An Space Tethered System (STS) is a peculiar and fascinating type of spacecraft composed of two or more bodies connected by long tethers. Unlike traditional single-body satellites, an STS relies on the mechanical coupling between its components to unlock behaviors and capabilities that would otherwise be unachievable. Over the decades, these systems have sparked curiosity, inspired engineering challenges, and even flown aboard numerous space missions, successfully or otherwise. The STS investigated in this work features an inert tether, known as a Momentum Exchange Tether (MET), which leverages mechanical tension to exchange momentum between two connected spacecrafts. This master’s thesis focuses on a specific MET configuration tailored for lunar orbit, with the ambitious goal of mitigating the effects of the Moon’s highly perturbed gravitational field at very low altitudes. Why is this important? The Moon’s gravity field is characterized by important anomalies, generated by dense mass concentrations and uneven crust distribution, that can significantly perturb satellite trajectories. In particular, these irregularities tend to increase orbital eccentricity over time. For a satellite flying at low altitudes, this results in the rapid lowering of the periapsis, eventually leading to a crash against the lunar surface. However, flying low is often desirable, as it allows for higher resolution in scientific measurements and enables mission concepts that require close proximity to the ground, from dust sampling to precise surface mapping. This work proposes the use of a MET-based tethered system to prolong the orbital lifetime of a scientific payload orbiting at low lunar altitudes. By coupling the main satellite with a subsatellite via a tether, the gravitational gradient can be exploited to naturally stabilize the configuration and counteract destabilizing effects. A dedicated section of this master’s thesis is reserved for the history of tethered satellites, which is not only rich and inspiring but also essential to understand the technological maturity of the concept. At the heart of this master’s thesis lies the mathematical modeling and simulation of the STS dynamics around the Moon. Two different frameworks were developed: the Two Masses Model (TMM) and the DUMBBELL model, both implemented in MATLAB and combined with a high-fidelity gravity model based on spherical harmonics up to degree and order 100. The simulator enables direct comparisons between tethered and untethered spacecraft under the influence of lunar gravity anomalies, allowing for performance assessment over different altitudes. Simulation results showed a substantial gain in mission lifetime due to tethering. For a subsatellite initially orbiting at 20 km altitude, lifetime improved from 8.18 days to 36 days. At 30 km and 40 km, the tethered systems remained stable beyond 100 days, while free flyers failed after 15.81 and 41.33 days, respectively. Tether tension remained within safe bounds, with peaks below 6.02 N and mean values around 5.2 N, compared to a safety threshold of 98.18 N. Misalignment angles remained below 20° in all cases. The emergence of quasi-periodic behavior in altitude and velocity further suggests a natural stabilization mechanism induced by the tether. These results support the feasibility of MET-based STSs for long-duration, low-altitude lunar missions with reduced fuel usage and increased scientific return.
Uno Space Tethered System (STS) è una tipologia affascinante e peculiare di veicolo spaziale composto da due o più corpi collegati da lunghi cavi detti tethers. A differenza dei satelliti tradizionali, l’STS si basa sull’accoppiamento meccanico tra i suoi componenti per ottenere comportamenti e capacità altrimenti irraggiungibili. Nel corso dei decenni, questi sistemi hanno suscitato curiosità, stimolato sfide ingegneristiche e volato a bordo di numerose missioni spaziali, con esiti variabili. Il sistema STS analizzato in questo lavoro utilizza un tether inerte, noto come Momentum Exchange Tether (MET), che sfrutta la tensione meccanica per scambiare quantità di moto tra i due satelliti connessi. Questa tesi si concentra su una specifica configurazione di MET pensata per l’orbita lunare, con l’ambizioso obiettivo di mitigare gli effetti del campo gravitazionale della Luna, il quale è fortemente perturbato, specialmente a quote basse. Perché è importante? Il campo gravitazionale lunare è caratterizzato da forti anomalie, generate da concentrazioni di massa e irregolarità crostali, che possono perturbare significativamente le traiettorie orbitali. In particolare, queste irregolarità tendono ad aumentare l’eccentricità orbitale nel tempo. Per un satellite a bassa quota, ciò comporta un rapido abbassamento del periasse, che può portare all’impatto con la superficie lunare. Tuttavia, volare basso è spesso desiderabile, poiché consente una maggiore risoluzione nelle misure scientifiche e permette di condurre missioni che richiedono prossimità al suolo, come il campionamento di polveri o la mappatura dettagliata della superficie. Questa tesi propone l’utilizzo di un sistema MET per prolungare la vita orbitale di un payload scientifico in orbita lunare bassa. Collegando il satellite principale a un subsatellite tramite un cavo, si può sfruttare il gradiente gravitazionale per stabilizzare