This thesis presents a reusable MATLAB 3-DoF, fixed-step point-mass simulation framework for multi-stage ballistic launch vehicles. Vehicle data (masses, propellants, geometry/reference areas, drag tables) are read from an Excel workbook via a custom function, making the framework applicable to different launcher types. The Taepodong-2 (TD-2) was chosen as the main reference case. A TD-2 technical summary—dimensions, staging, propulsion, and plausible aerodynamics—was assembled using only open sources. The simulator returns all primary outputs needed to analyse a trajectory (ground-intersection coordinates in ECEF, downrange, time of flight) and also logs many additional quantities for deeper post-processing. A key part of the work is a detailed study of Coriolis and Earth-rotation effects, showing how rotation changes the flight path and time of flight and how it shifts the ground-intersection point, by comparing rotating and non-rotating runs. In addition, a look-up-table (LUT) framework is introduced to quickly estimate launch parameters and key trajectory/ground-intersection metrics without rerunning the full simulator, achieving an acceptably small error for preliminary analyses. The thesis includes: a brief historical and technical overview of ballistic launch systems; an open-source reconstruction of TD-2 characteristics; a description of the fixed-step simulator and its main outputs/diagnostics; an in-depth assessment of Coriolis effects on trajectory and time of flight; and a LUT-based fast-estimation approach for launch parameters and trajectory/ground-intersection metrics. The work was carried out at Leonardo S.p.A., Ronchi dei Legionari (GO)—formerly Meteor—a major Italian hub within a leading European aerospace and defence group. The site hosts multidisciplinary engineering, integration and test laboratories for mission and flight systems, simulations, and prototyping in collaboration with other Leonardo facilities. Access to this industrial environment and its domain know-how strongly supported modelling assumptions, scenario selection, and validation choices. A short final section outlines possible future developments.
Questo elaborato presenta il framework di un simulatore MATLAB a 3 gradi di libertà (3-DoF), a passo fisso, basato su un punto materiale, per vari vettori balistici multistadio. I dati del veicolo (masse, propellenti, geometrie/aree di riferimento, tabelle di resistenza) sono acquisiti da un file Excel tramite una funzione dedicata, rendendo il framework applicabile a diversi lanciatori. Il Taepodong-2 (TD-2) è adottato come caso di studio principale. Un dossier tecnico del TD-2 contenente dimensioni, stadiazione, propulsione e aerodinamica plausibile è stato composto utilizzando solamente fonti open source. Il simulatore fornisce tutti gli output primari necessari all’analisi della traiettoria (coordinate d’impatto in ECEF, gittata superficiale, tempo di volo) e registra numerose grandezze aggiuntive per analisi di post-process più approfondite. Una parte centrale del lavoro è lo studio dettagliato degli effetti di Coriolis e della rotazione terrestre, mostrando come la rotazione modifichi la traiettoria, il tempo di volo e come sposti il punto d’impatto. Inoltre, viene introdotto un framework basato su look-up table (LUT) per stimare rapidamente i parametri di lancio e le principali metriche di traiettoria/impatti senza rieseguire il simulatore nella sua interezza, a discapito di un minimo errore accettabile. Tale elaborto è organizzato come segue: -breve panoramica storica e tecnologica dei vettori balistici; -ricostruzione con fonti aperte delle caratteristiche del TD-2; -descrizione del simulatore a passo fisso e dei suoi principali output/diagnostici; -analisi approfondita degli effetti di Coriolis su traiettoria e tempo di volo; -descrizione del framework LUT e approccio di stima rapida per parametri di lancio e metriche di traiettoria/impatti. Il lavoro è stato svolto presso Leonardo S.p.A., Ronchi dei Legionari (GO)—ex Meteor—un importante polo italiano facente parte di uno dei top gruppi europei nel campo dell’aerospazio e della difesa. Il sito ospita laboratori ingegneristici multidisciplinari, di integrazione e test per diversi modelli di simulazione di sistemi di missione e volo, e attività di prototipazione in collaborazione con altre sedi Leonardo. L’accesso a questo contesto industriale e al relativo know-how ha supportato in modo significativo le assunzioni del modello, la selezione degli scenari e le scelte di validazione. Una breve sezione finale delinea possibili sviluppi futuri.
Launch Vehicle Trajectory Simulation and LUT Framework Dataset: The Taepodong-2 Case Study
COLONELLO, GIOVANNI
2024/2025
Abstract
This thesis presents a reusable MATLAB 3-DoF, fixed-step point-mass simulation framework for multi-stage ballistic launch vehicles. Vehicle data (masses, propellants, geometry/reference areas, drag tables) are read from an Excel workbook via a custom function, making the framework applicable to different launcher types. The Taepodong-2 (TD-2) was chosen as the main reference case. A TD-2 technical summary—dimensions, staging, propulsion, and plausible aerodynamics—was assembled using only open sources. The simulator returns all primary outputs needed to analyse a trajectory (ground-intersection coordinates in ECEF, downrange, time of flight) and also logs many additional quantities for deeper post-processing. A key part of the work is a detailed study of Coriolis and Earth-rotation effects, showing how rotation changes the flight path and time of flight and how it shifts the ground-intersection point, by comparing rotating and non-rotating runs. In addition, a look-up-table (LUT) framework is introduced to quickly estimate launch parameters and key trajectory/ground-intersection metrics without rerunning the full simulator, achieving an acceptably small error for preliminary analyses. The thesis includes: a brief historical and technical overview of ballistic launch systems; an open-source reconstruction of TD-2 characteristics; a description of the fixed-step simulator and its main outputs/diagnostics; an in-depth assessment of Coriolis effects on trajectory and time of flight; and a LUT-based fast-estimation approach for launch parameters and trajectory/ground-intersection metrics. The work was carried out at Leonardo S.p.A., Ronchi dei Legionari (GO)—formerly Meteor—a major Italian hub within a leading European aerospace and defence group. The site hosts multidisciplinary engineering, integration and test laboratories for mission and flight systems, simulations, and prototyping in collaboration with other Leonardo facilities. Access to this industrial environment and its domain know-how strongly supported modelling assumptions, scenario selection, and validation choices. A short final section outlines possible future developments.| File | Dimensione | Formato | |
|---|---|---|---|
|
COLONELLO_GIOVANNI.pdf
Accesso riservato
Dimensione
13.12 MB
Formato
Adobe PDF
|
13.12 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/101745