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Introduction

Nowadays it is well known that our Solar System was formed after a long
time by a dust disk , but in recent years this knowledge has been put to test
because of the discovery of extrasolar planets.

One of the many question that scientists are trying to solve is why planets
are where they are. Their distance from the system’s centre is based on their
formation process, which strongly depends on the protoplanetary disk they
were born in.

The studies in particular have observed the presence of objects that orbit
around binaries, but if wide-separated binaries can be explained, problems
arise in the early stages of small separation cases. In this situation the
presence of the second star, as Rafikov [7] suggest, leads to a rapid secular
evolution, driving planetesimal eccentrities far above the level at which are
not destroyed in mutual collisions, so now we would not see any planet.

On the other hand the interactions between a protoplanetary disk and the
planetesimals can lead to an apsidal alignment of their orbits, resulting in
smaller collision velocities and enabling growth. The combination of this
factors leads to the collisional barrier problem, because it results in the fact
that inside a certain radius planetesimals can not agglomerate and planets
can not exist. The question now is obviously how can we predict that dis-
tance from the system center, explaining experimental data.

The solution is deeply related to protoplanetary disks’s structure and their
interaction with the planetesimal. In Tamayo’s Dynamical stability of im-
aged planetary systems in formation: application to HL TAU [9] it is shown
that even if we could explain the presence of the planets, it would be really
difficult to understand their resonances due to the disk’s presence. They are
very important to the system’s dynamics, because they sometimes provide
great stability while in other cases they are destabilizing.

Their locations are usually accurately determined by simple period ratios,
however this is only true when the pericenter precession rates are slow com-
pared to orbital rates. This can be assumed if the non-keplerian forces are
small perturbations, but for a young system the disk gravity can alterate
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this situation, inducing a strong pericenter precession rate and a shift of the
location of the resonances.

We see now why is it important to understand the interactions between the
disk and the planets, and in particular the disk’s induced absidal precession.
In this thesis we are studying the disk models that lead to calculate the
precession, starting from a surface density function ¥(r) o< r~P. The central
models analyzed in this paper are taken from Binney and Tremaine’s Galactic
Dynamics [2], used by Tamayo [9], and Ward’s Solar Nebula Dispersal and
the Stability of the Planetary System. They do not assign the p parameter,
therefore we can study it in different cases. The main goal is to understand if
the results fit with each other and possibly with real cases scenarios assuming
a certain power-law index for the surface density of the disk.

In the first part we will study the disk-induced potentials ¢(r) from these
two models and then confronting them for fixed parameters. Finally we will
discuss two simplified models used by Rafikov in [7] and [8]. In the first
article he uses Mestel’s model [5], which evolves from a p = 1 assumption,
we will show how to obtain the formulas for the precession rate induced by
the interaction forces, then compare it with each of the first two models’
results under the same assumptions, in particular the same power-law index.
Finally we will compare the predictions and a computer simulation for some
reality-based parameters, looking for possible differences.

In the second part we will discuss the results from the second article, where
a different index is assumed, p = 3/2, which is more used in literature that
comes from the Minimum Mass Solar Nebula, [1]. This model is a simpli-
fication of Ward’s, so it is compared again with its results and the Binney
and Tremaine’s ones to be tested against a simulation. The articles discuss
different dynamical systems, the main distinction between them is the possi-
ble presence of another star, however we are comparing each other excluding
this kind of situation.



Chapter 1

Disk’s models

The purpose of this chapter is to calculate the precession rate of the perihelion
of a planetesimal in a young dust disk. To get to the result we follow always
the same procedure that starts from the surface density

X(r) = Eo(ﬁy (1.1)

r

where r is the distance from the centre, R, a fiducial radius and the p
index is to be assigned studying the temperature of the disk. We assume
that it scales as T' o< r~ %, with p = % — ¢, as suggested by Rafikov [7].

In all models we are going to see R; becoming a truncation radius, outside
of which we assume that the disk is so attenuated that it can be ignored.
This is a very interesting point, because the potential inside this radius is
not affected by the matter outside as enunciated by Gauss’ theorem, so we
are ignoring the effects at r ~ R;.

