Introduction Skeletal muscle is the most abundant tissue in the human body, allowing movement and respiration. In the physiological environment, muscle cells are tridimensionally organised in fascicles, and they are connected via neuromuscular junctions to motoneurons and sensory neurons. Muscle tissue can be affected by several diseases, which can be genetic or acquired, and can involve many pathophysiological mechanisms. Regardless the aetiology, the common result is a dysfunction in the crosstalk between nervous and muscular system, with consequent loss of muscle functionality. Regardless the origin or the target tissue, all of these pathologies lead to muscle atrophy, often affecting the diaphragmatic muscle in a significant way. Given its crucial role in respiration, diaphragmatic involvement can lead to dramatic outcomes. Aim Beginning from the generation of 3D in vitro diaphragmatic constructs as useful tools for the investigation of different myopathies, and considering that innervation plays a crucial role in the in vivo muscle development, control and maturation, the aim of this project was to investigate the role of innervation on a 3D in vitro myogenic model differentiation and maturation, and to determine if the obtained in vitro muscle was able to reach a level of maturation more comparable to the one occurring in vivo. Materials and methods This was performed by generating 3D diaphragmatic constructs obtained from the recellularization of mouse decellularized diaphragmatic scaffold and human muscle precursor cells (hMPCs). Two different culture protocols were evaluated for their ability to support tissue differentiation and maturation. The neural component, consisting of embryonal E14.5 rat spinal cord (SpC) tissue, was then added to the tissue culture in order to evaluate whether skeletal muscle and neural cell combination could be beneficial to the overall cell differentiation and 3D tissue maturation. Results and discussion Human MPCs were characterized for myogenic properties, proliferation abilities and culture method. Two recellularization experiments with hMPCs were performed in parallel using two different culture protocols, to determine which one was better in supporting tissue maturation. This was followed by the identification of the best media iv combination for rat spinal cord and hMPCs co-culture. Once validated the ability to successfully co-culture hMPCs and SpC in 2D, recellularization experiments introducing both muscular and neural component were performed, analysing the influence of the neural tissue introduction on muscle maturation. Conclusions We demonstrated that the introduction of the neural component onto a 3D muscle construct was able to promote hMPCs differentiation, improving the overall maturation of the 3D diaphragmatic construct. Time also was determined as crucial in allowing the establishment of a functional interaction between muscular and neural component in a 3D tissue model.
Introduzione Il muscolo scheletrico è il tessuto più abbondante nel corpo umano, e consente il movimento e la respirazione. Nell'ambiente fisiologico, le cellule muscolari sono organizzate tridimensionalmente in fasci, e sono collegate tramite giunzioni neuromuscolari a motoneuroni e neuroni sensoriali. Il tessuto muscolare può essere colpito da diverse malattie, che possono essere genetiche o acquisite, e possono coinvolgere molti meccanismi fisiopatologici. Non tenendo in considerazione l’eziologia, il risultato comune è una disfunzione nella comunicazione tra sistema nervoso e sistema muscolare, con conseguente perdita di funzionalità muscolare. Indipendentemente dall'origine o dal tessuto bersaglio, tutte queste patologie portano all'atrofia muscolare, interessando spesso in modo significativo il muscolo diaframmatico. Dato il suo ruolo cruciale nella respirazione, il coinvolgimento del diaframma può portare a conseguenze drammatiche. Scopo Partendo dalla generazione in vitro di costrutti diaframmatici 3D come strumenti utili per l'indagine di diverse miopatie, e considerando che l'innervazione gioca un ruolo cruciale nello sviluppo, nel controllo e nella maturazione muscolare in vivo, lo scopo di questo progetto è stato quello di indagare il ruolo dell’innervazione in vitro su un modello miogenico tridimensionale di differenziamento e maturazione, per stabilire se il muscolo ottenuto in vitro, una volta aggiunta l’innervazione, è in grado di raggiungere un livello di maturazione più paragonabile a quello che si verifica in vivo. Materiali e metodi Ciò è stato eseguito generando costrutti diaframmatici 3D, ottenuti dalla ricellularizzazione di scaffold diaframmatici murini decellularizzati mediante il ripopolamento con precursori muscolari umani (hMPCs). Sono stati valutati due diversi protocolli di coltura per la loro capacità di supportare il differenziamento