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Introduction

The aim of this thesis is to present the notion of implicative algebra and to
examine its connections with the concept of tripos.
Alexandre Miquel first introduced implicative algebras in his paper “Implica-
tive algebras: a new foundation for realizability and forcing” [10] with the
goal of creating an algebraic structure that could simultaneously factorize
the model-theoretic constructions underlying both forcing and realizability.
Introduced by Paul Cohen in 1963 [2] [3], the main idea behind forcing is to
interpret every formula φ of the considered theory as an element of a com-
plete Boolean (or Heyting) algebra. On other hand, Kleene’s realizability,
first introduced in 1945 [6], interprets each closed formula φ of the theory as
the set of its realizers, i.e. a specific subset of a suitable algebra of programs.
This method, originally restricted only to intuitionistic logic, was expanded
by Krivine to classical logic [7]. In classical realizability, every closed for-
mula is interpreted as the set of its counter-realizers, represented by a subset
of the set of stacks associated to an algebra of classical programs.
Miquel’s work [10] demonstrates that implicative algebras can bring together
these concepts thanks to the use of the same set to represent both realizers
and truth values.
The thesis will proceed as follows. Firstly, we will review some preliminary
notions about categories and triposes, with a focus on the category of Heyt-
ing algebras.
Subsequently, we will present the concept of implicative algebra and its key
features, paying special attention to how this structure can interpret first-
order logic. In particular, we will start by defining what an implicative
structure is and showing how it can induce a semantic type system where
the types correspond to its elements. Then, we will present the notion of
separator, a particular type of subset of an implicative structure, that has
a fundamental role in the definition of implicative algebra. After having
defined this, we will focus on the study of the implicative algebras induced
by particular types of structures (complete Heyting algebras cHAs, total
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combinatory algebras CAs and abstract Krivine structures AKSs).
In chapter 3, we will start to examine the relationship between triposes and
implicative algebras. Resuming Miquel’s results [10], we will show how an
implicative algebra can induce a specific type of tripos, called implicative tri-
pos. As before, we will focus on analyzing the implicative triposes induced
by cHAs, CAs and AKSs, showing how the concept of implicative tripos can
simultaneously unify the notions of realizability and forcing triposes.
Afterwards, we will prove how, given a set-based tripos, it is possible to con-
struct an implicative algebra that induces an implicative tripos isomorphic
to the given one [9].
In the last two chapters, after presenting the notions of geometric morphism
and first-order logic morphism between implicative triposes, we will analyze
which types of functions between the corresponding implicative algebras can
induce these morphisms.
These results will lead us to define new notions of morphisms between im-
plicative algebras, and the consequent categories, that do not overlook but
actually consider their relationship with triposes. Similarly to what Frey
and Streicher have supposed in [4], these new categories allow us to shift
our attention from the study of the categories of triposes to the study of the
implicative algebras, much simpler algebraic structures, perhaps providing
a new perspective on the former.
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Chapter 1

Preliminaries

1.1 Some notions about categories

Definition 1.1. A category C consists of

• a class Obj(C) of objects;

• a class Hom(C) of morphisms;

• two class functions dom, cod ∶ Hom(C) → Obj(C) called domain and
codomain;

• a class function id ∶ Obj(C)→ Hom(C);

• a class function

○ ∶ {(f, g) ∈ Hom(C) ×Hom(C) ∶ cod(f) = dom(g)}→ Hom(C)
(f, g)↦ g ○ f

such that:

– dom(g ○ f) = dom(f) and cod(g ○ f) = cod(g) for every f, g mor-
phisms of C such that cod(f) = dom(g);

– dom(idX) = cod(idX) =X for every X object of C;
– f ○ iddom(f) = idcod(f) ○ f = f for every f morphism of C;
– h ○ (g ○ f) = (h ○ g) ○ f for all f, g, h morphisms of C such that

cod(f) = dom(g) and cod(g) = dom(h).

If f is a morphism such that dom(f) =X and cod(f) = Y , we will denote it
as f ∶ X → Y . We will denote as HomC(X,Y ) the class of morphisms from
X to Y .
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Example. The category Set is defined as follows:

• the objects are sets;

• ifX,Y are sets then HomC(X,Y ) = {(X,f, Y ) ∶ f is a map from X to Y }.
We will write just f instead of (X,f, Y );

• the composition of f ∶ X → Y and g ∶ Y → Z is the usual composition
g ○ f ∶X → Z;

• the identity of X is determined by the usual identity map of X.

Example. Let P = (P,≤) be a preorder i.e. P is a set and ≤ is a binary
operation on P that is reflexive and transitive. Then we can see P as a
category in the following way:

• the objects of P are its elements, i.e. Obj(P ) = P ;

• if p, p′ ∈ P then:

HomP (p, p′) =
⎧⎪⎪⎨⎪⎪⎩

{(p, p′)} if p ≤ p′

∅ otherwise

• if p ∈ P then idp = (p, p);

• (q, r) ○ (p, q) = (p, r) for every r, p, q ∈ P such that p ≤ q ≤ r.

Example. The category PreOrd is defined in the following way:

• the objects are preorders;

• a morphism from P to Q is a monotonic map between the correspond-
ing sets;

• the composition of two morphisms is the usual composition of maps
between sets;

• idP is the usual identity map of the set P .

Definition 1.2. Let C be a category. The opposite category Cop of C is
defined as follows:

• Obj(Cop) = Obj(C) and Hom(Cop) = Hom(C);
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• domCop = codC and codC
op = domC;

• if f, g are morphisms of C such that codC
op(f) = domCop(g), then

g ○Cop
f = f ○C g

Definition 1.3. Let f ∶ X → Y be a morphism of a category C. Then f
is an isomorphism if there exists a morphism of C g ∶ Y → X such that
g ○ f = idX and f ○ g = idY .

Now, let us recall the notion of pullback.

Definition 1.4. Let f ∶ X → Z and g ∶ Y → Z be two morphisms of a
category C. A pullback of f along g is a tern (P, g′, f ′) such that P is an
object of C and f ′ ∶ P → Y , g′ ∶ P → X are two morphisms of C such that
the following diagram commutes

P X

Y Z

g′

f ′ f

g

and such that if Q ∈ Obj(C) and h ∶ Q → X, k ∶ Q → Y ∈ Hom(C) are such
that the following diagram commutes

Q X

Y Z

h

k f

g

then there exists one and only one morphism j ∶ Q→ P such that

Q

P X

Y Z

h

k

j

g′

f ′ f

g

commutes, i.e. h = g′ ○ j and k = f ′ ○ j. In such case, we will write:

P X

Y Z

g′

f ′ f

g
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Lemma 1.1. Let f ∶X → Y and g ∶ Y → Z be two maps between sets. Then
the following diagram is a pullback in Set:

P = {(x, y) ∈X × Y ∶ f(x) = g(y)} X

Y Z

π1

π2 f

g

where π1 and π2 are the projections of P . Furthermore, every pullback in
Set of f along g is isomorphic to (P,π2, π1).

Proof. Clearly f ○ π1 = g ○ π2. If

Q

P X

Y Z

k

h
π1

π2 f

g

commutes, then f(k(q)) = g(h(q)), hence (k(q), h(q)) ∈ P . Then, the
unique map j ∶ Q→ P such that π1○j = k and π2○j = h is j(q) = (k(q), h(q)).
Now, let (P ′, g′, f ′) be another pullback of f along g. Since f ○ g′ = g ○ f ′
and f ○ π1 = g ○ π2, there exist unique maps l ∶ P ′ → P and l′ ∶ P → P ′ such
that:

π1 ○ l = g′ π2 ○ l = f ′

g′ ○ l′ = π1 f ′ ○ l′ = π2

Then, clearly

π1 ○ (l ○ l′) = π1 π2 ○ (l ○ l′) = π2

By uniqueness, then l ○ l′ = idP . Similarly, l′ ○ l = idP ′ . Thus P ′ is isomorphic
to P.

1.1.1 Functors and natural transformations.

Definition 1.5. Let C and D be two categories. A functor F from C
to D, denoted as F ∶ C → D, is a pair (F0, F1) of class functions where
F0 ∶ Obj(C)→ Obj(D) and F1 ∶ Hom(C)→ Hom(D) such that:

• if f ∶X → Y is a morphism of C then F1(f) is a morphism of D from
F0(X) to F0(Y );
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• F1(idX) = idF0(X) for every object X of C;

• if f ∶ X → Y and g ∶ Y → Z are morphisms of C then F1(g ○ f) =
F1(g) ○ F1(f).

We will often write F instead of F0 and F1.

Example. Let P = (P,≤P ) and Q = (Q,≤Q) be two preorders and F ∶ P → Q
be a map. Then

F is a functor ⇐⇒ F is monotonic1

Clearly if F is a functor and p ≤P p′ then it must be F (p) ≤Q F (p′). Con-
versely, if F is monotonic and p ≤P p′ then F ((p, p′)) = (F (p), F (p′)) ∈
Hom(D). Furthermore, F ((p, p)) = idF (p) for every p ∈ P and if p ≤P q and
q ≤P r then F ((q, r) ○ (p, q)) = (F (p), F (r)) = F ((q, r)) ○F ((p, q)). Thus F
is a functor.

Definition 1.6. Let C and D be two categories and F,G ∶ C → D be two
functors. A natural transformation Φ from F to G is a family of mor-
phisms ΦX of D for every X ∈ Obj(C) such that for every f ∈ HomC(X,Y )
the following diagram is commutative:

F (X) F (Y )

G(X) G(Y )

F (f)

ΦX ΦY

G(f)

i.e. ΦY ○ F (f) = G(f) ○ΦX .
We will say that Φ is a natural isomorphism if ΦX is an isomorphism of
D for every X ∈ Obj(C).

Now, we can recall the notions of adjoints.

Definition 1.7. Let C and D be two categories and F ∶ C → D, G ∶ D → C
be two functors. F is a left adjoint of G (or G is a right adjoint of
F ) if there exists an adjunction from F to G, i.e. there exists a family of
bijections (ϕX,Y )X∈Obj(C),Y ∈Obj(D) such that

ϕX,Y ∶ HomD(F (X), Y )→ HomC(X,G(Y ))

is natural with respect to X and Y , which means that for every f ∶X →X ′ ∈
Hom(C) and g ∶ Y → Y ′ ∈ Hom(D) the following diagrams commute:

1We have indicated with F the functor (F,F × F ∣Hom(P )).
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HomD(F (X), Y ) HomD(F (X ′), Y )

HomC(X,G(Y )) HomC(X ′,G(Y ))

ϕX,Y

−○F (f)
ϕX′,Y

−○f

HomD(F (X), Y ) HomD(F (X), Y ′)

HomC(X,G(Y )) HomC(X,G(Y ′))

ϕX,Y

g○−

ϕX,Y ′

G(g)○−

In such case, we write F ⊣ G.

Example. Let P = (P,≤P ), Q = (Q,≤Q) be two preorders and F ∶ P → Q,
G ∶ Q→ P be two functors, i.e. two monotonic maps.
Then

F ⊣ G if and only if ∀p ∈ P,∀q ∈ Q ∶ F (p) ≤Q q iff p ≤P G(q)

If ϕ is an adjunction from F to Q, then for every p ∈ P and q ∈ Q ϕp,q ∶
HomQ(F (p), q) → HomP (p,G(q)) is a bijection. Thus, F (p) ≤Q q if and
only if p ≤P G(q).
Conversely, if for every p ∈ P, q ∈ Q: F (p) ≤Q q if and only if p ≤P G(q) then
ϕp,q is trivially defined.

1.2 Heyting algebras

Definition 1.8. A partial order is a preorder P = (P,≤P ) such that ≤P is
antisymmetric, i.e. for every p, p′ ∈ P , if p ≤P p′ and p′ ≤P p, then p = p′.

We can define a category Pos in the following way:

• the objects are partial orders;

• a morphism from P to Q is a monotonic map from P to Q;

• the composition is the usual composition of maps;

• idP is the usual identity map of the set P .

Definition 1.9. A partial order H = (H,≤,∧,∨,→,⊺,�) is a Heyting al-
gebra if:
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1. for every a, b ∈ H there exist a greatest lower bound and a least upper
bound, denoted by a ∧ b and a ∨ b respectively;

2. ⊺,� ∈ H such that � ≤ c ≤ ⊺ for all c ∈ H;

3. →∶ H ×H→ H is an operation such that:

c ∧ a ≤ b if and only if c ≤ a→ b

Definition 1.10. Let H and K be two Heyting algebras. A morphism of
Heyting algebras is a monotonic map φ ∶ H→ K such that:

1. φ(h ∧H h′) = φ(h) ∧K φ(h′);

2. φ(h ∨H h′) = φ(h) ∨K φ(h′);

3. φ(h→H h
′) = φ(h)→K φ(h′);

4. φ(�H) = �K

Let us observe that if φ ∶ H→ K is a morphism of Heyting algebras then
φ(⊺H) = ⊺K. Indeed, since ⊺H = �H →H �H then φ(⊺H) = φ(�H) →K φ(�H) =
�K →K �K = ⊺K.

We can now define the category HA in the following way:

• the objects are Heyting algebras;

• a morphism from H to K is a morphism of Heyting algebras from H
to K;

• the composition is the usual composition of maps;

• idH is the usual identity map of the set H.

Definition 1.11. Let A be a Heyting algebra. We say that A is a Boolean
algebra if

a ∨ (a→ �) = ⊺

for every a ∈ A.

Definition 1.12. A Heyting algebra H is complete if every set-indexed
family (ai)i∈I of elements of H has both a greatest lower bound ⋀i∈I ai ∈ H
and a least upper bound ⋁i∈I ai ∈ H.
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Definition 1.13. Let H and K be two complete Heyting algebras. A mor-
phism of complete Heyting algebras is a map φ ∶ H→ K that preserves
arbitrary meets, arbitrary joins and the implication.

Now, let us state a lemma that will be useful later.

Lemma 1.2. Let H, K be two Heyting algebras and φ ∶ H→ K be a bijective
map between them. Then, φ is an isomorphism in Pos if and only if it is
an isomorphism in HA.

Proof. Clearly, if φ is an isomorphism in HA then φ is an isomorphism in
Pos.
Conversely, let φ−1 be the inverse of φ in Pos. Let x, y ∈ H:

x ≤ y Ô⇒ φ(x) ≤ φ(y)
φ(x) ≤ φ(y) Ô⇒ φ−1(φ(x)) ≤ φ−1(φ(y)) Ô⇒ x ≤ y

i.e. x ≤ y if and only if φ(x) ≤ φ(y). Thus, clearly φ(⊺) = ⊺ and φ(�) = �.
Since:

φ(x) ∧φ(y) ≤ φ(x) Ô⇒ φ−1(φ(x) ∧φ(y)) ≤ x
φ(x) ∧φ(y) ≤ φ(y) Ô⇒ φ−1(φ(x) ∧φ(y)) ≤ y

thus φ−1(φ(x) ∧φ(y)) ≤ x ∧ y and φ(x) ∧φ(y) ≤ φ(x ∧ y). In addition,

x ∧ y ≤ x Ô⇒ φ(x ∧ y) ≤ φ(x)
x ∧ y ≤ y Ô⇒ φ(x ∧ y) ≤ φ(y)

then φ(x ∧ y) ≤ φ(x) ∧ φ(y). Analogously for ∨. Now, let us show that φ
preserves →: for every z ∈ H we have that

z ∧φ(x) ≤ φ(y) iff φ−1(z ∧φ(x)) ≤ y
iff φ−1(z) ∧ x ≤ y
iff φ−1(z) ≤ x→ y

iff z ≤ φ(x→ y)

Thus φ is a isomorphism of HA.

Definition 1.14. Let (P,≤) be a poset and F a non-empty subset of P . F
is a filter of P if:

• for every x, y ∈ F there exists z ∈ F such that z ≤ x and z ≤ y;
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• F is upwards closed.

If X ⊆ P we say that F is the filter generated by X if F is the smallest
filter containing X. If a filter is generated by a singleton then we say that
it is principal.

Definition 1.15. If H is a Heyting algebra and F is a filter of H, then H/F
is the quotient set induced by the following relation:

x ∼ y ⇔ x→ y ∈ F and y → x ∈ F

As usual, if H is a complete Heyting algebra and I is a set, we can
consider:

HI ∶= {η ∶ I → H map}

Clearly, HI is a complete Heyting algebra, where

(η ∧I ζ)(i) = η(i) ∧ ζ(i)
(η ∨I ζ)(i) = η(i) ∨ ζ(i)
(η →I ζ)(i) = η(i)→ ζ(i)
⊺I(i) = ⊺
�I(i) = �

for every i ∈ I.

1.3 Frames and locales

Let us start by introducing the following categories:

Definition 1.16. The category Frm of frames is defined as follows:

• the objects are complete lattices H = (H,≤) that satisfy the infinite
distributive law i.e. (H,≤) is a complete lattice such that

a ∧⋁B =⋁{a ∧ b ∶ b ∈ B}

for every a ∈H and B ⊆H;

• the morphisms from H to K are maps preserving finite meets and
arbitrary joins;
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• the composition is the usual composition of maps;

• idH is the usual identity map of the set H.

Definition 1.17. The category Loc of locales is defined as the opposite
category of Frm. The morphisms of Loc are called continuous maps.

Let us observe that:

Theorem 1.1. A complete lattices H = (H,≤) is a complete Heyting algebra
if and only if H satisfies the infinite distributive law.

Proof. (⇒) Let us suppose that H is a complete Heyting algebra. Let a ∈H
and B ⊆H. Clearly, ⋁{a ∧ b ∶ b ∈ B} ≤ a ∧⋁B. In addition,

a ∧ b ≤⋁{a ∧ b ∶ b ∈ B} then b ≤ a→⋁{a ∧ b ∶ b ∈ B}

for every b ∈ B. Thus:

⋁B ≤ a→⋁{a ∧ b ∶ b ∈ B} then a ∧⋁B ≤⋁{a ∧ b ∶ b ∈ B}

Then H satisfies the infinite distributive law.
(⇐) Let us suppose that H satisfies the infinite distributive law. Then, for
every a, b ∈H we define

a→ b ∶= ⋁{x ∈H ∶ x ∧ a ≤ b}

Then, for every c ∈H

if c ≤ a→ b then c ∧ a ≤ a ∧ (a→ b)
then c ∧ a ≤ a ∧⋁{x ∈H ∶ x ∧ a ≤ b}
then c ∧ a ≤⋁{a ∧ x ∶ x ∈H and x ∧ a ≤ b}
then c ∧ a ≤ b

Since if c ∧ a ≤ b then clearly c ≤ a → b, thus H is a complete Heyting
algebra.

Thus, the objects of Frm, Loc and HA are exactly the same, while the
difference between these three categories is how the morphisms are defined.

Example. Let (X,τ) be a topological space. If we consider the lattice of its
open subsets (τ,⊆) then, for every a ∈ τ and S ⊆ τ :

a ∩⋃S =⋃{a ∩ s ∶ s ∈ S}
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i.e. (τ,⊆) satisfies the infinite distributive law. Thus, it is a frame. Now,
let (Y,σ) be another topological space and f ∶X → Y be a continuous map,
i.e. a morphism of topological spaces. Then:

f−1 ∶ σ → τ

s↦ f−1(s)

is clearly well defined and monotonic w.r.t ⊆. Furthermore, f−1 preserves
arbitrary unions and finite intersections. Then, f−1 ∶ (σ,⊆) → (τ,⊆) is a
morphism of frames.

Lemma 1.3. Let H and K be two frames and let φ ∶ H → K be a finite
meet- preserving map between them. Then φ is a morphism of frames if and
only if there exists a map ψ ∶ K → H such that φ ⊣ ψ where both φ and ψ
are considered as functors between the categories induced by the preorders H
and K. Furthermore, ψ is unique.

Proof. (⇒). Let φ be a morphism of frames. For every a ∈K, we define

ψ(a) ∶=⋁{y ∈H ∶ φ(y) ≤ a}

It is obvious that ψ is monotone. Let x ∈ H. Clearly, φ(x) ≤ a implies that
x ≤ ψ(a). Conversely,

if x ≤ ψ(a) then φ(x) ≤ φ(ψ(a))
then φ(x) ≤⋁{φ(y) ∶ y ∈H and φ(y) ≤ a}
then φ(x) ≤ a

Thus φ ⊣ ψ.
(⇐). Let ψ ∶ K → H be such that φ ⊣ ψ and let B ⊆ H. Since φ preserves
∧, it is monotone. Thus:

⋁
b∈B

φ(b) ≤ φ(⋁
b∈B

b)

Conversely,

φ(b) ≤ ⋁
b∈B

φ(b) for every b ∈ B

then b ≤ ψ(⋁
b∈B

φ(b)) for every b ∈ B

then ⋁
b∈B

b ≤ ψ(⋁
b∈B

φ(b))

then φ(⋁
b∈B

b) ≤ ⋁
b∈B

φ(b)
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Then φ preserves arbitrary joins and thus it is a morphism of frames.
We can observe that this property follows from a more general result, which
is that every left adjoint preserves the colimits [8].
The uniqueness of ψ follows from the uniqueness of the adjoints between
posets.

1.4 Triposes

Definition 1.18. A Set-based tripos is a functor P: Setop → HA such
that:

1. for each X, Y ∈ Set and for each map f ∶ X → Y , the corresponding
morphism of Heyting algebras Pf ∶ PY → PX has a left adjoint ∃f
and a right adjoint ∀f when it is seen as a functor between posets, i.e.
∃f , ∀f : PX → PY are monotonic maps such that for all p ∈ PX and
q ∈ PY

∃f(p) ≤PY q⇔ p ≤PX Pf(q)
q ≤PY ∀f(p)⇔ Pf(q) ≤PX p

2. Beck-Chevalley condition. For each pullback square in Set

X1 X2

X3 X4

f1

g1 g2

f2

the following two diagrams commute:

PX1 PX2

PX3 PX4

∃f1

Pg1

∃f2

Pg2

PX1 PX2

PX3 PX4

∀f1

Pg1

∀f2

Pg2

i.e. ∃f1 ○ Pg1 = Pg2 ○ ∃f2 and ∀f1 ○ Pg1 = Pg2 ○ ∀f2.

3. there exists a generic predicate, i.e. there exists a set Σ and a predicate
trΣ ∈ PΣ such that for all sets X, the decoding map

J KX ∶ ΣX → PX

σ ↦ Pσ(trΣ)

is surjective.
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Remark. 1. Let P be a tripos and f ∶ X → Y be a map between sets. If
∃f and ∃′f are both left adjoints for Pf then:

∃f(p) ≤ q⇔ p ≤ Pf(q)⇔ ∃′f(p) ≤ q

for every p ∈ PX and q ∈ PY . Thus, ∃f = ∃′f . Analogously we can
prove that ∀f is unique.
Let us observe that the notion of tripos does not imply that ∃f and
∀f are morphisms of Heyting algebras, but only monotonic maps.
However, it is possible to define two functors:

∃ ∶ Set→ Pos ∀ ∶ Set→ Pos

X ↦ PX X ↦ PX

f ↦ ∃f f ↦ ∀f

In fact, if f ∶X → Y and g ∶ Y → Z are maps between sets then:

∃(g ○ f) = ∃g ○ ∃f ∀(g ○ f) = ∀g ○ ∀f
∃(idX) = idPX ∀(idX) = idPX

2. Let

I I1

I2 J

f1

f2 g1

g2

be a pullback in Set; the Beck-Chevalley condition requires that the
following two diagrams commute:

PI PI1

PI2 PJ

∃f1

Pf2

∃g2
Pg1

PI PI1

PI2 PJ

∀f1

Pf2

∀g2
Pg1

But, we can show that it is not necessary to prove the commutativity
of both. Indeed

∃f1 ○ Pf2 = Pg1 ○ ∃g2⇔ ∀f2 ○ Pf1 = Pg2 ○ ∀g1

Pg1 ○ ∃g2 is a left adjoint of Pg2 ○ ∀g1, in fact if p ∈ PI2 and p′ ∈ PI1:

Pg1(∃g2(p)) ≤ p′⇔ ∃g2(p) ≤ ∀g1(p′)
⇔ p ≤ Pg2(∀g1(p′))

17



Analogously, ∃f1 ○ Pf2 is a left adjoint of ∀f2 ○ Pf1 :

∃f1(Pf2(p)) ≤ p′⇔ Pf2(p) ≤ Pf1(p′)
⇔ p ≤ ∀f2(Pf1(p′))

We can conclude by uniqueness of the left and the right adjoints.

3. The generic predicate is never unique. In particular, if h ∶ Σ′ → Σ has
a right inverse, then trΣ′ = Ph(trΣ) is another generic predicate for P.
Indeed, if p ∈ PX, there exists σ ∈ ΣX such that JσKX = p. Let h̄ the
right inverse of h, then

P(h̄ ○ σ)(trΣ′) = P(h̄ ○ σ)(Ph(trΣ)) = P(h ○ h̄ ○ σ)(trΣ) = Pσ(trΣ) = p

Lemma 1.4. Let P ∶ Setop → HA be a tripos and let f ∶ X → Y be a map
between sets. Then if f has a right (or left) inverse then ∃f and ∀f are left
(or right) inverses of Pf. Furthermore, if f has an inverse, ∃f = ∀f is the
inverse of Pf.

Proof. Let g ∶ Y → X be the right inverse of f , i.e. f ○ g = idY . Then
Pg ○ Pf = P(f ○ g) = PidY = idPY . Let us observe that if q, q′ ∈ PY then
Pf(q) ≤ Pf(q′)⇒ Pg(Pf(q)) ≤ Pg(Pf(q′)), i.e. q ≤ q′. Hence:

∃f(Pf(q)) ≤ q′⇔ Pf(q) ≤ Pf(q′)⇔ q ≤ q′

q′ ≤ ∀f(Pf(q))⇔ Pf(q′) ≤ Pf(q)⇔ q′ ≤ q

Hence, if q′ = q :

∃f(Pf(q)) ≤ q and q ≤ ∀f(Pf(q))

Conversely, if we choose q′ = ∃f(Pf(q)) and q′ = ∀f(Pf(q)) we can prove:

q ≤ ∃f(Pf(q)) and ∀f(Pf(q)) ≤ q

Then, ∃f ○ Pf = ∀f ○ Pf = idPY .
The case where f has a left inverse is similar.
The case where f has an inverse is obvious from the previous two.

