We study the problem of learning a Bayesian Network structure from data using an Integer Programming approach. We study the existing approaches, an in particular some recent works that formulate the problem as an Integer Programming model. By discussing some weaknesses of the existing approaches, we propose an alternative solution, based on a statistical sparsification of the search space. Results show how our approach can lead to promising results, especially for large networks
An Integer Programming approach to Bayesian Network Structure Learning
Franzin, Alberto
2014/2015
Abstract
We study the problem of learning a Bayesian Network structure from data using an Integer Programming approach. We study the existing approaches, an in particular some recent works that formulate the problem as an Integer Programming model. By discussing some weaknesses of the existing approaches, we propose an alternative solution, based on a statistical sparsification of the search space. Results show how our approach can lead to promising results, especially for large networksFile in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
tesi_franzin.pdf
accesso aperto
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.12608/18283