UNIVERSITA DEGLI STUDI DI PADOVA
DIPARTIMENTO DI MATEMATICA “TULLIO LEVI-CIvITA”
CORSO DI LAUREA MAGISTRALE IN MATEMATICA

Implicative algebras and their
relationship with triposes

Relatore: Candidato:
Dott. Samuele Maschio Elena Pozzan
Matricola 2023120

Anno accademico 2022/2023 - 24.02.2023



Contents

Mntroduction 3
1__Preliminaries| 5
1.1 Some notions about categories| . . . . . .. ... ... ... ... )
(1.1.1 Functors and natural transformations). . . .. ... .. 8

1.2 Heyting algebras| . . . ... .. ... .. ... . ... ..., 10
[.3 Framesandlocales| . . . . .. ... ... ... ... ..... 13
................................ 16
[1.4.1 Interpretation of triposes|. . . . . . ... ... ... ... 19

2 Implicative algebras| 21
2.1 Implicative structures| . . . . ... ... ... ... ... .... 21
[2.1.1  Semantic typing| . . . . ... .. ... ... 23

[2.2  Implicative algebras| . . . .. ... ... ... .. ... .. ... 26
2.3 Interpreting first-order logic| . . . ... .. ... ... .. .... 29
[2.3.1  A-valued interpretations| . . . . . ... ... ... ... 32

[2.3.2  Heyting algebras induced by implicative algebras| . . . 33

24 Examples| . ... ... 37
[2.4.1 Complete Heyting algebras and implicative algebras| . 37

[2.4.2  Kleene’s Realizability| . . .. ... ... ... ..... 40

[2.4.3  Classical realizability] . . . ... ... ... ........ 43

|3 Implicative triposes 46
3.1 Defining AT/S[I]|. ... ... .. ... .. ... .. ... 46
[3.2  Implicative triposes| . . ... . ... ... ... L. 47
[3.2.1  TImplicative triposes and forcing triposes|. . . . . . . .. 53

[3.2.2  Intuitionistic realizability triposes and quasi-implicative |

| algebras| . . . ... o 58
[3.2.3  Classical realizability triposes| . . . . . . ... ... ... 64




4 Every tripos is isomorphic to an implicative one 66

4.1 Defining A,vand - . .. ... .. ... o 67
4.2 Defining Land T| . . . ... .. ... o 67
4.3 Defining quantifiers| . .. ... ... ... ... ... ... ... 68
4.4 Defining the filter] . . .. ... ... .. o 0 000 70
4.5 Constructing the implicative algebra] . . . . .. ... ... ... 71
[4.5.1 Defining the set of atoms|. . . . . . ... ... ... ... 71

4.5.2 Defining A . ...... ... ... ... ... ... 71

|4.5.3  Defining a new generic predicate ot P| . . . .. ... .. 73

|4.5.4  Universal quantificationin A4 . ... ... ........ 74

4.5.5 TImplicationin Al . . .. ... ... ... . ... .... 76

|4.5.6  Defining the separator| . . ... .............. 81

4.6 Isomorphism| . . ... ... ... .. ... ... . ... 82

[ Geometric morphisms| 84
6 First-order logic morphisms| 91
6.1 Particularcasesl. ... ... ... ... ... o 100



Introduction

The aim of this thesis is to present the notion of implicative algebra and to
examine its connections with the concept of tripos.

Alexandre Miquel first introduced implicative algebras in his paper “Implica-
tive algebras: a new foundation for realizability and forcing” [10] with the
goal of creating an algebraic structure that could simultaneously factorize
the model-theoretic constructions underlying both forcing and realizability.
Introduced by Paul Cohen in 1963 [2] |3], the main idea behind forcing is to
interpret every formula ¢ of the considered theory as an element of a com-
plete Boolean (or Heyting) algebra. On other hand, Kleene’s realizability,
first introduced in 1945 [6], interprets each closed formula ¢ of the theory as
the set of its realizers, i.e. a specific subset of a suitable algebra of programs.
This method, originally restricted only to intuitionistic logic, was expanded
by Krivine to classical logic [7]. In classical realizability, every closed for-
mula is interpreted as the set of its counter-realizers, represented by a subset
of the set of stacks associated to an algebra of classical programs.

Miquel’s work |10] demonstrates that implicative algebras can bring together
these concepts thanks to the use of the same set to represent both realizers
and truth values.

The thesis will proceed as follows. Firstly, we will review some preliminary
notions about categories and triposes, with a focus on the category of Heyt-
ing algebras.

Subsequently, we will present the concept of implicative algebra and its key
features, paying special attention to how this structure can interpret first-
order logic. In particular, we will start by defining what an implicative
structure is and showing how it can induce a semantic type system where
the types correspond to its elements. Then, we will present the notion of
separator, a particular type of subset of an implicative structure, that has
a fundamental role in the definition of implicative algebra. After having
defined this, we will focus on the study of the implicative algebras induced
by particular types of structures (complete Heyting algebras cHAs, total



combinatory algebras CAs and abstract Krivine structures AKSs).

In chapter 3, we will start to examine the relationship between triposes and
implicative algebras. Resuming Miquel’s results [10], we will show how an
implicative algebra can induce a specific type of tripos, called implicative tri-
pos. As before, we will focus on analyzing the implicative triposes induced
by cHAs, CAs and AKSs, showing how the concept of implicative tripos can
simultaneously unify the notions of realizability and forcing triposes.
Afterwards, we will prove how, given a set-based tripos, it is possible to con-
struct an implicative algebra that induces an implicative tripos isomorphic
to the given one [9].

In the last two chapters, after presenting the notions of geometric morphism
and first-order logic morphism between implicative triposes, we will analyze
which types of functions between the corresponding implicative algebras can
induce these morphisms.

These results will lead us to define new notions of morphisms between im-
plicative algebras, and the consequent categories, that do not overlook but
actually consider their relationship with triposes. Similarly to what Frey
and Streicher have supposed in [4], these new categories allow us to shift
our attention from the study of the categories of triposes to the study of the
implicative algebras, much simpler algebraic structures, perhaps providing
a new perspective on the former.



Chapter 1

Preliminaries

1.1 Some notions about categories

Definition 1.1. A category C consists of
e a class Obj(C) of objects;

a class Hom(C) of morphisms;

two class functions dom, cod : Hom(C) — Obj(C) called domain and
codomain;

a class function id_: Obj(C) - Hom(C);

a class function

o+ {(f.9) € Hom(C) x Hom(C) : cod(f) = dom(g)} ~ Hom(C)
(f’ g) =go f
such that:

— dom(go f) =dom(f) and cod(go f) = cod(g) for every f,g mor-
phisms of C such that cod(f) = dom(g);

— dom(idx) = cod(idyx) = X for every X object of C;

— foidgom(s) =ideod(sy © [ = f for every f morphism of C;

— ho(gof)=(hog)of for all f,g,h morphisms of C such that
cod(f) =dom(g) and cod(g) = dom(h).

If f is a morphism such that dom(f) = X and cod(f) =Y, we will denote it
as f: X »Y. We will denote as Homc(X,Y') the class of morphisms from
X toY.



Example. The category Set is defined as follows:
e the objects are sets;

e if XY are sets then Hom¢(X,Y) = {(X, f,Y) : f is a map from X to Y}.
We will write just f instead of (X, f,Y);

e the composition of f: X - Y and ¢g:Y — Z is the usual composition
gof:X—>2Z;

e the identity of X is determined by the usual identity map of X.

Ezample. Let P = (P,<) be a preorder i.e. P is a set and < is a binary
operation on P that is reflexive and transitive. Then we can see P as a
category in the following way:

e the objects of P are its elements, i.e. Obj(P) = P;
e if p,p’ € P then:

, / lf S /
Homp(p’p,):{{(pp)} p<p
& otherwise

e if pe P then id, = (p,p);

e (q,7)o(p,q) = (p,r) for every r,p,q € P such that p<qg<r.

Example. The category PreOrd is defined in the following way:
e the objects are preorders;

e a morphism from P to () is a monotonic map between the correspond-
ing sets;

e the composition of two morphisms is the usual composition of maps
between sets;

e idp is the usual identity map of the set P.

Definition 1.2. Let C be a category. The opposite category C? of C is
defined as follows:

e Obj(C) = Obj(C) and Hom(C) = Hom(C);



op op
o dom®™ = cod® and cod®” = dom(c;

e if f.g are morphisms of C such that cod®” (f) = dom®(g), then
got" f=foCy

Definition 1.3. Let f : X — Y be a morphism of a category C. Then f
is an isomorphism if there exists a morphism of C g:Y — X such that
gof=idx and fog=idy.

Now, let us recall the notion of pullback.

Definition 1.4. Let f : X - Z and g : Y — Z be two morphisms of a
category C. A pullback of f along g is a tern (P,g’, f') such that P is an
object of C and f': P -Y, g’ : P —> X are two morphisms of C such that
the following diagram commutes

P9y Xx

b

y 45 7

and such that if Q € Obj(C) and h: Q - X, k: Q - Y € Hom(C) are such
that the following diagram commutes

then there exists one and only one morphism j:Q — P such that

k P2y X

b

y 257

commutes, i.e. h=g' oj and k= f"oj. In such case, we will write:

P2 .x

U

y 447



Lemma 1.1. Let f: X - Y and g: Y — Z be two maps between sets. Then
the following diagram is a pullback in Set:

P={(z,y) e XxY: f(z)=g(y)} —— X

lm - f

Y 9 s 7

where m and wo are the projections of P. Furthermore, every pullback in
Set of f along g is isomorphic to (P, ma,m).

Proof. Clearly fom =gomy. If

Q’\
n P X
b

y 25 7

commutes, then f(k(q)) = g(h(q)), hence (k(q),h(q)) € P. Then, the
unique map j : Q — P such that m0j = k and mo0j = his j(q) = (k(q),h(q)).
Now, let (P’,¢’, f) be another pullback of f along g. Since fog' =go f’
and f o = gomy, there exist unique maps [: P’ - P and I’ : P - P’ such
that:

mol=g mool=f

gol'=m flol =m
Then, clearly

mo(lol')=m mao(lol') =ms

By uniqueness, then [ol” = idp. Similarly, "ol = idp,. Thus P’ is isomorphic
to P. ]

1.1.1 Functors and natural transformations.

Definition 1.5. Let C and D be two categories. A functor F from C
to D, denoted as F : C - D, is a pair (Fy, F1) of class functions where
Fy : Obj(C) - Obj(D) and F; : Hom(C) - Hom(D) such that:

o if f: X =Y is a morphism of C then Fi(f) is a morphism of D from
Fo(X) to Fo(Y);



e I (idx) =idp(x) for every object X of C;

o if f: X >Y and g:Y — Z are morphisms of C then Fi(go f) =
Fi(g)o Fi(f).

We will often write F' instead of Fyy and F7.

Example. Let P = (P,<p) and Q = (Q,<q) be two preorders and F': P - Q
be a map. Then

Fis a functor <= F is monotonidl

Clearly if F is a functor and p <p p’ then it must be F(p) <o F(p"). Con-
versely, if F' is monotonic and p <p p’ then F((p,p")) = (F(p),F(p")) €
Hom(D). Furthermore, F'((p,p)) = idp(p for every p € P and if p <p q and

g <pr then F((g,7)° (p,q)) = (F(p),F(r)) = F((q,r)) o F((p,q)). Thus F

is a functor.

Definition 1.6. Let C and D be two categories and F,G : C - D be two
functors. A natural transformation ® from F to G is a family of mor-
phisms ®x of D for every X € Obj(C) such that for every f € Homc(X,Y)
the following diagram is commutative:

Fx) 29 p(yy

bl
c(x) 22 a(v)
1.e. (I)y o F(f) = G(f) o (I)X.
We will say that ® is a natural isomorphism if ®x is an isomorphism of
D for every X € Obj(C).

Now, we can recall the notions of adjoints.

Definition 1.7. Let C and D be two categories and F:C - D, G:D - C
be two functors. F is a left adjoint of G (or G is a right adjoint of
F) if there ezists an adjunction from F to G, i.e. there exists a family of

bijections (¢x.y) xeobj(C),veobj(D) Such that
¢X7Y : HomD(F(X),Y) - Hom(C(X7G(Y))

is natural with respect to X and Y , which means that for every f: X — X' ¢
Hom(C) and g: Y - Y’ e Hom(ID) the following diagrams commute:

'We have indicated with F' the functor (F, F x Fluom(p))-



Homp (F(X),Y) (M—(f) Homp(F(X"),Y)

l@ﬁx,y l%(’,y

Hom¢ (X, G(Y)) F Homc (X', G(Y))

Homp (F(X),Y) £ Homp(F(X),Y")

l¢x,y l%(,y'

Home(X, G(Y)) £9% Home(X, G(Y"))

In such case, we write F 4 G.

Example. Let P = (P,<p), Q = (Q,<g) be two preorders and F': P - @,
G : @ - P be two functors, i.e. two monotonic maps.
Then

F+4G ifandonlyif VpeP, VgeQ: F(p)<gqiff p<pG(q)

If ¢ is an adjunction from F' to @, then for every p € P and q € @ ¢pq :
Homqg(F(p),q) - Homp(p,G(q)) is a bijection. Thus, F(p) <g ¢ if and
only if p <p G(q).

Conversely, if for every p e P,q € Q: F(p) <g ¢ if and only if p <p G(q) then
¢p,q is trivially defined.

1.2 Heyting algebras

Definition 1.8. A partial order is a preorder P = (P,<p) such that <p is
antisymmetric, i.e. for every p,p' € P, if p<pp’ and p’ <p p, thenp=1p'.

We can define a category Pos in the following way:

e the objects are partial orders;

e a morphism from P to () is a monotonic map from P to Q;
e the composition is the usual composition of maps;

e idp is the usual identity map of the set P.

Definition 1.9. A partial order H = (H,<,A,v,—>,T,1) is a Heyting al-
gebra if:
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1. for every a,b € H there exist a greatest lower bound and a least upper
bound, denoted by a Ab and a v b respectively;

2. T,LeH such that L <c<T for all c € H;

3. > HxH - H s an operation such that:

cna<b ifand onlyif c<a—b

Definition 1.10. Let H and K be two Heyting algebras. A morphism of
Heyting algebras is a monotonic map ¢ : H - K such that:

1. p(ham h') = p(h) Ak @(R');
2. p(hvmh') = p(h) vk (h');
3. p(h »m h') = p(h) >x o(h');
4. ¢(Lm) = 1k

Let us observe that if ¢ : H - K is a morphism of Heyting algebras then
©(Tm) = Tk. Indeed, since Ty = 1y =g Ly then o(Ty) = ¢(ly) =k p(lu) =
1K 7K 1K = TK-

We can now define the category HA in the following way:
e the objects are Heyting algebras;

e a morphism from H to K is a morphism of Heyting algebras from H
to K;

e the composition is the usual composition of maps;
e idy is the usual identity map of the set H.

Definition 1.11. Let A be a Heyting algebra. We say that A is a Boolean
algebra if
av(a—>1)=T

for every a e A.

Definition 1.12. A Heyting algebra H is complete if every set-indexed
family (a;)ier of elements of H has both a greatest lower bound Ny a; € H
and a least upper bound \/;cy a; € H.

11



Definition 1.13. Let H and K be two complete Heyting algebras. A mor-
phism of complete Heyting algebras is a map ¢ : H - K that preserves
arbitrary meets, arbitrary joins and the implication.

Now, let us state a lemma that will be useful later.

Lemma 1.2. Let H, K be two Heyting algebras and ¢ : H — K be a bijective
map between them. Then, ¢ is an isomorphism in Pos if and only if it is
an isomorphism in HA.

Proof. Clearly, if ¢ is an isomorphism in HA then ¢ is an isomorphism in
Pos.
Conversely, let ¢! be the inverse of ¢ in Pos. Let z,y € H:

r<y = p(z) <p(y)
e(z) <p(y) = ¢ () <o (p(y) = z<y

i.e. x <y if and only if ¢(z) < ¢(y). Thus, clearly ¢(T) =T and ¢(1) = 1.
Since:

p(x) Ap(y) <p(z) = o7 (p(a) np(y) <o
p(2) Ap(y) < oly) = ¢ ((x) ne(y)) <y
thus ¢ 1 (@(z) A @(y)) <z Ay and p(z) A p(y) < o(xAy). In addition,

rAay<z = p(xAy) <o(x)

rAy<y = oz Ay) <ey)

then p(z Ay) < p(z) Ap(y). Analogously for v. Now, let us show that ¢
preserves —: for every z € H we have that

2np(x) <p(y) it o™ (z A p(e)) <y
iff ol (2) Az <y
iff ol (z) <z >y
iff z < (x> y)
Thus ¢ is a isomorphism of HA. O

Definition 1.14. Let (P,<) be a poset and F' a non-empty subset of P. F
is o filter of P if:

o for every x,y € F' there exists z € F' such that z <x and z < y;

12



e F is upwards closed.

If X ¢ P we say that F is the filter generated by X if F' is the smallest
filter containing X. If a filter is generated by a singleton then we say that
it is principal.

Definition 1.15. IfH is a Heyting algebra and F is a filter of H, then H/F
is the quotient set induced by the following relation:

r~y < x-oyeF andy—-xeF

As usual, if H is a complete Heyting algebra and I is a set, we can
consider:

H’ := {n: I - H map}
Clearly, H' is a complete Heyting algebra, where

(n AT Q) () = n(i) A ¢(i)
(n v Q) () = ni) v ¢(i)
(n =" ) (@) =n(i) > ¢(i)
Thi) =T

@)y =1

for every i € I.

1.3 Frames and locales
Let us start by introducing the following categories:
Definition 1.16. The category Frm of frames is defined as follows:

e the objects are complete lattices H = (H,<) that satisfy the infinite
distributive law i.e. (H,<) is a complete lattice such that

an\/B=\/{arnb:be B}
for everyae H and B< H;

e the morphisms from H to K are maps preserving finite meets and
arbitrary joins;

13



e the composition is the usual composition of maps;
e idy is the usual identity map of the set H.

Definition 1.17. The category Loc of locales is defined as the opposite
category of Frm. The morphisms of Loc are called continuous maps.

Let us observe that:

Theorem 1.1. A complete lattices H = (H,<) is a complete Heyting algebra
if and only if H satisfies the infinite distributive law.

Proof. (=) Let us suppose that H is a complete Heyting algebra. Let a € H
and B ¢ H. Clearly, V{aAnb:be B} <aAV B. In addition,

anb<\/{anb:beB} then b<a-\/{anb:beB}
for every b e B. Thus:
\V/B<a—-\/{arnb:beB} then an\/B<\/{arnb:beB}

Then H satisfies the infinite distributive law.
(<) Let us suppose that H satisfies the infinite distributive law. Then, for
every a,b e H we define

a—=b:=\/{zeH:xna<b}
Then, for every ce H

if ¢<a—-b then cAra<an(a—Db)
then cra<an\/{zreH:xrna<b}
then cAa<\/{aAz:zeH and zAa<b}

then cAa<b

Since if ¢ A a < b then clearly ¢ < a - b, thus H is a complete Heyting
algebra. 0

Thus, the objects of Frm, Loc and HA are exactly the same, while the
difference between these three categories is how the morphisms are defined.