Now, let us introduce a particular type of tripos.

Definition 1.19. Let H be a complete Heyting algebra. Then H induces the
following Set-based tripos, called Heyting tripos or forcing tripos:

P ∶ Setop → HA

X ↦ HX

f ↦ − ○ f

18



1.4.1 Interpretation of triposes

Let us recall the main idea that connect triposes to logic, i.e. how a tripos
P ∶ Setop → HA can describe a type of intuitionistic higher-order logic.
We can think every set I as a “ type” and the corresponding PI as the set
of predicates over I. In this interpretation, if p, q ∈ PI then they can be seen
as formulas p(x), q(x) that depends on a variable x of type I.
Then, we can interpret the order of PI in the following way:

p ≤ q means (∀x ∶ I)(p(x)⇒ q(x))
p = q means (∀x ∶ I)(p(x)⇔ q(x))

Furthermore, since PI is a Heyting algebra it is also possible to interpret
∧,∨,→, true and false.
Now, let f ∶ I → J be a map and let q ∈ PJ . Thus q can be interpreted as
a predicate q(y) depending on a variable y of type J . Then, Pf ∶ PJ → PI
can have a role of “ substitution map” in the sense that:

Pf(q) represents q(f(x)) where x ∶ I

Since, Pf is a morphism of HA the substitution commutes with ∧,∨ and →
(as logical connectives).
Now, we can use ∃f and ∀f in order to express the existential and universal
quantification along f . Indeed, if p ∈ PI then:

∃f(p) means (∃x ∶ I)(f(x) = y ∧ p(x))
∀f(p) means (∀x ∶ I)(f(x) = y⇒ p(x))

Then:

∃f(p) ≤ q iff p ≤ Pf(q)
Pf(p) ≤ q iff p ≤ ∀f(q)

represents:

(∀y ∶ J)((∃x ∶ I)(f(x) = y ∧ p(x))⇒ q(y)) iff (∀x ∶ I)(p(x)⇒ q(f(x)))
(∀x ∶ I)(q(f(x))⇒ p(x)) iff (∀y ∶ J)(q(y)⇒ (∀x ∶ I)(f(x) = y⇒ p(x)))

∃f and ∀f are not morphisms of HA then the existential and the universal
quantification do not necessarily commute with all the connectives.
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Let π,π′ be the first projections of I ×K and J ×K respectively, then the
following diagram

I ×K π //

f×idK
��

I

f
��

J ×K π′ // J

is clearly a pullback. The Beck-Chevalley condition ensures us that

P(I ×K) ∃π // PI

P(J ×K)

P(f×idK)

OO

∃π′ // PJ

Pf

OO P(I ×K) ∀π // PI

P(J ×K)

P(f×idK)

OO

∀π′ // PJ

Pf

OO

commute, thus:

(∀x ∶ I)[(∃z ∶ I ×K)(π(z) = x ∧ p((f × idK)(z)))
= (∃w ∶ J ×K)(π′(w) = f(x) ∧ p(w))]

(∀x ∶ I)[(∀z ∶ I ×K)(π(z) = x⇒ p((f × idK)(z)))
= (∀w ∶ J ×K)(π′(w) = f(x)⇒ p(w))]

i.e.

(∀x ∶ I)[(∃z ∶K)p(y, z)({y ∶= f(x), z ∶= z}) = (∃z ∶K)(p(y, z){y ∶= f(x)})]
(∀x ∶ I)[(∀z ∶K)(p(y, z){y ∶= f(x), z ∶= z}) = (∀z ∶K)(p(y, z){y ∶= f(x)})]

for every every predicate p ∈ P(J × K). In addition, the role of Σ is to
represent the “ type of proposition”, while

trΣ represents “φ2 is true” where φ ∶ Σ

i.e. the generic predicate expresses the formula asserting that a given propo-
sition is true.
In this idea, the decoding map J KI allows us to turn any functional propo-
sition into a predicate. If f ∶ I → Σ then:

JfKI = Pf(trΣ) represents “f(x) is true” where x ∶ I

The surjectivity of the decoding map ensures us that every predicate of PI
is represented by at least a functional proposition of ΣI , which means that
every predicate of PI is of the form “f(x) is true”, with f a functional
proposition from I.

2We have used φ as a variable in order to highlight that the variable is a proposition.
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Chapter 2

Implicative algebras

2.1 Implicative structures

Definition 2.1. An implicative structure is a triple (A,⪯,→) where
(A,⪯) is a complete meet-semilattice, i.e. a poset where every set-indexed
family (bi)i∈I of elements of A has a greatest lower bound ⋏i∈I bi, and → is
a binary operation called the implication of A such that if a, a′, b, b′ ∈ A
and (bi)i∈I is a family of elements of A:

• if a′ ⪯ a and b ⪯ b′ then (a→ b) ⪯ (a′ → b′)

• a→ ⋏i∈B bi = ⋏i∈I(a→ bi)

We will denote � = ⋏A and ⊺ = ⋏∅. Moreover, if B is a subset of A we
will denote ⋏b∈B b as ⋏B.

We write a→ b→ c instead of a→ (b→ c).

Let A = (A,⪯,→) be a fixed implicative structure, we can equip A with
the following operators.

Definition 2.2. Let a, b ∈ A, the application of a to b is

ab ∶=⋏{c ∈ A ∶ a ⪯ (b→ c)}

We write a1a2a3...an instead of ((a1a2)a3)...an for all a1, a2, ..., an ∈ A.

Lemma 2.1. Let a, a′, b, b′ ∈ A, then:

1. (Monotonicity). If a ⪯ a′ and b ⪯ b′ then ab ⪯ a′b′;
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2. (β-reduction). (a→ b)a ⪯ b;

3. (η-expansion). a ⪯ (b→ ab);

4. (Minimum). ab = min{c ∈ A ∶ a ⪯ (b→ c)};

5. (Adjunction). ab ⪯ c if and only if a ⪯ (b→ c).

Proof. Let a, b ∈ A, if we define Ua,b ∶= {c ∈ A ∶ a ⪯ (b→ c)} then ab = ⋏Ua,b.

1. (Monotonicity). Let a ⪯ a′ and b ⪯ b′, if c ∈ Ua′,b′ i.e. a′ ⪯ (b′ → c),
then a ⪯ a′ ⪯ (b′ → c) ⪯ (b → c), consequently Ua′,b′ ⊆ Ua,b. Hence,
ab = ⋏Ua,b ⪯ ⋏Ua′,b′ = a′b′;

2. (β-reduction). Since b ∈ Ua→b,a then (a→ b)a = ⋏Ua→b,a ⪯ b;

3. (η-expansion). (b→ ab) = (b→ ⋏Ua,b) = ⋏c∈Ua,b
(b→ c) ⪰ a;

4. (Minimum). By the previous point, ab ∈ Ua,b and ab = ⋏Ua,b then
ab = minUa,b;

5. (Adjunction). If ab ⪯ c then a ⪯ (b → ab) ⪯ (b → c). Conversely, if
a ⪯ (b→ c) then c ∈ Ua,b, hence ab = ⋏Ua,b ⪯ c.

Definition 2.3. Let f ∶ A → A be a map, then we can consider an associated
element of A, called the abstraction of f , in the following way:

λf ∶= ⋏
a∈A
(a→ f(a))

Lemma 2.2. Let f, g ∶ A → A and a ∈ A:

1. (Monotonicity). If f(a) ⪯ g(a) for all a ∈ A then λf ⪯ λg;

2. (β-reduction). (λf)a ⪯ f(a);

3. (η-expansion). a ⪯ λ(b↦ ab)

Proof. Let f, g ∶ A → A then:

1. (Monotonicity). Obvious from the first property in the definition of
→;

2. (β-reduction). By definition, λf ⪯ (a → f(a)) hence (λf)a ⪯ f(a) by
Lemma 2.1;
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3. (η-expansion). By Lemma 2.1, a ⪯ (b → ab) then ⋏b∈A a ⪯ ⋏b∈A(b →
ab) i.e. a ⪯ λ(b↦ ab).

2.1.1 Semantic typing

In this subsection we will study the semantic type system induced by an
implicative structure A, in which types correspond to the elements of A.

Let us start by introducing terms. We call a λ-term with parameters
in A any λ-term enriched with constants taken in A. Given a closed λ-
term t with parameters in A, we can associate it with an element tA of the
implicative structure A defined inductively in the following way:

aA ∶= a
(tu)A ∶= (tA)(uA)
(λx.t)A ∶= λ(a↦ (t{x ∶= a})A)1

The next theorem states a fundamental property of the λ-term with
parameters in A.

Theorem 2.1. Let t be a λ-term with parameters in A where FV (t) =
{x1, ..., xn} and a1 ⪯ a′1, ..., an ⪯ a′n are parameters in A then:

(t{x1 ∶= a1, ..., xn ∶= an})A ⪯ (t{x1 ∶= a′1, ..., xn ∶= a′n})A

Proof. By induction on t.

• t = a: obvious;
1t{x ∶= a} denotes the λ-term obtained from t by replacing the variable x with a. In

particular:

• if t = κ then t{x ∶= a} = κ where κ is a parameter or a variable different from x;

• if t = x then t{x ∶= a} = a;
• if t = us then t{x ∶= a} = (u{x ∶= a})(s{x ∶= a});
• if t = λy.u then t{x ∶= a} = λy.(u{x ∶= a});
• if t = λx.u then t{x ∶= a} = t.
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• t = x: obvious;

• t = uz: since (u{x1 ∶= a1, ..., xn ∶= an})A ⪯ (u{x1 ∶= a′1, ..., xn ∶= a′n})A
and (z{x1 ∶= a1, ..., xn ∶= an})A ⪯ (z{x1 ∶= a′1, ..., xn ∶= a′n})A by induc-
tive hypothesis, then (t{x1 ∶= a1, ..., xn ∶= an})A ⪯ (t{x1 ∶= a′1, ..., xn ∶=
a′n})A by Lemma 2.1;

• t = λx.u: since (u{x1 ∶= a1, ..., xn ∶= an, x ∶= a})A ⪯ (u{x1 ∶= a′1, ..., xn ∶=
a′n, x ∶= a})A by inductive hypothesis, then

λ(a↦ (u{x1 ∶= a1, ..., xn ∶=an, x ∶= a})A) ⪯
⪯ λ(a↦ (u{x1 ∶= a′1, ..., xn ∶= a′n, x ∶= a})A)

by Lemma 2.2. Thus:

(t{x1 ∶= a1, ..., xn ∶= an})A ⪯ (t{x1 ∶= a′1, ..., xn ∶= a′n})A

.

Definition 2.4. A typing context is a finite (unordered) list Γ = x1 ∶
a1, ..., xn ∶ an where x1, ..., xn are pairwise distinct λ-variables and a1, ..., an ∈
A. We write dom(Γ)= {x1, ..., xn}.
If Γ and Γ′ are typing contexts, we will write Γ′ ⪯ Γ if for every (x ∶ a) ∈ Γ
there exists b ∈ A such that b ⪯ a and (x ∶ b) ∈ Γ′.

Given a type context Γ = x1 ∶ a1, ..., xn ∶ an, a λ-term t with parameters
in A and an element a ∈ A, we can define a typing judgment Γ ⊢ t ∶ a in the
following way:

Γ ⊢ t ∶ a if and only if FV (t) ⊆ dom(Γ) and (t[Γ])A ⪯ a

where, in the notation t[Γ], Γ is interpreted as a list of variable assignments,
i.e. t[Γ] denotes the term t{x1 ∶= a1, ..., xn ∶= an}.

Theorem 2.2. Let Γ, Γ′ be typing contexts, t, u λ-terms with parameters
in A and a, a′, b ∈ A then:

• (Axiom). If (x ∶ a) ∈ Γ then Γ ⊢ x ∶ a;

• (Parameter). Γ ⊢ a ∶ a;

• (Subsumption). if Γ ⊢ t ∶ a and a ⪯ a′ then Γ ⊢ t ∶ a′;
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• (Context subsumption). If Γ ⪯ Γ′ and Γ ⊢ t ∶ a then Γ′ ⊢ t ∶ a;

• (⊺-intro). If FV(t) ⊆ dom(Γ) then Γ ⊢ t ∶ ⊺;

• (→-intro). If Γ, x ∶ a ⊢ t ∶ b then Γ ⊢ λx.t ∶ a→ b;

• (→-elim). If Γ ⊢ t ∶ a→ b and Γ ⊢ u ∶ a then Γ ⊢ tu ∶ b;

• (Generalization). Let (ai)i∈I be a set-indexed family of elements of A.
If Γ ⊢ t ∶ ai for all i ∈ I, then Γ ⊢ t ∶ ⋏i∈I ai.

Proof. Axiom, Parameter, Subsumption, ⊺-intro and Generalization are ob-
vious.
Context-subsumption follows from the monotonicity of substitution (Theo-
rem 2.1).
In order to show (→-intro), we assume Γ, x ∶ a ⊢ t ∶ b or equivalently FV (t) ⊆
dom(Γ, x ∶ a) and (t[Γ, x ∶ a])A ⪯ b; by definition of typing context it follows
that FV (λx.t) ⊆ dom(Γ) and

((λx.t)[Γ])A = ⋏
a0∈A
(a0 → (t[Γ, x ∶= a0])A) ⪯ a→ (t[Γ, x ∶= a])A ⪯ a→ b.

Finally, in order to prove →-elim, we suppose FV (t), FV (u) ⊆ dom(Γ),
(t[Γ])A ⪯ a → b and (u[Γ])A ⪯ a, hence FV (tu) ⊆ dom(Γ) and by Lemma
2.1:

(tu[Γ])A = (t[Γ])A(u[Γ])A ⪯ (a→ b)a ⪯ b.

Lemma 2.3. Let t, u be two closed λ-terms with parameters in A. Then:

• if t↠β u then tA ⪯ uA

• if t↠η u then uA ⪯ tA

Proof. Let us start by showing that if t→β,1 u then tA ⪯ uA.

1. if t = (λx.t1)t2 and u = t1{x ∶= t2}, then:

tA = (λx.t1)AtA2 = λ(a↦ (t1{x ∶= a})A)tA2 ⪯ (t1{x ∶= tA2 })A = uA

by 3 of Lemma 2.2;
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2. if t = t′s and u = u′s where t′ →β,1 u′, then:

tA = t′AsA ⪯ u′AsA = uA

by the monotonicity of the application (Lemma 2.1) and by inductive
hypothesis. The case in which t = st′ and u = su′ is analogous;

3. if t = λx.t′ and u = λx.u′ where t′ →β,1 u′ then (t′{x ∶= a})A ⪯ (u′{x ∶=
a})A for all a ∈ A and hence:

tA = λ(a↦ (t′{x ∶= a})A) ⪯ λ(a↦ (u′{x ∶= a})A) = uA

by Lemma 2.2.

Clearly, t↠β u implies tA ⪯ uA by transitivity of ⪯.
If t = λx.ux, hence t→η,1 u and

uA ⪯ λ(a↦ uAa) = tA

by 3 of Lemma 2.2. Similarly to what we have done in the case of β-reduction
above, we can conclude using Lemma 2.1, Lemma 2.2 and the transitivity
of ⪯.

2.2 Implicative algebras

The most important feature of the implicative structures is that every ele-
ment can represent at the same time a realizer and a truth value, i.e. a set
of realizers satisfying some kind of closure property.
The idea is that we can associate every actual realizer t to a truth value
[t], called the principal type of t, defined as the meets of every truth value
containing t.
Conversely, if a is a truth value we could also interpret it as a generalized
realizer, in particular as the realizer whose principal type is a itself.
This point of view leads to an important problem: every truth value is real-
ized at least by itself and � realizes every truth value. This means we need
to equip an implicative structure with a new kind of structure (separator)
that should play the role of a sort of criterion of consistency.

In order to define it, we have to define before the following combinators:

K ∶= λxy.x S ∶= λxyz.xz(yz)
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Lemma 2.4.

KA = ⋏
a,b∈A
(a→ b→ a)

SA = ⋏
a,b,c∈A

((a→ b→ c)→ (a→ b)→ a→ c)

Proof. Clearly:

KA = (λx.(λy.x))A = ⋏
a∈A
(a→ (⋏

b∈A
(b→ a))) = ⋏

a,b∈A
(a→ b→ a)

Using semantic type rules, we can show

SA ⪯ ⋏
a,b,c∈A

((a→ b→ c)→ (a→ b)→ a→ c)

in the following way:

Axiom

Γ ⊢ x ∶ a→ b→ c
Axiom

Γ ⊢ z ∶ a →-elim.
Γ ⊢ xz ∶ b→ c

Axiom

Γ ⊢ z ∶ a
Axiom

Γ ⊢ y ∶ a→ b
→-elim.

Γ ⊢ yz ∶ b
→-elim.

Γ ∶= x ∶ a→ b→ c, y ∶ a→ b, z ∶ a ⊢ xz(yz) ∶ c
→-intro.

x ∶ a→ b→ c, y ∶ a→ b ⊢ λz.xz(yz) ∶ a→ c
→-intro.

x ∶ a→ b→ c ⊢ λyz.xz(yz) ∶ (a→ b)→ a→ c
→-intro.⊢ λxyz.xz(yz) ∶ (a→ b→ c)→ (a→ b)→ a→ c for all a, b, c ∈ A
Gen.⊢ λxyz.xz(yz) ∶ ⋏a,b,c∈A((a→ b→ c)→ (a→ b)→ a→ c)

Conversely:

⋏
a,b∈A
((a→ b→ c)→ (a→ b)→ a→ c) ⪯

⪯ ⋏
a,d,e∈A

((a→ ea→ da(ea))→ (a→ ea)→ a→ da(ea))

so by item 3. of Lemma 2.1:

⋏
a,b∈A
((a→ b→ c)→ (a→ b)→ a→ c)

⪯ ⋏
a,d,e∈A

((a→ da)→ (a→ ea)→ a→ da(ea))

⪯ ⋏
a,d,e∈A

((a→ da)→ e→ a→ da(ea))

⪯ ⋏
a,d,e∈A

(d→ e→ a→ da(ea))

⪯ ⋏
d∈A
(d→ ⋏

e∈A
(e→ ⋏

a∈A
(a→ da(ea))))

= (λxyz.xz(yz)))A = SA
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Now we can define:

Definition 2.5. A separator of an implicative structure A is a subset
S ⊆ A such that:

1. (upwards closed.) If a ∈ S and a ⪯ b then b ∈ S

2. KA,SA ∈ S

3. (closed under modus ponens.) If (a→ b) ∈ S and a ∈ S then b ∈ S

Observation. Let S be an upwards closed subset of A. Then:

S is closed under modus ponens ⇔ S is closed under application.

Indeed, let us suppose S is closed under modus ponens and a, b ∈ S. By
Lemma 2.1 a ⪯ (b → ab) and hence b → ab ∈ S; since b ∈ S and S is closed
under modus ponens, ab ∈ S.
Conversely, if S is closed under application and a, a→ b ∈ S, then (a→ b)a ∈
S and since (a→ b)a ⪯ b by Lemma 2.1, then b ∈ S.

Definition 2.6. Let A be an implicative structure. We define

ccA ∶= ⋏
a,b∈A

(((a→ b)→ a)→ a)

We say that a separator S of A is classical if ccA ∈ S. While, S is con-
sistent if � /∈ S.

Let us observe that:

⋏
b∈A
(((a→ b)→ a)→ a) ⪯ (((a→ �)→ a)→ a)

Furthermore, for every b ∈ A: a → � ≤ a → b thus (a → b) → a ≤ (a → �) →
a. Then ((a→ �)→ a)→ a ≤ ((a→ b)→ a)→ a, thus:

ccA = ⋏
a∈A
(((a→ �)→ a)→ a)

Finally:

Definition 2.7. An implicative algebra is a quadruple (A,⪯,→, S) where
(A,⪯,→) is an implicative structure and S is a separator of A.
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2.3 Interpreting first-order logic

Let A be an implicative structure and a, b ∈ A, we will write:

a × b ∶= ⋏
c∈A
((a→ b→ c)→ c)

a + b ∶= ⋏
c∈A
((a→ c)→ (b→ c)→ c)

¬a ∶= (a→ �)

Theorem 2.3. Rules for ×.

1. Γ ⊢ t ∶ a Γ ⊢ u ∶ b
Γ ⊢ λz.ztu ∶ a × b

2.
Γ ⊢ t ∶ a × b

Γ ⊢ t(λxy.x) ∶ a

3.
Γ ⊢ t ∶ a × b

Γ ⊢ t(λxy.y) ∶ b

Proof. 1. Let Γ′ = Γ, z ∶ a→ b→ c then:

Axiom

Γ′ ⊢ z ∶ a→ b→ c
Γ ⊢ t ∶ a

C. subs.
Γ′ ⊢ t ∶ a →-elim.

Γ′ ⊢ zt ∶ b→ c
Γ ⊢ u ∶ b

C. subs.
Γ′ ⊢ u ∶ b →-elim.

Γ′ ⊢ ztu ∶ c →-intro.
Γ ⊢ λz.ztu ∶ (a→ b→ c)→ c for all c ∈ A

Gen.
Γ ⊢ λz.ztu ∶ a × b

2. Γ ⊢ t ∶ a × b
Subs.

Γ ⊢ t ∶ (a→ b→ a)→ a

Axiom

Γ, x ∶ a, y ∶ b ⊢ x ∶ a
→-intro.

Γ, x ∶ a ⊢ λy.x ∶ b→ a
→-intro.

Γ ⊢ λxy.x ∶ a→ b→ a
→-elim.

Γ ⊢ t(λxy.x) ∶ a

3. Γ ⊢ t ∶ a × b
Subs.

Γ ⊢ t ∶ (a→ b→ b)→ b

Axiom

Γ, x ∶ a, y ∶ b ⊢ y ∶ b
→-intro.

Γ, x ∶ a ⊢ λy.y ∶ b→ b
→-intro.

Γ ⊢ λxy.y ∶ a→ b→ b
→-elim.

Γ ⊢ t(λxy.y) ∶ b

Theorem 2.4. Rules for +.
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1. Γ ⊢ t ∶ a
Γ ⊢ λzw.zt ∶ a + b

2. Γ ⊢ t ∶ b
Γ ⊢ λzw.wt ∶ a + b

3.
Γ ⊢ t ∶ a + b Γ, x ∶ a ⊢ u ∶ c Γ, y ∶ b ⊢ v ∶ c

Γ ⊢ t(λx.u)(λy.v) ∶ c

Proof. 1. Let Γ′ = Γ, z ∶ a→ c,w ∶ b→ c then:

Axiom

Γ′ ⊢ z ∶ a→ c
Γ ⊢ t ∶ a

C. subs.
Γ′ ⊢ t ∶ a →-elim.

Γ′ ⊢ zt ∶ c →-intro.
Γ, z ∶ a→ c ⊢ λw.zt ∶ (b→ c)→ c

→-intro.
Γ ⊢ λzw.zt ∶ (a→ c)→ (b→ c)→ c for all c ∈ A

Gen.
Γ ⊢ λzw.zt ∶ a + b

2. Let Γ′ = Γ, z ∶ a→ c,w ∶ b→ c then:

Axiom

Γ′ ⊢ w ∶ b→ c
Γ ⊢ t ∶ b

C. subs.
Γ′ ⊢ t ∶ b →-elim.

Γ′ ⊢ wt ∶ c →-intro.
Γ, z ∶ a→ c ⊢ λw.wt ∶ (b→ c)→ c

→-intro.
Γ ⊢ λzw.wt ∶ (a→ c)→ (b→ c)→ c for all c ∈ A

Gen.
Γ ⊢ λzw.wt ∶ a + b

3. Let α = (a→ c)→ (b→ c)→ c

Γ ⊢ t ∶ a + b
Subs.

Γ ⊢ t ∶ α
Γ, x ∶ a ⊢ u ∶ c

→-intro.
Γ ⊢ λx.u ∶ a→ c →-elim.

Γ ⊢ t(λx.u) ∶ (b→ c)→ c

Γ, y ∶ b ⊢ v ∶ c
→-intro.

Γ ⊢ λy.v ∶ b→ c
→-elim.

Γ ⊢ t(λx.u)(λy.v) ∶ c

We can also define the universal and the existential quantification of a
family of truth values (ai)i∈I in the following way:

∀i∈Iai ∶=⋏
i∈I
ai ∃i∈Iai ∶= ⋏

c∈A
((⋏

i∈I
(ai → c))→ c)
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Theorem 2.5. Rules for ∀.

1.
Γ ⊢ t ∶ ai for all i ∈ I

Γ ⊢ t ∶ ∀i∈Iai

2.
Γ ⊢ t ∶ ∀i∈Iai i0 ∈ I

Γ ⊢ t ∶ ai0
Proof. Obvious.

Theorem 2.6. Rules for ∃.

1.
Γ ⊢ t ∶ ai0 i0 ∈ I

Γ ⊢ λz.zt ∶ ∃i∈Iai

2.
Γ ⊢ t ∶ ∃i∈Iai Γ, x ∶ ai ⊢ u ∶ c for all i ∈ I

Γ ⊢ t(λx.u) ∶ c

Proof. 1. Let us consider:

Axiom

Γ, z ∶ ⋏i∈I(ai → c) ⊢ z ∶ ⋏i∈I(ai → c)
Subs.

Γ, z ∶ ⋏i∈I(ai → c) ⊢ z ∶ ai0 → c Γ ⊢ t ∶ ai0 i0 ∈ I
→-elim.

Γ, z ∶ ⋏i∈I(ai → c) ⊢ zt ∶ c
→-intro.

Γ ⊢ λz.zt ∶ (⋏i∈I(ai → c))→ c for all c ∈ A
Gen.