Yo is a constant, that we determined using the disk mass, from

Mp = / o) (1.2)

that leads to

) — MD(227T— p) (R1t>2 (n%) (1.3)

We always proceed in the calculations keeping the parameter bounded
only by p < 2.
At this point the models differ on how to express the potential ¢(r) and
then the force Fp exercised by the disk on the planetesimal. We are going
to see that separately in the next section. In general, once we obtain that,
from Murray and Dermott [6] we have a secular disturbing function for a

7



8 CHAPTER 1. DISK’S MODELS

planetesimal with semimajor axis a and eccentricity vector e = (k,h) =
(e % cosw, e x sinw) that is

R = na* x E(A + ) (h? + k?) — Bk:] (1.4)

In this equation we grasp the purpose of this study, the precession fre-
quency due to the disk potential, that is
w F 1 OFp/or
w__ {_D N _TD_/}

T3 T R (1.5)
where the disk induced force Fp = d¢/0r, stands as the keplerian force
Fr = GM,/r? and M, is the star mass. In addition n = \/GM,/a® is the
mean motion of the planetesimal and G is the gravitational constant. In this
paper we don’t discuss the other parts of (1.4), such as the A and B terms,
but we notice that the evolution equations for the system strongly depend
on .
At this point we have to construct the potentials to be put into (1.5). It is
important to notice that we are building models that will be predictive in
the inner region of the disk, in fact deviations are possible at the inner and
outer radius because of various effects that we do not consider in this paper.

n

1.1 Binney and Tremaine’s model

1.1.1 Potential

The idea proposed in Binney and Tremaine [2] is that the majority of the
matter in a spheroidal distribution around the star is in the proximity of the
mid-plane, so we may build a razor-thin axisymmetric disk. We construct
the disk potential by adding the potential of infinitely flattended homoeoids
into which we have decomposed it. As we can derive from Gauss’ theorem,
the gravitational field is discontinuous across a sheet of finite surface density,
but the potential is continuous. Consequently, the potential in the equatorial
plane differs infinitesimally from the potential just above or below the disk.
Therefore we need only to calculate the potential at points that are external
to all homoeoids and take the limit 2 — 0 to find the potential in the plane.
Finally we get

6(r,0) = 4G /0 h daarcsin( 2 ) d / " P Ol (1.6)

(a+71)+|a—r] da 2 — a2
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1.1.2 Force

From the last formula we can deduce the force

Fpry = 220 16 [ L g2

a
I— dg—— — [ S
or T 0 “ 7”2 — CL2 da a <2 - CL2

We have put R; as a cutoff radius, so it replaces the upper limit in the
second integral that otherwise should be co. From now on we follow Tamayo’s
work [9], in particular its Appendix, where he suggests that we should look
for a disk-induced force that has a non-keplerian correction from the radial
one

(1.7)

Fp(r) = —F0<&)p (1.8)

r

where Fj is a normalization. This could be the forces expression for an
infinite disk.
Now (1.7) yelds

Fo) = -5 %) 1+t (19)

where we have obtained a radial power-law force with a correction factor
n, that is fairly complicated. This is the effect of a non-contribution of the
parts outside R;, which is always greater than zero and can be significative.
This reflects the fact that the outer material that would have contributed
with a positive force is now missing. We have

Fy =¢(p) G}]gD (1.10)
and
2=pi[ite
() = (2~ P i (L1)

where I' is the Gamma function,

wen=25(2) Pr(g) o] o

with K the elliptic function of the first kind and H the regularized, gen-
eralized hypergeometric function
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(.5 25 0 (7)) (113

We notice that the correction increases as r — R; but even if it is normally
small is still significative.

1.1.3 Precession rate

With our force (1.9) we have a simple

L IO T

Tamayo does not give an expression for the 7y(r,p), so here we do not
report the calculations we have made ourselves, because its expression would
be inscrutable.

This function is the fractional correction to the case of an infinite disk. We
can immediately notice that in the (1.12) the first term is positive and the
second one is negative, so the effect of truncating the disk makes Fp more
negative, this increases as one approaches R;. We can see that dFp/dr
decreases, so the first term becomes more positive and the second one less
positive. Therefore we can then say that having a cutoff radius for the disk
always enhances the magnitude of .

The correction 75(r, p) can be quite large, due to the strong effect on the
derivative in (1.12), at the outermost gap it is absolutely not omittable.

