To meet growing energy and food demands, human activities have intensified the consumption of fossil fuels, resulting in significant releases of CO2 into the atmosphere and thus an increase in the greenhouse effect. In this scenario, it becomes crucial to develop more sustainable production strategies that ensure food security even in the face of climate change challenges. At the basis of food chains is photosynthesis, through which photoautotrophic organisms convert solar energy into chemical energy and fix CO2 into biomass. The Rubisco enzyme is key to the carbon fixation process. However, Rubisco can also bind O2, producing 2-phosphoglycolate, a toxic metabolite that must be eliminated through photorespiration. This process consumes energy, releases CO2, and thus reduces photosynthetic efficiency. The main photosynthetic metabolisms of plants are C3 and C4, which differ in their carbon fixation strategy. In the first, Rubisco fixes CO2 into glyceraldehyde-3-phosphate (3C) in the leaf mesophyll cells. In C4 plants, however, carbon is first fixed into oxaloacetate (4C) in the mesophyll cells by the enzyme PEP carboxylase. This is transported to the bundle sheath cells and the CO2 released is fixed by Rubisco, creating a CO2 concentration system that favors its carboxylase activity. These metabolic differences induce differences in the response of C3 and C4 plants to climate change. The increase in temperatures linked to the greenhouse effect induces plants to close their stomata to reduce water loss, but limiting the entry of CO2. Under these conditions, C4 plants maintain a high photosynthetic efficiency, while C3 plants increase the rate of photorespiration, with an estimated biomass loss of between 25-40%. Since many food crops have a C3 metabolism, rising temperatures will have a significant impact on global food security. Optimizing photorespiration is therefore a crucial goal of biotechnology, which is why the European project Gain4Crops, within which I conducted this thesis, is part of this. The project aims to introduce traits of C4 metabolism into sunflower (Helianthus annuus), a C3 crop of great economic interest for oil production. The project involves crosses with intermediate-metabolism plants, C3-C4, to be identified within the sunflower taxonomic group. The goal of my thesis was to identify species with intermediate-metabolism C3-C4 metabolism within the sunflower taxonomic group that could be useful for the project and for the study of photorespiration. To this end, I developed a rapid and reproducible screen for the classification of plant photosynthetic metabolism in relation to the response of photosynthetic efficiency to excess light and CO2 limitation. To validate the screening, I selected three model species from the Flaveria genus, representative of the C3, C3-C4, and C4 photosynthetic metabolisms. Comparison with the reference species allowed us to successfully classify 37 species, including species identified for the first time as exhibiting intermediate C3-C4 metabolism and therefore useful for the project's purposes.
Per soddisfare la crescente domanda energetica e alimentare, le attività umane hanno intensificato il consumo di combustibili fossili, causando un considerevole rilascio di CO2 nell’atmosfera e quindi un aumento dell’effetto serra. In questo scenario diventa cruciale sviluppare strategie produttive più sostenibili, che garantiscano sicurezza alimentare anche davanti alle sfide del cambiamento climatico. Alla base delle catene alimentari c’è la fotosintesi, con cui gli organismi fotoautotrofi trasformano l’energia solare in energia chimica e fissano la CO2 in biomassa. L’enzima Rubisco è la chiave del processo di fissazione del carbonio. Tuttavia, la Rubisco può legare anche l’O2 producendo 2-fosfoglicolato, un metabolita tossico che deve essere smaltito tramite il processo della fotorespirazione. Questo processo consuma energia, rilascia CO2 e riduce così l’efficienza fotosintetica. I principali metabolismi fotosintetici delle piante sono il C3 e C4, che differiscono per la strategia di fissazione del carbonio. Nel primo, la Rubisco fissa la CO2 in gliceraldeide-3-fosfato (3C) nelle cellule del mesofillo fogliare. Nelle piante C4, invece, il carbonio viene prima fissato in ossalacetato (4C) nelle cellule del mesofillo dall’enzima PEP carbossilasi. Questo viene veicolato nelle cellule della guaina del fascio e la CO2 rilasciata per essere fissata dalla Rubisco, creando un sistema di concentrazione della CO2 che ne favorisce l’attività carbossilasica. Queste differenze metaboliche inducono differenze nella risposta di piante C3 e C4 ai cambiamenti climatici. L’aumento delle temperature legato all’effetto serra induce le piante a chiudere gli stomi per ridurre la perdita d’acqua, limitando però l’ingresso di CO2. In tali condizioni, le piante C4 mantengono un’elevata efficienza fotosintetica, mentre le piante C3 aumentano il