Γ ⊢ λz.zt ∶ ∃i∈Iai

2. Since ∃i∈Iai = ∀c∈A((⋏i∈I(ai → c))→ c), we can prove:

Γ ⊢ t ∶ ∃i∈Iai
Subs.

Γ ⊢ t ∶ (⋏i∈I(ai → c))→ c

Γ, x ∶ ai ⊢ u ∶ c for all i ∈ I
→-intro.

Γ ⊢ λx.u ∶ (ai → c) for all i ∈ I
Gen.

Γ ⊢ λx.u ∶ ⋏i∈I(ai → c)
→-elim.

Γ ⊢ t(λx.u) ∶ c

Let α,β be two objects. Then, we define

idA(α,β) =
⎧⎪⎪⎨⎪⎪⎩

⋏a∈A(a→ a) if α = β
⊺→ � otherwise

Lemma 2.5. Rules for id
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1. Γ ⊢ λx.x ∶ α = α

2.
Γ ⊢ t ∶ idA(α,β) Γ ⊢ u ∶ p(α)

Γ ⊢ tu ∶ p(β)
where p ∶M → A for some set M .

Proof. Let us consider:

Axiom

Γ, x ∶ a ⊢ x ∶ a
→-intro.

Γ ⊢ λx.x ∶ a→ a for all a ∈ A
Gen.

Γ ⊢ λx.x ∶ idA(α,α)
In order to prove the second rule, let us start by observing that if a ∈ A is
such that

a ≤ idA(α,β) then a ≤ p(α)→ p(β)

Indeed, if α = β then a ≤ idA(α,β) means that a ≤ ⋏b∈A(b → b), thus
a ≤ p(α)→ p(β). While, if α /= β then a ≤ ⊺→ � ≤ p(α)→ p(β), thus:

Γ ⊢ t ∶ idA(α,β)
Subs.

Γ ⊢ t ∶ p(α)→ p(β) Γ ⊢ u ∶ p(α)
→-elim.

Γ ⊢ tu ∶ p(β)

2.3.1 A-valued interpretations

Let L be a first-order language.

Definition 2.8. An A-valued interpretation of L is defined by:

1. a non-empty set M , called domain of interpretation;

2. a function fM ∶Mk →M ∈ F for each k-ary function symbol f of L;

3. a truth-value function pA ∶Mk → A for each k-ary predicate symbol of
L.

We can interpret every closed term of L with parameters in M in an
element tM of M , in the following way:

• if t =m where m ∈M then tM =m;

• if t = f(t1, ..., tk) then (f(t1, ..., tk))M = fM(tM1 , ..., tMk )
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In addition, if ϕ is a closed L-formula then we define ϕA in the following
way:

(t1 = t2)A ∶= idA(tM1 , tM2 ) (p(t1, ..., tk))A ∶= pA(tM1 , ..., tMk )
(ϕ⇒ ψ)A ∶= ϕA → ψA (¬ϕ)A ∶= ϕA → �
(ϕ ∧ψ)A ∶= ϕA ×ψA (ϕ ∨ψ)A ∶= ϕA +ψA

(∀xϕ(x))A ∶= ∀α∈M(ϕ(α))M (∃xϕ(x))A ∶= ∃α∈M(ϕ(α))M

Definition 2.9. Le A be an implicative structure. The intuitionistic core
of A SOJ (A) is the smallest separator contained in A.
The classical core of A SOK(A) is the smallest separator of A, containing
ccA.

Lemma 2.6. Let ϕ be a closed formula of L. Then:

• if ϕ is an intuitionistic tautology then ϕA ∈ SOJ (A) ;

• if ϕ is an intuitionistic tautology then ϕA ∈ SOK(A).

Proof. By induction on the derivation in natural deduction of the formula
ϕ, we can use Lemmas 2.4, 2.3, 2.6, 2.5, 2.5 2.2 in order to find a closed
λ-term t (if the derivation is classical, it can contains also ccA) such that
⊢ tA ∶ ϕA. We can conclude by Lemma 2.7.

2.3.2 Heyting algebras induced by implicative algebras

Let A be an implicative structure and S ⊆ A be a separator. We can
consider a binary relation on A called entailment, induced by S, defined
in the following way :

a ⊢S b⇔ (a→ b) ∈ S

for all a, b ∈ A.

Lemma 2.7. Let S ⊆ A be a separator, t be a λ-term without parameters
in A such that FV (t) = {x1, ..., xn} and a1, ..., an ∈ S. Then:

(t{x1 ∶= a1, ..., xn ∶= an})A ∈ S.

Proof. If u is a λ-term, we define a term u0 inductively on u, in the following
way:

• if u = x then u0 = x
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• if u = ss′ then u0 = s0s′0;

• if u = λx.s then u0 = λ∗x.s0
where λ∗ is defined as:

• λ∗x.x = SKK;

• λ∗x.s =Ks if s ∈ {K,S} or if s is a variable different from x;

• λ∗x.ss′ = S(λ∗x.s)(λ∗x.s′);

It can be proved that u0↠β u. We can also observe that if u is closed then
u0 is obtained only from K and S by application.
Let t and a1, ..., an be as in the statement, then we can consider the closed
term t̃ ∶= (λx1...xn.t)0. Then clearly t̃Aa1...an ∈ S, since KA,SA ∈ S and S
is closed under application. Then:

t̃Aa1...an ⪯ (λx1...xn.t)Aa1...an ⪯ (t{x1 ∶= a1, ..., xn ∶= an})A

where we have used Lemma 2.3. Since S is upwards closed, we can conclude.

Lemma 2.8. The relation ⊢S is a preorder on A.

Proof. Let a, b, c ∈ A.

• Reflexivity.

Axiom
x ∶ a ⊢ x ∶ a →-intro.⊢ λx.x ∶ a→ a

hence (λx.x)A ⪯ a→ a. Since (λx.x)A ∈ S because of Lemma 2.7, then
a→ a ∈ S, i.e. a ⊢S a.

• Transitivity. Let us suppose a ⊢S b and b ⊢S c, then:

Axiom

Γ ⊢ y ∶ b→ c

Axiom

Γ ⊢ x ∶ a→ b
Axiom

Γ ⊢ z ∶ a →-elim.
Γ ⊢ xz ∶ b

→-elim.
Γ ⊢ y(xz) ∶ c

→-intro.
x ∶ a→ b, y ∶ b→ c ⊢ λz.y(xz) ∶ a→ c

where Γ = x ∶ a → b, y ∶ b → c, z ∶ a. Hence (λz.y(xz)([x ∶= a → b, y ∶=
b→ c])A ⪯ a→ c. So, a→ c ∈ S by Lemma 2.7.
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We will denote with A/S = (A/S,≤S) the poset induced by the relation
of entailment ⊢S , in particular:

• A/S = {[a]S ∶ a ∈ A} is the quotient of A by the equivalence relation
⊣⊢S where

a ⊣⊢S b⇔ a ⊢S b and b ⊢S a

• if a, b ∈ A: [a]S ≤S [b]S ⇔ a ⊢S b

We will often use the notation [a] instead of [a]S .

Theorem 2.7. Let A be an implicative structure and S be a separator of
A. Let us define H = (A/S,≤S) and, given [a], [b] ∈H:

[a] ∧H [b] ∶= [a × b]
[a] ∨H [b] ∶= [a + b]
[a]→H [b] ∶= [a→ b]
⊺H ∶= [⊺] = S
�H ∶= [�] = {c ∈ A ∶ ¬c ∈ S}

then H = (H,∧H ,∨H ,→H ,�H ,⊺H) is a Heyting algebra.

Proof. Let a, b, c ∈ A.

• ∧H . Let [c] ≤S [a] and [c] ≤S [b]:

Axiom

Γ ⊢ x ∶ c→ a
Axiom

Γ ⊢ z ∶ c →-elim.
Γ ⊢ xz ∶ a

Axiom

Γ ⊢ y ∶ c→ b
Axiom

Γ ⊢ z ∶ c
→-elim.

Γ ⊢ yz ∶ b
Th. 2.3

Γ ∶= x ∶ c→ a, y ∶ c→ b, z ∶ c ⊢ λw.w(xz)(yz) ∶ a × b
→-intro

x ∶ c→ a, y ∶ c→ b ⊢ λzw.w(xz)(yz) ∶ c→ a × b

Since c → a, c → b ∈ S, we can conclude that c → a × b ∈ S, by Lemma
2.7, i.e. [c] ≤S [a × b]. Conversely:

Axiom

z ∶ a × b ⊢ z ∶ a × b
Th. 2.3

z ∶ a × b ⊢ zλxy.x ∶ a
→-intro.⊢ λz.zλxy.x ∶ a × b→ a
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Axiom

z ∶ a × b ⊢ z ∶ a × b
Th. 2.3

z ∶ a × b ⊢ zλxy.y ∶ b
→-intro.⊢ λz.zλxy.y ∶ a × b→ b

so [a×b] ≤S [a] and [a×b] ≤S [b] by Lemma 2.3. Hence infH([a], [b]) =
[a × b];

• ∨H . Let [a] ≤S [c] and [b] ≤S [c]:

Axiom

Γ ⊢ z ∶ a + b

Axiom

Γ,w ∶ a ⊢ x ∶ a→ c
Axiom

Γ,w ∶ a ⊢ w ∶ a
→-elim.

Γ,w ∶ a ⊢ xw ∶ c π
Th. 2.4

Γ ∶= x ∶ a→ c, y ∶ b→ c, z ∶ a + b ⊢ z(λw.xw)(λu.yu) ∶ c
→-intro

x ∶ a→ c, y ∶ b→ c ⊢ λz.z(λw.xw)(λu.yu) ∶ a + b→ c

where π is:

Axiom

Γ, u ∶ b ⊢ y ∶ b→ c
Axiom

Γ, u ∶ b ⊢ u ∶ b
→-elim.

Γ, u ∶ b ⊢ yu ∶ c

Then a + b→ c ∈ S, by Lemma 2.7. Furthermore,

Axiom
x ∶ a ⊢ x ∶ a

Th. 2.4
x ∶ a ⊢ λzw.zx ∶ a + b →-intro.⊢ λxzw.zx ∶ a→ a + b

Axiom

x ∶ b ⊢ x ∶ b
Th. 2.4

x ∶ b ⊢ λzw.wx ∶ a + b →-intro.⊢ λxzw.wx ∶ b→ a + b

Hence, [a] ≤S [a + b] ∈ S and [b] ≤S [a + b] ∈ S. So supH([a], [b]) =
[a + b];

• →H . Let [c] ∧H [a] ≤s [b], i.e. (c × a)→ b ∈ S.

Axiom

Γ ⊢ x ∶ (c × a)→ b

Axiom

Γ ⊢ y ∶ c
Axiom

Γ ⊢ z ∶ a
Th. 2.3

Γ ⊢ λw.wyz ∶ c × a
→-elim.

Γ ∶= x ∶ (c × a)→ b, y ∶ c, z ∶ a ⊢ x(λw.wyz) ∶ b
→-intro.

x ∶ (c × a)→ b, y ∶ c ⊢ λz.x(λw.wyz) ∶ a→ b
→-intro.

x ∶ (c × a)→ b ⊢ λyz.x(λw.wyz) ∶ c→ a→ b
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Then [c] ≤S [a→ b]. Conversely, if [c] ≤S [a→ b]:

Axiom

Γ ⊢ x ∶ c→ a→ b

Axiom

Γ ⊢ y ∶ c × a
Th. 2.3

Γ ⊢ yλx′y′.x′ ∶ c
→-elim.

Γ ⊢ x(yλx′y′.x′) ∶ a→ b

Axiom

Γ ⊢ y ∶ c × a
Th. 2.3

Γ ⊢ yλx′y′.y′ ∶ a
→-elim.

Γ ∶= x ∶ c→ a→ b, y ∶ c × a ⊢ x(yλx′y′.x′)(yλx′y′.y′) ∶ b
→-intro.

x ∶ c→ a→ b ⊢ λy.x(yλx′y′.x′)(yλx′y′.y′) ∶ (c × a)→ b

Then (c × a)→ b ∈ S, i.e. [c] ∧H [a] ≤S [b].

• ⊺H . If s ∈ S then

Param.

x ∶ ⊺ ⊢ s ∶ s →-intro.⊢ λx.s ∶ ⊺→ s

thus [⊺] = [s]. Furthermore, for every c ∈ A:

⊺-intro.
x ∶ c ⊢ x ∶ ⊺ →-intro.⊢ λx.x ∶ c→ ⊺

then [c] ≤S [⊺]. Hence, ⊺H = S.

• �H . For every c ∈ A:

Axiom

x ∶ � ⊢ x ∶ �
Subs.x ∶ � ⊢ x ∶ c →-intro.⊢ λx.x ∶ �→ c

then [�] ≤S [c], i.e. �H = [�]. Clearly, [c] = [�] if and only if c→ � ∈ S;
thus �H = {c ∈ A ∶ c→ � ∈ S}.

2.4 Examples

2.4.1 Complete Heyting algebras and implicative algebras

Let us fix a complete Heyting algebra H = (H,≤,∧,∨,→,⊺,�).

Lemma 2.9. (H,≤,→) is an implicative structure.
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Proof. Clearly H is a complete meet-semilattice. If a′ ≤ a and b ≤ b′ are
elements of H then:

a→ b ≤ a→ b then a→ b ∧ a ≤ b
then a→ b ∧ a′ ≤ b′

then a→ b ≤ a′ → b′

Furthermore, ⋀i∈I(a → bi) = a → ⋀i∈I bi. Indeed, since a → ⋀i∈I bi ≤ a → bi
for every i ∈ I, it is obvious that a → ⋀i∈I bi ≤ ⋀i∈I(a → bi) and since

⋀i∈I(a→ bi) ≤ a→ bi for every i ∈ I

then ⋀
i∈I
(a→ bi) ∧ a ≤ bi for every i ∈ I

then ⋀
i∈I
(a→ bi) ∧ a ≤⋀

i∈I
bi

then ⋀
i∈I
(a→ bi) ≤ a→⋀

i∈I
bi

Hence, we have proved that H is an implicative structure.

Let H = (H,≤,→) be the implicative structure induced by H.
We can observe that the application in H coincides with the binary meet.
Indeed, let a, b, c ∈ H then, by Lemma 2.1:

ab ≤ c if and only a ≤ b→ c if and only a ∧ b ≤ c

thus ab = a ∧ b.
Furthermore,

a × b = a ∧ b a + b = a ∨ b

Indeed, for every c ∈ H:

a→ b→ c ≤ a→ b→ c if and only if a ∧ b ∧ (a→ b→ c) ≤ c
if and only if a ∧ b ≤ (a→ b→ c)→ c

thus a ∧ b ≤ a × b. Since ⊺ ∧ a ∧ b ≤ a then ⊺ = a→ b→ a. Thus:

a × b = ⋏
c∈A
((a→ b→ c)→ c) ≤ (a→ b→ a)→ a = ⊺→ a ≤ a

where the last inequality follows from the fact that ⊺ → a ≤ ⊺ → a⇔ ⊺ →
a ≤ a. Analogously we can prove that a × b ≤ b, thus a × b ≤ a ∧ b.
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Since a ∧ (a→ c) = a(a→ c) ≤ c and b ∧ (b→ c) = b(b→ c) ≤ c by Lemma 2.1
then:

(a ∧ (a→ c)) ∨ (b ∧ (b→ c)) ≤ c
then (a ∧ (a→ c) ∧ (b→ c)) ∨ (b ∧ (b→ c) ∧ (a→ c)) ≤ c
then (a ∨ b) ∧ (a→ c) ∧ (b→ c) ≤ c
then a ∨ b ≤ ((a→ c)→ (b→ c)→ c)

thus a ∨ b ≤ a + b. While, let us observe that:

⊺→ a =⋁{c ∶ c ∧ ⊺ ≤ a} = a

Thus, let c ∈ A be such that a ≤ c and b ≤ c, i.e. a→ c = b→ c = ⊺. Then

(a→ c)→ (b→ c)→ c = ⊺→ ⊺→ c = c

Thus a + b ≤ a ∨ b, because a ∨ b = ⋀{c ∈ H ∶ a ≤ c and b ≤ c}.

Lemma 2.10. If t is a λ-term such that FV (t) = {x1, ..., xn} and a1, ..., an ∈
H, then:

a1 ∧ ... ∧ an ≤ (t{x1 ∶= a1, ..., xn ∶= an})H

Furthermore, if t is closed then tH = ⊺.

Proof. By induction on t.

• if t = x1 then a ≤ a = (x1{x1 ∶= a})H;

• if t = u1u2 then

(t{x1 ∶= a1, ..., xn ∶= an})H

= (u1{x1 ∶= a1, ..., xn ∶= an})H(u2{x1 ∶= a1, ..., xn ∶= an})H

= (u1{x1 ∶= a1, ..., xn ∶= an})H ∧ (u2{x1 ∶= a1, ..., xn ∶= an})H

≥ a1 ∧ ... ∧ an

where the last inequality follows by the inductive hypothesis;

• if t = λy.u then

(t{x1 ∶= a1, ..., xn ∶= an})H = ⋀
b∈H
(b→ (u{y ∶= b, x1 ∶= a1, ..., xn ∶= an})H)

≥ ⋀
b∈H
(b→ b ∧ a1 ∧ ... ∧ an)
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by inductive hypothesis. Furthermore, since a ≤ b → b ∧ a, we can
conclude that

(t{x1 ∶= a1, ..., xn ∶= an})H ≥ a1 ∧ ... ∧ an

Now, we want to analyze the separators of an implicative algebra induced
by a Heyting algebra.

Lemma 2.11. Let S ⊆ H. Then S is a separator for H if and only if it is
a filter over H.

Proof. Let S be a separator. We have already proved that any separator is
closed under application, thus xy ∈ S for every x, y ∈ S. Since xy = x ∧ y we
can conclude that S is a filter.
Conversely, let S be a filter. By Lemma 2.10, KH = SH = ⊺ thus they are
elements of S. If x → y, x ∈ S, there exists z ∈ S such that z ≤ x → y, hence
z ∧ x ≤ y, and z ≤ x. Then, z = z ∧ x ≤ y. Since S is upwards closed, then
y ∈ S. Thus, S is closed under modus ponens.

Lemma 2.12. The following are equivalent:

1. H is a complete Boolean algebra;

2. ccH = ⊺;

3. tH = ⊺ for all closed λ-terms with ccH.

Proof. (1) ⇒ (2). If H is Boolean, then clearly ((a → �) → a) → a = ⊺ for
every a ∈ H thus ccA = ⊺.
(2)⇒ (3). If t is a closed λ-term with ccH. We define a λ-term u such that
t = u{x ∶= ccH} and FV (u) = {x}. By Lemma 2.10, then ⊺ = ccH ⪯ tH.
(3)⇒ (1). Since ccH = ⊺, we have that ((a→ �)→ a)→ a = ⊺ for every a ∈ H
and since ((a→ �)→ a)→ a ⪯ ((a→ �)→ �)→ a, then H is Boolean.

2.4.2 Kleene’s Realizability

In this subsection, we will study the relationship between implicative alge-
bras and Kleene’s realizability.
The main idea of Kleene’s realizability is to identify every closed formula as
the set of its realizers: fixed an algebra of programs P , every closed formula
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φ is interpreted as a subset JφK of P . Following this interpretation, for every
closed formulas φ,ψ, we define:

Jφ ∧ψK = JφK × JψK Jφ ∨ψK = JφK + JψK

While, the existential and the universal quantification have the following
expression:

J∀xϕ(x)K = ⋂
v∈M

Jφ(v)K J∃xϕ(x)K = ⋃
v∈M

Jφ(v)K

Our aim is to show that we can express Kleene’s realizability in terms of
implicative algebras. Let us start by defining:

Definition 2.10. (P, ⋅) is a partial applicative structure PAS if P is
a non-empty set and ⋅ ∶ P × P ⇀ P is a partial operation over P called
application. If x ⋅ y is defined we write x ⋅ y ↓ for every x, y ∈ P .
If P is a PAS, we can define a binary operation on P(P ), called Kleene’s
implication, such that if a, b ⊆ P :

a→ b ∶= {z ∈ P ∶ ∀x ∈ a z ⋅ x ↓∈ b2}

Definition 2.11. A partial combinatory algebra PCA is a PAS (P, ⋅)
such that there exist two elements k, s ∈ P such that if x, y, z ∈ P :

1. (k ⋅ x) ↓, (s ⋅ x) ↓ and ((s ⋅ x) ⋅ y) ↓;

2. (k ⋅ x) ⋅ y ≃ x;

3. ((s ⋅ x) ⋅ y) ⋅ z ≃ (x ⋅ z) ⋅ (y ⋅ z)

where ≃ indicates that either both sides of the equations are undefined or
that they are both defined and equal.
A combinatory algebra (CA) is a PCA such that the application ⋅ ∶
P × P → P is total.

Thus, if P is a non-empty set and ⋅ is a binary application on P , then
(P, ⋅) is a CA if there exist k, s ∈ P such that, for all x, y, z ∈ P :

1. (k ⋅ x) ⋅ y = x;

2. ((s ⋅ x) ⋅ y) ⋅ z = (x ⋅ z) ⋅ (y ⋅ z).
2The notation z ⋅ x ↓∈ b means that z ⋅ x ↓ and z ⋅ x ∈ b.
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While, the corresponding Kleene’s implication can be defined as:

a→ b = {z ∈ P ∶ ∀x ∈ a z ⋅ x ∈ b}.

Lemma 2.13. If (P, ⋅) is a CA, then A = (P(P ),⊆,→), where → denote
Kleene’s implication, is an implicative structure.

Proof. Clearly (P(P ),⊆) is a complete meet-semilattice. Let a, a′, b, b′ ⊆ P
such that a′ ⊆ a and b ⊆ b′; we want to show that a→ b ⊆ a′ → b′. If z ∈ a→ b
then z ⋅x ∈ b for every x ∈ a, thus z ⋅x ∈ b′ for every x ∈ a′, i.e. a→ b ⊆ a′ → b′.
Now, let (bi)i∈I be a set-indexed family of subsets of P . If z ∈ P then:

z ∈ a→⋂
i∈I
bi iff ∀x ∈ a z ⋅ x ∈⋂

i∈I
bi iff ∀x ∈ a ∀i ∈ I z ⋅ x ∈ bi ∀x ∈ a

iff ∀i ∈ I z ∈ a→ bi iff z ∈⋂
i∈I
(a→ bi)

Thus, A is an implicative structure.

Lemma 2.14. Let A = (P(P ),⊆,→) be the implicative structure induced by
a CA (P, ⋅), then S = P(P ) ∖ {∅} is a separator of A.

Proof. Clearly, S is upwards closed. Now, let us prove that KA,SA ∈ S. Let
a, b, c ⊆ P . Then:

a→ b→ a = {z ∈ P ∶ ∀x ∈ a z ⋅ x ∈ (b→ a)}
= {z ∈ P ∶ ∀x ∈ a, ∀y ∈ b (z ⋅ x) ⋅ y ∈ a}

thus, clearly k ∈ a→ b→ a and KA ∈ S.
While

(a→ b→ c)→ (a→ b)→ a→ c = {z ∈ P ∶ ∀x ∈ a→ b→ c z ⋅ x ∈ (a→ b)→ a→ c}
= {z ∈ P ∶ ∀y ∈ a→ b,∀w ∈ a,∀x ∈ a→ b→ c (((z ⋅ x) ⋅ y) ⋅w) ∈ c}

Let us observe that x ⋅w ∈ b→ c since x ∈ a→ b→ c and w ∈ a, while y ⋅w ∈ b
because y ∈ a→ b and w ∈ a. Then:

(((s ⋅ x) ⋅ y) ⋅w) = (x ⋅w) ⋅ (y ⋅w) ∈ c for every x ∈ a→ b→ c, y ∈ a→ b, w ∈ a

thus SA ∈ S.
Now, let a→ b ∈ S and a ∈ S. Then, there exists x, y ∈ P such that x ∈ a→ b
and y ∈ a, then clearly x ⋅ y ∈ b, i.e. b ≠ ∅.
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Let (P, ⋅) be a CA and A = (P, ⋅,→,P(P ) ∖ ∅) the implicative algebra
induced. If a, b ⊆ P then:

a ⋅ b = {x ⋅ y ∶ x ∈ a, y ∈ b} = ab

Indeed, let c ⊆ P then:

a ⋅ b ⊆ c iff ∀x ∈ a,∀y ∈ b x ⋅ y ∈ c iff a ⊆ b→ c

thus, a ⋅ b = ab by Lemma 2.1.

2.4.3 Classical realizability

The main difference between classical and intuitionistic realizability is that
in classical realizability every closed formula ϕ is not interpreted as the set
of its realizers but as the set of its counter-realizers, i.e. JϕK ∈ P(Π) where
Π is the set of stacks associated to an algebra of classical programs Λ. The
set of its realizers are instead defined indirectly as the orthogonal set of
JϕK ∈ P(Π) with respect to a particular relation ⊥⊥⊆ Λ ×Π.
As before, we will show how classical realizability can be expresses through
implicative algebras.

Definition 2.12. We say that K = (Λ,Π,⊕, ⋅, k ,K,S, cc, PL,⊥⊥) is an ab-
stract Krivine structure if:

1. Λ and Π are non empty-sets. We called their elements K-terms and
K-stack respectively;

2. ⊕ ∶ Λ×Λ→ Λ is a map called application. We usually write tu instead
of ⊕(t, u);

3. ⋅ ∶ Λ ×Π→ Π is a map called push;

4. k ∶ Π → Λ is a map that associates every π ∈ Π to a K-term kπ called
the continuation associated to π;

5. K,S and cc are three different elements of Λ;

6. PL ⊆ Λ is closed under application and K,S, cc ∈ PL. PL is called the
set of proof-like K-terms;
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7. ⊥⊥⊆ Λ ×Π is such that, for every t, u, v ∈ Λ and π,π′ ∈ Π:

t ⊥⊥ u ⋅ π Ô⇒ tu ⊥⊥ π
t ⊥⊥ π Ô⇒ K ⊥⊥ t ⋅ u ⋅ π

t ⊥⊥ v ⋅ uv ⋅ π Ô⇒ S ⊥⊥ t ⋅ u ⋅ v ⋅ π
t ⊥⊥ kπ ⋅ π Ô⇒ cc ⊥⊥ t ⋅ π

t ⊥⊥ π Ô⇒ kπ ⊥⊥ t ⋅ π′

⊥⊥ is called the pole of K.

