the σuts with maximum tension existing at the notch tip 

in the moment that preceding the crack; this tension is determined through experimental tests 

on specimens with semi-circular notch under tensile load. 

From eq. (18) is possible to calculate the value of the control radius Rc as a function of the 

material parameters KI
V and Wc , that bring the material to the failure’s condition. 

 

𝑅𝑐 = [
𝐼1(𝐾𝐼

𝑉)2

4𝐸𝜆1𝛾𝑊𝑐
]

1 [2(1−𝜆1)⁄

                                            [18] 

 

 

Eq. (18) is valid for all types of notch with opening angle different from zero. 
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1.2.2.Sharp V notch under mixed mode I+II 
 

As for the mode I is possible to define the strain energy density when the load’s configuration 

is in mode II. From eq. (12) for mode I configuration, is possible to explicit the function 

respects to the components of mode II: 

 

𝑊𝐼𝐼(𝑟, 0) =
1

2𝐸

(𝐾𝐼𝐼
𝑉)2

2𝜋𝑟2(1−𝜆2)
[𝑓𝜃𝜃

2 + 𝑓𝑟𝑟
2 + 𝑓𝑧𝑧

2 − 2𝜈(𝑓𝜃𝜃𝑓𝑟𝑟 +   𝑓𝜃𝜃𝑓𝑧𝑧 +  𝑓𝑟𝑟𝑓𝑧𝑧)

+ 2(1 + 𝜈)𝑓𝑟𝜃
2 ]                                                                                                [19] 

 

This equation depends from the stress terms of Filippi (eq. (4)) and from the terms regarding 

mode II of Williams solution. 

In presence of mix mode I+II, the total strain energy density Wtotal is given by the sum of 

relative terms in mode I WI and in mode II WII , and of a component relative to the mutual 

action of the two modes WI+II . 

The value of the mutual component WI+II is given by the linear combination of the terms 

relative to mode I and mode II: 

 

𝑤𝐼+𝐼𝐼 =
1

𝐸

𝐾𝐼
𝑉𝐾𝐼𝐼

𝑣

𝑟(2−𝜆1−𝜆2)
[𝑓𝜃𝜃

𝐼 𝑓𝜃𝜃
𝐼𝐼 +  𝑓𝑟𝑟

𝐼 𝑓𝑟𝑟
𝐼𝐼 +  𝑓𝑧𝑧

𝐼 𝑓𝑧𝑧
𝐼𝐼

− 𝑣(𝑓𝜃𝜃
𝐼 𝑓𝑟𝑟

𝐼𝐼 +  𝑓𝜃𝜃
𝐼 𝑓𝑧𝑧

𝐼𝐼 + 𝑓𝑧𝑧
𝐼 𝑓𝑧𝑧

𝐼𝐼 +  𝑓𝑟𝑟
𝐼 𝑓𝑧𝑧

𝐼𝐼 + 𝑓𝑧𝑧
𝐼 𝑓𝜃𝜃

𝐼𝐼 +   𝑓𝑧𝑧
𝐼 𝑓𝑟𝑟

𝐼𝐼)

+ 2(1 + 𝑣)𝑓𝑟𝜃
𝐼 𝑓𝑟𝜃

𝐼𝐼 ]                                                                                         [20]  
 

So the total strain energy is given by the integration of the Wi terms in the control area: 

 

𝐸𝑡 = ∫ 𝑊𝐼 + 𝑊𝐼𝐼 + 𝑊𝐼+𝐼𝐼 𝑑𝐴 =  ∫ ∫ 𝑊𝐼(𝑟, 𝜃) ∙ 𝑊𝐼𝐼(𝑟, 𝜃)
+𝛾

−𝛾

𝑅𝑐

0
∙ 𝑊𝐼+𝐼𝐼(𝑟, 𝜃)𝑟 𝑑𝑟 𝑑𝜃    [21] 

 

In the case that the control area Ac is symmetric respects to the notch bisector, Fig. 2., the 

mutual component WI+II is null. In this case, the strain energy in mix mode is easily given by the 

sum of the two terms: 

 

𝐸𝐼+𝐼𝐼 =  𝐸𝑡(𝑊𝐼 , 𝑊𝐼𝐼) =  
1

𝐸
(

𝐼1(𝛾)

4𝜆1
∙ (𝐾𝐼

𝑉)2 ∙ 𝑅𝑐
2𝜆1 +  

𝐼2(𝛾)

4𝜆2
∙ (𝐾𝐼𝐼

𝑉)2 ∙ 𝑅𝑐
2𝜆2  )                 [21] 

 

Where the value of III(γ) depends from the components in mode II: 

 

𝐼𝐼𝐼(𝛾) =
1

2𝜋
∫ [𝑓𝜃𝜃

2 +  𝑓𝑟𝑟
2 +  𝑓𝑧𝑧

2 − 2𝑣(𝑓𝜃𝜃𝑓𝑟𝑟 +  𝑓𝜃𝜃𝑓𝑧𝑧 +  𝑓𝑟𝑟𝑓𝑧𝑧)
+𝛾

−𝛾

+ 2(1 + 𝑣)𝑓𝑟𝜃
2 ] 𝐼𝐼 𝑑𝜃                                                                                      [22] 
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So it’s possible to calculate the average value of strain energy density in mixed mode I+II 

dividing the value of the  total strain energy by the control area: 

 

𝑊𝐼+𝐼𝐼
̅̅ ̅̅ ̅̅ ̅ =

𝐸𝐼+𝐼𝐼

𝐴𝐶
=

𝐼1

4𝐸𝜆1𝛾
(

𝐾𝐼
𝑉

𝑅𝑐
1−𝜆1

)

2

+ 
𝐼2

4𝐸𝜆2𝛾
(

𝐾𝐼𝐼
𝑉

𝑅𝑐
1−𝜆2

)

2

                    [23] 

 

 

As for mode I, the failure occurs when the average value of strain energy density is greater 

than the critical value Wc . 

In the case that the control area is rotated by an angle β > 0 respects to the notch bisector, this 

one is asymmetric so the mutual energy component WI+II should be took in account for the 

determination of the strain energy density. 

 

1.2.3Blunt notch 

 

Berto and Lazzarin [2] and following Radajand and Wormwald [3], presented a re-formulation 

of strain energy density  criteria based on a control volume. Following are showed the most 

important concept about the SED method for blunt notches with brittle  behaviour. 

At the beginning Lazzarin and Zambardi [4] have proposed a local approach of SED for sharp V 

notch under mix mode I+II load configuration. The analytical development is referred to a 

plane system and considers a circular sector as a control volume, with centre near the notch 

tip. (as it possible to see in Fig. 3.). 

 

 

Fig. 3. Shape of control volume for different type of notch: a) sharp V notch case, b) crack case and c) blunt notch 
case. 
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The main assumption is that the material is isotropic and has a linear elastic behavior. 

 

The radius of the control volume Rc ( or control area in plane case), for how it can be found the 

critical Wc , is considered a material’s parameter, independent from the opening angle of the 

notch. This value is calculated from the value of the fracture toughness and under plane strain 

conditions can be express as: 

 

𝑅𝑐 =
(1 + 𝑣)(5 − 8𝑣)

4𝜋
(

𝐾𝐼𝑐

𝜎𝑡
)

2

      𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛                        [24] 

 

While under plane stress conditions: 

 

𝑅𝑐 =
(5 − 3𝑣)

4𝜋
(

𝐾𝐼𝑐

𝜎𝑡
)

2

          𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑒𝑠𝑠                       [25] 

 

Following Lazzarin and Berto extend the local SED approach to sharp V notch, blunt V notch 

and U notch. The analytical development are made in case of tensile load (mode I) using the 

stress distribution at the notch tip proposed by Filippi and considering an isotropic material 

with linear elastic behavior.  

For rounded V notch, has been introduced a control volume with radius given by the sum of 

two different radii, r0 + Rc . The lower limit for the radius of the control volume is represented 

by the curvature radius while the upper limit is represented by the sum of these two radii. 

The r0  length represents the distance between the origin of the polar system (used to express 

the tensions field) and the notch tip, showed at the beginning of the chapter (Fig. 4.). 

 

Fig. 4. Control volume for U notch, under mode I a) and under mixed mode b). 
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For mode I, Lazzarin and Berto obtained a form to express the SED: 

𝑊1
̅̅ ̅̅ = 𝐹(2𝛼) ∙ 𝐻(2𝛼,𝑅𝑐 𝜌⁄ ) ∙

𝜎𝑚𝑎𝑥
2

𝐸
                                               [26] 

 

where σmax is the maximum tension in the notch. 

The values of the functions F(2α) and H(2α, Rc/ρ) are exhibit in tables, where they are reported 

for different values of 2α, Rc/ρ and the Poisson’s ratio (Table 3). 

 

 



rad

R0/ 

 

 



 

H 



 

 





rad

R0/ 

 

 



 

H 



 

 



0 0.01 0.563

8 

0.5432 0.5194 /2 0.01 0.6290 0.6063 0.5801 

 0.05 0.508

6 

0.4884 0.4652  0.05 0.5627 0.5415 0.5172 

 0.1 0.451

8 

0.4322 0.4099  0.1 0.4955 0.4759 0.4535 

 0.3 0.306

9 

0.2902 0.2713  0.3 0.3296 0.3144 0.2972 

 0.5 0.227

6 

0.2135 0.1976  0.5 0.2361 0.2246 0.2115 

 1 0.131

4 

0.1217 0.1110  1 0.1328 0.1256 0.1174 

 0.01 0.639

5 

0.6162 0.5894 /3 0.01 0.5017 0.4836 0.4628 

 0.05 0.576

0 

0.5537 0.5280  0.05 0.4465 0.4298 0.4106 

 0.1 0.510

7 

0.4894 0.4651  0.1 0.3920 0.3767 0.3591 

 

 0.3 0.343

9 

0.3264 0.3066  0.3 0.2578 0.2467 0.2339 

 

 0.5 0.253

1 

0.2386 0.2223  0.5 0.1851 0.1769 0.1676 

 1 0.142

8 

0.1333 0.1226  1 0.1135 0.1079 0.1015 

/3 0.01 0.667

8 

0.6436 0.6157 3/4 0.01 0.4114 0.3966 0.3795 

 0.05 0.599

8 

0.5769 0.5506  0.05 0.3652 0.3516 0.3359 

 0.1 0.530

2 

0.5087 0.4842  0.1 0.3206 0.3082 0.2938 

 0.3 0.354

3 

0.3372 0.3179  0.3 0.2082 0.1997 0.1900 

 0.5 0.259

7 

0.2457 0.2301  0.5 0.1572 0.1504 0.1427 

 1 0.143

5 

0.1349 0.1252  1 0.1037 0.0988 0.0932 

Table 3. Values of H parameter for Blunted V notched shapes, depending from the opening angle and from the 
material’s property (Poisson’s ratio). 

 

Under mode I+II conditions, the maximum principal tension σmax is located in in one point at 

the border of the notch, rotated with a φ angle respects to the notch bisector, Fig. 4. Gomez 

assumes that the control volume has centre in this point, without any shape’s change of this 

one. This hypothesis determines that the control volume rotates of an angle fi near the origin 

of the curvature radius ρ. Also, the angle fi indicates the point where the crack starts to 
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propagate, with normal direction to the maximum principal tension on the border of the 

notch. 

 

R0/ 

  



  

0.0005 0.6294 0.6215 0.6104 0.5960 0.5785 

0.001 0.6286 0.6207 0.6095 0.5952 0.5777 

0.005 0.6225 0.6145 0.6033 0.5889 0.5714 

0.01 0.6149 0.6068 0.5956 0.5813 0.5638 

0.05 0.5599 0.5515 0.5401 0.5258 0.5086 

0.1 0.5028 0.4942 0.4828 0.4687 0.4518 

0.3 0.3528 0.3445 0.3341 0.3216 0.3069 

0.5 0.2672 0.2599 0.2508 0.2401 0.2276 

1 0.1590 0.1537 0.1473 0.1399 0.1314 

Table 4. H values for U notched specimens. 
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CHAPTER 2: PUR foams and properties 
 

Polyurethane (PUR) foam materials are widely used as cores in sandwich composites, for 

packing and cushioning. They are made of interconnected networks of solid struts and cell 

walls incorporating voids with entrapped gas. The main characteristics of foams are 

lightweight, high porosity, high crushability, and good energy absorption capacity. 