Ezample. Let (X, 7) be a topological space. If we consider the lattice of its
open subsets (7,<) then, for every a € 7 and S ¢ 7:

anlJS={ans:seS}

14



i.e. (7,¢) satisfies the infinite distributive law. Thus, it is a frame. Now,
let (Y, o) be another topological space and f: X - Y be a continuous map,
i.e. a morphism of topological spaces. Then:

fliosr

s f7H(s)

is clearly well defined and monotonic w.r.t €. Furthermore, f~! preserves
arbitrary unions and finite intersections. Then, f~!: (¢,2) - (7,€) is a
morphism of frames.

Lemma 1.3. Let H and K be two frames and let ¢ : H - K be a finite
meet- preserving map between them. Then ¢ is a morphism of frames if and
only if there exists a map ¢ : K — H such that ¢ - ¥ where both ¢ and
are considered as functors between the categories induced by the preorders H
and K. Furthermore, ¢ is unique.

Proof. (=). Let ¢ be a morphism of frames. For every a € K, we define

Y(a):=\{yeH:p(y)<a}

It is obvious that ) is monotone. Let z € H. Clearly, p(x) < a implies that
x <1(a). Conversely,

if x<y(a) then o(z)<p(¥(a))
then  p(z) <\/{p(y):ye H and p(y) < a}
then () <a

Thus ¢ .
(«<). Let ¢ : K - H be such that ¢ 44 and let B € H. Since ¢ preserves
A, it is monotone. Thus:

V w(b) <o(\/ b)

beB beB

Conversely,

p(b) < b\é ©(b) for every be B
€

then b<y(\/ ¢(b)) for every b e B
beB

then  \/ b<y(\/ ¢(b))

beB beB

then o(\/ b) < \/ p(b)

beB beB

15



Then ¢ preserves arbitrary joins and thus it is a morphism of frames.

We can observe that this property follows from a more general result, which
is that every left adjoint preserves the colimits [8].

The uniqueness of v follows from the uniqueness of the adjoints between
posets. ]

1.4 Triposes

Definition 1.18. A Set-based tripos is a functor P: Set®” -— HA such
that:

1. for each X, Y € Set and for each map f: X - Y, the corresponding
morphism of Heyting algebras Pf : PY — PX has a left adjoint 3f
and a right adjoint ¥V f when it is seen as a functor between posets, i.e.
Af, Vf : PX - PY are monotonic maps such that for all p e PX and
qePY

3f(p) <py ¢ = p<px Pf(q)
q<py Vf(p) = Pf(q) <pxp

2. Beck-Chevalley condition. For each pullback square in Set

XlL)XQ

l ’ l

g1 92
f2

X3 — Xy

the following two diagrams commute:

Px, I Px,  PXp L PX
Png P92T P91T szT
BV Vo
PX; —225 PX,  PX3 —1% PX,

t.e. f,0Pg1 =Pgao3f, and VfoPgy =PgaoVfs,.

3. there exists a generic predicate, i.e. there exists a set X and a predicate
try, € PY such that for all sets X, the decoding map

[Ix:2% - PX
o Po(try)

1S surjective.

16



Remark. 1. Let P be a tripos and f: X -— Y be a map between sets. If
3f and 3'f are both left adjoints for Pf then:

3f(p)<qe=p<Pflg) <= 3Ff(p)<q

for every p € PX and ¢ € PY. Thus, 3f = 3'f. Analogously we can
prove that V f is unique.

Let us observe that the notion of tripos does not imply that 3f and
Vf are morphisms of Heyting algebras, but only monotonic maps.
However, it is possible to define two functors:

3:Set — Pos V : Set — Pos
X~PX X~PX
fe3f feVf
In fact, if f: X Y and g:Y — Z are maps between sets then:
I(ge f)=3ge3df V(gof)=VgoVf
3(idx) = idpx V(idx) =idpx

2. Let

ILH

_
lfz lgl
I L) J

be a pullback in Set; the Beck-Chevalley condition requires that the
following two diagrams commute:

pr P P pp
Pf2T P91T PbT P91T
P, =25 pPj  PL, 2, pJ

But, we can show that it is not necessary to prove the commutativity
of both. Indeed

dfioPfa=Pgiodgy = VfooPfi =PgaoVg
Pgi o 3gs is a left adjoint of Pgy o Vg1, in fact if p € PIy and p’ € PI;:
Pg1(3g2(p)) <p’ < 3g2(p) < Var (p')
< p<Pg(Va())

17



Analogously, 3f1 o Pfy is a left adjoint of Vfy 0 Pf7 :

Af1(Pfa(p)) <p' < Pfa(p) <Pf1(p")
< p<V(PAK))

We can conclude by uniqueness of the left and the right adjoints.

3. The generic predicate is never unique. In particular, if h: X" — ¥ has
a right inverse, then tryy = Ph(try) is another generic predicate for P.
Indeed, if p € PX, there exists o € % such that [o]x = p. Let h the
right inverse of h, then

P(hoo)(trs) =P(hoo)(Ph(trs)) =P(hohoo)(trs) =Po(trs) =p

Lemma 1.4. Let P : Set®” — HA be a tripos and let f: X - Y be a map
between sets. Then if f has a right (or left) inverse then 3f and ¥V f are left
(or right) inverses of Pf. Furthermore, if f has an inverse, 3f =V f is the
inverse of Pf.

Proof. Let g :' Y — X be the right inverse of f, i.e. fog =idy. Then
PgoPf = P(fog) = Pidy = idpy. Let us observe that if ¢,q € PY then
Pf(q) <Pf(q") = Pg(Pf(q)) <Pg(Pf(q)), ie. g<q'. Hence:
3f(Pf(9))<d" =Pf(a) <Pf(d) = q<d
¢ <Vf(Pf(q)) = Pf(d)<Pfla) =d <q

Hence, if ¢’ = ¢ :

If(Pf(q))<q and g<Vf(Pf(q))
Conversely, if we choose ¢’ = 3f(Pf(q)) and ¢’ = Vf(Pf(q)) we can prove:

q<3f(Pf(q)) and Vf(Pf(q))<q
Then, 3foPf=VfoPf=idpy.
The case where f has a left inverse is similar.
The case where f has an inverse is obvious from the previous two. O

Now, let us introduce a particular type of tripos.

Definition 1.19. Let H be a complete Heyting algebra. Then H induces the
following Set-based tripos, called Heyting tripos or forcing tripos:

P:Set’’” - HA
X 1Y
fr-of
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1.4.1 Interpretation of triposes

Let us recall the main idea that connect triposes to logic, i.e. how a tripos
P :Set”” - HA can describe a type of intuitionistic higher-order logic.

We can think every set I as a “ type” and the corresponding PI as the set
of predicates over I. In this interpretation, if p, ¢ € PI then they can be seen
as formulas p(x),q(z) that depends on a variable x of type I.

Then, we can interpret the order of PI in the following way:

p<q means (Va:I)(p(z)= q(x))

p=q means (Va:I)(p(z) = q(z))
Furthermore, since PI is a Heyting algebra it is also possible to interpret
AV, —, true and false.
Now, let f: I — J be a map and let ¢ € PJ. Thus ¢ can be interpreted as

a predicate ¢(y) depending on a variable y of type J. Then, Pf:PJ — PI
can have a role of “ substitution map” in the sense that:

Pf(q) represents q(f(x)) where x:1

Since, Pf is a morphism of HA the substitution commutes with A,v and —
(as logical connectives).

Now, we can use 3f and V f in order to express the existential and universal
quantification along f. Indeed, if p € PI then:

3f(p) means (3z:I)(f(x) =yrp(x))
Vf(p) means (Va:I)(f(x)=y= p(x))

Then:

3f(p) <q iff p<Pf(q)

Pf(p) <q iff p<Vf(q)
represents:
(Vy: )@z D(f(z) =y ap®) =q(y)) if  (Vo:I)(p(z) = q(f(2)))
(Vo : I)(q(f(z)) = p(z)) iff  (Yy:J)(a(y) = (Yo : I)(f(z) =y = p(x)))

3f and V f are not morphisms of HA then the existential and the universal
quantification do not necessarily commute with all the connectives.
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Let 7,7’ be the first projections of I x K and .J x K respectively, then the
following diagram
IxK-"—1

_
lf xid Lf
J x K L) J
is clearly a pullback. The Beck-Chevalley condition ensures us that

P(IxK)>Z—~PJI P(IxK)X™ ~PrI

(1% K) (I x K)

P(fxidK)T Pf P(indK)T Pf{
P(Jx K) ™~ PJ P(Jx K)"™ ~PJ

commute, thus:

(Ve:D[(Fz: I x K)(m(2) =z Ap((f xidg)(2)))
= (Fw: Jx K)(n'(w) = f(2) Ap(w))]
(Ve :D)[(Vz: Ix K)(7m(2) =2 = p((f xidg)(2)))
= (Yw: J x K)(7'(w) = f(z) = p(w))]

i.e.

(Vo : D[(3z: K)p(y, 2)({y = f(2), 2= 2}) = (Fz: K)(p(y, 2){y = f(2)})]
(Vo : D[(Vz: K)(p(y, 2){y = f(2),2:= 2}) = (V2 : K)(p(y, 2){y := f(2)})]

for every every predicate p € P(J x K). In addition, the role of ¥ is to
represent the “ type of proposition”, while

try represents “cﬂ is true” where ¢ : %

i.e. the generic predicate expresses the formula asserting that a given propo-
sition is true.

In this idea, the decoding map [ ]; allows us to turn any functional propo-
sition into a predicate. If f: I — 3 then:

[f]r =Pf(trs) represents “f(x) is true” where z: 1

The surjectivity of the decoding map ensures us that every predicate of PI
is represented by at least a functional proposition of ¥/, which means that
every predicate of PI is of the form “f(z) is true”, with f a functional
proposition from I.

2We have used ¢ as a variable in order to highlight that the variable is a proposition.

20



Chapter 2

Implicative algebras

2.1 Implicative structures

Definition 2.1. An implicative structure is a triple (A,<,—) where
(A, <) is a complete meet-semilattice, i.e. a poset where every set-indezxed
family (b;)er of elements of A has a greatest lower bound Ay b;, and — is
a binary operation called the implication of A such that if a,a’,b,b’" € A
and (b;)ier is a family of elements of A:

o ifa' <a and bz then (a —>b) < (ad - V)
® a— Niepbi = Nier(a — i)

We will denote L = ANA and T = AN@. Moreover, if B is a subset of A we
will denote Apegb as A\ B.

We write a — b — ¢ instead of a - (b - ¢).

Let A = (A,<,-) be a fixed implicative structure, we can equip A with
the following operators.

Definition 2.2. Let a,be A, the application of a to b is
ab:= N{ceA:a=x(b—c)}
We write ajasas...a, instead of ((a1az)as)...a, for all ai,as,...,a, € A.
Lemma 2.1. Let a,a’,b,b' € A, then:

1. (Monotonicity). If a <a’ and b< b’ then ab < d'b';
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2. (p-reduction). (a — b)a < b;

3. (n-expansion). a < (b — ab);

4. (Minimum). ab=min{ce A:a<(b—c)};

5. (Adjunction). ab < c if and only if a < (b— c).

Proof. Let a,be A, if we define Ugp,:={ce A:a=<(b—c)} then ab= AUgp.

1. (Monotonicity). Let a <a’ and b <V, if c € Uy ie. o' < (b - ¢),
then a < a’ < (V' - ¢) < (b - ¢), consequently Uy € Uyp. Hence,
ab= A Ua,b <A Ua’,b’ = a’b’;

2. (B-reduction). Since b€ U,_p, then (a - b)a = AUgspq < b;
3. (n-ezpansion). (b—ab) = (b—> AUap) = Acev,, (b= ¢) > a3

4. (Minimum). By the previous point, ab € U, and ab = AU, then
ab = minU, p;

5. (Adjunction). If ab < ¢ then a < (b - ab) < (b - ¢). Conversely, if
a=<(b—c)then ceUgyp, hence ab= AUgp < c.

O]

Definition 2.3. Let f : A - A be a map, then we can consider an associated
element of A, called the abstraction of f, in the following way:

Af= A(a~ f(a))

acA
Lemma 2.2. Let f,g: A—> A and a € A:
1. (Monotonicity). If f(a) < g(a) for all a € A then Af < Ag;
2. (p-reduction). (Af)a < f(a);
3. (n-expansion). a < A(b~ ab)
Proof. Let f,g: A— A then:

1. (Monotonicity). Obvious from the first property in the definition of

_>7

2. (B-reduction). By definition, Af < (a - f(a)) hence (Af)a < f(a) by
Lemma 2.1}
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3. (n-expansion). By Lemma a < (b — ab) then Apega < Apea(b —
ab) i.e. a < A(b~ ab).

O

2.1.1 Semantic typing
In this subsection we will study the semantic type system induced by an

implicative structure A, in which types correspond to the elements of A.

Let us start by introducing terms. We call a A-term with parameters
in A any A-term enriched with constants taken in A. Given a closed \-
term ¢ with parameters in A, we can associate it with an element t* of the
implicative structure A defined inductively in the following way:

ati=a
(tu)™ = (t*) (u™)

Az.t) = Xa > (t{x = a})A

The next theorem states a fundamental property of the A-term with
parameters in A.

Theorem 2.1. Let t be a A-term with parameters in A where FV (t) =
{1,...,xn} and a1 < al,...,a, < a,, are parameters in A then:

(1 = a1, o 2= @) < (o = 0,y 2= 0l })A
Proof. By induction on t.

e { =a: obvious;

'#{z := a} denotes the A-term obtained from t by replacing the variable & with a. In
particular:

e if t = k then t{z := a} = Kk where & is a parameter or a variable different from z;
e if t =z then t{z :=a} = q;

o if t = us then t{z :=a} = (u{z:=a})(s{z:=a});

e if t = Ay.u then t{z :=a} = \y.(u{z := a});

e if t =Az.u then t{z:=a} =+t.
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e t=x: obvious;

o t=uz: since (u{zy = a, ..., Ty = an )t < (w{zy = af, ...,z = al})A
and (z{x1 = ay, ...,z = an})?* < (2{x1 := a}, ...,z = a,})* by induc-
tive hypothesis, then (t{z := ai,...,Tn = an})* < (t{z1 = @}, ..., zp =

a’ })* by Lemma

o = )\z.u: since (u{zy = ay,...,xy = ap, T := a})A < (w{zy1:=dl, .., xn =
a! x:=a})* by inductive hypothesis, then

Aa > (u{z1 = ay, .., Ty =, @ = a})?) <
<Mawr (u{z:=d),...,xn=al,,x:=a})?)
by Lemma Thus:

(tH{x1 = a1,y ey @y 2= an }) < (H{zy =), oy =l })A

O]

Definition 2.4. A typing context is a finite (unordered) list T' = x; :
A1,y Ty * Gy where T, ..., Ty are pairwise distinct A-variables and a1, ..., a, €
A. We write dom(I')= {x1,..., x5 }.

If T and T' are typing contexts, we will write T" < T if for every (x:a) el
there exists b e A such that b<a and (x:b) eT".

Given a type context I' = x1 : a1,...,Zn : Gn, & A-term ¢ with parameters
in A and an element a € A, we can define a typing judgment I' + ¢ : ¢ in the
following way:

P+t:a ifand only if FV(t)<dom(l) and (¢({I')* <a

where, in the notation ¢[T'], T is interpreted as a list of variable assignments,
i.e. t[T'] denotes the term t{x1 :=aq,..., Ty = an }.

Theorem 2.2. Let I, T be typing contexts, t, u A-terms with parameters
in A and a, o/, be A then:

o (Axiom). If (z:a) el then 'z :a;
e (Parameter). I'+-a:a;

e (Subsumption). if T'+~t:a and a<a’ then T +t:d';
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Context subsumption). If ' <TV and T'+t:a then T' +t: a;

T-intro). If FV(t) € dom(T") then T'+¢:T;

—-elim). If'+t:a—>band'+wu:a then ' +tu:b;

(
(
o (—-intro). IfT\z:art:b then T+ Ax.t:a—b;
(
(

Generalization). Let (a;)er be a set-indexed family of elements of A.
IfT't:a; foralliel, then '+t : Njeg a;.

Proof. Aziom, Parameter, Subsumption, T-intro and Generalization are ob-
vious.

Contezt-subsumption follows from the monotonicity of substitution (Theo-
rem [2.1]).

In order to show (—-intro), we assume I', 2 : a ¢ : b or equivalently F'V (t) €
dom(T',z : a) and ([T, x : a])* < b; by definition of typing context it follows
that F'V(Az.t) € dom(I') and

((\z.t)[TDA = /\A(ao - [0,z =ag])M) <a - (t[T,z:=a])* <a > b.

Finally, in order to prove —-elim, we suppose FV(t), FV(u) ¢ dom(T),
(t[TD* < a - b and (u[T'])* < a, hence FV (tu) € dom(I") and by Lemma
2.1k

(tu[T])A = (T ([T < (a > b)a <b.
O
Lemma 2.3. Let t,u be two closed A-terms with parameters in A. Then:
o ift>gu then t* < u#
o ift >, u then ut < t4
Proof. Let us start by showing that if t -5 u then 4 < uh,
1. if t = (Ax.t1)te and u = t1{z := t2}, then:
th = Q)8 = Aa = (B {z = a})Mt < (i {z =t = u?

by 3 of Lemma [2.2}
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2. if t=t's and u =u's where t' -1 v, then:

tA = tMAA < /At = ot
by the monotonicity of the application (Lemma [2.1)) and by inductive

hypothesis. The case in which ¢ = st’ and u = su’ is analogous;

3. if t = A\z.t’ and u = Az.u’ where t’ >4 v then (t'{z:=a})* < (v/{z:=
a})A for all a € A and hence:

tA = Xaw (t'{z:= a})A) <Aaw (u'{x:= a})A) =yt

by Lemma

Clearly, t -3 u implies t4 < u? by transitivity of <.
If ¢t = Ax.ux, hence t —; 1 u and

u? < X(a > uta) = t*
by 3 of Lemmal[2.2] Similarly to what we have done in the case of S-reduction

above, we can conclude using Lemma Lemma [2.2] and the transitivity
of <. O

2.2 Implicative algebras

The most important feature of the implicative structures is that every ele-
ment can represent at the same time a realizer and a truth value, i.e. a set
of realizers satisfying some kind of closure property.

The idea is that we can associate every actual realizer ¢ to a truth value
[t], called the principal type of t, defined as the meets of every truth value
containing t.

Conversely, if a is a truth value we could also interpret it as a generalized
realizer, in particular as the realizer whose principal type is a itself.

This point of view leads to an important problem: every truth value is real-
ized at least by itself and 1 realizes every truth value. This means we need
to equip an implicative structure with a new kind of structure (separator)
that should play the role of a sort of criterion of consistency.

In order to define it, we have to define before the following combinators:

K:=X\ryx S:=\ryz.xz(yz)
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Lemma 2.4.
KA= A (a»b-a)
a,beA

SA - AN ((a»b->c)—>(a—>b)>a—c)
a,b,ce A

Proof. Clearly:
K= O Q)= Ala= (A=) = A (4 a)

aeA a,be A

Using semantic type rules, we can show

SA < AN ((a=b->c)=>(a—>b)>a—c)
a,b,ce A

in the following way:

Axiom Axiom Axiom Axiom
I'Crz:a—->b-c T'2z2:a ) I'z:a I'y:a—>0b .
—-elim. —-elim.
'Fzz:b—>c I'Fyz:b
—-elim.

