Over the last decades, global warming has increased the frequency and intensity of stormwater events by stressing the drainage system of urban areas that are not designed to manage these strong phenomena. This thesis deals with the analysis of the overflow risk in the network of open-channels focusing on the Cavallino di Venezia drainage network. For this purpose, it is presented a model that describes the dynamics of water flow in open-channel networks with particular regard on the propagation of the backwater effect through channels and junctions. Such a model is used to analyse the functionality of the network when there is a large amount of rainwater be drained and to understand which places are at risk of overflow. To describe the fluid dynamics and build the network model, Saint-Venant equations are taken into account. In particular, the thesis focuses on the Integrator Delay Zero model that describes the main physical behaviour of the open-channel dynamics. This model is crucial in this thesis as it represents the core of the network model. Furthermore, different models are analysed and compared to characterize the behaviour of water in a junction. In particular, the well-known Equality model is tested in order to find the conditions under which it operates properly. In conclusion, the Integrator Delay Zero model and the Equality model are combined together with the support of graph theory to obtain the open-channel networks. In addition, this thesis deals with the problem of sensors placement. The aim of the latter investigation is to find the optimal sensor placement in order to estimate the flow in open-channel networks by minimising the estimation error. Finally, each topic presented in this thesis is supported by numerical simulations executed in MATLAB in order to validate the theoretical results, by also resorting to using measurements of real drainage systems.
Negli ultimi decenni, il riscaldamento globale ha aumentato la frequenza e l'intensità delle precipitazioni, sottoponendo a una forte sollecitazione i sistemi di drenaggio delle aree urbane che non sono progettati per gestire questi fenomeni violenti. Questa tesi si occupa dell'analisi del rischio di straripamento delle rete di canali concentrandosi sulla rete di drenaggio del Cavallino di Venezia. A questo scopo, viene proposto un modello che descrive la dinamica del flusso dell'acqua nelle reti di canali con un particolare riguardo alla propagazione dell'effetto backwater. Tale modello viene utilizzato per analizzare la funzionalità della rete e per capire quali luoghi sono a rischio di straripamento quando c'è un notevole quantitativo di acqua piovana da drenare. Per descrivere la dinamica dei fluidi e costruire il modello di rete, vengono prese in considerazione le equazioni di Saint-Venant (SVEs). In particolare, la tesi si concentra sul modello Integrator Delay Zero che fornisce una descrizione della dinamica dell'acqua nei canali semplificata rispetto le SVEs. Inoltre, si confrontano diversi modelli per descrivere il comportamento dell'acqua nella giunzioni tra canali. In particolare, il modello Equality è testato per trovare le condizioni in cui approssima adeguatamente la realtà. In conclusione, il modello Integrator Delay Zero e il modello Equality sono abbinati insieme con il supporto della teoria dei grafi per ottenere il modello per le reti di canali. Inoltre, questa tesi affronta il problema del posizionamento di sensori. Il suo scopo è quello di trovare il posizionamento ottimale di sensori al fine di stimare il flusso nelle reti di canali idrici minimizzando l'errore di stima. Infine, ogni tematica presentata in questa tesi è supportata da simulazioni numeriche eseguite in MATLAB al fine di convalidare i risultati teorici ricorrendo anche a misure del flusso di sistemi reali.
Modellazione ed analisi di reti idriche
FRIGO, MICHELE
2021/2022
Abstract
Over the last decades, global warming has increased the frequency and intensity of stormwater events by stressing the drainage system of urban areas that are not designed to manage these strong phenomena. This thesis deals with the analysis of the overflow risk in the network of open-channels focusing on the Cavallino di Venezia drainage network. For this purpose, it is presented a model that describes the dynamics of water flow in open-channel networks with particular regard on the propagation of the backwater effect through channels and junctions. Such a model is used to analyse the functionality of the network when there is a large amount of rainwater be drained and to understand which places are at risk of overflow. To describe the fluid dynamics and build the network model, Saint-Venant equations are taken into account. In particular, the thesis focuses on the Integrator Delay Zero model that describes the main physical behaviour of the open-channel dynamics. This model is crucial in this thesis as it represents the core of the network model. Furthermore, different models are analysed and compared to characterize the behaviour of water in a junction. In particular, the well-known Equality model is tested in order to find the conditions under which it operates properly. In conclusion, the Integrator Delay Zero model and the Equality model are combined together with the support of graph theory to obtain the open-channel networks. In addition, this thesis deals with the problem of sensors placement. The aim of the latter investigation is to find the optimal sensor placement in order to estimate the flow in open-channel networks by minimising the estimation error. Finally, each topic presented in this thesis is supported by numerical simulations executed in MATLAB in order to validate the theoretical results, by also resorting to using measurements of real drainage systems.File | Dimensione | Formato | |
---|---|---|---|
Frigo_Michele.pdf
accesso aperto
Dimensione
2.77 MB
Formato
Adobe PDF
|
2.77 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/10634