 

Polyurethane (PUR) materials represent a class of organic units joined by urethane links. They 

can be manufactured in a wide range of densities: 

 At low densities (30–200 kg/m3) they are rigid foams having a close cell cellular 

structure. The main applications of PUR foams are: high-resilience seating, rigid foam 

insulation panels, microcellular foam seals and gaskets, high durable elastomeric 

wheels and tires, automotive suspension bushings. 

 At higher densities (>200 kg/m3) they show a porous solid structure, and are used for 

fixtures and gauges, master and copy models, draw die moulds, hard parts for 

electronic instruments. 

 

Mechanical properties of these materials are directly related to the mechanical property of 

solid materials used for manufacturing, by the geometry of cellular structure and the relative 

density. Cellular and porous materials have a crushable behaviour in compression, being able 

to absorb considerable amount of energy due to plateau and densification regions. However, 

in tensile they have a linear elastic behaviour up to fracture and a brittle failure. So they can be 

treated as brittle materials. 

The mechanical properties of the foams depend directly from the density, so for this reason 

following are showed the mechanical properties and the way how these properties are 

determined. 

 

2.1.Study of microstructure and density of the foams 

 

Polyurethane materials of five different densities (100, 145, 300, 708 and 1218 kg/m3) 

manufactured by Necumer GmbH – Germany, under commercial designation Necuron 100, 

160, 301, 651 and 1020, were experimentally investigated. At low densities 100 and 145 kg/m3 

the materials have a rigid closed cellular structure, while the PUR materials of higher densities 
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show a porous solid structure (300 and 708 kg/m3), approaching the solid polyurethane 

material for the highest density 1218 kg/m3. A QUANTA™ FEG 250 SEM was used to investigate 

the microstructures of the materials (at 1000x magnification), Fig. 1. The cell diameter and wall 

thickness were determined by statistical analysis and are presented in Table 1, together with 

the density of PUR materials obtained experimentally according with ASTM D1622-08, using 

cubic specimens of 15 x 15 x 15 mm, an electronic balance Sartorius LA230S for weighting and 

a digital calliper Mytotoyo for dimension determination. 

In Fig. 1. is showed the microstructure of the materials, where the dimensions of the cell 

change with the density. Increasing the density, the cell’s diameter and the cell’s thickness 

decrease. 

 

 

Fig. 1. Microstructures of PUR foams materials (at 1000X magnification) at different densities. 

 

Foam 100 160 301 651 1020 

Cell length [μm] 104.5 ± 9.4 83.8 ± 9.6 68.5 ± 33.9 49.1 ± 
30.2 

22.6 ± 
10.0 

Cell wall 
thickness[μm] 

2.9 - 5.8 5.1 - 13.1 3.8 - 21.8 4.7 - 37.6 12.3 -72.5 

Density [Kg/m3] 100.35 ± 0.25 145.53 ± 
0.22 

300.28 
±1.38 

708.8 
±3.45 

1218 ± 
6.76 

Table 1. Microstructure dimensions for the different foam density values examined. 
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From these tests is very important to underline that Necuron 300 shows a very scattered data, 

as it possible to see in Fig. 2. 

 

 

Fig. 2. Statistical analysis of the cell dimensions. 

 

2.2.Elastic properties 

 

The elastic properties Young modulus and Poisson ratio were determined by Impulse 

Excitation Technique and are summarized in Table 2. Tensile strength was determined on dog 

bone specimens according with a gage length of 50 mm and a cross section in the calibrated 

zone with 10 mm width and 4 mm thickness, according to EN ISO 527. 

 

Necuron 100 160 300 651 1020 

Young's 
Modulus 

[MPa] 

30.18 ± 
1.75 

66.89 ±1.07 281.39 
±2.92 

1250 ± 
15.0 

3340 ± 7.1 

Poisson’s ratio 
 [-] 

0.285 0.285 0.302 0.302 0.343 

Tensile 
strength 

[MPa] 

1.16 ± 
0.024 

1.87 ± 0.036 3.86 ± 0.092 17.40 ± 
0.32 

49.75 ± 0.18 

Table 2. Mechanical properties of the foams. 

 

In Fig. 3. and Fig. 4. is reported the characteristic curves of the materials and the load-

displacement curves see from the tensile machine. 
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Fig. 3. Graphs of the characteristic curve for Necuron 100,160 and 301 (on the right) and load-displacement curves 
during a tensile test for Necuron 100, 160, 300 and 651. 

 

 

Fig. 4. Characteristic curve for Necuron 1020 a) and Necuron 651 b).  

 

It’s possible to see that with the increasing of the density increase the maximum tensile 

strength but decrease the maximum displacement: this means that the capability of the 

material to absorb the energy during the deformation decrease with the increasing of the 

mechanical properties. 
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2.3.Fracture toughness 

 

Two types of specimens were adopted for estimating the fracture toughness of PUR foams. 

The three point bend tests were performed on a 5 kN Zwick Proline testing machine, Fig. 5. 

The SENB specimens were cut in the two main directions, Fig. 6, and loaded with 2 mm/min. 

The load–displacement curve was recorded and the maximum force Pmax was used for 

calculation of fracture toughness (eq. (1)): 

 

𝐾𝐼𝑐 =
3𝑃𝑚𝑎𝑥𝑆

2𝐵𝑊2 √𝜋𝑎𝑓(𝑎 𝑊)     (𝑀𝑃𝑎  𝑚𝑚0.5)                          [1]⁄  

 
where Pmax is the maximum load in Newton, B and W are specimen dimensions in millimetre.  

The function f(a/W) is given by eq. (2): 

 

𝑓(𝑎 𝑊⁄ ) =  1.122 − 140(𝑎 𝑊) + 7.33(𝑎 𝑊⁄ )2 − 13.08(𝑎 𝑊⁄ )3 + 14.0(𝑎 𝑊⁄ )4    [2]⁄  
 

 

Fig. 6. SENB specimen. 

 

Evaluation of fracture toughness under mixed mode was carried out on Asymmetric Semi-

Circular Bend (ASCB) specimens, Fig. 7. This ASCB specimen with radius R, which contains an 

edge crack of length a oriented normal to the specimen edge, loaded with a three point bend 

fixture, was proved to give a wide range of mixed modes, from pure mode I (S1 = S2), mixed 

modes I and II (S1 – S2), to pure mode II, only by changing the position of one support [22–24]. 

The considered geometry of the specimen has: R = 40 mm, a = 20 mm, t = 10 mm, S1 = 30 mm 

and S2 = 30, 12, 8, 6, 4, 2.66 mm. The Stress Intensity Factors (SIFs) of the ASCB specimen are 

expressed in the form (eq. (3)): 
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Fig. 5. Three points bend test. 

 

𝐾𝑖 =
𝑃𝑚𝑎𝑥

2𝑅𝑡
√𝜋𝑎𝑌𝑖(𝑎 𝑅⁄ , 𝑆1 𝑅⁄ , 𝑆2 𝑅)              𝑖 = 𝐼, 𝐼𝐼                        [3]⁄  

 

 

Where the non-dimensional SIFs Yi(a/R, S1/R, S2/R) were determined by finite element analysis  

(eq (4)) for a/R = 0.5 and S1/R = 0.75: 

 

𝑌𝐼(𝑆2 𝑅⁄ ) = 6.235(𝑆2 𝑅⁄ )3 − 15.069(𝑆2 𝑅⁄ )2 + 17.229(𝑆2 𝑅)⁄ − 1.062          [4] 
 

 

𝑌𝐼𝐼(𝑆2 𝑅⁄ ) = 1.884(𝑆2 𝑅⁄ )5 − 7.309(𝑆2 𝑅⁄ )4 + 5.037(𝑆2 𝑅⁄ )3 + 2.77(𝑆2 𝑅⁄ )2

− 5.075(𝑆2 𝑅)⁄ + 1.983                                                                                  [5] 
 

 

The tests were performed on a Zwick/Roell 5 kN testing machine at room temperature with a 

loading rate of 2 mm/min, except of the studies investigating the effect of loading rate. Fig. 7b  

presents a picture with the ASCB specimen in the bending fixture. For each position of support 

S2 four specimens were tested. 



27 
 

 

 
Fig. 7. ASCB specimen a) and the test Set-up for this one b). 

 

2.4.Summarise of mechanical properties 

 

The materials studied in the landmark sponges are produced by Necumer GmbH, a German 

company specializing in the production of polymeric materials . In particular have been 

considered five materials , commercially designated as NECURON 100, 160, 301, 651 and 1020. 

The mechanical properties of these materials are presented in Table 3 and make reference to 

the tests previously discussed. 

 

Necuron 100 160 300 651 1020 

Density [Kg/m3] 100 145 300 708 1218 

Poisson [-] 0.285 0.285 0.302 0.302 0.343 

Tensile strength [MPa] 1.16 ±0.24 1.87 ± 
0.036 

3.86 ± 
0.092 

17.40 ± 
0.32 

49.75 ± 
0.18 

Fracture toughness in 
mode I[ MPa*mm0.5] 

0.087 
±0.003 

0.131 ± 
0.003 

0.372 
±0.014 

1.253 ± 
0.026 

2.86 ± 0.11 

Fracture toughness in 
mode II MPa*mm0.5] 

0.05 ± 0.002 0.079 ± 
0.004 

0.374 
±0.013 

1.376 ± 
0.047 

2.424 ± 
0.135 

 

These are the value of the mechanical properties that will be used in all the analysis. 
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CHAPTER 3: Experimental tests 
 

The SED approach is based on the idea that under prevailing tensile stresses failure occurs 

when the strain energy density averaged over a given control volume reaches a critical value, 

c
W=W  , where Wc depends on the material. If the material behaviour is ideally brittle, then 

Wc can be evaluated by using simply the conventional ultimate tensile strength σt, so that 

E2/σ=W 2

tc
 . In principle Wc as determined from uniaxial tests cannot be considered 

independent on the loading mode. Under compression, for example, the critical value of Wc is 

surely different from the critical value under tension. 

The critical value Wc can be evaluated using the ultimate tensile strength in the case that the 

material is ideally brittle (as for example materials like ceramics, some glasses, some polymers, 

etc. etc.. ). If the material has a perfect brittle behaviour, the critical value Wc is the area below 

of the characteristics curve of the material. If the material is perfectly brittle, the area is a 

triangle and this area can be determined knowing the ultimate tensile stress and the Young’s 

modulus, Fig. 1.  

 

 

Fig. 1. The blue line represent the characteristic curve of a ideally brittle materials, the shadow area represent the 
strain energy density. 

 

The area is equal to: 

𝐴 =
1

2
∗ 𝜎𝑡 ∗ 𝜀                                                            [1] 
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In the case of elastic linear tract, is valid the following relation: 

𝜎 = 𝐸 ∗ 𝜀                                                             [2] 
 

So, the equation (1) become: 

𝐴 =
1

2
∗

𝜎𝑢𝑡𝑠
2

𝐸
                                                                [3] 

In the case of the PUR foams, the characteristics curves of the different densities are the 

following: 

 

 

 
Fig. 2. Characteristics curve of the material, Necuron 1020 a), Necuron 651 b) , Necuron 300 ,160 and 100 c). 

 

From the characteristics curves of Necuron 651, 300, 160 and 100, the Young’s modulus 

changes in relation with the applied stress and this trend increases with the decreasing of the 

density. Necuron 1020 presents a characteristic curve that is very near to a line, and this is 
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demonstrate by the fact that the Young’s modulus calculate in the last tract of the curve 

moves away only by the 5 % from the average modulus, while for the lower densities the 

Young’s modulus moves away more than 20 %.  

It’s possible to see that the material show a non-ideally brittle behaviour so for this reason is 

not possible to use the ultimate tensile strength to define the critical energy density. It’s 

important to underline that all the unnotched materials don’t show any plastic phenomenon.  

All the tests made on these foams show that the notched materials has a quasi-ideally brittle 

behaviour: this is possible to see from the load-displacement curves, as it shown below. 

 

 

Fig. 3. Typical load–displacement curves in tensile for notched specimens. 

 

It’s possible to notice that the behaviour of the notched material is very closed to a ideally 

brittle material’s behaviour; the behaviour of the materials are linear and Young’s modulus 

remain more or less the same.  