F=z:a->b-ocy:a—bz:arzz(yz):c

—-intro.
rz:a—>b-ocyia->brAzzz(yz)ia—c

—-intro.
x:a—->b—-cryzxz(yz):(a—>b)>a—c

—-intro.
FAzyz.oz(yz):(a—>b—>c) > (a—b)>a—cloralabeceA Gmro
en.

A xyz.22(yz) : Aapeeal(a >b—c) > (a—>b) >a—c)
Conversely:

AN ((a=b—>¢c)>(a—>b)—>a—c)=
a,be A

< AN ((a—ea—da(ea)) - (a—ea) > a— da(ea))
a,d,ee A

so by item 3. of Lemma [2.1

AN ((a=b—>c)—>(a—>b)—>a—c)

a,be A

< AN ((a—da)— (a—ea)—>a—da(ea))
a,d,ee A

< AN ((a—da)—e—a—da(ea))
a,d,ec A

< AN (d-e—a—da(ea))
a,d,ec A

< AN(d-> A (e— A (a—da(ea))))
deA ecA acA

= (Mzyz.xz(yz)))t = 84
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Now we can define:

Definition 2.5. A separator of an implicative structure A is a subset
S c A such that:

1. (upwards closed.) Ifa €S and a <b then be S
2. KA, S%es
3. (closed under modus ponens.) If (a > b) €S and a€ S thenbe S

Observation. Let S be an upwards closed subset of A. Then:
S is closed under modus ponens <> S is closed under application.

Indeed, let us suppose S is closed under modus ponens and a,b € S. By
Lemma a < (b — ab) and hence b - ab € S; since b € S and S is closed
under modus ponens, ab € S.

Conversely, if S is closed under application and a,a — b€ S, then (a — b)a €
S and since (a - b)a < b by Lemma[2.1] then be S.

Definition 2.6. Let A be an implicative structure. We define

cti= A (((a—b) > a)—>a)

a,be A

We say that a separator S of A is classical if cc? € S. While, S is con-
sistent if 1 ¢ S.

Let us observe that:
A((a=b) »a)»a)=(((a~ 1) >a)~>a)
be A

Furthermore, for every be A: a > L <a — b thus (a >b) »a<(a—> 1)~
a. Then ((a > 1) »a) > a< ((a—b) > a)— a, thus:

cc?= A (((a— 1) —>a) - a)

acA
Finally:

Definition 2.7. An implicative algebra is a quadruple (A, <,—,S) where
(A, <,—) is an implicative structure and S is a separator of A.
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2.3 Interpreting first-order logic
Let A be an implicative structure and a,b € A, we will write:

axb:= A((a—>b-c)—c)
ceA

a+b= A((a—c)—>(b—>c)—c)
ce A

-a:=(a— 1)

Theorem 2.3. Rules for x.

T't:a Tru:b
I'MXzztu:axb
I't:axb

F'Ht(Axy.x):a

1.

I't:axb
Frt(Axy.y):b

Proof. 1. Let I"=T,2:a— b— c then:

Axiom I't:a
7 7 C. subs.
I"rz:a—>b—c I"rt:a . I'wu:b

—-elim. ———— C. subs.

IM~2t:b—>c IV-wu:b i

Fll—Ztutc —>—intr0.

'+ Xzztu:(a—>b—>c)—>c forallce A o '

PMXzztu:axb o
Axiom
Iz:a,y:brz:a -
—>-1NTro.
2. I'Ht:axbd Iz:arAy.x:b—>a
Subs. —-intro.
'rt:(a>b—a)—a F'rXzyz:a—->b-a )
F'Ht(Axy.x):a Ten:
Axiom

Tx:a,y:br-y:b e

3. I'rt:axb Subs ziarAyy:b—>0 .t'
Fl—t:(a—>b—>b)—>b ’ F}—)\xy,y:aebeb -1r11.ro.
—-elim.

Dt Axy.y):b

Theorem 2.4. Rules for +.
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I'tt:a

L ' Xzw.zt:a+b

9 I't:b

" T'rXzwawt:a+b

3 I'tt:a+b T,x:aru:c Ty:brv:c

I'-t(Az.u)(Ay.v) e

Proof. 1. LetI"=T,z2:a - c,w:b— c then:

Axiom I't:a

7 7 C. subs.
I"2z:a—c¢ I"+t:a .
; —-elim.
IMF2zt:c )
—-intro.
izia—scrAwzt:(b—>c)—>c
—-intro.
FrXzw.zt:(a—>c¢) > (b—>c)—>c forallceA “
en.
I'Xzw.zt:a+b
2. Let IV=T,2:a — c,w:b— c then:
. Axiom F,Ft-b C. subs.
V~w:b—-c I"+1¢:0 .
7 —-elim.
I"+~wt:c .
—-intro.
Iiz:a—cr A wawt: (b—>c)—>c
—-intro.

F'kXzwawt:(a—c)—> (b—>c)—>c forallced

F'eXzwawt:a+b Gen.
3. Leta=(a—c)—>(b->c)—>c
Petiavh ., Doiaruie
Cri:a Fl—)\x.u:aec:;;& Ly:bruv:c M intro
F'+t(Azu):(b—>c)—>c - TrAyw:b—c ) '
I'+t(Azu)(Ayv):c e
O

We can also define the universal and the existential quantification of a
family of truth values (a;)ies in the following way:

Vierai == N\ a; Jierai = N\ (( A(ai > C)) - C)

i€l ce A iel
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Theorem 2.5. Rules for V.

1 Fl—tiai foralliel
I'+t:Vega;
9 I'+t:Vega; ioel
I'=t:ay,
Proof. Obvious. O

Theorem 2.6. Rules for 3.
I'=1:ay, igel
'+ Az.zt: Jieray

9 I'++¢: 3550 F,$:a,~|—u:c foralliel
' I'+t(Az.u):c
Proof. 1. Let us consider:
Axiom
Lz: Az’e[(ai g C) Fz: Aie](ai - C) Sub
ups.
T,z: Nier(a; = ¢) - z:a4, — ¢ I'-t:a ioel
—-elim.
Dyz: Nier(a; > ¢) = z2t:c
—-intro.
D+ Az.zt: (ANjer(a; > ¢)) > cforallce A
Gen.
I'+Az.zt: Jicqa;
2. Since Jjerai = Veea((Aier(ai = ¢)) = ¢), we can prove:
lx:a;-u:c foraliel
—-intro.
[t 3iera; F'rXzau:(a;—>c) foralliel
Subs. Gen.
P'_t:(AieI(ai%C))%C FI—A%’.U:AZ'E[(CLZ‘%C) i
—-elim.
Ft(Axw):ec lm
O

Let a, 8 be two objects. Then, we define

idA(Oz, B) _ {AaeA(a - CL) if a= ﬁ

T—>1 otherwise

Lemma 2.5. Rules for id
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I. Tv\zz:a=a

I'+¢:id4(a, ) I-u:pa)
T+ tu:p(B)

Proof. Let us consider:

2. where p: M — A for some set M.

Axiom
Iz:arz:a
—-intro.
I'Xr.x:a—>aforallac A
Gen.

[+ Az id* (o, a)

In order to prove the second rule, let us start by observing that if a € A is
such that
a<id(a,8) then a<p(a)—p(B)

Indeed, if o = 8 then a < idA(a,ﬁ) means that a < Apea(b - b), thus
a<p(a) - p(B). While, if a # § then a < T - 1 < p(a) - p(fB), thus:

I+ t:idA(a, B) -
Trt:pla)—>p(B) Tru:pla) el
T Ftu;p(ﬂ) -elim.

2.3.1 A-valued interpretations

Let £ be a first-order language.
Definition 2.8. An A-valued interpretation of £ is defined by:
1. a non-empty set M, called domain of interpretation;
2. a function fM : M* - M € F for each k-ary function symbol f of L;

3. a truth-value function p™: M* — A for each k-ary predicate symbol of
L.

We can interpret every closed term of £ with parameters in M in an
element tM of M | in the following way:

e if t = m where m € M then t" = m;

o if t = f(t1,...,tx) then (f(t1,...tx))M = MY, ... 1)
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In addition, if ¢ is a closed £-formula then we define ¢ in the following
way:

(tr = to)™ = id A (11, 1) (p(t1, - ti)) = p () 12
(¢ = )= ¢t > 7 (~¢) =gt > 1

(¢ np)ti= ™ x gt (v ip)ti= ¢t + 7t
(Vag(x)) = Vaerr (6(a))M (Fzd(2)? = Jaenr ()M

Definition 2.9. Le A be an implicative structure. The intuitionistic core
of A ST (A) is the smallest separator contained in A.
The classical core of A S (A) is the smallest separator of A, containing

cch.

Lemma 2.6. Let ¢ be a closed formula of L. Then:
e if ¢ is an intuitionistic tautology then ¢ € SP(A) ;
e if ¢ is an intuitionistic tautology then ¢ € Sg(A).

Proof. By induction on the derivation in natural deduction of the formula

¢, we can use Lemmas in order to find a closed

A-term t (if the derivation is classical, it can contains also cc) such that
- t4: ¢A. We can conclude by Lemma O
2.3.2 Heyting algebras induced by implicative algebras

Let A be an implicative structure and S ¢ A be a separator. We can
consider a binary relation on A called entailment, induced by S, defined
in the following way :

arsb< (a—>b)eS

for all a,be A.

Lemma 2.7. Let S € A be a separator, t be a \-term without parameters
in A such that FV(t) ={x1,...,xn} and ay,...,a, € S. Then:

(t{z1:=a1,...;xn = an})A €s.

Proof. If u is a A-term, we define a term wug inductively on wu, in the following
way:

o if u=2x then ug =z
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o if u=ss" then ug = sps(;
e if u=Ax.s then ug=A"z.sg
where A* is defined as:
e V'z.x=SKK;
o \uz.s=Ksif se{K,S} orif s is a variable different from x;
o \z.ss' =S(\z.s) (N z.s');

It can be proved that up -5 u. We can also observe that if v is closed then
ug is obtained only from K and S by application.

Let t and aq,...,a, be as in the statement, then we can consider the closed
term £ := (Az1...z,.t)g. Then clearly t4ay...an € S, since KA, SA¢ S and S
is closed under application. Then:

ay...a, < ()\ajl...xn.t)Aal...an <(t{z1:=a1,....,xy = an})A

where we have used Lemma [2.3] Since S is upwards closed, we can conclude.
O

Lemma 2.8. The relation +g is a preorder on A.
Proof. Let a,b,ce A.
o Reflexivity.
Axiom

T:a-T:a
FAT.zia—>a

—-intro.

hence (Az.z)A < a - a. Since (Az.z)? € S because of Lemma then
a—>acS, ie arga.

o Transitivity. Let us suppose a +g b and b g ¢, then:

Axiom Axiom
Axiom I'-z:a-b I'z2:a  elim
I'ry:b—>c IF'xz:b '
—-elim.
F+y(zz):c
—-intro.

x:a—>by:b>crAizy(xz):a—>c

where ' =z :a - b,y : b > ¢,z : a. Hence (A\z.y(zz)([z :=a — b,y :=
b->c])A<a—c. So,a—ceS by Lemma
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We will denote with A/S = (A/S,<g) the poset induced by the relation
of entailment g, in particular:

o A/S ={[a]s:ae€ A} is the quotient of A by the equivalence relation
-+g where
at+gb<=argband brga

o ifa,beA: [a]s<s[bls <= argh

We will often use the notation [a] instead of [a]s.

Theorem 2.7. Let A be an implicative structure and S be a separator of
A. Let us define H = (A/S,<g) and, given [a],[b] € H:

then H = (H,Ag,VH,—H, Ly, Tg) is a Heyting algebra.
Proof. Let a,b,ce€ A.

e Ap. Let [¢] <g[a] and [c] <g [b]:

Axiom Axiom Axiom Axiom
Praz:c—a I'z:¢c ) -y:c—>b 'kz:c .
—-elim. —-elim.
I'Fzz:a F'Fyz:b
Th. 23

Fi=z:c—»a,y:c>bz:cr I ww(zz)(yz):axb

—-int
x:c—>a,y:c—>brAzww(zz)(yz):c>axb e

Since ¢ - a, ¢ - be S, we can conclude that ¢ - a xbe S, by Lemma

ie. [c] <s[axb]. Conversely:

Axiom
z:axbrz:axb
z:axbrz zy.x:a

Th. 23

—-intro.

FAz.zAzy.x:axb—a
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Axiom
z:axbrz:axb
z:axbr 2z xy.y:b

FAz.zAzyy:axb—b

Th.

—-intro.

?0 [a?b] <s [a] and [axb] <g [b] by Lemma[2.3] Hence infy([a],[b]) =
axbl;

vi. Let [a] <g [¢] and [b] <g [c]:

Axiom Axiom
Axiom Nw:arz:a—c Nw:arw:a
—-elim.
I'z:a+d Fw:arzw:c s
Th. 241
Fi=x:a-cy:b->cz:a+br z(Aw.azw)(Au.yu) : ¢ -
—>-1ntro

r:a—->cy:b->crAzz(Awazw)Auyu)ia+b-c
where 7 is:

Axiom Axiom
Tu:bry:b—c Tu:bru:b
Fu:bryu:c

—-elim.

Then a+b— ce S, by Lemma Furthermore,

Axiom
r:ak+-x:a Th. B4
riarAzw.zr:a+b .
—-1intro.

FAzzw.zr:a—>a+b

Axiom
T:brx:b Th. B
r:b- zwwr:a+b .
—-intro.

FAzzw.wx:b—a+b

Fen(;)ei, [a] <s [a+b] €S and [b] <g [a+b] € S. So supy([a],[b]) =

—p. Let [c] Ap[a] <5 [b], ie. (exa)—>beS.

Axiom Axiom
Axiom I'y:c I'z:a Th B
F'rxz:(cxa)—>b ' wawyz:exa )
Ti=z:(cxa)—by:cz:arz(Awwyz):b
—-intro.
x:(exa)>by:ck Azx(lwwyz):a—>b e
—-intro.

x:(cxa)>br A yzoz(Awwyz):c—>a—>b
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Then [c] <g [a = b]. Conversely, if [c] <g [a — b]:

Axiom

Axiom Iryrexa Th By . Axdom

F'rz:c>a—>b Cry\a'y .2’ ¢ F'-y:cxa
AN —-elim. AN Th. 2.3

F'-z(yra'y'.2"):a—>Db L'-yXa'y' .y 1a
—-elim.

Fi=z:c>a->by:ecxarz(y e’y 2" )y 'y .y') : b
—-intro.

x:c—>a->br A yx(y 'y .2 ) (yr 'y .y (exa) > b
Then (cxa) > be S, ie. [c]Ap[a] <s [b].
e Ty.If s€S then

Param.
T:THS:S

—_— —>—intr0.
FAL.S:T— S

thus [T] = [s]. Furthermore, for every c € A:

7T—intI‘OA
rx:cx:T

FAr.x:ic—>T

—-intro.

then [c] <g [T]. Hence, Ty = S.

e 1. For every ce A:

Axiom
T lr-x: 1l
Tl xic Dubs
—-intro.

FAr.z:l—>c

then [1] <g [c], i.e. Ly =[1]. Clearly, [¢] =[L] if and only if ¢ > 1 € S;
thus 1g={ce A:c—> 1€S}.

O

2.4 Examples

2.4.1 Complete Heyting algebras and implicative algebras
Let us fix a complete Heyting algebra H = (H, <, A, Vv, =, T, L).

Lemma 2.9. (H, <, —) is an implicative structure.
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Proof. Clearly H is a complete meet-semilattice. If a’ < a and b < b are
elements of H then:

a—-b<a—-b then a—-bAra<b
then a—=baa <t

then a—b<a -V

Furthermore, Ajer(a — b;) = a = Ay bi. Indeed, since a - Ajerb; < a — b;
for every i € I, it is obvious that a — Ajcrb; < Ajer(a = b;) and since
Nier(a = b;) < a — b; for every i e I

then A(a—b;)Aa<b; for every iel

iel
then A(a—b)Ara< /\b
iel iel
then A(a—b)<a—> b
iel iel
Hence, we have proved that H is an implicative structure. ]

Let H = (H, <,—) be the implicative structure induced by H.
We can observe that the application in H coincides with the binary meet.
Indeed, let a,b,c € H then, by Lemma [2.1

ab<c ifandonly a<b-c ifandonly anb<c

thus ab=a Ab.
Furthermore,

axb=anb a+b=avd
Indeed, for every c € H:

a—->b—>c<a—->b-c ifandonlyif arnba(a—>b—>c)<c

if and only if aAnb<(a—>b—c)—>c
thus anb<axb. Since TAaAnb<athen T=a—b— a. Thus:

axb= A\ ((a=>b->c)>c)<(a>b->a)>a=T—>a<a
ceA

where the last inequality follows from the fact that T>a<T>a < T >
a < a. Analogously we can prove that a xb<b, thus axb<aAb.
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Since a A (a—¢) =a(a—c)<cand ba (b—c) =b(b— c) < c by Lemma 2.1]
then:

(an(a—=c))v(ba(b—>c))<c
then (an(a—=c)a(b—c))v(ba(b>c)a(a—c))<e
then (avb)Aa(a—=c)n(b—>c)<c

then avb<((a—>c)—> (b—>c)—c)
thus a v b <a+b. While, let us observe that:
To>a=\{cieAaT<a}=a
Thus, let ¢ € A be such that a <cand b<¢,ie. a—>c=b—-c=T. Then
(a=c)->(b>c)=c=T>T—>c=c
Thus a+b<avb, because avb=A{ceH:a<cand b<c}.

Lemma 2.10. Ift is a A-term such that FV (t) = {z1,...,x,} and a1, ...,a, €
H, then:

ay A ... Aap < (H{x1:=aq,...,xp = an})H
Furthermore, if t is closed then t' = T.
Proof. By induction on t.
o if t =2 then a <a = (z1{zx1 = a})™;
e if t = ujus then
(t{x1 = a1, ... Ty = ap }) ™
= (up{@y = a1, ..o; Ty = an}) (uo{ay = ar, .o, xn = an )™

= (ur{x1 = ay, ..,y = an})H A (ug{xy = ay,....,xy = an})H

>aiN...N\ay
where the last inequality follows by the inductive hypothesis;
e if t = A\y.u then

(tH{z1:=a1,...,xp = an})H = ANO— (u{y:=b,x1:=a1,...,2p = an})H)
beH

> ANb—>bnrar ... Anay)
beH
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by inductive hypothesis. Furthermore, since a < b - b A a, we can
conclude that

(tH{z1=a1,..,tn=a )t 2a1 Ao nay

O

Now, we want to analyze the separators of an implicative algebra induced
by a Heyting algebra.

Lemma 2.11. Let S cH. Then S is a separator for H if and only if it is
a filter over H.

Proof. Let S be a separator. We have already proved that any separator is
closed under application, thus zy € S for every =,y € S. Since xy =z Ay we
can conclude that S is a filter.

Conversely, let S be a filter. By Lemma K™ = S¥ = 1 thus they are
elements of S. If x - y,z € S, there exists z € S such that z <z — y, hence
zAx <y, and z <x. Then, 2z = 2z Ax < y. Since S is upwards closed, then
y € S. Thus, S is closed under modus ponens. O

Lemma 2.12. The following are equivalent:
1. H is a complete Boolean algebra;
2. cct = T;
3. t" =7 for all closed \-terms with cc’.