tasso di fotorespirazione, con una perdita di biomassa stimata tra il 25-40%. Dato che molte colture ad uso alimentare hanno un metabolismo C3, l’aumento delle temperature avrà un impatto importante sulla sicurezza alimentare a livello globale. L’ottimizzazione della fotorespirazione è quindi un obiettivo cruciale delle biotecnologie, in cui si inserisce il progetto europeo Gain4Crops, all’interno del quale ho svolto questo lavoro di tesi. Il progetto mira a introdurre tratti del metabolismo C4 nel girasole (Helianthus annuus), una coltura di tipo C3 di grande interesse economico per la produzione di olio. Il progetto prevede incroci con piante a metabolismo intermedio, C3-C4, da individuare nel gruppo tassonomico del girasole. L’obiettivo del mio lavoro di tesi è stato identificare specie a metabolismo intermedio C3-C4, nel gruppo tassonomico del girasole, utili al progetto e allo studio della fotorespirazione. A tale scopo, ho sviluppato uno screening rapido e riproducibile per la classificazione del metabolismo fotosintetico delle piante in relazione alla risposta dell’efficienza fotosintetica ad un trattamento con luce in eccesso e limitazione di CO2. Per validare lo screening ho selezionato tre specie modello del genere Flaveria, rappresentative dei metabolismi fotosintetici C3, C3-C4 e C4. Il confronto con le specie di riferimento ha permesso di classificare con successo 37 specie, tra cui specie che per la prima volta sono state identificate a metabolismo intermedio C3-C4 e quindi utili allo scopo del progetto.
Caratterizzazione fisiologica della fotosintesi in piante C3, C4 e nei loro intermedi
GRECO, ELEONORA
2024/2025
Abstract
To meet growing energy and food demands, human activities have intensified the consumption of fossil fuels, resulting in significant releases of CO2 into the atmosphere and thus an increase in the greenhouse effect. In this scenario, it becomes crucial to develop more sustainable production strategies that ensure food security even in the face of climate change challenges. At the basis of food chains is photosynthesis, through which photoautotrophic organisms convert solar energy into chemical energy and fix CO2 into biomass. The Rubisco enzyme is key to the carbon fixation process. However, Rubisco can also bind O2, producing 2-phosphoglycolate, a toxic metabolite that must be eliminated through photorespiration. This process consumes energy, releases CO2, and thus reduces photosynthetic efficiency. The main photosynthetic metabolisms of plants are C3 and C4, which differ in their carbon fixation strategy. In the first, Rubisco fixes CO2 into glyceraldehyde-3-phosphate (3C) in the leaf mesophyll cells. In C4 plants, however, carbon is first fixed into oxaloacetate (4C) in the mesophyll cells by the enzyme PEP carboxylase. This is transported to the bundle sheath cells and the CO2 released is fixed by Rubisco, creating a CO2 concentration system that favors its carboxylase activity. These metabolic differences induce differences in the response of C3 and C4 plants to climate change. The increase in temperatures linked to the greenhouse effect induces plants to close their stomata to reduce water loss, but limiting the entry of CO2. Under these conditions, C4 plants maintain a high photosynthetic efficiency, while C3 plants increase the rate of photorespiration, with an estimated biomass loss of between 25-40%. Since many food crops have a C3 metabolism, rising temperatures will have a significant impact on global food security. Optimizing photorespiration is therefore a crucial goal of biotechnology, which is why the European project Gain4Crops, within which I conducted this thesis, is part of this. The project aims to introduce traits of C4 metabolism into sunflower (Helianthus annuus), a C3 crop of great economic interest for oil production. The project involves crosses with intermediate-metabolism plants, C3-C4, to be identified within the sunflower taxonomic group. The goal of my thesis was to identify species with intermediate-metabolism C3-C4 metabolism within the sunflower taxonomic group that could be useful for the project and for the study of photorespiration. To this end, I developed a rapid and reproducible screen for the classification of plant photosynthetic metabolism in relation to the response of photosynthetic efficiency to excess light and CO2 limitation. To validate the screening, I selected three model species from the Flaveria genus, representative of the C3, C3-C4, and C4 photosynthetic metabolisms. Comparison with the reference species allowed us to successfully classify 37 species, including species identified for the first time as exhibiting intermediate C3-C4 metabolism and therefore useful for the project's purposes.| File | Dimensione | Formato | |
|---|---|---|---|
|
Greco_Eleonora.pdf
Accesso riservato
Dimensione
4.81 MB
Formato
Adobe PDF
|
4.81 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/101538