As seen previously, to define the critical energy density is not possible to use the ultimate 

tensile strength. In the paper “A review of the volume-based strain energy density approach 

applied to V-notches and welded structures” di Berto F. e Lazzarin P. [2]. , the authors say: 

“The SED approach is based on the idea that under tensile stresses failure occurs when W = Wc, 

where the critical value Wc obviously varies from material to material. If the material  

behaviour is ideally brittle, then Wc can be evaluated by using simply the conventional ultimate 

tensile strength σt, so that Wc = σt
2 / 2E.  Often unnotched specimens exhibit a non-linear 

behaviour whereas the behaviour of notched specimens remains linear.  
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Under these circumstances the stress σt should be substituted by ‘‘the maximum normal stress 

existing at the edge at the moment preceding the cracking”, where it is also recommended to 

use tensile specimens with semi-circular notches.” 

In this extract the authors say that it’s possible to define the SED parameters, Rc and Wc , using 

the tension σt , where σt is the tension at the notch tip preceding the crack, defined in a plate 

with bland curvature radius, under tensile load.   

With this σt , Wc and Rc are determined through the following formulas: 

𝑊𝑐 =  
𝜎𝑡

2

2𝐸
                                                                [4]  

  

 

𝑅𝑐 =  [
𝐼1 ∗ 𝐾1𝑐

2

4 ∗ 𝜆1 ∗ (𝜋 −  𝛼) ∗ 𝐸 ∗ 𝑊𝑐
]

1
(2−2𝜆1)

                                [5] 

 

All the parameters are known except σt : knowing this tension, the SED parameters can be 

defined. The idea at the basis is to produce specimens with a bland curvature radius and test 

these ones under tensile load; the tensile machine gives back the fracture loads of the 

components. Applying the fracture load to a finite element model, is possible to discover the 

stress presents at the notch tip in the moment that preceding the crack.  

In the following paragraphs are showed the procedure and the results obtained from the 

experimental tests. 

3.1.Experimental tests 

 

The procedure followed to determine this tension is the following: 

1. Definition of the specimen’s notched geometry, with a bland curvature radius. 

2. Produce the specimens and measurements of the all dimensions. 

3. Test the specimens under tensile load and discover the loads that preceding the 

crack, for each density. 

4. Create a 2 D finite element model, apply the fracture loads and determine the 

stress σt  at the notch tip through a linear-elastic analysis. 

The specimens are made for each density except the highest density, Necuron 1020, this 

because for this one the characteristic curve, in the first approximation, it’s very closed to the 

ideal characteristic curve so it’s possible use directly the ultimate tensile strength σuts . 
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The tests are made on the following specimens: 

1. Necuron 651: density 708  kg/m3  

2. Necuron 301 :density 300 kg/m3  

3. Necuron 160: density 145 kg/m3
  

4. Necuron 100: density 100 kg/m3  

 

As says before, the first step is to define an appropriate geometry. 

 

3.1.1.Definition of geometry and dimensions 

 

For this kind of test, it has been choose a plate with a U notch, where the curvature radius is 

very bland. It has been chosen a U notch to have a full notch sensitivity.   

The geometry and the nominal dimensions choose are the following: 

 

 

Fig. 4. Geometry and dimensions of the U notched specimens with a bland curvature radius. 

 

With a curvature radius equal to 4 mm, in theory, is guaranteed the full notch sensitivity. The 

geometry is the same for each densities but what changes is the real dimensions. 
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3.1.2.Specimens dimensions 

 

The specimens have been produced in the laboratory. 

Previous are reported the nominal dimensions: it’s known that the real dimensions of the 

produced specimens are different from the nominal dimensions. For each density has been 

produced many specimens but have been tested only a few of these ones.  

It’s important to underline that it’s hard to cut the PUR foams specimens with low density, so 

only the best specimens has been choose.  

All the dimensions are measured through a calliper, Mitutoyo digital calliper; for each 

specimens have been made four measurements for each dimensions: in the following  table 

are exhibit the mean value for each dimension (Table 1.1). 

 

Necuron 100  

N° Specimen L [mm] W [mm] Thickness 
[mm] 

b [mm] D (2*R)  
[mm] 

Notch 
depth 
[mm] 

1 100.01 30.51 9.75 14.98 9.39 7.63 

2 100.13 30.6 9.8 15.17 8.86 7.41 

3 100.25 30.53 9.87 14.96 8.61 7.72 

4 100.12 30.36 11.01 14.69 8.66 6.58 

5 100.12 30.51 10.78 15.68 8.88 6.79 

6 100.27 30.61 9.71 14.96 8.42 7.84 

7 100 30.36 9.75 14.8 8.4 7.61 

8 100.21 30.69 9.73 14.8 8.2 7.78 

9 100.08 30.66 10.8 14.87 8.6 7.55 

10 100.02 30.61 9.85 15.57 9.1 7.37 

11 100.04 30.53 9.67 14.8 9.23 7.77 

12 100.1 30.59 10.64 15.08 8.72 7.62 

13 100.3 30.82 9.6 15.64 9.01 7.43 

14 100.1 30.56 9.66 14.4 9.08 7.61 

15 99.68 30.23 9.68 14.63 9.7 7.44 

16 99.87 30.55 9.71 14.37 9.56 7.77 

Table 1.1 Measurements of all the specimens Necuron 100. 

For  Necuron 100 are available sixteen specimens: every specimen presents some imperfection 

generated during the production; for the test have been choose the best six specimens. The 

specimens choose are: specimens n° 3,6,7,8,9,12 (Fig. 5). 
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Fig. 5. Choose specimens for Necuron 100. 

 

The dimensions of the finite element model are the mean values defined only through the 

tested specimens. The mean values are: 

 

N° Specimen L [mm] W [mm] Thickness 
[mm] 

b [mm] D (2*R) 
[mm] 

Notch 
depth 
[mm] 

3 100.25 30.53 9.87 14.96 8.61 7.72 

6 100.27 30.61 9.71 14.96 8.42 7.84 

7 100 30.36 9.75 14.8 8.4 7.61 

8 100.21 30.69 9.73 14.8 8.2 7.78 

9 100.08 30.66 10.8 14.87 8.6 7.55 

11 100.04 30.53 9.67 14.8 9.23 7.77 

Average  100.14 30.56 9.92 14.87 8.58 7.71 
Table 1.2 Measurements of choose specimens Necuron 100. 

 

The average values represent the value that will be used for the finite element model.  

The same procedure has been done for  the specimens of the other densities so following are 

reported only the table with the measurements of all the specimens, the image and the values  

of the choose specimens. 

 

Necuron 160 

 

For  Necuron 160 are available sixteen specimens: every specimen presents some imperfection 

generated during the production; for the test have been chosen the best six specimens. The 

specimens choose are: specimens n°  1,5,6,10,11,14. 
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N° 
Specimen 

L [mm] W [mm] Thickness 
[mm] 

b [mm] D  [mm] Notch 
depth 
[mm] 

1 100.06 30.62 9.71 15.87 8.46 7.2 

2 100.28 30.96 9.68 15.43 9.51 7.74 

3 99.7 30.83 9.52 15.81 9.48 7.22 

4 100.12 30.72 9.69 15.25 8.63 7.6 

5 100.09 30.82 9.8 15.29 8.7 7.46 

6 100.18 30.85 9.95 15.52 8.78 7.71 

7 100.02 30.83 9.31 15.52 8.29 7.53 

8 99.52 30.85 9.74 16.3 8.79 7.42 

9 100.15 30.92 9.7 15.59 9.13 7.9 

10 99.92 30.65 9.82 15.75 8.64 7.45 

11 100.1 30.78 9.68 15.44 8.6 7.6 

12 98.48 30.64 9.77 15.5 8.62 7.66 

13 100.25 30.71 9.69 15.84 8.76 7.5 

14 100.1 30.65 9.65 15.28 8.08 7.6 

15 100.06 30.59 10.03 15.24 8.88 7.54 

16 100.27 30.86 9.62 15.27 8.6 7.62 

Table 2.1 Measurements of all the specimens Necuron 160. 

 

Fig. 6. Choose specimens for Necuron 160. 

N° 
Specimen 

L [mm] W [mm] Thickness 
[mm] 

b [mm] D  [mm] Notch 
depth 
[mm] 

1 100.06 30.62 9.71 15.87 8.46 7.2 

5 100.09 30.82 9.8 15.29 8.7 7.46 

6 100.18 30.85 9.95 15.52 8.78 7.71 

10 99.92 30.65 9.82 15.75 8.64 7.45 

11 100.1 30.78 9.68 15.44 8.6 7.6 

14 100.1 30.65 9.65 15.28 8.08 7.6 

Average 100.08 30.73 9.77 15.53 8.54 7.50 
Table 2.2 Measurements choose specimens Necuron 160. 
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Necuron 300 

 

N° Specimen L [mm] W [mm] Thickness 
[mm] 

b [mm] D  [mm] Notch 
depth 
[mm] 

1 100.42 30.54 9.61 14.81 8.73 7.76 

2 100.15 29.65 9.92 14.11 8.76 7.73 

3 100.04 30.53 10.07 14.65 8.71 7.89 

4 99.91 29.94 9.78 14.22 9.17 7.61 

5 100.14 30.64 10.15 14.65 8.81 7.93 

6 99.94 30.62 9.55 15.57 8.52 7.84 

7 99.93 29.67 9.52 13.55 8.89 7.87 

8 100.02 29.65 10.06 14.88 9.4 7.3 
Table3.1 Measurements of all the specimens Necuron 300. 

 

 

Fig. 7. Choose specimens for Necuron 300. 

 

 

N° Specimen L [mm] W [mm] Thickness 
[mm] 

b [mm] D  [mm] Notch 
depth 
[mm] 

1 100.42 30.54 9.61 14.81 8.73 7.76 

3 100.04 30.53 10.07 14.65 8.71 7.89 

4 99.91 29.94 9.78 14.22 9.17 7.61 

5 100.14 30.64 10.15 14.65 8.81 7.93 

6 99.94 30.62 9.55 15.57 8.52 7.84 

7 99.93 29.67 9.52 13.55 8.89 7.87 

Average 100.06 30.32 9.78 14.58 8.81 7.80 
Table 3.2 Measurements of choose specimens Necuron 300. 
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For  Necuron 300 are available eight specimens: every specimen presents some imperfection 

generated during the production; for the test have been choose the best six specimens. The 

specimens choose are: specimens n° 1,3,4,5,6,7. 

 

Necuron 651 

 

N° 
Specimen 

L [mm] W [mm] Thickness 
[mm] 

b [mm] D  [mm] Notch depth 
[mm] 

1 100.32 30.21 10.45 15.75 8.71 7.33 

2 100.33 29.95 10.42 16.24 8.37 7.1 

3 100.31 30.37 10.42 15.17 9.4 7.88 

4 100.2 30.14 10.43 15.77 8.22 7.51 

5 100.41 30.52 10.42 15.43 9.33 7.68 

6 100.25 30.61 10.4 16.16 8.56 7.3 

Average 100.26 30.23 10.42 16.06 8.38 7.30 

Table 4 Measurements of choose specimens Necuron 651. 

 

For  Necuron 651 the specimens available in the laboratory are equal to six; five over six 

specimens are tested. 

 

Fig. 8. Choose specimens for Necuron 651. 

 

3.1.3.Experimental results 

 

Specimens are tested using a Zwick/Roell Z005 testing machine with a maximum force of 5 kN, 

under displacement control with a loading rate of 30 mm/min at room temperature. The 

machine can give the recorded load-displacement curve for each test. At least five tests were 

performed for each notch geometry. 
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Fig. 9. The Zwick/Roell Z005 tensile machine (on the left ) and a zoom of the fixture with the specimens (on the 

right). 

 

During the tests it has used an high speed camera to see in “slow motion” the behaviour of the 

specimens during the failure moment; through this camera is possible to study better how the 

material reach the failure. 

 

 

Fig. 10. High speed camera positioned in front of the specimen. 
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Fig. 11. Image of the tested specimens. 

 

The recorded load–displacement curves were linear, without any significant non-linearity, and 

the fracture occurred suddenly, indicating a brittle behaviour. Following are showed the 

experimental loads obtained from the tensile  test; near the results are reported the image of 

the specimen at the end of the test. It’s possible to see that the crack starts at the notch tip 

and propagated along the notch bisector, as predicted by the theory. 