If a ⊆ Π we will denote:

a⊥⊥ ∶= {t ∈ Λ ∶ ∀π ∈ a t ⊥⊥ π}

Let us fix an AKS K and let A = (P(Π),⊇,→) where

a→ b ∶= a⊥⊥ ⋅ b = {t ⋅ π ∶ t ∈ a⊥⊥, π ∈ b}

for every a, b ⊆ Π.

Lemma 2.15. A = (P(Π),⊇,→) is an implicative structure.

Proof. Clearly, (P(Π),⊇) is a complete meet-semilattice. Let a, a′, b, b′ ⊆ Π
be such that a′ ⊇ a and b ⊇ b′. If z ∈ a′ → b′ then z = t ⋅ π where t ∈ a′⊥⊥, π ∈ b.
Clearly, a′⊥⊥ ⊆ a⊥⊥, thus z ∈ a′ → b′, i.e. a→ b ⊇ a′ → b′.
Now, let (bi)i∈I a set-indexed family of subsets of Π.

a→⋃
i∈I
bi = {t ⋅ π ∶ t ∈ a⊥⊥, π ∈ bi for some i ∈ I} =⋃

i∈I
{t ⋅ π ∶ t ∈ a⊥⊥, π ∈ bi}

=⋃
i∈I
(a→ bi)

Theorem 2.8. Let S = {a ∈ A ∶ a⊥⊥ ∩ PL ≠ ∅}. Then S is a classical
separator of A.

Proof. Clearly, S is upwards closed: if a, b ⊆ Π such that a ∈ S and a ⊇ b
then a⊥⊥ ⊆ b⊥⊥ thus b⊥⊥ ∩ PL ≠ ∅ and b ∈ S.
Let us observe that K ∈ (KA)⊥⊥. Indeed, let π ∈ (a→ b→ a) for some a, b ⊆ Π
then

π = t ⋅ u ⋅ π′ where t ∈ a⊥⊥, u ∈ b⊥⊥, π′ ∈ a
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thus t ⋅ π′ and K ⊥⊥ π.
Now, let π ∈ (a→ b→ c)→ (a→ b)→ a→ c for some a, b, c ⊆ Π. Then

π = t ⋅ u ⋅ v ⋅ π′ where t ∈ (a→ b→ c)⊥⊥, u ∈ (a→ b)⊥⊥, v ∈ a⊥⊥, π′ ∈ c

Clearly if τ ∈ b then u ⊥⊥ v ⋅ τ and thus uv ∈ b⊥⊥. Then:

v ⋅ uv ⋅ π′ ∈ a→ b→ c then t ⊥⊥ v ⋅ uv ⋅ π′ then S ⊥⊥ π

hence S ∈ (SA)⊥⊥.
Let a, b ⊆ Π and π ∈ (((a → b) → a) → a). Then π = t ⋅ π′ where t ∈ ((a →
b) → a)⊥⊥ and π′ ∈ a. Since π′ ∈ a then kπ′ ⊥⊥ u ⋅ τ for every u ∈ a⊥⊥ and τ ∈ b.
Since t ∈ ((a→ b)→ a)⊥⊥, we have that t ⊥⊥ kπ′ ⋅π′ and consequently cc ⊥⊥ t ⋅π′.
Thus ccA ∈ S.
If a, a→ b ∈ S there exists t ∈ a⊥⊥ and u ∈ (a→ b)⊥⊥, thus tu ∈ b⊥⊥.
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Chapter 3

Implicative triposes

Our aim in this chapter is to prove that every implicative algebra induces a
Set-based tripos, called implicative tripos.

3.1 Defining AI/S[I]

Let us suppose that A = (A,⪯,→) is a fixed implicative and I a fixed set.
Then we can define

AI = (AI ,⪯I ,→I)
where:

• AI ∶= {η ∶ I → A map}

• η ⪯I ζ⇔ η(i) ⪯ ζ(i) for all i ∈ I

• (η →I ζ)(i) ∶= η(i)→ ζ(i) for all i ∈ I.

Lemma 3.1. AI = (AI ,⪯I ,→I), defined above, is an implicative structure.

Proof. (AI ,⪯I) is a complete meet-semilattice: if (ζj)j∈J is a set-indexed
family of elements of AI then we can define ⋏j∈J ζj ∶ I → A, in the following
way (⋏j∈J ζj)(i) ∶= ⋏j∈J ζj(i). Clearly, ⋏j∈J ζj is the greatest lower bound
of (ζj)j∈J .
Given η, η′, ζ, ζ ′ ∈ AI such that η′ ⪯I η and ζ ⪯I ζ ′, using the definition of
⪯I and that A is an implicative structure, it is clear that (η(i) → ζ(i)) ⪯
(η′(i)→ ζ ′(i)) for every i ∈ I, and consequently that (η → ζ) ⪯I (ζ ′ → η′).
Furthermore:

(η → ⋏
j∈J

ζj)(i) = η(i)→ ⋏
j∈J

ζj(i) = ⋏
j∈J
(η(i)→ ζj(i)) = ⋏

j∈J
(η → ζj)
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Now, our aim is to define a suitable separator for AI , in order to give it
the structure of an implicative algebra.

Definition 3.1. The uniform power separator S[I] ⊆ AI is defined by

S[I] ∶ = {η ∈ AI ∶ ∃s ∈ S,∀i ∈ I, s ⪯ η(i)}
= {η ∈ AI ∶ ∃s ∈ S, s ⪯⋏

i∈I
η(i)}

= {η ∈ AI ∶⋏
i∈I
η(i) ∈ S}

The next lemma states that the notion of uniform power separator is
well defined.

Lemma 3.2. The power uniform separator S[I] defined above is actually a
separator.

Proof. It is clear that S[I] is upward closed: let η ∈ S[I] and ζ ∈ AI such
that η ⪯ ζ, then there exists s ∈ S such that s ⪯ η(i) and consequently
s ⪯ ζ(i) for all i ∈ I.
Furthermore,

KA
I(i) = (λxy.x)AI(i) = ⋏

η,ζ∈AI

(η → ζ → η)(i) = ⋏
η,ζ∈AI

(η(i)→ ζ(i)→ η(i))

= ⋏
a,b∈A

a→ b→ a =KA

then, since KA ∈ S, we have that KA
I ∈ S[I]. Analogously we can prove

that SA
I ∈ S[I].

Now, we want to prove that S is closed under modus ponens. Let (η →
ζ), η ∈ S[I]. So there exist s, s′ ∈ S such that s ⪯ η(i) → ζ(i) and s′ ⪯ η(i)
for every i ∈ I. By Lemma 2.1, ss′ ⪯ (η → ζ)(i)η(i) ⪯ ζ(i) for every i ∈ I.
Since S is closed under application, we have that ζ ∈ S[I].

3.2 Implicative triposes

Theorem 3.1. Let A = (A,⪯,→, S) be an implicative algebra. Then the
correspondence:

P ∶ Setop → HA

I↦ AI/S[I]
f ↦ [− ○ f]
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defines a Set-based tripos, called the implicative tripos induced by A.

Proof. We already showed that PI is a Heyting algebra for every set I in
Theorem 2.7.

• P is a functor. Let I, J be sets and f ∶ I → J . Then f induces

Af ∶ AJ → AI

η ↦ η ○ f

Let us suppose η, ζ ∈ AJ are such that η ⊣⊢S[J] ζ. This means that
η → ζ, ζ → η ∈ S[J], so there exist s, s′ ∈ S such that for all j ∈ J :

s ⪯ η(j)→ ζ(j) s′ ⪯ ζ(j)→ η(j)

Then for all i ∈ I:

s ⪯ (η ○ f)(i)→ (ζ ○ f)(i) s′ ⪯ (ζ ○ f)(i)→ (η ○ f)(i)

soAf(η)→ Af(ζ), Af(ζ)→ Af(η) ∈ S[I], or equivalentlyAf(η) ⊣⊢S[I]
Af(ζ).
Therefore, the map Af ∶ AJ → AI factors into a map Pf ∶ PJ → PI.
We now have to verify that Pf is a morphism of HAs.
Let p = [η], q = [ζ] ∈ PJ :

Pf(p ∧ q) = Pf([η] ∧ [ζ]) = Pf([η × ζ]) = [(η × ζ) ○ f]
= [i↦ (η × ζ)(f(i))] = [i↦ η(f(i)) × ζ(f(i))]
= [(η ○ f) × (ζ ○ f)] = [η ○ f] ∧ [ζ ○ f]
= Pf(p) ∧ Pf(q)

Clearly, the proofs for the other connectives are similar. Then Pf is a
morphism of HAs.
Furthermore, P(idJ) = idPJ : let p = [η] ∈ PJ then

P(idJ)(p) = P(idJ)([η]) = [η ○ idJ] = [η] = p

P preserves the composition of morphisms: if f ∶ I → J and g ∶ K → I
then for every p = [η] ∈ PJ :

P(f ○ g)(p) = P(f ○ g)([η]) = [η ○ f ○ g]
= Pg([η ○ f]) = Pg(Pf([η]))
= (Pg ○ Pf)(p)
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• Existence of right adjoints. Let f ∶ I → J , if η ∈ AI , we can define

∀0f(η) ∶ J → A
j ↦ ∀0

f(η)(j) ∶= ∀f(i)=jη(i)

If η ⊢S[I] ζ then there is s ∈ S such that:

s ⪯⋏
i∈I
(η(i)→ ζ(i))

Let j ∈ J and i ∈ I ∶ f(i) = j then:

s ⪯ η(i)→ ζ(i) ⪯ ( ⋏
f(i′)=j

η(i′))→ ζ(i)

so:

s ⪯ ⋏
f(i)=j

(( ⋏
f(i′)=j

η(i′))→ ζ(i)) = ( ⋏
f(i′)=j

η(i′))→ ⋏
f(i)=j

ζ(i)

Then:

s ⪯ ⋏
j∈J
(∀0

f(η)(j)→ ∀0
f(ζ)(j)) i.e. ∀0

f(η) ⊢S[J] ∀0
f(ζ)

This means that if η ⊣⊢S[I] ζ then ∀0
f(η) ⊣⊢S[J] ∀0

f(ζ). Hence, it is
possible to define:

∀f ∶ PI → PJ

[η]↦ [∀0
f(η)]

Given p = [η] ∈ PI and q = [ζ] ∈ PJ , then:

Pf(q) ≤ p⇔ [ζ ○ f] ⪯ [η]⇔ (ζ ○ f)→ η ∈ S[I]

⇔⋏
i∈I
((ζ ○ f)(i)→ η(i)) ∈ S⇔ ⋏

j∈J
⋏

f(i)=j
(ζ(j)→ η(i)) ∈ S

⇔ ⋏
j∈J
(ζ(j)→ ⋏

f(i)=j
η(i)) ∈ S⇔ ⋏

j∈J
(ζ(j)→ ∀0

f(η)(j)) ∈ S

⇔ ζ → ∀0
f(η) ∈ S[J]⇔ q ≤ ∀f(p)
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• Existence of left adjoints. Let f ∶ I → J , if η ∈ AI , we can define

∃0f(η) ∶ J → A
j ↦ ∃0f(η)(j) ∶= ∃f(i)=jη(i)

Let η, ζ ∈ AI such that η ⊢S[I] ζ, then there exists s ∈ S such that:

s ⪯⋏
i∈I
(η(i)→ ζ(i))

We denote with α = ⋏i∈I(η(i)→ ζ(i)). Then:

Axiom

Γ ⊢ x ∶ ∃0f(η)(j)
π

Γ, z ∶ η(i) ⊢ y(sz) ∶ c for all i ∈ I ∶ f(i) = j
Th. 2.6

Γ ∶= s ∶ α,x ∶ ∃0f(η)(j), y ∶ ⋏f(i)=j ζ(i)→ c ⊢ t ∶= xλz.y(sz) ∶ c
→-intro.

s ∶ α,x ∶ ∃0f(η)(j) ⊢ λy.t ∶ (⋏f(i)=j ζ(i)→ c)→ c for all c ∈ A
Gen.

s ∶ α,x ∶ ∃0f(η)(j) ⊢ λy.t ∶ ∃0f(ζ)(j)
→-intro.

s ∶ α ⊢ λxy.t ∶ ∃0f(η)(j)→ ∃0f(ζ)(j) for all j ∈ J
Gen.

s ∶ α ⊢ λxy.t ∶ ⋏j∈J (∃0f(η)(j)→ ∃0f(ζ)(j))

where π is the following tree:

Axiom

Γ′ ⊢ y ∶ ⋏f(i)=j(ζ(i)→ c)
Subs.

Γ′ ⊢ y ∶ ζ(i)→ c π′
→-elim.

Γ′ ∶= Γ, z ∶ η(i) ⊢ y(sz) ∶ c

and π′ is:

Axiom

Γ′ ⊢ s ∶ α
Subs.

Γ′ ⊢ s ∶ η(i)→ ζ(i)
Axiom

Γ′ ⊢ z ∶ η(i)
→-elim.

Γ′ ⊢ sz ∶ ζ(i)

i.e. we have proved that

(λxy.x(λz.y(sz)))A ⪯ ⋏
j∈J
(∃0f(η)(j)→ ∃0f(ζ)(j))
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hence:
∃0f(η)→ ∃0f(ζ) ∈ S[J] i.e. ∃0f ⊢S[J] ∃0f(ζ)

by Lemma 2.7. Thus, we can define:

∃f ∶ PI → PJ

[η]↦ [∃0f(η)]

We want to prove that ∃f is actually the left adjoint of Pf .
Let us start by observing that if p = [η] ∈ PI and q = [ζ] ∈ PJ , then:

p ≤ Pf(q)⇔ ⋏
j∈J
⋏

f(i)=j
(η(i)→ ζ(j)) ∈ S

Since:

Axiom

Γ ⊢ x ∶ ∃0fη(j) τ
Th. 2.6

Γ ∶= z ∶ ⋏f(i)=j(η(i)→ ζ(j)), x ∶ ∃0fη(j) ⊢ t ∶= xλy.zy ∶ ζ(j)
→-intro.

z ∶ ⋏f(i)=j(η(i)→ ζ(j)) ⊢ λx.t ∶ ∃0fη(j)→ ζ(j) for all j ∈ J
Gen.

z ∶ ⋏f(i)=j(η(i)→ ζ(j)) ⊢ λx.t ∶ ⋏j∈J(∃0fη(j)→ ζ(j))

where τ is the following tree:

Axiom

Γ, y ∶ η(i) ⊢ z ∶ ⋏f(i)=j η(i)→ ζ(j)
Subs.

Γ, y ∶ η(i) ⊢ z ∶ η(i)→ ζ(j)
Axiom

Γ, y ∶ η(i) ⊢ y ∶ η(i)
→-elim.

Γ, y ∶ η(i) ⊢ zy ∶ ζ(j) for all i ∈ I ∶ f(i) = j

Then:

⋏
j∈J
⋏

f(i)=j
(η(i)→ ζ(j)) ∈ S ⇒ ⋏

j∈J
(∃0fη(j)→ ζ(j)) ∈ S

Conversely, let Γ = x ∶ ⋏j∈J(∃0fη(j)→ ζ(j)), y ∶ η(i) then:
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Axiom

Γ ⊢ x ∶ ⋏j∈J(∃0fη(j)→ ζ(j))
Subs.

Γ ⊢ x ∶ ∃0fη(j)→ ζ(j)

Axiom

Γ ⊢ y ∶ η(i)
Th. 2.6

Γ ⊢ λz.zy ∶ ∃0fη(j)
→-elim.

Γ ⊢ xλz.zy ∶ ζ(j)
→-intro.

x ∶ ⋏j∈J(∃0fη(j)→ ζ(j)) ⊢ λy.xλz.zy ∶ η(i)→ ζ(j) for all i ∈ I ∶ f(i) = j
Gen.

x ∶ ⋏j∈J(∃0fη(j)→ ζ(j)) ⊢ λy.xλz.zy ∶ ⋏f(i)=j(η(i)→ ζ(j)) for all j ∈ J
Gen.

x ∶ ⋏j∈J(∃0fη(j)→ ζ(j)) ⊢ λy.xλz.zy ∶ ⋏j∈J ⋏f(i)=j(η(i)→ ζ(j))
→-intro.

⊢ λxy.xλz.zy ∶ ⋏j∈J(∃0fη(j)→ ζ(j))⇒ ⋏j∈J ⋏f(i)=j(η(i)→ ζ(j))

hence:

⋏
j∈J
(∃0fη(j)→ ζ(j)) ∈ S ⇒ ⋏

j∈J
⋏

f(i)=j
(η(i)→ ζ(j)) ∈ S

Now, we can show that ∃f is the left adjoint of Pf :

p ≤ Pf(q)⇔ ⋏
j∈J
⋏

f(i)=j
(η(i)→ ζ(j)) ∈ S

⇔ ⋏
j∈J
(∃0f(η)(j)→ ζ(j)) ∈ S

⇔ ∃f(p) ≤ q

• Beck-Chevalley condition. Let us consider an arbitrary pullback in Set

I I1

I2 J

f1

f2 g1

g2

We have to prove that the following two diagrams commute:

PI PI1

PI2 PJ

∀f1

Pf2

∀g2
Pg1

PI PI1

PI2 PJ

∃f1

Pf2

∃g2
Pg1

But, thanks to Remark 1.4, it is sufficient to prove commutativity of
the first diagram. Furthermore, we can suppose:
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– I = {(i1, i2) ∈ I1 × I2 ∶ g1(i1) = g2(i2)}
– f1(i1, i2) = i1 and f2(i1, i2) = i2 for all (i1, i2) ∈ I

since all pullbacks in Set are like this, up to isomorphism[8].
Let p = [η] ∈ PI2 then

(∀f1 ○ Pf2)(p) = ∀f1([η ○ f2]) = ∀f1([(i1, i2)↦ η(i2)])

= [i1 ↦ ⋏
f1(i′1,i

′
2)=i1

η(i′2)] = [i1 ↦ ⋏
g2(i2)=g1(i1)

η(i2)]

= [i1 ↦ ∀0
g2(η)(g1(i1))] = Pg1([∀

0
g2(η)])

= (Pg1 ○ ∀g2)(p)

• Generic predicate. Let Σ ∶= A and trΣ ∶= [idA] ∈ PΣ. Then, we want
to show that, if I is a set then the decoding map

J KI ∶ ΣI → PI

f ↦ Pf(trΣ)

is surjective. Let us suppose p = [η] ∈ PI then:

Pη(trΣ) = Pη([idA]) = [idA ○ η] = [η] = p

3.2.1 Implicative triposes and forcing triposes

In this section, we want to characterize the implicative triposes induced by
complete Heyting algebras.
Let us start by fixing a complete Heyting algebra H and the subset S = {⊺} ⊆
H.
Clearly S is a filter, hence H = (H,≤,→, S) is an implicative algebra.
If I is a set, then S[I] = {⊺HI}. Thus:

HI/S[I] ≅HI

Then, it is obvious that:

Lemma 3.3. The implicative tripos induced by the implicative algebra H =
(H,≤,→,{⊺}) coincides with the forcing tripos induced by the complete Heyt-
ing algebra H.
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In this case, we can observe that the adjoints have a particular easy
definition. Indeed, if f ∶ I → J and η ∶ I → H are two maps, then

∃f(η) ∶ J → H ∀f(η) ∶ J → H
j ↦ ⋁

f(i)=j
η(i) j ↦ ⋀

f(i)=j
η(i)

Clearly, if η ∈ HI and ζ ∈ HJ then

∃f(η) ≤ ζ if and only if ∀j ∈ J ∶ ⋁
f(i)=j

η(i) ≤ ζ(j)

if and only if ∀j ∈ J ∶ η(i) ≤ ζ(j) ∀i ∈ I ∶ f(i) = j
if and only if ∀i ∈ I ∶ η(i) ≤ (ζ ○ f)(i)
if and only if η ≤ Pf(ζ)

and

ζ ≤ ∀f(η) if and only if ∀j ∈ J ∶ ζ(j) ≤ ⋀
f(i)=j

η(i)

if and only if ∀j ∈ J ∶ ζ(j) ≤ η(i) ∀i ∈ I ∶ f(i) = j
if and only if ∀i ∈ I ∶ (ζ ○ f)(i) ≤ η
if and only if Pf(ζ) ≤ η

Definition 3.2. Let A be an implicative structure. Then

⋔A∶= (λxy.x)A ⋏ (λxy.y)A = ⋏
a,b∈A
(a→ b→ a ⋏ b)

Let us observe that if a, b ∈ A then

⋔A ab ⪯ a ⋔A ab ⪯ b

This element has a fundamental role in defining which separators are filters
and which are not. Indeed:

Lemma 3.4. Let A be an implicative algebra and S be a separator of A.
The following are equivalent:

1. ⋔A∈ S;

2. [a × b] = [a ⋏ b] ∈ A/S for all a, b ∈ A;

3. S is a filter w.r.t. ⪯.
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Proof. (1)⇒ (2). If a, b ∈ A then:

Axiom

x ∶ a ⋏ b ⊢ x ∶ a ⋏ b
Subs.

x ∶ a ⋏ b ⊢ x ∶ a

Axiom

x ∶ a ⋏ b ⊢ x ∶ a ⋏ b
Subs.

x ∶ a ⋏ b ⊢ x ∶ b
Th. 2.4

x ∶ a ⋏ b ⊢ λz.zxx ∶ a × b →-intro.⊢ λxz.zxx ∶ a ⋏ b→ a × b
thus [a ⋏ b] ⊢S [a × b]. Conversely,

Parameter

Γ ⊢⋔A∶⋔A
Subs.

Γ ⊢⋔A∶ a→ b→ a ⋏ b

Axiom

Γ ⊢ z ∶ a × b
Th. 2.4

Γ ⊢ zλxy.x ∶ a
→-elim.

Γ ⊢⋔A (zλxy.x) ∶ b→ a ⋏ b

Axiom

Γ ⊢ z ∶ a × b
Th. 2.4

Γ ⊢ zλxy.y ∶ b
→-elim.

Γ ∶= z ∶ a × b ⊢⋔A (zλxy.x)(zλxy.y) ∶ a ⋏ b
→-intro.

⊢ λz. ⋔A (zλxy.x)(zλxy.y) ∶ a × b→ a ⋏ b
Then [a × b] = [a ⋏ b].
(2)⇒ (3). Let a, b ∈ S then [a] = [b] = [⊺]. Thus, [a⋏ b] = [a× b] = [⊺ × ⊺] =
[⊺] ∧ [⊺] = [⊺], thus a ∧ b ∈ S.
(3) ⇒ (1). Let S be a filter. Since (λxy.x)A and (λxy.x)A are in S then
also ⋔A∈ S.

Now, let us introduce two technical lemmas.

Lemma 3.5. Let S ⊆ A be a separator. The following are equivalent:

1. S is finitely generated and ⋔A∈ S;

2. S is a principal filter of A;

3. (A/S,⪯S) is complete and the quotient map from A to A/S commutes
with arbitrary meets.

Proof. (1)⇒ (2). Let S be generated by {g1, ..., gn}. Let

⋔Ak ∶=
k

⋏
i=1
(λx1...xk.xi)A = ⋏

a1,...,ak∈A
(a1 → ...ak → a1 ⋏ ... ⋏ ak)

Let

Y ∶= (λyf.f(yyf))(λzg.g(zzg)) Θ ∶= (Y(λr. ⋔An+1 g1...gn(rr)))A
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Clearly, Θ ∈ S. Furthermore, let us observe that for every λ-term with
parameters:

(Y(λr.t))A ⪯ (λf.f((λzg.g(zzg))(λzg.g(zzg))f))(λr.t))
A

⪯ ((λr.t)((λzg.g(zzg))(λzg.g(zzg))(λr.t)))
A

⪯ (t{r ∶=Y(λr.t}))A

thus Θ ⪯⋔An+1 g1...gn(ΘΘ) ⪯⋔An+1 ⋏g1 ⋏ ... ⋏ gn ⋏ ΘΘ. Thus, if a ∈ S0 then
Θ ⪯ a, i.e. S is generated by {Θ}.

(2) ⇒ (3). Let S be generated by {Θ} and (ai)i∈I be a set-indexed
family of elements of A. Since ⋏i∈I ai ⪯ ai for all i ∈ I, then:

[⋏
i∈I
ai]S ⪯S [ai]S ∀i ∈ I

Thus, [⋏i∈I ai]S is a lower bound of ([ai]S)i∈I . Now, let β = [b]S ∈ A/S be
another lower bound of [ai]S for all i ∈ I,. Clearly, b → ai ∈ S for all i ∈ I.
By hypothesis, Θ ⪯ a for every a ∈ S thus Θ ⪯ ⋏i∈I(b → ai) = b → ⋏i∈I ai i.e.
[b]s ⪯S [⋏i∈I ai]S . Hence, [⋏i∈I ai]S is the greatest lower bound of ([ai]S)i∈I .
Hence, we have showed that (A/S,⪯S) is complete and that the quotient
map A → A/S commutes with arbitrary meets.
(3)⇒ (2)⇒ (1). Let (A/S,⪯S) be complete and [⋏i∈I ai]S = ⋏i∈I[ai]S for
every set-indexed family of elements of A. Let us observe that

[⋏S]S = ⋏
s∈S
[s]S = [⊺]S

thus ⋏S ∈ S. Clearly, then S is a principal filter generated by ⋏S and by
Lemma 3.4 ⋔A∈ S.

