Light pollution represents one of the most widespread forms of environmental alteration in urban contexts, with significant effects on astronomy, nocturnal ecosystems, human health, and urban sustainability. This thesis studies the evolution of the brightness of the sky above the city of Padova through a spectroscopic approach, with the dual objective of quantifying the artificial component present at the zenith and identifying the contribution of different lighting technologies. To this end, an archive of 10680 zenith spectra, acquired between January 2021 and June 2025, including different seasons, time slots, and atmospheric conditions was analyzed. A reduction and analysis pipeline has been developed that includes the preparation and normalization of observational spectra, comparison with a laboratory lamp spectrum database, and extraction of source contribution percentages via Non-Negative Least Squares (NNLS) spectral decomposition. To ensure numerical stability and physical representativeness of the real sample, seven types of lamps were considered: High-Pressure Sodium lamps (HPS), Compact Fluorescent Lamps (CFL), incandescence, Metal Halide lamps (MH), and three categories of LEDs characterized by different color temperatures. The results reveal a clear and continuous technological transition in urban lighting. At the beginning of the observation period, LEDs were already the main component of the spectral composition of the sky, while HPS played a secondary role; over the years, the LED component further increased and consolidated its dominance, whereas the contribution of HPS gradually decreased. Seasonal, hourly, and meteorological analysis reveals that cloud cover significantly increases sky brightness due to enhanced atmospheric scattering, but the relative proportions between lighting technologies remain substantially unchanged, confirming that clouds amplify the emitted light without changing their technological origin. In general, the nighttime environment is becoming increasingly dominated by LED lighting. Although this transition is frequently associated with potential improvements in energy efficiency and reductions in climate-altering emissions, it does not automatically imply a lower environmental impact, since the increase in luminous flux installed may counterbalance or exceed the potential benefits. LED radiation, particularly in the blue band (4000 - 5000 Å), maximizes atmospheric scattering, interferes with circadian rhythms in wildlife and humans, and significantly reduces the quality of the sky for astronomical observation. The developed methodology and the results obtained offer a quantitative basis for monitoring the evolution of public lighting and for developing mitigation strategies oriented not only towards energy savings but also towards the spectral sustainability of the urban sky.
L’inquinamento luminoso rappresenta una delle forme più diffuse di alterazione ambientale nei contesti urbani, con effetti significativi sull’astronomia, sugli ecosistemi notturni, sulla salute umana e sulla sostenibilità urbana. Questa tesi studia l’evoluzione della luminosità del cielo sopra la città di Padova mediante un approccio spettroscopico, con il duplice obiettivo di quantificare la componente artificiale presente allo zenit e identificare il contributo delle diverse tecnologie di illuminazione. A tal fine, è stato analizzato un archivio di 10 680 spettri zenitali acquisiti tra gennaio 2021 e giugno 2025, comprendente diverse stagioni, fasce orarie e condizioni atmosferiche. È stata sviluppata una pipeline di riduzione e analisi che include la preparazione e normalizzazione degli spettri osservativi, il confronto con un database di spettri di lampade da laboratorio e l’estrazione delle percentuali di contributo delle sorgenti tramite decomposizione spettrale Non-Negative Least Squares (NNLS). Per garantire stabilità numerica e rappresentatività fisica del campione reale, sono state considerate sette tipologie di lampade: High-Pressure Sodium (HPS), Compact Fluorescent Lamps (CFL), incandescenza, Metal Halide (MH), e tre categorie di LED caratterizzate da differenti temperature di colore. I risultati evidenziano una transizione tecnologica chiara e continua nell’illuminazione urbana. All’inizio del periodo osservativo, i LED erano già la componente principale della composizione spettrale del cielo, mentre le lampade HPS svolgevano un ruolo secondario; negli anni successivi, la componente LED è ulteriormente aumentata consolidando la propria dominanza, mentre il contributo delle HPS è gradualmente diminuito. L’analisi stagionale, oraria e meteorologica mostra che la copertura nuvolosa incrementa significativamente la luminosità del cielo a causa di un più intenso scattering atmosferico, ma le proporzioni relative tra le tecnologie di illuminazione rimangono sostanzialmente invariate, confermando che le nubi amplificano la luce emessa senza modificarne l’origine tecnologica. In generale, l’ambiente notturno sta diventando sempre più dominato dall’illuminazione LED. Sebbene questa transizione sia frequentemente associata a potenziali miglioramenti in termini di efficienza energetica e riduzione delle emissioni climalteranti, essa non implica automaticamente un minore impatto ambientale, poiché l’aumento del flusso luminoso installato può compensare o superare i benefici potenziali. Inoltre, la radiazione LED, in particolare nella banda blu (4000–5000 Å), massimizza lo scattering atmosferico, interferisce con i ritmi circadiani della fauna e dell’uomo e riduce significativamente la qualità del cielo per l’osservazione astronomica. La metodologia sviluppata e i risultati ottenuti forniscono una base quantitativa per monitorare l’evoluzione dell’illuminazione pubblica e per sviluppare strategie di mitigazione orientate non solo al risparmio energetico, ma anche alla sostenibilità spettrale del cielo urbano.
Evoluzione spettroscopica del cielo notturno di Padova negli ultimi 4 anni
FRASSATI, ALESSANDRA
2024/2025
Abstract
Light pollution represents one of the most widespread forms of environmental alteration in urban contexts, with significant effects on astronomy, nocturnal ecosystems, human health, and urban sustainability. This thesis studies the evolution of the brightness of the sky above the city of Padova through a spectroscopic approach, with the dual objective of quantifying the artificial component present at the zenith and identifying the contribution of different lighting technologies. To this end, an archive of 10680 zenith spectra, acquired between January 2021 and June 2025, including different seasons, time slots, and atmospheric conditions was analyzed. A reduction and analysis pipeline has been developed that includes the preparation and normalization of observational spectra, comparison with a laboratory lamp spectrum database, and extraction of source contribution percentages via Non-Negative Least Squares (NNLS) spectral decomposition. To ensure numerical stability and physical representativeness of the real sample, seven types of lamps were considered: High-Pressure Sodium lamps (HPS), Compact Fluorescent Lamps (CFL), incandescence, Metal Halide lamps (MH), and three categories of LEDs characterized by different color temperatures. The results reveal a clear and continuous technological transition in urban lighting. At the beginning of the observation period, LEDs were already the main component of the spectral composition of the sky, while HPS played a secondary role; over the years, the LED component further increased and consolidated its dominance, whereas the contribution of HPS gradually decreased. Seasonal, hourly, and meteorological analysis reveals that cloud cover significantly increases sky brightness due to enhanced atmospheric scattering, but the relative proportions between lighting technologies remain substantially unchanged, confirming that clouds amplify the emitted light without changing their technological origin. In general, the nighttime environment is becoming increasingly dominated by LED lighting. Although this transition is frequently associated with potential improvements in energy efficiency and reductions in climate-altering emissions, it does not automatically imply a lower environmental impact, since the increase in luminous flux installed may counterbalance or exceed the potential benefits. LED radiation, particularly in the blue band (4000 - 5000 Å), maximizes atmospheric scattering, interferes with circadian rhythms in wildlife and humans, and significantly reduces the quality of the sky for astronomical observation. The developed methodology and the results obtained offer a quantitative basis for monitoring the evolution of public lighting and for developing mitigation strategies oriented not only towards energy savings but also towards the spectral sustainability of the urban sky.| File | Dimensione | Formato | |
|---|---|---|---|
|
Frassati_Alessandra.pdf
accesso aperto
Dimensione
4.73 MB
Formato
Adobe PDF
|
4.73 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/101269