This work focuses on improving the modeling of fan blades in civil aircraft engines, which in future architectures will need to become larger and more flexible in order to meet the increasing demands for efficiency. While current engines, such as the CFM56 and the LEAP, allow the blades to be considered as rigid elements, future configurations may instead exhibit blade bending modes within their operating range. In this study, a simplified formulation of flexible blades is proposed, based on Euler–Bernoulli beam theory, assuming the blades to be clamped at the outer radius of the disk. A key aspect of this work is the introduction of specific degrees of freedom, referred to as “nodal diameters,” which make it possible to represent the collective motion of the blades without modeling each one individually. The formulation was validated through comparison with a finite element model developed in Ansys Workbench. Despite its simplicity, the model proved to be highly reliable, reproducing the same results as Ansys Workbench for an academic case study presented in Chapter 4 of this report. A sensitivity study was then carried out, again on an academic model, by varying several parameters, such as the first bending frequency of the blades, the blade stagger angle, and the polar inertia of the disk, in order to analyze their effects on the model dynamics. Finally, the formulation was integrated into an in-house finite element software developed at Safran Aircraft Engines and applied to several engine models under development within the company. Considering blade flexibility highlighted significant effects on engine dynamics, particularly the emergence of fan blade modes within the operating range. However, this last part has not been included in the present report for confidentiality reasons.
Questo lavoro riguarda il miglioramento della modellazione delle pale delle ventole dei motori aeronautici civili, che nelle future architetture dovranno diventare più grandi e flessibili per rispondere alle crescenti esigenze di efficienza. Mentre i motori attuali, come il CFM56 e il LEAP, consentono di considerare le pale come elementi rigidi, le configurazioni future potrebbero invece presentare modi di flessione all’interno del loro regime di funzionamento. In questo studio viene proposta una formulazione semplificata delle pale flessibili, basata sulla teoria delle travi di Euler-Bernoulli, assumendo le pale incastrate al raggio esterno del disco. Un aspetto chiave del lavoro è l’introduzione di specifici gradi di libertà, detti “diametri nodali”, che permettono di rappresentare il movimento collettivo delle pale senza doverle modellare singolarmente. La formulazione è stata validata mediante confronto con una modellazione agli elementi finiti realizzata in Ansys Workbench. Nonostante la sua semplicità, il modello si è dimostrato molto affidabile, riproducendo gli stessi risultati ottenuti con Ansys Workbench per un caso di studio accademico presentato nel capitolo 4 di questo rapporto. Successivamente è stato condotto uno studio d'influenza, sempre su un modello accademico, variando diversi parametri, quali la prima frequenza di flessione e l’angolo di calettamento delle pale e l’inerzia polare del disco, per analizzarne gli effetti sulla dinamica del modello. Infine, la formulazione è stata integrata in un software agli elementi finiti interno di Safran Aircraft Engines e applicata a diversi modelli di motore in fase di sviluppo presso l’azienda. La considerazione della flessibilità delle pale ha evidenziato effetti significativi sulla dinamica del motore, in particolare la comparsa di modi propri delle pale della ventola all’interno del regime di funzionamento. Tuttavia, quest’ultima parte non è stata riportata nel presente rapporto per motivi di riservatezza.
Modeling the impact of fan blade flexibility on the torsional and bending dynamics of an engine
TECCHIO, GIACOMO
2024/2025
Abstract
This work focuses on improving the modeling of fan blades in civil aircraft engines, which in future architectures will need to become larger and more flexible in order to meet the increasing demands for efficiency. While current engines, such as the CFM56 and the LEAP, allow the blades to be considered as rigid elements, future configurations may instead exhibit blade bending modes within their operating range. In this study, a simplified formulation of flexible blades is proposed, based on Euler–Bernoulli beam theory, assuming the blades to be clamped at the outer radius of the disk. A key aspect of this work is the introduction of specific degrees of freedom, referred to as “nodal diameters,” which make it possible to represent the collective motion of the blades without modeling each one individually. The formulation was validated through comparison with a finite element model developed in Ansys Workbench. Despite its simplicity, the model proved to be highly reliable, reproducing the same results as Ansys Workbench for an academic case study presented in Chapter 4 of this report. A sensitivity study was then carried out, again on an academic model, by varying several parameters, such as the first bending frequency of the blades, the blade stagger angle, and the polar inertia of the disk, in order to analyze their effects on the model dynamics. Finally, the formulation was integrated into an in-house finite element software developed at Safran Aircraft Engines and applied to several engine models under development within the company. Considering blade flexibility highlighted significant effects on engine dynamics, particularly the emergence of fan blade modes within the operating range. However, this last part has not been included in the present report for confidentiality reasons.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tecchio_Giacomo.pdf
Accesso riservato
Dimensione
7.78 MB
Formato
Adobe PDF
|
7.78 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/102181