Nanobodies, also known as single-domain antibody fragments, are the smallest functional fragments of heavy-chain antibodies derived from camelids. Their unique biochemical features, including small size (~15 kDa), high stability, solubility, and ability to bind epitopes inaccessible to conventional antibodies, make them a promising platform in therapeutics and diagnostics. Their reduced immunogenicity and ease of genetic or chemical modification further enhance their potential as targeting agents in antibody–drug conjugates (ADCs), imaging, and delivery systems. ADCs are a class of targeted cancer therapeutics composed of three elements: (i) an antibody recognizing tumor antigens, (ii) a cytotoxic payload that induces cell death, and (iii) a linker providing stability and controlled drug release. This modular structure allows selective delivery of highly potent drugs while limiting systemic toxicity. However, conventional ADCs suffer from heterogeneous drug-to-antibody ratios, complex production, and large molecular size (~150 kDa), which reduce tumor penetration. Nanobody–drug conjugates (NDCs) overcome many of these drawbacks by replacing the full antibody scaffold with a nanobody, improving tumor penetration, clearance of unbound molecules, and design flexibility. This thesis focuses on designing dual-conjugated nanobody constructs carrying Exatecan and Auristatin E. Exatecan is a potent topoisomerase I inhibitor that stabilizes the DNA–topoisomerase I complex, inducing double-strand breaks and apoptosis. Derivatives such as deruxtecan are already used in approved ADCs. Auristatin E, a synthetic analog of dolastatin 10, acts as a microtubule inhibitor by binding tubulin, blocking cell division, and inducing apoptosis. Auristatin derivatives, such as MMAE, are widely used in clinically approved ADCs. Together, these drugs provide complementary mechanisms of action: Exatecan targets DNA integrity, while Auristatin E disrupts microtubules. Auristatin E was introduced via chemical conjugation, while Exatecan was attached through enzymatic conjugation using microbial transglutaminase (mTGase). To improve solubility and flexibility, Exatecan was modified with a PEG8 linker before enzymatic attachment. For monitoring and purification, we used HPLC to follow reactions and assess purity, FPLC to isolate conjugates, and mass spectrometry to confirm successful conjugation. The expected outcome is the establishment of a workflow for dual nanobody conjugation with mechanistically distinct cytotoxics. By combining chemical and enzymatic strategies, this approach provides a modular and versatile platform for nanobody functionalization. Beyond this project, it may serve as a foundation for engineering nanobody-based therapeutics, diagnostics, and targeted delivery systems.
I nanobodies, noti anche come frammenti di anticorpi a singolo dominio, sono i più piccoli frammenti funzionali di anticorpi a catena pesante derivati dai camelidi. Le loro caratteristiche biochimiche peculiari, tra cui la ridotta dimensione (~15 kDa), l’elevata stabilità, solubilità e la capacità di legare epitopi inaccessibili agli anticorpi convenzionali, li rendono una piattaforma promettente in ambito terapeutico e diagnostico. La bassa immunogenicità e la facilità di modificazione genetica o chimica ne ampliano ulteriormente le applicazioni come elementi di targeting in coniugati anticorpo–farmaco (ADC), agenti di imaging e sistemi di rilascio. Gli ADC sono una classe di terapie oncologiche mirate composte da tre elementi: (i) un anticorpo che riconosce antigeni tumorali, (ii) un payload citotossico che induce la morte cellulare e (iii) un linker che fornisce stabilità e rilascio controllato del farmaco. Questa architettura modulare permette di veicolare farmaci altamente potenti riducendo la tossicità sistemica. Tuttavia, gli ADC convenzionali presentano limiti quali rapporti farmaco/anticorpo eterogenei, processi produttivi complessi e grandi dimensioni molecolari (~150 kDa), che riducono la penetrazione nei tumori. I nanobody–drug conjugates (NDC) offrono un’alternativa, sostituendo l’anticorpo completo con un nanobody, con vantaggi in termini di penetrazione tumorale, clearance delle molecole non legate e maggiore flessibilità di design. Questa tesi si concentra sulla progettazione di costrutti di nanobody a doppia coniugazione con Exatecan e Auristatina E. Exatecan è un potente inibitore della topoisomerasi I che stabilizza il complesso DNA–topoisomerasi I, inducendo rotture a doppio filamento e apoptosi. Derivati