e la maturazione dei tessuti. La componente neurale, costituita da tessuto derivante dal midollo spinale (SpC) di embrioni di ratto (E14.5), è stata quindi aggiunta alla coltura tissutale per valutare se la combinazione di cellule muscolari e cellule neurali potesse essere complessivamente benefica per il differenziamento cellulare e la maturazione del tessuto a livello tridimensionale. ii Risultati e discussione Le hMPCs sono state caratterizzate per proprietà miogeniche, capacità di proliferazione e metodo ottimale di mantenimento in coltura. Due esperimenti di ricellularizzazione con hMPCs sono stati eseguiti in parallelo utilizzando due diversi protocolli di coltura, per determinare quale fosse migliore nel supportare la maturazione dei tessuti. Ciò è stato seguito dall'identificazione della migliore combinazione di terreni per la co-coltura del midollo spinale di ratto e delle hMPCs. Una volta convalidata la capacità di co-coltura di hMPCs e SpC in 2D, sono stati eseguiti esperimenti di ricellularizzazione utilizzando sia la componente muscolare che quella neurale, andando ad analizzare l'influenza dell'introduzione del tessuto neurale sulla maturazione della componente muscolare. Conclusioni Abbiamo dimostrato che l'introduzione della componente neurale su un costrutto muscolare 3D è stata in grado di promuovere la differenziazione delle hMPCs, migliorando la maturazione complessiva del costrutto diaframmatico 3D. Anche il tempo è stato determinante nel consentire l'instaurarsi di un'interazione funzionale tra la componente muscolare e quella neurale in un modello di tessuto 3D.
Role of innervation on in vitro 3D diaphragmatic model generation
ROSSI, LUCIA
2021/2022
Abstract
Introduction Skeletal muscle is the most abundant tissue in the human body, allowing movement and respiration. In the physiological environment, muscle cells are tridimensionally organised in fascicles, and they are connected via neuromuscular junctions to motoneurons and sensory neurons. Muscle tissue can be affected by several diseases, which can be genetic or acquired, and can involve many pathophysiological mechanisms. Regardless the aetiology, the common result is a dysfunction in the crosstalk between nervous and muscular system, with consequent loss of muscle functionality. Regardless the origin or the target tissue, all of these pathologies lead to muscle atrophy, often affecting the diaphragmatic muscle in a significant way. Given its crucial role in respiration, diaphragmatic involvement can lead to dramatic outcomes. Aim Beginning from the generation of 3D in vitro diaphragmatic constructs as useful tools for the investigation of different myopathies, and considering that innervation plays a crucial role in the in vivo muscle development, control and maturation, the aim of this project was to investigate the role of innervation on a 3D in vitro myogenic model differentiation and maturation, and to determine if the obtained in vitro muscle was able to reach a level of maturation more comparable to the one occurring in vivo. Materials and methods This was performed by generating 3D diaphragmatic constructs obtained from the recellularization of mouse decellularized diaphragmatic scaffold and human muscle precursor cells (hMPCs). Two different culture protocols were evaluated for their ability to support tissue differentiation and maturation. The neural component, consisting of embryonal E14.5 rat spinal cord (SpC) tissue, was then added to the tissue culture in order to evaluate whether skeletal muscle and neural cell combination could be beneficial to the overall cell differentiation and 3D tissue maturation. Results and discussion Human MPCs were characterized for myogenic properties, proliferation abilities and culture method. Two recellularization experiments with hMPCs were performed in parallel using two different culture protocols, to determine which one was better in supporting tissue maturation. This was followed by the identification of the best media iv combination for rat spinal cord and hMPCs co-culture. Once validated the ability to successfully co-culture hMPCs and SpC in 2D, recellularization experiments introducing both muscular and neural component were performed, analysing the influence of the neural tissue introduction on muscle maturation. Conclusions We demonstrated that the introduction of the neural component onto a 3D muscle construct was able to promote hMPCs differentiation, improving the overall maturation of the 3D diaphragmatic construct. Time also was determined as crucial in allowing the establishment of a functional interaction between muscular and neural component in a 3D tissue model.File | Dimensione | Formato | |
---|---|---|---|
Rossi_Lucia.pdf
accesso riservato
Dimensione
4.5 MB
Formato
Adobe PDF
|
4.5 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/11468