Sfoglia per Correlatore
Mostrati risultati da 1 a 6 di 6
Deep Sequence Modelling of Non-Stationary Disease Progression in Amyotrophic Lateral Sclerosis from Simulated Longitudinal Data
2024/2025 TRAJKOVSKI, FILIP
Leveraging Bayesian Networks to explore the relationships between maternal characteristics, continuous glucose monitoring data, and neonatal outcomes in pregnancies complicated by gestational diabetes
2024/2025 CATANUSO, MARCO
Online Machine Learning for Survival Prediction in Amyotrophic Lateral Sclerosis
2024/2025 ZAGARIA, MARIA LAURA
Simulating the Long-Term Outcomes of Diabetes: Dynamic Bayesian Networks Applied to the LEADER Clinical Trial
2024/2025 GONZATO, NOEMI
SVILUPPO DI MODELLI DI DEEP LEARNING PER LA PREDIZIONE DEI RELAPSE IN PAZIENTI AFFETTI DA SCLEROSI MULTIPLA A PARTIRE DA DATI CLINICI E AMBIENTALI
2023/2024 MILANI, ANNA
Sviluppo di modelli predittivi della progressione della sclerosi multipla: confronto tra tecniche per il bilanciamento delle classi
2024/2025 OTTONE, MARIA
| Tipologia | Anno | Titolo | Titolo inglese | Autore | File |
|---|---|---|---|---|---|
| Lauree magistrali | 2024 | Deep Sequence Modelling of Non-Stationary Disease Progression in Amyotrophic Lateral Sclerosis from Simulated Longitudinal Data | Deep Sequence Modelling of Non-Stationary Disease Progression in Amyotrophic Lateral Sclerosis from Simulated Longitudinal Data | TRAJKOVSKI, FILIP | |
| Lauree magistrali | 2024 | Leveraging Bayesian Networks to explore the relationships between maternal characteristics, continuous glucose monitoring data, and neonatal outcomes in pregnancies complicated by gestational diabetes | Leveraging Bayesian Networks to explore the relationships between maternal characteristics, continuous glucose monitoring data, and neonatal outcomes in pregnancies complicated by gestational diabetes | CATANUSO, MARCO | |
| Lauree magistrali | 2024 | Online Machine Learning for Survival Prediction in Amyotrophic Lateral Sclerosis | Online Machine Learning for Survival Prediction in Amyotrophic Lateral Sclerosis | ZAGARIA, MARIA LAURA | |
| Lauree magistrali | 2024 | Simulating the Long-Term Outcomes of Diabetes: Dynamic Bayesian Networks Applied to the LEADER Clinical Trial | Simulating the Long-Term Outcomes of Diabetes: Dynamic Bayesian Networks Applied to the LEADER Clinical Trial | GONZATO, NOEMI | |
| Lauree magistrali | 2023 | SVILUPPO DI MODELLI DI DEEP LEARNING PER LA PREDIZIONE DEI RELAPSE IN PAZIENTI AFFETTI DA SCLEROSI MULTIPLA A PARTIRE DA DATI CLINICI E AMBIENTALI | DEVELOPMENT OF DEEP LEARNING MODELS FOR THE PREDICTION OF RELAPSES IN PATIENTS WITH MULTIPLE SCLEROSIS VIA CLINICAL AND ENVIRONMENTAL DATA | MILANI, ANNA | |
| Lauree magistrali | 2024 | Sviluppo di modelli predittivi della progressione della sclerosi multipla: confronto tra tecniche per il bilanciamento delle classi | Development of predictive models of multiple sclerosis progression: comparison of class balancing techniques | OTTONE, MARIA |
Mostrati risultati da 1 a 6 di 6
Legenda icone
- file ad accesso aperto
- file ad accesso riservato
- file sotto embargo
- nessun file disponibile