Lemma 3.6. Let S be a separator of an implicative structure A. The fol-
lowing are equivalent:

1. S[I] = SI ;

2. S is closed under all I-indexed meets.

Proof. (1)⇒ (2). If η ∶ I → A ∈ SI = S[I] then there exists s ∈ S such that
s ⪯ ⋏i∈I η(i), hence ⋏i∈I η(i) ∈ S.
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(2)⇒ (1). Clearly, S[I] = {η ∶ I → A ∶ ∃s ∈ S such that s ⪯ ⋏i∈I η(i)} ⊆ SI
because S is upwards closed.
Let η ∶ I → S and s = ⋏i∈I η(i). Since s ⪯ η(i) for all i ∈ I and s ∈ S by
hypothesis, then η ∈ S[I].

Finally, we can characterize the forcing triposes.

Theorem 3.2. Let P ∶ Setop → HA be the implicative tripos induced by the
implicative algebra A = (A,⪯,→, S). Then, the following are equivalent:

1. P is isomorphic to a forcing tripos;

2. S is a principal filter of A;

3. S is finitely generated and ⋔A∈ S.

Proof. (1)⇒ (2). Let H be a complete Heyting algebra and ϕ be a natural
isomorphism from P to PH, where PH is the forcing tripos induced by H.
Clearly, if 1 = {∗} is a fixed singleton, we have that ϕ1 ∶ A/S → H is an
isomorphism of HA, thus A/S is a complete Heyting algebra. Now, let us
fix a set I. For every i ∈ I we define ī ∶ 1→ I as ī(∗) = i. Then:

Pī ∶ AI/S[I]→ A/S PHī ∶ HI → H
[η]S[I] ↦ [η(i)]S ζ ↦ ζ(i)

Clearly, by naturality of ϕ, the following diagram is commutative:

A/S H

AI/S[I] HI

ϕ1

Pī

ϕI

PH ī

Thus, for every η ∶ I → A and i ∈ I:

(ϕ1 ○ Pī)([η]S[I]) = (PHī ○ ϕI)([η]S[I])
ϕ1([η(i)]S) = ϕI([η]S[I])(i)

Now, let:

ρI ∶ AI/S[I]→ (A/S)I

[η]S[I] ↦ (i↦ Pī([η]S[I])) = [η(i)]S

57



then the following diagram

(A/S)I
ϕI1 // HI

AI/S[I]

ρI

OO

ϕI // HI

idHI

OO [η(−)]S � ϕI1 // ϕI1([η(−)]S)

[η(−)]S[I]
_

ρI

OO

� ϕI // ϕI([η(−)]S[I])
_

idHI

OO

commute, since idHI(ζ) = i↦ PHī(ζ).
Thus, ρI is an isomorphism because ϕI , ϕ

I
1 and idHI are isomorphism too.

Now, let us observe that for every η, ζ ∶ I → A:

[η]SI ≤SI [ζ]SI ⇔ η → ζ ∈ SI ⇔ η(i)→ ζ(i) ∈ S ∀i ∈ I
⇔ [η(i)]S ≤S [ζ(i)]S ∀i ∈ I

then we can define αI ∶ AI/SI → (A/S)I such that αI([η]SI) = i ↦ [η(i)]S .
Clearly, it is an isomorphism.
If ĩd is the is the inclusion of AI/S[I] in AI/SI then:

AI/S[I]

AI/SI (A/S)I
ρI

ĩd

αI

Thus, ĩd is an isomorphism, thus S[I] = SI . By Lemma 3.6, S is closed
under all I-indexed meets. Thus S is a principal filter generated by ⋏S.
(2)⇒ (1). Let S be a principal filter. By Lemma 3.5, then H ∶= P1 ≅ A/S is
a complete Heyting algebra and S is closed under arbitrary meets. Thus by
Lemma 3.6, S[I] = SI . Then ĩd and ρI -defined as above- are isomorphisms
for all sets I. Thus, since ρI is clearly natural, we can conclude that P is
isomorphic to PH.
(2)⇔ (3). By Lemma 3.5.

3.2.2 Intuitionistic realizability triposes and quasi-implicative
algebras

Definition 3.3. Let P = (P, ⋅, k, s) be a PCA. The intuitionistic realiz-
ability tripos induced by P is defined as follows:

P ∶ Setop → HA

I ↦ P(P )I/ ⊲⊳I
f ↦ [− ○ f]
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where:

η ⊳I ζ if and only if ⋂
i∈I
(η(i)→ ζ(i)) ≠ ∅

for all η, ζ ∶ I → P(P ).

Theorem 3.3. If P = (P, ⋅, k, s) is a CA then the intuitionistic realizabil-
ity tripos induced by P coincides with the implicative tripos induced by the
implicative algebra A = (P(P ),⊆,→,P(P ) ∖ ∅), where → is the Kleene’s
implication induced by P .

Proof. Let P be the intuitionistic realizability tripos induced by P and PA

the implicative tripos induced by the implicative algebraA = (P(P ),⊆,→, S)
where S = P(P )∖∅. It is sufficient to just show that PI = PAI for every set
I. Thus, let I be a set and η, ζ ∶ I → P(P ), then:

η ⊢S[I] ζ iff ⋂
i∈I
(η(i)→ ζ(i)) ∈ S iff ⋂

i∈I
(η(i)→ ζ(i)) ≠ ∅ iff η ⊳I ζ

Let P be a PCA. Similarly to the CA case, we can observe that (P(P ),⊆)
is a complete lattice and that Kleene’s implication fulfills the first axiom of
definition 2.1. Furthermore, if I is a not-empty set then Kleene’s implication
also satisfies the second axiom. Indeed, if I ≠ ∅ and a, bi ⊆ P for all i ∈ I
then:

a→⋂
i∈I
bi = {z ∈ P ∶ ∀x ∈ a, z ⋅ x ↓∈⋂

i∈I
bi} = {z ∈ P ∶ ∀x ∈ a, z ⋅ x ↓∈ bi∀i ∈ I}

=⋂
i∈I
(a→ bi)

While:

a→⋂∅ = a→ P = {z ∈ P ∶ ∀x ∈ a, z ⋅ x ↓} ≠ P =⋂∅1

This example leads us to define a new type of structure:

Definition 3.4. A quasi-implicative structure is a triple (A,⪯,→) where
(A,⪯) is a complete meet-semilattice and → is a binary operation such that
if a, a′, b, b′ ∈ A and (bi)i∈I is a non-empty set-indexed family of elements of
A:

1In the lattice (P(P ),⊆), the intersection of a set-indexed family (bi)i∈I of subsets of
P is defined as ⋂i∈I bi ∶= {z ∈ P ∶ z ∈ bi for every i ∈ I}, thus ⋂∅ = {z ∈ P} = P .
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• if a′ ⪯ a and b ⪯ b′ then (a→ b) ⪯ (a′ → b′)

• a→ ⋏i∈I bi = ⋏i∈I(a→ bi)

Thus, the difference between a quasi-implicative and an implicative struc-
tures is that

a→ ⊺ = ⊺ for all a ∈ A

does not hold in the quasi-implicative structures.

Given a quasi-implicative structure (A,⪯,→), we can define an associ-
ated implicative structure (B,⪯B,→B) called the completion of A in the
following way:

1. B = A ∪ {⊺B} where ⊺B is a new element;

2. if b, b′ ∈ B then: b ⪯B b′ if and only if b ⪯ b′ or b′ = ⊺B;

3. if b, b′ ∈ B then:

b→B b′ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

b→ b′ if b, b′ ∈ A
⊺A → b′ if b = ⊺B, b′ ∈ A
⊺B if b′ = ⊺B

Lemma 3.7. The completion of a quasi-implicative structure is an implica-
tive structure.

Proof. Let (A,⪯,→) be a quasi-implicative structure and (B,⪯B,→B) its
completion. It is clear that (B,⪯B,→) is a quasi-implicative structure. Let
us show that it is actually complete: if a ∈ B then

a→⋏∅ = a→ ⊺B = ⊺B =⋏∅

Let A be a quasi-implicative structure. Similarly to what we have done for
the implicative structures, we can equip A with two partial operations:

if {c ∈ A ∶ a ⪯ b→ c} ≠ ∅ then ab =⋏{c ∈ A ∶ a ⪯ b→ c}
if f is a partial function from A to A then λf = ⋏

a∈dom(f)
(a→ f(a))
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We can also define a partial function t↦ tA defined in the same way we did
for the implicative structures.
If we define the judgment:

Γ ⊢ t ∶ a⇔ F (t) ⊆ (Γ), (t[Γ])A is well defined, (t[Γ])A ⪯ a

then all the semantic rules we have proved in section 2.1.1 remain valid.
Furthermore, if we extend the notion of separator to the quasi-implicative
structure we can also define:

Definition 3.5. A quasi-implicative algebra is a quasi-implicative struc-
ture equipped with a separator.

It is clear that every quasi-implicative algebra induces a tripos, called
quasi-implicative tripos, in the same way that every implicative algebra
induces the implicative tripos.

Lemma 3.8. Let A = (A,⪯,→) be a a quasi-implicative structure and B =
(B,⪯B,→B) its completion. If ϕ ∶ A → B is the inclusion of A into B then
ϕ(KA) =KB and ϕ(SA) = SB.

Proof.

KB = ⋏
a,b∈B
(a→B b→B a)

= ⋏
a,b∈A
(a→B b→B a) ⋏ ⋏

a∈A
(a→B ⊺B →B a) ⋏ ⋏

b∈B
(⊺B →B b→B ⊺B)

= ⋏
a,b∈A
(a→ b→ a) ⋏ ⋏

a∈A
(a→B ⊺A → a) ⋏ ⋏

b∈B
(⊺B →B ⊺B)

= ⋏
a,b∈A
(a→ b→ a) ⋏ ⋏

a∈A
(a→ ⊺A → a) ⋏ ⊺B

= ⋏
a,b∈A
(a→ b→ a)

= ⋏
a,b∈A

ϕ(a→ b→ a)

= ϕ(KA)
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Clearly SB ⪯ ϕ(SA). Furthermore, we can observe that

if a ∈ B, b ∈ B, c = ⊺B ∶ (a→B b→B ⊺B)→B (a→B b)→B a→B ⊺B
= (a→B b→B ⊺B)→B (a→B b)→B ⊺B
= (a→B b→B ⊺B)→B ⊺B
= ⊺B

if a = ⊺B, b ∈ A, c ∈ A ∶ (⊺B →B b→B c)→B (⊺B →B b)→B ⊺B →B c
= (⊺A → b→ c)→ (⊺A → b)→ ⊺A → c

if a ∈ A, b = ⊺B, c ∈ A ∶ (a→B ⊺B →B c)→B (a→B ⊺B)→B a→B c
= (a→B ⊺A → c)→B ⊺B →B a→ c

= (a→ ⊺A → c)→B ⊺A → a→ c

= (a→ ⊺A → c)→ ⊺A → a→ c

if a = ⊺B, b = ⊺B, c ∈ A ∶ (⊺B →B ⊺B →B c)→B (⊺B →B ⊺B)→B ⊺B →B c
= (⊺B →B ⊺A → c)→B ⊺B →B ⊺A → c

= (⊺A → ⊺A → c)→B ⊺A → ⊺A → c

= (⊺A → ⊺A → c)→ ⊺A → ⊺A → c

If a, c ∈ A:

(a→ ⊺Aa→ c)→ (a→ ⊺Aa)→ a→ c ⪯ (a→ ⊺A → c)→ ⊺A → a→ c

Then SB ⪰ ϕ(SA).

If A = (A,⪯,→, S) is a quasi-implicative algebra, then it is obvious that

Definition 3.6. Let A = (A,⪯,→, S) be a quasi-implicative algebra. The
completion of A is B = (B,⪯B,→B, SB = S ∪ {⊺B}).

By Lemma 3.8, it is obvious that SB is a separator.

Lemma 3.9. Let A = (A,⪯,→, S) be a quasi-implicative algebra and B =
(B,⪯B,→B, SB = S ∪ {⊺B}) its completion. Then the quasi-implicative tripos
induced by A is isomorphic to the implicative tripos induced by B.

Proof. Let ϕ be the inclusion map from A to B. Let us start by observing
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that S = SB ∩A = ϕ−1(SB), thus if I is a set and η, ζ ∈ AI then:

η ⊢S[I] ζ iff ⋏
i∈I
(η(i)→ ζ(i)) ∈ S

iff ϕ(⋏
i∈I
(η(i)→ ζ(i))) ∈ SB

iff ⋏
i∈I
(ϕ(η(i))→B ϕ(ζ(i))) ∈ SB

iff ϕ ○ η ⊢S[I] ϕ ○ ζ

Thus ϕ induces an injective map ϕ̄I ∶ AI/S[I] → BI/SB[I] for every set I.
If η ∈ BI we consider:

η̃(i) = ⋏
c∈B
((η(i)→B c)→B c)

Let us observe:

Axiom

Γ ⊢ z ∶ η(i)→B c
Axiom

Γ ⊢ x ∶ η(i)
→-elim.

Γ ∶= x ∶ η(i), z ∶ η(i)→B c ⊢ zx ∶ c
→-intro.

x ∶ η(i) ⊢ λz.zx ∶ (η(i)→B c)→B c for all c ∈ B
Gen.

x ∶ η(i) ⊢ λz.zx ∶ η̃(i)
→-intro.⊢ λxz.zx ∶ η(i)→B η̃(i) for all i ∈ I
Gen.⊢ λxz.zx ∶ ⋏i∈I(η(i)→B η̃(i))

and

Axiom

Γ ⊢ y ∶ η̃(i)
Subs.

Γ ⊢ y ∶ (η(i)→B η(i))→B η(i)

Axiom

Γ, x ∶ η(i) ⊢ x ∶ η(i)
→-in.

Γ ⊢ λx.x ∶ η(i)→B η(i)
→-el.

Γ ∶= y ∶ η̃(i) ⊢ yλx.x ∶ η(i)
→-intro.⊢ λy.yλx.x ∶ η̃(i)→B η(i) for all i ∈ I
Gen.⊢ λy.yλx.x ∶ ⋏i∈I(η̃(i)→B η(i))

Furthermore,

η̃(i) ⪯ (η(i)→B �)→B � ⪯ �→B � = �→ � ⪯ ⊺A

thus we have showed [η] = ϕ̄([η̃]). Then ϕ̄ is an isomorphism of Pos and by
Lemma 1.2 of HA. Since the naturality of ϕ̄ is obvious, we have showed that
the quasi-implicative tripos induced by A is isomorphic to the implicative
tripos induced by B.
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Thus:

Theorem 3.4. If P is a PCA then the intuitionistic realizability tripos in-
duced by P is isomorphic to the implicative tripos induced by the completion
of P .

3.2.3 Classical realizability triposes

Definition 3.7. Let A be an implicative algebra induced by an AKS. Then
the implicative tripos induced by A is called classical realizability tripos.

Lemma 3.10. Let A = (A,⪯,→, S) and B = (B,≤,⇒, U) be two implicative
algebras. If there exists a surjective map ψ ∶ B → A such that:

1. preserves arbitrary meets;

2. preserves implication;

3. b ∈ U if and only if ψ(b) ∈ S

then the corresponding triposes PA and PB are isomorphic.

Proof. Let η, ζ ∈ BI :

η ⊢U[I] ζ if and only if ⋀
i∈I
(η(i)⇒ ζ(i)) ∈ U

if and only if ψ(⋀
i∈I
(η(i)⇒ ζ(i))) ∈ S

if and only if ⋏
i∈I
(ψ(η(i))→ ψ(ζ(i))) ∈ S

if and only if ψ ○ η ⊢S[I] ψ ○ ζ

Thus, we can define an injective function ψ̄I ∶ BI/U[I]→ AI/S[I] such that
ψ̄I([η]U[I]) = [ψ ○ ζ]. Since ψ is surjective, ψ̄I is a bijective monotonic map,
thus it is an isomorphism of HA, by Lemma 1.2. Since the naturality of
(ψ̄I)I∈Obj(Set) is obvious, we can conclude that PA and PB are isomorphic.

Now, we can prove:

Theorem 3.5. If A is a classical implicative algebra then there exists an
AKS K such that the implicative tripos induced by A is isomorphic to the
classical realizability tripos induced by K.

Proof. Let:
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• Λ = Π ∶= A;

• a⊕ b ∶= ab, a ⋅ b ∶= a→ b, ka ∶= a→ �

• K ∶=KA, S ∶= SA, cc ∶= ccA,

• PL ∶= S and ⊥⊥∶=⪯

Let us prove that ⊥⊥ satisfies the axioms of the pole.

1.t ⪯ u→ π implies tu ⪯ π
2. t ⪯ π implies KA ⪯ t→ u→ t ⪯ t→ u→ π

3. t ⪯ v → uv → π implies SA ⪯ (v → uv → π)→ (v → uv)→ v → π

⪯ (v → uv → π)→ u→ v → π ⪯ t→ u→ v → π

4. t ⪯ (π → �)→ π implies ccA ⪯ ((a→ �)→ π)→ π implies t→ π

5. t ⪯ π implies π → � ⪯ t→ π′

Thus, K is an AKS. Let us observe that if β ⊆ Π then:

β⊥⊥ ∶= {a ∈ A ∶ a ⪯ b∀b ∈ β} = {a ∈ A ∶ a ⪯⋏β}

Let B = (P(A),⊇,⇒, U) the classical implicative algebra induced by K. Let
us observe that U = {β ⊆ A ∶ ⋏β ∈ S}.
Let ψ ∶ B → A be such that ψ(β) = ⋏β. Let us show that ψ satisfies the
conditions of Lemma 3.10. If (βi)i∈I is a set-indexed family of elements of
B, then ψ(⋃i∈I βi) = ⋏(⋃i∈I βi) = ⋏i∈I(⋏βi) = ⋏i∈I ψ(βi). Let β, γ ∈ B then
ψ(β ⇒ γ) = ψ({b → c ∶ b ⪯ β, c ∈ γ}) = ⋏{b → c ∶ b ⪯ ⋏β, c ∈ γ} = ⋏β →
⋏γ = ψ(β) → ψ(γ). Furthermore, β ∈ U if and only if ⋏β ∈ S if and only if
ψ(β) ∈ S. Finally, we can apply Lemma 3.10.
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Chapter 4

Every tripos is isomorphic to
an implicative one

Let P ∶ Set → HA be a fixed Set-based tripos. In this chapter we want to
define an implicative algebra A such that its implicative tripos PA is iso-
morphic to P.

Let trΣ ∈ Σ be a generic predicate of P and X be an arbitrary set. In
the first part of this chapter, we will show how ΣX can represent the set of
propositional functions over X. In other words, if σ ∈ ΣX and p ∈ PX such
that JσKX = p, σ can be seen a sort of “code” for the predicate p. We will
also show how the structure of Heyting algebra of PX can be derived from
analogous operations on Σ.

Let us start by observing:

Lemma 4.1. The decoding map J KX ∶ ΣX → PX is natural in X, which
means that for each map f ∶X → Y the following diagram commutes:

ΣX PX

ΣY PY

J KX

−○f

J KY

Pf

i.e. that Jσ ○ fKX = Pf(JσKY )
Proof. Let σ ∈ ΣY .

Jσ ○ fKX = P(σ ○ f)(trΣ) = Pf(Pσ(trΣ)) = Pf(JσKY )
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4.1 Defining ∧,∨ and →

In this section, we aim to show how the connectives of PX descend from
analogous operations on the set Σ.

Let π1, π2 ∶ Σ ×Σ→ Σ be the projections of Σ ×Σ. We can define:

∧̇ ∶ Σ ×Σ→ Σ J∧̇KΣ×Σ = Jπ1KΣ×Σ ∧ Jπ2KΣ×Σ ∈ P(Σ ×Σ)
∨̇ ∶ Σ ×Σ→ Σ J∨̇KΣ×Σ = Jπ1KΣ×Σ ∨ Jπ2KΣ×Σ ∈ P(Σ ×Σ)
→̇ ∶ Σ ×Σ→ Σ J→̇KΣ×Σ = Jπ1KΣ×Σ → Jπ2KΣ×Σ ∈ P(Σ ×Σ)

The existence of ∧̇, ∨̇ and →̇ is ensured by the surjectivity of the decoding
map and by the axiom of choice.
If σ, τ ∈ ΣX then we will write Jσ(x) ∧̇ τ(x)Kx∈X instead of J∧̇ ○ ⟨σ, τ⟩KX . We
adopt analogous notation for ∨̇ and →̇.

Theorem 4.1. Let X be a set and σ, τ ∈ ΣX . Then:

Jσ(x) →̇ τ(x)Kx∈X = JσKX → JτKX
Jσ(x) ∧̇ τ(x)Kx∈X = JσKX ∧ JτKX
Jσ(x) ∨̇ τ(x)Kx∈X = JσKX ∨ JτKX

Proof.

Jσ(x) →̇ τ(x)Kx∈X = J→̇ ○ ⟨σ, τ⟩Kx∈X = P(⟨σ, τ⟩)(J→̇KΣ×Σ)
= P(⟨σ, τ⟩)(Jπ1KΣ×Σ → Jπ2KΣ×Σ)
= P(⟨σ, τ⟩)(Jπ1KΣ×Σ)→ P(⟨σ, τ⟩)(Jπ2KΣ×Σ)
= Jπ1 ○ ⟨σ, τ⟩KX → Jπ2 ○ ⟨σ, τ⟩KX = JσKX → JτKX

The other cases are similar.

4.2 Defining � and ⊺

Let us fix a terminal object 1= {∗} ∈ Set, i.e. a fixed singleton. We will
indicate with !X ∶X → 1 the unique map from X to 1.
We choose �̇, ⊺̇ ∈ Σ such that

J�̇K∗∈1 = �1 ∈ P1 J⊺̇K∗∈1 = ⊺1 ∈ P1

where we identify �̇ and ⊺̇ with the corresponding constant maps from 1 to
Σ.
In the rest of the thesis, we will write J�̇Kx∈X instead of J�̇○!XKX .
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Theorem 4.2. If X is a set then:

J�̇Kx∈X = �X ∈ PX
J⊺̇Kx∈X = ⊺X ∈ PX

Proof. By Lemma 4.1:

J�̇Kx∈X = J�̇○!XKX = P!X(J�̇K∗∈1) = P!X(�1) = �X
J⊺̇Kx∈X = J⊺̇○!XKX = P!X(J⊺̇K∗∈1) = P!X(⊺1) = ⊺X

where the last equalities of each row are due to the fact that P!X is a
morphism of Heyting algebras.

4.3 Defining quantifiers

In this section we define the codes ⋀̇ and ⋁̇ of ∀ and ∃.
Let us start by considering the following set:

E ∶= {(ξ, s) ∶ ξ ∈ s} ⊆ Σ ×P(Σ)

and the corresponding projections

e1 ∶ E → Σ e2 ∶ E → P(Σ)

The surjectivity of the decoding map allows us to pick two codes in ΣP(Σ)

in the following way:

⋀̇ ∶ P(Σ)→ Σ J⋀̇KP(Σ) = ∀e2(Je1KE)

⋁̇ ∶ P(Σ)→ Σ J⋁̇KP(Σ) = ∃e2(Je1KE)

If h ∶ Y → P(Σ) is such that h(y) = Z, then we will write J⋀̇ZK instead of
J⋀̇ ○ hK.

Theorem 4.3. Let X,Y be sets, σ ∈ ΣX and f ∶X → Y , then:

J⋀̇{σ(x) ∶ x ∈ f−1(y)}Ky∈Y = ∀f(JσKX) ∈ PY
J⋁̇{σ(x) ∶ x ∈ f−1(y)}Ky∈Y = ∃f(JσKX) ∈ PY

Proof. If h ∶ Y → P(Σ) such that h(y) = {σ(x) ∶ x ∈ f−1(y)} then:

J⋀̇{σ(x) ∶ x ∈ f−1(y)}Ky∈Y = J⋀̇ ○ hKY = Ph(J⋀̇KP(Σ)) = Ph(∀e2(Je1KE))
J⋁̇{σ(x) ∶ x ∈ f−1(y)}Ky∈Y = J⋁̇ ○ hKY = Ph(J⋁̇KP(Σ)) = Ph(∃e2(Je1KE))
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If we consider G ∶= {(σ(x), f(x)) ∶ x ∈ X} ⊆ Σ × Y and the two following
functions:

g ∶ G → Y g′ ∶ G → E

(ξ, y)↦ y (ξ, y)↦ (ξ, h(y))
then the following diagram is a pullback in Set:

G
g //

g′

��

Y

h
��

E
e2 // P(Σ)

(ξ, y) � g //
_

g′

��

yh_

��
(ξ, h(y)) � e2 // h(y)

In fact, let l ∶ I → Y and m = (m1,m2) ∶ I → E such that e2 ○m = h ○ l, i.e.
m2(i) = h(l(i)), then:

ϕ ∶ I → G

i↦ (m1(i), l(i))
is the only map such that g○ϕ = l and g′○ϕ =m. Thus, by the Beck-Chevalley
condition, the following diagrams commute:

PG PY

PE PP(Σ)

∀g

∀e2

Pg′ Ph

PG PY

PE PP(Σ)

∃g

∃e2

Pg′ Ph

Hence:

J⋀̇{σ(x) ∶ x ∈ f−1(y)}Ky∈Y = (Ph ○ ∀e2)(Je1KE) = (∀g ○ Pg′)(Je1KE)
J⋁̇{σ(x) ∶ x ∈ f−1(y)}Ky∈Y = (Ph ○ ∃e2)(Je1KE) = (∃g ○ Pg′)(Je1KE)

Let q ∶ X → G be defined by q(x) = (σ(x), f(x)). It is clear that q is
surjective and consequently that it has a right inverse by (AC). Hence, ∃q
and ∀q are left inverses of Pq, by Lemma 1.4. Then:

J⋀̇{σ(x) ∶ x ∈ f−1(y)Ky∈Y = (∀g ○ Pg′)(Je1KE) = (∀g ○ (∀q ○ Pq) ○ Pg′)(Je1KE)
J⋁̇{σ(x) ∶ x ∈ f−1(y)Ky∈Y = (∃g ○ Pg′)(Je1KE) = (∃g ○ (∃q ○ Pq) ○ Pg′)(Je1KE)
Since ∀ and ∃ are functors, g ○ q = f and e1 ○ g′ ○ q = σ:
J⋀̇{σ(x) ∶ x ∈ f−1(y)Ky∈Y = (∀(g ○ q) ○ P(g′ ○ q))(Je1KE) = ∀f(Je1 ○ g′ ○ qKX)

= ∀f(JσKX)
J⋁̇{σ(x) ∶ x ∈ f−1(y)Ky∈Y = (∃(g ○ q) ○ P(g′ ○ q))(Je1KE) = ∃f(Je1 ○ g′ ○ qKX)

= ∃f(JσKX)
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4.4 Defining the filter

We define
Φ ∶= {ξ ∈ Σ ∶ JξK∗∈1 = ⊺1} ⊆ Σ

where we have identified ξ with the corresponding map from 1 to Σ.