1.2 Ward’s model

1.2.1 Potential

We now start from Ward [10], which Rafikov refers to in [8]. In this case
we construct the potential of an uniform circular ring of radius r with linear
density [. In particular in a thin planar disk, assumed stationary and with an
axisymmetric surface density > (r) we can replace | — 3(r) dr, and integrate
between the boundaries. If the nebular density is assumed to be locally
undisturbed by the planetesimal’s presence, we have
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(4k + 1)
o(r) = 2mGri(r ZAk[ (2k+2—p)(2k — 1+ p)

) () G R ] e

where A, = [(2k)!/2%(k!)?]? and R;, is an inner cutoff radius caused by
the presence of the star that creates a hole in the disks center. Here we see
something that the previous model did not consider, but we expect it to be
important only at the inner boundaries.

1.2.2 Force
From (1.15) we have the force

9o(r) _ —p)(dk+1)
or = mGE(r ZA"”[ 2k;+2 p)(2k — 1+ p)

2% +1 R\ 77 2k r\
ams) () EE)E)

(1.16)

Fp =

1.2.3 Precession rate

This time we can not provide a readable form of the precession rate because
in the (1.5) the derivation of the force leads to a very complicated expression.
It will be shown by some graphs in the next chapters when all parameters
are going to be fixed.

1.3 Comparison

We have seen that both disk’s models start from quite the same assumptions,
but because of the different technique of building the potential they can be
very different. We have to assign some parameters to represent ¢(r), and the
most important is the power index p. In this paper we focus on the p = 1 and
p = 3/2 cases, so we will draw the potentials for these two values. In fact,
these are the most used in literature, especially the latter because it is the
one on which Minimum Mass Solar Nebula theory is based. Other costants
are
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o R, =30AU

o Mp/M, = 0.0463385 for p = 1

o Mp/M, = 0.0145898 for p = 3/2
o Ry =05AU

we notice that one mass has to be lower than the other if we want to have
the same R; and respect the Minimum Mass Solar Nebula density law. Now
we can plot both potentials for p = 1 and p = 3/2 respectively.

Potential Potential

1x10181
4x\10'7
e\ 1017 |
3xY0"\-

6x1017 [

2x1017 |

4x1017 |
1x1017 L
— Binngy-Tremaine Ward ‘ ‘ — Binney-Tremaine Ward

10 15 20 25 10 15 20

We see that there is a discrepancy, but in the 5 — 15 AU part of the
disk there is an approximately constant difference, that should disappear in
the force expressions. For the same parameters used before the potential
behaviour is now described in the following figure

Force Force

2x1016
2x1016

-2x1016
-2x1016
-4x1016
-4x1016

-6x10'0
+— Binney-Tremaine Ward _gx 1016 *—/Binney-Tremaine Ward

The differences still exist, mostly in the p = 3/2 case, and that is an
important point because it means that the two disk-building strategies lead
to a discordance in the previsions, although small.

I
25




Chapter 2

Power-law index p =1

2.1 Mestel’s disk

We start from Rafikov’s [7] to build the disk, then we use the Mestel’s [5]
method to obtain the disk induced force and then we derive the precession
rate. The structure of the nebula is the same axisymmetric razor-thin disk
as before. In the surface density law (1.3) Rafikov assumes p = 1 because in
the passive disk model described in Chiang and Goldreich [3] we have p ~ 2.
This leads to the classical Mestel disk, that corresponds to R; — oo. We are

going to analyze the motivation of these hypotheses and their consequences.

2.1.1 Force

From Mestel (1963) [3] we extract the disk’s potential by integrating circular
rings as in the Ward’s case. But a different integrals expansion of the density
function and the potential itself lead to a similar but not identical formula
for the force:

.. _G</0r 271'(75(7“) dc
+oo r
+2my Ay {%%—Ll / B(r)¢?H dc—zm} (2.1)
k=1 r 0
400 ’
+ QWZAk [E(T) — 2kt /R %Z) dg“D
=1 ¢

r

it is noticeable that this formula resembles the (1.16). The first part is
Keplerian, the others are the contributions from the inner and outer mass

13
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of radius r. This is not an important distinction because the non-Keplerian
part may be extremely dominant and can not be treated as a perturbation.
Mestel tries to simplify the (2.1) and makes this simple assumptions:

X (r)r = const r <Ry (2.2)
S(r)yr = r> Ry

that reduce (2.1) to

Fp = —270G(r) [1 + f Ay (n%)%] (2.3)

Here we eliminated some of the non-Keplerian parts, we proceed further
and put R; — oo, because we want to concentrate on the inner region of the
disk and this leads us to:

FD = —QWGE(T) (24)

Using (1.3) we have the surface density »(r) = 2%32w This could seem

a logical contradiction, because it implies that a disk tend to be infinite but
has a finite mass. However the hypothesis made in (2.2) keep this real, but
we have to remember that this is effective only near the centre of rotation,
and also that this is not entirely true because of the omitted effects after
(2.4). As we said, the presence of the star cannot be ignored near a certain
(although small) radius. We proceed obtaining the simple formula for the
drag force from (2.5)

GMp
Fr =
b RtT

This is the final equation for the force by the Mestel’s passive classical
disk.

(2.5)

2.1.2 Precession rate

We can now use the (1.12) to calculate

w MDT

n N M* Rt

Here we see that the precession rate and the radius are in linear depen-
dence.

(2.6)
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2.2 Comparison and conclusions

We can now compare the three previous models upon the results they gave,
then we are going to run a computer simulation to see if they are consistent.

2.2.1 Comparison between the models

The formulas extracted to calculate the perihelion’s precession rate of a plan-
etesimal have deep differences, but to fully appreciate them we have to con-
sider the hypothesis and simplifications. Both methods have introduced a
truncation radius that is R;, to determine the constant in the power law
surface density formula. Mestel’s theory assumes that this has to be propor-
tional to the inverse of the radial distance, p = 1, while Binney and Tremaine
and Ward keep that value free to be fixed by experimental observations.
Also the truncation radius is sent to infinite in order to have the simple for-
mula of Mestel’s force. On the contrary the other methods do not require
this hypothesis, in fact for example in the (1.7) we substitute oo with R, in
the integration to represent a finite disk.

Now we want to see where the same starting conditions lead us, confronting
the precession rates. Mestel’s model being more strict forces us to put p =1
in Binney and Tremaine’s and Ward cases. If this should lead us to the same
formula, it would be clear that the first two models are more complex and give
the same results when the hypothesis are near the Mestel’s ones. Again, it is
possible to show a scrutable expression only for the Binney and Tremaine’s
precession, Ward’s case is going to be shown graphically. In (1.14) we have
£(1) =1, and the result is:

Z.UBT 1 MD r 1 T2

= —— — E|l— 2.7

n xR (=) [Rg 27)

where F [;—22] is the elliptic integral of the second kind. Here we notice a

very important thing, because if we put R; — oo we have:
wBT 1 MD r
= —— — 2.8
n 2 M* Rt ( )

because E[0] = m/2. This is Mestel’s second simplification, now we com-
pare the Binney and Tremaine’s formula with:
w M M DT

n MR,
They do not give the same predictions, there is a 50% shift.
This is a very big correction given by Binney and Tremaine, it is nevertheless

(2.9)
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very important not to forget the validation limits given by Mestel. We can
calculate the precession in this way in a medium - inner region of the disk to
avoid the deviations at the center but more importantly at the outer.

2.2.2 Comparison with a simulation

In this paragraph we have to understand which model is more predictive,
so we can try and take a real-case disk and run a computer simulation on a
hypothetic planetesimal. This is a program named FARGO [4] that computes
the Navier-Stokes equations for a disk with the same parameters we have
assigned in chapter 1. They are:

e R, =30AU
o Mp/M, =0.0463385

We want to calculate a precession for a determined distance from the
centre, so we choose r = 5 AU.
We start from confronting the models. We put these data in the (2.7) because
if we used (2.9) and tested it with (2.10) we would simply see a difference of
a 1/2 factor. This also is fundamental to demonstrate which model is more
realistic with no other limit than p = 1. Now it is possible to make previsions
for the Ward model too. Here are the three results:
% — —0.00395 WTW — —0.00395 WTM — —0.00773 (2.10)

We can see that the first value is not exactly half of the third value but
it is fairly close. It is also noticeable that Ward’s previsions and Binney and
Tremaine’s precession are the same.