Proof. (1) = (2). If H is Boolean, then clearly ((a - 1) - a) - a =T for
every a € H thus cc? = T.

(2) = (3). If t is a closed A-term with cc’*. We define a A-term u such that
t = u{x = cc™} and FV(u) = {z}. By Lemma then T = cc™ < ™.

(3) = (1). Since cc’* = T, we have that ((a » L) - a) - a =T for every a e H
and since ((a > 1) > a) >a<((a > 1) > 1) > a, then H is Boolean. O

2.4.2 Kleene’s Realizability

In this subsection, we will study the relationship between implicative alge-
bras and Kleene’s realizability.

The main idea of Kleene’s realizability is to identify every closed formula as
the set of its realizers: fixed an algebra of programs P, every closed formula
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¢ is interpreted as a subset [¢] of P. Following this interpretation, for every
closed formulas ¢, 1), we define:

[ Ayl =] x [¥] e vyl =le] + [¥]

While, the existential and the universal quantification have the following
expression:

[Vzp(x)] = M [e(v)] [Bzé(x)] = U [»(v)]
veM veM
Our aim is to show that we can express Kleene’s realizability in terms of
implicative algebras. Let us start by defining:

Definition 2.10. (P,-) is a partial applicative structure PAS if P is
a non-empty set and - : P x P — P 1is a partial operation over P called
application. If -y is defined we write x -y | for every x,y € P.

If P is a PAS, we can define a binary operation on P(P), called Kleene’s
implication, such that if a,bc P:

a—>bi={zeP: Yreaz x|l

Definition 2.11. A partial combinatory algebra PCA is a PAS (P,-)
such that there exist two elements k,se P such that if x,y,z € P:

1. (k-z)|,(s-z) | and ((s-x)-y) |;
2. (k-x) y=~ux;
S ((sz)y)z=(z-2) (y2)

where ~ indicates that either both sides of the equations are undefined or
that they are both defined and equal.

A combinatory algebra (CA) is a PCA such that the application - :
P x P — P is total.

Thus, if P is a non-empty set and - is a binary application on P, then
(P,-) is a CA if there exist k,s € P such that, for all z,y,z € P:

1. (k-z)-y=ux;

2. ((s-x)-y)-z=(z-2)-(y-2)

2The notation z -z {€ b means that z-z | and z-x € b.
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While, the corresponding Kleene’s implication can be defined as:
a—->b={zeP: Vreaz xeb}.

Lemma 2.13. If (P,-) is a CA, then A = (P(P),<,—), where — denote
Kleene’s implication, is an implicative structure.

Proof. Clearly (P(P),<) is a complete meet-semilattice. Let a,a’,b,b’ ¢ P
such that a’ € a and b € b’; we want to show that a = bca’ - V. If z€ea—b
then z-x € b for every x € a, thus z-x € b’ for every z €a’, i.e. a—>bca’ - V.
Now, let (b;);e; be a set-indexed family of subsets of P. If z € P then:

zea—> )by i Veea z-xze(\b T Vrea Viel z-zeb; Vrea

iel iel
iff Viel zea—-b, iff ze()(a—b)
i€l
Thus, A is an implicative structure. O

Lemma 2.14. Let A= (P(P),c,—) be the implicative structure induced by
a CA (P,-), then S =P(P)~{@} is a separator of A.

Proof. Clearly, S is upwards closed. Now, let us prove that K4, S% ¢S, Let
a,b,cc P. Then:

a->b—->a={zeP: Vreaz-ze(b—>a)}
={zeP: Vxea, Vyeb(z-z)-yea}

thus, clearly ke a > b > a and K* ¢ S.
While

(a=b—>c)—>(a->b)>a—->c={zeP:Vrea-b-cz-xze(a—>b)—>a—c}

={zeP:Vyea—>bVYweaVrea->b—>c (((z-2) y) w)ec}

Let us observe that z-w e b — csince x €ea - b— cand w € a, while y-webd
because y € a — b and w € a. Then:

(((srx) y) - w)y=(x-w) - (y-w)ec foreveryzrea—->b—->c, yca—>b, wea

thus S € S.
Now, let a > be S and a € S. Then, there exists z,y € P such that x €a - b
and y € a, then clearly z-y € b, i.e. b+ @. O
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Let (P,-) be a CA and A = (P,-,~,P(P) \ @) the implicative algebra
induced. If a,b € P then:

a-b={x-y:xea,yebl=ab
Indeed, let ¢ € P then:
a-bce iff Vzxea,Yyeb xz-yec iff acb-c

thus, a-b = ab by Lemma [2.1

2.4.3 Classical realizability

The main difference between classical and intuitionistic realizability is that
in classical realizability every closed formula ¢ is not interpreted as the set
of its realizers but as the set of its counter-realizers, i.e. [¢] € P(II) where
IT is the set of stacks associated to an algebra of classical programs A. The
set of its realizers are instead defined indirectly as the orthogonal set of
[¢] € P(II) with respect to a particular relation 1< A x II.

As before, we will show how classical realizability can be expresses through
implicative algebras.

Definition 2.12. We say that K = (A,IL,®,-, k, K, S, cc, PL, 1) is an ab-
stract Krivine structure if:

1. A and II are non empty-sets. We called their elements K-terms and
K-stack respectively;

2. ®:AxA— A isamap called application. We usually write tu instead
of ®(t, u);

3. -t AxIl - 1I is a map called push;

4. k_: Il - A is a map that associates every w € Il to a KC-term k; called
the continuation associated to m;

5. K,S and cc are three different elements of A;

6. PL c A is closed under application and K,S,cce PL. PL is called the
set of proof-like KC-terms;
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7. 1€ A x1II is such that, for every t,u,v e A and 7,7’ € I1:

tlu-m=— tulm
tilm = KlLt-u-m
tilv-uw-# = Slt-u-v-mw
tl kpy-m = cclt-m
tum = k,Lt-n

1L is called the pole of K.

If a ¢ IT we will denote:

at:={teA: Vreatln}

Let us fix an AKS K and let A = (P(II),2,—) where
a—>b=a"b={t-w:teat, meb}

for every a,b c II.

Lemma 2.15. A= (P(Il),2,—) is an implicative structure.

Proof. Clearly, (P(II),2) is a complete meet-semilattice. Let a,a’,b,b" c 1T
be such that @’ 2a and b2¥". If z€a’ - V' then 2 =t-7 where t € a’*, 7 €.

Clearly, a’* ca*, thus zea' - b',ie. a=>b2d - V.

Now, let (b;);er a set-indexed family of subsets of II.

a—>Jbi={t-m:tea",meb; forsomeiel}=J{t - m:tea",meb;}
iel iel
= U(a — bz)
iel

]

Theorem 2.8. Let S = {a € A:a*nPL # @}. Then S is a classical
separator of A.

Proof. Clearly, S is upwards closed: if a,b ¢ Il such that ¢ € S and a 2 b
then a* c b* thus b* N PL+@ and be S.

Let us observe that K € (K*)L. Indeed, let 7 € (a - b — a) for some a,b ¢ II
then

A A
m=t-u-m whereteat,uebt 1’ ca
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thus ¢ -7 and K 1 7.
Now, let m€ (a > b—¢) > (a - b) - a — ¢ for some a,b,c € II. Then

m=t-u-v-m where te(a>b->c)tue(a—>b),veat, 1’ ec
Clearly if 7 € b then v 1L v-7 and thus wv € b*. Then:
v-uv-m €a—-b->c then tlLv-uv-7 then Siw

hence S € (SA)L.

Let a,bc Il and 7 € (((a > b) > a) » a). Then 7w =t -7’ where t € ((a >
b) > a)* and 7’ € a. Since 7’ € a then ks 1L u- 7 for every u € a®* and 7 € b.
Since t € ((a - b) — a)*, we have that ¢ 1 k-7’ and consequently cc 1 t-7'.
Thus cc? € S.

If a,a - be S there exists t € a* and u € (a — b)*, thus tu € b*. O
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Chapter 3

Implicative triposes

Our aim in this chapter is to prove that every implicative algebra induces a
Set-based tripos, called implicative tripos.

3.1 Defining A//S[I]

Let us suppose that A = (A, <,—) is a fixed implicative and I a fixed set.
Then we can define
AT = (A< T
where:
o Al :={n:1 - Amap}
° nslgén(i)sg(i) foralliel

o (n-1¢)(0):=n(i) - ¢(i) for all i e I.
Lemma 3.1. A! = (A?, <!, =1, defined above, is an implicative structure.

Proof. (Al ,<!) is a complete meet-semilattice: if (¢j)jes is a set-indexed
family of elements of A’ then we can define Njes G 1 — A, in the following
way (Ajes () (i) = Ajes(j(i). Clearly, Ajes(; is the greatest lower bound
of (¢)jes-

Given 1,1',¢,¢" € Al such that o' <! n and ¢ <! ¢/, using the definition of
<! and that A is an implicative structure, it is clear that (n(i) - ¢(i)) <
(' (i) = ¢'(7)) for every i € I, and consequently that (n - ¢) <! (¢' = 7').
Furthermore:

(n > A G)@) =n@) > A G(@) = Am@) = ¢(@) = A= ¢)

jed jeJ jeJ jed
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Now, our aim is to define a suitable separator for A’, in order to give it
the structure of an implicative algebra.

Definition 3.1. The uniform power separator S[I]c A’ is defined by
S[I] :={neAl:3seS Viel, s=<n(i)}
={neA’:3se8S,s< An(i)}

iel
I .
={ne A" An(i) e S}
i€l
The next lemma states that the notion of uniform power separator is
well defined.

Lemma 3.2. The power uniform separator S[I] defined above is actually a
separator.

Proof. Tt is clear that S[I] is upward closed: let n € S[I] and ¢ € A’ such
that n < ¢, then there exists s € S such that s < (i) and consequently
s=<((i) for all i e I.

Furthermore,
KY (i) = Qaya)' ()= A (1=>C>m@) = A (0() > @) - (@)
n,CeAl n,¢e Al
= Na-b—a= K*
a,beA

then, since K* € S, we have that KA ¢S [I]. Analogously we can prove
that SA" € S[I].

Now, we want to prove that S is closed under modus ponens. Let (n —
¢),n € S[I]. So there exist s,s" € S such that s < n(i) - ((i) and s’ < n(i)

for every i € I. By Lemma ss" < (n— ¢)(i)n(i) < ¢(i) for every i € I.
Since S is closed under application, we have that ¢ € S[I]. O

3.2 Implicative triposes
Theorem 3.1. Let A = (A,<,—,S) be an implicative algebra. Then the
correspondence:
P: Set” - HA
I A/S[I]
frl-ef]
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defines a Set-based tripos, called the implicative tripos induced by A.

Proof. We already showed that PI is a Heyting algebra for every set [ in
Theorem

e P is a functor. Let I,J be sets and f:I — J. Then f induces
A AT A
nemnof

Let us suppose 1,¢ € A’ are such that 7 —g[y) ¢- This means that
n—(, ¢ > neS[J], so there exist s,s" € S such that for all j € J:

s=<n(j) = CG)  §'=C) = n()
Then for all 1 € I:
s<(nof)(i) = (Cof)(i) s =(Cof)(i)~ (nof)(i)

so Al (n) = AS(O), AT (¢) = Af (1) € S[I], or equivalently A/ (n) —Fs[1]

AT (Q).
Therefore, the map A : A7 - Al factors into a map Pf:PJ — PI.
We now have to verify that Pf is a morphism of HAs.

Let p=[n].q=[¢]ePJ:

Pf(praq)=Pf([nIA[C])=Pf([nxC])=[(nx{) o f]

=[im (nxQ)(f()] =[i=n(f()) x((f(@))]
=[(nof)x(Cof)]l=[nofln[Cof]
=Pf(p) APf(q)

Clearly, the proofs for the other connectives are similar. Then Pf is a
morphism of HAs.
Furthermore, P(id;) = idp;: let p =[n] € PJ then

P(ids)(p) = P(ids)([n]) = [neids] = [n] = p

P preserves the composition of morphisms: if f: 7 - J and g: K - 1
then for every p = [n] € PJ:

P(fog)(»)=P(fog)([n])=I[nofog]
=Pg([no f1)=Pg(Pf([n]))
= (PgoPf)(p)
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Ezistence of right adjoints. Let f:I — J, if ne A!, we can define
rm): T A
Jjr V?@(U)(J') =V (5= (1)
If n +gq € then there is s € S such that:

s < N(n(i) - ¢(4))

iel
Let jeJ and iel: f(i) =4 then:

s <1(i) > ¢(3) = ( /\_'77(1")) ~ (i)

f(i")=3
s< A (CA n@)=>c@)=( A n@))~> A <)
f@)=j ~ f(@)=j f@@)=j f@@)=j
Then:
52 AYHOG) > YOG e Vi) ks Y5O

This means that if n —~g7; ¢ then V(}(n) =g V?(C). Hence, it is
possible to define:

Vf: PI - PJ
[n] = [V ()]
Given p=[n] € PI and g = [(] € PJ, then:
Pfla) <p<=[Cofl=n] = (Cof)>neS[I]
= N n@=n@))ese A A (CG)»n@))es

iel jeJ f(i)=j
= A (€)= A n@)es= A(CG) > ¥5mG))es
JjeJ f(@)=j jeJ

< (> VY (n) e S[J] = q<Vf(p)
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o Existence of left adjoints. Let f:I — J, if n e A, we can define
Ffn): J- A
Jjr 3(}(77)(j) = 3 (5)=1(4)
Let n,¢ € A! such that n Fs11] C» then there exists s € S such that:

s < N(n(@) - ¢(4))

iel

We denote with oo = Ajer(n(i) - ¢(i)). Then:

Axiom T
Cra:35(n)()  T,z:in(i)-y(sz):cioralliel: f(i) =
0 . ; Th. 2.6]
Di=sio,z:3p(0)(G) v Apy=j C(0) > crti=arzy(sz)ic
—-intro.
st Hg(n)(j) FAy.t: (Af(i):j C(i) - c) — ¢ forall ce A o
stz NMG) -t 3O G)
—-intro.
s:tak Axy.t: 3(}(77)(]') - 390(()(3') for all j e J
s:ak Azy.t: Ajes (35(n) () = 3RO ()
where 7 is the following tree:
Axiom
I =yt Apeay=i(C(0) = ¢) -
eyi(()=e "~
IM:=T,z:n(i) Fy(sz):c e
and 7 is:
Axiom
INs:a Subs Axiom
Fs () > C0) " Tezin()
I+ sz:((4) e

i.e. we have proved that

Ozyz(Azy(s2))™ = NG G) » 3HOG))

jeJ
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hence:
B - 3N ST te gy 3RO
by Lemma Thus, we can define:
3, :PI>PJ
[n] = [35(n)]

We want to prove that 3; is actually the left adjoint of Pf.
Let us start by observing that if p = [n] € PI and ¢ = [¢] € PJ, then:

p<Pfl@)= NN (@) ~<@)es

Jjed f(i)=j

Since:

Axiom

Fl—x:ﬂ(}n(j) T

. . T — Th. 24

D=2 Npayy (n(@) =€),z Fm() +t = 2dy.2y : C(7) t

2 Apiy=j(n(@) = C(J)) = Azt H?W(j) = ((j) forall jeJ |
21 Npiy=5 (n(8) = €(3)) F Azt = Ajes (39n(5) = <(5))
where 7 is the following tree:
Axiom

Loy (i) =zt Apay=m(i) = C(J) b Axiom

L,y :n(i) - z:n(i) - () ~ Dyan@ryen@)

Loy:n(i) -2y : () forallieI: £(i) =

Then:

A A (n(z‘)ac(j))eSsA}(H(}n(j)%(j))es
J€

jed f(i)=j

Conversely, let I' =z : /\jEJ(EI(}n(j) - ((5)),y:n(i) then:
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Axiom

Axiom
F'_ .A'g 0 ] — ] —‘
T ]J(E () = <)) - [y :n(i) e
e 3n() > C0) T+ Xz.zy: 39n(5) )

C'xzAz.zy:C(J)

2 Njes(30(5) = C(5)) F Ayadz.zy (i) - C(§) for all i e I: f(0) = j
2 Njes(3n(5) = C(7)) F Ayadz.2y = Agiy=;(1(0) = C(5)) for all je s
22 Njes(30(5) = C(5)) - Ayadz.2y 2 Ajes Agay=; (1) = ¢(5))
FAzy.adz.zy : Njes(391(5) = (7)) = Ajes Asaiy=i(1(2) = ¢(5))

—-intro.

Gen.

—-intro.

hence:

AGG) <) eS= A A (@)~ ¢(G))eS

jeJ jed f(i)=j

Now, we can show that 3; is the left adjoint of P f:

p<PH@) = A A (i) > C(5)) €S
JeJ f(i)=4

= /\(3 (m@G)=<G))es
©3f(p)sq

e Beck-Chevalley condition. Let us consider an arbitrary pullback in Set

IL)Il

lfz lgl

IQL)J

We have to prove that the following two diagrams commute:

pr P pr 2 pp
Png Png szT Png
Vg2 3g

Pl —3 PJ P, —% PJ

But, thanks to Remark it is sufficient to prove commutativity of
the first diagram. Furthermore, we can suppose:
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— I ={(d1,i2) € I x I : g1 (1) = g2(42) }
— fl(il,ig) = il and fg(il,ig) = ig for all (il,iQ) el

since all pullbacks in Set are like this, up to isomorphism|g].
Let p = [n] € P13 then

(VfioPfa)(p) =V fi([no f2]) = ¥V f1([(41,42) = n(i2)])
) [il - fl(ill»Ai/z):il n(ié)] ) [il - gz(z‘z)/:\m(z‘l)n(m
- [~ Vo001 - Por( )
= (Pg10VYg2)(p)

e Generic predicate. Let ¥ := A and try = [id4] € PX. Then, we want
to show that, if I is a set then the decoding map

[ 1r:2" >PI
f=Pf(trs)

is surjective. Let us suppose p = [n] € PI then:

Pn(trs) = Pn([ida]) =[idaon]=[n]l=p

3.2.1 Implicative triposes and forcing triposes

In this section, we want to characterize the implicative triposes induced by
complete Heyting algebras.

Let us start by fixing a complete Heyting algebra H and the subset S = {T} ¢
H.

Clearly S is a filter, hence H = (H, <, -, S) is an implicative algebra.