Theorem 4.4. Let X be a set and σ, τ ∈ ΣX then:

JσKX ≤ JτKX ⇔ ⋀̇{σ(x)→̇τ(x) ∶ x ∈X} ∈ Φ
Proof.

JσKX ≤ JτKX ⇔ ⊺X ≤ JσKX → JτKX ⇔ P!X(⊺1) ≤ Jσ(x)→̇τ(x)Kx∈X
⇔ ⊺1 ≤ ∀!X(Jσ(x)→̇τ(x)Kx∈X)⇔ ⊺1 ≤ J⋀̇{σ(x)→̇τ(x) ∶ x ∈!−1X (1)}K∗∈1
⇔ ⊺1 = J⋀̇{σ(x)→̇τ(x) ∶ x ∈X}K∗∈1⇔ ⋀̇{σ(x)→̇τ(x) ∶ x ∈X} ∈ Φ

Example. Let P be the implicative tripos induced by an implicative algebra
B = (B,⪯,→, U). Since its generic predicate is trB = [idB] ∈ PB, then JσKX =
Pσ(idB) = [σ] ∈ PX for every set X and σ ∈ BX , i.e. the decoding map J KX
coincides with the quotient map from BX to PX.
In such case, it is clear that

∧̇ = × ∨̇ = + →̇ = →
since, for every a, b ∈ B

[a × b] = [a] ∧ [b] ∈ B/U
[a + b] = [a] ∨ [b] ∈ B/U
[a→ b] = [a]→ [b] ∈ B/U

Analogously, ⊺̇ = ⊺B and �̇ = �B.
Furthermore, if e1, e2 are the projections of E = {(x,A) ∶ x ∈ A ⊆ B} then

∀e2([e1]) = [A↦ ⋏
e2(z)=A

e1(z)] = [A↦ ⋏
x∈A

x]

∃e2([e1]) = [A↦ ∃e2(z)=Ae1(z)] = [A↦ ∃x∈Ax]

thus ⋀̇ = ⋏ and ⋁̇ = ∃ .
Furthermore,

Φ = {x ∈ B ∶ [x] = [⊺B]} = U
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4.5 Constructing the implicative algebra

4.5.1 Defining the set of atoms

Definition 4.1. The set A0 of atoms is inductively defined as follows:

1. if ξ ∈ Σ then ξ̇ ∈ A0

2. if s ∈ P(Σ) and α ∈ A0 then (s↦ α) ∈ A0.

Basically, the elements of A0 are of the form: s1 ↦ ... ↦ sn ↦ ξ̇ where
s1, ..., sn are subsets of Σ and ξ ∈ Σ.
Now, we define a binary relation ≤ over A0 in the following way:

ξ̇ ≤ ξ̇
s ⊆ s′ α ≤ α′

s↦ α ≤ s′ ↦ α′

Lemma 4.2. The relation ≤ is a preorder on A0.

Proof. Let us prove that ≤ is a preorder.

• Reflexivity. Let α ∈ A0, we prove by inductive hypothesis that α ≤ α:

1. if α = ξ̇ where ξ ∈ Σ, then ξ̇ ≤ ξ̇ by definition of ≤;
2. let α = s ↦ α′ where s ⊆ Σ and α′ ∈ A0. Since s ⊆ s and α′ ≤ α′

by induction, then s↦ α′ ≤ s↦ α′, i.e. α ≤ α.

• Transitivity. Let α,β, γ ∈ A0 such that α ≤ β and β ≤ γ. Then:

1. if α = ξ̇, since α ≤ β and β ≤ γ then β = γ = ξ̇, hence clearly α ≤ γ;
2. if α = s↦ α′ where s ⊆ Σ and α′ ∈ A0, then β must be of the form
t↦ β′ and consequently γ must be of the form u↦ γ′ too, where
s ⊆ t ⊆ u, α′ ≤ β′ and β′ ≤ γ′ so clearly s ⊆ u and, by induction,
α′ ≤ γ′. Hence, α ≤ γ.

4.5.2 Defining A

We consider a “conversion” function, defined by recursion as follows:

ϕ0 ∶ A0 → Σ

ξ̇ ↦ ξ

(s↦ α)↦ (⋀̇s) →̇ ϕ0(α)
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Definition 4.2. Let

• A ∶= P↑(A0) = {s ⊆ A0 ∶ s is upward closed};

• ⪯ be a binary relation on A defined as a ⪯ b⇔ b ⊆ a for all a, b ∈ A;

• → be a binary function on A such that:

a→ b ∶= {s↦ β ∶ s ∈ ϕ̃0(a)⊆ and β ∈ b}

where

ϕ̃0 ∶ A → P(Σ) s⊆ ∶= {s′ ∈ P(Σ) ∶ s ⊆ s′}
a↦ {ϕ0(α) ∶ α ∈ a}

We can clarify the notion of a→ b:

a→ b = {s↦ β ∶ s ∈ {s′ ∈ P(Σ) ∶ ϕ̃0(a) ⊆ s′} and β ∈ b}

= {s↦ β ∶ ϕ̃0(a) ⊆ s and β ∈ b}
= {s↦ β ∶ s ∈ P(Σ) such that ϕ0(α) ∈ s for all α ∈ a and β ∈ b}

Lemma 4.3. (A,⪯,→) is an implicative structure.

Proof. 1. Let us show that (A,⪯) is a complete lattice. Clearly ⪯ is a
partial order. Let (bi)i∈I be a set-indexed family of elements of A, then
⋏i∈I bi = ⋃i∈I bi and ⋎i∈I bi = ⋂i∈I bi. Obviously, ⊺A = ∅ and �A = A.

2. Let a, a′, b, b′ ∈ A such that a′ ⪯ a and b ⪯ b′. We have to prove that
a→ b ⪯ a′ → b′. Let s↦ β ∈ a′ → b′. Clearly, β ∈ b and ϕ0(α) ∈ s for all
α ∈ a, because a ⊆ a′ and b′ ⪯ b. Then s↦ β ∈ a→ b.

3. Let a, b ∈ A, then:

a→⋏
i∈I
bi = {s↦ β ∶ s ∈ ϕ̃0(a)⊆ and β ∈⋃

i∈I
bi}

=⋃
i∈I
{s↦ β ∶ s ∈ ϕ̃0(a)⊆ and β ∈ bi}

=⋏
i∈I
(a→ bi).
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4.5.3 Defining a new generic predicate of P

Let

ϕ ∶ A → Σ ψ ∶ Σ→ A
a↦ ⋀̇ϕ̃0(a) ξ ↦ {ξ̇}

Let us consider trA ∶= JϕKA = Pϕ(trΣ) ∈ PA.
We want to show that trA is a generic predicate for the tripos P.

Lemma 4.4. Pψ(trA) = trΣ.

Proof.

Pψ(trA) = Pψ(JϕKA) = Jϕ ○ ψKΣ = J⋀̇ϕ̃0({ξ̇})Kξ∈Σ
= J⋀̇{ξ}Kξ∈Σ = J⋀̇{idΣ(ξ′) ∶ ξ′ ∈ id−1Σ (ξ)}Kξ∈Σ = ∀idΣ(JidΣKΣ)

By Lemma 1.4, ∀idΣ is the inverse of PidΣ = idPΣ, then ∀idΣ = idPΣ. Hence,

Pψ(trA) = PidΣ(JidΣKΣ) = JidΣKΣ = PidΣ(trΣ) = trΣ

Lemma 4.5. The predicate trA ∈ PA is a generic predicate for the tripos P.

Proof. We want to show that

⟪ ⟫X ∶ AX → PX

η ↦ Pη(trA)

is surjective. If p ∈ PX then there exists σ ∈ ΣX such that Pσ(trΣ) = p.
Hence, Pσ(Pψ(trA)) = p by Lemma 4.4, that is P(ψ ○ σ)(trA) = p. Then,
⟪ψ ○ σ⟫X = p.

Let X be a set. We will denote with J−KX ∶ ΣX → PX and with ⟪−⟫X ∶
AX → PX the corresponding decoding maps, while we will use ϕX ∶ AX →
ΣX and ψX ∶ ΣX → AX to indicate the natural transformations induced by
ϕ and ψ, i.e. ϕX(η) = ϕ ○ η and ψX(σ) = ψ ○ σ.

Lemma 4.6. Let X be a set. Then, the two following diagrams commute:

ΣX

AX PX

J−KX
ϕX

⟪−⟫X

ΣX

AX PX

J−KX
ψX

⟪−⟫X
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i.e. ⟪−⟫X = J−KX ○ ϕX and J−KX = ⟪−⟫X ○ ψX .

Proof. Let η ∈ AX , then:

JϕX(η)KX = Jϕ ○ ηKX = Pη(Pϕ(trΣ)) = Pη(trA) = ⟪η⟫X .

While, if σ ∈ ΣX :

⟪ϕX(σ)⟫X = ⟪ϕ ○ σ⟫X = Pσ(Pψ(trA)) = Pσ(trΣ) = JσKX .

4.5.4 Universal quantification in A

As we did in subsection 4.3, we define:

E′ ∶= {(a,A) ∶ a ∈ A} ⊆ A ×P(A) e′1 ∶ E′ → A e′2 ∶ E′ → P(A)

where e′1, e
′
2 are the projections of E′.

We want to prove:

Theorem 4.5. ⟪⋏A⟫A∈P(A) = ∀e′2(⟪e′1⟫E′).

The meaning of this theorem is that the operator ⋏ ∶ P(A)→ A has the
same role for the generic predicate trA ∈ PA that the operator ⋀̇ ∈ ΣP(Σ)
has for the generic predicate trΣ ∈ PΣ.
In order to prove it, we first need to show the following property:

Lemma 4.7.

J⋁̇{⋁̇s ∶ s ∈ S}KS∈P(P(Σ)) = J⋁̇(⋃S)KS∈P(P(Σ))
J⋀̇{⋀̇s ∶ s ∈ S}KS∈P(P(Σ)) = J⋀̇(⋃S)KS∈P(P(Σ))

Proof. Let consider the following sets and the corresponding projections:

E = {(ξ, s) ∶ ξ ∈ s} ⊆ Σ ×P(Σ) e1 ∶ E → Σ e2 ∶ E → P(Σ)
F ∶= {(s, S) ∶ s ∈ S} ⊆ P(Σ) ×P(P(Σ)) f1 ∶ E → P(Σ) f2 ∶ E → P(P(Σ))
G ∶= {(ξ, s, S) ∶ ξ ∈ s ∈ S} ⊆ Σ ×P(Σ) ×P(P(Σ)) g1 ∶ G→ E g2 ∶ G→ F

We can start by observing that:

J⋁̇{⋁̇s ∶ s ∈ S}KS∈P(P(Σ)) = J⋁̇{⋁̇f1(z) ∶ z ∈ f−12 (S)}KS∈P(P(Σ)) = ∃f2(J⋁̇ ○ f1KF )
= (∃f2 ○ Pf1)(J⋁̇KP(Σ)) = (∃f2 ○ Pf1 ○ ∃e2)(Je1KE)
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This is clearly a pullback:

G
g2 //

g1
��

F

f1
��

E
e2 // P(Σ)

(ξ, s, S) � g2 //
_

g1
��

(s, S)
_

f1

��(ξ, s) � e2 // s

Then, by Beck-Chevalley, we have:

∃g2 ○ Pg1 = Pf1 ○ ∃e2

Therefore, we obtain:

J⋁̇{⋁̇s ∶ s ∈ S}KS∈P(P(Σ)) = (∃f2 ○ ∃g2 ○ Pg1)(Je1KE) = ∃(f2 ○ g2)(Je1 ○ g1KG)
= J⋁̇{(e1 ○ g1)(z) ∶ z ∈ (f2 ○ g2)−1(S)KS∈P(P(Σ))
= J⋁̇(⋃S)KS∈P(P(Σ))

The other case is similar.

Now we can prove Theorem 4.5:

Proof.

⟪⋏A⟫A∈P(A) = ⟪⋃A⟫A∈P(A) = Jϕ(⋃A)KA∈P(A) = J⋀̇ϕ̃0(⋃A)KA∈P(A)

Let Pϕ̃0 ∶ P(A)→ P(P(Σ)) such that Pϕ̃0(A) = {ϕ̃0(a) ∶ a ∈ A}. Then:

⟪⋏A⟫A∈P(A) = J⋀̇⋃Pϕ̃0(A)KA∈P(A) = P(Pϕ̃0)(J⋀̇⋃SKA∈P(P(Σ))

Thus, by Lemma 4.7:

⟪⋏A⟫A∈P(A) = P(Pϕ̃0)(J⋀̇{⋀̇s ∶ s ∈ S}KS∈P(P(Σ)))
= J⋀̇{⋀̇ϕ̃0(a) ∶ a ∈ A}KA∈P(A) = J⋀̇{ϕ(a) ∶ a ∈ A}KA∈P(A)
= J⋀̇{ϕ(e′1(p)) ∶ p ∈ e′−12 (A)}KA∈P(A) = ∀e′2(Jϕ ○ e′1KE′)
= ∀e′2(⟪e′1⟫E′)

Lemma 4.5 allows us to use the same argument of Theorem 4.3 in order
to show:

Lemma 4.8. Let η ∈ AX and f ∶X → Y a map, then:

⟪⋏{η(x) ∶ x ∈ f−1(y)}⟫y∈Y = ∀f(⟪η⟫X) ∈ PY
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4.5.5 Implication in A

In this subsection, similarly to before, our aim is to show that the →∶ A×A →
A operator has the same role for the generic predicate trA ∈ PA that the
operator →̇ ∈ ΣΣ×Σ has for the generic predicate trΣ ∈ PΣ.
We need first to prove some technical lemmas.

Lemma 4.9. Let F ∶= {(s, s′) ∶ s ⊆ s′} ⊆ P(Σ) × P(Σ) and let f1, f2 ∶ F →
P(Σ) be the corresponding projections. Then:

J⋁̇ ○ f1KF ≤ J⋁̇ ○ f2KF
J⋀̇ ○ f1KF ≥ J⋀̇ ○ f2KF

Proof. Let us define the set G ∶= {(ξ, ξ′, (s, s′)) ∶ ξ ∈ s, ξ′ ∈ s′ and (s, s′) ∈
F} ⊆ Σ ×Σ × F and its projections g1, g2 ∶ G→ Σ and g3 ∶ G→ F .
We can observe that if (s, s′) ∈ F then f1(s, s′) = {g1(ξ, ξ′, (s, s′)) ∶ (ξ, ξ′, (s, s′)) ∈
G} = {g1(z) ∶ z ∈ g−13 ((s, s′))} and similarly f2(s, s′) = {g2(z) ∶ z ∈ g−13 ((s, s′))}.
Then:

J⋁̇ ○ f1KF = J⋁̇{g1(z) ∶ z ∈ g−13 (s, s′)}K(s,s′)∈F = ∃g3(Jg1KG)
J⋁̇ ○ f2KF = J⋁̇{g2(z) ∶ z ∈ g−13 (s, s′)}K(s,s′)∈F = ∃g3(Jg2KG)
J⋀̇ ○ f1KF = J⋀̇{g1(z) ∶ z ∈ g−13 (s, s′)}K(s,s′)∈F = ∀g3(Jg1KG)
J⋀̇ ○ f2KF = J⋀̇{g2(z) ∶ z ∈ g−13 (s, s′)}K(s,s′)∈F = ∀g3(Jg2KG)

Let g ∶ G→ G be such that g(ξ, ξ′, (s, s′)) = (ξ, ξ, (s, s′)) then:

Jg1KG = Jg2 ○ gKG = Pg(Jg2KG)

and , since ∃g ⊣ Pg ⊣ ∀g,

∃g(Jg1KG) ≤ Jg2KG ≤ ∀g(Jg1KG)

Thus we can conclude:

J⋁̇ ○ f1KF = ∃g3(Jg1KG) = ∃g3(∃g(Jg1KG)) ≤ ∃g3(Jg2KG) = J⋁̇ ○ f2KF
J⋀̇ ○ f1KF = ∀g3(Jg1KG) = ∀g3(∀g(Jg1KG)) ≥ ∀g3(Jg2KG) = J⋀̇ ○ f2KF

where we have used that g3 = g3 ○ g.

Corollary 4.1. Let X be a set and η, ζ ∈ P(Σ)X such that η(x) ⊆ ζ(x) for
every x ∈X, then

J⋀̇ ○ ηKX ≥ J⋀̇ ○ ζKX
J⋁̇ ○ ηKX ≤ J⋁̇ ○ ζKX .
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Proof. Let µ ∈ (P(Σ)×P(Σ))X such that µ(x) = (η(x), ζ(x)) and F, f1 and
f2 as in Lemma 4.9. Then:

J⋀̇ ○ ηKX = J⋀̇ ○ f1 ○ µKX = Pµ(J⋀̇ ○ f1KF )
J⋁̇ ○ ηKX = J⋁̇ ○ f1 ○ µKX = Pµ(J⋁̇ ○ f1KF )

By Lemma 4.9:

J⋀̇ ○ ηKX ≥ Pµ(J⋀̇ ○ f2KF ) = J⋀̇ ○ f2 ○ µKX = J⋀̇ ○ ζKX
J⋁̇ ○ ηKX ≤ Pµ(J⋁̇ ○ f2KF ) = J⋁̇ ○ f2 ○ µKX = J⋁̇ ○ ζKX .

Now we can prove:

Lemma 4.10.

J⋀̇{(⋀̇s)→̇ξ ∶ s ∈ u⊆, ξ ∈ t}K(u,t)∈P(Σ)×P(Σ) = J⋀̇{(⋀̇u)→̇ξ ∶ ξ ∈ t}K(u,t)∈P(Σ)×P(Σ)

Proof. We start defining

G ∶= {(u, t, s, ξ) ∶ u ⊆ s, ξ ∈ t} ⊆ P(Σ) ×P(Σ) ×P(Σ) ×Σ

gi ∶ G→ P(Σ) for i = 1,2,3 and g4 ∶ G→ Σ the corresponding projections.
Let g ∶ G→ G such that g(u, t, s, ξ) = (u, t, u, ξ).
Then:

J⋀̇{(⋀̇s)→̇ξ ∶ u ⊆ s, ξ ∈ t}K(u,t)∈P(Σ)×P(Σ)
=J⋀̇{(⋀̇g3(z))→̇g4(z) ∶ z ∈ ⟨g1, g2⟩−1(u, t)}K(u,t)∈P(Σ)×P(Σ)
=∀⟨g1, g2⟩(J(⋀̇g3(z))→̇g4(z)Kz∈G = ∀⟨g1, g2⟩(J⋀̇ ○ g3KG → Jg4KG)

Furthermore:

J⋀̇{(⋀̇u)↦ ξ ∶ ξ ∈ t}K(u,t)∈P(Σ)×P(Σ) =
=J⋀̇{(⋀̇g1(z))→̇g4(z) ∶ z ∈ ⟨g1, g2⟩−1(u, t)K(u,t)∈P(Σ)×P(Σ)
=∀⟨g1, g2⟩(J(⋀̇g1(z))→̇g4(z)Kz∈G) = ∀⟨g1, g2⟩(J⋀̇ ○ g1KG → Jg4KG)

So we have to show that

∀⟨g1, g2⟩(J⋀̇ ○ g3KG → Jg4KG) = ∀⟨g1, g2⟩(J⋀̇ ○ g1KG → Jg4KG)
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(≤) Since g3 ○ g = g1 and g4 ○ g = g4:

Pg(J⋀̇ ○ g3KG → Jg4KG) = J⋀̇ ○ g3 ○ gKG → Jg4 ○ gKG = J⋀̇ ○ g1KG → Jg4KG

Then:
J⋀̇ ○ g3KG → Jg4KG ≤ ∀g(J⋀̇ ○ g1KG → Jg4KG)

Thus:

∀⟨g1, g2⟩(J⋀̇ ○ g3KG → Jg4KG) ≤ ∀⟨g1, g2⟩(∀g(J⋀̇ ○ g1KG → Jg4KG))

Furthermore, ⟨g1, g2⟩ ○ g = ⟨g1 ○ g, g2 ○ g⟩ = ⟨g1, g2⟩ so

∀⟨g1, g2⟩(J⋀̇ ○ g3KG → Jg4KG) ≤ ∀⟨g1, g2⟩(J⋀̇ ○ g1KG → Jg4KG)

(≥) Let F and f1, f2 ∶ F → P(Σ) defined as in Lemma 4.9.
If z ∈ G we have that g1(z) ⊆ g3(z), so by Corollary 4.1, J⋀̇ ○ g3KG → Jg4KG ≥
J⋀̇ ○ g1KG → Jg4KG and, consequently:

∀⟨g1, g2⟩(J⋀̇ ○ g3KG → Jg4KG) ≥ ∀⟨g1, g2⟩(J⋀̇ ○ g1KG → Jg4KG)

Lemma 4.11.

J⋀̇{θ→̇ξ ∶ ξ ∈ s}K(θ,s)∈Σ×P(Σ) = Jθ→̇⋀̇sK(θ,s)∈Σ×P(Σ)

Proof. Let G ∶= {(θ, ξ, s) ∶ ξ ∈ s} ⊆ Σ × Σ × P(Σ) and g1, g2 ∶ G → Σ and
g3 ∶ G → P(Σ) the corresponding projections, while π be the projection
from Σ ×P(Σ) to Σ.
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If p ∈ P(Σ ×P(Σ)) then:

p ≤ J⋀̇{θ→̇ξ ∶ ξ ∈ s}K(θ,s)∈Σ×P(Σ)
⇔ p ≤ J⋀̇{g1(z)→̇g2(z) ∶ z ∈ ⟨g1, g3⟩−1(θ, s)}K(θ,s)∈Σ×P(Σ)
⇔ p ≤ ∀⟨g1, g3⟩(Jg1KG → Jg2KG)
⇔ P⟨g1, g3⟩(p) ≤ Jg1KG → Jg2KG
⇔ P⟨g1, g3⟩(p) ∧ Jg1KG ≤ Jg2KG
⇔ P⟨g1, g3⟩(p) ∧ Jπ ○ ⟨g1, g3⟩KG ≤ Jg2KG
⇔ P⟨g1, g3⟩(p ∧ JπKΣ×P(Σ)) ≤ Jg2KG
⇔ p ∧ JπKΣ×P(Σ) ≤ ∀⟨g1, g3⟩(Jg2KG)
⇔ p ≤ JπKΣ×P(Σ) → ∀⟨g1, g3⟩(Jg2KG)
⇔ p ≤ JθK(θ,s)∈Σ×P(Σ) → J⋀̇{g2(z) ∶ z ∈ ⟨g1, g3⟩−1(θ, s)}K(θ,s)∈Σ×P(Σ)
⇔ p ≤ JθK(θ,s)∈Σ×P(Σ) → J⋀̇{ξ ∶ ξ ∈ s}K(θ,s)∈Σ×P(Σ)
⇔ p ≤ Jθ→̇⋀̇sK(θ,s)∈Σ×P(Σ)

Clearly, we can conclude that

J⋀̇{θ→̇ξ ∶ ξ ∈ s}K(θ,s)∈Σ×P(Σ) = Jθ→̇⋀̇sK(θ,s)∈Σ×P(Σ)

Corollary 4.2. Let X be a set, σ ∈ ΣX and t ∈ P(Σ)X then:

J⋀̇{σ(x)→̇ξ ∶ ξ ∈ t(x)}Kx∈X = Jσ(x)→̇⋀̇t(x)Kx∈X

Proof.