These numbers are in normalized units, but we want to extract the precession
rate without dividing for the mean motion, in order to do this we multiply for
2

s (g) " Tt is the same procedure as using Kepler’s Third Law r®/T? = cost
where r is the radius of the planetesimal’s orbit and T is its period.

wpr = —0.00222yr ! oy = —0.00221 yr ! @y = —0.00434yr~ L (2.11)

The planetesimal in the computer-simulated disk has:
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Ceate = —0.00218 yr~!

(2.12)

that is very similar to the first two results.
Other combinations of parameters has been tested, and the aftermaths are
almost unanimous: the Mestel’s model does not give an accurate prediction
of our reality-simulated system, while the others do. Here we present some
precession rates at different radius calculated with the three methods and
the simulation.

| | opr (yr™") | oow (yr™) | oom (yr™) | Feae (yr™") |

5 AU -0.00222 -0.00221 -0.00434 -0.00218
7 AU -0.00191 -0.00191 -0.00366 -0.00185
9 AU -0.00173 -0.00173 -0.00323 -0.00172
11 AU | -0.00163 -0.00163 -0.00292 -0.00165
13 AU | -0.00157 -0.00157 -0.00269 -0.00161
15 AU | -0.00156 -0.00156 -0.00250 -0.00161

We can conclude that Mestel’s model is oversimplified and can not be
used without introducing a big error. To fully appreciate the differences
between these models we can plot the wo(r).

w
-0.0015+
-0.002+
-0.0025+
-0.003+
-0.0035+
-0.004-+1
-0.0045+
-0.005+
-0.0055+
-0.006+

Binney-Tremaine Ward Mestel
5 10 15 20 25

It is clear that between the Mestel model and the others there is a huge
divergence. In fact the precession rate for a planetesimal in a Mestel’s disk
grows until it reaches the cutoff radius, while in the other structure’s disk
it has a rapid diminution near the center and the outer regions. The simu-
lation cannot produce a graphic of @ dependent from the radius, but from
the previous table we can visualize its trend. It is also interesting to see a
section of this curves:
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2]
—-0.00219+

-0.0022
Zoom of the
Binney-Tremaine’s
and Ward’s curves

-0.00221+

—-0.00222

—-0.00223

—0.00224+

-0.00225+
F— Binney-Tremaine . Ward | | |
4.85 4.9 4.95 5. 5.05 5.1

The Binney and Tremaine’s and Ward’s precessions are very similar, in
fact in the first graph we see only two lines because the separation between
Ward’s and Binney and Tremaine’s curves is at always less than 1075 so we
can not see any differences through all the way to the outer radius. This is
shown in the second figure for a distance near 5 AU and this can be read as a
confirmation that the two disk models are almost identical for our purpose.
We can summarize the conclusions of this study:

e To calculate the precession of the perihelion of a planetesimal in a disk,
having hypothesize a power index p = 1, we should avoid the Mestel’s
formula, even if our object was in the inner part of the disk.

e Between Ward’s and Binney and Tremaine’s models for the w(r) there
aren’t noticeable differences, even if their potentials had. Therefore
either one can be used without problems.

e The computer simulation has proved that these two models are remark-
ably representative of the reality.



Chapter 3

Power-law index p = 3/2

We now present the results for the (1.1) for a different p index from the p = 1
suggested by Rafikov (2013) [7], in fact in [8] he uses a p = 3/2, similar to
the X(r) slope of the Minimum Mass Solar Nebula. This is a very commonly
used index, so there is a hint that induces us not to trust Mestel’s model,
because it may require a biased assumption.

In these articles Rafikov studies a binary system, where it is very important
an inner cutoff radius R;, because of the the torque due to the binary that
stops the inward flow of matter. We are going to exclude the presence of the
second star; anyway, it would only change our model near the inner radius.
The method we present here is a simplification of Ward’s potential, the aim is
to understand how the precession rate calculated are consistent with Ward’s
and Binney and Tremaine’s.

3.1 Force

We start from (1.16), Rafikov here makes two assumptions, R;, — 0 and
R, — o0, to eliminate the second and third part of (1.16). This can be
accepted for a large disk with a very small inner radius, and it is similar to
Mestel’s second simplification. This results in:

(3.1)

R { (1—p)(4k+1)
(2k +2—p)(2k — 1+ p)

It is clear that the effect is a less complicated and more handy formula.
We are going to assign p = 3/2 in order to show a general formula first.