If I is a set, then S[I]={Tys}. Thus:

HI/S[1] = H!
Then, it is obvious that:

Lemma 3.3. The implicative tripos induced by the implicative algebra H =
(H,<,—,{T}) coincides with the forcing tripos induced by the complete Heyt-
ing algebra H.
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In this case, we can observe that the adjoints have a particular easy
definition. Indeed, if f:I — J and n: I - H are two maps, then

f(n):J - H Vf(n):J—-H
iV n() i= A n()
F(i)=j F(i)=j

Clearly, if n € H! and ¢ e H/ then

3f(n)<¢ ifandonlyif VjeJ: \/ n(i)<<()
f(@)=j
if and only if VjeJ: n(i)<((j) Viel:f(i)=j
if and only if Viel: n(i) < (Co f)(4)
if and only if 7 <Pf(¢)

and

(<Vf(n) ifandonlyif VjeJ: ((j)< A n(i)
f)=j
if and only if VjeJ: ((j)<n(i) Viel:f(i)=j
if and only if Viel: (Cof)(i)<n
if and only if Pf({)<n

Definition 3.2. Let A be an implicative structure. Then

W= Qay.a) A Qayy)* = A (a—>b—>anbd)
a,beA

Let us observe that if a,b € A then
AjA ab=a ,11“4 ab<b

This element has a fundamental role in defining which separators are filters
and which are not. Indeed:

Lemma 3.4. Let A be an implicative algebra and S be a separator of A.
The following are equivalent:

1. }Ae S;
2. [axb]=[arb]eAlS forall a,be A;

3. S is a filter w.r.t. <.
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Proof. (1) = (2). If a,b € A then:

Axiom Axiom
Tz:aAbxz:aAb Subs. r:aAbz:aAb Subs.
T:aAbrFx:a T:aAbrx:b Th.
T:aAbF Az.zxriaxb o intro ’
FArz.zzriaAb—>axb '
thus [a A b] +g [a x b]. Conversely,
Parameter Axiom
[ pAYA I
1 rlj rh Subs. I'Fz:axb Th. B4 Axiom
I'eh™a—-b->aArb F'Fz\zy.x:a T “axb
2 —-elim. Fz:a Th. B4
DAY (2Azy.z):b—>aAb 'z zyy:d

—-elim.

Di=z:iaxbrhA (2 zy.z)(zA\ey.y) ca A b

—-intro.

F Az 4 (2Azy.x) (2Azy.y) taxb > aAb

Then [a x b] = [a Ab].

(2) = (3). Let a,be S then [a] = [b] = [T]. Thus, [aAb]=[axb]=[TxT]=
[T]A[T]=[T], thusanbesS.

(3) = (1). Let S be a filter. Since (Azy.z)* and (Azy.z)? are in S then
also A€ S. O

Now, let us introduce two technical lemmas.

Lemma 3.5. Let S ¢ A be a separator. The following are equivalent:
1. S is finitely generated and € S;
2. S is a principal filter of A;

3. (A/S,<g) is complete and the quotient map from A to A|S commutes
with arbitrary meets.

Proof. (1) = (2). Let S be generated by {g1,...,gn}. Let

k
Aﬁ:‘:: /\()\:pl...a:k.a:i)Az AN (a1 =~ ..ap > a1 A ... Aag)
i=1 ai,...,ap€A

Let

Y = (Ayf f(yyf))(Azg.9(229))  ©:i= (YA b7k g1...gn(rr)))7
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Clearly, © € S. Furthermore, let us observe that for every A-term with
parameters:

A
(YOrt))A = (Af.f(wg.g(zzg))(Azgg(zzg))f))(xr.t))

A
< (()\r.t)(()\zg.g(zzg))()\zg.g(zzg))()\r.t)))
< (t{r:=Y\r.t})A

thus © <p”4; 91...9,(00) <47X | Ag1 A ... A g A ©O. Thus, if a € SO then
© <a, i.e. S is generated by {O}.

(2) = (3). Let S be generated by {©} and (a;);s be a set-indexed
family of elements of A. Since Ajcr a; < a; for all ¢ € I, then:

[Aails <s[ails Viel

iel
Thus, [Ajer ai]s is a lower bound of ([a;]s)icr- Now, let 8 = [b]s € A/S be
another lower bound of [a;]g for all i € I,. Clearly, b - a; € S for all i € I.
By hypothesis, © < a for every a € S thus © < Ajc;(b—> a;) =b—> Ajesa; ie.
[b]s <5 [Aier ai]s- Hence, [ Ajer ai]s is the greatest lower bound of ([a;]s)ier-
Hence, we have showed that (LA/S,<g) is complete and that the quotient
map A — A/S commutes with arbitrary meets.
(3) = (2) = (1). Let (A/S,<s) be complete and [Ajes ai]ls = Aier[ai]s for
every set-indexed family of elements of A. Let us observe that

[AS]s= Alsls=[T]s

seS

thus AS € §. Clearly, then S is a principal filter generated by A .S and by
Lemma hAe S. O

Lemma 3.6. Let S be a separator of an implicative structure A. The fol-
lowing are equivalent:

2. S s closed under all I-indexed meets.

Proof. (1) = (2). Ifn:I - AeS!=S[I] then there exists s € S such that
5 < ANiern(i), hence Ajern(i) € S.
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(2) = (1). Clearly, S[I]={n:1 - A:3s¢e S such that s < Ajeyn(i)} c 7
because S is upwards closed.

Let n: I - S and s = Ajeyn(i). Since s < n(i) for all i € I and s € S by
hypothesis, then n € S[I]. O

Finally, we can characterize the forcing triposes.

Theorem 3.2. Let P: Set” — HA be the implicative tripos induced by the
implicative algebra A = (A, <,—,S). Then, the following are equivalent:

1. P is isomorphic to a forcing tripos;
2. S is a principal filter of A;
3. S is finitely generated and 4"€ S.

Proof. (1) = (2). Let H be a complete Heyting algebra and ¢ be a natural
isomorphism from P to Py, where Py is the forcing tripos induced by H.
Clearly, if 1 = {*} is a fixed singleton, we have that ¢; : A/S — H is an
isomorphism of HA, thus A/S is a complete Heyting algebra. Now, let us
fix a set I. For every i € I we define i:1— I as i(*)=1. Then:
Pi: A"/S[I] > A/S Pui: H > H

[nlstry = [n(i)]s ¢ ¢(i)

Clearly, by naturality of ¢, the following diagram is commutative:

AlS —2 . m

PZT PHET
Al/S[1] 2 H

Thus, for every n: I - A and i€ I:

(¢1 0 Pi)([n]sy) = (Pmio ér)([n]sir)
o1([n(i)]s) = d1([n]s) ()

Now, let:

pr: ATJS[I] > (A/S)"
[(n]str = (i = Pi([n]sin)) = [1(i)]s
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then the following diagram

(A/s)! A m ()]s — 2 61 ([n(5)]s)
A8 & ml [0())spr —= ¢! ([n(=)]sc)

commute, since idg:(¢) =i — Pgi(¢).
Thus, py is an isomorphism because ¢y, <Z>{ and idgr are isomorphism too.
Now, let us observe that for every n,(: I - A:

(]gr <gr [(lgt & n—>CeST e n(i)>((i)eS Viel
< [n(i)]s <5 [C(i)]s Viel

then we can define ay : AT/ST - (A/S)! such that ay([n]gr) =i~ [1n(i)]s.
Clearly, it is an isomorphism.
If id is the is the inclusion of A7/S[I] in A?/ST then:

Al/S[1]

[

ATIST 2L (A)8)]

Thus, id is an isomorphism, thus S[I] = S. By Lemma S is closed
under all /-indexed meets. Thus S is a principal filter generated by A S.
(2) = (1). Let S be a principal filter. By Lemma[3.5] then H:= P12 4/S is
a complete Heyting algebra and S is closed under arbitrary meets. Thus by
Lemma S[I]=S!. Then id and p; -defined as above- are isomorphisms
for all sets I. Thus, since py is clearly natural, we can conclude that P is
isomorphic to Py.

(2) < (3). By Lemma[3.5 O

3.2.2 Intuitionistic realizability triposes and quasi-implicative
algebras

Definition 3.3. Let P = (P,-, k,s) be a PCA. The intuitionistic realiz-
ability tripos induced by P is defined as follows:

P:Set” - HA
I P(P) ]y
frl=0f]
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where:

ner ¢ if and only if  (Y(n(i) > ((i)) # @

iel
for alln,¢: I —P(P).

Theorem 3.3. If P = (P,-, k,s) is a CA then the intuitionistic realizabil-
ity tripos induced by P coincides with the implicative tripos induced by the
implicative algebra A = (P(P),<,—~,P(P) \ &), where — is the Kleene’s
implication induced by P.

Proof. Let P be the intuitionistic realizability tripos induced by P and pA
the implicative tripos induced by the implicative algebra A = (P(P),<, -, 5)
where S = P(P)~ @. It is sufficient to just show that PI = PAT for every set
I. Thus, let I be a set and n,(: [ — P(P), then:

nes ¢ () » (@) e s it (i) ~ (@) o iff nei¢

iel iel
]

Let P be a PCA. Similarly to the CA case, we can observe that (P(P),<)
is a complete lattice and that Kleene’s implication fulfills the first axiom of
definition[2.1} Furthermore, if I is a not-empty set then Kleene’s implication
also satisfies the second axiom. Indeed, if [ #+ @& and a,b; € P for all 1 €
then:

a—>(\bi={zeP:Vrxea,z-zle(\bi}={z€P:Vrea,z-x lebViel}
iel iel

(@ — b;)

iel

While:
a—>ﬂ®=a—>P={zeP:Vwea,z-xi}¢P=ﬂd€|
This example leads us to define a new type of structure:

Definition 3.4. A quasi-implicative structure is a triple (A, <, —) where
(A, <) is a complete meet-semilattice and — is a binary operation such that
if a,a’,b,b" € A and (b;)er is a non-empty set-indexed family of elements of
A:

Tn the lattice (P(P),<), the intersection of a set-indexed family (b;)icr of subsets of
P is defined as Ny bi = {z € P:zeb; for every i€ I}, thus N@ = {z¢€ P} = P.
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o ifa'<a and b=V then (a - b) < (a - V)
® a—> Nierbi = Aier(a — b;)

Thus, the difference between a quasi-implicative and an implicative struc-
tures is that
a—>T=T forallae A

does not hold in the quasi-implicative structures.

Given a quasi-implicative structure (A, <,—), we can define an associ-
ated implicative structure (B,<g,—g) called the completion of A in the
following way:

1. B=Au{Tg} where Tp is a new element;
2. if b,b" € B then: b<g b’ if and only if b< b’ or b’ = Tg;

3. if b,b" € B then:

b—-?b ifb,b' e A
bopgb =314 ifb=Tp,b cA
B ifb’=TB

Lemma 3.7. The completion of a quasi-implicative structure is an implica-
tive structure.

Proof. Let (A,<,—) be a quasi-implicative structure and (B,=<g,—p) its
completion. It is clear that (B,<g,—) is a quasi-implicative structure. Let
us show that it is actually complete: if a € B then

a—>A®:a—>T3:T3:A®
]

Let A be a quasi-implicative structure. Similarly to what we have done for
the implicative structures, we can equip A with two partial operations:

if{ceAd:a<b—>c}+2 then ab= A{ceA:a<b-c}
if f is a partial function from Ato A then Af= A (a— f(a))
aedom( f)
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We can also define a partial function ¢ — t* defined in the same way we did
for the implicative structures.
If we define the judgment:

Dt:a< F(t)c (D), [T is well defined, (¢{T'])* <a

then all the semantic rules we have proved in section |2.1.1| remain valid.
Furthermore, if we extend the notion of separator to the quasi-implicative
structure we can also define:

Definition 3.5. A quasi-implicative algebra is a quasi-implicative struc-
ture equipped with a separator.

It is clear that every quasi-implicative algebra induces a tripos, called
quasi-implicative tripos, in the same way that every implicative algebra
induces the implicative tripos.

Lemma 3.8. Let A= (A,<,—) be a a quasi-implicative structure and B =
(B,<p,—>pB) its completion. If ¢ : A — B is the inclusion of A into B then
H(KA) = KB and ¢(S*) = SB.

Proof.

KB= A (a—pb-pa)
a,beB

A (a—>Bb—>Ba)A A(GQBTB—’BG)/\A(TB*Bb—’BTB)
a,be A aeA beB

AN (@=b->a)r AN(a—=gTa—a)r A(T5 -5 TB)
a,be A acA beB

AN(a=bs>a)r ANla>Ta—>a)ATp
a,be A acA

A (a=b—a)

a,be A

A é(a—b—a)

a,be A

= p(K*)
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Clearly S® < ¢(S*). Furthermore, we can observe that

ifaEB,bEB,CZTB:(a—>3b—>BT5’) —>B(a—>3b)—>3a—>BTB
:(a—>3b—>3 TB) B (a—>3 b) —>B 1B
=(a->pb—pTB) >5 15
:TB
ifa=Tg,be A,ce A: (Tg—>pb—-pc)—>p(Tg—>pb) > Tr—BC
=(Tg=>b->¢c)>(Ta—>b)>Tyg—c
ifae A,b=Tp,ce A: (a>pTp—pc)—>p(a—>pTg) >Ba—>pcC
:(a’_)BTAﬁC)_)BTB_)Ba_)C
=(a—>Tyg—>c)ogTa—a—c
=(a—>Tg—>c)>Tg—>a—-c
ifa=Tp,b=Tg,ce A: (Tg—>Tp—>pc)—>5(Ts—=>BTB) >BTB>BC
=(Tg—>BTa—c)>BTg>BTa—>cC
=(Ta=>Ta—c)=>pTa—>Ta—c
=(Ta—>Ta—c)>Ta>Ta—c

If a,ce A:
(a->Tga->c)>(a>Tga)>a—c<(a>Tyg—c)>Tg—>a—>c
Then S5 > ¢(S4). O

If A= (A, <,—,8) is a quasi-implicative algebra, then it is obvious that

Definition 3.6. Let A = (A,<,—,S5) be a quasi-implicative algebra. The
completion of A is B=(B,<3,—5,58=5Su{T3}).

By Lemma [3.8] it is obvious that Sp is a separator.

Lemma 3.9. Let A = (A, <,—,5) be a quasi-implicative algebra and B =
(B,<B,—>B,S58=Su{TR}) its completion. Then the quasi-implicative tripos
induced by A is isomorphic to the implicative tripos induced by B.

Proof. Let ¢ be the inclusion map from A to B. Let us start by observing

62



that S = SgnA=¢'(Sg), thus if I is a set and 7, ¢ € A’ then:

s ¢ it A(@) = ¢(i)) € S

iel
iff ¢(/§(n(i) ~((i))) € B
iff /\I(cb(n(i)) -5 #(¢(i))) € Sp

it gonrgy ol
Thus ¢ induces an injective map ¢; : A!/S[I] - B /Sg[I] for every set I.
If € B! we consider:

(i) = N((n(i) > ¢) »pc)

ceB

Let us observe:

Axiom Axiom

Crz:n(i)—>pc I'+x:n()

—-elim.
Di=z:n(i),z:n(i) »gcrzz:c o

—-intro.

x:n(i) - Az.zx: (n(i) »>gc) >g ¢ forallceB “
en.

x:n(i) F Az.za :7(i)

—-intro.

FArz.zxin(i) > (i) foralliel
= Avz.za Nier (n(i) —5 7(1))

en.

and

Axiom Axiom
T'r+y:n(i) Sue Dyx:n() - x:n(i) o
Ty (o) s 00) s " T on@ ssn@
I=y:7(i) - y\e.x:n(i) '
FAyy e.x (i) >pn(i) forallierl

Ay ez s Nier(7(i) = n(i))

—-intro.

en.

Furthermore,
(i) < (@) »p L) >pL<1l>pl=1—>1<Ty

thus we have showed [n] = #([7]). Then ¢ is an isomorphism of Pos and by
Lemma[1.2]of HA. Since the naturality of ¢ is obvious, we have showed that
the quasi-implicative tripos induced by A is isomorphic to the implicative

tripos induced by B.
O
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Thus:

Theorem 3.4. If P is a PCA then the intuitionistic realizability tripos in-
duced by P is isomorphic to the implicative tripos induced by the completion

of P.

3.2.3 Classical realizability triposes

Definition 3.7. Let A be an implicative algebra induced by an AKS. Then
the implicative tripos induced by A is called classical realizability tripos.

Lemma 3.10. Let A= (A,x,-,S5) and B=(B,<,=,U) be two implicative
algebras. If there exists a surjective map v : B - A such that:

1. preserves arbitrary meets;
2. preserves implication;
3. beU if and only if (b) € S
then the corresponding triposes PA and PP are isomorphic.

Proof. Let n,¢ € B

nryn ¢ if and only if  A(n(i) = ((i)) €U
iel
if and only if ¥(/A\(n(i) = ((i))) €S
1€l
if and only if A (¢(n(i)) - ¥(¢(i))) € S
iel
if and only if Y onrg1o(
Thus, we can define an injective function 1517: B! JU[I] - A!/S[I] such that
Yr([n]urn) = [¥ o ¢]. Since ¢ is surjective, v is a bijective monotonic map,
thus it is an isomorphism of HA, by Lemma Since the naturality of

(¢71) IeObj(Set) 18 obvious, we can conclude that PA and PB are isomorphic.
O

Now, we can prove:

Theorem 3.5. If A is a classical implicative algebra then there exists an
AKS K such that the implicative tripos induced by A is isomorphic to the
classical realizability tripos induced by K.

Proof. Let:
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e A=1I:=A;

a®b:=ab,a-b:=a—->b,ky:=a— 1
e K:=K* 5:=84 cci=cch,
e PL:=5 and 1:=<
Let us prove that I satisfies the axioms of the pole.

1.t <u — 7 implies tu <

2.tﬁﬂ'impliesKAﬁteu—nfﬁt%ueTr

3.t<v—uv - implies S < (v > uv > 7) > (V> W) > v >
<(vouw-o>m)ou—>voTtou>Vv>T

4.t < (7 - 1) >« implies cc* < ((a > 1) - 7) — 7 implies t - 7

5.t<m implies m - L <t -7’
Thus, I is an AKS. Let us observe that if 5 c II then:
Bri={acA:a<bVbeB}={acA:a< A\ B}

Let B =(P(A),2,=,U) the classical implicative algebra induced by K. Let
us observe that U ={8cA: ASeS}.

Let ¢ : B - A be such that ¥(3) = A 3. Let us show that 1 satisfies the
conditions of Lemma If (5;)ier is a set-indexed family of elements of
B, then ¢(Uier Bi) = AUier Bi) = Aier(A Bi) = Nier (Bi). Let 3,7 € B then
VB =7)=9v{H{b—>c:b=xpBceq})=Ab->c:b< AB,cer} = AB >
A7 =19(8) = ¥ (y). Furthermore, 5 € U if and only if A € S if and only if
Y(B) € S. Finally, we can apply Lemma O
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Chapter 4

Every tripos is isomorphic to
an implicative one

Let P : Set -~ HA be a fixed Set-based tripos. In this chapter we want to
define an implicative algebra A such that its implicative tripos PA is iso-
morphic to P.

Let try € X be a generic predicate of P and X be an arbitrary set. In
the first part of this chapter, we will show how % can represent the set of
propositional functions over X. In other words, if o € ¥¥ and p € PX such
that [o]x = p, o can be seen a sort of “code” for the predicate p. We will
also show how the structure of Heyting algebra of PX can be derived from
analogous operations on .

Let us start by observing:

Lemma 4.1. The decoding map [ |x : % — PX is natural in X, which
means that for each map f: X - Y the following diagram commutes:

ZX [ Ix
—o Pf]\
EY L, py

i.e. that [oo flx =Pf([o]y)
Proof. Let o e XY,

[o0 flx =P(oe f)(trs) = Pf(Po(trs)) = Pf([oly)
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4.1 Defining A,v and —

In this section, we aim to show how the connectives of PX descend from
analogous operations on the set X.