naturalmente la configurazione e contrastare gli effetti destabilizzanti. Una sezione della tesi è dedicata alla storia dei satelliti a filo, che risulta non solo ricca e stimolante, ma anche essenziale per comprendere la maturità tecnologica di questo concetto. Il fulcro di questa tesi è la modellazione matematica e la simulazione della dinamica di un STS attorno alla Luna. Sono stati sviluppati due modelli: il Two Masses Model (TMM) e il modello Dumbbell (DUMBBELL), entrambi implementati in MATLAB e combinati con un modello gravitazionale ad alta fedeltà basato su armoniche sferiche fino al grado e ordine 100. Il simulatore consente un confronto diretto tra satelliti collegati o meno dal tether sotto l’influenza delle anomalie lunari, permettendo di valutarne le prestazioni a diverse altitudini. I risultati delle simulazioni mostrano un incremento significativo della vita della missione grazie all’impiego del tether. Per un subsatellite inizialmente a 20 km di altitudine, la durata cresce da 8.18 a 36 giorni. A 30 km e 40 km, i sistemi tethered restano stabili oltre i 100 giorni, mentre quelli liberi falliscono rispettivamente dopo 15.81 e 41.33 giorni. Le tensioni rimangono entro i limiti di sicurezza, con picchi inferiori a 6.02 N e valori medi intorno a 5.2 N, rispetto a un limite di 98.18 N. Gli angoli di disallineamento restano sotto i 20° in tutti i casi. L’emergere di andamenti quasi-periodici di altitudine e velocità suggerisce inoltre un naturale meccanismo di stabilizzazione indotto dal tether. Questi risultati supportano la fattibilità di missioni lunari a bassa quota basate su STS con tecnologia MET.
Lunar Scientific Exploration by a Tethered Satellite
TOFFANO, ALDO
2024/2025
Abstract
An Space Tethered System (STS) is a peculiar and fascinating type of spacecraft composed of two or more bodies connected by long tethers. Unlike traditional single-body satellites, an STS relies on the mechanical coupling between its components to unlock behaviors and capabilities that would otherwise be unachievable. Over the decades, these systems have sparked curiosity, inspired engineering challenges, and even flown aboard numerous space missions, successfully or otherwise. The STS investigated in this work features an inert tether, known as a Momentum Exchange Tether (MET), which leverages mechanical tension to exchange momentum between two connected spacecrafts. This master’s thesis focuses on a specific MET configuration tailored for lunar orbit, with the ambitious goal of mitigating the effects of the Moon’s highly perturbed gravitational field at very low altitudes. Why is this important? The Moon’s gravity field is characterized by important anomalies, generated by dense mass concentrations and uneven crust distribution, that can significantly perturb satellite trajectories. In particular, these irregularities tend to increase orbital eccentricity over time. For a satellite flying at low altitudes, this results in the rapid lowering of the periapsis, eventually leading to a crash against the lunar surface. However, flying low is often desirable, as it allows for higher resolution in scientific measurements and enables mission concepts that require close proximity to the ground, from dust sampling to precise surface mapping. This work proposes the use of a MET-based tethered system to prolong the orbital lifetime of a scientific payload orbiting at low lunar altitudes. By coupling the main satellite with a subsatellite via a tether, the gravitational gradient can be exploited to naturally stabilize the configuration and counteract destabilizing effects. A dedicated section of this master’s thesis is reserved for the history of tethered satellites, which is not only rich and inspiring but also essential to understand the technological maturity of the concept. At the heart of this master’s thesis lies the mathematical modeling and simulation of the STS dynamics around the Moon. Two different frameworks were developed: the Two Masses Model (TMM) and the DUMBBELL model, both implemented in MATLAB and combined with a high-fidelity gravity model based on spherical harmonics up to degree and order 100. The simulator enables direct comparisons between tethered and untethered spacecraft under the influence of lunar gravity anomalies, allowing for performance assessment over different altitudes. Simulation results showed a substantial gain in mission lifetime due to tethering. For a subsatellite initially orbiting at 20 km altitude, lifetime improved from 8.18 days to 36 days. At 30 km and 40 km, the tethered systems remained stable beyond 100 days, while free flyers failed after 15.81 and 41.33 days, respectively. Tether tension remained within safe bounds, with peaks below 6.02 N and mean values around 5.2 N, compared to a safety threshold of 98.18 N. Misalignment angles remained below 20° in all cases. The emergence of quasi-periodic behavior in altitude and velocity further suggests a natural stabilization mechanism induced by the tether. These results support the feasibility of MET-based STSs for long-duration, low-altitude lunar missions with reduced fuel usage and increased scientific return.| File | Dimensione | Formato | |
|---|---|---|---|
|
Toffano_AldoPDFA2.pdf
accesso aperto
Dimensione
30.38 MB
Formato
Adobe PDF
|
30.38 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/101772