This thesis analyses the case study of an industrial district composed of multiple sites operating in the wood-furniture sector and focuses on integrated energy management across the area. The district’s complex energy infrastructures and increasing share of renewable sources make it representative of next-generation prosumer-oriented industrial systems. A detailed energy model was developed using historical data and technical specifications to analyze electrical, thermal, and fuel-related flows within and across all sites. The model incorporates the vehicle fleet and existing technologies to identify critical sectors and opportunities for the implementation of alternative multi-vector energy configurations. In this context, the primary objective of the thesis is to identify cost-effective decarbonization strategies for the industrial district in analysis through the application of a computational framework developed specifically to consider the multi-energy units and demands of the district. A multi-objective MILP optimization is thus implemented through the ε-constraint method. Using this approach, a range of energy configurations and operational strategies are assessed to identify the optimal design and operation of multi-energy conversion and storage units under different emission constraints and across both a current energy scenario (2025 Scenario) and near-future one (2035 Scenario). The proposed approach offers insights into the trade-offs between energy costs and emissions reduction, thus guiding the selection of sustainable energy strategies for the industrial district while providing a framework applicable to other case studies in the same sector or related to other industrial contexts. The methodology leverages high-resolution operational data from the actual industrial sites, including seasonal variations, to capture real-world energy demand and supply dynamics with high fidelity. Optimization results for the case study suggests that: (i) BESS currently exhibit investment costs that are too high to justify their deployment in this specific case study, however, this trend is reversed for several configurations in the 2035 Scenario; (ii) Natural gas, used for heat production, can be gradually replaced with heat generated by biomass boilers coupled with ORC, using wood waste recovered from production lines. For stringent emission reductions, boilers need to be replaced with heat pumps, even if this results in increasing costs; (iii) Electric motors remain the optimal choice for cars and forklifts, while trucks, subject to increasingly stringent emissions restrictions, switch from diesel to HVO and eventually to full electrification; (iv) hydrogen production for heating decarbonization is economically unattractive, especially at deeper required emission reductions.
Questa tesi analizza un caso studio reale di un distretto industriale composto da molteplici siti. Le infrastrutture energetiche complesse e la crescente integrazione di fonti energetiche rinnovabili che caratterizzano il distretto lo rendono rappresentativo della futura generazione di sistemi energetici industriali prosumer. È stato definito un modello energetico utilizzando dati storici e specifiche tecniche per analizzare i flussi elettrici, termici e legati ai combustibili all’interno dei vari siti e tra di essi. Il modello integra flotte di veicoli e tecnologie esistenti per identificare i settori critici e le opportunità per l’implementazione di configurazioni energetiche multi-vettore alternative. In questo contesto, l'obbiettivo della tesi è individuare strategie di decarbonizzazione cost-effective per il distretto industriale analizzato attraverso l’applicazione di uno strumento computazionale sviluppato appositamente per considerare le unità e i fabbisogni multienergetici del distretto. È stata quindi applicata un’ottimizzazione MILP multi-obiettivo tramite il metodo ε-constraint. Tale approccio permette di valutare un range di configurazioni energetiche e strategie operative al fine di individuare soluzioni in grado di bilanciare costi ed emissioni, sia nel presente scenario energetico (Scenario 2025) che quello del futuro prossimo (Scenario 2035). L'approccio proposto offre indicazioni sui compromessi tra costi energetici ed emissioni, guidando quindi la selezione di strategie energetiche sostenibili per il distretto industriale, fornendo, allo stesso tempo, uno strumento applicabile ad altri casi simili o appartenenti a contesti industriali diversi. La metodologia si basa su dati operativi ad alta risoluzione provenienti da stabilimenti industriali reali che includono la variabilità stagionale per catturare dinamiche tra domanda e offerta con elevata accuratezza. I risultati dell’ottimizzazione suggeriscono che: (i) nel caso specifico, i BESS presentano attualmente dei costi d’investimento troppo elevati per giustificarne l’adozione, tuttavia, tale tendenza si inverte per diverse configurazioni nello Scenario 2035; (ii) Il gas naturale per la produzione di calore, può essere progressivamente sostituito con l’impiego di caldaie a biomassa e dal sistema ORC che utilizzando gli scarti lignei recuperati dalle linee produttive. Per riduzioni emissive più stringenti, è necessario sostituire le caldaie con pompe di calore, sebbene ciò comporti un aumento dei costi; (iii) il powertrain elettrico risulta la scelta ottimale per automobili e carrelli elevatori, mentre i camion passano dal diesel all’HVO e infine alla totale elettrificazione al crescere dei target emissivi; (iv) la produzione di idrogeno per la decarbonizzazione del riscaldamento risulta economicamente poco conveniente, in particolare per livelli elevati di riduzione delle emissioni.
Multi-objective Optimization as a Decision Support Tool for Integrated Energy Management in a Real Wood Manufacturing District
CASELLA, GIORGIO
2024/2025
Abstract
This thesis analyses the case study of an industrial district composed of multiple sites operating in the wood-furniture sector and focuses on integrated energy management across the area. The district’s complex energy infrastructures and increasing share of renewable sources make it representative of next-generation prosumer-oriented industrial systems. A detailed energy model was developed using historical data and technical specifications to analyze electrical, thermal, and fuel-related flows within and across all sites. The model incorporates the vehicle fleet and existing technologies to identify critical sectors and opportunities for the implementation of alternative multi-vector energy configurations. In this context, the primary objective of the thesis is to identify cost-effective decarbonization strategies for the industrial district in analysis through the application of a computational framework developed specifically to consider the multi-energy units and demands of the district. A multi-objective MILP optimization is thus implemented through the ε-constraint method. Using this approach, a range of energy configurations and operational strategies are assessed to identify the optimal design and operation of multi-energy conversion and storage units under different emission constraints and across both a current energy scenario (2025 Scenario) and near-future one (2035 Scenario). The proposed approach offers insights into the trade-offs between energy costs and emissions reduction, thus guiding the selection of sustainable energy strategies for the industrial district while providing a framework applicable to other case studies in the same sector or related to other industrial contexts. The methodology leverages high-resolution operational data from the actual industrial sites, including seasonal variations, to capture real-world energy demand and supply dynamics with high fidelity. Optimization results for the case study suggests that: (i) BESS currently exhibit investment costs that are too high to justify their deployment in this specific case study, however, this trend is reversed for several configurations in the 2035 Scenario; (ii) Natural gas, used for heat production, can be gradually replaced with heat generated by biomass boilers coupled with ORC, using wood waste recovered from production lines. For stringent emission reductions, boilers need to be replaced with heat pumps, even if this results in increasing costs; (iii) Electric motors remain the optimal choice for cars and forklifts, while trucks, subject to increasingly stringent emissions restrictions, switch from diesel to HVO and eventually to full electrification; (iv) hydrogen production for heating decarbonization is economically unattractive, especially at deeper required emission reductions.| File | Dimensione | Formato | |
|---|---|---|---|
|
Casella_Giorgio.pdf
accesso aperto
Dimensione
6.59 MB
Formato
Adobe PDF
|
6.59 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/101765