Let 71, m9 : 3 x 3 — X be the projections of 3 x 3. We can define:

A:Xx¥ X [Alexs = [mi]sxs A [T2]sxs € P(Ex %)
\/EXE%E [[\'/]]gxgz [[Wl]]zgi[[ﬂ'Q]]Exzep(EXE)
REPIE DYDY [=]sxs = [mi]sxs = [m2]sxs e P(X x X)
The existence of A,v and = is ensured by the surjectivity of the decoding
map and by the axiom of choice.
If 0,7 € ©X then we will write [o(z) A 7(z)]eex instead of [Ao (o, 7)]x. We
adopt analogous notation for v and —.

Theorem 4.1. Let X be a set and 0,7 € ¥X. Then:
[o(z) > 7(%)]aex = [o]x — [7]x
[o(z) A 7(2)]aex = [o]x A [7]x
[o(z) v 7(2)]aex = [o]x v [7]x
Proof.
[o(z) > 7(2)]zex = [ 0 (0, T)]aex = P({o, 7)) ([>]5xx)
=P({o, ) ([m1]sxs = [r2]sxs)
=P({o,7))([m]sxz) = P({o, 7)) ([m2] £xx)

=m0 (o, 7)]x = [m20 (o, 7)]x = [o]x > [7]x

The other cases are similar. O

4.2 Defining | and T

Let us fix a terminal object 1= {*} € Set, i.e. a fixed singleton. We will
indicate with !y : X - 1 the unique map from X to 1.
We choose 1, T € X such that

[[j.]]*e]_ = J_]_ € P]. HT]]*e]_ = T]_ € P].

where we identify 1 and T with the corresponding constant maps from 1 to
3.
In the rest of the thesis, we will write [1].cx instead of [1o!x]x.
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Theorem 4.2. If X is a set then:

Proof. By Lemma [4.1
[Lzex = [lo!lx]x = Plx([1]«e1) = Plx(L1) = Lx
[Tleex = [Tolx]x = Plx([T]«e1) = P!x(T1) = Tx

where the last equalities of each row are due to the fact that P!y is a
morphism of Heyting algebras. O

4.3 Defining quantifiers

In this section we define the codes A and V of V and 3.
Let us start by considering the following set:

E:={(,s):£es}c X xP(X)
and the corresponding projections
e1:E->Y e E->PX)

The surjectivity of the decoding map allows us to pick two codes in yPE)
in the following way:

A P(D) > 2 H/:\}]mz) = Veo([er] )
ViPE) 2 [Vips = 3e2fei]r)

If h:Y —» P(X) is such that h(y) = Z, then we will write [AZ] instead of
[[/\ oh.

Theorem 4.3. Let X,Y be sets, c € ¥~ and f: X - Y, then:
[[/\{a(x) tw e [ () Hyey = Vf([o]x) € PY
[V{o(@):z e () Hyey = 3f([0]x) € PY
Proof. If h: Y — P(X) such that h(y) = {o(x): 2z € f1(y)} then:
[[/\{a(m) cze [N ) ey = U\ o h]y = Ph(HAﬂp(z>) = Ph(Vea([er] £))
[V{o(@):z e f () Hyey = [V o hly = Ph([V]p(s)) = Ph(3ez([e1] )
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If we consider G := {(o(x),f(z)) : 2 € X} € ¥ xY and the two following
functions:

9g:G - Y J:G - FE
&)~y (&y) = (& h(y))
then the following diagram is a pullback in Set:
G- Y (&y) ——yh
AT el ]
E—=P(2) (& A () = h(y)

In fact, let [: I - Y and m = (mq1,mz) : I - E such that e;om =hol, ie.
ma(i) = h(l(7)), then:
o: 1 -G
i (ma(i), 1(4))
is the only map such that go¢ = [ and g’o¢ = m. Thus, by the Beck-Chevalley

condition, the following diagrams commute:

PG —2 5 PY  PG—2PY

Pg’T PhT Pg’T PhT
PE —2, PP(X) PE —2 PP(X)
Hence:
[Afo(@) e fH () yey = (PhoVes)([e] ) = (Vg o Pg')([e1] )
[Vio(x): e f(y)} ey = (Pho3es)([er]) = (3g o Pg')([er]p)

Let ¢ : X — G be defined by q(x) = (o(x), f(z)). It is clear that ¢ is
surjective and consequently that it has a right inverse by (AC). Hence, 3¢
and Vq are left inverses of Pq, by Lemma Then:

IA{o(@) 2 e 7 (®)]yer = (Yo Pg)([er]e) = (Vg o (Vg0 Pg) o Pg')([er] )

[Vio(@) @ e s Wlyer = GgoPg)([erl) = (3g o (30 Pg) o Pg') ([e1])

Since V and 3 are functors, gog= f and e;og'oq=o0:

[A{o(@):ze 7 ®)]yer = (F(goq) o P(g" o)) ([er]) = Vf([er 09 0 ] x)
=Vf([o]x)

[V{o(@):ze 7 @)]yer = (3(goq) o P(g 0 ) ([ea] &) = 3f([er o ' 0] x)
=3/([o]x)
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4.4 Defining the filter

We define
O:={{eX:[{Jsa=T1}CX

where we have identified £ with the corresponding map from 1 to X.
Theorem 4.4. Let X be a set and o,7 € ©% then:
[olx < [rlx < A{o(z)>m(z) :xe X} e ®

Proof.
[o]x <[7]x < Tx < [olx = [r]x < Plx(T1) < [o(2)>7(2)]zex

o T1 < Vi ([o(2)>7(@)ex) < T1 < [Afo(@)>7(@) 2 3 (D)}

e T = [A{o(@)>7(2) i 2 € X}]ea & A{o(z)>7(z) iz e X} e d

O

Ezample. Let P be the implicative tripos induced by an implicative algebra
B=(B,<,—-,U). Since its generic predicate is trp = [idg] € PB, then [o]x =
Po(idg) = [0] € PX for every set X and o € BY, i.e. the decoding map [ ]x
coincides with the quotient map from BX to PX.

In such case, it is clear that

/\:x \'/:-‘r- S5 =

since, for every a,be B

[axb]=[a]A[b] eB/U
[a+b]=[a]Vv[b]eB/U
[a —>b] =[a] — [b] € B/U

Analogously, T=Tg and 1 = 15.
Furthermore, if e, eo are the projections of E = {(z,A) : z € A c B} then
Ves([er]) =[A~ A er(x)]=[A~ A ]
ea(z)=A zeA
Jea([e1]) = [A = Fey(z)=ae1(2)] = [A = Fpear]
thus A= A and \/ =3 .

Furthermore,

b={xeB:[x]=[18]}=U
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4.5 Constructing the implicative algebra

4.5.1 Defining the set of atoms

Definition 4.1. The set Ay of atoms is inductively defined as follows:
1. if €€ then £ € Ay
2. if se P(X) and a e Ag then (s~ a) € Ap.

Basically, the elements of Ay are of the form: sy — ... » s, — f where
$1, ..., Sp, are subsets of X and £ € 3.
Now, we define a binary relation < over Ag in the following way:

!

scs’ a<ad

. sha<yo o
Lemma 4.2. The relation < is a preorder on Ag.
Proof. Let us prove that < is a preorder.
o Refilexivity. Let o € Agy, we prove by inductive hypothesis that « < «:

1. if o = € where £ € X, then € < € by definition of <;

2. let @ = s+~ o where s € ¥ and o' € 4p. Since s C s and o’ < o
by induction, then s = o’ < s~ o', ie. a <a.

o Transitivity. Let «, 3,7 € Ap such that o < 8 and 8 <. Then:

1. ifa=¢, since a <8 and 8 < ~ then § =~ = £, hence clearly a < v;

2. if « = s = o’ where s € ¥ and o’ € Ag, then 8 must be of the form
t — " and consequently v must be of the form u ~ +' too, where
sctcu, o < B and B’ <+ so clearly s € u and, by induction,
o’ <+'. Hence, a <.

O]

4.5.2 Defining A
We consider a “conversion” function, defined by recursion as follows:
po: A = ¥
Sadd
(s = a) = (As) > do(a)
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Definition 4.2. Let
o A:=P;(Ag)={scAp: s is upward closed};
e < be a binary relation on A defined as a<b<bCa for all a,be A;

e — be a binary function on A such that:
a—b:={s~fB:s5epo(a) and 3 €b}

where

$o : A—>P(2) si={s'eP(Z):scs'}
ar {¢o(a):aea}

We can clarify the notion of a — b:

a—>b={s»ﬁ:se{s'eP(E):gZ;O(a)Es'} andﬁeb}
={s+ B:¢p(a)csand Beb}
={s+— [B:5€P(X) such that ¢p(c) € s for all « € a and (€ b}

Lemma 4.3. (A, <,—) is an implicative structure.

Proof. 1. Let us show that (A, <) is a complete lattice. Clearly < is a
partial order. Let (b;);er be a set-indexed family of elements of A, then
Nier bi = Uier by and Yier by = Njer b;. Obviously, T4 =@ and 14 = A.

2. Let a,a’,b,b" € A such that @’ < a and b < b'. We have to prove that
a—>b=zad —b. Let s> pea - . Clearly, f€band ¢o(a) € s for all
a € a, because a € a’ and b’ <b. Then s+~ Sea—b.

3. Let a,be A, then:

aeAbiZ{SHB:SEQEO(a)g andﬁeubi}

iel iel
= Ufs > 8+5 € do(a)® and by}
i€l
= A(a — bi)~
iel
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4.5.3 Defining a new generic predicate of P
Let
p:A=>3 P:Y->A
ar Ado(a) £~ {8

Let us consider tr4 := [¢]a = Po(try) € PA.
We want to show that tr 4 is a generic predicate for the tripos P.

Lemma 4.4. Piy(try) =trs.
Proof.
Py(tra) = PY([6]a) = [6 0 ¥ls = [Ado({€})]eex
= [A{€}eex = [A{ids(€)) : € €id5 (&) Hees = Vids([ids]x)
By Lemma [[.4] Vidy, is the inverse of Pidy; = idpy;, then Vidy, = idpy. Hence,
Py (tra) = Pids([ids]s) = [ids]s = Pids(try) = trs
]

Lemma 4.5. The predicate tr 4 € PA is a generic predicate for the tripos P.

Proof. We want to show that

{ hx:A" > PX
1= Pi(tra)
is surjective. If p € PX then there exists o € ©X such that Po(trg) = p.

Hence, Po(Py(tr4)) = p by Lemma that is P(¢ o 0)(tr4) = p. Then,
(oohx =p. O

Let X be a set. We will denote with [~]x : ©% - PX and with (-)x :
AX - PX the corresponding decoding maps, while we will use ¢X : AX -
»X and X : 2% - AX to indicate the natural transformations induced by

¢ and ¥, ie. ¥ (n) = pon and ¥¥ (o) = ¢ 0 0.

Lemma 4.6. Let X be a set. Then, the two following diagrams commute:

»X »X
A O py X % oy
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e (~)x =[x 0 6% and [-lx = (~hx 0 9.
Proof. Let n e AX, then:
[6™ ()]x = [¢ o nlx = Pn(Pé(trs)) = Pn(tra) = {(n)x-

While, if o € ©X:

{6 (0))x = (@oo)x =Pa(Py(tra)) = Po(trs) = [o]x.

4.5.4 Universal quantification in A4

As we did in subsection [4.3] we define:
E'={(a,A):ae Ay c AxP(A) e€:E-A e :E -P(A)

where e}, e}, are the projections of E'.
We want to prove:

Theorem 4.5. (A A) acp(a) = Ve ({e1) ).

The meaning of this theorem is that the operator A : P(A) — A has the
same role for the generic predicate tr4 € PA that the operator A € XP(*)
has for the generic predicate try € P3.

In order to prove it, we first need to show the following property:

Lemma 4.7.

[[\:/{\:/8 15 €St sepp(n)) = [[\:/(U Nserr))
[A{N\s 5 € SHseppsy) = IANUNserpny)

Proof. Let consider the following sets and the corresponding projections:

E={({s):fes}c X xP(X) er: E—>% ey E—-P(X)
Fi={(s,5):5€5} cP(X) x P(P(Y)) fi: E-P(X) f2:E->P(P(X))
G:={(§s,5):€eseS}cExP(X)xP(P(X)) ¢1:G-FE g:G—>F

We can start by observing that:

VAV : s € SYsepepiny) = VIV A(2) : 2 f3" () Hsepepisy) = 31V © AilF)
=(3f20Pf)([VIp)) = (3f20Pfio3es)([er] )
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This is clearly a pullback:

G—2-F (&,5,8) F2> (s,5)
1
glj flj 911 ]fl
E—%P(%) (€ 8) —2 o d

Then, by Beck-Chevalley, we have:
dg2 0 Pg1 =P f103ey

Therefore, we obtain:

IV {Vs s € SYlseppesy = (3f2 0 3g2 0 Pgr)([ealp) = 3(f2 0 92)([er © sal)
= [V{(erog)(2) 2 € (f209) 7 (Dlsepcpsy)
=V Nl sepr=))

The other case is similar. O

Now we can prove Theorem

Proof.

(A A aepa) = (U A aeray = [0 D] acpeay = IAG(U D] acpia)
Let Py : P(A) - P(P(Z)) such that Pho(A) = {¢o(a):ae A}. Then:
(A A acpa) = IAUPG(A)] acpa) = P(PE0) TA U SLacr ey
Thus, by Lemma [.7}
(A A aepa = PPE)IAIAs 5 € SHserpisy)
= [[/'\{/\<Z~>o(a) ta € A aepcay = [A\{d(a) s a € A} ucp(ay
=[A{o(e1(p)) : pe €5 (A aep(ay = Ver([¢ o el]er)
= Vey({e))r)
]

Lemma [£.5] allows us to use the same argument of Theorem [£.3]in order
to show:

Lemma 4.8. Let ne A and f: X =Y a map, then:
(A (@) 2 e [ W) )yey = VI ({n)x) € PY
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4.5.5 Implication in A

In this subsection, similarly to before, our aim is to show that the -: AxA —
A operator has the same role for the generic predicate tr4 € PA that the
operator - € ¥>** has for the generic predicate try, € PX.

We need first to prove some technical lemmas.

Lemma 4.9. Let F := {(s,s'):scs'} cP(X) x P(X) and let fi,fo: F —
P(X) be the corresponding projections. Then:

[[\/ o filF < [[\/ o folF

[N\ofilr2[/N\e folr

Proof. Let us define the set G := {(£,&,(s,8")) : £ € 5, € s’ and (s,5") €

F} c ¥ x ¥ x F and its projections g1,g2: G - X and g3: G - F .

We can observe that if (s, s") € F' then f1(s,s") = {g1(&, &, (s,8")) : (§,&,(s,8")) €
G} ={g1(2): 2 € g3'((5,5"))} and similarly fo(s,s’) = {ga(2) : 2 € g3((5,5"))}.
Then:

[V o fillr = [V{91(2) : 2 € 65" (5, )W (s.yer = 305([91]0)
[V e fol e = [V492(2) : 2 € 65" (5,8} o.0yer = Fg3([92] )
[A e fillr = IALg1(2) 2 € 65" (5,8 ) (ssryer = Vaa([91]6)
[\ follr = IA{g2(2) 2 € 95" (5,8 ) (s s0yer = V([g2] )
Let g: G — G be such that g(&,&', (s,5")) = (£,€,(s,s")) then:
[91]c = [92 © 9l = Pa([92]c)
and , since 3g 4 Pg -4 Vg,
39([91]e) < g2l < Vo(lg1la)
Thus we can conclude:
[V o filr = 3gs([onl ) = 393(Fg([91]e)) < 3gs([g2le) = IV © fal
Ao filr = Vos([orle) = Yas(Vg(lorle)) = Vos(lgale) = [A o folr
where we have used that g3 =g3o0g. ]

Corollary 4.1. Let X be a set and 1, € P(2)~ such that n(x) € ((x) for
every x € X, then

[Aenlx2[A°dlx
[V enlx <[Ved(lx
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Proof. Let p e (P(2)xP(%))X such that pu(x) = (n(x),((x)) and F, f; and
f2 as in Lemma Then:

[Aenlx =[Ao fioulx =Pu(IA o filF)
[V onlx =V o fioulx =Pu([V o filr)
By Lemma 4.9

[Aonlx 2 Pu([A o folr) = [A o fooulx = [AoClx
[V onlx <Pu([V o folr) = [V © foo ulx = [V o C]x.

Now we can prove:

Lemma 4.10.

IAL(As)>€ s € us, € €t wnepyren = IAN(AW) € € € Y] wnersmr)
Proof. We start defining
G:={(u,t,s,§):ucs, Lt} cP(E)xP(E)xP(X)xE

gi:G—>P(X) for i =1,2,3 and g4 : G — X the corresponding projections.
Let g : G - G such that g(u,t,s,&) = (u,t,u,§).
Then:

IAL(AS)>€ucs,€ €t upepmep)

SIALAG())>04(2) 2 € (g1, 92) ™ (s ) (uyep sy
=¥(g1. 92)([(Ag3(2))>91(2)]zec = ¥{g1, 92) I\ ° g5l = [l )

Furthermore:

[[/\{(/\U) = E et (unepm)xp(n) =
:[[/\{(/\gl(z).)—&ng(z) iz € (91,92>_1(U,t)]](u,t)e?(z)xp(z)
=V(g1, 92)([(A\91(2))>94(2)]:cc:) = ¥{g1, 92) ([/\ ° 91l = [94] )

So we have to show that

(g1, 92)([A 0 gsle = [oal @) = Y{g1, 92) (IA 0 91l = [9alc)
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(<)  Since g3og=g1 and gs0g = g4:

Pg(IA ° g3l ~ [9alc) = [\ © g3 ° gle = [ga © gl = [A © g1le ~ laale

Then:
[A © gsle = [9ale < V([N 0 a1l e — [9al @)
Thus:

(g1, 92) (IA\ © 93l = [9alc) < ¥{g1.92)(Yg([A\ 0 1] = [9alc))
Furthermore, (gl,gz) og= (91 ©g,g209) = <91,92> SO

(g1, 92)([A 0 gslc = [gal @) < V{1, 92) ([A © g1l — [9a]c)

(>) Let F and fi, fo: F » P(X) defined as in Lemma [4.9]
If z € G we have that g1(2) < g3(2), so by Corollary IAogsla = [g4]c =
[A e gila = [94] ¢ and, consequently:

(g1, 92)([A 0 gsle = [oale) = Vg1, 92) (IA 0 91l — [9alc)

Lemma 4.11.