J⋀̇{σ(x)→̇ξ ∶ ξ ∈ t(x)}Kx∈X = P(⟨σ, t⟩)(J⋀̇{θ→̇ξ ∶ ξ ∈ s}K(θ,s)∈Σ×P(Σ))

By Lemma 4.11:

J⋀̇{σ(x)→̇ξ ∶ ξ ∈ t(x)}Kx∈X = P(⟨σ, t⟩)(Jθ→̇(⋀̇s)K(θ,s)∈Σ×P(Σ))
= Jσ(x)→̇⋀̇t(x)Kx∈X

Now we can finally show:

Theorem 4.6. Let π,π′ the two projections from A ×A to A. Then

⟪a→ b⟫(a,b)∈A×A = ⟪π⟫A×A → ⟪π′⟫A×A ∈ P(A ×A)
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Proof. Recall:
a→ b = {s↦ β ∶ s ∈ ϕ̃0(a)⊆ and β ∈ b}

where s⊆ = {s′ ∈ P(Σ) ∶ s ⊆ s′}. Then:

⟪a→ b⟫(a,b)∈A×A = Jϕ(a→ b)K(a,b)∈A×A (by Lemma 4.6)

= J⋀̇ϕ̃0(a→ b)K(a,b)∈A×A
= J⋀̇{ϕ0(s↦ β) ∶ s ∈ ϕ̃0(a)⊆ and β ∈ b}K(a,b)∈A×A
= J⋀̇{(⋀̇s)→̇ϕ0(β) ∶ s ∈ ϕ̃0(a)⊆ and β ∈ b}K(a,b)∈A×A
= J⋀̇{(⋀̇s)→̇ξ ∶ s ∈ ϕ̃0(a)⊆ and ξ ∈ ϕ̃0(b)}K(a,b)∈A×A

If we define h ∶ P(Σ) ×P(Σ)→ P(Σ) such that

h(u, t) ∶= {(⋀̇s)→̇ξ ∶ s ∈ u⊆ and ξ ∈ t}

then:

⟪a→ b⟫(a,b)∈A×A = J(⋀̇ ○ h ○ ϕ̃0 × ϕ̃0)(a, b)K(a,b)∈A×A
= P(ϕ̃0 × ϕ̃0)(J⋀̇ ○ hK(u,t)∈P(Σ)×P(Σ))
= P(ϕ̃0 × ϕ̃0)(J⋀̇{(⋀̇s)→̇ξ ∶ s ∈ u⊆ and ξ ∈ t}K(u,t)∈P(Σ)×P(Σ))

By Lemma 4.10:

⟪a→ b⟫(a,b)∈A×A = P(ϕ̃0 × ϕ̃0)(J⋀̇{(⋀̇u)→̇ξ ∶ ξ ∈ t}K(u,t)∈P(Σ)×P(Σ))

thus, by Corollary, 4.2

⟪a→ b⟫(a,b)∈A×A = P(ϕ̃0 × ϕ̃0)(J(⋀̇u)→̇(⋀̇t)K(u,t)∈P(Σ)×P(Σ))
= J(⋀̇ϕ̃0(a))→̇(⋀̇ϕ̃0(b))K(a,b)∈A×A
= Jϕ(a)→̇ϕ(b)K(a,b)∈A×A
= Jϕ ○ aKA×A → Jϕ ○ bKA×A
= ⟪π⟫A×A → ⟪π′⟫A×A

Thus, we can use the same argument of Theorem 4.2 in order to prove:

Theorem 4.7. Let X be a set and η, ζ ∈ AX then:

⟪η → ζ⟫X = ⟪η⟫X → ⟪ζ⟫X
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4.5.6 Defining the separator

Now, we have to equip A with a separator to give it a structure of implicative
algebra. The idea is to mimic what we did in section 4.4, where we have
defined a sort of filter in the following way

Φ ∶= {ξ ∈ Σ ∶ JξK∗∈1 = ⊺1} ⊆ Σ

Then, let us consider S ⊆ A such that:

S ∶= {a ∈ A ∶ ⟪a⟫∗∈1 = ⊺1}

Thus:

S = {a ∈ A ∶ ⟪a⟫∗∈1 = ⊺1} = {a ∈ A ∶ Jϕ(a)K∗∈1 = ⊺1} = {a ∈ A ∶ ϕ(a) ∈ Φ} = ϕ−1(Φ)

Theorem 4.8. The subset S ⊆ A is a separator of the implicative structure
A.
Proof. • S is upward closed. Let a ∈ S and b ∈ A such that a ⪯ b, i.e.

b ⊆ a. Thus ϕ̃0(b) ⊆ ϕ̃0(a).
Letφ and ψ be such that ∗ ∈ 1↦ ϕ̃0(a) and ∗ ∈ 1↦ ϕ̃0(b) respectively.
Then by Corollary 4.1:

Jϕ(a)K∗∈1 = J⋀̇ϕ̃0(a)K∗∈1 = J⋀̇ ○φK∗∈1 ≤ J⋀̇ ○ ψK∗∈1 = J⋀̇ϕ̃0(b)K∗∈1
= Jϕ(b)K∗∈1

Thus, we can conclude that ⟪b⟫∗∈1 = ⊺∗∈1.

• S contains KA and SA. Let π ∶ 1 ×A → 1 and π′ ∶ (1 ×A) ×A → 1 ×A
the first projections of 1 ×A and (1 ×A) ×A respectively.

⟪K⟫∗∈1 = ⟪ ⋏
a,b∈A
(a→ b→ a)⟫∗∈1

= ⟪ ⋏
(−,a)
{⋏
b∈A
(a→ b→ a) ∶ (−, a) ∈ π−1(−)} = A⟫∗∈1

= ∀π(⟪ ⋏
b∈A
(a→ b→ a)⟫(−,a)∈1×A)

= ∀π(⟪ ⋏
((−,a),b)

{a→ b→ a ∶ ((−, a), b) ∈ π′−1((−, a)}⟫(−,a)∈1×A)

= ∀π(∀π′(⟪a→ b→ a⟫((−,a),b)∈(1×A)×A))
= ∀π(∀π′(⊺(1×A)×A))
= ⊺1

hence KA ∈ S. Similarly, we can prove that SA ∈ S.
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• S is closed under modus ponens. Suppose that (a → b) ∈ S and a ∈ S.
Then

⊺1 = ⟪a→ b⟫∗∈1 = ⟪a⟫∗∈1 → ⟪b⟫∗∈1 = ⊺1 → ⟪b⟫∗∈1
thus ⟪b⟫∗∈1 = ⊺1.

Lemma 4.12. Let X be a set and η, ζ ∈ AX then:

⟪η⟫X ≤ ⟪ζ⟫X ⇔ ⋏
x∈X
(η(x)→ ζ(x)) ∈ S

Proof.

⟪η⟫X ≤ ⟪ζ⟫X ⇔ ⊺X ≤ ⟪η⟫X → ⟪ζ⟫X
⇔ P!X(⊺1) ≤ ⟪η → ζ⟫X
⇔ ⊺1 ≤ ∀!X(⟪η → ζ⟫X
⇔ ⊺1 ≤ ⟪⋏{η(x)→ ζ(x) ∶ x ∈!−1X (−) =X}⟫∗∈1
⇔ ⋏

x∈X
(η(x)→ ζ(x)) ∈ S

4.6 Isomorphism

Let PA: Setop → HA be the implicative tripos induced by the implicative
algebra A as we have described in chapter 3.
We can finally show:

Theorem 4.9. The implicative tripos PA is isomorphic to the tripos P.

Proof. For every set X, we consider ρX ∶= ⟪−⟫X ∶ AX → PX.
Let η, ζ ∈ AX then:

η ⊢S[X] ζ⇔ η → ζ ∈ S[X]⇔ ⋏
x∈X
(η(x)→ ζ(x)) ∈ S

then, by Lemma 4.12:

η ⊢S[X] ζ⇔ ⟪η⟫X ≤ ⟪ζ⟫X ⇔ ρX(η) ≤ ρX(ζ)

and, consequently,
η ⊣⊢S[X] ζ⇔ ρX(η) = ρX(ζ)
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Hence, ρX induces a bijective map:

ρ̃X ∶ PAX → PX

Furthermore, ρ̃X is an isomorphism of HA by Lemma 1.2.
We want to show that ρ = {ρX}X set is a natural transformation. Let f ∶
X → Y be a map between sets.

PAY PY

PAX PX

PAf

ρ̃Y

Pf

ρ̃X

Let [η] ∈ PAY , then:

(Pf ○ ρ̃Y )([η]) = Pf(⟪η⟫Y ) = Pf(Jϕ(η)KY ) = Jϕ(η ○ f)KX
= ⟪η ○ f⟫X = ρ̃X([η ○ f]) = (ρ̃X ○ PAf)([η]).

Example. Let P be the implicative tripos induced by B = (B,⪯,→, U). We
have already observed that the decoding map corresponds to the quotient
map and that →̇ =→, ⋀̇ = ⋏ and ⋁̇ = ∃.
Then

trA = Pϕ(trB) = [idB ○ ϕ] = [ϕ] ∈ BA/U[A]
and

⟪η⟫X = [ϕ ○ η] ∈ BX/U[X] for every η ∈ AX

Thus Lemma 4.8 states that for every map f ∶X → Y and η ∈ AX

[y ↦ ϕ( ⋃
f(x)=y

η(x))] = [y ↦ ⋏
f(x)=y

ϕ(η(x))] ∈ BY /U[Y ]

while Theorem 4.7 ensures that for every η, ζ ∈ AX

[ϕ ○ η →A ζ] = [ϕ ○ η]→B [ϕ ○ ζ] ∈ BX/U[X]

Then the natural isomorphism defined in Theorem 4.9 is:

ρ̃X ∶ PAX → PX

[η]S[X] ↦ [ϕ ○ η]U[X]

where S = ϕ−1(U).
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Chapter 5

Geometric morphisms

Let us start by introducing the notion of geometric morphism.

Definition 5.1. Let P and Q be two Set-based triposes. Let Φ+ ∶ P → Q
and Φ+ ∶ Q → P be two natural transformations where both P and Q are
considered as functors Set→ PreOrd. If:

1. Φ+ ⊣ Φ+, i.e. for every set X, Φ+X ⊣ Φ+X where both Φ+X and Φ+X are
considered as functors between the categories induced by the preorders
PX and QX;

2. for every set X, Φ+X ∶ QX → PX preserves finite meets;

then Φ = (Φ+,Φ+) is a geometric morphism from P to Q [12].

Let A and B be two implicative algebras and PA and PB the correspond-
ing implicative triposes. In this chapter, we will prove that every pair of
functions ψ ∶ A → B and φ ∶ B → A that satisfies some particular properties
induces a geometric morphism from PA to PB. Furthermore, we will also
show that every geometric morphism between implicative triposes is of this
type.

Theorem 5.1. Let (A,≤,→, S) and (B,⪯,⇒, U) be two implicative algebras
and PA and PB the two implicative triposes induced respectively by them.
Let ψ ∶ A → B and φ ∶ B → A be two maps such that:

1. for every X ⊆ A ×A and Y ⊆ B ×B:

if ⋀
(a,a′)∈X

a→ a′ ∈ S then ⋏
(a,a′)∈X

ψ(a)⇒ ψ(a′) ∈ U

if ⋏
(b,b′)∈Y

b⇒ b′ ∈ U then ⋀
(b,b′)∈Y

φ(b)→ φ(b) ∈ S
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2. for every X ⊆ A ×B:

⋀
(a,b)∈X

φ(b)→ a ∈ S if and only if ⋏
(a,b)∈X

b⇒ ψ(a) ∈ U

3. let π1, π2 be the projections of B ×B then

[φ ○ (π1 ×B π2)] = [(φ ○ π1) ×A (φ ○ π2)] ∈ AB×B/S[B ×B]

Then ψ and φ induce a geometric morphism between PA and PB.

Proof. If X is a set then we can define

Φ+X ∶ PAX → PBX

[η]↦ [ψ ○ η]
Φ+X ∶ PBX → PAX

[β]↦ [φ ○ β]

We want to show that Φ = (Φ+,Φ+) is a geometric morphism between PA

and PB.

• Φ+X and Φ+X are well defined. Let [η] = [ξ] ∈ AX/S[X], i.e.

⋀
x∈X

η(x)→ ξ(x) ∈ S and ⋀
x∈X

ξ(x)→ η(x) ∈ S.

Clearly {(η(x), ξ(x)) ∶ x ∈ X} and {(ξ(x), η(x)) ∶ x ∈ X} are subsets
of A ×A, then, by condition 1:

⋀
x∈X

ψ(η(x))⇒ ψ(ξ(x)) ∈ U and ⋀
x∈X

ψ(ξ(x))⇒ ψ(η(x)) ∈ U,

hence [ψ ○ η] = [ψ ○ ξ] ∈ BX/U[X]. Analogously for φ.

• Φ+ and Φ+ are natural transformations. The first thing to show is
that Φ+X and Φ+X are monotone. Let [η], [ξ] ∈ AX/S[X] such that
[η] ⊢ [ξ], i.e. ⋀x∈X η(x) → ξ(x) ∈ S, then, we have already proved
that:

⋏
x∈X

ψ(η(x))⇒ ψ(ξ(x)) ∈ U hence Φ+X([η]) ⊢ Φ+X([ξ])

Analogously for Φ+X .

Let f ∶ X → Y be a map between sets, we have to show that the
following diagram commutes:
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AX/S[X] AY /S[Y ]

BX/U[X] BY /U[Y ]

Φ+X Φ+Y

PA(f)

PB(f)

Let [η] ∈ AY /S[Y ] then:
(Φ+X ○ PA(f))([η]) = Φ+X([η ○ f]) = [ψ ○ η ○ f] = PB(f)([ψ ○ η])

= (PB(f) ○Φ+Y )([η])
Analogously for Φ+.

• Φ+ ⊣ Φ+. Let X be a set, [β] ∈ BX/U[X] and [η] ∈ AX/S[X] then:
Φ+X([β]) ≤ [η] if and only if [φ ○ β] ⊢ [η]

if and only if ⋀
x∈X

φ(β(x))→ η(x) ∈ S

Clearly {(η(x), β(x)) ∶ x ∈X} is a subset of A×B, hence, by condition
2.:

Φ+X([β]) ≤ [η] if and only if ⋏
x∈X

β(x)⇒ ψ(η(x)) ∈ U

if and only if [β] ⪯ Φ+X([η]).

• Φ+X preserves finite meets. Let [β], [γ] ∈ BX/U[X] then:
Φ+X([β]) ∧Φ+X([γ]) = [φ ○ β] ∧ [φ ○ γ] = [(φ ○ β) ×A (φ ○ γ)]
Φ+X([β] ∧ [γ]) = Φ+X([β ×B γ]) = [φ ○ β ×B γ]

Clearly:

⋀
b,b∈B′
(φ(b) ×A φ(b′))→ φ(b ×B b′) ≤ ⋀

x∈X
((φ(β(x)) ×A φ(γ(x)))→ (φ(β(x) ×B γ(x)))

⋀
b,b∈B′

φ(b ×B b′)→ (φ(b) ×A φ(b′)) ≤ ⋀
x∈X

φ(β(x) ×B γ(x))→ (φ(β(x)) ×A φ(γ(x)))

Hence, by condition 3. and by the fact that S is upwards closed, we
can conclude that:

⋀
x∈X
((φ(β(x)) ×A φ(γ(x)))→ (φ(β(x) ×B γ(x))) ∈ S

⋀
x∈X
(φ(β(x) ×B γ(x))→ (φ(β(x)) ×A φ(γ(x)))) ∈ S

thus [(φ ○ β) ×A (φ ○ γ)] = [φ ○ β ×B γ] ∈ AX/S[X], i.e. Φ+X([β]) ∧
Φ+X([γ]) = Φ+X([β ∧ γ]).
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Theorem 5.2. Let (A,≤,→, S) and (B,⪯,⇒, U) be two implicative algebras
and PA and PB the two implicative triposes induced respectively by them.
Let Θ a geometric morphism from PA to PB. Then Θ induces two maps
ψ ∶ A → B and φ ∶ B → A that satisfy the conditions 1., 2. and 3. of the
Theorem 5.1. Furthermore, the geometric morphism Φ induced by ψ and φ
as described in Theorem 5.1 is Θ.

Proof. Let Θ = (Θ+,Θ+) where Θ+ ∶ PA → PB and Θ+ ∶ PB → PA.

• Θ induces ψ and φ. Let:

Θ+A(trA) = Θ+A([idA]) = [Θ̄+(idA)] ∈ BA/U[A]
Θ+B(trB) = Θ+B([idB]) = [Θ̄+(idB)] ∈ AB/S[B]

By axiom of choice, we can define:

ψ ∶ A → B φ ∶ B → A
a↦ Θ̄+(idA)(a) b↦ Θ̄+(idB)(b)

• Θ = Φ. Let X be a set and [η] ∈ AX/S[X]. We can define

{η} ∶X → A
x↦ η(x)

then PA{η}(trA) = [η]. Since Θ+ is a natural transformation, the
following diagram commutes:

AA/S[A] AX/S[X]

BA/U[A] BX/U[X]

PA{η}

Θ+A Θ+X

PB{η}

then

Θ+X([η]) = (Θ+X ○ PA{η})(trA) = (PB{η} ○Θ+A)(trA)
= PB{η}([ψ]) = [ψ ○ η]
= Φ+X([η])

Analogously, we can show Θ+X = Φ+X .
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• Condition 1. Let X ⊆ A ×A and ⋀(a,a′)∈X a→ a′ ∈ S. Let us consider:

η ∶ X → A ζ ∶ X → A
(a, a′)↦ a (a, a′)↦ a′

Then:

⋀
x∈X

η(x)→ ζ(x) ∈ S

i.e. [η] ⊢ [ζ]. Since Θ+X is monotonous we have Θ+X(η) ⊢ Θ+X(ζ),
which means

⋏
x∈X

ψ(η(x))⇒ ψ(ζ(x)) ∈ U.

Analogously for φ.

• Condition 2. Let X ⊆ A ×B and

η ∶ X → A β ∶ X → B
(a, b)↦ a (a, b)↦ b

Since Θ+X ⊣ Θ+X :

Θ+X([β]) ⊢ [η] if and only if [β] ⊢ Θ+X([η])

so:
[φ ○ β] ⊢ [η] ∈ S if and only if [β] ⊢ [ψ ○ η] ∈ U

i.e.

⋀
x∈X

φ(β(x))→ η(x) ∈ S if and only if ⋏
x∈X

β(x)⇒ ψ(η(x)) ∈ U

⋀
(a,b)∈X

φ(b)→ a ∈ S if and only if ⋏
(a,b)∈X

b⇒ ψ(a) ∈ U

• Condition 3. Let X be a set and [β], [γ] ∈ BX/U[X], since Θ+X([β] ∧
[γ]) = Θ+X([β]) ∧Θ+X([γ]) we have that

[φ ○ (β ×B γ)] = [(φ ○ β) ×A (φ ○ γ)]

then:

⋀
x∈X
(φ(β(x) ×B γ(x))→ (φ(β(x)) ×A φ(γ(x)))) ∈ S

⋀
x∈X
((φ(β(x)) ×A φ(γ(x)))→ φ(β(x) ×B γ(x))) ∈ S
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Lemma 5.1. Let P and Q be two Set-based triposes and Φ = (Φ+,Φ+) a
geometric morphism from P to Q. Then Φ+ commutes with ∃ i.e. for every
map between sets f ∶X → Y the following diagram

PX QX

PY QY

∃Pf ∃Qf
Φ+X

Φ+Y

commutes.

Proof. Let us fix a map f ∶X → Y between sets and let q ∈ QX and p ∈ PY .
Then:

∃Pf(Φ+X(q)) ≤ p if and only if Φ+X(q) ≤ Pf(p)
if and only if q ≤ Φ+X(Pf(p))
if and only if q ≤ Qf(Φ+Y (p))
if and only if ∃Qf(q) ≤ Φ+Y (p)
if and only if Φ+Y (∃Qf(q)) ≤ p

Thus ∃Pf ○Φ+X = Φ+Y ○ ∃Qf .

Corollary 5.1. Let (A,≤,→, S) and (B,⪯,⇒, U) be two implicative algebras
and PA and PB the two implicative triposes induced respectively by them.
Let Θ a geometric morphism from PA to PB and φ ∶ B → A the map induced
by Θ as described in Theorem 5.2. Then φ commutes with ∃, i.e. for every
f ∶X → Y map between sets and η ∈ BX :

[y ↦ ∃f(x)=yφ(η(x))] = [y ↦ φ(∃f(x)=yη(x))] ∈ AY /S[Y ]

Proof. Obvious.

Observation. Let A and B be the implicative algebras induced by two com-
plete Heyting algebras H and K as described in chapter 2.
In such case, Theorem 5.1 and Theorem 5.2 imply the existence of the fol-
lowing one-to-one correspondence:

{Geometric morphisms from PH to PK} 1∶1←→ {Localic morphisms from H to K}

Φ = (Φ+,Φ+) ←→ φ

89



Indeed, let Φ be a geometric morphism from PH to PK and let φ ∶ K → H
and ψ ∶ H→ K be the two maps induced by Φ as described in Theorem 5.2.
Since φ preserves binary ∧ and φ ⊣ ψ then φ is a morphism of frames by
Lemma 1.3.
Conversely, if φ ∶ K → H is a morphism of frames then let ψ ∶ H → K be its
unique right adjoint as defined in Lemma 1.3. Then, clearly, φ and ψ satisfy
the conditions of Theorem 5.1 and thus they induce a geometric morphism
Φ from PH to PK.

It is clear that different pairs of functions can induce the same geometric
morphism. Indeed, let (ψ1, φ1) and (ψ2, φ2) be two pairs of functions that
satisfy the conditions of Theorem 5.1 and let Φ1 and Φ2 the two correspond-
ing geometric morphisms induced. Then, it is obvious that:

Φ1 = Φ2 if and only if

⎧⎪⎪⎨⎪⎪⎩

[ψ1] = [ψ2] ∈ BA/U[A]
[φ1] = [φ2] ∈ AB/S[B]

In the last chapters, we have shown that there exists a correspondence be-
tween the geometric morphisms between Set-based triposes and a particular
class of equivalence of functions between implicative algebras. This results
lead us to define the following category:

• the objects are implicative algebras;

• for every implicative algebras A = (A,≤,→, S) and B = (B,⪯,⇒, U):
Hom(A,B) = {[(ψ,φ)] ∈ BA/U[A] × AB/S[B] ∶ (ψ,φ) satisfies the
conditions of Theorem 5.1};

• [(θ, ξ)] ○ [(ψ,φ)] = [(θ ○ ψ,φ ○ ξ)] for all morphisms [(ψ,φ)], [(θ, ξ)]
such that cod(ψ) = dom(θ);

• for every implicative algebra A: idA = [(idA, idA)].

Introducing this new category allows us to have a new perspective on the
study of the category of triposes and geometric morphisms, by changing the
focus from triposes to the easier structures of implicative algebras.
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Chapter 6

First-order logic morphisms

Similarly to what we have done in the last one, in this chapter, we will study
which type of functions between implicative algebras induces and is induced
by a first-order logic morphism between the two corresponding implicative
triposes.

Definition 6.1. Let P and Q be two Set-based triposes. A first-order
logic morphism from P to Q is a natural transformation Φ ∶ P⇒ Q such
that Φ commutes with the left and and the right adjoints.

Let A = (A,≤,→) and B = (B,⪯,⇒) be two implicative algebras. We will
denote:

⋀ ∶ P(A)→ A ⋏ ∶ P(B)→ B
X ↦ ⋀

x∈X
x Y ↦ ⋏

y∈Y
y

∃ ∶ P(A)→ A ∃ ∶ P(B)→ B
X ↦ ∃x∈Xx Y ↦ ∃y∈Y y

Before we go any further, let us introduce a technical lemma that will be
useful to us later.

Lemma 6.1. Let A be an implicative algebra and I be a set. If ai, bi ∈ A
for every i ∈ I, then:

⋏
i∈I
(ai → bi) ⪯⋏

i∈I
ai →⋏

i∈I
bi

Proof.

⋏
i∈I
(ai → bi) ⪯⋏

i∈I
(⋏
j∈I
aj → bi) = ⋏

j∈I
aj →⋏

i∈I
bi
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Theorem 6.1. Let A = (A,≤,→, S) and B = (B,⪯,⇒, U) be two implicative
algebras and PA and PB their implicative triposes.
Let φ ∶ A → B be a map such that:

1. φ(S) ⊆ U ;

2. if π1, π2 are respectively the first and the second projections of A ×A
then:

[φ ○ (π1 → π2)] = [φ ○ π1 ⇒ φ ○ π2] ∈ BA×A/U[A ×A]

3.
[φ ○⋀] = [⋏ ○Pφ] ∈ BP(A)/U[P(A)]

For every set X, let:

ΦX ∶ AX/S[X]→ BX/U[X]
[η]↦ [φ ○ η]

Then Φ is a natural transformation from PA to PB, where they are both
considered as functors from Set to PreOrd. Furthermore, Φ preserves im-
plication, ⊺ and ∧ and commutes with the right adjoints.

Proof. Let us start by observing that the second condition ensures that:

⋏
a,a′∈A

(φ(a→ a′)⇒ φ(a)⇒ φ(a′)) ∈ U

⋏
a,a′∈A

((φ(a)⇒ φ(a′))⇒ φ(a→ a′)) ∈ U

Since U is upwards closed:

⋏
x∈X
(φ(η(x)→ ζ(x))⇒ φ(η(x))⇒ φ(ζ(x))) ∈ U

⋏
x∈X
((φ(η(x))⇒ φ(ζ(x)))⇒ φ(η(x)→ ζ(x))) ∈ U

for every set X and η, ζ ∈ AX . Now, we can prove the theorem.
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• ΦX is well defined and monotonous. Let X be a set and η, ζ ∈ AX
such that η ⊢S[X] ζ, so:

⋀
x∈X
(η(x)→ ζ(x)) ∈ S (by definition)

φ( ⋀
x∈X
(η(x)→ ζ(x))) ∈ U (by condition 1.)

Furthermore, by condition 3.:

[A↦ φ(⋀
a∈A

a)] = [A↦ ⋏
a∈A

φ(a)]

i.e.

⋏
A⊆A
(φ(⋀

a∈A
a)⇒ ⋏

a∈A
φ(a)) ∈ U and ⋏

A⊆A
( ⋏
a∈A

φ(a)⇒ φ(⋀
a∈A

a)) ∈ U

If we choose A = {η(x)→ ζ(x) ∶ x ∈X}, then:

φ( ⋀
x∈X
(η(x)→ ζ(x)))⇒ ⋏

x∈X
φ(η(x)→ ζ(x)) ∈ U

U is closed by modus ponens, so:

⋏
x∈X

φ(η(x)→ ζ(x)) ∈ U

Furthermore, by condition 2.:

⋏
x∈X
(φ(η(x)→ ζ(x))⇒ φ(η(x))⇒ φ(ζ(x))) ∈ U

thus, by Lemma 6.1:

⋏
x∈X

φ(η(x)→ ζ(x))⇒ ⋏
x∈X
(φ(η(x))⇒ φ(ζ(x))) ∈ U

and

⋏
x∈X
(φ(η(x))⇒ φ(ζ(x))) ∈ U

by modus ponens. Hence, we have shown that φ ○ η ⊢U[x] φ ○ ζ. Then,
ΦX is well defined and clearly monotonous.