 

Necuron 100 

 

Fig. 12. On the left is showed the crack path while on the right the load-displacement curves of each test. 
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It’s possible to see that the load-displacement curve it’s linear until the failure; the failure is 

suddenly ( Fig. 12 ). Through the high speed camera it has been seen that there are no plastic 

zone. This is possible to see in Fig. 13, where the two parts put together form the original body 

with the same dimensions. In Fig. 14 is showed the failure’s surface. 

 

 

Fig. 13. Failure’s zone of the specimens. 

 

 

 

Fig. 14. Surface’s failure. 
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Each other density shows the same behaviour of Necuron 100, so the same consideration 

made previous are valid. In the Table 5 are presented the fracture loads. 

 

 

Table 5 Experimental loads Necuron 100. 

 

The loads are very near each other, the dispersion is very low. 

 

 

Necuron 160 

 

Fig. 15. On the left is showed the crack path while on the right the load-displacement curves of each test. 
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Table 6 Experimental loads Necuron 160. 

 

Necuron 300 

 

Fig. 15. On the left is showed the crack path while on the right the load-displacement curves of each test. 

 

 

Table 7 Experimental loads Necuron 300. 
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In all the tests made on Necuron 300, the results are very scattered, as it seen from Fig. 15, 

where some loads are very different in comparison with the others fracture loads. Necuron 

300 has showed this behaviour in all the entire tests, with all the geometry tested. 

 

Necuron 651 

 

Fig. 16. On the left is showed the crack path while on the right the load-displacement curves of each test. 

 

 

Table 8 Experimental loads Necuron 651. 

 

Except Necuron 300, for all the other densities the loads are not so scattered. 
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3.1.4.Finite element analysis 

 

It’s important to underline that every specimens has its dimensions: in this case to define a 

unique model for each density, it is taking in account of the mean value (the average of the 

specimens tested) of each dimension.  

These are the mean dimensions for each density: 

 

Density 
[Kg/m3] 

L [mm] W [mm] Thickness 
[mm] 

b [mm] D  [mm] Notch depth 
[mm] 

100 100.1 30.5 9.9 14.85 8.5 7.82 

145 100.07 30.7 9.75 15.5 8.5 7.6 

300 100 30.3 9.8 14.5 8.8 7.8 

708 100.2 30.2 10.4 16 8.4 7.1 

Table 9 Mean value of each dimension. 

 

For the analysis it has been used Ansys Multiphysics  14.5 software, an Enginsoft product. The 

analysis is linear elastic so the material data required are only the Young’s modulus and the 

Poisson’s ratio. The model created is a 2 D model, generated using a plane element with eight 

nodes (PLANE 183); the load is applied under plane strain conditions. In this case the purpose 

is to determine the first principal tension at the notch tip so use plane stress conditions 

produce the same results to use the plane strain conditions.  

The geometry presents two axes of symmetry so it’s possible to modelling only a quarter of 

the plate; the symmetry conditions have applied to horizontal line at the bottom of the model 

and to all vertical lines (on the right side) in front of the notch tip. 

 

To determine with precision the first principal tension at the notch tip, the mesh plays a 

fundamental role: in fact more the mesh is refined near the notch tip, more the tension will be 

accurate. So it’s necessary to create a very refined mesh near the notch (Fig. 18a) tip while far 

from the notch tip is possible to have a non-refined mesh ( Fig. 18b ). 

 

It’s been a 2D model and the load is applied as a pressure on line: to get this pressure on line 

just divide the load for area of the section (W*thickness), where W and the thickness are taken 

from the table of the mean value of the dimensions ( Table 1.2, Table 2.2, Table 3.2 and Table 

4). 

The load used for each density is the mean value; the mean value are exhibit in Table 9. 
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Fig. 17. Modelled geometry. 

 

 
Fig. 18. A non-refined mesh  distant from the notch tip, refined mesh near the notch tip. 
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To determine the stress σt  is necessary to plot the first principal tension, that in this case (at 

the notch tip) is the same of the stress σy  (the tension along the vertical axes).  

In Fig. 19 is showed the tension’s distribution along the geometry. 

 

 

Fig. 19. Tension’s distribution along the notch tip. 

 

In Table 10 are presented the stress at the notch tip for each density. 

 

 

Table 10 Value of stress at the notch tip. 

 

For Necuron 300 and Necuron 651, the stress σt is calculated excluding the loads that are very 

different from the others. For example, for Necuron 300, three experimental loads over seven 

are very higher than the others four so in the first approximation these loads are excluded. The 
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same procedure is made for Necuron 651, where two loads over five are distant in comparison 

with the others three values. So in Table 11 are reported the new mean load value and the 

respective stress at the notch tip calculated excluding the upper loads ( loads that are more 

distant in comparison with the others). 

 

 

Table 11 Value of the mean load and the stress at the notch tip excluding the upper loads. 

 

3.2.Results and comments 

 

In the paper “Application of TCD for brittle fracture of notched PUR materials” of R. Negru, L. 

Marsavina [7], is applied the TCD method on the same specimens taking that will be study in 

the next chapters. The TCD method (is a point method) is based on the same theory that is 

under the base of the SED method.  

The Point Method says that the failure occurs when the stress, at an certain distance from the 

notch tip and along the direction where the normal stress is maximum, reaches a critical value 

called inherent strength or σ0 ; the distance from the notch tip is called critical distance or L/2, 

where L is called characteristics length. The inherent strength and the characteristic length are 

a material’s parameters so they  depend only from the material, the geometry doesn’t 

influence this parameters.  

If the behaviour of the material is ideally brittle, the inherent strength is equal to the stress 

failure σfailure . For these foams , the experimental results show that the inherent strength is 

higher than the failure stress.  

Characteristic length L under static loading could be evaluated on the basis of linear elastic 

fracture mechanics: 

 

𝐿 =  
1

𝜋
(

𝐾𝐼𝐶

𝜎𝑜
)

2

                                                                   [7] 

 

 

An alternative procedure applied to determine the material parameters L and σ0, requires the 

experimental determination of strength for two components with different notched 

geometries. 
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Then plotting on the same axes the two distributions of maximum normal stress σn, 

corresponding to the experimentally determined failure loads versus the distance from the 

notch tip r, the intersection  point of the two distributions provides the values of the material 

parameters L/2 and σ0. 

In the precedent studies [7], is possible to find the  characteristics length and inherent stress 

for the PUR foams: it’s necessary to underline that these two parameters are different in case 

of pure mode I, pure mode II and mixed mode. 

In this situation, the load configuration for all the specimens is pure mode I, so the parameters 

are: 

 

 

Table 12. Comparison between experimental stress failure and stress failure determined for TCD method. 

 

The failure stresses found through the experimental test in the previous paragraphs are not so 

far from the inherent stress determined experimentally in the paper aforementioned; for the 

lower densities the stresses differ from 1 MPa ( 30 %) while for the upper densities the 

differences are lower.  

Someone could propose to use the characteristics length and the inherent stress determined 

in the work aforementioned; the purpose of this paper is to try to define the SED parameters 

through another way; through this different way it’s possible to see that the inherent stress 

(that is in theory the stress that when this one is reached the failure occurs) determined is very 

closed to the value determined by R. Negru , L. Marsavina [7].   

For this in the following chapter it has been made the assumption that these stresses represent 

the parameters through which is possible to calculate the material’s parameters, as the control 

radius Rc and the critical energy density Wc. 

As already mentioned, the stress σt is equivalent to the ultimate tensile strength for notched 

materials so, in theory, this stress should be less than the ultimate tensile strength for 

unnotched material: it’s possible to see that this is not true. It has been said this because the 

stress σt doesn’t represent the real ultimate tensile strength but represents a fictitious 

ultimate tensile strength values that can permit to define the SED parameters. 
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CHAPTER 4: Apply of SED method 
 

In the previous chapter it has been determined the stress σt at the notch tip for each density 

through experimental tests. From the theory, knowing σt it’s possible to define the value of the 

critical energy density Wc and the radius of the control volume Rc . The main purpose is to 

determine, in a first moment, these parameters and after try to apply the SED (using these 

parameters) on specimens with different geometries made by different densities. 

From the literature, it’s known that the parameters can be defined as: 

 

𝑊𝑐 =
𝜎𝑡

2

2𝐸
                                                                                  [1] 

 

𝑅𝑐 =  [
𝐼1 ∗ 𝐾1𝑐

2

4 ∗ 𝜆1 ∗ (𝜋 −  𝛼) ∗ 𝐸 ∗ 𝑊𝑐
]

1
(2−2𝜆1)

                                       [2] 

 

In this case the densities of the specimens under study are: 

1. Necuron 651: density 708  Kg/m3  

2. Necuron 301 :density 300 Kg/m3 

3. Necuron 160: density 145 Kg/m3 

4. Necuron 100: density 100 Kg/m3  

In particular, the geometries investigated are : 

• Plate with symmetric Rounded V-Notch under tensile load of different densities 

• Plate with symmetric U-Notch under tensile load of different densities 

• Plate with circular hole under tensile load of different densities  

• Plate with circular hole with different radii and for one density, under tensile load 

 

In this situation, the load configurations are of pure mode I. As it seen from the chapter one, 

for the blunt V notch the  control volume is centred in the tip of the crack while for the others 

cases (as rounded V notch, U notch and holed components) the origin of the control volume 

doesn’t correspond with the notch tip. In Fig. 1 is possible to see the various configuration. 
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

R0 
R0 

2

R2=R0+r0 



R0 

r0 

(a) (b) (c) 

22=0

 

 

Fig. 1. . Critical volume (area) for sharp V-notch (a),  crack (b) and blunt V-notch (c) under mode I loading. 

For rounded V notch (and U notch, that is the particular case when 2α =0° ) r0 represent the 

distance between the notch tip and the centre of the control volume; r0 can be defined as: 

 

𝑟0 =  
𝑞−1

𝑞
 ρ                                                                  [3] 

 

Where ρ is the curvature radius of the notch and q is defined as: 

 

𝑞 =  
2π− 2α 

𝜋
                                                                  [4] 

Knowing the geometry and the material parameter Rc , the radius of the control volume R2 is:  

 

R2 = Rc + r0                                                                   [5] 
 

Previously are exhibit in a few passages all the formulas that will be used in the next 

paragraphs.  

The way to proceed is the following: 

1. Show the geometries and the respective experimental fracture loads. 

2. Define of the parameters  Rc , Wc and R2 , for each density. 

3. Construction of the Ansys model and determine the predicted load through 

the parameters calculated in the precedent step.  

4. Show the obtained results. 

 

The idea at the basis of everything is to find the load that determine the Wc calculated with the 

σt for each geometries and after to compare with the experimental load and to see the 

dispersion of the data. 
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4.1.Geometry, dimensions and experimental fracture loads 

 

For each geometry it’s calculated the parameter q and r0 . For all the geometries the thickness 

is equal to 10 mm. In Fig. 2 are showed the specimens geometry. 

 

 

Fig. 2. Rounded V notch geometry a), U notch geometry b) and holed geometry c). 

 

Plate with Rounded V notch 

The geometry is show in the Fig. 2a while the dimensions and the fracture loads are exhibit in 

the Table 1.  

 

Geometrical parameters [mm] Average maximum load [N] for 
each density 

l W b R 100 145 300 708 

100 25 15 0.25 146.39 185.92 353.74 1811.43 
Table 1. Geometrical parameters and experimental fracture loads. 

 

The opening angle 2α is equal to 45° so: 

 

𝑞 =  
2π− 2α 

2𝜋
 = 1.75         
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𝑟0 =  
𝑞−1

𝑞
 ρ =  0.107  mm 

 

So the distance between origin of the polar system from the notch tip  is 0.107 mm, placed in 

the same direction of the bisector line of the notch tip.  

 

Plate with U notch 

The geometry is showed in Fig. 2b. The dimensions are: 

 

Geometrical parameters [mm] Average maximum load [N] for 
each density 

l W b R 100 145 300 708 

100 25 15 2 189.45 262.4 397.0 2109.96 
Table 2. Geometrical parameters and experimental fracture loads. 