IAL8€ : € € sY](0.0)emepy = 10> Asl(0.5)emp(m)

Proof. Let G := {(0,¢,s) : {£ € s} €U x X xP(X) and g1,92 : G - X and
g3 : G — P(X) the corresponding projections, while 7 be the projection
from ¥ x P(X) to X.
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If pe P(¥xP(X)) then:

p<[A{#>€:€e 51 (0,5)ezxP(x)
P < IAL91(2)>02(2) 2 € (g1, 05) (0, 9) ) .0pemem ()
p < V{g1,93)([91]¢ = [92]c)
P(g1,93)(p) < [g91]c = [92]c
P(g1,93)(p) A [g1]c < [92]e
P(g1,93)(p) A [ o (g1, 93)]c < [92]c
P(g1,93)(p A [7]sxp(s)) < l92]e
pA [mlsxps) < V{91,93)([92]c)
p < [mlswpzy = V{91, 93)([92]¢)
P < [0 syemp(s) = IAL92(2) 2 € (91.95) (8, ) ] (0.0)emxm ()
= p<[0@syemre) = IAE: €€ s omemrs)
< p< [['9—‘/.\8]](9,5)@@(2)

ﬁﬁﬁﬁﬁﬁﬁ@ﬁ

Clearly, we can conclude that

IA{0€: € € s o.0)emep(m) = [0 As] 0.)emp()

Corollary 4.2. Let X be a set, 0 € % and t e P(X)~ then:
[AMo(2)>€: € e ta)) Jaex = [o(2) > At(2)Jaex
Proof.
[A{o()=¢: € e t(@) aex = PUo ) (IALI>€: € € sHp.mpemer(s))
By Lemma [4.11}

[A{o(2)>¢: € € t(z)}oex = P((U,t)){[[94(/\8)]](9,@62@(2))
= [[O-(x)_')/\t(x)]]aceX

Now we can finally show:

Theorem 4.6. Let w, 7" the two projections from Ax A to A. Then
fa = b)(apyeaxa = (Thaxa = (7" )axa € P(Ax A)
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Proof. Recall: )
a—=b={sB:sepy(a)® and B €b}

where s= = {s" e P(X):scs'}. Then:
(@~ b)(apyeaxa = [[Q%(a = D) (a,p)edxA (by Lemma [t.6)
= [[/\QEO(G’ - b)]](a,b)EAxA
= [[A{¢q(8 = B):segp(a) and B € b} (apyeaxa
= [[/.\{(/.\8)—"%(5) ts€dp(a) and B € b} (qp)eana
= [A{(As)>€: s € do(a) and & € ¢o(D) H(ap)eaxa
If we define h: P(X) x P(X) - P(X) such that
h(u,t) := {(/\s)—'»f :seuS and € et}
then:
@ = Bhapreara = (A @ e do x G0} (@, B) o pyeaa
= P (o x 50)([[[\ o hﬂ(u,t)ep(z)xp(z))
=P(0 % d0) (IN{(As)>€: s € u® and € € t}] (up)ep()P(s))
By Lemma
(@ = DY (apyeaxa = P(do x &0)([[/\{(/\U)—‘>§ € ety wner)xP())
thus, by Corollary,
(@ = B @hreara = P(do x d0) ([AD>(ADwners)we)
= [(Ado(a))>(Ado(0)](a,p)exa
= [¢(a)>d(b)] (a,p)eaxA

= [¢oaJaxa — [¢ob]laxa
= (T axa = (7" ) axa

O
Thus, we can use the same argument of Theorem in order to prove:

Theorem 4.7. Let X be a set and 1, € AX then:

{(n—>Cx ={nhx —{(Ox
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4.5.6 Defining the separator

Now, we have to equip A with a separator to give it a structure of implicative
algebra. The idea is to mimic what we did in section [£.4] where we have
defined a sort of filter in the following way

P={eN:[{Jrcr=T1}CEX
Then, let us consider § € A such that:
S:i={aecA: {a)er =T1}
Thus:
S={acA:(a)eer=T1} = {ae A: [¢p(a)]1 = T1} = {ac A: 4(a) € B} = ¢~ (D)

Theorem 4.8. The subset S € A is a separator of the implicative structure

A.

Proof. e S is upward closed. Let a € S and b € A such that a < b, ie.
b < a. Thus ¢o(b) € ¢o(a). . .
Lety and v be such that * € 1 » ¢g(a) and * € 1 — ¢o(b) respectively.
Then by Corollary [£.1}
[9()]c1 = [Ado(@)]er = [A 0 eluer < [A 0 ¥luer = [Ado(B)]ar
= [6(0)]«ex

Thus, we can conclude that (b).e1 = Tee1-

e S contains KA and 8. Let m:1xA—>1land 7': (1x A) x A—>1xA
the first projections of 1 x A and (1 x A) x A respectively.

(K)wer = {\A(a ~b-a)),
={ A Ala=>b=a):(~a) e (=)} = A)sar

(-,a) bed
- Vﬂ-(« beA,A(a —>b— a)>>(—,a)el><A)
=Vr a->b-a:((-a),b)er (- a
({ ((_7/(1\)@){ ((=:a),b) (=} ayerna)
=V (V' ({a = b~ a)((-.a) p)e(1xa)x))
= VTF(VWI(T(IX.A)X.A))
= T].

hence K* ¢ S. Similarly, we can prove that S ¢ S.
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e S is closed under modus ponens. Suppose that (a > b) € S and a € S.
Then

T1 = (a = blrer = (a)ser = (bhrer = T1 = (D) ser
thus <<b>>*61 =T1.

Lemma 4.12. Let X be a set and n, € AX then:

(mMx <(Ox = A ((x) > ((x)) €S

xeX

Proof.

(mx <(Ox < Tx <(nhx = (x
< Plx(T1) <{n—>C)x
< T1 <Vix({n - Chx
e T <(Aln@@) > @)z e (<) = X)),
< AN ((z)—>((z))eS

reX

4.6 Isomorphism

Let PA: Set” — HA be the implicative tripos induced by the implicative
algebra A as we have described in chapter
We can finally show:

Theorem 4.9. The implicative tripos P2 is isomorphic to the tripos P.

Proof. For every set X, we consider px = (-)x : AX - PX.
Let 77,¢ € AX then:

nksix) ¢ e n—>CeSX] e /g((n(-%')ﬁé“(m))es

then, by Lemma |4.12

nrsix] € (n)x <(COhx < px(n) < px(C)

and, consequently,
n —sx1 ¢ < px(n) = px(¢)

82



Hence, px induces a bijective map:
px :PAX > PX

Furthermore, px is an isomorphism of HA by Lemma [1.2
We want to show that p = {px}x set is @ natural transformation. Let f :
X — Y be a map between sets.

PAY 2, py
lPAf le
PAX X pX
Let [] € PAY, then:
(Pfopy)([n]) =Pf({nhy) =Pf(lo(m]y) = [¢(ne f)]x
= {(no f)x = px([neo f1) = (px o PAL)([n)).
O

Ezample. Let P be the implicative tripos induced by B = (B,<,—>,U). We
have already observed that the decoding map corresponds to the quotient
map and that > :—>,/\ =Aand V=3.
Then

tra =Po(trg) = [idg o ¢] = [¢] € BA/U[A]

and
(n)x = [pon] e BXJU[X] for every ne AX

Thus Lemma states that for every map f: X - Y and e AX

lymeo( U n@)]=ly~ A oén(z)]eB" /UY]
f(x)=y fz)=y

while Theorem ensures that for every 7,¢ e A%
[6on—>al]=[don] »s[¢o]e BT ULX]
Then the natural isomorphism defined in Theorem is:
px : PAX > PX
[n]s1x71 = [P onlurx)
where S = ¢71(U).
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Chapter 5

Geometric morphisms

Let us start by introducing the notion of geometric morphism.

Definition 5.1. Let P and Q be two Set-based triposes. Let &, : P - Q
and ®* : Q - P be two natural transformations where both P and Q are
considered as functors Set - PreOrd. If:

1. " 4D, ie. for every set X, O 4 &, x where both @ and . x are

considered as functors between the categories induced by the preorders
PX and QX;

2. for every set X, ®% : QX — PX preserves finite meets;
then ® = (&, ®") is a geometric morphism from P to Q [12].

Let A and B be two implicative algebras and PA and P? the correspond-
ing implicative triposes. In this chapter, we will prove that every pair of
functions ¢ : A - B and ¢ : B - A that satisfies some particular properties
induces a geometric morphism from PA to PB. Furthermore, we will also
show that every geometric morphism between implicative triposes is of this

type.

Theorem 5.1. Let (A,<,—,5) and (B,<,=,U) be two implicative algebras
and PA and PB the two implicative triposes induced respectively by them.
Let ¢p: A— B and ¢: B - A be two maps such that:

1. for every X c Ax A andY c BxB:
if N\ a—deSthen AN ¢(a)=¢()eU

(a,a’)eX (a,a’)eX
if AN b=>0b¢eUthen /N o(b)—>pb)eS
(bb')eY (bb')eY
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2. for every X ¢ Ax B:

N ¢)»>acSifand onlyif A b=1¢(a)eU
(a,b)eX (a,b)eX

3. let w1, mo be the projections of B x B then
[po (m1 x5 )] = [(pom) xa(pom)] e APF/S[B x B]

Then v and ¢ induce a geometric morphism between P4 and P5.
Proof. If X is a set then we can define
o, x:PAX - PPX
[n] = [¢on]
% :PPX - PAX
[8] = [@op]

We want to show that ® = (®,,®*) is a geometric morphism between P4

and PB.

o &, and ®% are well defined. Let [n] = [¢] € AX/S[X], i.e.
A n(x)—->&@)eS and A &(z) > n(x)esS.

xeX reX

Clearly {(n(z),&(z)) : x € X} and {(&(z),n(x)) : x € X} are subsets

of A x A, then, by condition 1:

A v(n(@)) =€) eU  and A ¢(&(z)) = ¢(n(2)) U,

reX xreX

hence [¢) on] = [1o&] € BX/U[X]. Analogously for ¢.

®, and D are natural transformations. The first thing to show is
that ®,x and ®% are monotone. Let [1],[¢] € AX/S[X] such that
[7] + [£], ie. Azexn(z) = &(x) € S, then, we have already proved
that:

A v(n(@)) = ¢¥(&(x)) € U hence @.x([n]) - P.x([¢])

reX

Analogously for ®%.

Let f: X - Y be a map between sets, we have to show that the
following diagram commutes:
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AX/S[X] T, AY /S[Y]

l/@ﬁ.x l/q>+Y

BXJU[X] Y BY JU[Y]

Let [n] € AY/S[Y] then:

(@4x o PAN)([0]) = ox([no f1) = [Yone f1=PE(F)([won))
= (PP(f) o @iy )([n])
Analogously for ®*.

d* 4 d,. Let X be a set, [3] € BX/U[X] and [n] € AX/S[X] then:

X ([8]) < [n] if and only if [0 8] - [n]
if and only if A ¢(B(z)) > n(z)e S

reX

Clearly {(n(x),8(x)) : x € X} is a subset of Ax B, hence, by condition
2.

X ([8]) < [n] if and only if /&(ﬁ("r) = (n(z)) eU

if and only if [8] < @, x([n])-

®Y. preserves finite meets. Let [B],[v] € BX/U[X] then:

Oy ([BD) A @X([v]) = [poBlalpor]=[(poB)xa(poy)]
O ([B1A[Y]) =% ([BxB7]) = [poBxp7]

Clearly:
A ((b) xa0(V')) = p(bxpb") < A ((p(B(2)) xap(1(2))) = (p(B(z) x5 ¥(2)))

b,beB! reX

A o(bxpb) > (0(b) xap(¥)) < A\ 0(B(z) x57(2)) > (p(B(2)) xa9(7(2)))

b,beBB’ zeX
Hence, by condition 3. and by the fact that S is upwards closed, we
can conclude that:

A ((e(B(x)) xa o(v(2))) = (#(B(x) x5 ¥(2))) € S

reX

N (p(B(z) xg(2)) = (p(B(2)) xa p(v(x)))) € 5

reX

thus [(po ) xa (9o )] = [po Bxpy] e AX/S[X], ie. D%([B]) A
P ([v]) = 2x([BAY]).
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Theorem 5.2. Let (A, <,—,S) and (B,<,=,U) be two implicative algebras
and PA and PB the two implicative triposes induced respectively by them.
Let © a geometric morphism from PA to PB. Then © induces two maps
v:A—> B and ¢: B — A that satisfy the conditions 1., 2. and 3. of the
Theorem [5.1. Furthermore, the geometric morphism ® induced by ¢ and ¢
as described in Theorem [5.1 is ©.

Proof. Let © = (©,,0%) where O, : PA - P and 67 : P8 - pA,

o O induces Y and ¢. Let:

O4a(tra) =0,4([id4]) = [0 (ida)] € BA/U[A]
“s(trg) = ©'5([ids]) = [0 (ids)] € A°/S[B]

By axiom of choice, we can define:
v:A-B p:B->A
a+~ 0,(id4)(a) b+ O (idg)(b)
e ©=3. Let X be a set and [5] € AX/S[X]. We can define

{nt:X->A
z = n(z)

then PA{n}(tra) = [n]. Since O, is a natural transformation, the
following diagram commutes:

AArs1A] P 4% 81X

\L@+A l@+X

BALA] 2 X o x)
then

O.x([n]) = (O+x o PH{n})(tra) = (PP{n} 0 ©1.4) (tr.4)
=PP{n}([¥]) = [¥on]
=®.x([n])

Analogously, we can show OF = ®%.
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e Condition 1. Let X € Ax A and A(q,ayex @ ~ a' € S. Let us consider:

n: X—-A (: X->A
(a,a’)~a (a,a’)—d
Then:
/}(77(53) = ((x) S

ie. [n]+ [¢]. Since O,x is monotonous we have O,x(n) - O.x((),
which means

A ©(n(z)) = ¢(¢(x)) e U.

reX

Analogously for .
e Condition 2. Let X ¢ Ax B and

n: X->A 8: X—>B
(a,b) »a (a,b) » b

Since OF -4 O, x:
OX([8]) + [n] if and only if [B] - ©.x([n])

so:
[pofB]+[n]eS if and only if [B]+ [¢pon]eU

1.e.

N\ ¢(B(z)) - n(x) e S if and only if A B(z) = ¢(n(z)) eU

zeX reX
N\ @) —>aeSifandonlyif A b=¢(a)eU
(a,b)eX (a,b)eX

e Condition 3. Let X be a set and [B],[v] € BX/U[X], since O%([3] A
[v]) = ©%([8]) A©%([7]) we have that

[po(Bxsv)]=[(poB)xa(po)]
then:

A (p(B(z) xgy(2)) > (9(B(2)) xa p(7()))) € 5

xreX

A ((e(B(x)) xa o(v(2))) > e(B(z) xg(x))) € 5

reX
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Lemma 5.1. Let P and Q be two Set-based triposes and ® = (P,,P") a
geometric morphism from P to Q. Then ®° commutes with 3 i.e. for every
map between sets f: X - Y the following diagram

PX +— QX

%
" Lo

PY +—— QY
q)Y

commutes.

Proof. Let us fix amap f: X — Y between sets and let g € QX and p € PY.
Then:

Ff(@%(@) <p if and only if DX (q) < Pf(p)
if and only if ¢<®,x(Pf(p))
if and only if ¢<Qf(P.y(p))
if and only if 32f(q) < @,y (p)
if and only if ®%(3%f(q)) <p

Thus HPfOCI)}=<I>;oEIQf. O

Corollary 5.1. Let (A,<,—,S) and (B,<,=,U) be two implicative algebras
and PA and PB the two implicative triposes induced respectively by them.
Let © a geometric morphism from PA to PB and v : B —> A the map induced
by © as described in Theorem[5.3 Then ¢ commutes with 3, i.e. for every
f:X —>Y map between sets and n e B~ :

[y~ @)= (n(@))] = [y = (3 p@)=yn(z))] € A /S[Y]
Proof. Obvious. O

Observation. Let A and B be the implicative algebras induced by two com-
plete Heyting algebras H and K as described in chapter [2}

In such case, Theorem and Theorem imply the existence of the fol-
lowing one-to-one correspondence:

{Geometric morphisms from PE to PK} i {Localic morphisms from H to K}

(I):((I)+¢q)+) A ¥
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Indeed, let ® be a geometric morphism from PH to PX and let p:K->H
and ¢ : H - K be the two maps induced by ® as described in Theorem [5.2
Since ¢ preserves binary A and ¢ — v then ¢ is a morphism of frames by
Lemma

Conversely, if ¢ : K - H is a morphism of frames then let ¥ : H — K be its
unique right adjoint as defined in Lemma [I.3] Then, clearly, ¢ and 1 satisfy
the conditions of Theorem and thus they induce a geometric morphism
® from P¥ to PX.

It is clear that different pairs of functions can induce the same geometric
morphism. Indeed, let ()1, ¢1) and (12, p2) be two pairs of functions that
satisfy the conditions of Theorem and let ®; and @5 the two correspond-
ing geometric morphisms induced. Then, it is obvious that:

[¥1] = [¥2] € BA/U[A]

b =D if and only if
e Y {[901]=[902]€AB/S[B]

In the last chapters, we have shown that there exists a correspondence be-
tween the geometric morphisms between Set-based triposes and a particular
class of equivalence of functions between implicative algebras. This results
lead us to define the following category:

e the objects are implicative algebras;

e for every implicative algebras A = (A,<,—,5) and B = (B,<,=,U):
Hom(A,B) = {[(¥,¢)] € BAJU[A] x AB/S[B] : (1, ¢) satisfies the

conditions of Theorem [5.1]};

o [(0,9)]c[(¢,0)] = [(009,po&)] for all morphisms [(¥,¢)],[(6,8)]
such that cod(1)) = dom(0);

e for every implicative algebra A: id4 = [(id4,id4)].

Introducing this new category allows us to have a new perspective on the
study of the category of triposes and geometric morphisms, by changing the
focus from triposes to the easier structures of implicative algebras.
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Chapter 6

First-order logic morphisms

Similarly to what we have done in the last one, in this chapter, we will study
which type of functions between implicative algebras induces and is induced
by a first-order logic morphism between the two corresponding implicative
triposes.

Definition 6.1. Let P and Q be two Set-based triposes. A first-order
logic morphism from P to Q is a natural transformation ® : P = Q such
that ® commutes with the left and and the right adjoints.

Let A= (A,<,—) and B = (B,<,=) be two implicative algebras. We will
denote:

N:P(A) > A A:P(B) > B
X N\ Y ANy

zeX yeY

3:P(A) > A 3:P(B) - B
XHHJ:EXCC Y'_)ayEYy

Before we go any further, let us introduce a technical lemma that will be
useful to us later.

Lemma 6.1. Let A be an implicative algebra and I be a set. If a;,b; € A
for every i € I, then:

Alai = bi) < ANai > Abi

iel iel iel
Proof.

Alai = b)) < A(Naj = b)) = Na; > Abi

iel iel jel jel iel
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Theorem 6.1. Let A= (A,<,—,S5) and B=(B,<,=,U) be two implicative
algebras and P4 and PB their implicative triposes.
Let p: A — B be a map such that:

1. ¢(S)cU;

2. if my, e are respectively the first and the second projections of A x A
then:

[po(m —>m)]=[pom = pom]e BV U[Ax A]

[po Al = [AoPyp] € B UP(A)]
For every set X, let:
dyx: AY/S[X] - BYJU[X]
[n] = [pon]

Then ® is a natural transformation from PA to PB, where they are both
considered as functors from Set to PreOrd. Furthermore, ® preserves im-
plication, T and A and commutes with the right adjoints.

Proof. Let us start by observing that the second condition ensures that:

a,a’eA

A («a(a) L o)) = pla - a')) v

a,a’eA

Since U is upwards closed:

A (@(77(:6) — ((2)) = (n(z)) = w(C(w))) eU

reX

A ((@(77(96)) = ¢(C(2))) = ¢(n(x) - C(w))) eU

xeX

for every set X and 7,¢ € AX. Now, we can prove the theorem.
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Oy is well defined and monotonous. Let X be a set and 7,¢ € AX
such that 1 Fg[x] ¢, so:

/}((U(x) - ((x))esS (by definition)
90( /}((77(33) - C(x))) eU (by condition 1.)