• ΦX ○PAf = PBf ○ΦY . Let f ∶X → Y be a map between sets. We want
to show that the following diagram commutes:
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AX/S[X] AY /S[Y ]

BX/U[X] BY /U[Y ]

ΦX

PAf

ΦY

PBf

Let [η] ∈ AY /S[Y ], then:

(ΦX ○ PAf)([η]) = ΦX([η ○ f]) = [φ ○ η ○ f] = PBf([φ ○ η])
= (PBf ○ΦY )([η])

• Φ preserves →. We have already observed that for every set X and
η, ζ ∈ AX :

⋏
x∈X
((φ(η(x))⇒ φ(ζ(x)))⇒ φ(η(x)→ ζ(x))) ∈ U

⋏
x∈X
(φ(η(x)→ ζ(x))⇒ φ(η(x))⇒ φ(ζ(x))) ∈ U

which means:

ΦX([η]→ [ζ]) = [φ ○ η → ζ] = [(φ ○ η)⇒ (φ ○ ζ)] = ΦX([η])⇒ ΦX([ζ])

• Φ commutes with ∀. Let f ∶X → Y be a map between sets and η ∈ AX .

AX/S[X] AY /S[Y ]

BX/U[X] BY /U[Y ]

∀Af

ΦX ΦY

∀Bf

We have to show:

(ΦY ○ ∀Af)([η]) = (∀Bf ○ΦX)([η])
ΦY ([y ↦ ⋀

f(x)=y
η(x)]) = ∀Bf([φ ○ η])

[y ↦ φ( ⋀
f(x)=y

η(x))] = [y ↦ ⋏
f(x)=y

φ(η(x))]

The third condition ensures:

⋏
X⊆A
(φ ○⋀X ⇒⋏Pφ(X)) ∈ U

⋏
X⊆A
(⋏Pφ(X)⇒ φ ○⋀X) ∈ U
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For every y ∈ Y let f−1(y) = {x ∈ X ∶ f(x) = y}. Since U is upwards
closed:

⋏
y∈Y
(φ ○⋀Pη(f−1(y))⇒⋏Pφ(Pη(f−1(y)))) ∈ U

⋏
y∈Y
(⋏Pφ(Pη(f−1(y)))⇒ φ ○⋀Pη(f−1(y))) ∈ U

i.e.

⋏
y∈Y
(φ( ⋀

f(x)=y
η(x))⇒ ⋏

f(x)=y
φ(η(x))) ∈ U

⋏
y∈Y
( ⋏
f(x)=y

φ(η(x))⇒ φ( ⋀
f(x)=y

η(x))) ∈ U

• ΦX preserves ⊺. Clearly ⊺PAX = [x↦ ⊺A] ∈ AX/S[X]. Let us observe
that:

ΦX(⊺PAX) = ΦX([x↦ ⊺A]) = [φ ○ (x↦ ⊺A)] = [x↦ φ(⊺A)]

Since ⊺A = ⋀∅, by condition 3.:

φ(⊺A)⇒⋏∅ ∈ U
⋏∅⇒ φ(⊺A) ∈ U

thus:
ΦX(⊺PAX) = [x↦⋏∅] = [x↦ ⊺B] = ⊺PBX

• Φ preserves ∧. Let η, ζ ∈ AX . ΦX is monotonous, so:

[η] ∧ [ζ] ⊢ [η] Ô⇒ ΦX([η] ∧ [ζ]) ⊢ ΦX([η])
[η] ∧ [ζ] ⊢ [ζ] Ô⇒ ΦX([η] ∧ [ζ]) ⊢ ΦX([ζ])

Hence, ΦX([η] ∧ [ζ]) ⊢ ΦX([η]) ∧ΦX([ζ]).
Now, we want to show the opposite inequality. PAX is a Heyting
algebra, thus:

[η] ∧ [ζ] ⊢ [η] ∧ [ζ] then [η] ⊢ [ζ]→ ([η] ∧ [ζ])
then [η] ⊢ [ζ]→ [η ×A ζ]
then [η] ⊢ [ζ → η ×A ζ]

Hence:

ΦX([η]) ⊢ ΦX([ζ → η ×A ζ])
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Since PBX is also a Heyting algebra and ΦX preserves →:

ΦX([η]) ⊢ ΦX([ζ → η ×A ζ]) iff ΦX([η]) ⊢ ΦX([ζ])⇒ ΦX([η ×A ζ])
iff ΦX([η]) ⊢ ΦX([ζ])⇒ ΦX([η] ∧ [ζ])
iff ΦX([η]) ∧ΦX([ζ]) ⊢ ΦX([η] ∧ [ζ])

Theorem 6.2. Let A = (A,≤,→, S) and B = (B,⪯,⇒, U) be two implicative
algebras and PA and PB their implicative triposes. Let φ ∶ A → B be a map
such that:

1. φ(S) ⊆ U ;

2. if π1, π2 are respectively the first and the second projections of A ×A
then:

[φ ○ (π1 → π2)] = [φ ○ π1 ⇒ φ ○ π2] ∈ BA×A/U[A ×A]

3.

[φ ○⋀] = [⋏ ○Pφ] ∈ BP(A)/U[P(A)]
[φ ○ ∃] = [∃ ○Pφ] ∈ BP(A)/U[P(A)]

4.

⋀
a,b∈A

(φ(a +A b)⇒ (φ(a) +B φ(b))) ∈ U

For every set X, let:

ΦX ∶ AX/S[X]→ BX/U[X]
[η]↦ [φ ○ η]

Then Φ is a first-order logic morphism from PA to PB.

Proof. By Theorem 6.1, we have just to prove that Φ preserves � and ∨ and
that commutes with ∃.

• Φ preserves �. Let us start by observing that � = [x↦ ∃∅] ∈ AX/S[X]
for every set X.

∃∅ = ⋏
c∈A
(⋏∅→ c) = ⋏

c∈A
(⊺A → c) = ⊺A → ⋏

c∈A
c = ⊺A → �A

Since clearly � = [x↦ �A]:
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Axiom

x ∶ ∃∅ ⊢ x ∶ ⊺A → �A
⊺-intro.

x ∶ ∃∅ ⊢ x ∶ ⊺A →-elim.
x ∶ ∃∅ ⊢ xx ∶ �A →-intro.⊢ λx.xx ∶ ∃∅ → �A for all x ∈X

Gen.⊢ λx.xx ∶ ⋏x∈X(∃∅ → �A)

Thus, [x↦ ∃∅] = [x↦ �A] = �. Then:

ΦX(�PAX) = ΦX([x↦ ∃∅]) = [φ ○ (x↦ ∃∅)] = [x↦ φ(∃∅)]

By condition 3.:

φ(∃∅)⇒ ∃∅ ∈ U
∃∅⇒ φ(∃∅) ∈ U

thus we can conclude:

ΦX(�PAX) = [x↦ ∃∅] = �PBX

• Φ preserves ∨. Let η, ζ ∈ AX . Since ΦX is monotonous:

[η] ⊢ [η] ∨ [ζ] Ô⇒ ΦX([η]) ⊢ ΦX([η] ∨ [ζ])
[ζ] ⊢ [η] ∨ [ζ] Ô⇒ ΦX([ζ]) ⊢ ΦX([η] ∨ [ζ])

hence ΦX([η]) ∨ΦX([ζ]) ⊢ ΦX([η] ∨ [ζ]).
Conversely, since:

⋀
a,b∈A

(φ(a +A b)⇒ φ(a) +B φ(b)) ⪯

⪯ ⋀
x∈X
(φ(η(x) +A ζ(x))⇒ φ(η(x)) +B φ(ζ(x)))

we can conclude that ΦX([η]∨ [ζ]) ⊢ ΦX([η])∨ΦX([ζ]) by condition
4.

• Φ commutes with ∃. Similar to the commutativity with ∀ in Theorem
6.1.

Theorem 6.3. Let A = (A,≤,→, S) and B = (B,⪯,⇒, U) be two implicative
algebras and PA and PB the implicative triposes induced by them.
Let Θ be a first-order logic morphism from PA to PB. Then Θ induces a
map φ ∶ A → B that satisfies the conditions 1., 2., 3. and 4. of Theorem 6.2.
Furthermore, the first-order logic morphism Φ induced by φ as described in
Theorem 6.2 is Θ.
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Proof. • Θ induces φ and Θ = Φ. Similarly to what we have done in
Theorem 5.1, we can define:

ΘA(trA) = ΘA([idA]) = [Θ̄(idA)] ∈ BA/U[A]

and

φ ∶ A → B
a↦ Θ̄(idA)(a)

by axiom of choice. Analogously to Theorem 5.1, we can prove that
ΘX([η]) = [φ ○ η] = ΦX([η]), for every set X and for every η ∈ AX .

• Condition 1. Let s ∈ S. We want to show that φ(s) ∈ U . If X = {∗},
we can consider:

s̄ ∶X → A
∗↦ s

Clearly [s̄] = ⊺PAX . Since Θ is a first-order logic morphism, ΘX(⊺PAX) =
⊺PBX . Hence [φ ○ s̄] = [x ↦ ⊺B] and ⊺B ⇒ φ(s) ∈ U . Then φ(s) ∈ U
because ⊺B ∈ U .

• Condition 2. Let X = A ×A and π1, π2 be respectively the first and
the second projections of A ×A. By hypothesis, ΘX is a morphism of
HA, so it preserves the implication. Then:

ΘX([π1]→ [π2]) = ΘX([π1])⇒ ΘX([π2])
ΘX([π1 → π2]) = [φ ○ π1]⇒ [φ ○ π2]
[φ ○ (π1 → π2)] = [φ ○ π1 ⇒ φ ○ π2]

• Condition 3. Let E = {(a,A) ∶ A ⊆ A and a ∈ A} ⊆ A×P(A) and π1, π2
the corresponding projections of E. By hypothesis, Θ commutes with
the right adjoints, so the following diagram commutes:

AE/S[E] AP(A)/S[P(A)]

BE/S[E] BP(A)/U[P(A)]

∀Aπ2

ΦE ΦP(A)

∀Bπ2
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Hence,

(ΦP(A) ○ ∀Aπ2)([π1]) = (∀Bπ2 ○ΦE)([π1])
ΦP(A)([A↦ ⋀

π2(z)=A
π1(z)]) = ∀Bπ2([φ ○ π1])

[A↦ φ( ⋀
π2(z)=A

π1(z))] = [A↦ ⋏
π2(z)=A

φ(π1(z))]

[A↦ φ(⋀
a∈A

a)] = [A↦ ⋏
a∈A

φ(a)]

[φ ○⋀] = [⋏ ○Pφ]

Similar for ∃.

• Condition 4. Similarly to what we have done before, let X = A×A and
π1, π2 be its projections. Since ΘX is a morphism of HA, it preserves
∨:

ΘX([π1] ∨ [π2]) = ΘX([π1]) ∨ΘX([π2])
ΘX([π1 +A π2]) = [φ ○ π1] ∨ [φ ○ π2]
[φ ○ (π1 +A π2)] = [φ ○ π1 +B φ ○ π2]

thus:

⋏
a,b∈A

φ(a +A b)⇒ (φ(a) +φ(b)) ∈ U

Observation. Let H and K be complete Heyting algebras. Let us show that
φ ∶ H→ K is a map that satisfies the conditions expressed in Theorem 6.2 if
and only if φ is a morphism of complete Heyting algebras, i.e. we want to
show that there exists a one-to-one correspondence:

{First-order logic morphisms PH → PK} 1∶1←→ {Morphisms of cHAs H→ K}

Indeed, since we are working with implicative algebras induced by complete
Heyting algebras, requiring that φ preserves ∀,∃ and → - as expressed in
Theorem 6.2 - is equivalent to require that φ preserves arbitrary meets, ar-
bitrary joins and the implication, i.e. that φ is a morphism of complete
Heyting algebras. Let us observe that this result follows from the fact that
the separator of an implicative algebra induced by a complete Heyting alge-
bra is defined as {⊺}.
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It is clear that the same first-order logic morphism can be induced by
different functions: indeed, if φ1 and φ2 satisfy the conditions of Theorem 6.2
and Φ1 and Φ2 are the corresponding first-order logic morphisms induced,
then:

Φ1 = Φ2 if and only if [φ1] = [φ2] ∈ BA/U[A]

Similarly to what we have done in chapter 5, we can now define a category
such that:

• the objects are implicative algebras;

• for all implicative algebras A = (A,≤,→, S) and B = (B,⪯,⇒, U):
Hom(A,B) = {[φ] ∈ BA/U[A] ∶ φ satisfies the conditions of Theorem
6.2};

• [ψ]○[φ] = [ψ○φ] for all morphisms [ψ], [φ] such that cod(φ) = dom(ψ);

• for every implicative algebra A: idA = [idA].

6.1 Particular cases

In this section, we will describe some particular cases where the conditions
of Theorem 6.2 on the map φ can be relaxed.
Let us fix two implicative algebras A = (A,≤,→, S) and B = (B,⪯,⇒, U) and
their implicative triposes PA and PB. Furthermore, let φ ∶ A → B be a map
such that:

1. φ(S) ⊆ U ;

2. if π1, π2 are respectively the first and the second projections of A ×A
then:

[φ ○ (π1 → π2)] = [φ ○ π1 ⇒ φ ○ π2] ∈ BA×A/U[A ×A]

3.
[φ ○⋀] = [⋏ ○Pφ] ∈ BP(A)/U[P(A)]

As before, we will consider:

ΦX ∶ AX/S[X]→ BX/U[X]
[η]↦ [φ ○ η]

for every set X.
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Lemma 6.2. Let η, ζ ∈ AX for some set X. Then:

[φ ○ (η +A ζ)] = [ ⋏
δ∈AX

((φ ○ η⇒ φ ○ δ)⇒ (φ ○ ζ ⇒ φ ○ δ)⇒ φ ○ δ)]

Furthermore, :

[φ ○ ∃] = [X ↦ ⋏
a∈A
( ⋏
x∈X
(φ(x)⇒ φ(a))⇒ φ(a))]

Proof. Let us define η̄, ζ̄ ∶ AX ×X → A such that η̄ = η ○ π2 and ζ̄ = ζ ○ π2
where π2 is the second projection of AX ×X. Let ev ∶ AX ×X → X be the
evaluation map.
By Theorem 6.1, Φ preserves the implication so:

[φ ○ (η̄ → ev)→ (ζ̄ → ev)→ ev] = [(φ ○ η̄⇒ φ ○ ev)⇒ (φ ○ ζ̄ ⇒ φ ○ ev)⇒ φ ○ ev]

i.e.

⋏
z∈AX×X

((φ ○ (η̄ → ev)→ (ζ̄ → ev)→ ev)(z)⇒

⇒ ((φ ○ η̄⇒ φ ○ ev)⇒ (φ ○ ζ̄ ⇒ φ ○ ev)⇒ φ ○ ev)(z)) ∈ U

⋏
z∈AX×X

(((φ ○ η̄⇒ φ ○ ev)⇒ (φ ○ ζ̄ ⇒ φ ○ ev)⇒ φ ○ ev)(z)⇒

⇒ (φ ○ (η̄ → ev)→ (ζ̄ → ev)→ ev)(z)) ∈ U

By Lemma 6.1 and by the fact that U is upwards closed:

[ ⋏
δ∈AX

(φ ○ (η̄ →ev)→ (ζ̄ → ev)→ ev)(δ,−)] =

= [ ⋏
δ∈AX

((φ ○ η̄⇒ φ ○ ev)⇒ (φ ○ ζ̄ ⇒ φ ○ ev)⇒ φ ○ ev)(δ,−)]

i.e.

[ ⋏
δ∈AX

(φ ○ (η → δ)→ (ζ → δ)→ δ)] =

= [ ⋏
δ∈AX

((φ ○ η⇒ φ ○ δ)⇒ (φ ○ ζ ⇒ φ ○ δ)⇒ φ ○ δ)]

By condition 3.:

[φ ○ (η +A ζ)] = [ ⋏
δ∈AX

((φ ○ η⇒ φ ○ δ)⇒ (φ ○ ζ ⇒ φ ○ δ)⇒ φ ○ δ)]
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Let η ∶ P(A) ×A → P(A) such that η(X,a) = {x → a ∶ x ∈ X} and let π2 be
the second the projection of P(A) ×A. Then:

[φ ○ ((⋀ ○ η)→ π2)] = [φ ○ (⋀ ○ η)]⇒ [φ ○ π2]
= [⋏(φ ○ η)]⇒ [φ ○ π2]

Furthermore, let E = {(x,X) ∶ x ∈ X} and π′1, π
′
2 ∶ E × A → A such that

π′1((x,X), a) = x and π′2((x,X), a) = a then:

[φ ○ (π′1 → π′2)] = [(φ ○ π′1)⇒ (φ ○ π′2)] ∈ BE×A/U[E ×A]

By Lemma 6.1:

[⋏(φ ○ η)] = [(a,X)↦⋏{φ(x)→ φ(a) ∶ x ∈X}] ∈ BP(A)×A/U[P(A) ×A]

Thus:

⋏
a∈A,X⊆A

(φ ○ (⋀
x∈X
(x→ a)→ a)⇒ (⋏

x∈X
(φ(x)→ φ(a))→ φ(a))) ∈ U

⋏
a∈A,X⊆A

((⋏
x∈X
(φ(x)→ φ(a))→ φ(a))⇒ φ ○ (⋀

x∈X
(x→ a)→ a)) ∈ U

by Lemma 6.1 and by the fact that U is upwards closed and that Φ commutes
with right adjoints:

[φ ○ ∃] = [X ↦ ⋏
a∈A
( ⋏
x∈X
(φ(x)⇒ φ(a))⇒ φ(a))]

Proposition 6.1. If there exists χ ∈ AB such that:

[φ ○ χ] = [idB] ∈ BB/U[B]

Then Φ is a first-order logic morphism from PA to PB.

Proof. By Theorem 6.1, it is sufficient to show that Φ commutes with ∃ and
that [φ ○ (η +A ζ)] ⊢ [(φ ○ η) +B (φ ○ ζ)] for η, ζ ∈ AX .
Fixed a, b ∈ A we denote with βd ∶= (φ(b)⇒ d)⇒ d and with αd ∶= (φ(a)⇒
d)⇒ βd for every d ∈ B. Let

u = ⋏
d∈B
((φ ○ χ)(d)⇒ d) ∈ U u′ = ⋏

d∈B
(d⇒ (φ ○ χ)(d)) ∈ U

Fixed t = λw.u′(yw) and t′ = λw′.u′(zw′), let us consider:
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Param.

Γ ⊢ u ∶ u
Subs.

Γ ⊢ u ∶ φ(χ(d))⇒ d π
→-elim.

Γ ∶= x ∶ ⋏c∈A αφ(c), y ∶ φ(a)⇒ d, z ∶ φ(b)⇒ d ⊢ u(xtt′) ∶ d
→-intro.

x ∶ ⋏c∈A αφ(c), y ∶ φ(a)⇒ d ⊢ λz.u(xtt′) ∶ βd
→-intro.

x ∶ ⋏c∈A αφ(c) ⊢ λyz.u(xtt′) ∶ αd
Gen.

x ∶ ⋏c∈A αφ(c) ⊢ λyz.u(xtt′) ∶ φ(a) +B φ(b)
→-intro.

⊢ λxyz.u(xtt′) ∶ ⋏c∈A αφ(c) ⇒ φ(a) +B φ(b)
where π is:

Axiom

Γ,w ∶ φ(a) ⊢ x ∶ ⋏c∈A αφ(c)
Subs.

Γ,w ∶ φ(a) ⊢ x ∶ αφ(χ(d)) π′
→-elim.

Γ ⊢ xt ∶ βφ(χ(d))
Similar to π′

Γ ⊢ t′ ∶ φ(b)⇒ φ(χ(d))
→-elim.

Γ ⊢ xtt′ ∶ φ(χ(d))
and π′ is :

Param.

Γ′ ⊢ u′ ∶ u′
Subs.

Γ′ ⊢ u′ ∶ d⇒ φ(χ(d))

Axiom

Γ′ ⊢ y ∶ φ(a)⇒ d
Axiom

Γ′ ⊢ w ∶ φ(a)
→-elim.

Γ′ ⊢ yw ∶ d
→-elim.

Γ′ ∶= Γ,w ∶ φ(a) ⊢ u′(yw) ∶ φ(χ(d))
→-intro.

Γ ⊢ t ∶ φ(a)⇒ φ(χ(d))
Thus, by generalization and by Lemma 6.2:

[φ ○ (η +A ζ)] ⊢ [(φ ○ η) +B (φ ○ ζ)]

By Lemma 6.2

[φ ○ ∃] = [X ↦ ⋏
a∈A
( ⋏
x∈X
(φ(x)⇒ φ(a))⇒ φ(a))]

Clearly

⋏
b∈B
( ⋏
x∈X
(φ(x)⇒ b)⇒ b) ⪯ ⋏

a∈A
( ⋏
x∈X
(φ(x)⇒ φ(a))⇒ φ(a))

thus:

[∃ ○Pφ] ⊢ [φ ○ ∃]
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since

⊢ λy.y ∶ ⋏
X⊆A
(⋏
b∈B
( ⋏
x∈X
(φ(x)⇒ b)⇒ b)⇒ ⋏

a∈A
(⋏
x∈X
(φ(x)⇒ φ(a))⇒ φ(a)))

Furthermore, let αd ∶= ⋏i∈I(φ(ai) ⇒ d) ⇒ d for every ai, d ∈ A and for
every set I:

Param.

Γ ⊢ u ∶ u
Subs.

Γ ⊢ u ∶ φ(χ(d))⇒ d

Axiom

Γ ⊢ x ∶ ⋏c∈A αφ(c)
Subs.

Γ ⊢ x ∶ αφ(χ(d)) τ
→-elim.

Γ ⊢ xλz.u′(zy) ∶ φ(χ(d))
→-elim.

Γ ∶= x ∶ ⋏c∈A αφ(c), y ∶ ⋏i∈I(φ(ai)⇒ d) ⊢ u(xλz.u′(zy)) ∶ d
→-intro.

x ∶ ⋏c∈A αφ(c) ⊢ λy.u(xλz.u′(zy)) ∶ αd for all d ∈ B
Gen.

x ∶ ⋏c∈A αφ(c) ⊢ λy.u(xλz.u′(zy)) ∶ ⋏d∈B αd
→-intro.

⊢ λxy.u(xλz.u′(zy)). ∶ ⋏c∈A αφ(c) ⇒ ⋏d∈B αd
where τ is:

Param.

Γ′ ⊢ u′ ∶ u′
Subs.

Γ′ ⊢ u′ ∶ d⇒ φ(χ(d))

Axiom

Γ′ ⊢ z ∶ φ(ai)

Axiom

Γ′ ⊢ y ∶ ⋏i∈I(φ(ai)⇒ d)
Subs.

Γ′ ⊢ y ∶ φ(ai)⇒ d
→-elim.

Γ′ ⊢ zy ∶ d
→-elim.

Γ′ ∶= Γ, z ∶ φ(ai) ⊢ u′(zy) ∶ φ(χ(d))
→-intro.

Γ ⊢ λz.u′(zy) ∶ φ(ai)⇒ φ(χ(d)) for all i ∈ I
Gen.

Γ ⊢ λz.u′(zy) ∶ ⋏i∈I(φ(ai)⇒ φ(χ(d)))
Thus, by Lemma 6.2:

[∃ ○Pφ] = [φ ○ ∃]

Now, our aim is to show that condition 4. of Theorem 6.2 is not necessary
if the separator of B is a filter. Let us start by showing:

Lemma 6.3. Let A = (A,⪯,→, S) be an implicative algebra. If S is a filter
and π1, π2 are the projections of A ×A then

[π1 + π2] = [∃i=1,2πi]
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Proof. We have to prove that:

⋏
a1,a2∈A

(a1 + a2 → ∃i=1,2ai) ∈ S

⋏
a,a2∈A

(∃i=1,2ai → a1 + a2) ∈ S

Let consider:

Axiom

Γ ⊢ x ∶ a1 + a2

Axiom

Γ, y ∶ a1 ⊢ y ∶ a1
Th. 2.6

Γ, y ∶ a1 ⊢ λw.wy ∶ ∃i=1,2ai π
Th. 2.4

Γ ∶= x ∶ a1 + a2 ⊢ x(λyw.wy)(λzw.wz) ∶ ∃i=1,2ai
→-intro.⊢ λx.x(λyw.wy)(λzw.wz) ∶ a1 + a2 → ∃i=1,2ai for all a1, a2 ∈ A
Gen.⊢ λx.x(λyw.wy)(λzw.wz) ∶ ⋏a1,a2∈A(a1 + a2 → ∃i=1,2ai)

where π is:

Axiom

Γ, z ∶ a2 ⊢ z ∶ a2
Th. 2.6

Γ, z ∶ a2 ⊢ λw.wz ∶ ∃i=1,2ai
Let us start by observing that if U is a filter then ⋔B∈ U by Lemma 3.4.
Furthermore, let us recall that if a1, a2 ∈ A then:

⋔A a1a2 ⪯ a1 ⋔A a1a2 ⪯ a2
Then:

Axiom

Γ ⊢ x ∶ ⋏i=1,2(ai → c)→ c

Proved before

Γ ⊢⋔A yz ∶ ⋏i=1,2(ai → c)
→-elim.

Γ ∶= x ∶ ∃i=1,2ai, y ∶ y ∶ a1 → c, z ∶ a2 → c ⊢ x(⋔A yz) ∶ c
→-intro.

x ∶ ∃i=1,2ai, y ∶ a1 → c ⊢ λz.x(⋔A yz) ∶ (a2 → c)→ c
→-intro.

x ∶ ∃i=1,2ai ⊢ λyz.x(⋔A yz) ∶ (a1 → c)→ (a2 → c)→ c for all c ∈ A
Gen.

x ∶ ∃i=1,2ai ⊢ λyz.x(⋔A yz) ∶ a1 + a2
→-intro.

⊢ λxyz.x(⋔A yz) ∶ ∃i=1,2ai → a1 + a2 for all a1, a2 ∈ A
Gen.⊢ ⋏a1,a2∈A(∃i=1,2ai → a1 + a2)

Thus [π1 + π2] = [∃i=1,2πi]

From the previous lemma it follows:

Corollary 6.1. If U is a filter and

[φ ○ ∃] = [∃ ○Pφ]

then Φ is a first-order logic morphism.
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