The Atmospheric Remote-sensing Infrared Exoplanet Large-survey (Ariel), selected as ESA's fourth medium-class mission, will conduct spectroscopic observations of approximately 1,000 exoplanetary atmospheres across visible and infrared wavelengths (0.5–7.8 µm). The mission's scientific objectives impose stringent requirements on the optical performance of the elliptical aluminium primary mirror (major axis 1.1 m, minor axis 0.78 m), which employs a protected silver coating to maximise reflectivity whilst maintaining durability during integration, testing, and flight. The optical characterisation of metre-scale mirrors presents significant instrumental challenges: commercial spectrophotometers accommodate samples up to a few centimetres in diameter, necessitating the development of dedicated measurement systems to validate the performance of large mirrors such as Ariel’s primary. This work describes the development, characterisation, and deployment of a custom absolute reflectometer designed specifically to accommodate the metre-scale dimensions of the primary mirror. The measurement system employs a modified V-L configuration with integrating sphere that provides absolute reflectivity measurements through direct ratio of incident and reflected intensity of the light. The calibration procedure involves sequential measurements of direct and reflected beam with correction for temporal drift of the light source. Instrument validation was conducted through repeated measurements of a certified reference sample provided by Filmetrics across the 500–1100 nm spectral range. The measurement campaign encompassed the full-scale M1 Engineering Model mirror and various samples coated simultaneously with the primary mirror and bare aluminium substrates. Measurements in the 500–1100 nm spectral range enabled evaluation of both the protected silver coating performance and the scalability of the coating process from small samples to the full-scale mirror. Surface characterisation through Atomic Force Microscopy additionally enabled preliminary analysis of the relationship between surface roughness and measured reflectivity. This supplementary analysis investigated the applicability of the Ruze's formulae for surfaces, comparing theoretical predictions of Total Integrated Scatter with experimentally obtained reflectivity measurements.
La missione Atmospheric Remote-sensing Infrared Exoplanet Large-survey (Ariel), selezionata come quarta missione di classe media dell'ESA, condurrà osservazioni spettroscopiche di circa 1.000 atmosfere esoplanetarie nelle lunghezze d'onda visibili e infrarosse (0,5–7,8 µm). Gli obiettivi scientifici della missione impongono requisiti stringenti sulle prestazioni ottiche dello specchio primario ellittico in alluminio (asse maggiore 1,1 m, asse minore 0,78 m), il quale impiega un rivestimento in argento protetto per massimizzare la riflettività mantenendo al contempo la durabilità durante le fasi di integrazione, test e volo. La caratterizzazione ottica di specchi di grandi dimensioni presenta sfide strumentali significative: gli spettrofotometri commerciali possono ospitare campioni fino a pochi centimetri di diametro, rendendo necessario lo sviluppo di sistemi di misura dedicati per validare le prestazioni di grandi specchi come quello primario di Ariel. Questo lavoro descrive lo sviluppo, la caratterizzazione e l'impiego di un riflettometro assoluto personalizzato progettato specificamente per accomodare le dimensioni dello specchio primario. Il sistema di misura utilizza una configurazione V-L modificata con sfera integratrice che fornisce misure di riflettività assoluta attraverso il rapporto diretto tra intensità della luce incidente e riflessa. La procedura di calibrazione prevede misure sequenziali del fascio diretto e riflesso con correzione della deriva temporale della sorgente luminosa. La validazione dello strumento è stata condotta attraverso misure ripetute di un campione di riferimento certificato fornito da Filmetrics nell'intervallo spettrale 500–1100 nm. La campagna di misura ha compreso lo specchio Modello Ingegneristico M1 a grandezza naturale e diversi campioni rivestiti simultaneamente con lo specchio primario e substrati di alluminio nudo. Le misure nell'intervallo spettrale 500–1100 nm hanno permesso di valutare sia le prestazioni del rivestimento in argento protetto, sia la scalabilità del processo di coating da piccoli campioni allo specchio a grandezza naturale. La caratterizzazione superficiale mediante Microscopia a Forza Atomica ha inoltre permesso un'analisi preliminare della relazione tra rugosità superficiale e riflettività misurata. Questa analisi supplementare ha investigato l'applicabilità della formula di Ruze per le superfici, confrontando le previsioni teoriche del Total Integrated Scatter con le misure di riflettività ottenute sperimentalmente.
Analisi di riflettività e rugosità degli specchi per telescopi spaziali
PITTARELLO, ALBERTO
2024/2025
Abstract
The Atmospheric Remote-sensing Infrared Exoplanet Large-survey (Ariel), selected as ESA's fourth medium-class mission, will conduct spectroscopic observations of approximately 1,000 exoplanetary atmospheres across visible and infrared wavelengths (0.5–7.8 µm). The mission's scientific objectives impose stringent requirements on the optical performance of the elliptical aluminium primary mirror (major axis 1.1 m, minor axis 0.78 m), which employs a protected silver coating to maximise reflectivity whilst maintaining durability during integration, testing, and flight. The optical characterisation of metre-scale mirrors presents significant instrumental challenges: commercial spectrophotometers accommodate samples up to a few centimetres in diameter, necessitating the development of dedicated measurement systems to validate the performance of large mirrors such as Ariel’s primary. This work describes the development, characterisation, and deployment of a custom absolute reflectometer designed specifically to accommodate the metre-scale dimensions of the primary mirror. The measurement system employs a modified V-L configuration with integrating sphere that provides absolute reflectivity measurements through direct ratio of incident and reflected intensity of the light. The calibration procedure involves sequential measurements of direct and reflected beam with correction for temporal drift of the light source. Instrument validation was conducted through repeated measurements of a certified reference sample provided by Filmetrics across the 500–1100 nm spectral range. The measurement campaign encompassed the full-scale M1 Engineering Model mirror and various samples coated simultaneously with the primary mirror and bare aluminium substrates. Measurements in the 500–1100 nm spectral range enabled evaluation of both the protected silver coating performance and the scalability of the coating process from small samples to the full-scale mirror. Surface characterisation through Atomic Force Microscopy additionally enabled preliminary analysis of the relationship between surface roughness and measured reflectivity. This supplementary analysis investigated the applicability of the Ruze's formulae for surfaces, comparing theoretical predictions of Total Integrated Scatter with experimentally obtained reflectivity measurements.| File | Dimensione | Formato | |
|---|---|---|---|
|
Pittarello_Alberto.pdf
accesso aperto
Dimensione
14.21 MB
Formato
Adobe PDF
|
14.21 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/101748