 

The opening angle 2α is equal to 0 so: 

 

𝑞 =  
2π− 2α 

𝜋
 = 2 

 

𝑟0 =  
𝑞−1

𝑞
 ρ =  1.0   mm 

 

So the distance between the origin of the polar system from the notch tip  is 1.0 mm, placed in 

the same direction of the bisector line of the notch tip. 

 

Holed plate 

The geometry are reported in Fig. 2c; the dimensions are: 

 

Geometrical parameters [mm] Average maximum load [N] for 
each density  

l W b D 100 145 300 708 

100 25 - 10 187.89 267.31 521.5 1960.31 
Table 3. Geometrical parameters and experimental fracture loads. 

 

For Necuron 651 it has been made test on holed plate with different hole’s diameters. In Table 

4 are exhibit all the parameters. 
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The hole are treated as a U notch, so q remains unchanged and r0 changes with the diameter. 

 

Geometrical parameters [mm] Average maximum 
load [N] for 

Necuron 651 

l W b D  

100 25 - 10 1960.31 

100 25 - 8 2197.27 

100 25 - 7 2290.76 

100 25 - 6 2491.03 

100 25 - 5 2544.66 

100 25 - 3.5 2944.64 

100 25 - 2.5 2961.78 

100 25 - 1 3309.19 
Table 4. Geometrical parameters and experimental fracture loads. 

 

4.2.Definition of the SED parameters through σt 

 

The used formulas are  the equation (1) and (2); the eq. (2), when the opening angle is equal to 

0, the notch stress intensity factor K1
V  can be substituted by the fracture KIc .  When the 

opening angle is equal to 0, it’s possible to use the following equivalent formulas: 

 

𝑅𝑐 =
(1 + 𝑣)(5 − 8𝑣)

4𝜋
(

𝐾𝐼𝑐

𝜎𝑡
)

2

                                            [6] 

 

𝑅𝑐 =
(5 − 3𝑣)

4𝜋
(

𝐾𝐼𝑐

𝜎𝑡
)

2

                                                  [7] 

 

Where (6) is referred to plane strain condition while (7) is referred to plane stress condition. In 

all the tests made, the materials show a very brittle behaviour so it has been made the 

assumption that the material’s behaviour can be represented through  the plane strain 

condition. For this reason, it will be used eq. (6) to determine the parameter Rc . In Table 5 are 

reported all the data necessary to define the parameters. 
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Density 
 [Kg/m3] 

E [MPa] Kic 
 [MPa*m0.5] 

ν σt 

[MPa] 

100 30 0.087 0.285 3.19 

145 67 0.131 0.285 4.39 

300 281 0.372 0.302 7.13 

708 1250 1.376 0.343 28.31 

Table 5. Properties of the materials 

Necuron 100 

The stress at the notch tip is equal to 3.19 MPa, so: 

Wc = 0.169 [MJ/m3] 
 

Rc = 0.2 [mm] 
 

Necuron 160 

The stress at the notch tip is equal to 4.39 MPa, so: 

Wc = 0.143 [MJ/m3] 
 

Rc = 0.24 [mm] 
 

Necuron 300 

For Necuron 300 it has been calculated two different σt , in two different cases: the first taking 

in account about all the loads and the second the stress is calculated excluding the higher 

loads.  

In the first case, σt is equal to 7.13 MPa, so: 

Wc = 0.09 [MJ/m3] 
 

Rc = 0.73 [mm] 
 

In the second case, σt is equal to 6.06 MPa, so: 

Wc = 0.065 [MJ/m3] 
 

Rc = 1.0  [mm] 
 

Necuron 651 

As for Necuron 300, in this case it has been calculated two σt .  

In the first case, σt is equal to 28.31 MPa, so: 

Wc = 0.32 [MJ/m3] 
 

Rc = 0.56  [mm] 
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While excluding the higher loads, σt is equal to 26.79 MPa, so: 

Wc = 0.285 [MJ/m3] 
 

Rc = 0.62  [mm] 
 

 

With these parameters is possible to apply the SED method and to calculate all the parameters 

to create the Ansys model. 

Knowing the Rc is possible to define the radius of the control volume R2 for each geometry, 

showed in Table 6, 7, 8, 9 (through the parenthesis is indicated the value of R2 in the case that 

the higher loads are excluded). 

 

Density [Kg/m3] Rc [mm] r0 [mm] R2 [mm] 

100 0.2 0.107 0.307 

145 0.24 0.107 0.347 

300 0.73 (1.0) 0.107 0.837 (1.107) 

708 0.56 (0.62) 0.107 0.667 (0.727) 

Table 6. Radius control Volume rounded V notch geometry. 

 

Density [Kg/m3] Rc [mm] r0 [mm] R2 [mm] 

100 0.2 1.0 1.2 

145 0.24 1.0 1.24 

300 0.73 (1.0) 1.0 1.73 (2.0) 

708 0.56 (0.62) 1.0 1.56 (1.62) 

Table 7. Radius control Volume U notch geometry. 

 

Density [Kg/m3] Rc [mm] r0 [mm] R2 [mm] 

100 0.2 2.5 2.7 

145 0.24 2.5 2.74 

300 0.73 (1.0) 2.5 3.23 (3.5) 

708 0.56 (0.62) 2.5 3.06 (3.12) 

Table 8. Radius control Volume holed plate geometry. 
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4.3.Finite element analysis 

 

For the finite element analysis it has been used Ansys Multiphysics 14.5 software. The analysis 

is linear elastic and all the geometries are modelled in 2 D . All the geometries present two axis 

of symmetry so it’s possible to model only a quarter of each geometry. For a 2 D model it has 

been choose the plane element PLANE 184, with 8 nodes. For each geometry has been 

modelled the control volume through parameters defined in the previous paragraphs.  

One of the main advantage of the SED method is that the mesh doesn’t play a fundamental 

role, so the mesh doesn’t change the results. Anyway the mesh is more refined inside the 

control volume. As it said precedent, all the analysis are made under plane stress conditions. 

All the loads are applied as a pressure on lines because this configuration’s load it’s more 

similar to the reality. To define the pressure is necessary to divide the load for the area of the 

specimens, that is defined as thickness multiplied the width. 

In Fig. 3a and 3b  is possible to see the control volume that has radius R2 while in Fig. 3c and 3d 

is reported the distribution of the first principal tension around the notch tip. 

 

 

Fig. 3. The control volume and his radius R2 for rounded V notch a) and U notch b), distribution of the principal 
tension around the notch tip for rounded V notch c) and for U notch d). 
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For each control volume is calculated the strain energy: dividing the strain energy for the 

volume is possible to define the strain energy density. Ansys allows to calculate these two 

parameters separately and after an operation of division is possible to determine the density 

of the strain energy.  

All the commands are not reported only to make lighter the reading. 

Following are reported the predicted loads defined through the simulations with Ansys. 

 

Necuron 100 

In Table 9 is showed the predicted loads for all the geometries made in Necuron 100. 

Geometry Wc  

[MJ/m3] 
Rc 

 [mm] 
Fexperimental 

[N] 
Fpredicted 

[N] 

V notch 0.169 0.2 146.39 147 

U notch 0.169 0.2 189.45 210 

D=10 0.169 0.2 187.89 228 

Table 9. Predicted loads for Necuron 100. 

Necuron 160 

 

Geometry Wc 
 [MJ/m3] 

Rc  
[mm] 

Fexperimental 
[N] 

Fpredicted 
[N] 

V notch 0.143 0.24 185.92 218 

U notch 0.143 0.24 262.4 300 

D=10 0.143 0.24 267 321 

Table 10. Predicted loads for Necuron 160. 

 
 
Necuron 300 
 
For Necuron 300 it has calculated the predicted load in the two cases explained in the 

precedent paragraph. 

 

Geometry Wc 

[MJ/m^3] 
Rc  

[mm] 
Fexperimental 

[N] 
Fpredicted 

[N] 

V notch 0.09 0.73 353.74 550 

U notch 0.09 0.73 397.7 610 

D=10 0.09 0.73 521.5 612 

Table 11.1 Predicted load for Necuron 300, case that taking in account the higher stress σt. 

 

 



60 
 

Geometry Wc  

[MJ/m3] 
Rc  

[mm] 
Fexperimental 

[N] 
Fpredicted 

[N] 

V notch 0.065 1 353.74 570 

U notch 0.065 1 397.71 600 

D=10 0.065 1 521.5 567 

Table 11.2 Predicted load for Necuron 300, case that taking in account the lower stress σt. 

Necuron 651 

 

Geometry Wc  
[MJ/m3] 

Rc 

 [mm] 
Fexperimental 

[N] 
Fpredicted 

[N] 

V notch 0.32 0.56 1811.43 2250 

U notch 0.32 0.56 2109.96 2400 

D=10 0.32 0.56 1960.31 2375 

Table 12.1 Predicted load for Necuron 651, case that taking in account the higher stress σt. 

 

Geometry Wc  
[MJ/m3] 

Rc  
[mm] 

Fexperimental 
[N] 

Fpredicted 
[N] 

V notch 0.285 0.62 1811.43 2160 

U notch 0.285 0.62 2109.96 2300 

D=10 0.285 0.62 1960.31 2300 

Table 12.2 Predicted load for Necuron 651, case that taking in account the lower stress σt. 

 

In the following table are showed the holed plates with different diameters. 

 

Diameter 
[mm] 

Wc [MJ/m3] Rc [mm] Fexperimental 
[N] 

Fpredicted 
[N] 

10 0.32 0.56 1960.31 2350 

8 0.32 0.56 2197.27 2650 

7 0.32 0.56 2290.76 2800 

6 0.32 0.56 2491.03 2970 

5 0.32 0.56 2544.66 3200 

3.5 0.32 0.56 2944.64 3700 

2.5 0.32 0.56 2961.78 4210 

1 0.32 0.56 3309.19 5100 

Table 13.1 Predicted load for holed plates, in the case that taking in account the higher stress σt. 
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Diameter 
[mm] 

Wc  
[MJ/m3] 

Rc  
[mm] 

Fexperimental 
[N] 

Fpredicted 

[N] 

10 0.285 0.62 1960.31 2300 

8 0.285 0.62 2197.27 2600 

7 0.285 0.62 2290.76 2740 

6 0.285 0.62 2491.03 2870 

5 0.285 0.62 2544.66 3070 

3.5 0.285 0.62 2944.64 3700 

2.5 0.285 0.62 2961.78 4150 

1 0.285 0.62 3309.19 5000 

Table 13.2 Predicted load for holed plates, in the case that taking in account the lower  stress σt. 

 

Following are showed the dispersion between the experimental load and the predicted load; 

the dispersion is evaluated through the eq. (8). In this case Error means dispersion of the data. 

𝐸𝑟𝑟𝑜𝑟 = |
𝐹𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙−𝐹𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝐹𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙
| ∗ 100                                   [8] 

 

 

Table 14. Dispersion for the analysed specimens. 
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It’s possible to notice that the dispersions between the experimental load and the predicted 

load are less than 20 % and in engineering field represents a good approximation.  

For Necuron 300, only for the holed plate the error is less than 15 % while for the other 

geometries the errors are more than 30 %. In Table 14 are exhibit the errors for Necuron 300 

and Necuron 651 in the case that the higher loads are excluded; this because these cases fit 

better the results. 

Necuron 300 has always presented, in all the tests, scattered results and is the only density 

that presents a wide range about the length of the cells. For this reason it has tried to define a 

new Rc . 

In the Fig. 6. is plotted the parameters Rc versus the density, where it’ possible to define a 

linear relation between the Rc and the density, through a linear interpolation of the data. 

 

 

Fig. 4. Linear interpolation between Rc versus density. 

 

The linear interpolation is equal to (9): 

 

Rc =0.0007*[Density] + 0.136 

 

When the density  is equal to 300 the Rc is equal to 0.35 mm.  

Using this Rc , with the same critical value of strain energy  density, the errors are exhibit in 

Table 15. 
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Table 15. Errors for Necuron 300 using Rc equal to 0.35 mm. 

 

Using this Rc the predicted loads is very close to the experimental loads, in facts the errors are 

less than 13 %. 

 

 

4.4.Results 

 

In this paragraph are plotted in graphs the dispersion of the predicted loads in comparison 

with the experimental loads; the dispersion is evaluated as the ratio between the predicted 

force and the experimental force. 

