Human neural embryo development can not completely be recapitulated through 2D in vitro models, due to the absence of an appropriate cytoarchitecture and heterogenous neural populations. Recently these issues were solved by 3D brain organoids, but most of the differentiation protocols use standard iPSCs at passage 20 to 30. This does not resemble the fast progression from the pluripotent epiblast to the gastrulation in the human embryo development (14 days). The aim of my thesis is to develop a highly reproducible reprogramming-to-organoid strategy, where early passage human induced Pluripotent Stem Cells (iPSCs) soon after reprogramming are directly used to derive forebrain organoids in a developmental continuum process. First, we exploited our well-standardized reprogramming protocol based on microfluidics for generating highly competent iPSCs. We obtain high yield of human iPSCs in just 2 weeks, which are capable to derive all the three germ layers. Second, from our freshly reprogrammed iPSCs we obtained 3D self-organized epiblast cysts representing a homogeneous population characterized by an epithelium of polarized and pluripotent cells. Finally, we induced epiblast cyst toward a neural fate, modifying and combining the already published protocols of Zheng and Pasca. We were able to reach a 3D neural commitment and obtain neuroepithelial cysts with a dorsal-brain regionalization, and then forebrain organoids, characterized by the presence of a heterogeneous population of neurons. In conclusion, we developed for the first time a reprogramming-to-organoid strategy, that allows to derive forebrain organoids from early passage iPSC-derived epiblast cysts, in a developmental continuum process. After further optimizing our protocol for forebrain organoids maturation, our 3D model could be ideal to recapitulate many features of early brain development.
Lo sviluppo neuronale dell’embrione umano non può essere richiamato con modelli in 2D, perché non presentano un’appropriata citoarchitettura e una eterogenea popolazione neuronale. Recentemente queste problematiche sono state risolte da organoidi di cervello in 3D, ma molti dei protocolli di differenziamento usano standard iPSCs a passaggio 20-30. Questo non riflette la veloce progressione che va dal pluripotente epiblasto alla gastrulazione nello sviluppo dell’embrione umano (14 days). Lo scopo della mia tesi è quello di sviluppare una strategia altamente riproducibile che vada dal reprogramming agli organoidi, dove induced Pluripotent Stem Cells (iPSCs) subito dopo il reprogramming vengano utilizzate per ottenere organoidi di prosencefalo in un processo evolutivo continuo. Per prima cosa, abbiamo sfruttato il nostro protocollo standardizzato di reprogramming basato sulla microfluidica per generare iPSCs che fossero altamente competenti. Abbiamo ottenuto con un’alta resa in sole due settimane iPSCs che sono in grado di derivare tutti i tre foglietti germinali. Secondo, partendo dalle nostre iPSCs appena riprogrammate, abbiamo ottenuto delle cisti di epiblasto che rappresentano una popolazione omogenea di cellule epiteliali organizzate in 3D, pluripotenti e polarizzate. Infine, le cisti sono state sottoposte a un differenziamento neuronale, modificando i protocolli di Zheng e Pasca. Abbiamo ottenuto cisti neuroepiteliali con una regionalizzazione dorsale del cervello, ed in seguito organoidi di prosencefalo, caratterizzati dalla presenza di una popolazione eterogenea di neuroni. In conclusione, abbiamo sviluppato per la prima volta una strategia che vada da reprogramming a organoidi, che permette di ottenere organoidi di prosencefalo da epiblasti da iPSCs a basso passaggio, in un processo evolutivo continuo. Dopo aver ottimizzato il nostro protocollo per la maturazione degli organoidi di prosencefalo, il nostro modello 3D potrebbe essere ideale per ricapitolare molti aspetti della fase iniziale dello sviluppo del cervello.
Development of 3D culture techniques for human brain organoids derivation
FRISON, ROBERTA
2021/2022
Abstract
Human neural embryo development can not completely be recapitulated through 2D in vitro models, due to the absence of an appropriate cytoarchitecture and heterogenous neural populations. Recently these issues were solved by 3D brain organoids, but most of the differentiation protocols use standard iPSCs at passage 20 to 30. This does not resemble the fast progression from the pluripotent epiblast to the gastrulation in the human embryo development (14 days). The aim of my thesis is to develop a highly reproducible reprogramming-to-organoid strategy, where early passage human induced Pluripotent Stem Cells (iPSCs) soon after reprogramming are directly used to derive forebrain organoids in a developmental continuum process. First, we exploited our well-standardized reprogramming protocol based on microfluidics for generating highly competent iPSCs. We obtain high yield of human iPSCs in just 2 weeks, which are capable to derive all the three germ layers. Second, from our freshly reprogrammed iPSCs we obtained 3D self-organized epiblast cysts representing a homogeneous population characterized by an epithelium of polarized and pluripotent cells. Finally, we induced epiblast cyst toward a neural fate, modifying and combining the already published protocols of Zheng and Pasca. We were able to reach a 3D neural commitment and obtain neuroepithelial cysts with a dorsal-brain regionalization, and then forebrain organoids, characterized by the presence of a heterogeneous population of neurons. In conclusion, we developed for the first time a reprogramming-to-organoid strategy, that allows to derive forebrain organoids from early passage iPSC-derived epiblast cysts, in a developmental continuum process. After further optimizing our protocol for forebrain organoids maturation, our 3D model could be ideal to recapitulate many features of early brain development.File | Dimensione | Formato | |
---|---|---|---|
Frison_Roberta.pdf
accesso riservato
Dimensione
3.14 MB
Formato
Adobe PDF
|
3.14 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/11465