Furthermore, by condition 3.:

[Are(Aa)]=[Am A p(a)]

acA acA
A (@(Aa)= A¢(a)eU and A (A (@) =¢(/\a))eU
AcA acA acA AcA  acA acA

If we choose A = {n(x) - ((x) : x € X}, then:

o( A\ (n(x) = ((x)) = A e(n(z) - () eU

xeX zreX

U is closed by modus ponens, so:

A p(n(x) > ((x)) e U

zreX

Furthermore, by condition 2.:

A (¢((2) > ((2)) = o(n(2)) = ¢(¢(2))) €U

reX

thus, by Lemma

A #(n(@) = @) = A (¢(n(2)) = ¢(¢())) €U

zeX reX

and

A (#(n(2)) = o(C(2))) €U

reX

by modus ponens. Hence, we have shown that ¢ on gy, ¢ o (. Then,
®x is well defined and clearly monotonous.

CIJXoPAf = PBfo<I>y. Let f: X - Y be a map between sets. We want
to show that the following diagram commutes:
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AX/S[X] Y AY /S[Y]

b
BXJU[X] o BY JU[Y]
Let [n] e AY/S[Y], then:

(@x o PAf)([n]) = ®x([nof]) =[wono f1=PPf([¢on])
= (PPfody)([n])

o & preserves —. We have already observed that for every set X and

n,¢ e AX:

A ((s@(n(fﬂ)) = ¢(C(2))) = ¢(n(x) - C(ﬂf))) Y

reX

A (30(77(3?) = ((2)) = e(n(z)) = @(C(I))) U

zreX

which means:
Px([n] =[] =[pen—C]=[(pon) = (vo()]=2x([n]) = 2x([¢])

o & commutes with V. Let f: X - Y be a map between sets and 7 € AX.

AXS[X] 2Ly AY /S[Y]

Jox Jov

BXJU[X] L5 BY UV

We have to show:

(@y o VA1) ([0]) = (V5 f o @x)([n])
ey(ly= A n(@)])=VEf([pon])

f(z)=y
[y=e( A n@)]l=ly» A »n(=))]
f(z)=y f(z)=y

The third condition ensures:

A (po ANX = APp(X)) €U

XcA

A (APo(X) = po NX)eU

XcA

94



For every y € Y let f~(y) = {x € X : f(z) = y}. Since U is upwards
closed:

A (2o APn(f () = APe(P(f'(y)))) €U

yeY

A (APoP(f () = 0o APn(f(v)) €U

yey

i.e.

A (eC A n@)= A ox)))eU

yeY f(x)=y f(x)=y
AC A e@)=e( \ n(2)eU
yeY f(z)=y f(x)=y

®x preserves T. Clearly Tpay = [z + Ta] € AX/S[X]. Let us observe
that:

Dx(Tpay) = x([z > Tul) =[po (x> Ta)] = [z~ ©(T4)]
Since T4 = A @, by condition 3.:
gD(TA) = A@ eU
A@ = (p(TA) eU

thus:
Px(Tpay)=[r—> AN@]=[z~TB]=Tpsy

® preserves A. Let n,( € AX. ®x is monotonous, so:

(]~ [C] =[] = @x([n]A[C]) - 2x([n])
(] A[C] =[] = @x([n] A [C]) = 2x([C])

Hence, ®x ([n] A [¢]) F @x([n]) A @x([<])-
Now, we want to show the opposite inequality. PAX is a Heyting
algebra, thus:

[n] A [¢]+ [n] A [¢] then [n] = [C] = ([n] A [<])
then [n] + [(] = [1nx4(]
then [n] + [¢ =1 x4(]

Hence:

Ox([n]) F @x([¢ = nxal])
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Since PBX is also a Heyting algebra and ®x preserves —:

Dx([n]) - ex([C > nxal])iff 2x([n]) - ex([C]) = Px([n*xa(]
iff @x([n]) + x([¢]) = Sx([n]A[C
iff @x([n]) A x([¢]) = x([n] A[(]

)
)
)
O

Theorem 6.2. Let A= (A,<,—,S) and B=(B,<,=,U) be two implicative
algebras and PA and PB their implicative triposes. Let p: A— B be amap
such that:

1. ¢(S)cU;

2. if w,mo are respectively the first and the second projections of A x A
then:

[po(m —>m)]=[pom = pom]e BV U[Ax A]

[po A= [ APyl e B IUP(A)]
[po3]=[3oPp] e BN /U[P(A)]

é\A(SD(a +a4b) = (p(a) + (b)) €U

For every set X, let:
dx: AY/S[X] - BYJU[X]
[n] = [pon]
Then ® is a first-order logic morphism from PA to PB.

Proof. By Theorem [6.1} we have just to prove that ® preserves 1 and v and
that commutes with 3.

o ® preserves L. Let us start by observing that 1 = [z~ 35] € AX/S[X]
for every set X.

3= A(A@=)= A (Ta>c)=Ta~ Ae=TaLa

ceA ceA ceA
Since clearly 1L =[x+~ 14]:
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Axiom
T:dgrFx:iTga—> 1y r:dgrT:Ty
r:dgrxr:ilgy
FAr.xx: 3y —> Ly forallzeX
FAT.22 : Apex (3 = LA)

T-intro.

—-elim.

—-intro.

Gen.

Thus, [z~ 3g] =[x~ La] = L. Then:
Px(Lpax) = Px([z = 3g]) = [po(z~3g)] = [z~ ¢(3p)]
By condition 3.:
p(3g) = 3peU
dp = ¢(3g) €U
thus we can conclude:
Ox(Lpay) =[r+ 3g]=Lpsy
o ® preserves v. Let n,C € AX. Since ®x is monotonous:

(] - [n]vI[¢] = @x([n]) - @x([n]VvI[¢])
[CI-[nvI¢] = @x([¢])+Px([n] vI¢])
hence ®x ([n]) v @x([¢]) = ex([n] v [¢])-

Conversely, since:

A (pla+ab) = p(a) +5 9(0)) <
a,beA

< /}( (p(n(2) +a¢(2)) = o(n(x)) +5 0 (((2)))

we can conclude that ®x([n] Vv [(]) - ®x([n]) v®x([¢]) by condition
/.

o & commutes with 3. Similar to the commutativity with V in Theorem
0. 1]

O]

Theorem 6.3. Let A= (A,<,—,5) and B=(B,<,=,U) be two implicative
algebras and P4 and PB the implicative triposes induced by them.

Let © be a first-order logic morphism from PA to PB. Then © induces a
map ¢ : A — B that satisfies the conditions 1., 2., 3. and 4. of Theorem[6.3.
Furthermore, the first-order logic morphism ® induced by ¢ as described in

Theorem[6.2 is ©.
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Proof. e O induces ¢ and © = ®. Similarly to what we have done in
Theorem we can define:

O.4(tra) = ©.4([ida]) = [O(ida)] € BAJU[A]
and

p: A->B
a > O(ida)(a)

by axiom of choice. Analogously to Theorem we can prove that
Ox([n]) =[pon] =®x([n]), for every set X and for every n e AX.

e Condition 1. Let s € S. We want to show that p(s) e U. If X = {x},
we can consider:

5: X - A
* > S
Clearly [5] = Tpa . Since © is a first-order logic morphism, © x (Tpay ) =

Tpsy. Hence [po5] =[x~ Tg] and Tg = ¢(s) e U. Then ¢p(s) e U
because Tg e U.

e Condition 2. Let X = Ax A and m, 72 be respectively the first and
the second projections of A x A. By hypothesis, © x is a morphism of
HA, so it preserves the implication. Then:

Ox([m1] = [m2]) = Ox([m]) = Ox([72])
Ox([m = m]) = [pom] = [pom]
[po(m —>ma)]=[pom = pom]

e Condition 3. Let E={(a,A): Ac Aand ae A} c AxP(A) and 71,
the corresponding projections of . By hypothesis, ©® commutes with
the right adjoints, so the following diagram commutes:

APJS[E] 22 AP S[P(A)]

l% l%(m

VBWQ

BE[S[E] —= BPMU[P(A)]
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Hence,

(Dp(ay 0 VAm2)([m1]) = (VPmy 0 @) ([m1])
opy([A A m(2)]) = VPma([pom])

ma(z)=A
[Ar e A m@)]=[A~ A @(m(2))]
ma(z)=A ma(z)=A
[Aro(N\ a)]=[Ar A ¢(a)]
acA acA

[eo Al=[A°Pe]
Similar for 3.

e Condition 4. Similarly to what we have done before, let X = Ax A and
w1, Ty be its projections. Since O x is a morphism of HA, it preserves

V:
Ox([m] v [m2]) =Ox([m]) vOx([m])
Ox([m1 +ama]) =[pom]V[pom]
[po(m+am2)]=[pom +5¢pom]
thus:

A ola+ab) = (o(a) +p(b) eU
a,be A

O]

Observation. Let H and K be complete Heyting algebras. Let us show that
¢ :H - K is a map that satisfies the conditions expressed in Theorem if
and only if ¢ is a morphism of complete Heyting algebras, i.e. we want to
show that there exists a one-to-one correspondence:

{First—order logic morphisms pH PK} &, {Morphisms of cHAs H — K}

Indeed, since we are working with implicative algebras induced by complete
Heyting algebras, requiring that ¢ preserves V,3 and — - as expressed in
Theorem - is equivalent to require that ¢ preserves arbitrary meets, ar-
bitrary joins and the implication, i.e. that ¢ is a morphism of complete
Heyting algebras. Let us observe that this result follows from the fact that
the separator of an implicative algebra induced by a complete Heyting alge-
bra is defined as {T}.
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It is clear that the same first-order logic morphism can be induced by
different functions: indeed, if @1 and ¢9 satisfy the conditions of Theorem[6.2]
and ®; and ®4 are the corresponding first-order logic morphisms induced,
then:

Oy = Py if and only if  [¢1] = [@2] € BA/U[A]

Similarly to what we have done in chapter 5, we can now define a category
such that:

e the objects are implicative algebras;

e for all implicative algebras A = (A,<,—,S) and B = (B,%,=,U):
Hom(A, B) = {[¢] € BA/U[A] : ¢ satisfies the conditions of Theorem

6.2]};
o [¢]o[p] = [thop] for all morphisms [¢], [¢] such that cod(y) = dom(v));

e for every implicative algebra A: id4 = [id4].

6.1 Particular cases

In this section, we will describe some particular cases where the conditions
of Theorem on the map ¢ can be relaxed.

Let us fix two implicative algebras A = (A,<,—,S) and B = (B,<,=,U) and
their implicative triposes PA and PB. Furthermore, let ¢ : A - B be a map
such that:

1. o(S) cU;

2. if w1, 9 are respectively the first and the second projections of A x A
then:

[po(m —>m)]=[pom = pom]e BV U[Ax A]

[po A\l = [AoPyp] e PN U[P(A)]
As before, we will consider:
dx: AY/S[X] - BYU[X]
[n] = [ on]

for every set X.
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Lemma 6.2. Let n,( € AX for some set X. Then:

[¢O(n+AC)]=[/}X((cpon:wﬁ)é(woczwﬁ)ﬁ'<;>°5)]

Furthermore, :

[po]=[X = A (A (e(2) = ¢(a)) = ¢(a))]

acA zeX

Proof. Let us define 7, : AX x X — A such that 7 =nomy and ¢ = ( o my
where 7y is the second projection of A% x X. Let ev: AX x X - X be the
evaluation map.

By Theorem ® preserves the implication so:

[po(7>ev) > ((~ev) »ev]=[(pofj=poev) = (po( = poev) = poev]
ie.

A ((po(—ev) > ((~ev) »ev)(2) =

2e AX x X
= ((pof]= poev) = (po(=poev) = poev)(z)) eU

A (((pei=poev) = (po(=poev) = poev)(z) =
2e AX x X

= (po(7>ev) > ((—ev) »ev)(z)) eU
By Lemma and by the fact that U is upwards closed:

[ A (po(—ev) > (C—>ev) »ev)(d,-)] =

deAX

=[ A ((poi=gpoev) = (pol=poev) = poev)(s-)]
JeAX

[ A (po(n—0)—~((~>0)—6)]=

deAX
=[ A ((pon=po0d)=(pol=pod)=pod)]
SeAX

By condition 3.:

[¢°(n+AC)]=[5/))(((90077:*9005):*(@%3@05):*sooé)]
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Let n: P(A) x A - P(A) such that n(X,a) = {x > a:2 € X} and let m be
the second the projection of P(A) x A. Then:

[eo((Non) »m)]=[po(Nen)]=[pom]
=[Algon)] = [pom]

Furthermore, let F = {(z,X) : € X} and 7],75 : Ex A - A such that
m1((z,X),a) =z and 74((x, X),a) = a then:

[po (]~ m)]=[(pom)) = (pom)] e BXAIULE x A]
By Lemma [6.1
[A(pom]=[(a.X) > Ap(x) > p(a) :x e X}] e BPAAUP(A) x A]

Thus:

A (ch(/\(aHa)*a)ﬁ(/&((@(w)éw(a))ﬁw(a)))eU

acA,XcA reX
A ((/\(‘P(U’U)_’S@(a))ﬁww)):>90°(/\($—>a)—>a))eU
ace A, XcA zxeX reX

by Lemmal6.1]and by the fact that U is upwards closed and that ® commutes
with right adjoints:

[pod]=[X~ A (A (e(z) = ¢(a)) = ¢(a))]

acA xeX

Proposition 6.1. If there exists x € A8 such that:
[pox] = [ids] € B°/U[B]
Then ® is a first-order logic morphism from PA to PB.

Proof. By Theorem it is sufficient to show that ® commutes with 3 and

that [po (n+4 Q)]+ [(pon) +5(po()] forn,¢ e AX .
Fixed a,b € A we denote with 4 := (¢(b) = d) = d and with oy := (p(a) =
d) = B4 for every d € B. Let

u= A((pox)(d)=d)eU u'= N(d=(pox)(d)) eU
deB deB

Fixed ¢t = Mw.u/(yw) and t' = Aw’.u'(zw’), let us consider:
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Param.
IF'cu:u Subs
Fru:p(x(d)=d — «

D=2 Aced Qp(e), ¥ p(a) = d, z:0(b) = d - u(xtt’) : d

—-elim.

—-intro.

T Aced Cpe) Y+ SO(CZ) =>dr )\Z.U(l'tt,) : Ba
T2 Aced Qp(c) = Ayzu(wtt’) 1 ag
7 Gen.
T Need Qp(e) = Ayz.u(att’) s p(a) +5 p(b) )
—-1Nntro.
= /\xyz.u(mtt’) * Aced Qp(e) = SO(CL) B (p(b)

—-intro.

where 7 is:

Axiom
Fw: QO(CZ) F 2 Aced Ap(e) Sub
ubs.
Low:o(a) 20 agiy(ay) i y Similar to 7’
—-elim.

I'+—at: 5w(x(d)) I+t (P(b) = @(X(d))
[ att’: o(x(d))

—-elim.

and 7’ is :

Param Axiom Axiom

m Subs F, Py (‘O(a) =d FI rw: gp(a) —-elim
U d = () e ywid |
IM:=T,w:p(a) - u(yw) : p(x(d))
T+t:p(a) = p(x(d))

Thus, by generalization and by Lemma [6.2

—-elim.

—-intro.

[po(m+a Q)]+ [(pon)+5(po()]

By Lemma 6.2

[po3]=[X = A (A (e(2) = ¢(a) = ¢(a))]

acA zeX

Clearly

ACA (@) =b)=b) < A (A (o(x) = ¢(a)) = ¢(a))

beB xeX acA xeX

thus:

[FoPp]+[po3]
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since

Ay A (/\( A (p(2) = b) = b) = A (A (p(z) = ¢(a)) =>90(a)))

XcA\beB zeX acA zeX

Furthermore, let ag := Ajer(p(a;) = d) = d for every a;,d € A and for
every set I:

Axiom

I'Fx: Aeen

Param. #(©) Subs.

FFu:u U2t ag(a)) T ,
Subs. —-elim.

Cru:p(x(d)=d I'= 2z (2y) : (x(d)) .
U= 2 Neea @p(e) ¥t Aier((ai) = d) - u(@Azu’(2y)) - d

—-intro.

-elim.

T Aced Qp(e) = Ay-u(rAz.u'(2y)) 1 aq forall deB
Gen.

T Aced Qp(e) = Ay-u(wAz.u'(2y)) + AgeB Qa
FAzyu(zAz.u' (2y)). 0 Aced Qp(c) = AdeB

—-intro.

where 7 is:

Axiom

Param. Axiom I+ Y- Aie]((p(ai) = d) Sub

e Subs. Ik 2 p(ai) " y:p(a) =d Seelim.
I d= o (@) 2y
I":=T,2:p(a;) - u'(2y) : p(x(d))
Tz (zy) s p(a;) = p(x(d)) forallierl
I+ Az (2y) : Nier(¢(ai) = o(x(d)))

Thus, by Lemma [6.2

—-elim.

—-intro.

Gen.

[FoPp]=[pod]

Now, our aim is to show that condition 4. of Theorem[6.2]is not necessary
if the separator of B is a filter. Let us start by showing:

Lemma 6.3. Let A= (A, <,—,5) be an implicative algebra. If S is a filter
and m,m are the projections of Ax A then

[m1 +m2] = [Fi=1,27]
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Proof. We have to prove that:

A (a1 +ag —> 31‘:1726%') €S

a,az2eA
A (32‘:1,2% - a1+ a2) € S
a,azeA
Let consider:
Axiom
Axiom F>y¢a1'—y301
Th. 2.6]
I'-z:a1+as Iy:ar = dwawy : 32120, T
Th. 24
[:=2:a1+a2 Fx(Ayw.wy)(Azw.wz) : 3i-1 204
—-intro.
F Az (Ayw.wy) (Azw.wz) :a; + ag - Jj=12a; for all ar,az € A
Gen.

F Az (Ayw.wy) (Azw.wz) : Aay agea(ar + az = Ji-1,2a;)
where 7 is:

Axiom
Iz:asrz:as

Th. 24
I z:1a = dw.awz : -1 a4

Let us start by observing that if U is a filter then jBe U by Lemma
Furthermore, let us recall that if a1, as € A then:

rhA aias < aq rle ajas < as
Then:

Axiom Proved before

I'-2: A=12(a; = ¢) = ¢ TpAyz: Ai-1,2(a; = ¢)

A —-elim.
F::a::Elingai,y:y:al—>c,z:a2—>CI—a:(A1 yz):ic

A —-intro.
xT: 31:1’2ai,y tap > CckH )\Z.%'(Aj yZ) : (ag e C) - C

A —-intro.
x: iz 20i F Ayz.x (b yz) (a1 = ¢) > (ag > ¢) > ¢ forallced
Gen.
x: iz 00; - )\yz.a:(,{(“ yz):ay +asg
A —-intro.
FAzyz.o(h” yz) Jiz120; > a1 +az  forall ag,az e A o
en.
F Aayaged(Fi=1,20; = a1 + az)
Thus [7‘1’1 + 7'('2] = [Hizl’gﬂ'i] ]

From the previous lemma it follows:

Corollary 6.1. If U is a filter and
[po3]=[3oPy]

then ® is a first-order logic morphism.
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