 

 

 

Graph 1. Dispersion of the results, evaluated through the fracture load, for rounded V notch, U notch and holed 
plates. 
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Graph 2. Dispersion of the results, evaluated through the fracture load, for holed plates with different diameters, 
made in Necuron 651. 

In literature, for the SED method , the dispersion of the data usually are evaluated on the value 

of the average strain energy density W found in the specimens compared with  critical energy 

density value through the eq. (9). 

𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 =  √
𝑊

𝑊𝐶
                                                                [9] 

 

 

Graph 3. Dispersion of the results, evaluated through the strain energy density value. 
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Excluding the holed plates with the lower diameters ( diameter equal to 2.5 and 1 mm) the 

scatter band is contained between  + 10 % and – 22 %. It’s possible to say that the major 

dispersion is represented by the holed plates; in fact if has been exclude the holed plates, the 

scatter band is contained between +10 % and – 15 %. For the holed plates is very important to 

underline that, in literature, is an assumption to treat as a U notch so it’s not proved that the 

holed geometry has the same control volume centre of the U notch geometry. These 

approximation seems working because the dispersion is very small: usually, in engineering 

field, an acceptable scatter band is included between 10 % and 20 %. For the holed plates 

could be possible to change the centre of the control volume but only with these experimental 

data is not possible to say if these new centres are good for every holed components or are 

valid only for these ones. Also, it has to take in account that all the analysis are made under 

plane strain conditions and this is a common assumption. 
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CHAPTER 5: Verify SED method on cracked specimens 
 

In chapter 4 there are defined the SED parameters (that are RC and WC) that are used to 

predict the theoretical fracture loads on notched specimens. The following step is to apply the 

SED method in a cracked specimens, made with different densities, under different load 

conditions. In the notched specimens taking in account at the beginning, were all under pure 

load of pure mode I. The specimens, that will be investigate, are the ASCB specimens 

(Asymmetric Semi Circular Bend) that are showed in Fig. 1. 

 

Fig. 1. Geometry of the ASCB specimen (on the left) and the specimen positioned in the machine (on the right). 

 

Through these specimens had been possible to define the fracture toughness of the material, 

in pure mode I and pure mode II. For ASCB is easy to test in different loads configuration, in 

fact only changing the distance of the support ( S2) changes the configuration of the load.  

This ASCB has radius R which contains an edge crack of length a oriented normal to  the 

specimen edge, loaded with a three point fixture, was proved to give a wide range of mixed 

modes from pure mode I (S2=S1) to pure mode  II (S2≠S1), only by changing the position of one 

support.  

It’s necessary to say that usually in literature for mode II and for the mixed mode, it has been 

used the Rc and Wc derived from pure mode I; this is a common assumption and is still an open 

problem. 

In the crack case, the control volume is centred at the crack tip and the control volume is not 

subjected to a rotation when the configuration load change from mode  I to mode II, as seen in 

Fig. 2. 
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Fig. 2. Control volume in the crack case. 

 

In Fig. 2. R0 corresponds to the Rc .  

An important parameter is Me (mixed parameter or multiaxial parameter) that quantify the 

mode that are acting on the specimens. This parameter is define through eq. (1). 

𝑀𝑒 =
2

𝜋
 tan−1

|𝐾𝐼|

|𝐾𝐼𝐼|
                                                        [1] 

 

When Me is equal to 1, the load configuration is pure mode I, when is equal to 0 the load 

configuration is pure mode II and when the value is situated between 0 and 1 the load 

configuration is the mixed mode. 

For the crack case, an useful expression of the energy density is represented by eq. (2). 

𝑊 =  
𝑒1

𝐸

𝐾𝐼𝑐2

𝑅𝑐2(1−𝜆1)
+  

𝑒2

𝐸

𝐾𝐼𝐼𝑐2

𝑅𝑐2(1−𝜆1)
                                       [2] 

 

For the ASCB geometry it has determined a formula to know the stress intensity factor in each 

case, from pure mode I to pure mode II; so for each load configuration is possible to determine 

the energy in control volume that has radius equal to Rc. 

The approach is the same followed in the previous chapter, so: 

• Definition of the investigated geometry and experimental results. 

• Construction of the model with Ansys. 

• Calculation of the predicted loads only for mode I and comparison with the 

experimental results. 

The following step is to apply the SED method for the case of mixed mode and pure mode II. 

The procedure followed in this step it has treated successively. 

The specimen analysed is the ASCB (Asymmetric semi-circular bend) of 5 different densities: 

1. Necuron 1020: density 1218 kg/m3  

2. Necuron 651: density 708  kg/m3  

3. Necuron 301 :density 300 kg/m3  
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4. Necuron 160: density 145 kg/m3  

5. Necuron 100: density 100 kg/m3  

5.1.Geometry and experimental results 

 

The geometry is presented in Fig. 1. In the following tables are exhibit the experimental results 

(Table 1,2,3,4,5). 

In this case: R=40, a=20 mm, t=10 mm, S1=30 mm, S2 =30 mm for pure mode I and 2.66 mm for 

pure mode II (between these two values there is the mixed  mode). 

 

S1 [mm] S2 [mm] Fmax [N] KI 
[MPa*m0,5] 

KII 
[MPa*m0,5] 

Me 

30 30 1586.7 2.860 0.000 1 

30 12 2857.5 2.500 0.687 0.83 

30 8 4056.7 2.207 1.351 0.651 

30 6 4530.0 1.622 1.765 0.472 

30 4 4458.0 0.677 2.022 0.206 

30 2.66 4839.7 0.015 2.424 0.004 
Table 1. Experimental data for Necuron 1020. 

 

S1 [mm] S2 [mm] Fmax [N] KI 
[MPa*m0,5] 

KII 

[MPa*m0,5] 
Me 

30 30 704.3 1.253 0.000 1 

30 12 1340.0 1.183 0.322 0.83 

30 8 1622.5 0.899 0.542 0.651 

30 6 1910.0 0.670 0.747 0.472 

30 4 2133.3 0.333 0.966 0.206 

30 2.66 2130.0 0.011 1.073 0.004 
Table 2. Experimental data for Necuron 651. 

 

S1 [mm] S2 [mm] Fmax [N] KI 
[MPa*m0,5] 

KII 
[MPa*m0,5] 

Me 

30 30 190 0.372 0 1 

30 12 397.25 0.363 0.098 0.83 

30 8 535.5 0.307 0.185 0.651 

30 6 645 0.243 0.262 0.472 

30 4 601.75 0.0973 0.284 0.206 

30 2.66 712.3 0.004 0.374 0.004 
Table 3. Experimental data for Necuron 300. 



70 
 

S1 [mm] S2 [mm] Fmax [N] KI 
[MPa*m0,5] 

KII 
[MPa*m0,5] 

Me 

30 30 67.8 0.131 0 1 

30 12 133.5 0.122 0.033 0.83 

30 8 152.25 0.087 0.052 0.651 

30 6 158.0 0.059 0.064 0.472 

30 4 151.25 0.0244 0.071 0.206 

30 2.66 148.67 0.001 0.078 0.004 
Table 4. Experimental data for Necuron 160. 

 

S1 [mm] S2 [mm] Fmax [N] KI 
[MPa*m0,5] 

KII 
[MPa*m0,5] 

Me 

30 30 43.8 0.087 0 1 

30 12 88.55 0.08 0.021 0.83 

30 8 91.47 0.052 0.031 0.651 

30 6 102.55 0.038 0.041 0.472 

30 4 97.3 0.015 0.045 0.206 

30 2.66 92.4 0.001 0.049 0.004 
Table 5. Experimental data for Necuron 100. 

 

Following are reported some images about the experimental test on ASCB specimens; Fig. 3. 

Shows the crack’s path with the changing of the support’s distance. 

 

 

Fig. 3. Crack paths for different position of S2 support; a) S2 = 30 mm (pure mode I), b)S2 =12 mm, c) S2 =2.66 mm 

(pure mode II). 

 

5.2.Finite element analysis  

 

The finite element model has been generated through Ansys, a 2 D linear-elastic model has 

been created. There are not symmetry axes so it has to create the entire geometry. As for the 

precedent specimens, all the analysis are made under plane strain conditions. It’s used an 

element plane to define the model, PLANE 184 with 8 nodes Around the crack tip is defined a 

circular area with radius equal to Rc, and this area represents the control volume, Fig. 4 and 5. 
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Fig. 4. Geometry modelled and control volume with centre in the crack tip. 

 

 

Fig. 5. Refined mesh in the control volume. 

 

During the test the model is not perfectly stable in the support but it has the possibility to do 

small translation so one support (S1) has fixed all the degree of freedom while the other (S2) 

has fixed only the vertical translation (UY). 

To model the control volume, it has used the Rc determined in the previous chapters; for ASCB 

specimens are available the experimental data for Necuron 1020. For Necuron 1020 is not 

determined the stress σt through experimental test but the characteristics curve of the 

material is very similar to a characteristics curve of a ideally brittle material. So it has been the 
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assumption that the material is ideally brittle and it’s possible to use the ultimate tensile 

strength to determine the SED parameters. 

 

 

Fig. 6. Characteristics curve for Necuron 1020. 

 

The σuts  is equal to 49.75 MPa, so the material parameters are: 

 

𝑊𝑐 =  
σu2

2𝐸
=  0.137 𝑀𝐽/𝑚3      

 

𝑅𝑐 =
(1+𝑣)(5−8𝑣)

4𝜋
(

𝐾𝐼𝑐

𝜎𝑢𝑡𝑠
)

2

= 0.80 mm 

 

5.2.1Results for pure mode I 

 

As for the notched specimens, for the cracked case it has determined the predicted loads that 

can reach the critical value Wc in the control volume; in Table 6 are showed the predicted 

loads for ASCB specimens under pure mode I. 
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[Kg/m3] [N]  [N] [mm] 

100 43.8 42 0.2 

145 67.8 65 0.24 

300 190 200 1.0 

708 704.3 670 0.62 

1218 1586.7 1550 0.8 

Table 6. Experimental loads for ASCB specimens in pure mode I. 

 

For Necuron 300 it has used the Rc defined through the interpolation; using the Rc equal to 1 

mm the predicted load is equal to 200 N. Following are reported dispersion of the predicted 

loads in comparison with the experimental load. 

 

 

Graph 1. Dispersion of the data with Rc=1 mm for Necuron 300. 

 

The scatter band is contained between + 6  % and – 7 %; in pure mode I, the parameters Rc and 

Wc used works, in fact the predicted loads are very near to the experimental loads. If it has 

used Rc equal to 0.35 mm for Necuron 300, the predicted fracture load has a dispersion more 

than 35 %, so for the cracked specimens it’s not reasonable to use the interpolated Rc . 

From the beginning it’s clear that Necuron 300 presents a different behaviour, is a “special” 

density. For the following analysis, for Necuron 300, it will be used the Rc equal to 1.0 mm. 
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5.3.Prediction of fracture loads under mode II and mixed mode I+II 

 

Usually, in the literature, it has made the assumption that in mixed mode and in pure mode II 

the parameters remain constant and doesn’t change. So the first approach is to determine the 

predicted loads using the parameters for mode I; for Necuron 300 it has used Rc equal to 1.0 

mm. Following are exhibit the obtained results. 

 

 

Graph 2. Dispersion of the data using Wc and Rc from pure mode I. 

 

From the graph is possible to see that for highest densities the dispersion are more or less near 

the 30 % while for the lowest densities the dispersion results contained between – 10 % and + 

20%.   

It has noticed that for the highest densities the Wc calculate in pure mode II is higher than 

mode I, and this is what usually happen to the materials, but for the lowest densities ( Necuron 

160 and 100) the theoretical energy density in pure mode II is lower in comparison with  the 

energy density in the case of pure mode I. For the lower densities the porosity change the 

behaviour of the materials so is possible that the energy required to reach the failure in mode 

II is less than the energy  in mode I.  