19
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3.1.1 Precession rate

We now take the perihelion precession for the (3.1) with (1.5), we obtain:

Sn__ KaMp ()" (3.2)
n 16 M* Rt ’
where K4(p) = Y755 Ay o +2£ik)J(r211371 ;- In the article [8] this is calcu-

lated for a binary system, but Ward does not take this as an assumption so
we can use this formula for a single star case.
We expect a very close similarity in the center region with Ward’s results.

3.2 Comparison and conclusions

It is now possible to compare Binney and Tremaine’s formula with Ward’s
and Rafikov’s, then adding a computer simulation.

3.2.1 Comparison between the models

All models start from the same hypothesis, except from the fact that Rafikov
greatly simplifies the disk-induced force. We put in each precession rate
formulas p = 3/2, but in this case the (1.13) does not assume a readable
form, we get:

A]ZD (R%) 1/2[1 + na(r, 1.5)] (3.3)

We have £(1.5) = 1.094, so if we assume that 7y ~ 0, which is quite true
far from the outer boundaries, we can write:

WBT
n

- —E(L5)

: 1/2
wWBT MD r
~ —0.2730 — 3.4
n M* (Rt> ( )
This is to be compared with Rafikov’s (3.2)
. 1/2
WR MD r
— =~ —0.2735 — 3.5
n M* (Rt) ( )

because Kp =~ 4,3769. We see that the formulas lead to almost the same
results, as we expected for zones far from the critical regions. We can not
report the Ward’s precession at this point, but we will show in the next part
its value for fixed parameters.
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3.2.2 Comparison with a simulation

It is now possible to put to test with the computer-simulated disk these
results. Feeding (3.3), (3.5) and also Ward’s formula with

o R, =30AU
o Mp/M, = 0.0149858

we can have our results on a r = 5 AU. This time we put the results
directly in yr—1

tpr = —0.000945 yr 1, oy = —0.000947 yr—t, cwr = —0.000939yr 1 (3.6)
Now the computer simulation calculates
eate = —0.00108 yr~! (3.7)

At 5 AU they are all quite similar to each other; here we present some
precession rates at different radius calculated with the three methods and
the simulation.

| | @sr (yr™") [ ow (yr ™) | @r(yr™") | Deae (yr") |

5 AU | -0.000945 | -0.000947 | -0.000939 | -0.00108
7 AU | -0.000681 | -0.000681 | -0.000663 | -0.000747
9 AU | -0.000537 | -0.000537 | -0.000523 | -0.000592
11 AU || -0.000449 | -0.000449 | -0.000437 | -0.000506
13 AU || -0.000391 | -0.000392 | -0.000381 | -0.000448
15 AU || -0.000354 | -0.000354 | -0.000345 | -0.000424

We notice an important thing: Binney and Tremaine’s precession rates
are almost identical with Wards, but there is a 10 — 15% shift from the
simulation. This is not a big difference, but it is significative because it
means that our models have a small lack in their prevision power. Again we
can plot the o (r)
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Here we see the same problem of Mestel’s model, the planetesimal have an
apsidal precession that goes to zero at the external boundaries in Rafikov’s
approximation. In fact it is shown that the more we go to the outer bound-
aries, the worse Rafikov’s previsions are.

W

—0.00092

Zoom of the
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and Ward’s curves
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Here we see again the small separation of these two previsions.
We can now summarize the conclusions of this study:

e To calculate the precession of the perihelion of a planetesimal in a disk
we hypothesized having a power index p = 3/2 we can use all of our
three models, if our object is in the inner part of the disk.

e Between Ward’s and Binney and Tremaine’s models for the w(r) there
aren’t noticeable differences, either one of them can be used without
distinction.

e When we try to study a planetesimal near the boundaries, even if the
models can differ a lot from reality, the best solution we find is to use
the Ward’s model for the inner part while for the outer one it is the
same to use Binney and Tremaine’s or the previous.

e The computer simulation has led us to the important confirmation that
all three models give quite a good representation of the reality, even if
they present a significative shift. Therefore one approaching the study
should keep in mind that for this power index the error could be around
10 — 15%.
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