come il deruxtecan sono già utilizzati in ADC approvati. L’Auristatina E, analogo sintetico della dolastatina 10, agisce invece come inibitore dei microtubuli legandosi alla tubulina, bloccando la divisione cellulare e inducendo apoptosi. Derivati come la MMAE sono ampiamente impiegati in ADC clinici. Insieme, Exatecan e Auristatina E forniscono meccanismi d’azione complementari: Exatecan colpisce l’integrità del DNA, mentre l’Auristatina E altera i microtubuli. L’Auristatina E è stata coniugata mediante coniugazione chimica, mentre Exatecan è stato legato tramite coniugazione enzimatica con transglutaminasi microbica (mTGasi). Per migliorarne solubilità e flessibilità, Exatecan è stato preventivamente modificato con un linker PEG8. Per il monitoraggio e la purificazione sono stati impiegati HPLC per seguire le reazioni e valutarne la purezza, FPLC per isolare i coniugati e la spettrometria di massa per confermare l’avvenuta coniugazione. L’obiettivo atteso è l’istituzione di un workflow per la doppia coniugazione di nanobodies con agenti citotossici a meccanismi distinti. La combinazione di strategie chimiche ed enzimatiche offre un approccio modulare e versatile per la funzionalizzazione dei nanobodies. Oltre a questo progetto, la piattaforma potrebbe costituire la base per lo sviluppo futuro di terapie, diagnostica e sistemi di rilascio mirato basati su nanobodies.
Nanobodies as Delivery System for Anticancer Drugs: Investigations of Chemical and Enzymatic Methods of Preparation
ALDANOVA, MAIRA
2024/2025
Abstract
Nanobodies, also known as single-domain antibody fragments, are the smallest functional fragments of heavy-chain antibodies derived from camelids. Their unique biochemical features, including small size (~15 kDa), high stability, solubility, and ability to bind epitopes inaccessible to conventional antibodies, make them a promising platform in therapeutics and diagnostics. Their reduced immunogenicity and ease of genetic or chemical modification further enhance their potential as targeting agents in antibody–drug conjugates (ADCs), imaging, and delivery systems. ADCs are a class of targeted cancer therapeutics composed of three elements: (i) an antibody recognizing tumor antigens, (ii) a cytotoxic payload that induces cell death, and (iii) a linker providing stability and controlled drug release. This modular structure allows selective delivery of highly potent drugs while limiting systemic toxicity. However, conventional ADCs suffer from heterogeneous drug-to-antibody ratios, complex production, and large molecular size (~150 kDa), which reduce tumor penetration. Nanobody–drug conjugates (NDCs) overcome many of these drawbacks by replacing the full antibody scaffold with a nanobody, improving tumor penetration, clearance of unbound molecules, and design flexibility. This thesis focuses on designing dual-conjugated nanobody constructs carrying Exatecan and Auristatin E. Exatecan is a potent topoisomerase I inhibitor that stabilizes the DNA–topoisomerase I complex, inducing double-strand breaks and apoptosis. Derivatives such as deruxtecan are already used in approved ADCs. Auristatin E, a synthetic analog of dolastatin 10, acts as a microtubule inhibitor by binding tubulin, blocking cell division, and inducing apoptosis. Auristatin derivatives, such as MMAE, are widely used in clinically approved ADCs. Together, these drugs provide complementary mechanisms of action: Exatecan targets DNA integrity, while Auristatin E disrupts microtubules. Auristatin E was introduced via chemical conjugation, while Exatecan was attached through enzymatic conjugation using microbial transglutaminase (mTGase). To improve solubility and flexibility, Exatecan was modified with a PEG8 linker before enzymatic attachment. For monitoring and purification, we used HPLC to follow reactions and assess purity, FPLC to isolate conjugates, and mass spectrometry to confirm successful conjugation. The expected outcome is the establishment of a workflow for dual nanobody conjugation with mechanistically distinct cytotoxics. By combining chemical and enzymatic strategies, this approach provides a modular and versatile platform for nanobody functionalization. Beyond this project, it may serve as a foundation for engineering nanobody-based therapeutics, diagnostics, and targeted delivery systems.| File | Dimensione | Formato | |
|---|---|---|---|
|
Maira_Aldanova_MasterThesis.pdf
Accesso riservato
Dimensione
5.6 MB
Formato
Adobe PDF
|
5.6 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/102633