When Me is near to 0 (to pure mode II), the predicted loads for the highest densities is far from 

the experimental fracture loads. Following are showed an approach that permit to decrease 

the scatter band. 
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5.3.1.Personal approach for mixed mode and mode II 

 

In the paper of R. Negru, L. Marsavina, “Application of TCD for brittle fracture of notched PUR 

materials”, the authors determined different inherent stresses and characteristic length for 

mixed mode and pure mode II. In this case, the stresses defined through  the experimental 

tests referred only for mode I: for mode II is not easy to define a geometry that can permit to 

quantify the stresses in mode II. In all the analysis it has been notice that the value of the 

energy density changes from mode I to  mode II; so it has tried to take in account of this one 

starting from eq. (2). 

Eq. (2) represents the expression of the energy density in the case of a crack: knowing Rc is 

possible to calculate the energy density. The hypothesis made is that the control volume 

remains the same  while changes the strain energy density critical value: this means that Rc is 

constant. 

Knowing Rc and the stress intensity factor Kic is possible to determine the new value of the 

strain energy density. In Table 7. is showed the values of the strain energy density dependent 

from Me . 

 

 Me  
 
 

Wc 

[MJ/m3] 

Density [Kg/m3] 1 0.83 0.651 0.472 0.206 0.004 

1020 0.37 0.334 0.44 0.503 0.528 0.73 

651 0.285 0.287 0.268 0.323 0.429 0.5 

300 0.065 0.074 0.086 0.111 0.102 0.169 

160 0.143 0.151 0.123 0.117 0.112 0.129 

100 0.169 0.173 0.117 0.129 0.12 0.137 

Table 7. Values of the critical strain energy density vary Me. 

 

Following are showed the dispersion of the data using these new values of critical strain 

energy density. 
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Graph 3. Dispersion of the data for Necuron 100. 

 

 

 

Graph 4. Dispersion of the data for Necuron 160. 
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Graph 5. Dispersion of the data for Necuron 300. 

 

 

 

 

Graph 6. Dispersion of the data for Necuron 651. 
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Graph 7. Dispersion of the data for Necuron 1020. 

 

5.4.Results 

 

Graph 3,4,5,6,7  show the dispersion in the case that Rc and Wc are constant and the case that 

Rc is constant and Wc is variable. Is possible to see that the dispersion in the case that Wc 

changes is very low and the scatter band is contained between + 10 % and -10 %. The following 

graph represents the range of the scatter band; the dispersion is evaluated through the strain 

energy density, as usually has made in literature (Graph 8). 

As it seen, the scatter band is contained between + 10 % and – 10 %, a good engineering 

prediction.  

The idea that the control volume remains constant and the critical energy density changes, 

gives a good results; it’s possible to notice from eq. (2) that W depends from control radius Rc 

and the stress intensity factor. The control radius derives from pure mode I and it’s constant 

while the stress intensity factor could be defined through an experimental expressions, show 

in chapter 2. 

It’s important to underline that the hypothesis about the constance of the control volume is a 

personal assumption. The best way to proceed is to test a notched specimen with bland 

curvature radius under pure mode II and define the stress at the notch tip; through this one is 

possible to calculate a new  parameters (Rc and Wc ) in pure mode II. 
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Graph 8. Dispersion of the data for all densities, from pure mode I case to pure mode II case. 
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CHAPTER 6: Holed specimens under compression loads 
 

The main goal in this chapter is to analyse a holed specimen under compression load: the 

difference in comparison with the other cases is  that these specimens shows a plasticity zone 

near the notch tips, but these plasticity zones are not where the cracks born and grow, as it 

seen in Fig. 1. 

 

 

Fig. 1. Thermographic image of the holed specimen: the lighter zone represent the plasticity zone. 

 

The main purpose is to apply the SED method and see if its works or not, and to discover if the 

presence of the plasticity could influence the results or not. 

The first step is to apply the SED method through a linear-elastic analysis; before to see the 

followed procedure, is important to show the tested geometries and the experimental 

obtained results. 

 

6.1.Experimental tips 

 

Polyurethane (PUR) materials of three different densities (100, 145 and 300 kg/m3) 

manufactured by Necumer GmbH, Germany under commercial designation Necuron (100, 160 

and 301) were investigated. Microscopic investigations of these materials show a closed cell 

structure. 

Square specimens (W = 80 mm) having a thickness b of 25 mm with central hole of different 

diameters (D = 16, 28 and 40 mm), were used, figure 2. One face of the specimens was sprayed 

with matt black paint in order to have a constant emissivity for thermographic measurements. 

The experimental tests were performed using a universal testing machine LBG 100 kN on 

displacement control (v=2 mm/min) and at room temperature, figure 3. 
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Fig. 2. Geometry of the holed specimen. 

 

 

Fig. 3. Experimental set-up. 

 

In Table 1 are showed the geometries analysed. 

 

Density [Kg/m3] W [mm] b [mm] D [mm] 

100 80 25 16, 28 ,40 

145 80 25 16, 28, 40 

300 80 25 16, 28, 40 

Table 1. Dimensions of the holed specimens investigated. 

 

Typical load - displacement curves for the three foam densities are shown in figure 4.a for 16 

mm hole diameter. An increase of supported load with increase of density was observed. A 

drop of load occurs after the plateau stress is reached, at this point the ultimate tensile stress 

is reached on the hole upper and bottom edges, where tensile occurs and a crack initiates. The 

load carrying capacity of holed foams decreases with increasing the hole diameter, figure 4.b 

plotting results for foam of 100 kg/m3 density. 
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Fig. 4. Influence of the density (a) and influence of the hole diameter (b). 

 

 

Figure 5 presents the ratio between the maximum net stress of notched specimen σmax and 

the ultimate tensile strength of the foam σUTS versus ratio between hole diameter D and 

specimen width W. For all three investigated foams a notch insensitive response in 

compression was observed, which could be explained by the ability of foams to crush at a 

constant plateau stress σplateau. 

 

 

Figure 5. The effect of hole diameter on the compressive strength of PUR foams blocks with central holes. 

 

Thermography was used in order to identify the damage mechanism. A FLIR A40M infrared 

camera was used to measure emitted infrared radiation from the specimen which increases 

with plastic deformations occurred in the foam specimens due to loading. For example in Fig. 

6. are presented different stages of temperature distribution, corresponding to different load 

stages (displacements 0, 4.2, 8.5, 10.5 and 11.7 mm), from the compression test of foam 

density of 145 kg/m3, with a central hole of 16 mm. After a short linear elastic part, the 
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temperature starts to increase in the vicinity of the hole due to plastic deformations (figure 6. 

b, c), than a crack initiates and propagates from the top and bottom surfaces of the hole (Fig. 

6. d, e). The increase of temperature could be also seen plotting the temperature variations 

together with load-displacement curve, figure 7. 

 

 

  
a) Initial stage - deformation 0 mm b) Deformation 4.2 mm 

  
c) Deformation 8.5 mm d) Deformation 10.5 mm 

 

 

e) Deformation 11.7 mm 

Fig. 6. Temperature distributions at different load stages 
from compression testing of 145 kg/m3 foam with a hole 
of 16 mm. 

Fig. 7. Load - displacement curve for foam density block of 
145 kg/m3 with hole with 16 mm diameter and the 

temperature increase. 
 

From the measurements the angle of maximum temperature (Fig. 8), which corresponds to 

bands of deformation of cellular structure of the foams and the maximum temperature 

increase on these directions (Fig. 9) were determined.  It could be observed that angle of the 
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bands of deformation increases with increasing hole diameter, but is not influenced by the 

foam density. In contrary the maximum temperature increases with increasing density from 

0.8ºC for 100 kg/m3 density to 1.6ºC for 300 kg/m3 density. 

 

thermographic 

 
 

Fig.8. Bands of deformation angles. Fig. 9. Maximum temperature increase on the band of 
deformation direction. 

 

 

6.2.Numerical investigations 

 

As it possible to see in the previous paragraph, the plasticity zone is not where the crack born 

and seems that where the crack born the material has a linear elastic behaviour. For this 

reason the first step is to try to apply the SED using a 2 D model through  a linear elastic 

analysis, without taking in account the plasticity.  

 

Under this case, it has been used a 2 D model generated with a plane element ( PLANE 184 8 

nodes ); the specimens present two axis of symmetry so it’s possible to model a quarter of the 

geometry. The analysis were linear elastic. As for the previous analysis  the simulations are 

made under plane strain conditions. 

The parameters used are the following: 

 

  

Density [Kg/m3] Wc [Kg/m^3] Rc [mm] 

100 0.169 0.2 

145 0.143 0.24 

300 0.065 0.35 

Table 2. SED parameters used. 
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The parameter r0 depends from the geometry: 

 

Diameter [mm] r0 [mm] 

16 4 

28 7 

40 10 

Table 3. Parameter r0 for each geometry. 

Following are showed the obtained results: 

 

D [mm] Rc  
[mm] 

Wc  
[Kg/m3] 

Fexperimental  
[N] 

Fpredicted  
[N] 

Error [%] Rcontr_volume 
[mm] 

16 0.2 0.169 1610 5500 241 4.2 

28 0.2 0.169 1370 3300 140 7.2 

40 0.2 0.169 970 1750 80 10.2 

Table 4. Predicted loads and respective dispersion for Necuron 100. 

 

D [mm] Rc  
[mm] 

Wc  
[Kg/m3] 

Fexperimental  
[N] 

Fpredicted  
[N] 

Error 
[%] 

Rcontr_volume 
[mm] 

16 0.24 0.143 2580 5800 124 4.24 

28 0.24 0.143 2260 4500 99 7.24 

40 0.24 0.026 1466 2500 70 10.24 

Table 5. Predicted loads and respective dispersion for Necuron 160. 

 

D [mm] Rc  
[mm] 

Wc  
[Kg/m3] 

Fexperimental  
[N] 

Fpredicted  
[N] 

Error [%] Rcontr_volume 
[mm] 

16 1 0.065 9088 5500 39 5 

28 1 0.065 6844 7800 13 8 

40 1 0.065 5142 3850 25 11 

Table 6. Predicted loads and respective dispersion for Necuron 300. 

From Table 4,5 the errors for Necuron 100 and 160 are more than 70 % while for Necuron 300 

(Table 6) the errors are more than 25 % for the highest and for the smallest diameter while for 

the middle diameter the error is less than 15 %. 

From these tables is possible to see that the predicted loads are very far from the 

experimental loads.  

These results derive from a linear elastic analysis and it’s known that the specimen presents a 

plasticity zone. For this reason the idea is to see if the plasticity influences the results. 

To see this, it’s necessary to do a non-linear analysis, an analysis where the relation between 

stress and strain is not linear. 



87 
 

The characteristic curve of the material is different in the case of compression load and in the 

case of tensile load. The specimens present a zone under tensile load ( the notch tip of the 

hole where the crack born and propagates) and zone under compression load so in the finite 

element model it’s necessary to implement two characteristic curves; to do this it has to know 

the part of the specimen under compression load and tensile load.  

The characteristic curves of the materials in compression, for the elastic tract, is very similar to 

the characteristics curves of the materials under tensile load: for this reason, in a first moment, 

the approximation made is to implement only the compression curve and to see if the results 

are influenced or not. If the results changes a lot using a non-linear analysis, it’s necessary to 

differentiate the part of the material under compression load and the part of the material 

under tensile load. 
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In the graphs are exhibit the characteristic curve under compression load for Necuron 100,160 

and 300; the line represents the continue curve while the circle spots represent the points 

used to implement the characteristic curve in the software. It’s possible to see that the first 

tract of the curves is very similar to the characteristic curve in tensile and the “yeld stress” is 

not so far from each other. 

For all the non-linear analysis, it has used Ansys Workbench software, a different version of 

Ansys Multiphysics. Usually the characteristic curve of a polymer is represented through a 

Mooney Rivlin curve; the Mooney Rivlin is used to describe the hyper elastic behaviour of the 

material and it’s used for elastomeric materials. The Mooney Rivlin model is defined through 

unless three parameters and is not easy to define these parameters (is defined through the 

energy of the material and deviatoric tensor) and request a characterization of the material. 

Workbench permits to define every characteristic curve through points and after gets the 

material behaviour for every stress-strain condition through an interpolation of these points. 

In particular, the model utilized is the isotropic linear hardening model. The specimens 

(80x80x25 mm) with holes (diameter 16, 28, 40 mm) used in the experiments were modelled 

in Ansys Workbench 15.0 software. 3D 20 node quadratic solid elements were used, with a 

refined mesh near the hole (Fig. 9). 
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Fig. 9. Defined mesh of the model a) and the refined mesh near the hole b). 

 

A convergence study was carried out resulting the present mesh topology. The boundary 

conditions represent the experimental setup: 0 displacements of vertical direction were 

imposed at the bottom side of the specimen, while 15 mm displacements were applied on the 

top side. For each  specimen has been applied the displacement when the failure occurs (Fig. 

10). 

 

 

Fig. 10. The boundary conditions: a) the 0 displacements on the bottom of the specimen, b) the failure displacement 
applied to the top of the geometry. 
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In Fig. 11 is showed the equivalent plastic strain obtained with Ansys and compared with the 

thermographic image (specimen made in Necuron 100, D=16 mm). It’s possible to see that the 

plastic strain zone is very near to the reality. Where the crack born there’s no apparently 

plasticity. It has been modelled the control volume and it has noticed that there is a 

plasticization zone in this one, so at the first moment is logical to say that is not possible to 

apply the SED method. It’s important to underline that this plasticity is very small in fact the 

value is very small in comparison with the maximum value of equivalent plastic strain (Fig. 12, 

Fig. 13). Also it has to take in account that it has used the compression stress-strain 

characteristic curve. 

 

 

Fig. 11. Comparison of equivalent plastic strain region between numerical model a) and experimental specimen b). 

 

 

Fig. 12. Equivalent plastic strain and maximum value (Necuron 100, D=16 mm). 
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Fig. 13. Equivalent plastic strain in the control volume (Necuron 100, D=16 mm) and maximum value of this one. 

 

The plastic strain value in the control volume is very small so it has tried to apply the SED 

method and the respective fracture load for each specimen. 

To be sure that the numerical model is in accord with the experimental data, it has compared 

the experimental load-displacement curve of the machine with the numerical curve. Following 

are showed the graphs that compared the numerical curve with the experimental curve; in this 

case are reported the comparison for Necuron 100. 
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The same approximation are determined for the other densities. 

The experimental curve are very near to the experimental curve so the SED method will be 

applied. 
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6.3.Comments 

 

The obtained results defined with a non-linear analysis is very near from the results obtained 

with a linear elastic analysis. This confirms that the plasticity doesn’t influence the results so a 

linear elastic analysis is equivalent to a non-linear analysis, regarding these cases.  

Probably the SED method can’t be applied because in compression the specimen has not a 

quasi-ideally brittle behaviour; in fact, taking in example the specimen made in Necuron 100 

with D= 16 mm, the crack born when the displacement is equal to 10 mm and the failure of the 

specimen is reached when the displacement is equal to 16 mm while for the other specimens 

investigated in the previous chapter, the displacement when the crack born is more or less the 

same of the displacement when the failure occurs. 

It’s necessary to say that these analysis are the first approach with these experimental tests, so 

it’s important to underline that for a sure results it needs further studies. In this chapter is 

presented an entry level approach and study of this problem.  
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Conclusions 

 

The main purpose of this essay is to apply the SED method  using the stress failure σt  defined 

through experimental tests, on U notched specimen with bland curvature radius, for PUR 

foams made by different densities. The stress failure determined through these tests are very 

closed to the stress failure defined in a precedent studies [7], as it possible to see in Table 1.  

 

 

Table 1. Comparison between experimental stress failure and stress failure determined for TCD method. 

 

For the lower density the difference is near about 30 % while for the highest densities the 

difference is less than 15 %. The precedent studies determined the stress failure as the 

inherent stress, in a different way: two different approaches give results very near. 

For Necuron 1020, the characteristic stress strain curve is very similar to a stress strain 

characteristic curve of a ideally brittle material so it has been made the assumption that σt is 

equivalent to the ultimate tensile strength.  

The SED parameters ,as the control radius Rc and the value of the critical energy density, 

defined through the σt are reported  in Table 2. 

 

Density [Kg/m3] Rc [mm] Wc [MJ/m3] 

100 0.2 0.169 

145 0.24 0.143 

300 1 0.065 

708 0.62 0.285 

1218 0.8 0.37 

Table 2. SED parameters defined through σt. 

The strain energy density approach is applied to different notched components made by 

different densities. The dispersion of the  obtained results in comparison with experimental 

results are reported in Graph 1 (the dispersion is evaluated through the strain energy density, 

as usually has made in literature, the expression of the dispersion is reported on the y axis). 
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Graph 1. Dispersion of the results under mode I for rounded V notch, U notched plates, holed plates (D=10) and 
holed plates with different diameter. 

 

Excluding the holed plates with the lowest diameters ( diameter equal to 2.5 and 1 mm) the 

scatter band is contained between  + 10 % and – 22 %. It’s possible to say that the major 

dispersion is represented by the holed plates; if has been exclude the holed plates, the scatter 

band is contained between +10 % and – 15 %. For the holed plates is very important to 

underline that, in literature, is an assumption to treat as a U notch so it’s not proved that the 

holed geometry has the same control volume centre of the U notch geometry. These 

approximation seems working because the dispersion is very small: usually, in engineering 

field, an acceptable scatter band is included between 10 % and 20 %. For the holed plates 

could be possible to change the centre of the control volume but only with these experimental 

data is not possible to say if these new centres are good for every holed components or are 

valid only for these ones. Also, it has to take in account that all the analysis are made under 

plane strain conditions and this is a common assumption.  

For the holed plates with the lowest diameters (made in Necuron 651) the SED gives not a 

good prediction, probably because the radius of the control volume is comparable with the 

hole’s diameter. 

 

The SED method has been applied to ASCB specimens, tested from pure mode I to pure mode 

II.  
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Usually, in the literature, it has made the assumption that in mixed mode and in pure mode II 

the parameters remain constant and doesn’t change. Following are exhibit the results 

calculated using Rc and Wc  in mode I, for mode II and mixed mode I+II ( Graph 2).  

 

 

Graph 2. Dispersion of the predicted loads for ASCB specimens under mode I, mode II and mixed mode using SED 
parameters from pure mode I.  

 

It’s possible to see that for pure mode II and for the mixed mode I+II, the dispersion is more 

than 25 %. So it has been defined a personal approach where the main assumption is that the 

control volume remains the same  while changes the critical value for strain energy density: 

this means that Rc is constant. Knowing Rc and the stress intensity factor Kic is possible to 

determine the new value of the strain energy density. The new value of the critical energy 

density is calculable through the following expression: 

 

𝑊 =  
𝑒1

𝐸

𝐾𝐼𝑐2

𝑅𝑐2(1−𝜆1)
+ 

𝑒2

𝐸

𝐾𝐼𝐼𝑐2

𝑅𝑐2(1−𝜆1)
 

 

Using this approach the dispersion decrease drastically, in fact the scatter band is contained 

between + 10 % and -10 %, as it seen in Graph 3.  
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Graph 3. Dispersion of the predicted loads for ASCB specimens under mode I, mode II and mixed mode with varying 
the Wc.   

 

For Necuron 300 is possible to see that the predicted loads for the rounded V notch plate and 

for the U notched plate are far from the experimental loads. Plotting the parameter Rc versus 

the density is possible to define a linear interpolation: through this relation (Graph 3) it has 

been defined a new Rc for Necuron 300. 

 

 

Graph 3. Linear relation between Rc parameter and density. 
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Using this relation, for Necuron 300 Rc is equal to 0.35 mm and  the dispersion is less than 15% 

for all the specimens except the cracked specimens. 

As it says previously, Necuron 300 in all the test made shows scatter results and this is possible 

to see for the predicted results. This kind of behaviour probably  is explainable from the fact 

that, for Necuron 300, the dimensions of the porosities are very scattered and probably this is 

the reason because in all the tests, for all the geometries, the experimental loads are very 

scattered ( this trend it’s possible to see in the experimental tests made for the U notch plates 

with a bland curvature radius, where the fracture loads were scattered).  

 

 

Fig. 1. Image of the cell dimensions for different densities. 

 

 

Fig. 2. Statistical analysis of the cell dimensions. 

 

In Fig. 1 and 2 is possible to notice the scattered dimensions of the cell for Necuron 300 while 

for the other densities the dimensions of the cell are very near to an average value. 

 

From the results is possible to say that the SED method can be applied to these foams.  

The approach used to define the failure stress σt it’s different in comparison with previous 

studies but gives similar results; this confirms the idea that the parameters that validate the 

SED method for all the notched geometries are not so far from the determined parameters. 
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 This approach is an entry level approach and it’s necessary to do more tests,  for example 

using  different geometry of the specimens with bland curvature radius (for example use 

symmetric specimen with semi-circular notches with bland radius) or test specimens with 

bland curvature radius under pure mode II. 

With this essay has been demonstrate that is possible to define the parameters for SED 

method, and this one represents a good approach to predict the static failure. The behaviour 

of the notched components is not perfectly linear elastic, especially with the decreasing of the 

density, and all the investigations are made through a linear elastic analysis. A linear elastic 

analysis doesn’t represent perfectly the behaviour of the material but gives an easy tool to 

predict the failure; in fact the dispersion scatter band of the results is, in the majority of the 

cases, contained between ± 15 %, a good scatter band in engineering field. In this case the 

main goal is predict the failure and not predict how the crack born and propagates, so the 

assumption of a linear behaviour of the material is reasonable.  

In the Appendix, at the bottom of this essay, it has been applied the TCD method, on the 

specimens analysed through the SED method, using the tension at the notch tip defined in the 

experimental tests. The TCD method is based on the same theory of the SED method so if one 

works the other have to works: here the two methods give a scatter band of dispersion 

contained between – 20 % and +20 %, an acceptable dispersion in engineering field. 

Being the firsts studies conducted on SED method applied on these foams, it’s requested 

further studies and experimental tests. 
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APPENDIX 
 

In the third chapter, the stress at the notch tip have been compared with the inherent stress 

define of the TCD method. As it said in the comments of third chapter, the TCD method is 

based on the same theory of the SED method: for this reason it has been applied to the 

geometries analysed previously. 

 

The Theory of Critical Distances (TCD) represents a group of methods – Point, Line, Area and 

Volume method – which postulates that static brittle fracture in notched components can be 

predicted using the data from the linear-elastic stress field in the area of the notch tip, through 

an appropriate effective stress σeff .  

The Point Method says that the failure occurs when the stress, at an certain distance from the 

notch tip and along the direction where the normal stress is maximum, reaches a critical value 

called inherent strength or σ0 ; the distance from the notch tip is called critical distance or L/2, 

where L is called characteristics length. The inherent strength and the characteristic length are 

a material’s parameters so they  depend only from the material, the geometry doesn’t 

influence this parameters.  

If the behaviour of the material is ideally brittle, the inherent strength is equal to the stress 

failure σfailure . 

Characteristic length L under static loading could be evaluated on the basis of linear elastic 

fracture mechanics:  

 

𝐿 =  
1

𝜋
(

𝐾𝐼𝐶

𝜎0
)

2

                                                                     [1] 

 

If the stress at the notch tip has been used to define the SED parameters, it has to use to 

define the TCD’s parameters. 

In Table 1 is reported the TCD parameters that are the characteristic length L and the inherent 

stress: the characteristic length is defined through eq. (1) while the inherent stress 

corresponding with σt at the notch tip. 

 

Density [Kg/m3] 100 145 300 708 

Characteristic Length 
[mm] 

0.24 0.28 1.20 0.70 

Inherent stress [MPa] 3.19 4.39 6.06 26.7 

Table 1. TCD’s parameters. 
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For  what regards the finite element analysis, it has been used the model create for the SED 

method: the only modify is represented for the mesh that is more redefined near the notch 

tip. Following is showed the dispersion between the experimental and theoretical fracture 

loads using TCD method. 

 

 

Graph 1.Dispersion of the obtained results through TCD method. 

 

As it said, Necuron 300 represents a “special” density, in fact for some geometries the 

predicted loads are very near from the experimental loads while for other geometries the 

predicted loads are very far from the experimental ones. If it has been excluded this special 

density, the scatter band is contained between – 4 % and + 20 %, a very good range of 

dispersion ,in engineering field. 

Through these results, it’s possible to affirm that is possible to define a characteristic length 

and a inherent stress that permit to predict the static failure for notched components. 

These results it’s the logic demonstration that it’s possible to use these kind of method to 

predict the failure for these foams, even if the behaviour of the unnotched material is not 

ideally brittle. 
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